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ABSTRACT 

 

Soaking is an important unit operation during the processing of seeds used for 

direct consumption. The change in seed volume over time during soaking 

(volume kinetics) relates to water uptake and the quality of final product, and 

affects the design of the entire processing operation. Since volume determination 

is labor-intensive and time consuming, volume kinetics is usually not well 

monitored throughout seed hydration. The first chapter of this thesis is a review 

on the importance of soaking and volume kinetics monitoring during seed 

processing, the factors affecting hydration in seeds, current volume 

measurement methods and models used to determine and describe the change 

in volume over time in seeds during soaking. The second chapter describes the 

design, construction and evaluation of a bean volumetric auto tester (B-VAT) for 

volume kinetics determination of seeds during soaking. Evaluation tests 

suggested the system can generate reliable, reproducible, and detailed volume 

kinetics results for seeds soaking at different conditions with limited labor 

requirements. In the third chapter, the volume kinetics of 6 pinto, 5 navy and 3 

black bean cultivars were tested during soaking at 25 ºC and 55 ºC. Significant 

differences were observed among varieties and cultivars at both temperatures 

(p<0.01). As temperature increased, the hydration efficiency was enhanced for all 

cultivars, but to a various degree. In the fourth chapter, we tested the hypothesis 

that a thin hydrophobic layer on the seed coat was responsible of the extended 

initial lag phase observed during the soaking of pinto beans. Hexane pre-
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treatment before soaking was used for all cultivars and contact angle 

measurement were done to determine the surface hydrophobicity of the beans. 

Good correlations were found between surface hydrophobicity and hydration 

efficiency of beans. Hexane effectively reduced the hydrophobicity of bean 

surface and improved the hydration efficiency of pinto beans. The fifth chapter 

covers the overall conclusion of this study and states recommendations of future 

work regarding the improvement of the developed system and further exploration 

of the bean hydration process. 
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Food Legume 

 

A legume is a plant in the Fabaceae family (or Leguminosae), or a fruit of 

Fabaceae plants such as alfalfa, clover, beans, peas, lupins, lentils, soy and 

peanuts. Legume seeds and foliage are richer in protein than other non-

legume plant materials, due to the additional nitrogen that forms via nitrogen-

fixation symbiosis. Iraq, Algeria, Morocco, and China are the major 

Leguminous food producing countries, each with more than 120,000 million 

metric tons production per year (FAOSTAT, 2007). 

Grain legumes, including beans, lentils, lupins, peas, and peanuts 

(Kurlovich and Repyev, 1995) are usually cultivated for their seeds that are 

widely used as a major food source for human and animals. Rich in protein 

(25%-35% on average), minerals (especially calcium, potassium, iron, zinc 

and magnesium), vitamins (especially thiamine, riboflavin, and niacin) and 

dietary fiber, legume seeds are commonly produced and consumed in 

developing countries as a substitute source for animal protein to bridge the 

gap of protein insufficiency and reduce cholesterol intake (Salunkhe et al., 

1985). 

The common bean, Phaseolus vulgaris, is native to the tropical areas of 

South and Central America (Haytowitz and Ruth, 1986). In 2007, there were 

18.3 million tons of dry common beans grown worldwide, with Brazil and India 

being the leading producers (FAOSTAT, 2007). The world production of dry 

beans and other major legume seeds in top producing countries in 2007 are 

listed in Table 1.1. (Note: all tables and figures are listed in the appendices) 
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The common beans are also the most consumed legume species, especially 

in Mexican and Brazilian diets where they are the primary source of protein 

(Broughton et al., 2003). The major varieties of common beans are navy, pinto, 

red kidney, black, pink, and French. Navy and pinto beans are two of the most 

produced varieties, constituting approximate 33% and 30% of the worldwide 

production of common beans, respectively (Ruth, 1989). In U.S. and Mexico, 

navy and pinto beans are commonly used in homemade recipes and industrial 

processed products such as canned foods. 

 

Seed Hydration 

 

Significance of hydration 

Hydration is an integral unit operation which enables volume and texture 

recovery of dehydrated foods, and in some cases brings about more benefits 

such as saving cooking time and energy (Clemente et al., 1998; Frias et al., 

2000). There are three simultaneous steps in the hydration process: 1) the 

water uptake into dry food matrix, 2) the expansion in volume, and 3) the 

leaching of soluble solids (Jiang and Zhang, 2005; Khazaei and Mohammadi, 

2009; Lee et al., 2006; Lewicki, 1998). In processing of seeds, including 

soybeans, beans, lentils, peas, rice, corn and barley, it is very common to dry 

the seeds after harvest in order to retain the maximum quality of the grain and 

suppress the growth of bacteria and fungi during storage, therefore 

rehydration of seeds is required before cooking or other major unit operations 
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in industrial processing. In Figure 1.1, the manufacturing processes of 

common seed-based food products where hydration is incorporated are 

described (Salunkhe et al., 1985). In these cases, hydration, also called 

soaking, reduces the required cooking time (Molina et al., 1975) due to the 

even distribution of water inside the beans before cooking, leading to a better 

texture of the final product and increased nutrition value by 1) leaching the 

antinutrients such as tannins, phytic acid, some oligosaccharides, and trypsin 

inhibitors (Lestienne et al., 2005); and 2) shortening the cooking time where 

most nutrient degradation occurs. The effect of soaking at room temperature 

on reduction of antinutrient factors in lentil seeds are shown in Table 1.2 

(Abousamaha et al., 1985). As soaking time increased, the antinutritional 

factors of lentil seeds were reduced bya greater amount, especially for tannins. 

Egounlety and Aworh (Egounlety and Aworh, 2003) found that soaking at 

room temperature for a period of 12 hr can reduce the amount of 

oligosacharrides in soybean, cowpea and groundbean that relate to the 

flatulence by 17 – 35%.  

Practical examples of hydration in seed processing include the soaking prior 

to milling for soybeans when performing oil extraction, the soaking prior to 

cooking for many common beans and cereals, and the soaking in preparing 

many tradition bean-based foods such as miso, natto, soy-bulgur, and tempeh. 

(Bayram et al., 2004; Johnson et al., 2008).  
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Factors affecting hydration 

 

Hydration under desired condition improves final food quality attributes such 

as nutritional value, volume recovery and texture improvement. It usually 

requires between 6 to 48 hours at room temperature depending on type of 

legume seed. Legumes like mung bean need shorter time (about 6 hr), 

whereas soybeans take prolonged periods (24 to 48 hr) (Salunkhe et al., 

1985). Researchers have studied many factors that affect the hydration 

efficiency and the final product quality including intrinsic factors i.e. seed 

chemical composition, seed size and extrinsic factors as summarized and 

listed in Table 1.3. 

 

Temperature 

Temperature is the primary factor affecting the hydration rate and the 

equilibrium state. Based on Fick’s diffusion Law, the diffusivity increases as 

the temperature increases, leading to a faster water imbibition rate. The 

dependence of diffusivity on temperature has been described by the Arrhenius 

Equation as shown in Eq. (1):  

)(

0
RT

E

e

a

eDD


                                                        (1) 

Where De is the diffusion coefficient (m2/s), D0 is a pre-exponential factor 

(m2/s), Ea is the activation energy of diffusion (J), R is the universal gas 

constant 8.314kJ/ml K and T is the absolute temperature. Maldonado et al., 

(Maldonado et al., 2010) suggested that diffusion is the dominant mechanism 
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in the rehydration process of dehydrated mangoes. The same conclusion was 

drawed in studies of Peleg (Peleg, 1988b), Abu-Ghannam (Abu-Ghannam, 

1998b), Turhan and coworkers (Turhan et al., 2002) and Muramatsu and 

coworkers (Muramatsu et al., 2006) on soybean, red bean, chickpea and 

brown rice, respectively. In Figure 1.2, the water absorption curve of chickpea 

at ambient temperature is shown (Turhan et al., 2002). Some other legume 

seeds e.g. dry beans, (Sopade and Obekpa, 1990) and red bean (Abu-

Ghannam, 1998a) exhibit a similar behavior. According to the theory that 

hydration is a diffusion dominated process, as temperature increases, the rate 

of water diffusion in seeds increases as well. 

  The effect of temperature in the hydration behavior of legume seeds, cereals 

and other dehydrated food materials has been intensively studied. Prasad and 

his coworkers studied the hydration kinetics of chickpea split at temperatures 

of 40, 50 and 60 °C, and they suggested that the water absorption was more 

rapid as temperature increased, due to the increase of diffusivity (Prasad et al., 

2010). Sopade and Obekpa found that the water absorption rate and capacity 

were enhanced when temperature increased up to 40 °C in soybean and 

cowpea (Sopade and Obekpa, 1990). Khazaei and the collaborates soaked 

sesame seeds at four temperatures and observed a similar trend: when 

temperature increased, the soaking rate and water absorption capacity both 

increased (Khazaei and Mohammadi, 2009).  

However, Maldonado (Maldonado et al., 2010) studied the effect of 

temperature on the rehydration of dehydrated mangoes and found that at 

40°C, the diffusivity was larger than either at 25 or 60 °C and so was the 
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amount of water absorbed. They indicated that at 60°C, the less efficient 

rehydration was probably caused by the damage of cellular tissue. Similarly, 

Sayar and his collaborates (Sayar et al., 2001a) concluded that above 55°C, 

the water diffusion rate of chickpea decreased probably due to the 

gelatinization of starch at higher temperature as shown in Figure 1.3. Similarly, 

Haladjian observed a reduction in the maximum water holding capacity of faba 

bean when soaking temperature was increased from 50°C to 65°C in all pHs 

(Haladjian et al., 2003). Kon and collaborates (Kon et al., 1973) investigated 

the nutrient loss of small white bean soaking at elevated temperatures and 

found that the nutrient loss increased three to four-fold when temperature was 

increased to 60 °C, but remained very small when temperature was below 50 

°C as shown in Table 1.4. As an example, the effect of soaking temperature 

on water absorption behavior of chickpea (5 temperatures tested) is shown in 

Figure 1.4 (Sayar et al., 2001a). Although the hydration rate was significantly 

improved at elevated temperature, the water holding capacity decreased as 

temperature increased.  

 

pH of hydration medium 

  The pH of the hydration medium is also an important factor because it 

influences seed components such as protein, starch and antinutritional factors 

(Abousamaha et al., 1985; Negi et al., 2001). Most previous researchers 

proposed that an alkaline solution is preferred for soaking beans when 

considering the product nutritional value, while a few opposite conclusions 

exist. Aranda and coworkers (Aranda et al., 2004) soaked faba beans in pH 
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2.6, pH 5.3 and pH 8.4 solutions at room temperature and results suggested 

that soaking in a basic solution caused lowest mineral losses from soaked 

beans with no differences observed when Ca or Mg were used for soaking in 

solutions of different pH. Similarly, Nestares and coworkers (Nestares et al., 

2001) used the same pH solutions for soaking common beans (Phaseolus 

vulgaris L.) and evaluated the nutritive utilization of calcium, phosphorus and 

magnesium. They stated that as pH increased, mineral absorption and 

apparent digestibility coefficient also increased, probably due to the lower 

losses of soluble minerals. In another report, they further studied the protein 

digestibility and utilization using the common beans at the same pHs and 

concluded that soaking in basic solution also improved both indices (Frias et 

al., 2000; Nestares et al., 2001). In contrast, Aparna and his coworkers 

(Aparna et al., 2000) found that adding sodium bicarbonate (pH increased to 

6.4-7.2) and sodium chloride (did not change pH, remained 5.5-6.7) in the 

cooking media for various legumes (blackgram, field bean, lentil, and moth 

bean) reduced the in vitro starch digestibility (IVSD) while adding tartaric acid 

(reduce pH to 4.4-4.9) and citric acid (reduce pH to 5.0-5.6) increased IVSD 

significantly. All four substances added into cooking media brought down the 

in vitro protein digestibility (IVPD) to different levels. 

 

Salts 

Salts are often used during the industrial processing of beans to improve 

hydration because of their low costs and better availability. The addition of 

salts to the soaking medium affects the water uptake, texture and nutrition 
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value of the final product. This is attributed to the alterations in permeability of 

cell membrane in salt solutions. EI-Adaway et al. studied the effect of addition 

of sodium bicarbonate at a 0.5% concentration in soaking medium for 

soybean, lupine and bean seeds and found that soaking reduced 

antinutritional factors and protein solubility but increased available lysine and 

in-vitro protein digestibility probably because of the partial removal of tannins 

as a protein precipitant and thus could serve as a nutrient supplement (El-

Adawy et al., 2000). Sodium bicarbonate was also effectively utilized as an 

effective additive to reduce the levels of phenolics and tannins of Bauhinia 

purpurea L. seeds and velvet beans by some researchers (Vadivel and 

Pugalenthi, 2008; Vijayakumari et al., 2007). Abousamaha and his 

collaborates stated that soaking lentil seeds in 4% saline solution led to an 

increase in nitrogen solubility and protein digestibility (Abousamaha et al., 

1985). Varrianomarston and his collaborates (Varrianomarston and Deomana, 

1979) found that the binding of phosphorus facilitates the softening of beans 

during cooking and recommended adding sodium triphosphate to the bean 

soaking medium to get better overall quality. However, it was found that the 

water absorption rate did not increase when applying 0.5% sodium 

bicarbonate into soaking medium for faba beans but reduced as the 

concentration of sodium bicarbonate increased from 0.5% to 1% and 5% 

(Kader, 1995) possibly caused by higher viscosities and lower water activity. 
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Pressure 

  The use of hydrostatic pressure during food hydration enhances the moisture 

uptake rate at different temperatures compared to atmospheric pressure. 

