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ABSTRACT 

Distributed energy resources are becoming more common in distribution 

systems. Higher energy prices and increased interest in alternative energy 

sources are two of the driving forces behind this trend. Local utilities, however, 

anticipate very serious distribution system protection problems resulting from 

high penetration of these resources. 

The microgrid concept has been proposed as a possible solution to 

integrating distributed energy resources without adversely impacting the 

distribution system. Protection schemes have been proposed to work within this 

microgrid structure, but very little testing with real hardware is available. Without 

a practical solution for microgrid protection, backed by extensive studies, 

microgrids are unlikely to receive wide acceptance. 

This thesis outlines modeling of microgrids for protection testing using a 

real time digital simulator. In addition, the construction of a low voltage, low 

power, hardware-in-loop test bed using relays and an automation controller is 

detailed. The results of testing possible microgrid protection schemes using this 

apparatus are presented along with conclusions and suggestions for future work.  
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CHAPTER 1, INTRODUCTION AND GENERAL INFORMATION 
 

The developed world is built around ready access to energy, particularly 

electrical energy. Electrical infrastructure is on equal terms with water and 

transportation in terms of the importance of its growth for developing areas, and 

in the importance of its maintenance in developed countries. Not only are these 

resources on equal terms of importance, they are interdependent to an extent 

that each would struggle to operate without the others. 

Electrical power and its mastery have enabled the standard of living and 

industrialization society enjoys and expects. Devices are growing smarter, 

machines becoming more efficient, and consumers are more ecologically 

conscious than ever before. In response, electrical infrastructure must grow more 

reliable, more adaptable, more ecologically responsible, and occupy a smaller 

footprint in order to keep pace with these changing demands. 

Distributed generation (DG) is one possible solution to satisfy these new 

demands. This philosophy of generating electricity favors generating 

comparatively small amounts of power, on the order of tens of kilowatts to tens of 

megawatts. This power is also generated in close proximity to where it is being 

consumed. This is a radical departure from traditional grid operation where 

hundreds of megawatts, even gigawatts, are produced in large power plants and 

transmitted over long distances to serve loads.  

The distributed approach has many benefits. It favors many technologies 

considered either renewable of more environmentally friendly. It also reduces 

demand on centralized power plants, allowing less favorable technologies to be 
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upgraded or phased out altogether. DG also promises to reduce transmission 

line congestion and the need to invest in new transmission infrastructure.  

The distributed energy resources (DERs) used in the DG philosophy can 

be microturbines, photovoltaics (PV), diesel generators, fuel cells, batteries, 

industrial cogeneration, or any other energy resource that can be installed in 

close proximity to loads. Dramatically increasing the number of generation 

sources in the power system will require an equally dramatic increase in the 

system’s communication, coordination, and protection abilities. Organizing 

sections of the power system containing concentrations of DERs into microgrids 

has been suggested as a possible solution to theses new challenges. 

Microgrids 

 A microgrid, as defined by the U.S. Microgrid Exchange Group, 2010, is a 

group of interconnected loads and distributed energy resources within clearly 

defined electrical boundaries that acts as a single controllable entity with respect 

to the grid. A microgrid can connect and disconnect from the grid to enable it to 

operate in both grid-connected or island-mode [1]. Microgrids can be 

conceptualized as electrical islands with the ability to connect and disconnect 

from the rest of the power system at will. 

 Microgrids are not a new notion. An early microgrid was created to power 

the INMARSAT satellite control station in Antarctica in the 1970’s [2]. Later, they 

were proposed as a solution for providing power to remote areas in developing 

countries unable to construct traditional electrical infrastructure. More recently, 
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they have received growing interest for use on military bases [3] where the 

potential benefits of a self-contained electrical system can warrant the added 

expenditure on microgrid technologies. Military bases are also a convenient 

proving ground for future microgrid technologies like renewable DERs and 

electric vehicles that actively participate in system operation. The U.S. 

Department of Defense and Department of Energy are both pursuing research 

into the benefits and enabling technologies associated with microgrid 

deployment. Microgrids are also becoming a viable option for providing a resilient 

power supply for critical loads like hospitals and shelters during disasters.  

