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ABSTRACT  

 

Taxi ride sharing is one of the most promising solutions to urban transportation 
issues, such as traffic congestion, gas insufficiency, air pollution, limited parking 

space and unaffordable parking charge, taxi shortage in peak hours, etc. Despite 
the enormous demands of such service and its exciting social benefits, there is still 
a shortage of successful automated operations of ride sharing systems around the 

world. Two of the bottlenecks are: (1) on-time delivery is not guaranteed; (2) 
matching and scheduling drivers and passengers is a NP-hard problem, and 

optimization based models do not support real time scheduling on large scale 
systems.  
 

This thesis tackles the challenge of timely delivery of passengers in a large scale 
ride sharing system, where there are hundreds and even thousands of passengers 

and drivers to be matched and scheduled. We first formulate it as a mixed linear 
integer programming problem, which obtains the theoretical optimum, but at an 
unacceptable runtime cost even for a small system.  We then introduce our greedy 

agglomeration and Monte Carlo simulation based algorithm. The effectiveness and 
efficiency of the new algorithm are fully evaluated: (1) Comparison with solving 

optimization model is conducted on small ride sharing cases. The greedy 
agglomerative algorithm can always achieve the same optimal solutions that the 
optimization model offers, but is three orders of magnitude faster. (2) Case studies 

on large scale systems are also included to validate its performance. (3) The 
proposed greedy algorithm is straightforward for parallelization to utilize distributed 

computing resources. (4) Two important details are discussed: selection of the 
number of Monte Carlo simulations and proper calculation of delays in the greedy 
agglomeration step. We find out from experiments that the sufficient number of 

simulations to achieve a “sufficiently optimal solution” is linearly related to the 
product of the number of vehicles and the number of passengers. Experiments 

also show that enabling margins and counting early delivery as negative delay 
leads to more accurate solutions than counting delay only.   
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CHAPTER ONE  

INTRODUCTION 

 

Ride Sharing Services  

 

Ride sharing, a travel mode initially launched by the U.S. government for the 

purpose of reducing fuel consumption during WWII and the 1970s fuel crisis [1, 2], 

has seen its growing necessity over the past few decades. Expanding urban 
population and increasing vehicle ownerships [3] conflict with limited capacities of 

roadways, causing severe congestions especially during peak hours [4, 5]. A study 
conducted by Schrank et al. revealed that congestions in 498 selected US urban 
areas in 2011 cost people 5.5 billion hours of extra waiting time in traffic, led to 56 

billion pounds of extra greenhouse emission, 2.9 billion gallons of wasted fuel, and  
many other massive costs [6]. The equivalent financial cost due to congestions 

was 121 billion US dollars in 2011, compared to 94 billion in 2000 and 24 billion in 
1982 [6]. Emission by vehicles causes air pollutions and hampers public health. 
Traffic related air pollutions have been confirmed to be related to increased infant 

mortality rates [7], complicated respiratory diseases [8], children obesity [9], 
childhood cancers [10], brain tumors [11], among many other health issues.  

 
 

 

Figure 1.1. Example: a three-vehicle-five-passenger ride sharing system.  
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Ride sharing can potentially offer efficient solutions to shortage of fuels, 
congestion, air pollutions and related public health problems, limited parking and 

high parking charges [12, 13], etc. Besides these, taxi ride sharing is among the 
most promising solutions to reduce the unusual transportation pressures that big 

metropolitan areas are suffering, such as shortage of taxicabs during rush hours, 
and/or anytime in certain areas such as airports, central business districts [14, 15]. 
Many other studies have looked into transportation expenses the household are 

paying. The 2009 National Household Travel Survey (NHTS) indicated that an 
average American household travels about 20,000 miles per year with a total road 

transportation cost of about 15%-18% of their annual income [16, 17]. A mature 
and trustworthy ride sharing system will attract more people to do carpooling with 
their neighbors, colleagues and other participants to cut their commuting expenses  

[18].  
  

Not only is the needs for ride sharing growing, but also the enabling technologies. 
Unlike a decade ago when people had to call a scheduling center to make the 
appointment long time ahead, smart phones nowadays and the applications can 

gather the spatial and time information from the drivers and ride requesters, and 
algorithms supporting real time scheduling can match the drivers and passengers 

instantaneously. Although some literatures have tried to classify ride sharing 
systems into single-vehicle-single-passenger type, single-vehicle-multiple-
passenger type, multiple-vehicle-multiple-passenger type, this thesis will focus on 

the general multiple-vehicle-multiple-passenger system. A simple three-vehicle-
five-passenger example is shows in Figure 1.1.  

 
Although the needs for ride sharing is huge, the benefits are exciting, and the 
supporting communication technologies are in place, there is still a shortage of 

successful automated ride sharing operations. On one hand, as explained by  
Agatz [19], ride sharing involves many social factors. Passengers have different 

preferences when deciding who to share a vehicle with and which vehicle to pick, 
age, gender, profession of the co-riders can all play into it, as well as the model, 
color, year, entertainment facility of the car. It is complicated and hard to come up 

with a uniform model to accommodate all the factors. On the other hand, as we will 
show in next chapter, most scheduling algorithms are not able to handle large 

quantities of passengers and vehicles and make it hard for real time system 
deployment.  
  

This study is motivated by one of the concerns taxi-ride sharing users have, the 
punctuality problem. In a setting where ride requesters have preferred arrival time 

to their destination, (i.e. getting to the airport at 4 p.m.,) it happens that a taxi 
serving more than one passengers fails to deliver all passengers on time.  
According to the feedbacks people gave in Google Play Store to the ride-hailing 

companies (e.g. Uber, Lyft, Didi Chuxing, Sidecar, etc.), delay issue is among the 
most frequently mentioned unsatisfactory experiences of their customers, as one 
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can see from some examples in Figure 1.2. Unpredictable waiting and delay 
makes it unpleasant and even frustrating to use ride sharing cab services, and in 

the long run will hurt the reputation of these companies if not effectively addressed.   
  

This thesis focuses on scheduling passengers and taxis towards timely delivery in 
a large ride sharing system. In Chapter 2, we review a few classes of vehicle 
routing problems and their solution methods. In Chapter 3, we formulate timely 

delivery as a mixed linear integer programming problem, with the total system 
delay as the objective. In Chapter 4, we design a greedy agglomeration and Monte 

Carlo simulation based heuristic algorithm to quickly find the “sufficiently optimal” 
solution for a large system, followed by case studies on both small and large 
system, and the parallel implementation. We then discuss two problems: the 

selection of number of simulations, and proper calculation of delays in the greedy 
agglomeration algorithm. In Chapter 5, we look into another problem that is 

necessary for ride sharing system design, extracting multi-origin-multi-destination 
travel time matrix from a real road network. We modified single-source-single-
target Dijkstra’s and A* algorithms to serve for multiple-to-multiple purpose. 

Experiments are designed to compare the two. Chapter 6 concludes the thesis, 
with summarization of the contribution of our work, limitations and future 

extensions. 
  
 

 

Figure 1.2. Examples of people’s unpleasant experience of using taxi ride-sharing service. 
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CHAPTER TWO  

LITERATURE REVIEW ON SOLUTION METHODS 

        

In this chapter, we overview the history various vehicle routing problems, and 
famous solution methods. At the end we talk about how the ride sharing problem 

is related to them. 
 