Ramaswamy and coworkers suggested that moderate hydrostatic pressure 

(33 MPa) on navy beans facilitated the initial water absorption rate and 

reduced the loss of solids (Ramaswamy et al., 2005). Bello concluded that 

hydration of rice kernels under pressure 0.25 - 0.7Pa increased the water 

absorption rate four times and the absorption capacity slightly more than that 

under atmospheric pressure at all three temperatures tested: 15, 35 and 55 

°C (Bello et al., 2008). This is because that water absorption is related to the 

hydrostatic pressure and osmosis pressure differences across the cells 

(Fisher, 1955; Mees and Weatherley, 1957a, b). 

 

Soaking time 

Soaking time is also considered in relation with hydration because it affects 

the nutrition value of soaked product. Soluble components in food could leach 

out into soaking medium upon time, altering the nutritional composition in the 

final product. Prolonged soaking time could cause the leaching of minerals 

and nutrients, especially at high temperature. Shi et al. (Shi et al., 2009) found 

that soaking time significantly affected the stability of saponin B in navy beans 

which is a controversial component that has antifungal and antibacterial 

function, lowers blood cholesterol and imbibes cancer cells (Matsuura, 2001), 

however has antinutritional effects as well (Gurfinkel and Rao, 2003; Khalil 

and Eladawy, 1994). 
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Storage condition 

In seed processing, seeds are stored after dehydration until use. They 

storage condition can affect the water reabsorption efficiency during hydration 

process and the quality of final seed products i.e. color, flavor, texture (Coelho 

et al., 2007). In general, beans stored at temperature higher than 25 ºC and 

relative humidity greater than 65% lead to a hard-to-cook (HTC) defect, 

increasing the cooking time and energy use. A few researchers kept the 

beans under similar undesired conditions and studied the hardness and 

cooking time of the beans. They found out that storage condition with higher 

temperature (>35 ºC) and relative humidity (>65% RH) dramatically accelerate 

the aging of beans, causing longer cooking time and greater hardness (Nasar-

Abbas et al., 2008). Some researchers pointed out that storage at 40 º C 

under 76% RH for 20 days lead to a hardness equal to the natural aging for a 

year under cool and dry ambient condition (S et al., 2009). In addition, the 

development of HTC defect was suggested to reduce nutritional value of 

beans in in vitro protein digestibility and in vitro starch digestibility due to 

stronger interactions between phytic acid and proteins or carbohydrates 

(Nyakuni et al., 2008). Many previous researches reported a positive 

correlation between HTC defects and reduction in phytate content of beans 

during storage (MartinCabrejas et al., 1997; Medeiros Coelho et al., 2007; 

Nasar-Abbas et al., 2008).   
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Volume kinetics during hydration  

 

Importance of volume change in hydration 

  It is known that dry seeds swell during hydration up to more than 250% of 

their original volume, with volume changes varying depending on the variety. 

For instance, most legume seeds are able to swell up to ~ 250% of their 

original volumes, e.g. kidney beans (Tagawa et al., 2002), soybean (Bayram 

et al., 2004)，and chickpea (Chenoll et al., 2009b), whereas canola seeds to 

~ 165% (Thakor et al., 1995) and rice up to ~140% (Muramatsu et al., 2006). 

The volume change curve of chickpea soaking at room temperature which is 

also representative of the trend of most legume seeds is shown in Figure 1.5. 

Volume expansion during hydration is suggested to be proportional to the 

amount of water absorbed in most biological materials (Steffe and Singh, 

1980). In view of industrial processing, volume becomes an important 

parameter that relates to the design of the facilities and the processing; the 

recovered volume of legume seeds is also a key parameter for canning 

processing that has direct impact on cost. Volume is also an important quality 

factor for the rehydrated food products which not only indicates water uptake 

rate during hydration, but also correlates with critical quality-related 

parameters. Thakor found that the volume change of canola during hydration 

at three different temperatures had a positive and linear correlation with its 

moisture content described by Eq. (2) 
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where V is the volume, M is the moisture content, subscription 0 represent 

initial value and V , the empirical coefficient was calculated to be around 

1.032, and the R2 to be 0.99 (Thakor et al., 1995). Tagawa and his 

collaborates proposed an equation describing the relationship between 

volume and both moisture content and temperature for kidney beans during 

soaking with a first-order relationship between volume and moisture content. 

They later found that the experimental volume data had a quadratic 

relationship with moisture content as shown in Eq. (3):  

11
2

1 cMbMaV wwb                                                (3)  

where Vb represents the bulk specific volume, Mw represents the moisture 

content, and a, b, c are empirical parameters (Tagawa et al., 2002).  

The R2 was above 0.975 for all three varieties of kidney beans tested. 

Furthermore, volume of the final product itself is also an aesthetic parameter 

that affects the preference of consumers according to many sensory 

experiments. In conclusion, a good description of the change in volume 

kinetics during hydration could help understand the hydration process and 

also better monitor the change in product quality 

 

Methods for volume determination 

There are three major types of volume determination methods for seeds 

with different shapes in previously reported literatures. One method is to 
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measure the particle in two or three axis, approximate the volume to an 

ellipsoid or a spheroid to calculate the volume. Ways to measure the two 

dimensional lengths of the sample include the use of a micrometer (Bayram et 

al., 2004; Khazaei and Mohammadi, 2009), a digital caliper (Chenoll et al., 

2009b) or an imaging equipment (Shahin et al., 2006). The manual 

measurement method takes longer time and is less accurate and repeatable 

even with the assistance of imaging equipment. Another major drawback of 

this method is that approximating volume using the width and length 

measurement reduces  accuracy because of the variations in shapes of 

different food materials. The other common method used is based on 

Archimedes’s principle that is, the volume of the material is equal to the 

volume of water expelled from a container full of liquid after placing the 

material. And the volume equates to the quotient of buoyancy force the 

material suffers when immersing inside the liquid divided by the density of that 

liquid. An example is measuring volume of water chestnut using n-heptane 

liquid and calculate volume with Eq. (4) (Moreira et al., 2008), 

 
hep

hepmm
V




                                                       (4) 

where V is the volume of sample, m is the mass of sample in the air, mhep is 

the mass of sample in the heptane liquid, and hep  is the density of heptane. 

Other researchers tried to measure the bulk density or particle density of the 

samples to calculate volume using a pycnometer filled with toluene 

(Muramatsu et al., 2006). The procedures are extremely labor-intensive and 

time consuming. The third type of method involves liquid displacement in a 
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graduated cylinder (Thakor et al., 1995). Again, it requires intensive work and 

also lacks accuracy and repeatability due to manual operation.  

Math models for seed hydration 

 

The models that have been used for food hydration include mechaistic 

models which are based on the physical interaction and empirical models. 

Empirical models are adopted much more often than mechanistic models 

because of their simplicity (fewer parameters) and utility. Among mechanistic 

models, diffusive models based on Fick’s second law are commonly used by 

researchers (Khazaei and Mohammadi, 2009; Sanjuan et al., 1999; Vega-

Galvez et al., 2009). Recent studies suggest that the hydration process can 

not be simply considered a diffusion process because of the energy potential 

inside the porous or fibrous food (Saguy et al., 2005; Weerts et al., 2003). 

Capillary flow theory based models were also introduced but had not been 

widely adopted (Lee et al., 2006; Ni and Datta, 1999; Weerts et al., 2003). In 

terms of empirical and semi-empirical models, the exponential model, Peleg 

model and Weibull distribution were applied to describe food hydration 

process where the last two being the most popular models in the description 

of hydration kinetics.  

 

Mechanistic model 

 

Diffusion model 
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   The diffusion model was based on Fick’s second law of diffusion. It is 

applicable when assuming that 1 ) diffusion dominates the water transfer 

process, 2) no external resistance to heat and mass transfer exist, 3) initial 

moisture content is uniform, and 4) the shape of seed can be approximated to 

a sphere. Bello proposed Eq. (5) for accurately estimate the saturation 

moisture content of rice grain at different soaking conditions when assuming 

the sample shape to be a sphere (Bello et al., 2004).  

)exp(
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                                          (5) 

Where Mt, Ms, M0 are the moisture content at time t, saturation moisture 

content and initial moisture content, respectively, De is the diffusion coefficient, 

R is the radius of the sphere. Khazaei and Mohammadi successfully applied 

this model on hydration kinetics of sesame seeds. However, another form of 

Fick’s second law, shown as Eq. (6) did not fit the actual data well after the 

rapid moisture uptake stage (Khazaei and Mohammadi, 2009) 
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where Mt, Ms, M0 are the moisture content at time t, saturation moisture 

content and initial moisture content, respectively, S is the surface area, t is the 

soaking time. The test data and estimated data using the two models are 

shown in Figure 1.6 as below.  

 

Capillary-flow theory based model    

  Researchers recently brought up the concept that the hydration process of 
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dry porous foods is not a diffusion dominated process but rather capillary-flow 

dominated. Due to the complexity of this model, only a few studies used this 

model to characterize the hydration. This process was described by the Lucas 

Washburn equation (7) 


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
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th

r

dt

tdh
                                          (7) 

where  is the liquid density,   is the surface tension,   is the fluid viscosity, 

  is the advancing liquid contact angle, t is the time, g is the gravitational 

constant, r is the pore radius and h(t) is the height of liquid rise. The equation 

is valid based on these assumptions: the food could be simplified as to consist 

of multiple pores, the water flow is Newtonian, one dimensional, steady state 

and fully developed (Lee et al., 2006). There were two parameters in this 

model: 



4

cos
1

r
k  ; 




8

2

2

gr
k  . The parameter k1 (m2s-1) is the dominant 

factor of the initial rate and k2 is dominant when hydration approaches 

equilibrium. Weerts and collaborates used capillar flow based model for 

hydration of black leaf tea and the result suggested that the fitting was not 

good compared to other models, as shown in Figure 1.7 (Weerts et al., 2003). 

However, few articles was found applying the model on seed hydration 

process. 

 

Empirical models 

 

Peleg equation  
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Peleg equation was first brought up to the describe moisture sorption (Peleg, 

1988a) and was later successfully used for modeling hydration processes of 

many food materials including soybean (Wardhani et al., 2008), cowpea, 

peanut (Sopade and Obekpa, 1990), sesame seeds (Khazaei and 

Mohammadi, 2009), chickpea splits (Prasad et al., 2010), aloe vera (Vega-

Galvez et al., 2009), okras (Apar et al., 2009), chestnut (Moreira et al., 2008), 

apple (Bilbao-Sainz et al., 2005), and wheat (Maskan, 2002). The Peleg 

model is described as Eq. (7)  

tkk

t
XX t *21

0 
                                                  (8) 

In the equation, Xt, X0 are the moisture content at time t and in the beginning, 

respectively, t is hydration time, k1 is the rate constant which equates to the 

reciprocal of hydration rate while k2 is related to the end moisture content and 

is more constant except for the cases when the sample is subjected to 

structural or compositional alterations. In Figure 1.8, Peleg model is shown to 

be able to fit the hydration curve of wheat at different temperatures with R2 > 

0.98-0.99. 

 

Weibull distribution 

The Weibull distribution is a mathematical probabilistic equation which has 

a physical basis for the use of modeling an event that has certain degree of 

variations (Brown and Wohletz, 1995). It is described as Eq. (8) 

])(exp[)( 0

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where Xt, Xe, X0 are moisture content at time t, equilibrium moisture content 

and initial moisture content; t is hydration time;  is the scale parameter;  is 

the shape parameter. So far many researchers have proved that the Weibull 

distribution is an effective model for hydration kinetics of sesame seeds 

(Khazaei and Mohammadi, 2009), chickpea splits (Cunningham et al., 2007), 

breakfast cereal (Machado et al., 1999), caroba slices (Corzo et al., 2008), 

and tropical fruits (Marques et al., 2009). A normalized Weibull distribution 

was later introduced for carrots (Marabi et al., 2003) to account for different 

shapes of food materials. Some researchers suggested that the reciprocal of 

 represents the initial rate of the hydration process (Machado et al., 1999) 

and  suggests the time required to complete absorbing 63% of total water 

uptake (Cunningham et al., 2007). The use of Weibull distribution in fitting the 

data on hydration of tropical fruits is shown in Figure 1.9 (Marques et al., 

2009), the reported R2 was > 0.95. 