Microgrid Structure 

 

Most electrical distribution systems are largely composed of feeder lines 

radiating from sub transmission substations. Although there is some backfeed 

ability built in, the system is generally operated in a radial configuration with 

power flow in a single direction during normal operation. Microgrids, however, are 

intended to reconfigure connections and redistribute power to maintain service to 

loads. A loop, or mesh, connected system is thus a more advantageous structure 

for microgrids, as shown in figure 1.1. Power flows in this system will change 

constantly based upon balances between local generation and load with power 

coming from the utility to make up the difference. 
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Figure 1.1 Bus configurations for loop and meshed network structures. 

 

Microgrids, unlike most distribution systems, require some level of 

communication in order to operate, though the amount required remains a 

subject for debate. The answer will likely be determined by other discussions 

related to microgrids. For instance, will DERs be owned and operated by utilities 

or private customers? Also, what will the role of microgrids be within the larger 

context of the power grid? Answers to these and other questions will likely 

require microgrids to employ much more communication, control, and automation 

than typically required for distribution systems. 

Introduction to System Protection 

 

The overall objective of system protection is to isolate areas containing 

disturbances quickly, while preserving the rest of the system. Thus, unacceptable 

operating conditions are detected and removed, though not prevented. A 

protection system must meet five criteria in order to perform successfully. These 

are (1) reliability, (2) selectivity, (3) speed, (4) simplicity, and (5) economy [4]. It is 

not reasonable to expect all five factors to be maximized in a protection system; 

therefore a skilled protection engineer is required to manage the tradeoffs. 

Loop Network Meshed Network
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Protection Reliability 

Reliability is generally a measure of the likeliness that system protection 

will operate as intended. Reliability is the combination of two other metrics, 

dependability and security. Dependability is the expectation that protection will 

operate when it is needed. Security is the expectation that protection will not 

operate when it is not needed. These two requirements are commonly in conflict 

due to the ambiguous difference between tolerable and intolerable system 

events. This ambiguity means that the best knowledge source for designing 

protection systems is usually prior experience, though simulations and staged 

tests can provide some insight.  

Protection Selectivity 

Selectivity, or relay coordination, involves the ability of a protective system 

to operate as quickly as possible for events in its zone of protection while 

providing time delayed backup to relays in other zones of protection. These 

zones of protection would commonly enclose a single bus, line, or piece of 

equipment [5]. Time delay on relays is necessary to allow relays near faults a 

chance to isolate the problem. This can be accomplished in overcurrent relays by 

using more than one definite time setting with longer time delays for lower pickup 

currents. For an inverse time overcurrent characteristic, the time delay can be set 

appropriately in order to coordinate with other relays in the system. This is 

covered in more detail in chapter two.  
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The goal of protection selectivity is to ensure that the portion of the system 

taken out of service is minimized while still completely isolating the problem. 

Therefore, operation of relays outside the immediate vicinity of the fault is only 

desirable when relays near the fault have failed to operate. The benefit of high 

selectivity in a protection system is to provide maximum continuity of service to 

customers while minimizing lost revenues, fines paid, and equipment damage. 

Protection Speed 

 Speed is simply the minimum fault duration allowed by the protection 

system. Fast isolation of faults helps to minimize equipment damage and system 

instability resulting from disturbances. The desire for protection speed can be at 

odds with the desire for protection selectivity. This is especially true where relay 

coordination comes into play, where increasing operation speed can increase the 

number of unwanted operations. 

 Using high-speed relays and circuit breakers can increase the speed of 

protection. A high-speed relay, by definition, operates in less than three cycles, 

while instantaneous relays have no intentional operational delay [6]. Though their 

definitions differ, the two categories operate almost identically, and the 

terminology is used interchangeably. High-speed circuit breakers will typically 

operate in one to three cycles. 

