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Abstract 

Slug tests are one of the most common field tests used by hydrogeologists to 

evaluate the hydraulic conductivity of an aquifer system.  Steady-state and 

transient (slug test) numerical simulations were run in 37, 2-dimensional 

randomized multifractal hydraulic conductivity fields.  Each field consisted of 

59,049 individual saturated hydraulic conductivity (K) values with varying 

numbers of hydrofacies and different degrees of spatial heterogeneity.  The Keff 

values were determined by examining the flux in and out of the steady-state 

numerical model. The Kslug values were determined by adding a slug of water to 

the center node of the field and evaluating the numerical head response over 

time with the Cooper-Bredehoeft-Papadopulos method.  The zone of influence 

of the slug test was also measured for each realization. The variance of ln(Kslug) 

decreased as the zone of influence increased.  Keff and Kslug were determined on 

100 realizations of a specific multifractal field. The Kslug values followed a 

distribution similar to that of the field hydraulic conductivity values, while the 

Keff values exhibited a much narrower distribution. Linear regression analyses of 

ln(Keff) on ln(Kslug) were performed to evaluate how well the slug test values 

predicted the effective saturated hydraulic conductivity at each individual scale 

and over all scales. The results of these regression analyses showed that ln(Kslug) 

underestimates the hydraulic conductivity in low hydraulic conductivity material 

with high K inclusions and overestimates the hydraulic conductivity in extremely 

high hydraulic conductivity fields with low K inclusions.  Averaging three 

replicate measurements of ln(Kslug) resulted in a significant reduction of error 

associated with the prediction of ln(Keff).  The mean absolute difference between 

ln(Keff) and ln(Kslug) also decreased as the size of the hydrofacies decreased. 

 

 

 

 



iii 
 

Table of Contents 
Section         page 
 
1.0 Introduction           1 
 1.1 Literature Review          2 
 1.2 Goal           7 

1.3 Objectives           7 
 
2.0 Methodology                       8  
 2.1 Generating Random Multifractal Fields         9 
 2.2 Modeling Software         10 
  2.2.1 Steady-State Numerical Simulations      10 

  2.2.2 Transient Numerical Slug Test Simulations     11 

2.2.3 Cooper-Bredehoeft-Papadopulos Analytical Solution    12 
 2.3 Zone of Influence           14 

2.4 Anisotropy                 14 
 2.5 Statistical Methods         15 
 2.6 Multiple Random Realizations        16 
   
3.0 Results and Discussion          17 

3.1 Detailed Examination of a Specific Multifractal Field     18 
3.2 Steady-State Results         18 

 3.3 Slug Test Results          20 

 3.4 Steady-State and Slug Test Results Compared      22 
  3.4.1 Correlations         22 

3.4.2 Regression Analyses Over All Replications, p and    22 
                                     i Level 

3.4.3 Regression Analyses Based on the Averages of                23  
                                    Replications Over p and i Levels   

3.4.4 Regression Analyses at Each i Level      24 
  
4.0 Conclusions and Further Research        26 
 
Works Cited         30-35 
 
Appendices A-E        36-66 
 
Vita             67 
 
 

 

 



iv 

 

List of Tables 

No.              page 

A.1       Residual sums of squares for nonlinear fits of head response data          37 

in AQTESOLV 

 

A.2  Mean, variance, and normality test for the p=4/9, i=5,                         38 

b=3 multifractal field 

 

A.3  ANOVA table significance levels for ln(Keff), λeff, ln(Kslug), λr,          38 

and rnorm 

 

A.4 Variance of ln(Keff)               38 

              

A.5 Variance of ln(Kslug)              39 

   

A.6  Regression models (y=mx+b) for the ln(mean) and ln(variance)        39 

 of ln(Kslug) versus ln(rnorm) 

 

A.7  Correlation Matrix of ln(Keff), λeff, ln(Kslug), rnorm, and λr,          39 

 

A.8 Linear regression model (y=mx+b) showing the slope,          40 

intercept, R2, MAPE, and number of observations for 

             each i level for all of the realizations 

 

A.9  Linear regression model (y=mx+b) showing the slope,         40 

 intercept, R2, MAPE, and number of observations 

 for each i level based on averages of the realizations 

 

 



v 

 

 

 

List of Tables (Continued) 

No.              page 

A.10   ln transformed median values for the multifractal fields         40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

List of Figures 

No.                     page 

B.1       Deterministic 2-dimensional multifractal field for p=8/9,         41 

i=5, b=3 (left) and random 2-dimensional multifractal field 

for p=8/9, i=5, b=3 (right) 

 

B.2 Six different scales for a p=8/9, b=3 random 2-d multifractal         41 

field.  From top left to bottom right: i=1, i=2, i=3, i=4, i=5, i=6. 

Black cells: low K, white cells: high K 

 

B.3        Boundary conditions for the steady-state flow simulations.          42 

Steady-state flow in the x direction (left) and steady-state flow 

in the y direction (right) 

 

B.4 Example head distributions with contour intervals of 0.1         42 

for steady-state flow in the x direction for random 2-d multifractal  

fields: p=8/9, i=5, b=3 (left) and p=5/9, i=5, b=3 (right) 

 

B.5   Example AQTESOLV non-linear regression fit for head         43 

 response data      

 

B.6  Relationship between ln(Keff) and ln(Kslug) with rc optimized         43 

for 40 homogeneous fields 

 

B.7 Measurement of the zone of influence in the x and y          44 

directions for the transient slug test simulations 

 

B.8  Histograms of 100 realizations of Keff and Kslug and 59,049             44 

  K field values for the p=4/9, i=5, b=3 multifractal field 



vii 
 

 

List of Figures (Continued) 

No.              page 

 

B.9 Mean values for Keff with associated Tukey values by i level.        45 

 Means with the same letter, within an i-level, are not 

significantly different at p<0.05 

 

B.10 Mean values for Kslug with associated Tukey values by i level        46 

 Means with the same letter, within an i-level, are not  

significantly different at p<0.05 

 

B.11 Mean values for rnorm associated with the transient  

simulations and with associated Tukey values by i level.         47  

Means with the same letter, within an i-level, are  

not significantly different at p<0.05 

 

B.12 Plot of the average values of ln(Kslug) versus ln(rnorm)          48 

over all p and i levels      

 

B.13 Plot of the ln transformed variance of ln(Kslug) versus ln(rnorm)        49 

 

B.14  Linear regression plots for all realizations with the 1 to 1         50 

 line (Top).  Magnification of the linear regression plot 

 from (-5,-5) (Bottom) 

 

B.15  Linear regression plots for an average of the realizations          51 

with the 1 to 1 line (Top).  Magnification of the linear 

regression plot from (-5,-5) (Bottom) 



viii 
 

 

List of Figures (Continued) 

No.              page 

B.16     Linear regression plots for an average of the realizations          52 

              of the ln(Keff) values with the corresponding ln(Median)  

            values with the 1 to 1 line (Top).  Magnification of the 

   linear regression plot from (-5,-5) (Bottom) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

 

 

 

 

 

 

 

 

 
 

1.0 Introduction 
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1.1 Literature Review 

Hydraulic conductivity (K) is an important hydrogeologic parameter used in 

predicting flow and solute transport in soils, sediments, and rocks.  It can be 

used to estimate and determine such things as spreading velocities of 

contaminant plumes, aquifer yield and sustainability, and effectiveness of 

aquitards as barriers to movement of contaminants.  Techniques that are often 

used in estimating hydraulic conductivity include grain size analysis, 

permeameter tests using core samples, pumping tests, and slug tests. 

Measurements used to determine the hydraulic conductivity of a material differ 

by the measurement technique and the scale of measurement.  Furthermore, 

there are numerous analytical solutions that can be used to determine K based 

on pumping and slug test response data.  Each of these analytical solutions can 

yield different estimations of K, even for the same data set.  Therefore it is 

important to develop a better understanding of the effectiveness of well 

response tests and their associated analytical solutions. 

 

One of the most common field tests used to quantify small scale hydrogeologic 

characteristics of aquifers is the slug test.  This is mainly because of its ease of 

implementation and affordability of the test.  Many advances have been made to 

correct for the errors incorporated into hydraulic parameters determined using 

slug tests (Butler, 1996).  One of the most effective tests to measure large scale 

hydraulic conductivity in the field is the pumping test.  Thus, a logical question to 

ask is: how does Kpump (pumping test hydraulic conductivity) compare to Kslug 

(slug test hydraulic conductivity). 

 

Butler and Healey (1998) show, that in most cases, the value for Kpump is greater 

than Kslug due to well skin effects, incomplete well development, and vertical 

anisotropy.  Rovey and Cherkauer (1995) proposed that the underestimation of 

Kpump by Kslug is largely due to scaling effects.  They suggest that that small scale 
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slug tests are not able to adequately measure the influence of high hydraulic 

conductivity pockets in the aquifer.  Rovey (1998) examined scaling effects 

associated with slug, pumping, and pressure injection tests in a numerical model.  

Rovey and Niemann (2001) and Shulze-Makuch et al. (1999) showed how 

measured values of hydraulic conductivity increase with scale for different types 

of porous media.   

 

Another important issue is the variability of different measurements of Kslug and 

Kpump. Vargas and Ortega-Guerrero (2004) and Loáiciga et al. (2006) observed 

substantial spatial variability in Kslug, even in apparently homogeneous 

formations.  Lee and Lee (1999) showed that Kslug has a greater variability than 

Kpump.  In contrast, Chapius et al. (2005) demonstrated that, in a quasi-

homogeneous aquifer, distributions of Kslug and Kpump are narrow in range and 

similar. Therefore it is becoming increasingly important to study Kslug and 

understand how well it represents the larger scale hydraulic conductivity values 

for various aquifer systems. 

 

The effects of heterogeneity, due to spatial variations in hydrofacies, have been 

studied exhaustively.  Sanchez-Vila et al. (2006) reviewed work from the past 30 

years addressing the issue of heterogeneity.  One of the most important facets 

brought up in that review is determining representative values of hydraulic 

conductivity.  It is very difficult in a field environment to ever know the true 

value of the hydraulic conductivity. Hence it is important to study how accurately 

different hydraulic conductivity estimation methods are able to estimate the 

effective hydraulic conductivity (Keff) of aquifers with varying levels of 

heterogeneity.  The Keff is the expected value of the flux and head gradient, 

which can give a regional value of hydraulic conductivity for an aquifer system 

(Sanchez-Vila et al., 2006).  Since the effective hydraulic conductivity cannot be 

measured with 100% accuracy in the field it is useful to employ groundwater 
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models to estimate this value and compare it to values of K obtained from head 

response tests (i.e. Kpump and/or Kslug).       

 

Ground water models have increased in popularity with the availability of 

innovative new software and the increase in computing power (Bredehoeft, 

2006). Modeling software allows users to input a wide variety of hydrogeologic 

parameters, such as recharge, hydraulic conductivity, rivers, evapotranspiration, 

storage, vertical leakage, aquifer types (confined or unconfined), geologic 

boundaries, effective porosity, and specific yield to simulate natural 

groundwater systems.  From this information the user can evaluate steady-state 

and/or transient simulations to examine chemical migration, effective hydraulic 

conductivity, missing hydrogeologic parameters, aquifer yield, influence of 

pumping on wetlands, and a variety of other phenomena.  Numerical simulations 

in groundwater modeling allow the modeler to analyze specific tests without 

exposure to some of the problems that one encounters in field environments 

(Butler et al., 1996).  When modeling is used properly it can give a wealth of 

information that would often be difficult to determine under field conditions.   