History and Variations of Vehicle Routing Problems 

 

Capacitated Vehicle Routing Problem (CVRP) 

 
The classical Travel Salesman Problem (TSP) is the origin and the simplest form 
of vehicles routing problems: Given the locations of multiple cities, a salesman 

needs to cover each of them exactly once, with the shortest travel distance.  
Multiple Travel Salesman Problem (mTSP) is similar, but it allows more than one 

salesman to finish the task. Bektas offered a thorough overview of mTSP problem 
and its exact and heuristics solution methods [20, 21]. In 1959, Dantzig and Ram 
generalized TSP problem and applied it to Truck Dispatching Problem: one or 

more trucks are sent out to pick up goods from every station, which has a certain 
quantity of goods, and the trucks have limited capacities [22]. The goal is to find 

the best matching and route so the total service distance is minimized.  Since then 
Truck Dispatching Problem has spurred decades of other studies of more 
complicated and practical configurations and formulation to support real life 

applications.  A more general name “Vehicle Routing Problem (VRP)” has been 
used. Capacitated Vehicle Routing Problem (CVRP) is among the most frequently 

studied problems of this class. Clarke and Wright created “Savings” methods in 
1964 [23]. It starts from generating short routes. Saving is defined as the decrease 
of travel distance when merging two shorter routes. Savings methods keeps 

merging the route pair, merging which will cause the largest saving, till no merging 
is feasible (all vehicles are filled up). Miller created the “Sweep” method, in which 

the customers are paired with vehicles based on their locations in a polar 
coordinate system, whose center is the vehicle’s origin depot [24]. Instead of using 
polar shape, Foster and Ryan advanced Miller’s method to petal like space, and 

named their method Petal Method [25, 26], which was reported to perform more 
accurate and faster than Sweep [27].  Christofides and Eilon designed 3-optimal 

method, which was claimed to perform much faster than Savings [28].  Besides 
Savings and Sweep, another class of heuristic algorithm for CVRP is two phase 
method: cluster first to partition the space and then find optimal local routing.  The 

most famous two phase method is Fisher and Jaikumar’s Generalized Assignment 
Algorithm [29], where the space is divided into cones and the nearest customer 
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inside each cone to the vehicles is chosen as a seed to initialize a route. Every 
passengers choose the most convenient route to insert, which causes the 

minimum distance increase and the vehicle is not filled up. Another well-known two 
phase algorithm is the cyclic transfer algorithm [30].  

 

Vehicle Routing Problem with Pickup and Delivery (VRPPD) 

 

CVRP applies to problems like logistics distributing, delivering goods to 
stores/customers’ houses, etc. For taxi scheduling, ride sharing systems, this is 

not a proper model because a passenger has both a pick up location and delivery 
location, while in CVRP, every customer has only one service location. Therefore, 
there has been another type of vehicle routing model – Vehicle Routing Problem 

with Pickup and Delivery (VRPPD).   Since pickup location and delivery location 
are not related spatially, they are not necessarily next to each other and can be far 

away, VRPPD has higher complexity than CVRP. The single location based 
methods overviewed above cannot be applied to VRPPD directly. Katoha and 
Yano studied the one-vehicle-multiple-passenger tree shaped network routing 

problem with pick and delivery demands [31]. Although their two-approximation 
method seems to work well on tree shaped network, it unfortunately does not apply 

general graph/network, which is what the real transportation network is. Tzoreff et 
al studied the same problem on other special shaped networks such as cycles, 
warehouse shapes, etc [32]. Gribkovskaia et al studied another restricted 

configuration where all delivery loads come from the vehicle depot and all loads 
picked up will be sent back to the same depot [33]. As the author pointed out in 

the original paper, this assumption does not describe many real applications and 
definitely does not fit the ride sharing case. Gribkovskaia et al developed a general 
solution mixed linear integer programming model for single-vehicle-multiple-

customer VRPPD and used the Tabu search heuristics to find the approximated 
solution [34].  Nagy and Salhi formulated the most general multi-vehicle-multi -

customer VRPPD model, where pickup and delivery locations, capacity 
constraints, pickup and delivery orders are included [35]. They also offered a 
thorough overview and classification of previous models on VRPPD.     

 

Vehicle Routing Problem with Time Window (VRPTW)  

 
CVRP and VRPPD are only focused on geographical locations, however, in 
practical situations, customers might request service to happen only within a 

certain time window, or can’t not be later than some time point. For example, an 
customer can require a piece of furniture to be deliver between 5 p.m. to 7 p.m. To 

accommodate time window factor, there is a new type of routing problem called 
Vehicle Routing Problem with Time Window (VRPTW).  Solomon studied VRPTW 
and came up with a two phase algorithm: First do a nearest neighbor search to 



 

6 

 

attach a customer to its nearest vehicle (although because of the constraint of 
capacity, a customer might not always gets assigned to the nearest vehicle), then 

do the one-vehicle-multiple-vehicle routing inside each cluster [36]. Cordeau etal 
formulated VRPTW as a network flow problem, and solved it using different 

optimization approaches, including branch and cutting, column generation and 
Lagrangian relaxation [37]. Braysy and Gendreau overviewed the approximated 
solution methods for VRPTW, including route construction methods (similar to 

Soloman’s two phase method), solution improvement method (slightly and 
iteratively tune a given route), Tabu search, genetic algorithm, simulated annealing 

etc. [38, 39]. Braysy and Gendreau also benchmarked all the algorithms using 
Solomon’s 56 test cases [40].  
 

Vehicle Routing Problem with Pickup and Delivery with Time Window 
(VRPPDTW) 

 
VRPPDTW is the pickup and delivery location enabled version of VRPTW. It is 
among the most complicated variations of VRPs. Four types of constraints are 

supported: capacities, time windows, pickup and delivery locations, and order (pick 
up happens before delivery). Because of the added complexity, the modelling and 

solution methods become more advanced. The most frequently cited literature on 
VRPPDTW is cordeau’s mixed linear integer programming formulation of 
VRPPDTW and his branch and cut solution to it [41]. Spoke and Cordeau later 

came up with an enhanced branch-and- cut-and-pricing solution to further improve 
the solution [42].  The formulation of VRPPDTW is a three-index model and even 

increasing the number of vehicles and passenger just slightly could cause a 
dramatic increase in the dimension of solution space and so the computational 
time. Other researchers have tried other solution methods, such as the state-

space-time scheme introduced by Yang [43] and Mahmoudi [44].  However, all 
solution methods for VRPPDTW so far is still computationally challenged. 

According to the most recent result reported in [44], to compute a 50-passenger-
15-vehicle case, it takes almost two hours.  
 

Timely Ridesharing Problem 

 

Our timely ridesharing problem belongs to the last class – VRPPDTW. However, 
there is an essential difference in the configuration. Notice that all the problems 
above involving time windows have assumed that we can always find solution to 

meets all the time windows of the customers. All the optimization models have 
constraints responding to the “no delay is allowed” assumption. In a large taxi ride 

sharing system, this is not always the case as we see from Chapter one, that the 
conflictions of different passengers’ preferred delivery time causes the taxis late. 
This study models a more practical situation that we allow conflictions of 
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passengers’ time windows and situations where no feasible schedules to satisfy 
everybody is allowed. Our objective is that no matter how much confliction in 

people’s requested time window, we are to minimize the total system service delay.   
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CHAPTER THREE  

A MIXED-INTEGER LINEAR PROGRAMMING FORMULATION 

 

Model Formulation  

 

We describe the configuration of the centralized ride sharing system. In some 

region, at one moment, there are k  in-service vehicles distributed in different 

locations, n  ride requests awaiting service. Every request has a pickup location, 

destination, and a preferred latest arrival time. There are more riders than drivers 

and they are all willing to share a vehicle with others. The ideal situation is that 
every passenger can be delivered on time, but because one vehicle might have to 
serve more than one passenger, and there always exist conflicts between 

passengers’ requested arrival time, the possibility of satisfying everybody is very 
slim. The objective here is to minimize the total delay of delivering every passenger 

compared to their preferred arrival time.  
 
There is a classical but still actively pursued optimization model called Vehicle 

Routing Problem with Time Window (VRPTW) that is considered as the 
generalized prototype of many multi-vehicle multi-request pickup and delivery 

scheduling problems. Cordeau first formulated VRPTW in 2003 [41] and the model 
has been adpoted by many scholars when studying related problems. The model 
has been applied to applications such as truck delivery,  patient transformation in 

hospital networks [45, 46], vehicle customer matching in taxi-sharing services [47, 
48], facility location selection such as electric vehicle charge stations, theater, 

military supply bases, etc. [49, 50]. A few works have offered multi-facet overviews 
of previous studies on this class of problem [1, 51, 52].    
 