 Implementing high-speed protection on transmission lines is more difficult 

than with buses or other equipment. This is largely due to the large distances 

spanned by most transmission lines [7]. Communications assisted protection 
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schemes must communicate over long distances, which can be complicated and 

expensive. Protection schemes without communication may be slower because 

they are dependent exclusively on local information that may not reveal a 

complete picture of the overall system state. 

 Speed is not always as important in low voltage parts of the system, 

though it is certainly not trivial. These tend to be distribution systems where relay 

coordination simpler and a brief fault is unlikely to significantly impact system 

stability. Speed can also be reduced when high impedance faults occur. The high 

impedance of the fault will limit the available fault current, making the fault more 

difficult to detect. The presence of DERs on a line can also blind the protection 

by feeding the fault, resulting in reduced fault current through the relays. This will 

be discussed further in chapter two. 

Protection Simplicity 

Simplicity is important to protection systems because of the role it plays in 

protection reliability. Each component in a protection system is likely individually 

reliable. However, by increasing the number of components dependent on one 

another, the overall reliability is decreased and the likelihood of problems 

increased. The potential benefit of each additional component must be weighed 

against the increased potential for failures, required maintenance, and the cost 

incurred as a result of a protection failure.  
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Protection Economics 

Costs in power systems cannot be ignored, and protection equipment can 

be expensive. However, lower priced protection equipment may have higher 

maintenance, installation, and operating costs. The cost of the equipment being 

protected can be many magnitudes higher than the cost of quality protection. 

Likewise, the cost associated with lost revenues due to service outages is very 

high. Utilities can also be held responsible for equipment damage resulting from 

problems on the distribution system. The expense to appropriately protect the 

system is almost always justifiable in light of the consequences for a protection 

failure. That being said, there is always a price at which return on investment 

begins diminishing. 

Electromechanical Relays 

Electromechanical relays have been the primary technology used for 

power system protection for several decades. Multiple designs exist but one of 

the oldest and most instructive models is the induction disk relay. This design is 

useful for demonstrating the principles of electromechanical relay operation, 

which, initially, was very similar to the operation of induction disk watt-hour 

meters.  

Current on the secondary side of a current transformer (CT) creates flux in 

the core of a driving electromagnet. The air gap of this driving magnet is 

designed to provide two slightly separated flux paths through a metal disk. The 

amount of flux traveling through the second path is altered with the addition of 
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either shading coils or rings resulting in the fluxes shown in equations (1.1) and 

(1.2).  

 

          (  )  (1.1) 

 

          (    ) (1.2) 

 

These fluxes create a potential difference between them and 

corresponding current flow in the disk. The current from path one reacts with the 

flux in path two, and vice versa, producing two opposing forces, equations (1.3) 

and (1.4), that act on the disk. The resulting net mechanical force is shown as the 

sum of the two forces in equation (1.5).   

 

     
   

  
       (  )  (1.3) 

 

     
   

  
       (    )  (1.4) 

 

         (           )  (1.5) 

 

Because this force is acting tangentially to the edge of the disk, the 

resulting torque attempts to rotate the disk, shown in equation (1.6), where α is 

the phase difference between the currents resulting from the effect of the shading 
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coil. However, a restraining magnet is situated opposite the driving magnet to 

resist the applied torque on the disk. A spring is also included to augment the 

restraining magnet and reset the relay after the fault is cleared. By carefully 

calibrating the amount of restraining torque, the relay can be set to operate only 

when input currents rise above a predetermined threshold. This parameter is 

referred to as the pickup current, denoted   .  

 

              (1.6) 

 

When the disk rotates sufficiently, contacts mounted to the disk complete 

the electrical circuit controlling the circuit breaker. One contact is fixed to the 

rotating disk and the other is stationary beside the disk. Because the disk will 

rotate at a rate proportional to the magnitude of the input current, setting the 

distance between the two contacts, denoted   , will set the relay operational 

time delay. This gives protection and coordination engineers the ability to 

customize protection schemes for each application. Additionally, different designs 

and configurations will have different operating characteristics for the same 

settings. Equation (1.7) is the general equation for inverse time overcurrent relay 

tripping [8]. Equation (1.8) is used for resetting overcurrent relays after tripping. 