 

There are many different types of approaches to model aquifer heterogeneity; 

these include, but are not limited to, geostatistical methods, the Boolean 

method, and genetic methods (for more information on these methods the 

reader is referred to Marsily et al., 1998).  Eaton (2006) also described methods 

(continuum and discrete paradigms, zonal and geostatistical approaches) for 

modeling heterogeneity and their respective advantages. Another approach that 

is often seen in the literature is the use of assigning hydraulic conductivity values 

to model cells in order to represent fracture patterns or block heterogeneity; 

such patterns are usually assumed to be Euclidean (Osiensky et al., 2000; Rovey, 

1998).  For example, Osiensky et al. (2000) used 16 large blocks of transmissivity 

values and simulated pumping tests in order to evaluate how the transmissivity 
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values changed with respect to whether the late or early drawdown data were 

examined. 

 

As defined in Turcotte (1997), fractals are patterns that repeat themselves and 

are quantified by a fractional dimension while multifractals are a sequence of 

fractal dimensions derived from the moments of a statistical distribution.  

According to recent analyses of field data, it has been suggested that saturated 

hydraulic conductivity distributions of rocks and soils are multifractal in nature 

(Neuman and Difederico et al., 2003, and Molz et al., 2004).  Multifractal scaling 

of the spatial distribution of hydraulic conductivity has been validated with 

analyses presented in Liu and Molz (1997), Boufadel et al. (2000), and 

Tennekoon et al. (2003).  For example, Tennekoon et al. (2003) studied several 

field sites in order to examine the scaling properties of K.  They found that their 

multifractal model was able to produce the probability distribution of K seen at 

those field sites.  For these reasons investigating the scaling of known 

multifractal models can result in an improved understanding of the influence of 

heterogeneity on Keff in aquifers.  

 

Various types of numerical flow simulations have been performed in fractal and 

multifractal fields.  Some of these include, Hassan et al. (1997) who ran flow and 

transport simulations in order to study migration of chemicals at different levels 

of heterogeneity in fractal fields.  Babadagli (2006) measured and compared the 

effective permeability of 2-d fractal fields using numerical simulations and 

averaging techniques.  Lenormand et al. (1990) developed anisotropic 

multifractal fields to compare two-phase flow patterns from model simulations 

with data from real flow experiments. Veneziano and Essiam (2003) ran flow 

simulations in stochastic multifractal log normal fields to study the effect of 

variability in K on the hydraulic gradient and the specific flow.  Dreuzy et al. 
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(2004) studied diffusion in heterogeneous randomly continuous multifractal 

media.    

 

Koirala et al. (2008) studied the scaling of Keff for random multifractal K fields 

based on the earlier work of Perfect et al. (2006).  Their approach involved 

generating multifractal 2-dimensional Sierpinski Carpets consisting of normalized 

mass fractions calculated from the truncated Binomial distribution. These 

researchers focused on two main goals: exploring how the frequency distribution 

of hydraulic conductivity changes as a function of the probability of carpet 

formation (p) and scale (i), and how the effective hydraulic conductivity varies at 

different scales for dissimilar probabilities of carpet formation.  The p value is a 

statistical property that determines the level of heterogeneity for a 2-d 

multifractal field while the i value reflects the resolution of the multifractal field. 

As the i value is decreased the multifractal field decreases in resolution and 

number of hydrofacies. In Koirala et al. (2008) the average effective hydraulic 

conductivity of three realizations of each multifractal field was determined for 

probabilities ranging from 1/9 to 8/9 based on numerical steady-state 

simulations.  These researchers determined that, as the probability value 

increases so does the effective hydraulic conductivity, and that lower p-values 

best represent the scaling behavior of more heterogeneous hydraulic 

conductivity fields.  Koirala et al. (2008) also suggested a relationship between 

the different multifractal hydraulic conductivity fields and natural 

hydrogeological systems.   

 

The multifractal approach appears to have some advantages for modeling 

hydraulic conductivity fields.  It enables a model to capture an accurate and 

detailed representation of the heterogeneity commonly seen in field 

environments, and can be directly applied and compared to natural systems.  

Although many flow simulations have been run for different types of fractal and 
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multifractal fields none, to this author’s knowledge, have compared numerous 

steady-state simulations with head response simulations, specifically the slug 

test. 

1.2 Goal 

The main focus of this thesis is to examine the ability of small scale head 

response tests (slug tests) to estimate larger scale effective hydraulic 

conductivity values in multifractal fields that range in levels of heterogeneity, 

contain low and high hydraulic conductivity values, and whose hydrofacies have 

different length scales.   

 

1.3 Objectives 

The main objectives of this project are to: (1)  compare all values and the 

averages of three replications of Keff with Kslug over a range of 2-dimensional 

multifractal fields and scales, (2) determine regression equations for all 

realizations and the averages of the replications as a function of i level to better 

understand how accurately small scale slug tests predict Keff, and (3) examine a 

specific 2-d multifractal field (p=4/9, b=3, i=5) in detail to determine 

relationships between the distributions of Keff and Kslug, and the probability 

distribution of the K values in the field (Kfield).  
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2.1 Generating Random Multifractal Fields 

The method undertaken to generate and upscale effective saturated hydraulic 

conductivities is taken from Perfect et al. (2006) and Koirala et al. (2008).  This 

method involves normalizing mass fractions calculated from a truncated 

binomial distribution for a wide variety of probability distribution values (p) with 

a scale factor (b), and different iteration (i) levels.   

  

The MATLAB code used to construct the 2-d multifractal fields was a modified 

version of the code developed by Jung Woo-Kim (Koirala et al., 2008) (Appendix 

C).  The MATLAB code allows one to input a scaling factor (b), a probability value 

(p), an iteration level (i), and choose the output to be a deterministic or a 

random multifractal field (Figure B.1).  An i=5 multifractal field is a 243 by 243 

matrix of 59,049 K values: whereas, an i=1 multifractal field is a 3 by 3 matrix 

with only 9 K values (Figure B.2).  The modification of the MATLAB code takes 

the i=1, 3 by 3, matrix and divides each of the cells into 81 parts for the specific 9 

K values represented; hence expanding the original matrix into a 243 by 243 

matrix, while maintaining the respective characteristics of the original 3 by 3 

matrix.  This process was performed so that each of the multifractal fields 

contained the same number of cells for each i level enabling one to examine the 

large and small scale variations in hydraulic conductivity.   

 

For this research p was varied between 1/9 and 8/9, b=3, and i=1, 2…5.  Here 

p=8/9 represents a homogeneous high K field with a few low K inclusions and as 

one decreases the p-level to p=1/9 the fields become more heterogeneous with 

low K values and a few high K inclusions.  The ranges of K values in the fields 

were from 0 to 1 and are represented as meters/second.  To increase the 

resolution, in order to study scaling effects, the generator is simply applied to 

itself at different iterative values.  The i level can be related to the spatial 

variation of K for geologic materials through the length scale of the hydrofacies, 
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i.e. 1/bi.  For b=3, i=5 the K value changes at every grid cell, while at i=4 the 

change is at every 3 cells, i=3 at 9 cells, i=2 at 27 cells, and  i=1 at 81 cells.   

Finally, each realization was randomized to represent different spatial 

heterogeneities. 

 

2.2 Modeling Software 

All slug test numerical simulations were run in Processing Modflow 5.30 (Chiang 

and Kinzelbach, 2001).  The steady-state simulations were run in both Processing  

Modflow 5.30 (Chiang and Kinzelbach, 2001), and Argus One (MODFLOW GUI 

version 4) (Winston, 2000).  Processing MODFLOW 5.30 had limited capabilities 

in solving for Keff in the lower p-value multifractal fields.  Therefore Argus One 

simulations were performed to determine the steady-state Keff for the following 

multifractal fields: p=2/9, i=5, 4, and p=1/9, i=5, 4, 3. Steady-state flow 

simulations were run in both Argus One and Processing Modflow 5.30, for 

selected high p value fields, in order to compare the solved Keff values for each 

software package.  The Keff values for the compared fields were the same, which 

validates the use of Argus One for solving for Keff in the lower p-value fields.  

Both modeling software packages had difficulty in converging to a solution for 

the following fields: p=1/9, i=5, 4, 3. Therefore the results for these 

combinations were not used. 

 

2.2.1 Steady-State Numerical Simulations 

For the steady-state simulations the effective hydraulic conductivities in the x 

direction (Kx,eff) and y direction (Ky,eff) were evaluated in units of meters/second 

for three different random realizations for each of the 37 different multifractal 

fields. The boundary conditions for the model were no flow boundaries in either 

the x or y direction with a gradient in the y direction or x direction respectively 

(Figure B.3). The aquifers consisted of 59,049 discritized cells.  Effective hydraulic 

conductivities were then solved by examining the fluxes in and fluxes out of the 
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steady-state simulations using a finite difference approach (Renard and de 

Marsily, 1997).  Other than the p=1/9, i=5, 4, 3 fields all of the simulations 

converged. The majority of the water budget errors for the simulations were 0% 

and none exceeded 3%.  Once the models converged Keff was calculated from the 

equilibrium fluxes based on Darcy’s law (Fetter, 2001): 

h

x
qKeff

.…………………………………………………………………….…………………………….…….(1) 

where q is the flux, h is the hydraulic head and x is the length. Figure B.4 shows 

examples of the head changes for two multifractal fields.  The mean effective 

hydraulic conductivity (Keff) for a field was calculated as the geometric mean of 

Ky,eff and Kx,eff.   

 

2.2.2 Transient Numerical Slug Test Simulations   

For the transient simulations the hydraulic conductivity was measured via the 

slug test method.  The boundaries conditions for the matrix consisted of a 

constant head of 10 meters along the edge of the field. All cells received a value 

of 10 meters for the initial hydraulic head with the exception of the center node, 

which received a value of 11 meters to simulate a slug of water.  The layer type 

was a confined aquifer with recharge only coming from the constant head 

boundaries.  Specific storage and the storage coefficient for the model was 

0.001m-1 in all grid cells except for the center node which was given a value of 

1m-1 in order to simulate an open borehole. A Preconditioned Conjugate-

Gradient 2 (PCG2) package was used in order to solve the Neuman series 

polynomials and a time step multiplier of 1.2 was employed so that more early 

time head response data in the well could be collected.  Equation 2 is the 

governing equation for transient groundwater flow expressed in radial 

coordinates is (Fetter, 2001): 

t

h

T

S

r

h

rr

h 1
2

2

……………………………………………..……………………………………………(2) 
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where t is time, r is the radial distance, S is the storativity, and T is the 

transmissivity.  After evaluating each simulation the water budget was checked 

for any discrepancies.  A percent discrepancy of no more than 0.5%, was taken as 

an acceptable cut off limit by the author for the transient simulation (McDonald 

and Harbaugh, 1988). If the percent discrepancy was over 0.5% the water budget 

output file is documented in Appendix D.  As the p-values decreased the solver 

had a more difficult time in producing a low percent discrepancy. It is important 

to note, however, that this did not appear to affect the estimated value of Kslug.  

This is probably due to the fact that the percent discrepancies are so small in 

value that they had no bearing on the head changes being recorded in the well 

used for the test.  This concept was tested by allowing greater than 0.5% 

discrepancy and looking at a zero percent discrepancy for the same p-value, i-

value, and realization.  The results showed that there were no significant 

differences between the large percent discrepancy and the small percentage 

discrepancy for Kslug in the same multifractal field.  The head change over time 

was identical for a larger percent error as it was for a zero percent error.   