In this study, our model development is also based on Cordeau’s formulation. The 
differences from previous models and studies are: (1) The objective of most 
previous studies is about the “travel cost” of the vehicles and companies owning 

these vehicles, either the total travel distances, which represents how much fuel 
they consume, or adding more terms such as total travel time, which is related to 

labor cost. To the best of our knowledge, there has been no studies modeling the 
service delay issues. (2) The reason that service delay has not been looked into is 
that most studies focus on solvable cases where vehicles can always find a 

solution to reach customers’ destinations on time without violating the requested 
time windows. This might be true in some situations where customer requests are 

not very intensive and schedules all have margins, but definitely not for the real-
time ride sharing service, where requests pop up constantly and violations of 
preferred timeline is inevitable. In contrast to previous models, we focus on more 

practical situations in ride-sharing system where there is no way for the drivers to 
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completely satisfy everybody’s request, and in this case we directly model and 
minimize the delivery delays.  

          

Terminology 

 
For an m - vehicle - n - passenger configuration, we define the vehicle set 

{1, 2,... }V m , passenger pickup location set {1,2,... }P n , delivery location set 

{ }D n+1,n+2,...2n , and set {0,2 1}N P D n    , where 0  represents the origin 

depot and 2 1n  the destination depot of a vehicle. 
iq  is the load associated with 

each location, with picking up being a positive value and dropping off negative, 

e.g., if two passengers need to be picked up at location 5, then 
5 2q  , and if one 

passenger will be dropped off at location 3, then 
3 1q   . Each passenger has its 

preferred latest arrival time to their destinations, denoted by 
il . Table 3.1 shows all 

the symbols that will be used in the objective and constraints, their data types and 

definitions.  
       
 
Table 3.1. Symbols and their definitions. 

Symbol Type Source Definition 
m  Integer Given Number of vehicles 
n  Integer Given Number of Passengers 

iq  Integer Given Loads of passenger at each stop. Positive for 

picking up, negative for delivery. 

il  Double Given Requested arrival time for each passenger. 
k

ijx  Binary Variable 1k

ijx   if vehicle k  travels from location i  to j , 

0k

ijx   otherwise.  

k

iB  Double Variable The amount of minutes it takes vehicle k  to 

arrive at location i  
k

iQ  Integer Variable Load of vehicle k  after it leaves locationi .  
k

id  Double Variable Service time of vehicle k  at location i  
k

ijt  Double Variable Travel time of vehicle k  from location i  to 
location j  

kC  Integer Variable Capacity of vehicle k  
k

iy  Double Variable Intermediate variables used to linearize the 

nonlinear term in the objective function.  

iz  Double Variable Intermediate variable used to linearize the 
nonlinear term in the objective.  
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Objective Function and Constraints 

 

We first list all the objective and constraints before we explain them one by one.  
The objective is to minimize the delivery time delays for all serviced passengers: 

 

,0, k k

i n i n j i

i P k V j N

Min max B x l 

  

   
     

   
                                                                (o1) 

 
0k

iix  , i N                                                           (c1) 

, 0k
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i P
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 , k V                                                                                          (c7) 

0k k
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j N j N
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   , ,k V i P D                                                              (c8) 

( )k k k k k

j i i ij ijB B d t x   , , ,k V i N j N                                                           (c9) 

k k

i n iB B  , ,k V i P                                                                                    (c10) 

0k

iQ  , ,k V i N                                                                                        (c11) 
k

i iQ q , ,k V i N                                            (c12) 
k k

iQ C , ,k V i N                                                                        (c13) 
k k

i iQ C q  , ,k V i N                                                                      (c14)

( )k k k

j i i ijQ Q q x  , , ,k V i N j N                                                         (c15) 

 

For the constraints, (c1)-(c3) set constraints on 
k

ijx  based on the service order 

requirements. A vehicle cannot travel back to itself, a vehicle cannot travels from 
a passenger’s destination to the origin, and a vehicle cannot travel from the origin 

depot directly to a passenger’s destination.   
 
(c4) describes that exactly one vehicle picks up a passenger. (c5) together with 

(c4) describes the same vehicles picks up and delivers the passenger. (c6) 
enforces that a vehicles always starts from its origin depot. (c7) enforces a vehicles 

goes back to its destination depot after delivering the last passenger. (c8) is the 
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flow conservation at any pickup and delivery location. (c9) captures the arrival time 
relationship between two locations, if a vehicle travels from one location to another, 

then the arrival time at one is later than the other. (c10) states that a vehicle always 
arrives at a passenger’s destination later than the pickup location, which enforces 

the service order that a vehicle always picks up a passenger before getting to 
his/her destination. This is a constraint that Cordeau’s formulation did not use. 
Cordeau used some advanced order constraint techniques to enforce the orders. 

We found that it is much easier to just add a constraint on k

iB  and k

i nB  .  (c11) to 

(c14) restricts the lower and upper bounds of the load of a vehicle. At a pickup 

location, k k

i iq Q C  , while at a drop-off location, 0 k k

i iQ C q   . (c15) captures 

the load relationship for the vehicle at two locations, using the same logic as in 

(c9).     
 

Let’s explain the objective function now. It is formulated by adding up the delivery 
delay of every passenger. We only count if the arrival time is later than the 

requested, so the outside  
,max 0, k k

i n i n j i

k V j N

B x l 

 

   
     

   
   filters out those that are 

on time.  ,

k k

i n i n j

k K j N

B x 

 

 
 
 

    is the actual arrival time of passenger i . From (c5)  we 

know that , ,

k k

i n j i j

j N j N

x x

 

  , and we know from (c4) that for any i P , there is only 

one pair of j  and k  to make 1k

ij

k K j N

x
 

 , which is because there is only one 

vehicle to pick up a passenger at his/her origin and departs to only one direction, 

so the dual summation will remain as 
k

i nB   where vehicle k  is the one that has 

picked up passenger i .  

 

Linearization 

 

The model is not completely linear yet. First, (c9) and (c15) are both nonlinear 

constraints. We use the big-M method to convert it to linear constraints.  Here M  

and W  are sufficiently large numbers. 

 

( ) (1 )k k k k k

j i i ij ijB B d t M x     , , ,k V i N j N                                            (c16) 

0k

jB    , ,k V j N                                                                                     (c17) 

( ) W(1 )k k k

j i i ijQ Q q x    , , ,k V i N j N                                                  (c17) 
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Second, the objective function is also nonlinear because of the product term and 
the max() operator. For the product term, we define new variables and apply big-

M notation to linearize it. For the maximum operator, (c23) and (c24) define new a 
variable 

iz  and let it be bigger than both arguments. Here 'M  is a sufficiently large 

number.  
 

,

k k k

i i n j i n

j N

y B x 



  , ,k V i P                                                                        (c18) 

,'k k

i j i n

j N

y M x 



  , ,k V i P                                                                          (c19) 

k k

i i ny B  , ,k V i P                                                                                    (c20) 

,'(1 )k k k

i i n j i n

j N

y B M x 



   , ,k V i P                                                         (c21) 

0k

iy  , ,k V i P                                                                                        (c22) 
k

i i i

k K

z y l


  , i P                                                                                         (c23) 

0iz  , i P                                                                                                   (c24) 

 

From the discussion earlier, we know that ,

k

j i n

j N

x 



  is a 0-1 binary variable, so we 

can easily verify that (c19)-(c22) is equivalent to (c18).  
 
Hence the objective becomes: 

i

i P

Min z


                                                                                                        (o2) 

with the constraints (c1)-(c8), (c10)-(c14), (c16)-(c24).   