 

Exponential equation 

  This is the simplest empirical model usually expressed as Eq. (9),  

kteM                                                             (9) 

where M is the moisture content, t is the hydration time. This model is a 

simpler version of Weibull distribution and k is the only parameter in the model, 

indicating the hydration rate constant. The use of this model is less frequent 

than the other two empirical models (Apar et al., 2009; Khazaei and 

Mohammadi, 2009; Prasad et al., 2010). However, in a study on chickpea split, 
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the model had shown a good fit, with R2 > 0.99, as shown in Figure 1.10 

(Prasad et al., 2010). 

Conclusions 

   

Although the hydration characteristics and factors affecting hydration of 

seeds have been studied in many previous researches, there are few studies 

related to pinto, navy and black beans. Due to the time consuming and labor 

intensive volume determination methods for the irregular-shaped seeds, few 

reports are available to adequately describe the volume kinetics during 

hydration. It is necessary to find a more effective and reliable volume 

determination technique for better understanding the process of water uptake 

and the differences among different types of seeds during soaking. No 

literature reported the very different hydration behavior of different bean 

varieties and the specific treatment needed to shorten the hydration time. In 

order to better characterize the hydration process, i.e. to quantify the water 

uptake rate, math models were heavily applied. Empirical models such as 

Peleg model and Weibull distribution are more often used than mechanistic 

models. Peleg model predicts better than other models for most of samples at 

different temperature in previous reports.  
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Table 1.1 Production from major food legume producing countries (metric tons) (FAOSTAT, 2007). 

Nation Common bean, dry Soybean Peas, dry Chickpea Lentil 

Brazil 3169360 57857200 721347 - 721347 

India 3930000 10968000 800000 * 6333700 - 

U.S. 1150808 72860400 874000 * - 154584 

China 1233005 * 12725147 - - 135000 * 

* Unofficial data; F FAO estimate; - production value comparatively low. 
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Table 1.2 Effect of soaking on the antinutritional factors of two varieties of lentil seeds (Abousamaha et al., 1985). 

Lentil Giza Lentil Syrian Soaking time (h) 

A B C D A B C D 

1 31.66 0.0 5.02 2.7 35.88 0.54 3.04 1.06 

3 34.17 2.27 5.16 7.72 36.47 1.88 3.5 7.06 

6 44.17 4.54 5.39 10.03 50.59 3.22 3.73 7.77 

9 45.83 6.81 9.78 11.58 51.17 6.18 5.22 11.66 

12 55.00 7.27 15.55 15.44 81.17 30.10 11.02 15.19 

A, B, C, and D = % reduction in tannins, haemagglutinin, trypsin inhibitor and pentosans, respectively 
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Table 1.3 A summary of factors affecting food hydration process. 

Factor Description Effect Sample Reference 
Temperature Temperature of 

hydration medium 
Increase hydration rate (diffusivity)  
Increase final water content (water absorption 
capacity); 
 
Decrease in diffusivity as temperature increases 
(over 55C) 
Decrease water holding capacity 

Chickpea split 
Soybean 
Sesame seed 
Mango 
Chickpea 
Faba bean 

K. Prasad, 2010  
P.A. Sopade, 1990  
Javad Khazaei, 2009 
S. Maldonado, 2010  
Sedat Sayar, 2001  
Nanor Haladjian, 2003 

pH pH of soaking or  
cooking medium;  
regulated by adding 
acid or salt 

Alkaline medium increases IVPD, acidic medium 
increases IVSD; 
 
Both alkaline and acidic medium reduces IVPD 

Faba bean 
Common bean 
blackgram, field  
bean, lentil, and 
moth bean 

Pilar Aranda, 2004 
Nestares et al. 2001 
K. Aparna, 2000 

Additives Salts mainly, in some 
cases affect pH 

Sodium bicarbonate increases product nutrition 
value; high concentration (>1%) has negative effects
Sodium triphosphate could soften the texture of 
soaked product 

Soybean, common 
bean, 
velvet bean 

T.A. EI-Adawy, 2000 
Kader, 1995 
E. Varriano-Marston, 
1979   

Pressure Applied pressure  
during hydration 

Appropriate pressure increase water absorption rate, 
water uptake capacity, decrease the solid loss 

Navy beans 
Rice kernel 

Raghupathy 
Ramaswamy, 2005  
Marcelo O. Bello, 
2008) 

Soaking time Nutrients/antinutrients 
leaching and  
degradation 

Longer soaking time leads to more loss of saponin B Navy bean John Shi, 2009 
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Table 1.4 Nutrients present (%) in California small white bean after soaking at different temperatures. (Kon et al., 1973) 

Soak temp. 

(°C) 

Total 

solids 

Total sugars Oligo- 

saccharides 

N Total P Ca Mg Thiamine Riboflavin Niacin 

 

20 96 92 91 99 99 94 76 98 99 93 

40 97 95 96 95 89 93 70 98 94 92 

50 94 73 81 93 87 91 64 92 90 87 

60 83 61 60 81 74 91 52 69 80 58 

70 85 55 59 83 74 93 52 63 70 55 

80 85 55 59 84 75 96 52 63 70 52 

90 82 55 61 87 82 91 52 63 53 51 
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Figure 1.1 Legume seed postharvest processing steps (Salunkhe et al., 

1985). 
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Figure 1.2. water absorption curve during soaking of chickpea at 20 °C. SI, 

SII, SIII, and SIV represent linear segments of the curve (Turhan et al., 2002). 
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Figure 1.3. Effect of soaking temperature on effective water diffusitivy in 

chickpea (Sayar et al., 2001a). D is the diffusion coefficient, T is the 

absolute temperature. 
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Figure 1.4. Effect of temperature on water absorption of chickpea during 

soaking (Sayar et al., 2001a). X is the moisture content, t is the time. 
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Figure 1.5 Volume change curve of chickpea soaking at 25 °C (Chenoll et al., 

2009b). V is the volume, t is the soaking time. 
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Figure 1.6. Fitting of two forms of Fick second law to water absorption data 

of sesame seeds at temperature of 50 °C (Khazaei and Mohammadi, 2009). 
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Figure 1.7 Predicted hydration (solid lines) and experimental data (circles) 

of hydration of black leaf tea Assam at T=333K (Weerts et al., 2003). 
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Figure 1.8 Predicted data by Peleg model and experimental hydration 

curves of wheat when soaking at different temperatures (Maskan, 2002). 
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Fig. 1.9  Rehydration ratio of the freeze-dried fruits as a function of time. 

Experimental data: dots; Predicted values by the Weibull equation: line 

(Marques et al., 2009). 
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Figure 1.10 Fitting of Exponential model on water uptake of chickpea split 

at 40, 50 and 60 ºC (Prasad et al., 2010). 
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Abstract 

 

Hydration or soaking is a critical unit operation in the industrial processing of 

seeds used for human consumption. The volume kinetics during seed hydration 

is important because volume change is proportional to water uptake and 

associated with moisture content and aesthetic quality of the product. However, 

current volume determination methods are extremely labor-intensive and time-

consuming when highly reproducible and frequent volume measurements are 

needed. This study explains the design, development and evaluation of a bean 

volumetric tester (B-VAT) for seed hydration at controlled conditions. The system 

integrates a physical device, control and data acquisition systems, and software 

to automatically measure volume of seeds over time. The evaluation tests 

showed that the B-VAT system (1) has low systematic variability (0.9% COV) in 

volume measurements, (2) is able to measure volume at minute-scale intervals, 

(3) generates highly reproducible results with dry beans tested, (4) can potentially 

be used for different seeds at different temperature in various media, and (5) 

requires minimal operator work and time. The system shows good potential for 

adequately depicting the volume kinetics of seeds during hydration and better 

characterizing the hydration process. 
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Introduction 

 

Legume and grain seeds are the top two sources for human diet, providing 

carbohydrate, protein, and dietary fiber (Ruth, 1989). Seed hydration, also called 

soaking, is a widely adopted unit operation in preparing seed-based food 

products. Soaking is commonly adopted prior to milling soybeans for soymilk 

production, before cooking in bean processing, and for the preparation of many 

Asian traditional diet such as natto, tempeh and rice (Kashaninejad, 2007; 

Muramatsu, 2006; Bilgicli, 2009; Bayram et al., 2004). The optimum soaking time 

needed for some popular legume seeds at different temperatures is shown in 

Table 2.1.  

The adoption of soaking shortens the required cooking time by introducing 

water evenly into the dry seeds before cooking, which saves cost and energy and 

reduces nutrient degradation. The water distribution between starch and protein 

fractions also reduces time required to obtain an acceptable food texture (Gowen 

et al., 2007). Another beneficial aspect of soaking under optimal conditions, is to 

facilitate the leaching of anti-nutrients that exist in legume seed e.g., tannins, 

phytic acids, tripsin inhibitors and oligosaccharides that cause flatulence 

(Lestienne et al., 2005). The soaking is usually considered to be composed of 

three simultaneous steps: 1) water uptake into the material; 2) volume expansion; 

3) leaching of solids (Lee et al., 2006). 
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The major changes happening during soaking are not limited to changes in 

weight, moisture content and nutrient content but also to volume which is usually 

proportional to the water uptake (Steffe and Singh, 1980). The characteristics of 

volume kinetics thus are related to the water absorption properties and can 

contribute to the understanding of the overall hydration process. The volume of 

the final product also affects its aesthetic quality, influencing consumers’ 

preferences. Some previous studies suggest a positive linear or quadratic 

correlation between volume and moisture content, the latter an essential quality 

indicator of soaked seeds (Tagawa et al., 2002; Thakor et al., 1995). Moreover, 

the seed volume can increase to almost three times the original size during 

Nomenclature 

V1 V2 V3   solenoid two-way valves 1, 2, and 3. 

P1, P2     fill pump, drain pump 

S1      ultrasonic sensor    

S2    optical level switch 

MT         measuring tank 

SC       seed chamber       

ST      surrounded tank 

TE       time elapses 

B1, B2    water bath 1, 2 

ON/OFF  status for valves and pumps 

n     iterations of measuring cycles 

x          measurement interval (min) 

a          max fill level signal (V) 

A          water tank cross section area (cm2) 

b          drain time 

CV – chamber volume    WV- water input volume     SV- sample volume 



 

50 

soaking and the volume expansion rate changes over time depending on the 

hydration characteristics. A complete study of volume kinetics during soaking 

facilitates understanding the characteristics of the hydration process, controlling 

part of the quality attributes of the final product, and designing the processing 

facilities.  

Because of the irregular and inconsistent shapes of seeds, and the complex 

volume change throughout the hydration process, volume determination 

becomes time consuming and labor intensive, especially when a detailed picture 

of volume kinetics is needed. The methods used so far to measure the volume 

change in seeds are: 1) to measure the dimension of a seed with a caliper or 

micrometer, approximate its shape to an ellipsoid, then use equation 

cbaV ****
3

4   to calculate the volume where a, b, c are the lengths in three 

axis (Chenoll et al., 2009a); 2) to utilize imaging equipment for getting two 

dimensional image, then calculate the volume as previous described; 3) to apply 

Archimedes’ principle, using n-heptane as immersing liquid and calculate by 

equation V=
hep

hepmm




(Moreira et al., 2008); and 4) to determine bulk density and 

particle density using a pycnometer, then calculate volume (Muramatsu et al., 

2006). Volume measurements are done in most cases only at a few time points 

during the process, providing an unclear depiction of volume kinetics. 

Furthermore, all these methods are time consuming, labor intensive, and prone 

to error introduced due to the differences among operators. The imaging analysis 
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method, although reduces labor work in measuring seed dimensions, still brings 

about error due to shape approximation. Moreover, these methods typically do 

not have a large sampling size leading to lack of representation of the population. 

In summary, although the volume kinetics plays an important role in hydration 

characterization, quality of product and process design, it is not well monitored 

during hydration due to the lack of efficient and reproducible techniques. 

The objectives of this study were 1) design and develop a stand-alone system 

to automatically conduct volume measurements at minute-scale time intervals 

and provide a detailed depiction of volume kinetics during seed hydration under 

controlled conditions and 2) evaluate system accuracy and repeatability. 

 

System Description 

 

Design overview 

The volume change of irregular-shaped seeds during soaking is measured as 

the difference in the volume for a given chamber and the volume of water to fill 

the chamber with seeds at pre-defined time intervals. A device shown in Figure 

2.1.A contains a seed chamber (SC) where the sample stays, a water bath (B1) 

as the source of the input water, and a measuring tank (MT) where the water 

volume can be determined with an ultrasonic level sensor. The soaking 

temperature is maintained constant by two water baths with a circulating tank 

surrounding the seed chamber to reduce heat loss. Three valves and two pumps 
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are utilized in the device for water flow control. An ultrasonic sensor is used to 

measure the volume changes throughout the testing procedure. The repetition of 

volume measurements at desired time points is realized by a PC-based 

programmable data acquisition system that has control over the valves and 

pumps. 