 

2.2.3 Cooper-Bredehoeft-Papadopulos Analytical Solution  

The Cooper-Bredehoeft-Papadopulos method was the model chosen for 

analyzing the numerical slug test data under the following assumptions: that the 

aquifer is homogeneous, isotropic, confined, of uniform thickness, and screened 

the full length of the aquifer (Cooper et al., 1967).  These assumptions are often 

ignored in the real world.  This method involves matching the head divided by 

the initial head as a function of time to the type curves of Cooper et al. (1967).  

The equation used to solve for the transmissivity is as follows (Cooper et al., 

1967): 

 

……………………………………………………………………………………………(3) 

 
m

c

t

cr

T

2
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Here cx represents the value obtained from overlying the type curve, rc is the 

radius of the well casing, and tm is the time when matched to the type curve.  

The numerical slug test data were fitted to Equation (3) in AQTESOLV 4.02.  This 

software package uses a non-linear regression, to fit the type curves of Cooper-

Bredehoeft-Papadopulos’s solution (Figure B.5) (Duffield, 2006).  The fitting 

parameters are storativity and transmissivity.  The storativity values from the 

curve fitting are often ignored with the Cooper-Bredehoeft-Papadopulos method 

(Fetter, 2001).   

 

The slug test hydraulic conductivity Kslug was calculated by dividing T by the 

thickness of the aquifer.  The units for Kslug are meters/second.  Due to the 

square shape of the well cell in Processing Modflow 5.30, a value of 0.604m was 

used as the value for the radius of the well casing (rc) in Equation 3.  This value 

was determined by setting up 40 homogeneous K fields, each with 59,049 cells 

containing the same hydraulic conductivity value.  A slug test was run in the 

center of each field.  The resulting head response data were then fitted to the 

Cooper-Bredehoeft-Papadopulos model and the radius of the well casing was 

continuously adjusted until the value of Kslug exactly matched the value of Keff.  

This procedure was done over a large range of hydraulic conductivity values to 

produce a best estimate of rc.  The result of these analyses is a regression 

equation relating ln(Kslug) to ln(Keff) with a slope of ~1, an intercept of ~0 and an 

R2 value of ~1 (Figure B.6).   

 

Once rc was determined, the Cooper-Bredehoeft-Papadopulos model was fitted 

to the head response data from the simulations run in the 40 heterogeneous 

fields.  Table A.1 shows the residual sums of squares for all of these fits.   
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2.3 Zone of Influence 

By examining the zone of influence of the slug test one can detect exactly what 

extent of the aquifer is being sampled.  Every cell with a hydraulic head greater 

than 10.001m head was used in this measurement (i.e. 0.001m above the initial 

head value).  The zone of influence was determined by examining each of the 

time steps and looking for the time step with the largest head response around 

the slugged well.  The reason the last time step was not used is because the 

greatest zone of influence often appeared in the early time steps before full 

equilibration of the groundwater heads.  To measure the zone of influence, the 

effective length was measured in the x direction (rx) and y direction (ry). The 

measurements were made in the x and y directions to provide a consistent 

measurement technique for each realization (Figure B.7).  These lengths were 

then normalized with respect to the length of the entire field giving a normalized 

zone of influence (rnorm) ranging from zero to one, in accordance with how much 

of the aquifer was being sampled (i.e. 0 for when none of the aquifer length was 

sampled and 1 when all of the aquifer length was sampled). 

 

2.4 Anisotropy 

Anisotropy ratios were determined for both the steady-state and the transient 

simulations.  The steady-state anisotropy ratio was determined by examining 

Kx,eff and the Ky,eff values (See Section 2.21).  These values were expressed as the 

ratio Kx,eff/Ky,eff= λeff  (anisotropy from the Keff measurements).  Next, the length 

measurements from the transient simulations were analyzed in the x and y 

directions based on the extent of the zone of influence (See Section 2.4).  From 

this analysis rx and ry were determined and an anisotropy ratio was taken as 

rx/ry=λr (anisotropy from the effective lengths).  The purpose of measuring and 

comparing anisotropy ratios is to see if the values differ for different fields using 

different measuring techniques between large and small scale tests. 
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2.5 Statistical Methods 

For each p-value (from 1/9 to 8/9), and at the 5 different i scales, 3 random 

realizations were produced.  For example, for p=8/9, i=5 three realizations of the 

multifractal field were generated and a steady-state simulation and transient 

simulation were run for each of these realizations.  Then for p=8/9, i=4 three 

realizations were analyzed, so on and so forth, for each p-value and i level.  All 

data can be found in Appendix E.  By looking at three realizations for each p-

value and scale, one is able to calculate important statistical properties.  Due to 

the fact that the hydraulic conductivities values, often varied by an order of 

magnitude between realizations the data were ln transformed.  Next the 

averages of the realizations for each specific p and i level of ln(Keff) and ln(Kslug) 

were taken.  The untransformed data was not examined.     

 

The statistical analysis that was undertaken in this project included examining 

the correlation of the data, analysis of variance (ANOVA), comparison of means, 

and regression analyses.  A correlation matrix was built to look for any 

correlations among the following list of variables: ln(Keff), ln(Kslug), λeff , λr, and 

rnorm.  For the ANOVA model, the independent effects were p, i, and the 

interaction between p*i.  There were 5 ANOVA models associated with the 

variables ln(Keff), ln(Kslug), λeff, λr, and rnorm.  If the variables had significant effects 

for the model, p, i, and/or p*i then an appropriate comparison of means was 

conducted. Linear regression models were determined between ln(Kslug) and 

ln(Keff) at each i level for the averages of the realizations and all realizations as 

well as over all p and i levels for all realizations and the averages of the 

realizations.  From each linear regression equation a mean absolute percent 

error (MAPE) was calculated to determine the percent error in estimation of Keff 

from Kslug.  The MAPE was calculated by summing the absolute values of the 

residuals and dividing by the number of samples.   
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2.6 Multiple Random Realizations 

A specific multifractal field (p=4/9, i=5, b=3) was examined in detail.  This was 

done to compare the results of Keff and Kslug for 100 random realizations and the 

hydraulic conductivity distribution of the 59,049 different K values located in the 

field (Kfield).  Histograms were constructed based on the relative frequency 

(expressed as a percentage).  This was examined so that Kfield, with 59,049 

values, could be compared to the 100 Keff values and 100 Kslug values. The data 

were ln transformed and the mean and median were examined for each case.  

Also statistical tests were run on the data to determine if Keff, Kslug, Kfield, ln(Keff), 

ln(Kslug), and ln(Kfield) followed  normal distributions.  The Wilk-Shapiro test for 

normality at p<0.05 was applied to the Keff, Kslug, ln(Keff), and ln(Kslug) values and 

the Kolomogorov’s D test for normality at p<0.05 was applied to Kfield and 

ln(Kfield). 
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3.0 Results and Discussion 
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3.1 Detailed Examination of a Specific Multifractal Field 

A 2-d multifractal field was examined in detail to determine how the 

distributions of Keff, Kslug, and Kfield compared.  Simulations were run in 100 

random realizations of a p=4/9, i=5, b=3 multifractal field.  The distribution of the 

Kfield values was examined and compared to the Kslug and Keff simulation values.  

Figure B.8 shows that Kslug follows a distribution similar to that of Kfield, largely 

resulting from small scale sampling.  In contrast, Keff samples the entire aquifer 

resulting in large scale regional hydraulic conductivity values with only a small 

amount of variation (Figure B.8).   

 

Table A.2 gives the mean, variance, and normality test results for Keff, Kslug, Kfield, 

ln(Keff), ln(Kslug), and ln(Kfield).  The variances for the 100 ln(Kslug) and ln(Keff) values 

were 16.65 and 0.41 respectively.  The Kslug variance is much larger than Keff, 

because Kslug is essentially a point measurement in the aquifer derived from the 

distribution of hydraulic conductivity values immediately around the well.   

 

All untransformed and ln transformed measured values were tested for 

normality.  The results show that, in general, all the data sets were closer to a 

log-normal distribution than a normal distribution.  However, only the ln(Keff) 

values were not significantly different from a log-normal distribution. This 

statistical examination of the specific multifractal field shows that working with 

ln transformed values is viable.  This project initially planned to use log-normal 

statistics to predict the number of slug tests needed to accurately predict Keff, 

but since Kslug did not statistically follow a log-normal distribution it was not 

possible to run this test. 

 

3.2 Steady-State Results 

The steady-state flow simulations were used in order to determine Keff for each 

multifractal field.  An ANOVA model was constructed where ln(Keff) is the 
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dependant variable and p, i, and the interaction between the two terms (p*i) 

were sources of variation.  The resulting ANOVA table was used to determine 

which of these effects were significantly different at p<0.05 (Table A.3). Table A.3 

shows that there was significant differences with the effects across all p, i, and 

p*i levels which was expected since the ln(Keff) values are different for each 

probability field at each scale.  Since there were significant effects across all p, i 

and p*i the means were split up in order to examine them at the p level 

associated with their respective i levels.  These results were put into a bar graph 

with corresponding Tukey values associated with each mean (Figure B.9).  The 

bar graph shows that as the p value decreases, ln(Keff) decreases and as i 

decreases, ln(Keff) increases.  These trends were also observed by Koirala et al. 

(2008).  

 

The variance of ln(Keff) was also determined for each 2-d multifractal field (Table 

A.4).   Notice that the variance tends to increase as the p level decreases, 

possibly due to lack of connectivity between the cells.  Overall the estimations 

between the different p and i levels had only a small amount of variance 

considering that only three replications were run for each p and i level.  This 

showed that estimating Keff using the steady-state simulations was fairly 

consistent. Therefore, the mean ln(Keff) values appear to be a good predictor of 

the aquifer system for the majority of the p and i levels. 

   

The anisotropy ratio was calculated for all of the multifractal fields using the Keff,x 

and Keff,y values.  This ratio was determined and examined in order to see if there 

were any significant differences in λeff due to p, i, and/or i*p.  The ANOVA 

showed (Table A.3) that there were no significant effects.   
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3.3 Slug Test Results 

The slug test simulations involved examining the hydraulic head data over time 

for the center node which was given a 1 meter slug of water. By fitting the data 

to the Cooper-Bredehoeft-Papadopulos analytical solution, Kslug was determined 

for each multifractal field.  These values were examined in an ANOVA model to 

determine if there were any significant effects of p, i, and/or i*p.  The results of 

the ANOVA table (Table A.3) show that there were significant effects across all 

levels.  Therefore the means were compared by p and i levels with the associated 

Tukey values (Figure B.10).  The means show the same trends as in the steady-

state ln(Keff) results, i.e. the means decrease as the p level decreases, and as the i 

level increases.   

 

The variances for ln(Kslug) were determined for the three realizations associated 

with the corresponding p and i levels (Table A.5).  The main trend in this table is 

seen by p level.  As the p level decreases the variance increases.  This indicates 

that a better estimation of ln(Keff) will probably be achieved at the higher p levels 

or more homogeneous fields.   In contrast to the p level, there was no clear 

trend in the variance when varying the i level/hydrofacies size (Table A.5). 

 

Since the zone of influence (rnorm) determines the scale of measurement this 

variable was also examined to see if there were any significant effects of i, p, 

and/or i*p (Table A.3).  The ANOVA table showed that all three constructed 

effects were significant. A bar graph was constructed showing the associated 

Tukey values corresponding to the means by p and i level (Figure B.11).  This bar 

graph shows that a larger portion of the aquifer is being sampled at the higher p 

values and as the fields decrease from i=5 to i=1.    