 
The model can be solved as a mixed integer programming (MIP) problem using 

the optimization solvers such as Gurobi [53], CPLEX [54], etc.   
 

A Case Study  

 
As an example, we study a 3-vehicle-6-passenger scenario. We randomly 

generate vehicles’ depots and passengers’ pickup and drop-off locations. 
Minimum travel time between a passenger’s origin and destination is calculated, 

and the passenger’s preferred arrival time is also randomly assigned, and the 
value is reasonably larger than the minimum travel time. We here make the 
capacity of each vehicle 3. Figure 3.1 visualizes the setup and optimal service plan 

for this system. (Notation on the paths of Figure 3.1(a) is “minimum travel 
time/passenger requested arrival time”. Notation on the paths of Figure 3.1(b) is 

“passenger requested arrival time/actual arrival time/delay”.) 
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Figure 3.1(a) visualizes the vehicles’ origin depots and the six passengers’ pickup 
and drop off locations. The notation on each path is the minimum travel time 

required followed by the passenger’s preferred longest delivery time. For example 
“12m/18m” represents that it takes a taxi at least 12 minutes from the origin to the 

destination, and the passenger allows 6 more minutes.  
 
Figure 3.1(b) presents the optimal service plan. The green vehicle serves only one 

passenger. It takes 27 minutes to finish this delivery with a 9-minute delay. The 
red vehicle picks up two passengers in sequence and drops them off in the same 

order as they are picked up. The delays for these two passengers are 4 min and 
15 min, respectively. The blue vehicle takes care of the rest of the passengers, 
and it picks up all three passengers before delivering them one by one.        

 
We observe that, because the objective is to minimize the overall delays, the 

vehicle does not give priority to any individual vehicle. Although a vehicle is close 
to one particular passenger, it could instead be dispatched to serve other 
passengers who need service equally but do not have a vehicle close by. The 

pickup and drop-off orders are all optimized for the global minimum. A passenger 
picked up earlier does not necessarily gets dropped off first, e.g. the blue vehicle 

first picks up the blue passenger but delivers the green one first.    
 
 

 
(a)                                                             (b) 

Figure 3.1. A 3-vehicle-6-passenger case study. 
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CHAPTER FOUR  

GREEDY AGGLOMERATIVE CLUSTERING AND MONTE CARLO 

SIMULATION BASED METHOD 

 
Although the mixed linear integer model is able to obtain the exact optimal solution 
for us, the case study in Chapter 3 tells us that solving the optimization model takes 

prohibitively long time to make it practical for real time deployment of medium or 
large scale ride sharing system. 

 
In this chapter, we present an efficient algorithm to find the sufficiently optimal 
solution based on greedy agglomeration and Monte Carlo simulation. We will first 

present the algorithm, complexity analysis, case studies on systems of different 
scales, compare its performance to optimization approach, and then discuss an 

important detail - the selection of number of simulations.   
 

Algorithm Development 

 
The logic is quite straightforward. It is an agglomerative process, where in each 

iteration one passenger is assigned a vehicle. When choosing the “best” vehicle 
to accommodate this passenger, we use a greedy strategy - the combination of a 
passenger and a vehicles will cause the minimum increase of system-wide time 

delay.  
 

The “best” has double meaning here.   
 
On one hand, no matter which vehicle the passenger is eventually attached to, 

he/she will be placed at the optimal service order in this vehicle, which in other 
words, is that inserting this new passenger will cause the minimum time delay 

increase to this vehicle. Let’s see an example, before adding passenger jp  to 

vehicle kv , kv  has already been assigned m  passengers 1, 2{ ,... }mp p p  with the 

most efficient (causes the minimum possible delay) service order: 

2, 1 1 3 2,{ , , , ...}R p p p p p      . (Note: here we use 
2p  to represent picking up 2p  

at his/her origin and 
2p  as deliver to his/her destination.) Adding jp  to kv  is a 

process of inserting jp  and jp  to existing route R , with the constraint that jp  

must come earlier than jp  because delivering happens physically after picking 

up.  The goal is to find out which order will carry the least delay increase. Because 
of the delay calculations, the only way to find the best is to re-enumerate all the 
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possibilities. This process can be implemented as a dual loop, where the outside 

loop is on the possible insertion spot s  of jp , where 0,1,2,... 1s m  ,  and the 

inside loop is on the insertion spot t  of jp , with 0,1,2,...t s . The complexity of 

this step is 2(q )O , where q  is the capacity of vehicle 
kv . Procedure Best_Insertion 

in Figure 4.3. details this in-vehicle ordering process.   

 
On the other hand, assigning a passenger to different vehicles will bring different 
delay increases, so we assign him/her to the vehicle that causes the minimum 

delay increase.   
 

Since every assignment of an individual passenger brings a minimum possible 
delay increase, the total delay should also be the minimum. However, just like any 
other greedy methods that gets easily trapped in a local optimum [55], the greedy 

agglomeration step above is also a “short sighted” procedure that is insufficient to 
achieve global optimum. Although every passenger attaches to the best available 

vehicle and follows the best service order to achieve minimum system delay 
increase, the result is not necessarily a global minimum. This is because a later 
assigned passenger does not have as many vehicles to choose from as an earlier 

assigned passenger. A later assigned passenger might be assigned to a vehicle 
that carries the “best” but big delay, just because by the time he/she gets to 

choose, that is the only vehicle available. In other words, if an earlier assigned 
passenger does not attach to the best vehicle at that moment, but instead chooses 
a suboptimal one, and leaves the “best “ vehicle for a later assigned passenger 

who will find it more convenient, the overall delay might be smaller than the other 
way round.      

 
Our strategy is to use Monte Carlo simulation to address the “short sight” issue. 
Since the order of the passenger list matters, we can shuffle the passenger list and 

repeat the greedy agglomeration steps using the shuffled passenger list. Shuffling 
the passenger list is essentially to get a new random permutation. The randomness 

of the passenger order and sufficient number of simulations aim to give every 
passenger an equal chance to be combined with the best vehicle that can achieve 
minimum system delay.  

 
Up to now, we have introduced the development idea behind our greedy 

agglomeration and Monte Carlo simulation algorithm for ride sharing scheduling 
towards the goal of on-time service. Figures 4.1. – 4.3. present the pseudo codes 
that details the system implementation.     
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Figure 4.1. Monte Carlo simulation and passenger list shuffling  

Figure 4.2. Greedy Agglomeration step to find the best matching and service order to achieve 
minimum system-wide service delay 

Procedure Monte_Carlo: Shuffle passenger list and repeat greedy 

agglomerative clustering steps  
Input: M – The number of simulations 
Output: min_delay – minimum delay achieved by the best service plan  

 
min_delay = Monte_Carlo (M){ 

 min_delay = Inf 
 for i = 1:M 
  pList = shuffle(passenger_list) 
  delay = Match(pList, vList) 

  if delay < min_delay 

   min_delay = delay 
  end if   
 end for 

} 

 
   

 

Procedure Match:  Greedy agglomerative clustering step to find the best 

matching and service order to achieve minimum system-wide service delay 
Inputs:    Passenger list pList, vehicle list vList 

Output:   service delay    

 
delay = Match(pList, vList){ 

 delay = 0; 
 for each unassigned passenger p in pList 

  min_delay_inc = Inf; 
  for each vehicle v in vList 

   if v is not full 
    inc_delay  = Best_Insertion(R, p) 
    if inc_delay < min_delay_inc 

     min_delay_inc = inc_delay 
     vehicle = v 
    end if  
   end if 
  end for 

  Assign p to vehicle 
  Mark p as assigned 

  delay = delay + min_delay_inc 
 end for 

} 
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Figure 4.3. Find the best service order and delay increase after adding a new passenger to a 

vehicle.  