 

Basic principle and process 

The fundamental parts of the physical device responsible for repeated volume 

measurements are shown in Figure 2.1.A. The functionalities of these parts and 

the basic principle and process of the multiple volume determinations are 

described below. A cylindrical measuring tank (MT) is equipped with an ultrasonic 

sensor (S1) on its top to continuously measure inner water level. So the volume 

of water in the measuring tank is calculated by multiplying the S1 level reading by 

the cross section area of the measuring tank. A seed chamber (SC) is equipped 

with an optical level switch (S2) to indicate whether water has reached the level 

of the switch (Ls) and a mesh at the bottom to retain the sample during hydration. 

A water bath (B1) is the source for the hydration medium. The three main tanks 

are connected via flexible tubing indicated as bold black line with 3 valves (V1, 

V2, V3) and 2 pumps (P1, P2) for flow control. A surrounding tank (ST) where 

water is continuously circulating with a second water bath (B2) is used during the 

test in order to keep hydration temperature constant. The volume measurements 
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over time are conducted through the repetition of three major steps described as 

below. 

Step 1: Fill MT. Valve 1 (V1) is opened and water is pumped into the MT 

until a preset level (L0) is reached as shown in Figure 2.1.B. Then V1 is 

closed. 

Step 2: Transfer to SC. Valve 2 (V2) is opened and pump 1 (P1) is started, 

water is then transferred into the empty seed chamber until water filled up 

SC, at which moment the inner water level of MT dropped to a different level 

(L1) as shown in Figure 2.1.C. V2 is closed and P1 is turned off once water 

reaches Ls. The inner volume of SC is equal to the volume of water that has 

been transferred out from MT which can be calculated by equation (1)  

)10(* LLAVchamber                                            (1)  

where A is the cross section area of MT. 

Step 3: Drain SC. Valve 3 (V3) is opened, pump 2 (P2) is turned on so that 

water is draining from SC to B1 as shown in Figure 2.1.D. After water is 

completely drained, V3 is closed and P2 is turned off. 

After seeds are loaded, step 1, 2 and 3 are repeated as shown in Figure 

2.1.E to 2.1.G. The initial seed volume can be calculated using Equation 2 

where L2 is the level reading in MT after water transferred to SC and Vchamber 

was calculated using Eq. (1) as described previously. 

)20(*0 LLAVV chamberseed                                     (2) 



 

54 

After initial seed volume is obtained, a preset amount of time elapses (TE) 

between step 2 and 3 for soaking the seeds, and the seed volume at any 

time t can be calculated by Equation 3. 

watertchamberseedt VVV                                          (3) where the volume of 

water can be calculated as the production of the   

differences of level reading in step 2 and the cross section area of the MT. 

All valves and pumps are controlled electronically via a computer, a data 

acquisition system and an electronic circuit board. Repeated Fill-Transfer-Drain 

iterations are conducted at pre-determined time intervals to obtain near real-time 

volume measurements during seed soaking.  

 

System Setup 

The system setup is shown in Figure 2.2. The system consists of a physical 

device, an electronic control board, a data acquisition system (National 

Instruments, USA) and a notebook computer equipped with LabView® software 

(v 8.6.1). The specifications of all the parts used to develop the physical device 

are described as below (manufacturer details are listed in the Appendix Part II): 

1) Measuring tank: PVC 

2) Sample chamber and surrounded tank: CPVC; inner volume: around 290 

ml 

3) O-rings: Buna-N size: 1-1/4’’ID and 1-3/8’’OD; 3-7/8’’ID and 4’’ OD 

4) Mesh: Tri-Clamp Screen Gasket 
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Specs: 3” diameter, 10 mesh, material: EDPM 

5) Tubing: Cole-Parmer C-flex tubing #06422-15.  

Specs: 3/8’’ ID * 1/2” OD; temperature rating: 135 ºC; material: 

polypropylene 

6) Quick connectors: CPC HFC12 series coupling body and inserts; 

materials: Polypropylene; connector size: 3/8” 

7) Water bath 1: Fisher Scientific Isotemp 3016D upright refrigerating 

heating circulator, 6L 

8) Water bath 2: Fisher Scientific Isotemp 3028P programmable refrigerated 

circulator, 28L 

9) Ultrasonic sensor: Baumer Ultrasonic Sensor UNAM 12U9914/S14 

Specs: range 2-20cm; repeat accuracy:<0.5mm; resolution: <0.3mm; 

voltage supply: 15-30VDC; cone range: 1 cm radius; operating 

temperature -10-60 ºC  

10) Level switch: Honeywell Liquid Level Sensor LLE103101 

Specs: voltage supply: 5-12VDC; operating temperature: -40-125 ºC; 

output: high (5VDC) in air. 

11) Valves: Clark Solution Solenoid two-way Valve Model 1335 

Specs: voltage supply: 12VDC, port size: 3/8’’NPT; body material: brass; 

seal material: viton; type: normally closed, combined acting. 

12) Fill pump: Little Giant in-line submersible centrifugal pump BPLA 33 
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Specs: voltage supply:12VDC; Amp: 2A; inlet size:1/2’’; outlet size: 3/8’’; 

HP: 350GPH @ 1’’ head; dimension: 5” x 3.5” x2.5” 

13) Drain pump: Flojet diaphragm pump Series 2P366 

Specs: voltage supply: 12VDC; inlet and outlet: 3/8’’; HP: 129 GPH @ 

10 psi 

The LabView® software and DAQ system are the core of the control system, 

responsible for communicating with the electronic control board to either send 

command for valve operation and pump control or receive signal from level 

sensors. The output voltage signal from the ultrasonic sensor is read by the DAQ 

system and software. The National Instrument cRIO-9401 digital I/O module was 

used for discrete input and output control and the National Instrument cRIO-9215 

was used for processing the analog voltage output from the ultrasonic sensor to 

digital values as well as receiving output of the level sensor directly. The power 

supply was a DC converter which transforms AC power (88-120VAC, 50/60 Hz) 

to 12VDC with a maximum output current of 12.5 Amp which sufficiently provide 

power to all electronic parts that need to be energized simultaneously. A 12-to-24 

V DC/DC converter was used to power the ultrasonic sensor.  

A circuit interface board was designed and implemented by the UT Department 

of Biosystems Enginering & Soil Science to energize/de-energize the valves and 

turn pumps on/off at appropriate times as defined by the software. The circuit 

board was powered from the 12V power supply, for energizing pumps and 

solenoid valves. A voltage regulator was utilized to regulate the 12V power input 
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to 5 VDC output for the optical level sensor. A pulse-width modulation was 

incorporated to vary the power supply for the two pumps for speed control (0 to 

100%). Two inverter gates with NPN transistors ( >1000) enabled the control 

module to switch the power on and off for the valves and pumps. The LabView® 

program was used for system control and served as the user interface where the 

following parameters could be set by the user prior to the test: 

1) Measurement interval:  1 to 30 min; 

2) Number of iterations:  1 to 1000; 

3) Preset volume of water for testing: L0 (in voltage) in MT: from  0.5 to 5.0V; 

4) Setup output data file: name, location and attribute variables. 

The following information can also be observed on the PC display during the test:  

1) SC volume (ml), current seed volume (ml) and water input volume (ml); 

2) Current measuring iteration and remaining time of TE in current iteration 

(sec); 

3) Ultrasonic sensor level readings (V) from last iteration and percent 

coefficient of variation (%COV) from repeated readings (1000); 

4) A graph showing volume change of seed over time where y-axis is volume 

(ml) and x-axis is time (min). 

The LabView® flowchart is shown in Figure 2.3. There are two main 

procedures in the program, priming and testing. The priming precedes the testing 

in order to fill the gaps and rinse the surfaces in the B-VAT system for accurate 

volume determination.  
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Special features 

The design and selection of the parts to build the physical device contained 

several special thoughts in order to improve the utility of the system (AutoCAD 

designs are listed in Appendix Part III). The sample chamber was built in the 

workshop in UT with shape and size designed to reduce he water trapped in the 

chamber and to reduce the error in volume measurement. The middle part of the 

SC had a larger cross section area (~62.04 cm2) so that the seeds could be 

widely spread-out without bridging. The cross section area where the optical level 

sensor was mounted was smaller (~19.82 cm2) to increase the precision for 

water volume control.  

Rounded corners were used instead of straight ones to reduce water 

entrapment. The bottom part of the lid of the SC had a cone structure for the 

same reason.  

The ultrasonic sensor was selected for its high resolution in level sensing. 

Each level reading output was the average of 1000 sample readings to reduce 

the random measurement error by a factor of 31.6 . A centrifugal pump used 

between the MT and the SC transferred water at a maximum speed of 1.6L/min 

with minimal pressure. A diaphragm pump was used to evacuate the SC in 

seconds. The speed of the centrifugal pump was optimized so that water did not 

flow too fast for the level switch to detect the water level and also not too slow to 

lengthen the processing time. 
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Performance Evaluation 

 

Calibration of ultrasonic sensor and the measuring tank 

The ultrasonic sensor performance was tested for linearity and hysteresis. The 

ultrasonic sensor’s voltage output should be linearly correlated with the water 

level as the product description implies. Nonlinear correlation leads to inaccurate 

volume measurements. Moreover, the linear correlation should be the same path 

with water going up and down in the MT, which indicates no hysteresis. Ten 

points spread across the measurement range were used for a linear calibration. 

The approximate tank diameter was 7.62 cm, 1/10 of the sensor measurement 

range was 1.8 cm. The water volume to fill 1/10 of the measurement range was 

about 82 ml. Therefore, in order to have 10 points for calibration within the range, 

80 ml of water measured by a 100ml volumetric cylinder was poured into the tank 

10 times to get 10 corresponding water level readings. Similarly, 80ml of water 

were removed each time until the tank was empty. The ten points collected each 

path while water going up and down in the MT was checked for hysteresis. In 

Figure 2.4, the calibration data for the ultrasonic sensor are shown. The variance 

of signal readings at the same level when filling and removing water were less 

than 0.5% on average with a maximum of 1%, indicating negligible hysteresis. 

The R2 of the ten data points and its linear regression line was >0.99, suggesting 

good linearity. 
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Also, in order to obtain an accurate cross section area (A) for volume 

determination, the calibrated cross section area of the tank was calculated by 

L

V
A   with sensor voltage outputs and corresponding water volumes inside MT 

at that time. Different ranges of voltage output were chosen for calculating the 

average cross section area of the MT which was 47.335 cm2. This value was 

used in LabView® program to calculate the actual chamber and sample volumes. 

 

System accuracy 

The system accuracy was defined as the system volume measurement 

resolution. The resolution for the volume measurement of the system was 

calculated to be 0.045 ml, based on water level reading resolution and the cross 

section area of the measuring tank. The resolution of level readings were 

calculated using the specifications of the ultrasonic sensor (Resolution: 0.3mm; 

FS: 18cm/10V) and the National Instrument analog module (FS: 20V; Resolution: 

16 bits, sampling No. per reading: 1000). However, other factors could also affect 

the actual volume accuracy including the water retained on the inner surface of 

the system. Thus, we further evaluated the overall system repeatability. 

 

System repeatability 

The system repeatability was tested by measuring the water input volume into 

the SC using glass marbles (approximately 100 ml) for 30 times. The glass 

marbles had a diameter of 0.671mm. System variability was determined by the 
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coefficient of variation for the thirty repeated measurements of the water input 

volume. The smaller the coefficient of variation among replicates, the higher the 

system repeatability was. The repeatability of the system was evaluated at three 

different times during usage (more than one month apart from each other) and 

checked for any drift.  

The coefficient of variations (COV) of the multiple measurements for system 

variability evaluation is shown in Table 2.2. The average COV of the system was 

less than 0.9% and considered to be adequate for measuring the volume change 

in seeds. 

 

Data reproducibility 

 The reproducibility of bean volume kinetics determined by B-VAT was   

evaluated at both 25 and 55 ºC. A 70 gram sample of navy cultivar C beans was 

placed into the system for soaking in d.i. water at 25 °C for 5 hrs. A 70 gram 

sample of black bean (cultivar C) was soaked in d.i. water at 55 °C for 5 hrs. 

Three replicates were taken for both tests. The volume measurements were 

conducted by the system at 90 seconds intervals. The beans were harvested in 

the fall of 2009 from ADM and then stored in a dry and cool condition until tested. 

Very small or split beans were removed prior to testing. 

  In Figure 2.5, the volume of navy beans soaking at 25 ºC measured at 1.5 

min intervals for a period of ~ 6 hr is shown with the average values as dots and 

standard errors as bars. The volume change of black beans soaking at 55 ºC is 
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shown with the average values as dots and standard errors as bars in Figure 2.6. 

The coefficient of variation among the three replicates of the navy bean and black 

bean at different temperatures were 2% and 3%, respectively, suggesting a high 

data reproducibility given the highly variable biological samples. 