 

Mean values for ln(Kslug) and ln(rnorm) were then compared over corresponding p 

and i levels to examine the relationship between the variables. The rnorm was ln 
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transformed in order to produce a linear relationship. Figure B.12 shows the 

strong positive relationship between ln(Kslug) and ln(rnorm). The regression 

analyses for each i level and over all i levels are summarized in Table A.6.  The R2 

value over all i values was 0.85. The R2 values generally decreased with 

decreasing i level (i=5 having an R2=0.98 and i=1 with an R2=0.47).  The i=1 field 

was the only one that showed no significant relationship between the variables.  

This is because a large portion of the aquifer was sampled by the well regardless 

of the p value.  In contrast, at the other i levels, rnorm was more dependent on 

the p value for a given multifractal field.   

 

Given the systematic variation in ln(Kslug), apparent in Table A.5, the relationship 

between rnorm and the variance of ln(Kslug) was also investigated. Both rnorm and 

the variance of ln(Kslug) were ln transformed in order to produce a linear 

relationship as shown in Figure B.13.  Table A.6 gives the regression results.  The 

overall model R2 value was 0.35.  Examining this trend it is apparent that, as the 

zone of influence decreases there is more variance in ln(Kslug).  This suggests that 

a variation in the ln(Kslug) is associated, to some degree, with the amount of the 

aquifer being sampled.  Looking at the regression equations by i level, the R2 

values tended to decrease as the i level decreased (Table A.6).  For i=1 and i=2 

there was no significant relationship between the variables.    One reason for the 

large variance observed in the i=1 field, even when the zone of influence is large, 

is because only the middle hydraulic conductivity value of the aquifer is being 

sampled; therefore the ln(Kslug) value tends to this value.  As the i level increases 

more cells are sampled in the model resulting in a lower variance.   

 

The anisotropy ratio of rnorm (λr) was examined to determine if there were any 

significant effects due to p, i, and/or i*p.  The results indicate that there were 

only significant effects according to i level (Table A.3).  Since the model was not 

significant no further analysis was needed.   
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3.4 Steady-State and Slug Test Results Compared 

3.4.1 Correlations  

A correlation matrix for all of the values of ln(Keff), λeff, ln(Kslug), rnorm, and λr was 

determined (Table A.7).  Table A.7 shows the relationships with significant 

correlations at the p<0.01 level are ln(Keff) versus ln(Kslug), ln(Keff) versus rnorm, 

and ln(Kslug) versus rnorm.  One would expect ln(Keff) to be correlated with ln(Kslug) 

since the different estimations of hydraulic conductivity are based on the same 

fields.  The values of ln(Kslug) being correlated with rnorm show that at high p 

values the slug tests sample a larger portion of the aquifer and as the p value 

decreases so does the fraction of the aquifer being sampled.  The values of λeff 

and λr showed a correlation coefficient of .58 (Table A.7).  Since each of the fields 

were randomly distributed it is no surprise that the anisotropy is different for 

each ensuing realization.  What is interesting is that there is a level of correlation 

among the small scale measurements of λr and the large scale measurements of 

λeff.  This implication shows that anisotropy at the small (slug test) scale is 

reflected, to some degree, in the large scale anisotropy of the aquifer effective 

hydraulic conductivity values, even with two different methods of measurement. 

 

3.4.2 Regression Analyses Over All Replications, p and i Levels 

The first regression analysis was run on the 111 values of ln(Keff) and ln(Kslug) 

across all p and i levels except for the p=1/9, i=5, 4, and 3 multifractal fields 

(omitted because of water balance errors).  The R2 value for the regression was 

0.87.  The prediction equation, having a high R2 value, indicates that slug tests 

are able to measure the effectively hydraulic conductivity accurately over a large 

range of heterogeneity and hydraulic conductivity.  Table A.8 shows the 

characteristics of this regression equation.  The mean absolute percent error 

(MAPE) demonstrates that the regression equation gives an accurate estimation 

of ln(Keff) within 57% of the actual value.  
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The linear regression, when plotted with the y=x (1:1) line shows that values of 

ln(Kslug) of the underestimate the true values of ln(Keff ) (Figure B.14).  The 

intersection of y=x and the regression line is at -4.42, -4.42.  This demonstrates 

that the values of ln(Kslug) greater than -4.42 tend to overestimate the true 

values of ln(Keff) and that values less than -4.42 underestimate the true value.  In 

low K heterogeneous fields, with pockets of high hydraulic conductivity the 

values tend to be underestimated and in higher hydraulic conductivity 

homogenous fields with low K inclusions the values are typically overestimated.  

The problem with using this equation as a calibration for field estimates is it only 

accounts for 1 point measurement of hydraulic conductivity.  In order to 

estimate ln(Keff) more accurately it is important to use replicated measurements 

of ln(Kslug).  Another limitation to the linear regression equation is that all the 

simulations were run in a 2-d multifractal field neglecting any vertical anisotropy. 

 

3.4.3 Regression Analyses Based on the Averages of Replications Over p and i 

Levels 

Due to the fact that it is common practice to determine aquifer properties from 

several slugged wells, averages of the three values of ln(Kslug) and ln(Keff) for each 

i and p level were computed.  From these data a linear regression model was 

determined for ln(Kslug) versus ln(Keff).  The prediction equation resulting from 

this analysis is given in Table A.9.   

 

The R2 value for this regression was 0.96, which is much better than the previous 

linear regression analysis based on the individual values (Figure B.15).  Since the 

slugged wells were put in the field at random one would expect that, as more of 

the aquifer is sampled, the averaging of these values would provide a better 

estimate of ln(Keff).  The intercept of the x=y and the regression line was -3.25,     

-3.25.  This shows that the slug tests in fields with hydraulic conductivities 
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greater than -3.25 will often overestimate ln(Keff) of an aquifer, whereas 

anything less than this value appears to underestimate ln(Keff).   

 

Median hydraulic conductivity values of the multifractal fields were compared 

with the Keff values of the field (refer to Table A.10 for median values).  Figure 

B.16 shows that ln(Keff) overestimates the median field value in low hydraulic 

conductivity fields and underestimates this value in high hydraulic conductivity 

fields.  This is the same effect we see when Kslug estimates Keff. Therefore ln(Kslug) 

tends to follow the median value of the multifractal field rather than the ln(Keff) 

value creating the overestimation and underestimation effect.  Some other 

possible causes for such a large overestimation and underestimation of ln(Keff) by 

ln(Kslug)can be related to hydrofacies size and heterogeneity of the aquifer 

system.  For example, with such a large spatial range in the higher 

resolution/more hydrofacies scale, the slug test encounters more of the lower 

hydraulic conductivity values within the overall aquifer system based on the 

random distribution of the K values therefore giving an underestimation of 

ln(Keff) by ln(Kslug).  Also, flow from the well might be obscured or occluded by 

hitting a localized string of low K values.  

 

 

3.4.4 Regression Analyses at Each i Level 

To study the scaling effects of Kslug and Keff a linear regression analysis was run at 

each i level over the individual values of ln(Kslug) and ln(Keff), as well as, the 

averages of ln(Kslug) and ln(Keff).  The slope, intercept, R2, and MAPE were all 

calculated for each i level (Table A.8, Table A.9).  The results show that as the 

number of hydrofacies in the model increases the MAPE decreases and the R2 

value becomes closer to unity.  Consider at the i=5 scale there are 59,049 

different hydrofacies within that aquifer, while at the i=1 scale there is only 9 

different hydrofacies.  Both of these fields are a 243 by 243 matrix.  When a slug 



25 

 

test is administered, the Kslug value derived is largely based on the geologic 

material immediately surrounding the well.  Therefore when one is determining 

ln(Kslug) for an i=1 field the value is largely influenced by the particular hydraulic 

conductivity value in the middle of the grid; hence the estimated Kslug value is 

dominated by this one area.  Since most of the K values within the i=1 grids are 

larger than Keff (Figure B.16), there is less of a chance that as one inputs a well at 

random it will hit a block that is less than the Keff . 

  

Examined as a scaling dependency issue, the i=5 scale is influenced by a larger 

number of different hydrofacies than in the i=1 case.  Often this leads to a better 

estimation of ln(Keff) by ln(Kslug). This can be seen with in the R2 value for the i=5 

fields being 0.94 and in contrast to an R2 value of 0.25 for the i=1 fields when all 

the replications and realizations were examined. The reason for an 

overestimation at higher p level fields is because rnorm is often larger in these 

higher hydraulic conductivity fields than in the lower hydraulic conductivity fields 

sampling more values of K in the aquifer (Figure B.11).   

 

When an average of the replications are examined in the model the i=5 scale 

gives an R2 value of 0.99 while for the i=1 scale the R2=0.93.  Table A.9 verifies 

that there is a smaller deviation from the true value when the averages of the 

three ln(Kslug) and ln(Keff) values are used.  This can also be seen by comparing 

the MAPE values over the range of i levels for the average of the three ln(Kslug) 

and ln(Keff) values with the values of all ln(Kslug) and ln(Keff) values (Table A.8, 

Table A.9).   
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4.0 Conclusions and Further Research 
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For this project flow simulations were run in 2-d multifractal fields to determine 

how well Kslug estimates Keff for a range of various synthetic aquifer scenarios.  

The results showed that overall estimation of Keff by Kslug was most accurate 

when an average value of Kslug from three replications was taken.  The resulting 

regression model had an R2 value of 0.96.  These results indicate that slug tests 

are able to measure, with a large degree of accuracy, the effective hydraulic 

conductivity of fields over a large range of heterogeneity and K values.   

Examining the data in more detail with respect to scale, it is evident that Kslug 

estimates Keff more effectively when there are a range of different hydrofacies in 

close proximity to one another, i.e. the i=5 scale.  This is due to the fact that the 

head response data from the slug test is in essence sampling a larger variety of 

hydrofacies within the immediate vicinity of the well.  Furthermore, fields with 

less hydrofacies tend to overestimate the effective hydraulic conductivity 

because the area around the well is predominantly only sampling the center 

hydraulic conductivity value.   In our fields, this cell typically had a higher 

hydraulic conductivity value in high K fields with low K inclusions than the Keff 

value.  The higher hydraulic conductivity fields also showed an overestimation of 

Keff by Kslug with an underestimation in the low hydraulic conductivity fields with 

high K inclusions.  This is because the Kslug tends to follow the median value of 

the multifractal field which was larger than Keff in high K fields and smaller in low 

K fields.     

 

In the fields with low hydraulic conductivity and high K inclusions the Kslug values 

that were determined by the slug test tended to have a larger variance than 

those in the fields of high hydraulic conductivity with low K inclusions.  This is 

largely due to the low hydraulic conductivity fields having hydraulic conductivity 

values that range over a greater scale than in the higher p values; i.e. they are 

more heterogeneous.    
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When using a slug test in the field it is important to use at a minimum an average 

of three different point measurements.  From the analyses conducted here, this 

average was seen to reduce the error estimation of Keff from 57% to 28%.  Two 

main linear regression equations were developed to predict Keff from slug test 

data.  When used in low hydraulic conductivity multifractal fields the regression 

equations indicate that Kslug is closer to the Keff value, but in high hydraulic 

conductivity material using the equations will overestimate Keff to some extent.  

This will help minimize the error associated with well response tests.  It is 

important to remember that the simulations for this project were run in 2-d 

multifractal fields; therefore these results are limited to only 2-d cases neglecting 

the vertical component.   

 

The p=4/9, i=5, b=3 multifractal field was a case that was examined in detail.  

The results showed that the data follows more of a log-normal distribution than 

a normal distribution.  However the only variable that was not statistically 

different from a normal distribution was ln(Keff). The variance for 100 ln(Keff) 

values was very small compared to the variance of the 100 ln(Kslug) values.  This is 

because the ln(Keff) values sample the entire multifractal field while the  ln(Kslug) 

values only samples a small portion of the field.   