 

Complexity Analysis 

 

The Monte_Carlo procedure has M  iterations. Inside Monte_Carlo is Match, 

which has at worst p n  iterations, where p  is the number of passengers to be 

served, and n  is the number of vehicles in service. Inside Match is 

Best_Insertion procedure, which has 2( )O q  complexity, where q  is the capacity 

of a vehicle. So the overall time complexity of the algorithm is 2(M )O pnq . Notice 

that q  is usually a small constant number because a cab normally accommodates 

3 to 5 people. Therefore, the time complexity for our greedy agglomerative 
clustering and Monte Carlo simulation based algorithm is (M )O pn , in other 

words, it is decided by the number of simulations, number of passengers and 
number of vehicles. The latter two is given by the scale of the ride sharing system, 
but we can control the number of Monte Carlo simulations we use. More 

simulations might be helpful to obtain a finer solution but increases the 
computational cost. We will look into this factors in later sessions. But before that, 

let’s first compare our heuristic algorithm to the pure optimization solution.     
 

Procedure Best_Insertion: Find the best service order and delay increase 

after adding a new passenger to a vehicle.  
Inputs:  R – The best service route before inserting new passenger p. 
Output: inc_delay – smallest possible delay increase of inserting p.  

   R+  – best service route after p is added.  
 
[inc_delay, R+ ] = Best_Insertion(R, p) 

inc_delay = 0; 
for i = 0:length(R) 

 for j = 0:i 

  R’ = [R(1:j)   +p   R(j+1:i)   –p   R(i+1:end)] 
  delta_delay = get_delay(R’) – get_delay(R); 

  if delta_delay < inc_delay 

   inc_delay = delta_delay 

   R+ = R’ 
  end if  
 end for 

end for 
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Case Studies 

 

In this session, we conduct experiments to test the effectiveness and efficiency of 
the algorithm. We use cases of different scales. We first show that for small ride 

sharing systems, where there is a small number of vehicles and passengers, our 
algorithm can achieve the same optimal solutions as what the optimization models 
obtains, at a much lower computational cost. We also present the algorithm’s 

capability of handling large ride sharing systems. 
 

Let’s first compare the two methods’ performances on small systems where there 
is only a few vehicles and passengers. These cases are: 4-passenger-2-vehicle 
(p4v2), 5-passenger-3-vehicle (p5v3), 6-passenger-3-vehicle (p6v3), 6-

passenger-4-vehicle (p6v4), 7-passenger-3-vehicle (p7v3), and 7-passenger-4-
vehicle (p7v4). Appendix I gives the details of the data and results, including the 

origin and destination locations of the passengers, their requested arrival times, 
the origin depots of the taxis, the optimal service routes of each vehicle, and the 
associated system delays.  In all six cases, our greedy agglomeration based 

algorithm can always hit the optimal solution within 100 simulations. In Figure 4.4, 
we can see that the achieved minimum system delay decreases as we put more 

simulations. Although we have used 200 simulations, all six systems have already 
achieved the optimal solution within the first 100 runs. Table 4.1 shows the runtime 
comparison of solving optimization model and our heuristic algorithm. For 

optimization model approach, as the number of passengers and cabs increases, 
even just by one, the runtime rises exponentially. This is not hard to explain, 

because as we can see from the formulation of the model, when the number of 
vehicles or passengers increases slightly, the number of variables, constraints will 
increase enormously, which adds much more dimensions to its solution search 

space. Instead, our methods is much steadier, and it runs over one thousand times 
faster than the optimization model for the p7v4 case. We can predict that for larger 

systems, this advantage will be immensely magnified.  
 
Figure 4.5 (a) to (f) is the visualizations of the setups and the optimal scheduling 

of these six cases. Figure 4.6 presents the histograms of the system delays in the 
200 Monte Carlo simulations.     

 
We have also tested our algorithm on four larger ride sharing systems: 50-
passenger-20-vehicle (p50v20), 100-passenger-50-vehicle (p100v50), 200-

pasenger-100-vehicle (p200v100), and 300-passenger-150-vehicle (p300v150). 
The algorithm can handle much larger systems with the help of powerful parallel 

computing, which is the topic for next section.   The setups and optimal scheduling 
are presented in Figure 4.6 – 4.10.  
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Table 4.1. Runtime Comparison of solving optimization model and greedy agglomeration 

algorithm on small cases.   

Case 
Runtime (s) 

Optimization 

Model 

Heuristics            

(200 runs) 

p4v2 1.93 1.14 

p5v3 15.19 1.63 

p6v3 490.75 2.05 

p6v4 100.24 2.67 

p7v3 2910.36 3.06 

p7v4 3779.94 3.30 

 
 

 

 

Figure 4.4. Relationship between achieved minimum system delay and the number of 
simulations.  
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Figure 4.5. Setups and optimal scheduling of the 6 test cases. (Notation: left – setup (travel 
time/requested arrival time), right - optimal scheduling (requested arrival time/actual arrival 

time/delay) ) 
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(a) p4v2 

 
(b) p5v3 

 
(c) p6v3 

Figure 4.5. Continued 
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(d) p6v4 

 
(e) p7v3 

 
(f) p7v4 

Figure 4.5. Continued 
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Figure 4.6. Histograms of the system delays in the 200 simulations.   
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(a) Setup  

 
(b) Optimal Scheduling 

Figure 4.7. A 50-passenger-20-vehicle case.  
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(a) Setup 

 
(b) Optimal Scheduling 

Figure 4.8. A 100-passenger-50-vehicle case 
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(a) Setup 

 
(b) Optimal Scheduling 

Figure 4.9. A 200-passenger-100-vehicle case 
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(a) Setup 

 
(b) Optimal Scheduling 

Figure 4.10. A 300-passenger-150-vehicle case 
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Parallelization 

 

The individual Monte Carlo simulations are completely independent from each 
other. They can be executed simultaneously and return their best solution to the 

master processor. No communication between the worker processors is needed. 
Therefore our algorithm can easily be parallelized. Below is an experiment 
designed to test the parallel computing effects on a 100-passenger-50-vehicle 

case. We conduct four sets of experiments, with 4, 8, 16, 32 processors 
respectively. Each experiment is repeated 20 times and the average runtime and 

standard deviations are reported, as plotted below. We can see that parallel 
computing can dramatically reduce the runtime as we invest more processors. Taxi 
service companies are supported by more powerful distributed computing 

infrastructures where there are thousands of processors available and we believe 
with the power of CPU clusters, the algorithm can handle large system scheduling 

problem in a real time fashion.     
 
   

 

Figure 4.11 Runtime test of a 100-passenger-50-vehicle system using different numbers of 
processors.  
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Discussion 

 

Selection of the number of simulations 

 

We have known that because of the “short sight” issue that limits a single greedy 
agglomeration iteration to achieve a global optimal solution, and Monte Carlo 
simulation with randomly shuffled passenger list can improve the performance. We 

can imagine that with unlimited number of simulations, Monte Carlo simulations 
can always achieve the theoretical optimal solution. However, that would be too 

time consuming to be considered for real time deployment.  On the other hand, as 
we have seen in Figure 4.4, where 200 simulations were executed and the 
minimum delay by each simulation is recorded, the best solution value drops 

dramatically at the beginning, then decreases slower and slower till it eventually 
reaches the theoretical optimal solution. For these six small test cases, the 

simulation lands on the optimal solution in less than 100 runs. For larger system, 
similarly, we can predict that, after a sufficient number of simulations, the achieved 
minimum delay value will be sufficiently close to the theoretical optimal value, 

although not strictly the optimal solution. From a practical/engineering perspective, 
in our ride sharing application, achieving the theoretical/mathematical absolute 

optimum at a huge computational cost is unnecessary. The theoretical optimum 
might be only a few seconds superior than a suboptimal solution, which really does 
not mean much for a hundred-vehicle-hundred-vehicle system, but the runtime 

cost might have to be doubled or even worse. Instead, achieving a “sufficiently 
optimal” solution within reasonable runtime is more practical, especially in an 

instantaneous dynamic scheduling system, where system response is critical.  
With this goal, we now discuss the selection of the number of simulations for a 
“sufficiently optimal” solution to systems of different number of passengers and 

vehicles.    
   