 

System versatility 

The water displacement principle of the system enables to measure volume 

change of most irregular shaped seeds (such as lentil, rice, corn seed, barley, 

faba bean) during hydration without shape approximation. With the high 

reproducible and reliable results the system can yield at a wide range of 

temperatures, the B-VAT system has a high potential application in food 

industries as an effective tool for improvement of processing condition 

parameters and hydration behavior classification or prediction on the basis of a 

good depiction of volume kinetics during hydration. 

 

System feasibility 

The system as a whole offers no difficulties in measuring volume kinetics at 

temperature ranging from 20 to 60 ºC according to the temperature rating of each 

system part. It is well known that temperature is the major leading factor that 

affects the hydration rate of foods. Usually a preferred soaking temperature for 

foods to have better quality and structure ranges from 40 °C to 55 °C (Maldonado 
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et al., 2010; Haladjian, et al., 2003). And the soaking temperature can easily be 

controlled and regulated via water baths (B1 and B2). 

The water chemistry e.g., pH and additives for soaking seeds can be altered 

easily by changing the medium in B1. In previous researches, it is suggested the 

addition of salts in the hydration medium, the variance in pH of hydration medium 

and other chemical properties of the medium influence the seed hydration (El-

Adawy et al., 2000; Kader, 1995; Nestares et al., 2001; Vadivel and Pugalenthi, 

2008; Vijayakumari et al., 2007). The system allows study on effect of water 

chemistry of hydration medium on the volume kinetics of seeds during hydration. 

The capacity of the B1 is 6 liters which is large enough for minimizing the 

change in chemical property of the hydration medium during testing. The current 

sampling size for beans can go up to 100 gram while 70 gram was determined to 

be sufficient in most cases. If needed, rings with the same diameter of the SC 

and a certain length made with CPVC materials can be added on top of the SC to 

increase the sampling capacity. The different sampling capacity of this system 

also enables it to be applicable for studying on various seeds during the 

hydration process. 

The length of hydration process can theoretically be set to days and the 

minimum measuring interval as low as 1 minute, being more than enough for 

most application. In the evaluation tests, the 1.5 min measuring interval used can 

provide a detailed depiction of the hydration process under both room 
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temperature and elevated temperature. The quick connectors used in system 

allow faster assembly and disassembly of the system for maintenance. 

 

Conclusion 

 

The automatic volume determination system is able to provide a 

comprehensive, accurate and reproducible depiction of the volume kinetics of 

seeds during hydration under various controllable conditions with limited training 

and labor operations. The hydrating medium temperature can range from 

ambient temperature to 65 °C. Sampling capacity can be range from 50 grams to 

150 grams. The minimum volume measurement interval is 1 minute which is 

more than enough for industrial purposes. System variation was proved to be 

less than 0.9% and result repeatability with a 70 grams sample load was less 

than 3%. It can potentially be used not just for measuring volume kinetics during 

soaking of legume seeds, but also for other seeds such as rice and corn. 
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Part I. Tables and figures. 

Table 2.1 Required time for soaking various types of seeds at different 

temperatures 
Variety Time Temperature References 

Chickpea >10 hr   
~ 3 hr 

25 ºC 
60 ºC 

(Chenoll et al., 2009a; 
Sayar et al., 2001b) 

Wheat > 5 hr 
> 5 hr 

20 ºC 
50 ºC 

(Maskan, 2002) 

Lentil seed >10 hr RT (Abousamaha et al., 1985} 

Soybean >14 hr 
~ 5 hr 

30 ºC 
50 ºC 

(Jiang and Zhang, 2005) 
 

Sesame seed > 6 hr 
~ 3 hr 

27 ºC 
50 ºC 

(Khazaei and Mohammadi, 
2009) 

Kidney bean > 8 hr 30 ºC (Tagawa et al., 2002) 

Faba bean > 20 hr 
> 14 hr 

20 ºC 
50 ºC 

(Haladjian et al., 2003) 
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Table 2.2 Coefficient of variations of repeated system measurements of 

the water input volume 

# test # measurements Mean (ml) Standard 

deviation (ml) 

COV (%) 

1 30 200.53 1.43 7.1% 

2 30 199.79 1.72 8.6% 

3 30 199.10 1.81 9.1% 
No. 1, 2, 3 are three individual tests of the volume of three different amounts 
of glass marbles at three different time.  
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Figure 2.1.A. The major components of the physical device responsible 

for taking repeated volume measurements.  

 

 
 

 

 

Figure 2.1. B. Water filled up measuring tank (MT) till preset level 0 (L0). 

Arrows show the incoming flow direction. 

Water 
Circula

-tor  

Water
Circula

-tor  

LC 

LC 

FC 

V3 V2 

S2 

S1 

SC 
MT 

ST 

B2 

Water 
Circula

tor  

Water
Circula

tor  

LC 

LC 

FC 

MT
L0

V1 P2 
P1 

B1 



 

73 

 

 

Figure 2.1. C. Water transferred to sample chamber (SC) till level of the 

S2 (Ls). The water level in measuring tank (MT) dropped from L0 to L1 
 

 

 

 

 

Figure 2.1. D. Water drained from sample chamber (SC). 
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Figure 2.1. E. Water filled up measuring tank (MT) again to level L0 after 

seeds are loaded. 
 

 

 

 

Figure 2.1. F. Water transferred to sample chamber until L3. Water level 

in water tank dropped from L0 to L2 (L1 shows the previous water level 

when samples are not present). 
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Figure 2.1.G Water drained from sample chamber (SC). 

 

 

 

 

 

 

 

 

 

Figure 2.2 The picture of the system and its diagram showing main parts: 

physical device, electrical control system, software with DAQ and user 

interface. 
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FLOWCHART OF LABVIEW SOFTWARE 

 

 

Figure 2.3 The flowchart of Labview program that automatic controls the 

repeated measurements over time.  
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Figure 2.4 Calibration for sensor hysteresis and voltage-volume 

correlation 
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Figure 2.5. Volume kinetics of Navy cultivar C at 25 °C. Average volumes 

of volume are shown as dots and standard errors are shown as bars. 
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Figure 2.6 Volume kinetics of Black cultivar C at 55 °C. Average volumes 

of volume are shown as dots and standard errors are shown as bars. 
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Part II Product catalog of the major parts of the system 
Ultrasonic sensor 
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Optical level sensor 
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Drain pump 
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Fill centrifugal pump 

 

Little Giant 33BPLA 12V DC - Submersible or In-Line Utility Pump, 56" 

power cord (556001) 

 

12 VDC Submersible or In-Line Utility Pump 

Designed to fit into tight spaces, the BPLA utility pump delivers up to 350 GPH. 

Uses include boat bilges, campers, RV trailers, mobile homes, farm utility 

tractor cab coolers, bait tank water systems and many others.  

 

Little Giant 33BPLA 12V DC - Submersible or In-Line Utility Pump, 56" power 

cord (556001) Features:  

• 12 VDC, 56" Power Cord 

• Operates submerged or in-line 

• Inlet options include hooded and 1/2" male pipe thread 

• Discharge is 3/8" male pipe thread (accepts 5/8" I.D. hose) 

• Nylon volute and impeller 

• ABS thermoplastic housing and cover 

• Stainless steel motor shaft 

• Buna-N shaft seal 

 

Little Giant 33BPLA 12V DC - Submersible or In-Line Utility Pump, 56" power 

cord (556001) Specification:  

• Flow: 350 GPH @ 1' of Head 

• Cord Lenght: 56"  

• Shut Off: 11' 

• Voltage: 12VDC  

• Amps: 2 
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Valves 
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Power supply 
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Part III AutoCAD drawing of the SC with ST. 
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CHAPTER III 
EFFECT OF VARIETY, CULTIVAR AND 

TEMPERATURE ON VOLUME KINETICS OF PINTO, 
NAVY AND BLACK BEANS DURING SOAKING 

 

 

 

 

 

 

 

 

 

 



 

89 

Abstract 

 

Common beans are one of the most highly planted and consumed legumes 

in the world, especially in the Central and South America. The industrial 

processing of beans include a soaking step prior to cooking in order to reduce 

the cooking time required and enhance the nutritive quality of the final product. 

The change in volume over time is a good indicator of soaking behavior 

because it is proportional to the amount of water absorbed by the seeds. In 

this study, differences in volume kinetics among cultivars of three common 

bean varieties: pinto, navy and black during soaking at 25 ºC and 55 ºC for a 

5 hr period were investigated using the B-VAT system. Among the three bean 

varieties, pinto showed the slowest soaking at both temperatures and had 

unique volume change patterns. Within all varieties, significant differences 

were observed among cultivars at both temperatures (p<0.01). Pinto cultivar B, 

black cultivar A behaved as “outliers” because of their distinct hydration 

patterns. As temperature increased, all cultivars had faster changes in volume 

(at an initial rate up to 6.8 times faster) and larger end relative volumes (up to 

113% more). Temperature had the greatest impacts on improving soaking of 

pinto cultivars and the least impacts on navy cultivar C and cultivar D. 
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Introduction 

 

The common bean (Phaseolus vulgaris) , one of the most consumed 

legume species, is one of the most important diet supplements for protein and 

dietary fiber in Central and South America, especially in Mexico and Brazil 

(Broughton et al., 2003). Common bean include varieties navy, pinto, red 

kidney, black, pink, and French. Navy and pinto bean are the two most 

produced varieties in common bean, consisting of more than 60% of the total 

production of common bean in the world (Ruth, 1989). The pinto bean, also 

called molted bean due to its appearance, are traded and consumed heavily 

in southwest United States and Mexico, taking 30% of the whole production of 

common bean in the world. The navy bean, also called white bean or pea 

bean, is the most popular common bean and accounts for 33% production of 

common bean. It is very popular in Britain and US, and is mainly used for 

making baked beans. The black bean, famous for its meaty texture and rich 

antioxidant content, is also a fundamental part of the diet in Latin America. 

A soaking step is usually necessary for processing dry beans; because the 

antinutrients contained in dry beans, i.e., hemagglutinin, trypsin inhibitors and 

phytate substances leach out during soaking and enhance the nutritive value 

of the product. Another reason is to introduce water evenly into beans prior to 

cooking to save the time and energy required for cooking. Normally the 

soaking step for common beans to equilibrium at room temperature could 

range from 8 to 18 hr, becoming an economic burden for manufacturers. In 

order to process dry beans more efficiently, studies have been done to 
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investigate factors that could shorten the soaking time of faba bean, kidney 

bean and soybean (Abousamaha et al., 1985; Aparna et al., 2000; Chenoll et 

al., 2009b; Haladjian et al., 2003; Jiang and Zhang, 2005; Kader, 1995; 

Tagawa et al., 2002). 

Temperature is one of the key factors affecting the hydration process of 

beans, and has been heavily studied in many food materials, such as legume 

seeds (Haladjian et al., 2003; Sayar et al., 2001a; Turhan et al., 2002), 

cereals (Cunningham et al., 2007; Muramatsu et al., 2006) and dehydrated 

fruits (Maldonado et al., 2010; Marques et al., 2009). As temperature 

increases, the water absorption rate also increases, but extreme temperature 

(> 50 - 60°C) will cause membrane denaturation or structure disruption, 

leading to less water diffusivity and lower holding capacity (Haladjian et al., 

2003; Maldonado et al., 2010; Sayar et al., 2001a). Only a few researchers 

also investigated the impact of temperature on volume development (Chenoll 

et al., 2009b; Khazaei and Mohammadi, 2009; Muramatsu et al., 2006). 

However, few reports were found depicting the volume kinetics of pinto, navy 

or black beans during soaking, despite or their broad utilization. Also, 

differences in hydration behavior among bean varieties and cultivars have not 

been thoroughly investigated. 

During soaking, volume expansion changes significantly in dry beans and 

as water is absorbed, beans expand up to more than 2.5 times of their original 

volume. Volume is an important quality parameter which is also indicative of 

water uptake during hydration (Steffe and Singh, 1980). It is also cost related, 

critical for processing design and key to the aesthetic quality of product which 
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directly affect the consumers’ preference. A comprehensive depiction of 

volume change is able to provide a better understanding of the soaking 

process in view of water uptake and volume development. However, the 

current volume determination methods, ranging from image analysis (Shahin 

et al., 2006) or manual measurement of length and width, approximating the 

shape of beans to simplify calculation of volume (Bayram et al., 2004; Khazaei 

and Mohammadi, 2009), to using Archimedes principle (Moreira et al., 2008) 

are either labor intensive or lack of accuracy and repeatability to adequately 

describe the volume kinetics during soaking. Hence, the automatic system for 

measuring volume kinetics which was introduced in the previous chapter was 

adopted in order to capture the differences in volume development pattern 

among variety, cultivar and temperature treatment groups in detail. 

The objective of this study was to study how pinto, navy and black bean 

differ in volume kinetics among varieties and cultivars at two different 

temperatures. 