 

When implementing a slug test in the field there are several factors that 

influence the outcome.  Therefore it is recommended that common quality 

assurance programs are set up when conducting a slug test program.  This way 

the field measurement error can be reduced.  The present modeling project can 

help in providing guidelines for interpreting the results from a slug test when 

extrapolated to the effective hydraulic conductivity of a heterogeneous aquifer 

system.   
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To expand this research it might prove valuable to run slug test simulations and 

steady-state simulations on 3-d multifractal fields.  This could be done by 

extending the models in this project to contain a vertical component. This would 

better account for what is observed in natural groundwater systems.  These 

results could then be compared to the results from the 2-d multifractal field 

simulations.  It would also be worthwhile to conduct the same type of 

simulations as in this project on different types of statistically generated 

hydraulic conductivity fields to see if and how the results are differ to those for 

the K multifractal fields.   
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Appendix A: Tables 
Table A.1 Residual sums of squares for nonlinear fits of head response data in 

AQTESOLV  

   

                           
i 

   P rep  5 4 3 2 1 

 
1 0.00038 0.00017 0.00087 0.00077 0.00074 

8/9 2 0.00099 0.00093 0.00027 0.00057 0.00066 

 
3 0.00088 0.00042 0.00060 0.00053 0.00065 

 
1 0.00019 0.00175 0.00078 0.00124 0.00053 

7/9 2 0.00033 0.00075 0.00157 0.00109 0.04040 

 
3 0.00475 0.00024 0.00151 0.00026 0.00078 

 
1 0.00620 0.00302 0.00654 0.00298 0.00058 

6/9 2 0.02180 0.00871 0.00159 0.00681 0.03240 

 
3 0.00738 0.01520 0.00517 0.00364 0.00443 

 
1 0.00517 0.00565 0.00524 0.01390 0.00228 

5/9 2 0.01650 0.01870 0.00295 0.00302 0.00120 

 
3 0.00058 0.00573 0.00144 0.00613 0.00099 

 
1 0.00247 0.00004 0.00785 0.01500 0.00094 

4/9 2 0.00479 0.00002 0.06100 0.01260 0.00779 

 
3 0.00361 0.00003 0.06000 0.02850 0.00113 

 
1 0.00003 0.00247 0.00879 0.00077 0.00040 

3/9 2 0.00320 0.00146 0.01750 0.00080 0.01000 

 
3 0.00624 0.00144 0.00694 0.00089 0.00095 

 
1 0.00152 0.00008 0.00012 0.21800 0.01190 

2/9 2 0.00141 0.00003 0.00641 0.23900 0.00043 

 
3 0.00154 0.00005 0.00350 0.01210 0.00033 

 
1 0.00128 0.00313 0.00449 0.00118 0.20400 

1/9 2 0.00102 0.03910 0.00901 0.00140 0.01000 

 
3 0.00120 0.00041 0.00105 0.00128 0.00091 

Note: b=3 in every case 
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Table A.2 Mean, variance, and normality test for the p=4/9, i=5, b=3 multifractal 

field 

 

  Median Mean Variance Statistic * Significance 

  Keff 7.77E-06 8.90E-06 3.03E-11 0.90 <0.0001 

  Kslug 4.13E-06 2.67E-05 3.36E-09 0.51 <0.0001 

  Kfield 4.21E-06 7.00E-03 1.60E-03 0.04 <0.01 

   ln(Keff)   -11.76 -11.82 0.41 0.99 NS 

   ln(Kslug) -12.40 -13.81 16.65 0.92 <0.0001 

ln(Kfield) -12.38 -12.83 36.39 0.08 <0.01 
 
*Test for Normality: Kolomogorov’s D test used for large number of samples, Kfield and ln(Kfield) at p<0.05.  
Shapiro-Wilk test for small number of samples, Keff. Kslug, ln(Keff), and ln(Kslug) at p<0.05.  NS: not significantly 
different at p<0.05 

  

Table A.3 ANOVA table significance levels for ln(Keff), λeff, ln(Kslug),  λr, and rnorm 

 

  ln(Keff) ln(Kslug) λeff r(norm) λr 

Model <0.0001 <0.0001 NS <0.0001 NS 

p  <0.0001 <0.0001 NS <0.0001 NS 

i <0.0001 <0.0001 NS <0.0001 0.0238 

p*i <0.0001 <0.0001 NS 0.0004 NS 

R2 0.90 0.82 0.35 0.67 0.39 
  NS: Not significant at p<0.05   

 
 
Table A.4 Variance of ln(Keff) 
  

    
p 

    i 8/9 7/9 6/9 5/9 4/9 3/9 2/9 1/9 

5 0.01> 0.01> 0.01 0.05 0.53 0.21 0.87 ND 

4 0.01> 0.01> 0.02 0.08 0.21 1.02 1.25 ND 

3 0.01> 0.01> 0.01> 0.01> 0.20 0.10 0.65 ND 

2 0.01> 0.01> 0.01> 0.02 0.39 0.03 3.07 1.35 

1 0.01> 0.01> 0.01 0.05 0.19 0.06 0.60 1.30 

   
*note cells labled as ND have no values from steady-state 
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Table A.5 Variance of ln(Kslug) 

    
p 

    i 8/9 7/9 6/9 5/9 4/9 3/9 2/9 1/9 

5 0.01 0.16 0.74 4.12 24.57 11.79 26.86 15.98 

4 0.01> 0.15 0.02 1.54 4.51 44.09 89.91 169.55 

3 0.37 0.50 0.64 1.81 13.22 9.64 15.28 7.54 

2 0.01 2.38 0.02 17.77 18.24 1.88 5.90 25.34 

1 0.01> 0.00 1.56 1.47 3.58 8.09 2.72 50.75 

 
 

Table A.6 Regression models (y=mx+b) for the ln(mean) and ln(variance) of 

ln(Kslug) versus ln(rnorm) 

 

 
                     ln(mean)                  ln(variance) 

  m b R2
 m b R2

 

All Levels 8.65 0.16 0.85 -1.75 -1.63 0.35 

i=5 8.71 -1.58 0.98 -1.21 -1.11 0.53 

i=4 8.25 1.62 0.86 -2.73 -4.41 0.87 

i=3 10.94 -0.77 0.75 -1.36 -0.24 0.68 

i=2 6.58 -0.34 0.87 -2.29 -1.35 0.28* 

i=1 2.97 -0.58 0.47* -7.83 -4.53 0.31* 
 *Not significant at p<0.05. 
 
 

Table A.7 Correlation Matrix of ln(Keff), λeff, ln(Kslug), rnorm, and λr 

 

  ln(Keff ) λeff ln(Kslug) rnorm λr 

ln(Keff) - 0.37* 0.93** 0.76** 0.07 

λeff - - 0.32* 0.20* 0.58* 

ln(Kslug) - - - 0.76** 0.08 

rnorm - - - - 0.05 

λr - - - - - 
**Represents data that is correlated at p<.0.01 
*Represents data that is correlated at p<0.05 
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Table A.8 Linear regression model (y=mx+b) showing the slope, intercept, R2, 

MAPE, and the number of observations for each i level for all of the realizations 

 
 

    m b  R2 MAPE Number of observations 

All Levels 0.75 -1.11 0.87 57.20% 111 

i=5 0.77 -1.10 0.94 25.63% 21 

i=4 0.75 -1.12 0.83 36.94% 21 

i=3 0.68 -0.93 0.89 43.97% 21 

i=2 0.80 -1.19 0.74 69.11% 24 

i=1 0.40 -1.69 0.25 119.95% 24 

 

 

Table A.9 Linear regression model (y=mx+b) showing the slope, intercept, R2, 

MAPE, and the number of observations for each i level for an average of the 

realizations 

      m b  R2 MAPE Number of observations 

All Levels 0.83 -0.56 0.96 28.00% 37 

i=5 0.81 -0.60 0.99 9.49% 7 

i=4 0.90 0.26 0.97 20.60% 7 

i=3 0.74 -0.54 0.96 26.80% 7 

i=2 0.97 -0.32 0.88 34.80% 8 

i=1 1.42 0.19 0.93 48.04% 8 

 

 

Table A.10 ln transformed median values for the multifractal fields 

    
p 

    I 8/9 7/9 6/9 5/9 4/9 3/9 2/9 1/9 

5 -0.76 -2.45 -4.58 -7.74 -12.38 -18.78 -28.13 ND 

4 -0.48 -1.71 -3.61 -6.26 -9.86 -14.89 -22.30 ND 

3 -0.39 -1.20 -2.44 -4.42 -7.17 -11.18 -16.68 ND 

2 -0.76 -0.52 -1.28 -2.47 -4.21 -6.77 -10.85 -16.89 

1 0.00 -0.06 -0.27 -0.72 -1.50 -2.69 -4.48 -7.49 

   
*note cells labled as ND were not determined 
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Appendix B: Figures 

 

          
 

Figure B.1 Deterministic 2-dimensional multifractal field for p=8/9, i=5, b=3 (left) 

and random 2-dimensional multifractal field for p=8/9, i=5, b=3 (right) 

 

 

 

Figure B.2 Six different scales for a p=8/9, b=3 random 2-d multifractal field.  

From top left to bottom right: i=1, i=2, i=3, i=4, i=5, i=6.  Black cells: low K, white 

cells: high K 
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Figure B.3 Boundary conditions for the steady-state flow simulations.  Steady-

state flow in the x direction (left) steady-state flow in the y direction (right) 

 
 

             
 

Figure B.4 Example head distributions with contour intervals of 0.1 for steady-

state flow in the x direction for random 2-d multifractal fields: p=8/9, i=5, b=3 

(left) and p=5/9, i=5, b=3 (right) 

 
 
 

 
 

x x 

y y 



43 

 

 

Figure B.5 Example AQTESOLV non-linear regression fit for head response data 

 

 

 

Figure B.6 Relationship between ln(Keff) and ln(Kslug) with rc optimized for 40 

homogeneous fields 
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Figure B.7 Measurement of the zone of influence in the x and y directions for the 

transient slug test simulations 

 

 

Figure B.8 Histograms of 100 realizations of Keff and Kslug and 59,049 K field 

values for the p=4/9, i=5, b=3 multifractal field 
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Figure B.9 Mean values for Keff with associated Tukey values by i level.  Means 

with the same letter, within an i-level, are not significantly different at p<0.05 
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Figure B.10 Mean values for Kslug with associated Tukey values by i level. 

Means with the same letter, within an i-level, are not significantly different at 

p<0.05 
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Figure B.11 Mean values for rnorm associated with the transient simulations and 

with associated Tukey values by i level. Means with the same letter, within an i 

level are not significantly different at p<0.05 
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Figure B.12 Plot of the average values of ln(Kslug) versus ln(rnorm) over all p and i 

levels  
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Figure B.13 Plot of the ln transformed variance of ln(Kslug) versus ln(rnorm) 
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Figure B.14 Linear regression plots for all realizations with the 1 to 1 

line(Top).Magnification of the linear regression plot from (-5,-5) (Bottom) 
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Figure B.15 Linear regression plots for an average of the realizations with the 1 

to 1 line (Top).  Magnification of the linear regression plot from (-5,-5) (Bottom) 
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Figure B.16 Linear regression plots for an average of the realizations ln(Keff) 

values with the corresponding ln(Median) values with the 1 to 1 line (Top).  