We design five groups of experiments: 20-passenger-10-vehicle (p20v10), 50-
passenger-20-vehicle, 100-passenger-50-vehicle (p100v50), 200-passenger-100-
vehicle (p200v100), 300-passenger-150-vehicle (p300v150). For each group, we 

first conduct 1500 Monte Carlo simulations. The minimum delay curve all end up 
flat after 1000 simulations so it is out best belief that the optimal solutions have 

been reached within 1500 simulations.  We also observe that the more passengers 
and vehicles we have, the more simulations it takes to reach the optimal solution. 
The optimal solution in the figure will be used to determine the number of 

simulations in the next session.  
 

To determine a sufficient number of simulations for each case, we first have to 
define a “sufficient optimal solution”. There is no precise definition of “sufficiently 
optimal solution” in the literature. We believe there are two reasonable way to 

define it:  
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Figure 4.12. Improved solution values and increasing number of simulations  

 

 
Definition 1: A solution that is within 10% of the optimal solution (For a 

minimization problem, such as out delay minimization problem, that is not 
exceeding 110% of the optimal solution). 
  
Definition 2: A solution that is among the top 5 of all possible best solutions 

(smaller than or equal to the fifth minimum solution).   

 
We now repeat each of the 5 experiments 200 times. In each experiment, instead 
of conducting the Monte Carlo simulation a fixed 1500 times, we terminate the 

simulation as long as it hits the “sufficiently optimal” solution we have just defined. 
We record the number of simulations when the algorithm is terminated. Figure 4.13 

displays the histograms of the number of simulations of the 200 trials using 
Definition 1. Figure 4.14 are the histograms of the same experiments but evaluated 
by Definition 2. 

 
We find the 95% quantiles of the sufficient number of simulations for all the groups, 

as shown in Table 4.2. Since the experiments are repeated 200 times, which is 
sufficient for us to use the 95% quantile to represent the sufficient number of 
simulations for that case. We further notice that the sufficient number of 

simulations is positively related to the product of number of passengers and 
number of vehicles. Figure 4.15 (a) and (b) plot the relationship between the 
number of simulations and the products of vehicle and passenger quantities, using  
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Figure 4.13. Histograms of the number of simulations to hit sufficiently optimal solution evaluated 
by Definition 1, 200 trials in total. 

 
 

 

Figure 4.14. Histograms of the number of simulations to hit sufficiently optimal solution evaluated 

by Definition 2, 200 trials in total.  
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Table 4.2. 95% quantiles of sufficient number of simulations 

Case 

95% Quantile of Sufficient Number 
of Simulations 

Definition 1 Definition 2 

p20v10 327 319 

p50v25 405 378 

p100v50 380 451 

p200v100 436 462 

p300v150 587 689 

 
 

 
(a) By Definition 1                                                   (b) By Definition 2 

Figure 4.15. Relationship between sufficient number of simulations and the product of number of 

passengers (NP) and number of vehicles (NV). 

 
 

two definitions respectively. Although two definitions obtain two different 
regression fit, they can both be used to assess a reasonably sufficient number of 
simulations given the numbers of passengers and vehicles. Use Definition 1, the 
linear fit model is: 0.005 +360.807M NP NV  . Using Definition 2, the fit model is: 

0.007 +359.716M NP NV  .    

  

Proper calculation of delays 

 
The get_delay() subroutine is frequently used in the Best_Insertion procedure. 

When trying to insert a new passenger into a vehicle, we loop through all possible 
routes and compare their system delays to find out the most efficient service order. 

Given a route, for example, 2, 1 1 3 2,{ , , , ...}R p p p p p      , every passenger ip  

has a requested arrival time il , where 1, 2,...,i q  and q  is the number of 
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passengers served by the vehicle. Based on the origin-destination travel time 
matrix, we can also easily get the timestamps of arriving at every delivery location, 

say 
1 2{ , ,..., }qT t t t . There are two possible ways to calculate the delay: (1) Count 

only the late deliveries. No matter how early all other passengers are delivered, 

we count only the late delivered ones. 
1

( ) I
q

i i i

i

D t l


  , where  
0,

I
1,

i i

i

i i

if t l

if t l


 


 . (2) 

Enable margins, count late deliveries as positive delays and early deliveries as 

negative delays, 
1

( )
q

i i

i

D t l


  .  

 
These two ways of calculating delays impact the quality of the algorithm differently. 

We conduct three experiments, using p50v25, p100v50, p200v100 cases. Two 
implementations of get_delay() are tested. Figure 4.16 shows their difference.  

 
The three groups consistently show that counting late delivery only approach is 
inferior to margin enabled approach. The achieved minimum delay value by the 

former is obviously higher than that by the latter. It is not hard to explain the cause 
of this.  If we count only the late deliveries for delay, at the beginning of the 

assigning process, all the vehicles have a zero delay, then the algorithm will assign 
passengers one after another to the first vehicle in the list until delay happens. 
Similarly the second vehicle will be first filled by other passengers. So all vehicles 

get filled up in a sequential order, and there is simply no comparison step involved. 
The overall system delay in this case is purely determined by the order of the 

vehicles. Although shuffling passenger list can improve its best solution, shuffling 
itself has limited power to make it close enough to the theoretical optimum. Instead, 
if the margins of the vehicle is considered, then even at the beginning, no two 

adjacent passengers will be assigned to the same vehicle , because once one 
passenger is assigned, that vehicle will have a decreased margin(increased 

delay), and so most likely is not the best option for the next passenger any more.  
Therefore, we should always use margin enabled way of calculating delays to 
count both positive and negative delays (margins).  
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Figure 4.16. Comparison of minimum delay value changes using two different ways of calculating 
delays 
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Figure 4.16. Continued 
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Figure 4.16. Continued 
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CHAPTER FIVE  

TRAVEL TIME EXTRACTION FROM REAL ROAD NETWORK 

 

The above optimization model relies on the travel time information between every 
pair of the locations involved, i.e. vehicles’ depots, passengers’ pickup locations 
and destinations. This is a multi-source multi-target shortest path (travel time) 

problem. Suppose we have a road network G  of a city,   ,G E V , where E  is the 

set of the links, each link is associated with a weight, which is travel time on that 

link in our case, and V is the set of nodes. In multi-source multi-target shortest path 

problem, sources and targets are both a subset of node set V, we denote them as 

S , T , S V , T V . Here in our taxi – driver system, S  and T  are the same, and 

they are both the set of all the locations.  
 
Floyd–Warshall algorithm is to get the all-pair shortest distances from a graph. It 

is not a good option here because Floyd – Warshall requires 2O( )n  space, where 

n  is the number of nodes in the graph. Notice that here n  is not the number of 

sources and targets, it is the number of nodes of the entire graph. Floyd – Warshall 

is not a good option for our application, because for a big road network that has 
thousands of nodes, it demands too much memory, and what is even worse is that 

if the number of sources and targets are only a small portion of the entire graph, it 
is just a waste of memory computation. What we need is a many-to-many, but not 
all-to-all shortest path algorithm. There is no direct method to solve a many-to-

many routing problem, but we can decompose it to multiple single-source multi -
target routing, i.e. repeatedly routing from each single source to reach all the 

targets.   
 
There are two famous one-to-one shortest path algorithms: Dijkstra’s and A*.  For 

one-to-one Dijkstra’s,  the algorithm starts from the source node and visit and mark 
other nodes monotonically from the closest to the farthest. In the one-to-one case, 

the algorithm terminates when the target is visited. In the one-to-many scenario, 
we simply maintain a target_list, which is initially the target set T , and whenever a 

target is visited, remove it from the target_list until the list becomes empty. The 
details are shown in Figure 5.1.  
 