Table 1.1 lists the coefficients of  ,  , and   used to define some of the more 

commonly used operating characteristics. 
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       (  
 

(
 

  
)
 

  

) (1.7) 

 

          (
  

  (
 

  
)
 ) (1.8) 

 

The differences in the different characteristic curves are shown in figures 

1.2 and 1.3. This also shows that the same type of curve has different definitions 

in US and IEC standards. 
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Table 1.1 Inverse Time Overcurrent Relay Characteristic Coefficients. 

Characteristic A B P TR 

US Moderately Inverse (U1) 

US Inverse (U2) 

US Very Inverse (U3) 

US Extremely Inverse (U4) 

US Short Time Inverse (U5) 

IEC Standard Inverse (C1) 

IEC Very Inverse (C2) 

IEC Extremely Inverse (C3) 

IEC Long Time Inverse (C4) 

IEC Short Time Inverse (C5) 

0.0104 

5.95 

3.88 

5.67 

0.00342 

5.64 

13.5 

80.0 

120.0 

0.05 

0.0226 

0.1800 

0.0963 

0.0352 

0.00262 
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Figure 1.2. US time overcurrent characteristic curves (TD = 2.0 seconds.) 

 

 

 

Figure 1.3. IEC time overcurrent characteristic curves (TD = 2.0 seconds.) 
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Digital Relays 

As with most other technologies, microprocessors are changing how 

protection equipment is designed. Digital relays are replacing the old 

electromechanical relays, particularly in new installations. Yet, the work required 

to retrofit an existing installation with digital relays is slowing their adoption into 

existing systems. 

Circuit breakers only require a DC voltage from either a battery or station 

auxiliary power system in order to operate. The role of the relay is to act as an 

intelligent switch in this DC circuit, opening and closing contacts, which, in turn, 

control the circuit breakers. Even though the relay may be digital, the contacts 

inside it are still mechanical. The various contacts are likely to be driven by a 

cam inside the relay. 

These new relays have many advantages over their predecessors. 

Because digital relays are microprocessor based, they are able to accommodate 

multiple setting groups. Control logic can also be customized because the 

operating characteristics are implemented computationally rather than as a 

function of the relay design. Because digital relays do not rely on their design to 

produce an operating characteristic, they are capable of implementing several 

protection elements and metering functions in a single device. The analog to 

digital conversion used in digital relays also has a lower burden than the 

electromagnetic systems. A full complement of communication ports allows for 
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communication assisted tripping as well as coordination between relays using an 

automation controller or other supervisory system.  

The result of all these capabilities is that protection systems, which used 

to occupy entire buildings and require manual setting, now occupy a single 

cabinet and can be managed remotely. It is worth noting that despite the 

numerous advantages of digital relays, electromechanical relays still make up the 

majority of systems in service. Concerns over the digital relay’s ability to operate 

when the system is down, and the effort required to set them cause many 

protection engineers to stick with the older models. This again demonstrates the 

paramount importance of reliability and experience in designing protection 

systems. 

Real Time Automation Controller 

 The real time automation controller (RTAC) is an imbedded controller 

designed for substation controls and industrial applications [9]. This 

microprocessor-based system has a variety of communication ports and a real 

time operating system with customizable functionality, making it ideal for 

protection system coordination. Additionally, the RTAC can host a human-

machine interface (HMI) to enable protection engineers to easily monitor and 

control the system remotely via a web interface. 

 The RTAC is also a convenient platform for gathering and concentrating 

data about the current state of the system. Information can be retrieved via the 

web interface, removing the need for protection engineers to travel to the 
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substation in order to change settings and monitor operation. This is especially 

useful for examining event reports after the fact to determine exactly what the 

relay was measuring when it decided to operate, and the values of specified 

system tags. 

Real Time Digital Simulator 

 The Real Time Digital Simulator (RTDS) is a high resolution, real time 

simulation tool used for power system studies and research. RTDS is 

distinguished from other simulation technologies by its real time simulation ability, 

which is aimed at performing hardware-in-the-loop (HIL) testing. 