Magnification of the linear regression plot from (-5,-5) (Bottom) 
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Appendix C: Modified MATLAB code 

Original Code i=5 
 
%   Multifractal 
%   OUTPUT : image of multifractal 
%            multifractal.dat file of multifractal 
 
clear all; 
 
disp(' '); 
disp('****************************************'); 
b = input('Scale factor (default = 3) [Integer] ... '); 
maxit = input('Iteration number (default = 3) [Integer] ... '); 
pb = input('Numerator of probability (default = 8)  [Integer] ... '); 
 
if isempty(b) == 1 
    b = 3; 
end 
if isempty(maxit) == 1 
    maxit = 3; 
end 
if isempty(pb) == 1 
    pb = 8; 
end 
 
n = b^2;    % total number 
p = pb/n;   % probability 
 
%   binomial distribution 
for k = 1:n 
    bidi(k) = binopdf(n-k+1,n,p); 
end 
 
%   truncated binomial distribution 
tbidi = bidi/sum(bidi); 
 
%   average mass fraction in multifractal 
f(1) = tbidi(1)/n; 
for k = 2:n 
    f(k) = f(k-1)+tbidi(k)/(n-k+1); 
end 
 
%   deterministic or random 
disp(' '); 
disp('****************************************'); 
disp('1. Random multifractal (default)'); 
disp('2. Deterministic multifractal'); 
dor = input('Choose type of generator ... '); 
if isempty(dor) == 1 
    dor = 1; 
elseif dor ~= 1 & dor ~= 2 
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    disp('!!!!! Wrong selection ...  Try it again ... !!!!!'); 
    return 
end 
 
if dor == 2    %   deterministic location (using progression) 
    genn = input('Matrix of generator ... '); 
    if isempty(genn) == 1 
        for i = 1:b 
            for j = 1:b 
                lgen(b-i+1,j) = (1+(i-1)*(i+2)/2) + (j+(i-1)*2)*(j-1)/2; 
                ugen(i,b-j+1) = (b^2-(i-1)*(i+2)/2) - (j+(i-1)*2)*(j-1)/2; 
            end 
        end 
        genn = tril(lgen,-1)+triu(ugen); 
    elseif size(genn) ~= [b b] 
        disp('!!!!! Wrong Generator Input ...  Try it again ... !!!!!'); 
        return 
    end 
     
    for i = 1:b 
        for j = 1:b; 
            gen(i,j) = f(genn(i,j)); 
        end 
    end 
end 
 
%   mutifractal 
matold = 1; 
for it = 1:maxit 
     
    [nrow ncol] = size(matold); 
    matnew = zeros(nrow,ncol); 
    for i = 1:nrow 
        for j = 1:ncol 
             
            if dor == 1       %   random location 
                rndf = randperm(n); 
                for ii = 1:b 
                    for jj = 1:b 
                        gen(ii,jj) = f(rndf((ii-1)*b+jj)); 
                    end 
                end 
            end 
             
            matnew((i-1)*b+1:i*b,(j-1)*b+1:j*b) = matold(i,j)*gen; 
        end 
    end 
    matold = matnew 
end 
 
%   normaize 
mat = (matold - min(min(matold))*ones(size(matold))) ... 
    / (max(max(matold)) - min(min(matold))); 
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A=mat 
 
%   data file output 
save multifractal.dat A -ascii; 
 
%   visualization; 
[nrow,ncol] = size(mat); 
face = []; 
vertex = []; 
tcolor = []; 
countr = 1; 
for i = 1:nrow 
    for j = 1:ncol 
            xmin = (j-1)/ncol; 
         xmax = j/ncol; 
            ymin = (i-1)/nrow; 
           ymax = i/nrow; 
          vertex = [vertex; [xmin ymin 1;xmin ymax 1;xmax ymax 1;xmax ymin 1]]; 
         face = [face; [countr*4-3 countr*4-2 countr*4-1 countr*4]]; 
            tcolor = [tcolor; mat(i,j)]; 
            countr = countr+1; 
    end 
end 
figure 
patch('faces',face,'vertices',vertex,'FaceVertexCData',tcolor,'FaceColor','flat',... 
    'LineStyle','none'); 
axis([0 1 0 1]); 
set(gca,'Box','on','Position',[0 0 1 1]); 
set(gcf, 'NumberTitle','off','Name','Multifractal','pos',[200 100 500 500]); 
colormap(gray); 
 

Modifications to Original Code 
 
i=4 

A=cell2mat( cellfun(@(v) repmat(v,3,3), ... 
mat2cell(mat,repmat(1,1,size(mat,1)),repmat(1,1,size(mat,2))), ... 
'UniformOutput', 0) ) 

 

i=3 
 
A=cell2mat( cellfun(@(v) repmat(v,9,9), ... 
mat2cell(mat,repmat(1,1,size(mat,1)),repmat(1,1,size(mat,2))), ... 
'UniformOutput', 0) ) 
 

i=2 
 
A=cell2mat( cellfun(@(v) repmat(v,27,27), ... 
mat2cell(mat,repmat(1,1,size(mat,1)),repmat(1,1,size(mat,2))), ... 
'UniformOutput', 0) ) 
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i=1 

 
A=cell2mat( cellfun(@(v) repmat(v,81,81), ... 
mat2cell(mat,repmat(1,1,size(mat,1)),repmat(1,1,size(mat,2))), ... 
'UniformOutput', 0) ) 
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Appendix D: Water budget errors >0.05% for transient simulations 

 
 
 

p=3/9, i=5 realization 2 
 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
                              ----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
                    ------------------                                               ------------------------ 
 
                          IN:                                                                    IN: 
                          ---                                                                    --- 
                            STORAGE =    1.0003                                                    STORAGE =   0.23452E-14 
                      CONSTANT HEAD =   0.84418E-02                                          CONSTANT HEAD =   0.98416E-13 
0                          TOTAL IN =    1.0088                                                   TOTAL IN =   0.10076E-12 
0                        OUT:                                                                   OUT: 
                         ----                                                                   ---- 
                            STORAGE =   0.48481E-03                                                STORAGE =   0.37435E-15 
                      CONSTANT HEAD =   0.73697E-02                                          CONSTANT HEAD =   0.12978E-12 
0                         TOTAL OUT =   0.78545E-02                                              TOTAL OUT =   0.13015E-12 
0                          IN - OUT =    1.0009                                                   IN - OUT =  -0.29389E-13 
0               PERCENT DISCREPANCY =              196.91                              PERCENT DISCREPANCY =              -25.45 
 

 
p=3/9, i=5, realization 3 

 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =   0.99963                                                    STORAGE =   0.14548E-11 
CONSTANT HEAD =   0.91690E-03                                          CONSTANT HEAD =   0.21803E-15 
0                          TOTAL IN =    1.0005                                                   TOTAL IN =   0.14551E-11 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.39428E-01                                                STORAGE =   0.72954E-15 
CONSTANT HEAD =   0.19047E-02                                          CONSTANT HEAD =   0.20080E-13 
0                         TOTAL OUT =   0.41333E-01                                              TOTAL OUT =   0.20809E-13 
0                          IN - OUT =   0.95921                                                   IN - OUT =   0.14343E-11 
0               PERCENT DISCREPANCY =              184.13                              PERCENT DISCREPANCY =              194.36 
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p=3/9, i=4, realization 2 

 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP100 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0103                                                    STORAGE =   0.23331E-08 
CONSTANT HEAD =   0.22043E-04                                          CONSTANT HEAD =   0.14397E-12 
0                          TOTAL IN =    1.0103                                                   TOTAL IN =   0.23332E-08 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.50884E-01                                                STORAGE =   0.81211E-10 
CONSTANT HEAD =   0.18455                                              CONSTANT HEAD =   0.13564E-07 
0                         TOTAL OUT =   0.23544                                                  TOTAL OUT =   0.13645E-07 
0                          IN - OUT =   0.77487                                                   IN - OUT =  -0.11312E-07 
0               PERCENT DISCREPANCY =              124.40                              PERCENT DISCREPANCY =             -141.59 
 

p=3/9, i=4, realization 3 
 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP100 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0039                                                    STORAGE =   0.11523E-10 
CONSTANT HEAD =   0.58413E-04                                          CONSTANT HEAD =   0.94318E-12 
0                          TOTAL IN =    1.0040                                                   TOTAL IN =   0.12466E-10 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.82291E-01                                                STORAGE =   0.91526E-10 
CONSTANT HEAD =   0.14926                                              CONSTANT HEAD =   0.10978E-07 
0                         TOTAL OUT =   0.23155                                                  TOTAL OUT =   0.11069E-07 
0                          IN - OUT =   0.77244                                                   IN - OUT =  -0.11057E-07 
0               PERCENT DISCREPANCY =              125.04                              PERCENT DISCREPANCY =             -199.55 

 
p=3/9, i=3, realization 2 

 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP100 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    2.3621                                                    STORAGE =   0.15142E-05 
CONSTANT HEAD =   0.39834E-04                                          CONSTANT HEAD =   0.19239E-11 
0                          TOTAL IN =    2.3621                                                   TOTAL IN =   0.15142E-05 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =    1.5050                                                    STORAGE =   0.41096E-07 
CONSTANT HEAD =   0.96319                                              CONSTANT HEAD =   0.21268E-05 
0                         TOTAL OUT =    2.4682                                                  TOTAL OUT =   0.21679E-05 
0                          IN - OUT =  -0.10611                                                   IN - OUT =  -0.65376E-06 
0               PERCENT DISCREPANCY =               -4.39                              PERCENT DISCREPANCY =              -35.51 
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p=3/9, i=3, realization 3 
 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP100 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.6229                                                    STORAGE =   0.17742E-05 
CONSTANT HEAD =   0.22154E-04                                          CONSTANT HEAD =   0.22757E-09 
0                          TOTAL IN =    1.6230                                                   TOTAL IN =   0.17744E-05 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.75179                                                    STORAGE =   0.29253E-07 
CONSTANT HEAD =   0.89988                                              CONSTANT HEAD =   0.20187E-05 
0                         TOTAL OUT =    1.6517                                                  TOTAL OUT =   0.20479E-05 
0                          IN - OUT =  -0.28703E-01                                               IN - OUT =  -0.27352E-06 
0               PERCENT DISCREPANCY =               -1.75                              PERCENT DISCREPANCY =              -14.31 
 

p=2/9, i=5, realization 1 
 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0015                                                    STORAGE =   0.10763E-16 
CONSTANT HEAD =   0.77793E-03                                          CONSTANT HEAD =   0.16903E-17 
0                          TOTAL IN =    1.0023                                                   TOTAL IN =   0.12453E-16 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.20399E-02                                                STORAGE =   0.48289E-20 
CONSTANT HEAD =   0.29365E-03                                          CONSTANT HEAD =   0.10956E-18 
0                         TOTAL OUT =   0.23335E-02                                              TOTAL OUT =   0.11439E-18 
0                          IN - OUT =   0.99999                                                   IN - OUT =   0.12339E-16 
0               PERCENT DISCREPANCY =              199.07                              PERCENT DISCREPANCY =              196.36 

 
p=2/9, i=5, realization 2 

 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP100 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =   0.99946                                                    STORAGE =   0.36271E-20 
CONSTANT HEAD =    8.0098                                              CONSTANT HEAD =   0.31062E-18 
0                          TOTAL IN =    9.0093                                                   TOTAL IN =   0.31424E-18 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.23648E-02                                                STORAGE =   0.14305E-25 
CONSTANT HEAD =    5.7748                                              CONSTANT HEAD =   0.47020E-19 
0                         TOTAL OUT =    5.7772                                                  TOTAL OUT =   0.47020E-19 
0                          IN - OUT =    3.2321                                                   IN - OUT =   0.26722E-18 
0               PERCENT DISCREPANCY =               43.72                              PERCENT DISCREPANCY =              147.94 
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p=2/9, i=5, realization 3 
 

VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP100 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =   0.99624                                                    STORAGE =   0.84961E-20 
CONSTANT HEAD =   0.73170                                              CONSTANT HEAD =   0.63212E-16 
0                          TOTAL IN =    1.7279                                                   TOTAL IN =   0.63220E-16 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.22658E-02                                                STORAGE =   0.44413E-19 
CONSTANT HEAD =   0.60419                                              CONSTANT HEAD =   0.84521E-16 
0                         TOTAL OUT =   0.60646                                                  TOTAL OUT =   0.84566E-16 
0                          IN - OUT =    1.1215                                                   IN - OUT =  -0.21345E-16 
0               PERCENT DISCREPANCY =               96.08                              PERCENT DISCREPANCY =              -28.89 

 
p=2/9, i=4, realization 1 

 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =   0.99266                                                    STORAGE =   0.12021E-10 
CONSTANT HEAD =   0.82833E-04                                          CONSTANT HEAD =   0.85150E-17 
0                          TOTAL IN =   0.99274                                                   TOTAL IN =   0.12021E-10 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.30647E-01                                                STORAGE =   0.48547E-13 
CONSTANT HEAD =   0.27702E-03                                          CONSTANT HEAD =   0.16152E-13 
0                         TOTAL OUT =   0.30924E-01                                              TOTAL OUT =   0.64698E-13 
0                          IN - OUT =   0.96182                                                   IN - OUT =   0.11956E-10 
0               PERCENT DISCREPANCY =              187.92                              PERCENT DISCREPANCY =              197.86 

 
p=2/9, i=4, realization 5 

 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0012                                                    STORAGE =   0.16728E-19 
CONSTANT HEAD =    19.393                                              CONSTANT HEAD =   0.75430E-16 
0                          TOTAL IN =    20.394                                                   TOTAL IN =   0.75447E-16 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.12440E-02                                                STORAGE =   0.97264E-23 
CONSTANT HEAD =    22.778                                              CONSTANT HEAD =   0.46364E-16 
0                         TOTAL OUT =    22.779                                                  TOTAL OUT =   0.46364E-16 
0                          IN - OUT =   -2.3848                                                   IN - OUT =   0.29083E-16 
0               PERCENT DISCREPANCY =              -11.05                              PERCENT DISCREPANCY =               47.75 
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p=2/9, i=3, realization 1 
 

VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0021                                                    STORAGE =   0.26149E-10 
CONSTANT HEAD =   0.91251E-03                                          CONSTANT HEAD =   0.10131E-13 
0                          TOTAL IN =    1.0030                                                   TOTAL IN =   0.26160E-10 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.30443E-01                                                STORAGE =   0.10685E-12 
CONSTANT HEAD =   0.32935                                              CONSTANT HEAD =   0.12522E-09 
0                         TOTAL OUT =   0.35979                                                  TOTAL OUT =   0.12533E-09 
0                          IN - OUT =   0.64325                                                   IN - OUT =  -0.99170E-10 
0               PERCENT DISCREPANCY =               94.40                              PERCENT DISCREPANCY =             -130.93 
 

p=2/9, i=3, realization 2 
 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0077                                                    STORAGE =   0.35562E-11 
CONSTANT HEAD =   0.52055E-02                                          CONSTANT HEAD =   0.37726E-12 
0                          TOTAL IN =    1.0129                                                   TOTAL IN =   0.39335E-11 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.13535E-01                                                STORAGE =   0.34740E-14 
CONSTANT HEAD =   0.41491E-01                                          CONSTANT HEAD =   0.48269E-11 
0                         TOTAL OUT =   0.55026E-01                                              TOTAL OUT =   0.48303E-11 
0                          IN - OUT =   0.95787                                                   IN - OUT =  -0.89684E-12 
0               PERCENT DISCREPANCY =              179.39                              PERCENT DISCREPANCY =              -20.47 
 

p=2/9, i=3, realization 3 
 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0592                                                    STORAGE =   0.10465E-13 
CONSTANT HEAD =   0.42847E-02                                          CONSTANT HEAD =   0.67087E-16 
0                          TOTAL IN =    1.0635                                                   TOTAL IN =   0.10532E-13 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.64387E-01                                                STORAGE =   0.31895E-16 
CONSTANT HEAD =   0.38503E-01                                          CONSTANT HEAD =   0.13964E-13 
0                         TOTAL OUT =   0.10289                                                  TOTAL OUT =   0.13996E-13 
0                          IN - OUT =   0.96059                                                   IN - OUT =  -0.34635E-14 
0               PERCENT DISCREPANCY =              164.71                              PERCENT DISCREPANCY =              -28.24 
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p=1/9, i=2, realization 1 
 

VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0831                                                    STORAGE =   0.61378E-11 
CONSTANT HEAD =   0.15195E-04                                          CONSTANT HEAD =   0.47128E-14 
0                          TOTAL IN =    1.0831                                                   TOTAL IN =   0.61425E-11 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.86145E-01                                                STORAGE =   0.33848E-13 
CONSTANT HEAD =   0.26929E-02                                          CONSTANT HEAD =   0.86502E-12 
0                         TOTAL OUT =   0.88838E-01                                              TOTAL OUT =   0.89887E-12 
0                          IN - OUT =   0.99431                                                   IN - OUT =   0.52436E-11 
0               PERCENT DISCREPANCY =              169.68                              PERCENT DISCREPANCY =              148.94 
 

p=1/9, i=2, realization 3 
 

VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP100 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0873                                                    STORAGE =   0.10498E-06 
CONSTANT HEAD =   0.12043E-03                                          CONSTANT HEAD =   0.70802E-11 
0                          TOTAL IN =    1.0875                                                   TOTAL IN =   0.10499E-06 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.10692                                                    STORAGE =   0.16992E-08 
CONSTANT HEAD =   0.23405E-02                                          CONSTANT HEAD =   0.23393E-08 
0                         TOTAL OUT =   0.10926                                                  TOTAL OUT =   0.40384E-08 
0                          IN - OUT =   0.97821                                                   IN - OUT =   0.10095E-06 
0               PERCENT DISCREPANCY =              163.48                              PERCENT DISCREPANCY =              185.18 

 
p=1/9, i=2, realization 4 

 
VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 50 IN STRESS PERIOD  1 
----------------------------------------------------------------------------- 
0                   CUMULATIVE VOLUMES      L**3                                     RATES FOR THIS TIME STEP      L**3/T 
------------------                                               ------------------------ 
 
IN:                                                                    IN: 
---                                                                    --- 
STORAGE =    1.0837                                                    STORAGE =   0.18218E-12 
CONSTANT HEAD =   0.18916E-02                                          CONSTANT HEAD =   0.16473E-13 
0                          TOTAL IN =    1.0856                                                   TOTAL IN =   0.19865E-12 
0                        OUT:                                                                   OUT: 
----                                                                   ---- 
STORAGE =   0.85402E-01                                                STORAGE =   0.12376E-13 
CONSTANT HEAD =    1.0765                                              CONSTANT HEAD =   0.81860E-10 
0                         TOTAL OUT =    1.1619                                                  TOTAL OUT =   0.81873E-10 
0                          IN - OUT =  -0.76323E-01                                               IN - OUT =  -0.81674E-10 
0               PERCENT DISCREPANCY =               -6.79                              PERCENT DISCREPANCY =             -199.0 
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Appendix E: Data 

p i Rep ln(Keff,x) ln(Keff,y) λeff ln(Kslug) rnorm λr S 

8/9 5 1 -0.94 -0.95 1.01 -0.90 0.93 0.92 9.41E-04 

8/9 5 2 -0.95 -0.94 0.99 -0.75 0.93 0.97 1.71E-03 

8/9 5 3 -0.95 -0.94 0.99 -0.68 0.94 1.00 1.23E-03 

7/9 5 1 -2.32 -2.42 1.11 -2.43 0.92 0.90 1.07E-06 

7/9 5 2 -2.44 -2.24 0.82 -1.87 0.87 0.96 3.23E-04 

7/9 5 3 -2.42 -2.43 1.01 -1.67 0.93 0.91 8.53E-03 

6/9 5 1 -4.38 -4.50 1.12 -5.37 0.76 0.68 1.29E-17 

6/9 5 2 -4.48 -4.69 1.23 -3.77 0.90 0.92 5.08E-03 

6/9 5 3 -4.52 -4.35 0.84 -5.12 0.13 0.21 2.01E-18 

5/9 5 1 -7.31 -7.45 1.15 -10.27 0.04 0.12 1.00E-20 

5/9 5 2 -7.56 -8.03 1.60 -6.68 0.72 0.87 5.40E-03 

5/9 5 3 -7.25 -7.67 1.52 -6.83 0.75 0.91 3.18E-05 

4/9 5 1 -12.22 -11.49 0.48 -20.26 0.69 0.72 1.02E-10 

4/9 5 2 -10.94 -10.89 0.95 -16.18 0.03 0.07 7.94E-15 

4/9 5 3 -12.44 -12.27 0.84 -10.39 0.28 0.40 1.61E-01 

3/9 5 1 -18.43 -19.99 4.79 -16.61 0.19 0.38 2.10E-04 

3/9 5 2 -18.69 -18.66 0.96 -21.67 0.01 0.03 1.16E-10 

3/9 5 3 -19.58 -17.03 0.08 -23.17 0.09 0.12 2.06E-10 

2/9 5 1 -26.50 -31.56 158.16 -30.70 0.03 0.07 6.29E-11 

2/9 5 2 -25.66 -32.05 590.91 -40.42 0.02 0.02 1.77E-10 

2/9 5 3 -26.11 -28.56 11.65 -32.45 0.01 0.01 9.85E-11 

1/9 5 1 ND ND ND -39.50 0.00 ND 1.73E-13 

1/9 5 2 ND ND ND -42.57 0.04 ND 2.66E-11 

1/9 5 3 ND ND ND -34.64 0.01 ND 4.52E-15 

8/9 4 1 -0.76 -0.72 0.97 -0.62 0.96 1.00 1.99E-04 

8/9 4 2 -0.77 -0.72 0.95 -0.53 0.96 1.00 1.47E-03 

8/9 4 3 -0.77 -0.72 0.95 -0.61 0.95 1.00 4.08E-05 

7/9 4 1 -1.96 -1.89 0.93 -2.58 0.93 1.02 1.85E-03 

7/9 4 2 -1.79 -1.89 1.11 -2.80 0.87 1.02 1.20E-10 

7/9 4 3 -1.81 -1.89 1.08 -2.05 0.69 0.53 1.51E-09 

6/9 4 1 -3.19 -3.29 1.10 -2.87 0.56 0.96 3.97E-05 

6/9 4 2 -3.74 -3.27 0.62 -2.65 0.50 1.17 4.33E-04 

6/9 4 3 -3.40 -3.41 1.01 -2.88 0.24 1.80 4.30E-03 

5/9 4 1 -6.46 -5.80 0.52 -7.56 0.04 1.25 1.00E-20 

5/9 4 2 -5.63 -5.73 1.10 -6.15 0.87 0.98 1.48E-01 

5/9 4 3 -5.96 -6.47 1.67 -8.62 0.15 0.38 1.00E-20 
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p i Rep ln(Keff,x) ln(Keff,y) λeff ln(Kslug) rnorm λr S 