 

Materials and Methods 

 

Materials 

Six cultivars of pinto beans (cultivar A, cultivar B, cultivar C, cultivar D 

cultivar E and cultivar F), five cultivars of navy beans (cultivar A, cultivar B, 

cultivar C, medalist and cultivar E), and three cultivars of black beans (cultivar 

A, cultivar B and cultivar C) harvested and then dried in fall season, 2009, 
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were provided by AMD’s facility in St. Thomas, ND and used for this 

experiment. Beans were stored at a dry place in ambient conditions.  

 

Volume kinetics determination during soaking  

70 grams of each cultivar of beans were weighed after removing the split 

beans and then put into B-VAT system as described in the previous chapter to 

determine volume kinetics at both 25 ºC and 55 ºC with at least two replicates. 

The volume measurements were taken by the system automatically at 1.5 min 

intervals for at least 5 hrs. Recirculated deionized water was used as the 

soaking medium. 

Initial moisture content of each cultivar was tested using a Motomco 

Moisture Meter (Model 919). 250 grams of beans were weighed and placed in 

the dump cell in the moisture meter,  the measure button was then 

pressed.  The sample automatically fell into the test cell containing the 

temperature-sensing probe accurate to 0.5ºC. Within seconds, the tester  

displayed the percentage of moisture. The variability of the moisture 

measurements is ±0.05% and for weight measurement is ±0.02%. 

 

Data analysis 

The experimental data were fitted by Peleg model to calculate the initial 

water uptake rate for each cultivar at each temperature. Also, the time to 

reach 2 times the original volume and the end relative volume were selected 

as indices to characterize the soaking behavior. The experiment was 

conducted with CRD. The differences among varieties, cultivars and 



 

94 

temperature treatments on the selected hydration indices were tested using 

ANOVA and Tukey test by SAS 9.0 (SAS Institute, 2009) 

 

Results and Discussions 

 

Initial moisture content 

The average value of the moisture content of each bean cultivar before 

hydration test were listed in Table 3.1. The initial moisture content of the 

beans varied in the range of 8% to 9.5% except for Black cultivar B. Although 

their initial moisture contents were relative low, no obvious differences in 

soaking behavior were observed even for Black cultivar B.  

 

Effect of variety and cultivar 

Differences of the volume development pattern of pinto navy and black 

cultivars hydrated at both room temperature and elevated temperature were 

observed, as shown in Figures 3.1 – 3.6 , respectively. Relative volume, y axis 

variable in the figures, represents the ratio of current volume of beans to the 

initial volume of beans. The three indices introduced to characterize the 

hydration behavior are listed in Table 3.2. With these three indices, the 

hydration patterns of different samples became more comparable in how they 

start, develop and end. The initial rate was calculated as the reciprocal of 

parameter k1 , that was obtained from Peleg model as Eq. (1).  
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The k1 and R2 of fitting Peleg model for each cultivar at both temperatures 

were shown in Table 3.3. Generally, at 25 ºC, pinto beans hydrated much 

slower than the other two varieties, showing a linear increase pattern of 

volume kinetics, suggesting that the water transfer was not diffusion 

dominated motion but with an external resistance. The initial water uptake rate 

of pinto beans and the end relative volume after a 5.5 hr soaking process are 

significantly smaller than that of navy and black beans (p<0.01), and the times 

needed to reach 2V0 were much longer (p<0.01). Among cultivars, difference 

were also observed for initial rate and end relative volume (p<0.01). Due to 

the prolonged time for pinto beans to expand to one size bigger, the indice for 

time did not have a accurate value and thus was not used as part of the 

statistic analysis. Pinto cultivar B hydrated at a rate of 0.161 ml/ml/hr, 

significantly higher than all other cultivars (p<0.01). Pinto cultivar F hydrated 

significantly faster than pinto cultivar D and pinto cultivar C and pinto cultivar 

E significantly faster than pinto cultivar C (p<0.01). The end relative volume of 

pinto cultivar B after soaking for 5.5 hrs are significantly higher than all other 

cultivars, with a ratio of 174%. The expansion of volume of pinto cultivars after 

soaking 5.5 hr at room temperature could go down to 125%. Moreover, most 

of the pinto cultivar did not fully hydrated after 16 hr hydration except for 

cultivar B. Apparently for pinto bean, it does not make any sense to use room 

temperature for its hydration. Navy beans have a different hydration pattern 

from pinto beans, a quadratic increase curve with initial water uptake rate 

much higher than later. Generally, navy beans hydrated much faster than 

pinto beans at room temperature, approaching equilibrium in about 6 hr. 
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Among navy cultivars, all the three indices as listed in Table 3.2, were 

significantly different. Cultivar C had the highest initial rate at 0.924 ml/ml/hr, 

significantly higher than cultivar A, cultivar B and cultivar E (p<0.01). Cultivar 

cultivar D showed a statistically significant higher rate than cultivar B and 

cultivar E, the two that initially hydrated slowest (p<0.01). However, cultivar A 

and cultivar E had the longest time to reach 2V0, approximately 7.5 hr while 

cultivar C took the shortest time of 2.5 hr (p<0.01). Again, cultivar C has the 

biggest end relative volume after soaking ends, increased to 2.3 times of the 

initial volume whereas cultivar A and cultivar E expanded least, only to less 

than 2 times of their initial volumes. Black beans, had volume kinetics pattern 

more closer to navy beans at room temperature. However, cultivar A had a 

linear increase pattern of volume that is different from the other two cultivars 

with quadratic increase patterns. The initial rate among black cultivars were 

significantly different, while the fastest being black cultivar B, followed by 

cultivar C, than cultivar A. The other two indices were not significantly different 

among black cultivars (p>0.05).  

At 55 ºC, differences among cultivars for all three varieties were still 

observed. For pinto beans, cultivar B still hydrated significantly higher than 

other cultivars (p<0.01), at a rate of 0.58 ml/ml/hr. Cultivar E took the longest 

time to reach 2V0, which was about 4.5 hr, and cultivar B took significantly 

less time than cultivar A, cultivar D and cultivar E (p<0.01). The end relative 

volume of cultivar A was the biggest while cultivar E was the smallest. It 

suggested that the faster initial rate of moisture uptake does not necessarily 

link to a bigger water absorption amount at the end of soaking process. For 



 

97 

navy beans, cultivar C still hydrated the fastest at a initial rate of 5.219 

ml/ml/hr (p<0.01). Cultivar cultivar E and cultivar A took significant longer time 

to reach 2V0 than the other cultivars (p<0.01). And cultivar C hydrated up to 

237% of initial volume, significantly higher than cultivar A of a 214% end 

relative volume. Black was the most homogeneous variety where only the 

initial rate was significantly different while cultivar A being the slowest cultivar 

(p<0.01). The previous reported hydration behavior of legume seeds all 

showed a quadratic increase pattern, close to most of navy and black cultivars, 

while the linear increase pattern of pinto beans has never been reported, even 

at room temperature (Haladjian et al., 2003; Khazaei and Mohammadi, 2009; 

Sopade and Obekpa, 1990). To sum up, navy and black beans generally 

hydrated well at room temperature or elevated temperature but pinto beans 

hydrated much slower although they do not have a smaller water holding 

capacity. Differences among cultivars were observed for all varieties at both 

temperatures. The very distinct behavior of pinto beans revealed that they had 

a much bigger resistance than the other two varieties. The differences among 

bean varieties and cultivars in soaking behavior could be attributed to their 

differences in chemical compositions such as the content and structure of 

starch and seed coat properties (Kader, 1995; Vega-Galvez et al., 2009). 

 

Effect of temperature    

When increasing temperature to 55 °C, the volume change pattern of all 

bean cultivars changed significantly: the volume expansion rate increased so 

did the ending volume, as shown in Figures 3.7-3.20. This finding was in 
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agreement with some other previous studies (Khazaei and Mohammadi, 2009; 

Prasad et al., 2010). However, the effect of temperature on volume 

development changed differently depending on the variety and cultivar. The 

three indices that were used to characterize the volume kinetics curve for all 

cultivars at 55 ºC were listed in Table 3.2 as well. The volume kinetics pattern 

of most pinto cultivars changed to a three-phase volume development pattern 

at elevated temperature, differing from other two varieties. There were five 

cultivars (except cultivar B) having a distinct initial lag phase up to 150 min 

before entering the rapid water uptake phase which the other two varieties 

started immediately upon soaking. The initial water uptake rate increased with 

a range of 1.32 to 4.36 fold, compared to that at room temperature. There 

followed a rapid water uptake phase and then the phase when volume 

approaching equilibrium which resembles the behavior of navy and black 

beans. The end volume after 5 hr reached a similar range as that of navy and 

black beans at 55 °C. However, the initial rate were still significantly less than 

other two varieties, while the time to reach 2V being significantly longer than 

the other two varieties (p<0.01). For navy and black beans, the effect of 

temperature on them was similar, showing as the increase in initial rate up to 

6.56 fold for navy cultivar B and 6.84 fold for black cultivar A, a decrease in 

time to reach 2V0 by 100 to 360 min, and a slight increase in the end relative 

volume (less than 13%). Differing from pinto beans, the increase in initial rate 

were at least 3.5 fold and most of all around 5 fold. The effect of temperature 

for navy and black beans to shorten the time required to reach 2V0 and 

increase the end relative volume were much lower than those of pinto beans. 
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Clearly, increasing temperature improves the hydration efficiency for all 

three varieties but at different level for different cultivars. It is necessary for 

pinto beans due to their very slow water uptake behavior at lower temperature. 

But for cultivars such as navy cultivar C, which hydrate quickly at room 

temperature, the temperature treatment became less energy-efficient. 

 

Conclusions 

 

Hydration behavior differs among bean varieties and cultivars. Pinto beans 

have an initial water uptake rate more than 5 times slower than navy and 

black beans, showing special resistance to initial water absorption. However, 

their behaviors at elevated temperature suggested that pinto beans have a 

similar water holding capacity as navy and black beans. Within varieties, 

some cultivars behave as “outliers” compared to other cultivars at same 

soaking conditions. Examples include the linear swelling pattern for black 

cultivar A at room temperature compared to the quadratic increase pattern for 

other black cultivars and the lack of initial lag phase and much higher water 

uptake rate for pinto cultivar B compared to other pinto cultivars. 

Increasing temperature from 25 to 55 °C enhanced the initial water uptake 

and the end relative volume for all bean cultivars after 5 hrs soaking, but with 

different increments. It changes the hydration curve of pinto beans from linear 

increase pattern to a three phase increase pattern. The time to reach 2V0 for 

some pinto cultivars were shortened up to more than 15 hr whereas less than 
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2 hr for some navy cultivars. Pinto beans need the higher soaking 

temperature to assure the efficiency of hydration than navy and black beans. 
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Table 3.1 Initial moisture content of all bean cultivars 

Bean cultivar Moisture content (%) 

Pinto cultivar A 9.53 

Pinto cultivar B 9.09 

Pinto cultivar C 8.87 

Pinto cultivar D 9.53 

Pinto cultivar E 9.19 

Pinto cultivar F 9.09 

Navy cultivar A 8.64 

Navy cultivar B 8.75 

Navy cultivar C 8.06 

Navy cultivar D 8.87 

Navy cultivar E 9.09 

Black cultivar A 8.23 

Black cultivar B 13.80 

Black cultivar C 8.23 
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 Table 3.2 Effect of temperature on volume kinetics of all bean cultivars 

Initial rate, ml/ml/hr Time to reach 2V0, min End relative volume  

25 °C 55°C 25 °C 55°C 25 °C 55°C 

Pinto cultivar A 0.0585 0.238 >1000 190 132% 245% 

Pinto cultivar B 0.161 0.58 700  122.5 174% 233% 

Pinto cultivar C 0.0385 0.168 >1000 157.5 125% 229% 

Pinto cultivar D 0.0514 0.171 >1000 200 142% 232% 

Pinto cultivar E 0.071 0.094 >1000 267.5 128% 219% 

Pinto cultivar F 0.075 0.136 >1000 165 127% 230% 

Navy cultivar A 0.451 2.16 465 105 192% 214% 

Navy cultivar B 0.383 2.512 305 65 204% 216% 

Navy cultivar C 0.924 5.219 150 35 230% 236% 

Navy cultivar D 0.702 3.399 222.5 52 214% 220% 

Navy cultivar E 0.22 0.985 435 135 186% 234% 

Black cultivar A 0.2 1.369 327.5 85 200% 231% 

Black cultivar B 0.871 3.042 265 62.5 214% 233% 

Black cultivar C 0.58 2.902 217 60 205% 230% 
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Table 3.3 k1 and R-square of Peleg model fitting the initial phase of different cultivars at two temperatures 