Another approach is to use the one-to-one A* algorithm. A* algorithm is essentially 
breadth first search. A* has been used in single-source-single-target shortest path 

planning. For every node, three scores are defined; gScore – the distance/cost 
from Start to this node, hScore – the heuristic distance/cost from this node to Goal, 
fScore – the sum of gScore and hScore. To get gScore, we add the costs of the 

paths from Start to the node. To make A* algorithm work correctly, hScore has to 
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be an underestimate of the cost from the node to Goal. Sine straight line distance 
is always the underestimate of real shortest distance, we can simply calculate the 

gScore as the straight line distance based on their coordinates. A priority queue 
openList is used to store the nodes waiting to be evaluated, and the nodes are 

ordered based on their fScore. In every iteration, the closest node to the Goal is 
expanded. We calculate the three scores for the neighbors and push them to the 
openList for future visits. The algorithm terminates as soon as Goal is visited. 

Figure 5.1. Multi-source multi-target shortest path algorithm based on Dijkstra’s.  

 
 

 

Algorithm: Multi-source Multi-target Shortest Path 

Input: Graph G, source set S, target set T 
Output: shortest distance(travel time) array D, where Dij = travel_time(si,tj) 
 

Many-to-many-Dijkstra(G,S,T){ 
 for each s in S: 

  D[s,:] = One-to-many-Dijkstra(G,s,T) 
 end for 

} 
 
One-to-Many-Dijkstra(G, s, target_list){ 

 for each node n of G: 

  t[n]   Infinity 
 end for 

 Q = {s} 
 while Q not empty and target_list not empty: 

  u Q[0] 
  mark u as visited 
  QQ -{u} 

  if u is in target_list: 

   target_list.erase(u) 
  end if  

   
  for each neighbor v of u: 
         if v is not visited and t[u]+t(u,v) < t[v]: 

                                t[v] = t[u]+t(u,v) 
                                 QQ {v}  

         end if 
  end for 
  end while 

} 
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Figure 5.2. Multi-source multi-target shortest path algorithm based on A*.  

 
 

Algorithm: A* based Multi-source Multi-target Shortest Path 
Input: Graph G, source set S, target set T 
Output: shortest distance(travel time) array D, where Dij = travel_time(si,tj) 

Many-to-many-Dijkstra(G,S,T){ 
 for each s in S: 

  D[s,:] = One-to-many-A*(G,s,T) 
 end for 

} 
 
One-to-many-A*(G, Start, goal_List){ 

//Push the goals into the 2-dimensional tree 
for each goal in goal_List 
2DTree.insert(goal) 

end for 

 

openList = {Start}   // A heap sorted by the fScore of its elements 
gScore(Start) = 0; 
hScore(Start) = get_nearest_distance(Start, 2DTree); 

While openList is not empty && goal_List is not empty 
 q = openList.top()   // the nodes with the least f score. 

 openList.pop()   
 for each neighbor of q in G:  
  if neighbor is in goalList: 

   goalList.remove(neighbor) 
   2DTree.remove(neighbor) 

  end if 

  gScore(neighbor) = gScore(q) + d(q,neighbor) ; 
  hScore(neighbor) = get_nearest_distance(neighbor, 2DTree); 

  fScore(neighbor) = gScore(neighbor) + hScore(neighbor); 
  if neighbor is not in openList: 

   openList. insert(neighbor) 
  else if fScore(neighbor) < openList(neighbor).fScore 

   // update the neighbor’s fScore in openList.  

   openList(neighbor).fScore = fScore(neighbor) 
  end if  

 end for 
end while 

} 
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We can build the single-source-multi-target A* algorithm based on the single-
source-single-target version. Now we have not only one Goal, but a goalList. The 

algorithm has two modifications: (1) When calculating hScore for a node, we use  
the straight line distance between this node and the nearest unvisited goal in 

goalList. This is correct because the distance to the nearest goal is always an 
underestimate to any other goal and so guarantee the result of A* is correct. (2) 
When one goal is visited, we have found the shortest path to this goal, and we 

should remove it from goalList. The algorithm terminates when goalList is empty.  
To accelerate the hScore calculation – the distance from a node to the nearest 

goal, we use K-dimensional tree as the support data structure. Initially, we push all 
the goal nodes into a 2-dimensional tree, indexed by their x-y (lat-lon) coordinates. 
Nearest neighbor search on a 2-dimensional tree has a complexity of only log(N)O

, where N  is the number of goal nodes here. The pseudo-code of A* based multi -

source-multi-target shortest path algorithm is presented in Figure 5.2.  
 

We test the two algorithms on the Washington DC road network, which has 18532 
links and 12006 nodes, with five cases (number of sources × number of targets): 

10×10, 50×50, 100×100, 500×500 and 1000×1000. Figure 5.3 presents the 
runtime comparison. Although for small test cases (10×10, 50×50), A-star based 
algorithm seems to be faster than Dijkstra’s, Dijkstra’s algorithm outperforms A* 

when there are more sources and goals. Considering a real system should be able 
to support at least a few hundred of passengers and vehicles, we conclude that 

Dijkstra’s is the winner and should be used to extra travel time data.  Notice that 
here the algorithms are testes on a single processor environment, but repeated 
one-to-many shortest path algorithms can easily be distributed to multiple 

processors to speed up.  
 

 
 

#Sources × 
#Goals 

Runtime (s) 

Dijkstra’s A* 

10 × 10 0.98 0.42 

50 × 50 5.20 5.05 

100 × 100 9.82 10.98 

500 × 500 49.05 229.82 

1000 × 1000 98.10 817.73 

 
 

Figure 5.3. Runtime comparison of Dijkstra’s and A* many -to-many shortest path algorithms.  
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CHAPTER SIX  

CONCLUSION AND FUTURE WORK 

 

 
Taxi sharing is a promising travel mode in big cities to address many traffic issues 

such as congestions, insufficiency of cabs, pollutions, etc. To tackle the service 
delay challenge in taxi-sharing services, we formulate a mixed linear integer 
programming model to match drivers and riders and offer the optimal service order 

to minimize overall delivery delays for all customers. The model provides the most 
efficient service schedules, and offers the time and distance information that is 

valuable for arrival time estimation at each stop, fare estimation and so is able to 
keep the riders informed of their cost and trip details in advance.  
 

Solving the optimization model using standard solver packages takes forbiddingly 
long to make it practical for real-time deployment on large scale ride sharing 

systems. We have presented a greedy agglomeration and Monte Carlo simulation 
based method. Passengers are iteratively assigned to the “so-far-best” vehicle that 
causes the minimum increase to our objective – system-wide delay. As a greedy 

algorithm, it is short sighted and does not guarantee global minimum. To resolve 
this issue, we repeatedly shuffle the passenger list and repeat the greedy 

clustering process. We have conducted small scale test cases, where the 
comparisons with optimization model show that after sufficient number of 
simulations, our algorithm always achieve the theoretical optimal solution. Cases 

studies on large scale systems further validate its fast performance. The proposed 
algorithm is straightforward to be parallelized and utilize distributed computing 

resources to speed up and support larger scale real-time ride sharing services. We 
have also discussed two details: the selection of number of simulations and the 
proper calculation of delay given a route. These discussion provides useful advices 

on applying this algorithm in practical system design. The algorithm relies on a 
origin-destination travel time matrix. Considering travel time varies with time in a 

real road network, we then compare two many-to-many shortest path algorithms 
that can extract travel time information for a real road network. Results show that 
Dijkstra’s one-to-many shortest path algorithm outperforms one-to-many A* in 

large scale network.    
 

There are still many practical situations to consider in order to design a high quality 
high efficiency ride sharing system.  
 