4/9 4 1 -9.36 -9.28 0.92 -16.08 0.21 1.06 1.00E-20 

4/9 4 2 -9.90 -8.77 0.32 -12.00 0.06 0.17 8.24E-19 

4/9 4 3 -9.87 -10.36 1.63 -13.02 0.01 1.00 1.00E-20 

3/9 4 1 -14.09 -14.25 1.18 -23.67 0.01 1.50 1.16E-10 

3/9 4 2 -13.00 -12.97 0.97 -13.92 0.13 0.86 7.03E-10 

3/9 4 3 -16.85 -13.14 0.02 -10.98 0.05 0.85 3.70E-12 

2/9 4 1 -18.70 -25.92 1372.53 -20.54 0.07 6.00 2.18E-10 

2/9 4 2 -21.73 -21.52 0.81 -16.17 0.03 0.63 1.34E-20 

2/9 4 3 -26.80 -20.82 0.00 -34.34 0.01 1.00 1.00E-20 

1/9 4 1 ND ND ND -51.78 0.04 ND 1.00E-20 

1/9 4 2 ND ND ND -30.45 0.03 ND 3.45E-04 

1/9 4 3 ND ND ND -28.17 0.01 ND 1.55E-10 

8/9 3 1 -0.56 -0.60 1.04 -1.45 0.94 0.99 5.12E-03 

8/9 3 2 -0.59 -0.57 0.98 -0.55 0.93 1.02 3.53E-04 

8/9 3 3 -0.57 -0.55 0.98 -0.29 0.94 1.01 9.98E-04 

7/9 3 1 -1.33 -1.41 1.08 -1.16 0.94 1.04 5.72E-04 

7/9 3 2 -1.36 -1.34 0.98 -0.80 0.95 1.00 1.29E-03 

7/9 3 3 -1.30 -1.35 1.06 -2.16 0.95 0.97 1.36E-03 

6/9 3 1 -2.67 -2.47 0.82 -2.54 0.83 1.12 3.39E-04 

6/9 3 2 -2.83 -2.24 0.55 -3.64 0.76 0.99 4.19E-07 

6/9 3 3 -2.43 -2.55 1.12 -4.10 0.85 0.96 1.41E-05 

5/9 3 1 -3.95 -4.50 1.72 -5.53 0.76 0.70 3.35E-02 

5/9 3 2 -4.36 -4.17 0.83 -7.73 0.36 0.69 9.14E-03 

5/9 3 3 -5.03 -3.47 0.21 -5.28 0.75 1.50 3.32E-07 

4/9 3 1 -6.94 -5.57 0.25 -10.59 0.13 1.35 5.73E-04 

4/9 3 2 -6.36 -5.82 0.58 -3.94 0.29 0.03 1.16E-01 

4/9 3 3 -7.11 -6.76 0.70 -4.72 0.72 1.01 7.66E-01 

3/9 3 1 -11.18 -10.34 0.43 -14.02 0.27 1.15 1.49E-02 

3/9 3 2 -11.10 -9.17 0.15 -7.82 0.61 0.74 8.01E-04 

3/9 3 3 -9.78 -11.19 4.10 -11.20 0.29 1.52 4.64E-01 

2/9 3 1 -14.79 -14.79 0.99 -19.42 0.05 1.75 6.88E-11 

2/9 3 2 -16.15 -16.21 1.07 -19.85 0.09 1.59 6.62E-18 

2/9 3 3 -17.27 -15.12 0.12 -26.40 0.08 1.11 7.15E-07 
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p I Rep ln(Keff,x) ln(Keff,y) λeff ln(Kslug) rnorm λr S 

1/9 3 1 ND ND ND -32.83 0.20 ND 2.95E-02 

1/9 3 2 ND ND ND -38.18 0.11 ND 9.13E-11 

1/9 3 3 ND ND ND -34.42 0.11 ND 1.10E-08 

8/9 2 1 -0.42 -0.46 1.04 -0.13 0.95 1.00 3.63E-04 

8/9 2 2 -0.42 -0.46 1.04 -0.25 0.95 1.00 6.41E-04 

8/9 2 3 -0.39 -0.47 1.08 -0.11 0.96 1.00 5.51E-04 

7/9 2 1 -0.87 -0.95 1.07 -0.33 0.96 0.99 7.05E-04 

7/9 2 2 -0.96 -0.88 0.92 -3.25 0.74 0.94 9.06E-08 

7/9 2 3 -0.98 -0.87 0.89 -0.93 0.64 0.97 3.55E-05 

6/9 2 1 -1.77 -1.58 0.82 -0.58 0.94 1.00 1.50E-03 

6/9 2 2 -1.63 -1.67 1.04 -0.65 0.80 1.10 3.31E-03 

6/9 2 3 -1.82 -1.47 0.70 -0.82 0.91 1.05 3.00E-03 

5/9 2 1 -2.20 -3.11 2.49 -0.95 0.78 0.70 9.90E-03 

5/9 2 2 -2.64 -2.73 1.09 -8.76 0.11 0.93 2.28E-10 

5/9 2 3 -2.47 -3.30 2.28 -2.10 0.87 0.86 7.73E-03 

4/9 2 1 -4.41 -3.60 0.45 -2.39 0.78 0.70 4.35E-03 

4/9 2 2 -4.30 -5.65 3.89 -9.59 0.21 0.04 2.27E-02 

4/9 2 3 -3.70 -3.91 1.24 -2.01 0.76 1.10 2.22E-02 

3/9 2 1 -6.37 -6.94 1.77 -10.01 0.14 1.54 1.30E-10 

3/9 2 2 -6.75 -6.59 0.86 -8.67 0.16 2.00 6.89E-10 

3/9 2 3 -6.64 -6.14 0.60 -7.27 0.17 1.66 3.50E-08 

2/9 2 1 -9.54 -11.74 9.03 -4.34 0.52 0.53 1.67E-01 

2/9 2 2 -11.55 -13.32 5.88 -9.03 0.54 0.92 1.24E-01 

2/9 2 3 -8.04 -9.82 5.93 -5.58 0.45 0.39 1.68E-02 

1/9 2 1 -15.28 -15.40 1.12 -19.00 0.08 1.85 1.68E-09 

1/9 2 2 -17.52 -17.60 1.09 -19.73 0.20 0.42 1.34E-09 

1/9 2 3 -13.95 -17.74 44.51 -10.67 0.13 0.38 5.95E-09 

8/9 1 1 -0.41 -0.29 0.89 -0.10 0.81 0.67 5.32E-04 

8/9 1 2 -0.36 -0.35 0.99 -0.09 0.80 1.49 5.02E-04 

8/9 1 3 -0.28 -0.41 1.14 -0.09 0.80 1.49 5.18E-04 

7/9 1 1 -0.47 -0.57 1.10 -0.07 0.97 1.00 4.64E-04 

7/9 1 2 -0.53 -0.48 0.95 -0.08 0.96 1.00 4.68E-04 

7/9 1 3 -0.45 -0.57 1.12 -0.10 0.80 1.48 5.58E-04 

6/9 1 1 -0.64 -0.87 1.25 -0.08 0.97 0.99 4.61E-04 

6/9 1 2 -0.93 -0.48 0.64 -0.21 0.88 1.01 6.06E-04 

6/9 1 3 -0.76 -0.97 1.23 -2.30 0.94 1.00 6.11E-05 

5/9 1 1 -2.30 -0.85 0.23 -0.17 0.72 2.03 8.71E-04 

5/9 1 2 -1.24 -1.06 0.84 -2.34 0.75 1.47 2.21E-04 

5/9 1 3 -0.92 -1.66 2.10 -2.20 0.91 0.99 7.48E-05 
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p I Rep ln(Keff,x) ln(Keff,y) λeff ln(Kslug) rnorm λr S 

4/9 1 1 -2.72 -0.48 0.11 -0.38 0.43 1.65 1.70E-03 

4/9 1 2 -1.80 -2.04 1.28 -1.05 0.20 0.04 1.00E-03 

4/9 1 3 -2.10 -2.83 2.08 -3.94 0.44 1.68 8.09E-04 

3/9 1 1 -2.82 -2.14 0.51 -5.79 0.47 0.51 1.78E-04 

3/9 1 2 -1.76 -4.14 10.84 -0.30 0.80 0.69 1.83E-03 

3/9 1 3 -2.59 -2.50 0.91 -1.76 0.69 2.24 6.12E-04 

2/9 1 1 -4.52 -6.30 5.96 -1.15 0.79 0.79 3.50E-03 

2/9 1 2 -3.89 -5.56 5.30 -4.45 0.71 1.80 2.21E-04 

2/9 1 3 -3.84 -3.90 1.06 -2.92 0.58 0.89 2.70E-04 

1/9 1 1 -6.23 -10.14 49.99 -0.76 0.41 0.66 1.28E-02 

1/9 1 2 -7.56 -4.26 0.04 -0.76 0.37 1.28 1.29E-02 

1/9 1 3 -9.02 -5.29 0.02 -13.10 0.38 1.37 6.62E-05 
*Hydraulic conductivity units meter/second, S=storativity 

 Results for 100 simulations in a p=4/9, i=5, b=3 multifractal field: 

ln(Keff) 
   

ln(Kslug) 
   -12.05 -12.75 -12.92 -12.37 -10.45 -11.73 -21.95 -8.78 

-11.39 -11.25 -10.98 -11.97 -10.76 -13.55 -12.69 -24.90 

-11.97 -11.71 -11.78 -11.80 -15.95 -21.05 -18.56 -13.28 

-11.08 -10.55 -12.22 -11.09 -10.91 -20.51 -7.92 -17.13 

-12.16 -10.75 -10.94 -11.55 -9.97 -10.10 -11.40 -11.57 

-12.05 -13.18 -12.44 -11.98 -10.97 -17.96 -8.82 -11.40 

-11.69 -11.98 -12.95 -12.54 -12.44 -8.45 -9.83 -9.91 

-11.86 -11.79 -12.31 -12.72 -13.27 -13.91 -20.26 -12.33 

-12.01 -11.43 -11.74 -13.78 -22.40 -16.57 -16.18 -10.75 

-12.23 -11.15 -11.94 -11.25 -11.86 -14.86 -10.39 -9.89 

-11.11 -12.18 -13.04 -11.42 -13.51 -10.41 -18.27 -16.34 

-11.23 -12.11 -11.22 -11.26 -10.58 -10.42 -10.08 -18.48 

-12.26 -12.77 -11.68 -11.69 -9.30 -16.41 -10.77 -13.71 

-11.41 -11.09 -11.58 -12.49 -8.12 -21.08 -12.33 -21.76 

-11.79 -11.59 -11.30 -11.32 -24.20 -11.80 -17.42 -20.36 

-11.08 -11.24 -12.26 -12.91 -13.16 -16.82 -12.36 -14.68 

-11.11 -11.38 -12.42 -11.74 -16.54 -9.13 -13.54 -14.24 

-11.97 -12.97 -11.98 -12.17 -11.60 -16.96 -11.73 -11.69 

-10.57 -12.44 -11.66 -11.83 -11.07 -18.94 -9.23 -9.86 

-12.15 -11.33 -12.20 -11.72 -9.08 -14.52 -10.64 -23.03 

-11.61 -11.51 -10.89 -11.43 -12.29 -17.00 -9.37 -9.23 

-11.23 -10.39 -12.27 -10.84 -14.05 -18.61 -13.72 -10.79 

-13.12 -12.14 -11.66 -11.64 -17.00 -18.02 -11.89 -10.97 

-12.34 -11.89 -12.04 -11.64 -17.58 -11.62 -9.83 -11.46 

-11.54 -11.49 -11.35 -12.83 -17.16 -10.29 -13.53 -16.34 
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