25 ºC 55 ºC  

k1 (min/ml/ml) R-square k1 (min/ml/ml) R-square 

Pinto cultivar A 1026.68 0.984 252.1008403 0.981 

Pinto cultivar B 373.51 0.994 103.4482759 0.994 

Pinto cultivar C 1560.96 0.98 357.1428571 0.986 

Pinto cultivar D 1168.32 0.979 350.877193 0.981 

Pinto cultivar E 854.07 0.97 638.2978723 0.985 

Pinto cultivar F 804.35 0.98 441.1764706 0.989 

Navy cultivar A 136.04 0.995 27.77777778 0.986 

Navy cultivar B 156.66 0.994 23.88535032 0.995 

Navy cultivar C 65.94 0.997 11.49645526 0.992 

Navy cultivar D 86.47 0.995 17.65225066 0.99 

Navy cultivar E 276.73 0.993 60.91370558 0.993 

Black cultivar A 301.75 0.995 43.8276114 0.987 

Black cultivar B 68.89 0.994 19.72386588 0.99 

Black cultivar C 105.45 0.995 20.67539628 0.985 
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Figure 3.1 Volume kinetics of pinto beans at 25 °C 
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Figure 3.2 Volume kinetics of navy beans at 25 °C 
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Figure 3.3 Volume kinetics of black beans at 25 °C 
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Figure 3.4 Volume kinetics of pinto beans at 55 ºC 
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Figure 3.5 Volume kinetics of navy beans at 55 ºC 
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Figure 3.6 Volume kinetics of black beans at 55 ºC 
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Figure 3.7 Volume kinetics of pinto cultivar A at different temperatures 
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Figure 3.8 Volume kinetics of pinto cultivar B at different temperatures 
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Figure 3.9 Volume kinetics of pinto cultivar C at different temperatures 
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Figure 3.10 Volume kinetics of pinto cultivar D at different temperatuers 
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Figure 3.11 Volume kinetics of pinto cultivar E at different temperatures 
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Figure 3.12 Volume kinetics of pinto cultivar F at different temperatures 
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Figure 3. 13 Volume kinetics of navy cultivar A at different temperatures 
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Figure 3.14 Volume kinetics of navy cultivar B at different temperatures 
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Figure 3. 15 Volume kinetics of navy cultivar C at different temperatures 
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Figure 3.16 Volume kinetics of navy cultivar D at different temperatures 
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Figure 3.17 Volume kinetics of navy cultivar E at different temperatures 
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Figure 3.18 Volume kinetics of black cultivar A at different temperatures 
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Figure 3.19 Volume kinetics of black cultivar B at different temperatures 
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Figure 3.20 Volume kinetics of black cultivar C at different temperatures 
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Abstract 

 

Pinto beans require prolonged soaking time resulting in increased costs and 

energy. At elevated temperature, the water uptake of pinto beans exhibits a 

sigmoidal behavior with an initial lag phase not observed d in many other 

seeds. It was hypothesized in this study that a hydrophobic layer on the 

bean’s surface becomes a key limiting factor for early water penetration. A 1 

min hexane immersion treatment was adopted for 6 pinto cultivars in order to 

reduce the surface hydrophobicity prior to soaking. The surface 

hydrophobicity of beans was determined before and after the treatments via 

surface contact angle measurement. Soaking behavior at 55 ºC was 

determined by four indices: 1) initial volume increase rate; 2) length of lag 

phase; 3) end relative volume and 4) time to reach 2 times the initial volume. 

Hexane pre-treatment method adopted in this study was able to effectively 

reduce the hydrophobicity of bean surfaces (up to 42% reduction in contact 

angle) and shorten the hydration time required to reach 2 times the initial 

volume (up to 2.5 hr). Results also indicated that surface hydrophobicity had 

moderate correlations with rate of water uptake in initial lag phase (r=-0.628, 

r<0.05) and end relative volume (r=-0.81, p<0.05). The reduction in 

hydrophobicity due to pre-treatment was moderately correlated with the 

reduction in length of lag phase (r=0.749, p<0.09) and the increase in end 

relative volume (r=0.736, p<0.1)  
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Introduction 

   

Pinto beans (Phaseolus vulgaris L.), also called molted beans due to their 

appearance, are traded and consumed heavily in South and Central America 

and are an important diet supplement due to its high nutritive value and low 

calorie content. Pinto beans account for 30% of the total production of dry 

bean in the world. The soaking step is usually necessary for processing dry 

beans to leach out antinutrients (e.g., hemagglutinin, trypsin inhibitors and 

phytate substances), thus enhancing the nutritive value of the product. More 

importantly, by introducing water evenly into beans prior to cooking, soaking 

also saves the time and energy required for cooking considerably. Pintos are 

one of the varieties that require the longest soaking time prior to cooking. It 

takes more than 24 hr for soaking pintos under room temperature conditions. 

Thus, studies on methods to facilitate the water transfer into beans are 

needed. Factors that could shorten the soaking time in faba, kidney, and navy 

beans, soybeans, sesame seeds, and rice have been previously investigated 

(Abousamaha et al., 1985; Aparna et al., 2000; Chenoll et al., 2009b; 

Haladjian et al., 2003; Jiang and Zhang, 2005; Tagawa et al., 2002). However, 

few reports exist regarding the hydration kinetics of pinto beans. In the 

previous chapter, an extended lag phase was observed during the soaking of 

pinto beans at elevated temperature.  

Many plants tissues have natural wax on their surfaces to protect them from 

environmental stresses such as ultraviolet radiation, insects and pathogens as 

well as to limit moisture loss (Eigenbrode and Espelie, 1995; Schreiber et al., 
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2001). The cuticular wax is found to be on the surface of leaves, seeds and 

fruits (Chang et al., 2006; Chowdhary et al., 1982). Based on the observation 

of the initial lag phases during soaking of pinto beans, it was hypothesized 

that a hydrophobic layer on the surface of pinto bean (possibly wax) was 

responsible of delaying initial water penetration into the bean. At room 

temperature, this layer can hardly be removed, leading to the linear and slow 

volume expansion. When temperature increased, this resistance was 

gradually removed, reducing the lag phase. The higher the temperature, the 

faster this layer breaks down and thus shortens lag time and increases water 

absorption rate. The thickness and intensity of the wax could vary among 

cultivars, causing the different hydration behaviors between the various pinto 

cultivars.  

In order to test the hypothesis, hexane was used as a media to reduce the 

intensity of the hydrophobic layer on the surface of beans. Hexane is widely 

used as a cheap, relative safe and easily evaporated non-polar solvent. 

Despite requiring extra safety measures when used in the food industry, it is 

heavily used as a solvent for oil extraction from grains and soybeans. The 

code of federal regulation (21 CFR 173.270) allows its presence in spice 

oleoresins and hops extracts as residues but with amount less than 25ppm 

and 2.2 % weight, respectively. In this study, hexane was used as a pre-

treatment for soaking to reduce hydrophobicity of the surface of pinto beans. 

A very common way to determine the hydrophobicity/wettability of a solid 

surface is to measure the contact angle of a water droplet sitting on the 

surface. Previous reports used this method to quantify the hydrophobicity of 
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solid surfaces such as stainless steel, glass, polyethylene, Gallium Asenide, 

cell walls of various bacteria, and polymeric materials (Gulec et al., 2006; 

Matsushita et al., 1998; O'Connell et al., 2009; Vanloosdrecht et al., 1987). 

The smaller contact angle, the more hydrophilic a surface is. Usually, a 

surface having contact angle <90º is considered to be hydrophilic, between 

90º to 150o hydrophobic and >150º superhydrophobic. 

The objective of this study was to 1) accurately describe and quantify the 

unique soaking behavior of pinto beans; 2）to validate the hypothesis that the 

hydrophobicity of bean surface is a major barrier for water penetration, leading 

to the initial lag phase; and 3) prove that hexane is an effective treatment to 

reduce the surface hydrophobicity and improve bean hydration efficiency. 

 

Materials and Methods 

 

Materials 

Dry seeds from six cultivars of pinto beans: cultivar A, B, C, D, E, and F, 

harvested in fall season, 2009 and provided by ADM’s facility in St. Thomas, 

ND were used for this experiment. Beans were stored in dry and cool place in 

ambient condition until testing.  

 

Volume kinetics determination during soaking  

70 grams of each bean cultivar were weighed after removing the split beans 

and then put into the system described in Chapter 2 to determine volume 

kinetic at 55 °C for 4.5 hr, with two replicates at each temperature. The 
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volume measurements were taken by the system automatically at 1.5 min 

intervals. Deionized water was used as soaking medium. The soaking process 

were divided into three phases: lag phase, rapid water uptake phase, and 

phase approaching equilibrium. In order to differentiate the transit point from 

initial lag phase (LP) into the rapid water uptake phase (RP) and highlight the 

change in volume change rate, the volume kinetics curves were divided into 

two linear sections and the rates of the two phases were calculated as the 

slopes of the respective linear models fitted in the two phases. To better 

characterize and compare the hydration behavior, several indices were 

defined and determined: 1) initial rate (ml/ml/min) presents the volume ratio 

increase every minute; 2) length of lag phase (min); 3) end relative volume 

(%); 4) time to reach 2 V0, where V0 is the initial volume. 

 

Hexane pre-treatment 

70 grams of each cultivar of pinto beans were immersed in 100 ml n-hexane 

(Fisher H207-4, assay 60-66%) in a 250 ml beaker for 1 minute under 

agitation. Hexanes were drained and then kept until evaporated. Beans were 

then put into the automatic system for testing the volume kinetics as described 

before. 

 

Hydrophobicity determination 

The hydrophobicity of the outer surface of beans with and without hexane 

pre-treatment was tested via contact angle measurement by the static sessile 

water drop method using an EasyDrop Standard Drop Shape Analysis System 
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(KRUSS, Germany). A 2 l water droplet was deposited on the comparatively 

more even surface of one bean and a picture was captured immediately after 

by the camera in this equipment. Due to the curved surface of beans, the 

contact angles   was measured based on the definition in Young’s equation 

(Gulec et al., 2006; Van Oss, 1994) as shown in Figure 4.1 which describes 

the equilibrium state between the three phases: the liquid phase (L), the solid 

phase (S) and the gas/vapor phase (V) using AutoCAD 2007 software 

(Autodesk, San Rafael, CA) and used to indicate the surface hydrophobicity. 

At least three replicates were taken for each treatment. 

 

Statistical analysis 

The experiment was designed with CRD and the contact angles of all 

cultivars before and after hexane pre-treatment were analyzed with ANOVA 

and Tukey test using SAS 9.0 (SAS Institute, 2009). Pearson correlation 

among contact angle, reduction in contact angle and hydration parameters: 

rate of lag phase (LP), rate of rapid phase (RP), ratio of rate of LP for treated 

beans and untreated beans; ratio of rate of RP; length of LP, reduction in 

length of LP, end relative volume, ratio of end relative volume of treated beans 

and untreated beans were determined by SAS 9.0 (SAS Institute, 2009) 
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Results and Discussions 

 

Description of lag phase  

As mentioned in Chapter 3, the volume change when beans were soaked at 

25 oC followed a linear pattern indicating that external resistance existed 

against water penetration, which is different from what has previously reported 

in cases where diffusion dominates the water transfer (Abu-Ghannam, 1998a; 

Maldonado et al., 2010; Turhan et al., 2002). In this study, the volume kinetic 

curves changed dramatically at 55 °C, from linear to sigmoidal curves, 

suggesting the hydration of some pinto cultivars is a three-phase process. 

Initially, water was absorbed very slowly, shown as the lag phase; then after a 

certain point, water uptake rate increased significantly; afterwards the rate 

reduced as approaching the equilibrium. All cultivars except cultivar B showed 

the three-phase volume kinetics. The hydration rates in the two phases (LP 

and RP) and the length of the initial lag phase for all 6 pinto cultivars are 

shown in Table 4.2 (control groups). Aside from pinto cultivar B, all other 

cultivars showed a lag phase and rapid water uptake phase where the rate of 

RP was up to 4 times of that of the LP, proving the differences in rates during 

the two phases. The biggest increment occurred on pinto cultivar F where 

rates increased from 2.5 * 10-3 ml/ml/min (the relative volume increase rate) in 

the lag phase to 10.3 * 10-3 ml/ml/min in the rapid phase. The length of lag 

phases ranged from 0 (cultivar B) to 135 min (cultivar E). Due to the 

comparatively slower hydration rate during the lag phase and its considerable 
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duration of time, treatments targeting at reducing the length of lag phase or 

enhancing its rate are needed.  

 

Effect of hexane pre-treatment 

 

Comparison of contact angle 

The hydrophobicity of the bean surfaces was tested on pinto beans before 

and after the hexane treatment. One picture captured by the Drop Shape 

Analysis System for each cultivar before and after hexane pre-treatment is 

given in Figures 4.2 – 4.7. There were notable changes in the morphology of 

the water droplet on bean surfaces after the treatment. The contact angle of 

each cultivar and the percent reduction in contact angle are listed in Table 4.2. 