For one thing, the service delay should include two parts: waiting delay and 
delivery delay. Although our model have considered only the delivery delay, we 

can simply modify the Get_Delay() subroutine in the greedy algorithm to 
incorporate waiting delay, and maybe assign different weights to the two parts.  
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An interesting and valuable extension to the taxi sharing model itself is that, in 
practice, when a requester orders a ride, besides specifying a preferred latest 

delivery time, they can also choose an urgency level associated with that time 
point. For example, a user wants to be dropped at his destination at 9 am, but he 

also chooses “3” out of five importance levels. Choosing a lower level will be 
rewarded a lower fare rate because it allows the system to give higher priority to 
serve other passengers with higher urgency level. To show this in our optimization 

objective function, we basically give a higher penalty weight for the delay of higher 
urgency level, and vice versa. The feedbacks we acquired from Google store also 

inspire us to other potential extensions. For example, to ensure user 
comfortableness, the duration an individual passenger stays in the vehicle cannot 
exceed double (or other ratio) of the minimum time it needs, otherwise the 

passenger would get exhausted. For fairness considerations, the service order and 
individual delays could also be reflected in the differences of prices, which also 

makes the model possibly useful for price modeling.  
 
From a system operation perspective, our current study focuses on a quite simple 

static operation mode. Every a certain amount of time, the system checks the 
vehicles that are off-duty (not serving anyone at the moment), and the passengers 

that have requested rides since last scheduling. Then these passengers and 
vehicles are to be scheduled. Vehicles must commit to the passengers assigned 
to them till all passengers are delivered. In fact, this type of operation is not a high-

efficiency one. There might be new passengers coming up and their pickup and 
delivery locations are right on the one of the existing service route, and adding 

them to the service does not affect the earlier assigned passengers. Models 
enabling dynamic passenger insertion would be more complicated but more 
realistic toward real and efficient ride sharing system operation. Besides 

accommodating new ride requests, a system that allows and responds to ride 
cancellation by quickly re-scheduling would benefit system efficiency as well.  

 
It is also open to discussion whether every passenger should be served regardless 
their distance to the vehicles, or some passengers can be rejected for service if 

they are too far away from available vehicles, or their time requests are too 
demanding. The underlying assumption in our model is that all passengers will be 

served. If it is the other situation, say we only have to serve a least portion of 
passengers, then the selection of to-serve and not-to-serve passengers becomes 
a new challenge.  

 
Another discussion is on the objective function. Currently, our objective is the 

simple linear summation of all the delays. It is possible that in reality, small delay 
can be tolerated and neglected, while large delay can cause significant customer 
complaint, and so there could be a nonlinear mapping between service delay and 

our cost function.      
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Another important facet of a ride sharing service system is pricing. Different from 
regular taxi pricing that considers mainly distance and time, pricing for shared rides 

also should reflect individual customers’ experience in the service, e.g. early 
delivered customers pay normal fare, while late delivered should be offered a 

discount. Our scheduling model offers all the travel time and distance information 
needed for fare estimates.  
 

These extensions and modifications will be investigated in the next stage of our 
study.    
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 Data for the setups and results of the case study in Chapter 4.  
 

 
A1. Case p4v2 

 
Vehicle 

ID 
X Y 

Passenge
r ID 

Origin 
X 

Origin 
Y 

Dest X Dest Y 
Preferred 

Arrival Time 

1 19.07 21.52 1 25.21 11.83 8.33 16.62 24 

2 4.25 18.21 2 23.49 23.95 14.32 18.87 18 

   3 27.35 5.93 10.94 15.40 46 

   4 10.06 23.05 28.57 27.49 41 

 
Optimal Scheduling:  

v1: +p1  -p1  +p3  -p3 
v2: +p2  +p4  -p4  -p2 
Minimum system delay: 27.15 min.  

 
 

A2. Case p5v3 
 

Vehicle 
ID 

X Y 
Passenger 

ID 
Origin X 

Origin 
Y 

Dest X Dest Y 
Preferred 

Arrival Time 

1 0.49 7.29 1 25.21 11.83 14.32 18.87 34 

2 4.12 24.13 2 23.49 23.95 10.94 15.40 43 

3 4.70 12.03 3 27.35 5.93 28.57 27.49 44 

   4 10.06 23.05 19.07 21.52 23 

   5 8.33 16.62 4.25 18.21 33 

 
Optimal Scheduling:  

v1: +p2  -p2 
v2: +p5  -p5  +p3  -p3 
v3: +p5  +p6  -p5  +p4  -p4  -p6 

Minimum system delay: 49.83 min.  
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A3. Case p6v3 
 

Vehicle 
ID 

X Y 
Passenger 

ID 
Origin 

X 
Origin 

Y 
Dest X Dest Y 

Preferred 

Arrival 
Time 

1 4.70 14.03 1 25.21 11.83 10.94 15.40 43 

2 3.89 3.26 2 23.49 23.95 26.57 27.49 12 

3 29.97 6.55 3 27.35 5.93 19.07 21.52 33 

   4 10.06 23.05 4.25 18.21 15 

   5 8.33 16.62 0.49 7.29 18 

   6 14.32 18.87 4.12 24.13 20 

 
Optimal Scheduling:  

v1: +p1  +p3  -p1  -p3 
v2: +p2  -p2 

v3: +p1  -p1  +p4  -p4 
Minimum system delay: 12.60 min.  
 

 
A4. Case p6v4 

 
Vehicle 

ID 
X Y 

Passenger 
ID 

Origin X 
Origin 

Y 
Dest X Dest Y 

Preferred 
Arrival Time 

1 4.70 14.03 1 25.21 11.83 10.94 15.40 43 

2 3.89 3.26 2 23.49 23.95 26.57 27.49 12 

3 29.97 6.55 3 27.35 5.93 19.07 21.52 33 

4 15.39 25.17 4 10.06 23.05 4.25 18.21 15 

   5 8.33 16.62 0.49 7.29 18 

   6 14.32 18.87 4.12 24.13 20 

 
Optimal Scheduling:  

v1: +p2  -p2 
v2: +p6  -p6 
v3: +p5  -p5  +p3  -p3 

v3: +p1  -p1  +p4  -p4 
Minimum system delay: 28.94 min.  
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A5. Case p7v3 
 

Vehicle 
ID 

X Y 
Passenger 

ID 
Origin 

X 
Origin 

Y 
Dest X Dest Y 

Preferred 

Arrival 
Time 

1 29.97 6.55 1 25.21 11.83 28.57 27.49 22 

2 15.39 25.17 2 23.49 23.95 19.07 21.52 14 

3 18.38 8.88 3 27.35 5.93 4.25 18.21 36 

   4 10.06 23.05 0.49 7.29 41 

   5 8.33 16.62 4.12 24.13 13 

   6 14.32 18.87 4.70 12.03 33 

   7 10.94 15.40 3.89 3.26 21 

 

Optimal Scheduling:  
v1: +p5  +p4  -p4  -p5 

v2: +p1  -p1  +p6  +p7  -p6  -p7 
v3: +p3  -p3  +p2  -p2 
Minimum system delay: 49.47 min.  

 
A6. Case p7v4 

 
Vehicle 

ID 
X Y 

Passenger 
ID 

Origin X 
Origin 

Y 
Dest X Dest Y 

Preferred 
Arrival Time 

1 29.97 6.55 1 25.21 11.83 28.57 27.49 22 

2 15.39 25.17 2 23.49 23.95 19.07 21.52 14 

3 18.38 8.88 3 27.35 5.93 4.25 18.21 36 

4 19.13 15.73 4 10.06 23.05 0.49 7.29 41 

   5 8.33 16.62 4.12 24.13 13 

   6 14.32 18.87 4.70 12.03 33 

   7 10.94 15.40 3.89 3.26 21 

 

Optimal Scheduling:  
v1: +p6  -p6 
v2: +p1  -p1  +p7  -p7 

v3: +p5  -p5  +p3  -p3 
v3: +p2  +p4  -p2  -p4 

Minimum system delay: 9.44 min.  
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