The percent reduction was calculated using Eq. (10): 

% reduction = 
b

ab


 

                                                                                  (10) 

The results showed that all five cultivars having an initial lag phase during 

soaking at 55 ºC exhibited a great reduction in contact angle after hexane 

treatment, in the range from 29% to 42%. The hexane pre-treatment adopted 

in this study was able to significantly decrease the hydrophobicity of the 

surface of the beans for all cultivars (p<0.01). Cultivar B, which did not have a 

distinct lag phase, had a significantly smaller contact angle before the hexane 

pre-treatment than most of other cultivars except cultivar F (p<0.01), and a 

significantly smaller percent reduction in contact angle after the pre-treatment 

than all other cultivars (p<0.01). Cultivar D, A, E and C had higher surface 
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hydrophobicity than cultivar B and F (p<0.01). The former four cultivars all had 

hydrophobic surfaces before hexane pre-treatment (contact angle > 90 ºC) 

and changed to hydrophilic surfaces after the treatment (contact angle < 90. 

ºC). 

 

Comparison of soaking behavior    

All six pinto cultivars with and without hexane pre-treatment were tested for 

volume kinetics at 55 ºC for 4.5 hr soaking, and the results are shown in 

Figures 4.8 – 4.13. The water uptake of all cultivars was improved with the 

hexane pre-treatment. The indices introduced to describe hydration behavior 

and compare hydration efficiency are listed in Table 4.2: K, the rate of relative 

volume increase for both LP and RP; the length of lag phase, time to reach 2 

times of original volume and relative volume. The R-squares of the linear 

model fitting LP and RP sections were around 0.97-0.99. All cultivars hydrated 

more efficiently after hexane pre-treatment while cultivar B received the 

smallest improvement due to its original less hydrophobic surface. The rate of 

initial water uptake increased up to 6.5 times (pinto cultivar D) after the 

hexane treatment. This could be attributed to the partial removal of the 

hydrophobic layer on the surface of beans. The length of lag phase reduced 

by up to approximately 1 hr for several cultivars, strongly suggesting that the 

hydrophobic layer was impaired after the hexane pre-treatment. Also, the time 

required to reach 2 times the initial volume decreased up to approximately 2.5 

hr which is considered a long processing time in industrial manufacturing. 

Except for pinto cultivar B (the only cultivar that showed no initial lag phase 
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during soaking at 55 ºC), all cultivars exhibited huge reductions in soaking 

time after a 1 minute hexane pre-treatment. 

 

Correlations 

The statistical analysis suggested that there was a negative moderate 

correlation between contact angle and the rate of LP (r=-0.628, p<0.05), 

between contact angle and rate of RP (r=-0.726, p<0.05), and a negative high 

correlation between contact angle and end relative volume (r=-0.81, p<0.05). 

These correlations suggest that beans with larger hydrophobic surfaces tend 

to have lower rate of lag phase and rapid phase, and lower end relative 

volume after a period of soaking before reaching equilibrium. The hydrophobic 

bean surface is a critical barrier for water penetration during the soaking 

process: the more hydrophobic the surface, the slower the transfer of water 

into the beans and the slower the overall rate of water uptake. Due to the 

faster water absorption rate after hexane pre-treatment, the beans reached a 

higher end relative volume after 4.5 hr. Moreover, a positive moderate 

correlation was observed between the decrease in contact angle and length of 

LP (r=0.749, p<0.09), and between the decrease in contact angle and the 

increase in end volume (r=0.736, p<0.1). These correlations implies that a 

bigger reduction in surface hydrophobicity can lead to a shorter lag phase and 

a bigger end relative volume during soaking of beans. Thus how to effectively 

reduce the surface hydrophobicity of beans prior to soaking become the major 

way to improve the soaking efficiency. Furthermore, a negative moderate 

correlation was found between rate of lag phase and length of lag phase (r=-
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0.711, p<0.05), implying that treatments shorten the lag phase probably are 

able to effectively increase the rate of lag phase. There was also a positive 

high correlation found between rate of lag phase and rate of rapid phase 

(r=0.922, p<0.001), suggesting that the rates of the two phases probably are 

affected by the similar factors during processing. 

 

Conclusions 

 

Pinto beans require prolonged soaking time even at elevated temperature. 

The soaking of pinto beans at 55 ºC could be characterized as a three phase 

process: 1) initial lag phase, which ranges from 0 to 2.5 hr 2) rapid water 

uptake phase at a rate 2 to 4 times faster than initial lag phase and 3) 

equilibrium approaching phase. There is a hydrophobic layer on the surface of 

pinto beans, retarding the water penetration. The more hydrophobic the 

surface, the lower rate of water uptake the bean has during soaking. Hexane 

pre-treatment is able to decrease the hydrophobicity of the surface of beans 

and enhance the efficiency of hydration. The more the hydrophobicity is 

reduced, the better effect it has on shortening the length of lag phase and 

enhancing the end relative volume. Pretreatment of the beans with hexanes 

for 1 min is an effective method to shorten the lag time, in increasing the 

hydration rate and reducing the required soaking time to reach an acceptable 

end volume for pinto beans. 
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Table 4.1 Contact angles of six pinto cultivars before and after hexane pre-treatment. 

Cultivar Contact angle (Before) Contact angle (After) Reduction percent (%) 

Pinto cultivar B 75.47±1.55 b 65.33±1.62 a 13.4% 

Pinto cultivar D 104.57±2.62 a 63.53±3.42 a 39.2% 

Pinto cultivar A 98.97±4.41 a 70.27±4.67 a 29.0% 

Pinto cultivar E 107.93±2.24 a 68.23±0.38 a 36.8% 

Pinto cultivar F 81.27±6.75 b 53.13±4.40 b 34.6% 

Pinto cultivar C 104.50±3.08 a 60.60±5.14 ab 42.0% 
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Table 4.2.A Effect of hexane pre-treatment on the hydration behavior of pinto cultivars at temperature of 55 ºC. 

Rate of LP  Rate of RP Cultivar 

Control 

(ml/ml/min) 

Treatment 

(ml/ml/min) 

Ratio 

(%) 

Control 

(ml/ml/min) 

Treatment 

(ml/ml/min) 

Ratio 

(%) 

Pinto cultivar B --- --- --- 8.663e-3 2.249e-2 260 

Pinto cultivar D 2.012e-3 --- --- 5.673e-3 1.871e-2 330 

Pinto cultivar A 4.110e-3 5.863e-3 143 6.206e-3 1.030e-2 166 

Pinto cultivar E 2.192e-3 4.801e-3 219 5.497e-3 1.078e-2 196 

Pinto cultivar F 2.568e-3 8.581e-3 234 1.011e-2 1.335e-2 132 

Pinto cultivar C 4.152e-3 8.459e-3 204 9.213e-3 1.870e-2 203 
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Table 4.2.B Effect of hexane pre-treatment on the hydration behavior of pinto cultivars at temperature of 55 ºC. 

End relative volume Length of Lag phase  Time to reach 2V Cultivar 

Control  

(%) 

Treatment

(%) 

Ratio

(%) 

Control 

(min) 

Treatment 

(min) 

Difference 

 (min) 

Control 

(min) 

Treatment 

(min) 

Difference 

(min) 

pinto cultivar B 231 246 106 0 0 0 120 80 40 

Pinto cultivar D 226 275 122 50 0 50 205 60 145 

Pinto cultivar A 233 239 102 115 60 55 195 120 75 

Pinto cultivar E 198 242 122 135 80 55 270 135 135 

Pinto cultivar F 225 259 151 70 45 25 165 85 80 

Pinto cultivar C 223 263 118 75 35 40 160 70 90 
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Figure 4.1 Contact angle defined in Young’ equation (Gulec et al., 2006). 
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                                    A                                                               B 

Figure 4.2 Contact angle of pinto cultivar B before (A) and after (B) hexane pre-treatment. 

 

 

                                    A                                                              B 

Figure 4.3 Contact angle of pinto cultivar D before (A) and after (B) hexane pre-treatment. 
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                                     A                                                            B 

Figure 4.4 Contact angle of pinto cultivar A before (A) and after (B) hexane pre-treatment. 

 

 

                                    A                                                                B 

Figure 4.5 Contact angle of pinto cultivar E before (A) and after (B) hexane pre-treatment. 
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                                   A                                                                B 

Figure 4.6 Contact angle of pinto cultivar F before (A) and after (B) hexane pre-treatment. 

 

  

                                 A                                                                B 

Figure 4.7 Contact angle of pinto cultivar C before (A) and after (B) hexane pre-treatment.
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Figure 4.8 Volume kinetics of pinto cultivar B with and without hexane pre-

treatment soaking at 55 ºC. 
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Figure 4.9 Volume kinetics of pinto cultivar D with and without hexane pre-

treatment soaking at 55 ºC. 
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Figure 4.10 Volume kinetics of pinto cultivar A with and without hexane pre-

treatment soaking at 55 ºC. 
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Figure 4.11 Volume kinetics of pinto cultivar E with and without hexane pre-

treatment soaking at 55 ºC. 
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Figure 4.12 Volume kinetics of pinto cultivar F with and without hexane pre-

treatment soaking at 55 ºC. 
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Figure 4.13 Volume kinetics of pinto cultivar C with and without hexane pre-

treatment soaking at 55 ºC. 
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CHAPTER IV 
CONCLUSIONS AND RECOMMENDATIONS  

FOR FUTURE WORK 
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In order to adequately describe the volume kinetics of seed during hydration, a 

B-VAT system that automatically conducts volume measurement over time 

during soaking was developed. The device has minute-scale measuring interval, 

low system variability (COV< 0.8%), adequate sampling size (mass up to 150 

gram), high reproducibility, minimal need for operator intervention during 

measurements, and it can be used to measure volume during soaking for various 

types of seeds in controlled soaking media at target temperatures. Significant 

differences were observed among pinto, navy and black varieties and cultivars 

during soaking at both 25 and 55 ºC (p<0.01). Pinto cultivar B soaked the fastest 

without initial lag phase at 55 ºC; black eclipase had linear volume expansion at 

25 ºC; making them outliers in their respective varieties. Unlike the other two 

varieties, pinto beans had a linear volume increase pattern at 25oC, a sigmoidal 

pattern at 55oC, and the least hydration efficiency. Increasing temperature to 

55ºC effectively increased the initial water absorption rate for all bean cultivars, in 

a range from 1.3 to 6.8 fold as well as shortening the time to reach 2 times of 

initial volume at least by 2 hr. The effect of temperature on pinto cultivars was 

much more dramatically than navy and black beans in shortening the required 

soaking time. The reason why pinto beans have extraordinary slow water uptake 

was partially attributed to their hydrophobic surface. Faster water absorption 

rates of both lag phase and rapid phase during soaking are expected in beans 

having less hydrophobic surfaces. Hexane pre-treatment for one minute 
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immersion of beans was found to effectively reduce the hydrophobicity and 

enhance the hydration efficiency. 

The future work should focus on the following aspects: 

(A) Improvements to the B-VAT system. The capability to simultaneously 

weight samples and monitor turbidity can be incorporated in the system to allow 

determination of changes in mass (wet basis), and solid loss during soaking. The 

ultrasonic sensor should be replaced with sensor able to withstand higher 

temperature ratings; the building materials should be upgraded so that the 

system can be used to simulated steam soaking. Some of these improvements 

are being currently developed for a new prototype that will also multiple sample 

holders to determine volume kinetics in three replicates simultaneously. 

(B) Extended temperature range. The optimum temperature for fast water 

uptake and high equilibrium volume without cell disruption should be determined 

in a cultivar basis. Also, the effect of temperature on the nutrition value of the 

final product (e.g. mineral availability, protein digestibility) should be taken into 

account besides its impact on soaking efficiency. 

(C) Other factors. The seed soaking can be affected by other factors, for 

instance, salts. Sodium bicarbonate and sodium triphosphate were reported 

previously as additives to enhance the seed soaking efficiency. There are also 

intrinsic factors related to the beans that might attribute to the different soaking 

behaviors among varieties and cultivars. For example, the surface area of beans 
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and the differences in the chemical composition of seed coat. The association of 

hydration characteristics and these factors could be studied. 

(D) New models. The Peleg or Weibull model do not properly fit the hydration 

curve of pinto beans under elevated temperature, thus a new model incorporating 

the factors causing the initial lag phase (e.g., the surface hydrophobicity) is 

needed.  

(E) Hydrophobic layer. The original hydrophobic layer on bean surface can 

probably be dispersed using organic solvent treatments and then analyzed for its 

composition via the characteristics of its infrared spectrum. A good understanding 

of the composition of the thin layer definitely facilitate to design the specific 

treatments. Due to the limitation of using hexane as a processing aid, hot water, 

steam or other food grade surfactants pre-treatment can be used as a substitute 

and be investigated for the process optimization. 

(F) This study was mainly focus on understanding the physical process of 

hydration as affected by various factors as discussed. The further study could dig 

more on what chemical changes occur during soaking e.g., change in the content 

and structure of starch or seed coat chemical composition.  
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