 RTDS power system simulations operate with a      time step. This is 

equivalent to 333 samples per electrical cycle, plenty of resolution for most power 

system studies. This resolution can be increased slightly if needed. Controls and 

power electronics simulations typically require higher resolution simulation than 

power systems, however. This higher resolution is needed to accurately simulate 

high switching frequencies and for the calculations used in the power electronic 

controls. For this, RTDS uses a     time step, equivalent to 3333 samples per 

cycle. Simulating power electronics in this smaller time step requires special 

models designed for small time step simulation, all of which must be placed in 

specially defined small time step subsystems. A large to small time step 

transformer is used in the simulation to link the two parts of the model. 

 RTDS is able to interface with external equipment using four different 

types of I/O cards. Gigabit transceiver analog input (GTAI) and output (GTAO) 
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cards are used to handle analog signals. The ports on the GTAO and GTAI cards 

can handle signals between      volts. Signals output with the GTAO card 

refresh every     but are only voltage signals [10]. Signals requiring current must 

make use of an external power amplifier. GTAI ports refresh every    . Because 

these ports are not capable of handling large magnitude signals directly, scaling 

is usually required in order to move signals through these ports. It is assumed 

that most signals will require scaling so this function is built into the GTAO 

connection control block in the simulation model. The scaling must also be taken 

into account by externally connected equipment. 

 Forced real time simulation is a strength and weakness of RTDS. It is very 

useful for conducting hardware-in-the-loop testing. However, the number of 

available processers limits the size and detail of a simulation. RTDS is designed 

only for real time simulations, so there is no provision for simulating slower in 

order to increase the simulation size. Upgrading the RTDS capabilities is 

straightforward as it is designed to be scalable and multiple cubicles can be tied 

together with an Ethernet connection. RTDS hardware is expensive. Connection 

cards typically cost a few thousand dollars each, processor cards tens of 

thousands of dollars, and whole cubicles hundreds of thousands of dollars. The 

RSCAD software is also very expensive. 

Thesis Outline 

 

This section outlines the structure of the thesis and provides a brief 

summary of topics covered in each chapter. 
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Chapter 1 – A definition of a microgrid, its structure, and historical use is 

covered. Key concepts used to evaluate protection systems are discussed. The 

operation of electromechanical relays is used to explain the physical basis for 

relay operating characteristics. The advantages of digital relays and the RTAC 

are also briefly discussed. RTDS is also introduced.  

Chapter 2 – Control methodologies used for transmission systems are 

introduced. These include real and reactive power (P&Q) control, and frequency 

and voltage (F&V) control. Then applications of these methodologies are formed 

for microgrid systems and the required changes detailed. The challenges 

associated with protecting a microgrid system are discussed. Methods used to 

create an RTDS model of a microgrid for protection studies are shown. 

Applicable protection schemes are outlined. The background for the genetic 

algorithm used to tune model controls is also discussed.  

Chapter 3 – A detailed discussion of the microgrid model is given. The 

genetic algorithm used to tune the controls is also described in detail. The 

construction of the testing apparatus is discussed along with the communications 

settings and user defined logic used.   

Chapter 4 – Testing is conducted on a time overcurrent scheme, and a 

time overcurrent scheme with two setting groups. Testing is attempted on a time 

overcurrent scheme with the addition of directional control and the difficulties are 

discussed.  A differential scheme making use of overcurrent relays to implement 

differential protection is also evaluated. 
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Chapter 5 – Results of testing are discussed and conclusions are drawn. 

Recommendations for future work are also made.  

Appendix – Connection diagrams and code created for the project are 

included in this section. 
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CHAPTER 2, LITERATURE REVIEW 

 This chapter introduces general generator control methodologies, 

including real and reactive power control, frequency and voltage droop control, 

and fault current limiting control. Specific control topologies used to accomplish 

these objectives are also presented. Methods of modeling microgrids and utility 

interconnections are explained along with considerations for adapting 

transmission control strategies for use in microgrids. Relevant relay protection 

strategies are also explained. Finally, the theoretical background for the genetic 

algorithm used for control tuning is presented. 

Real and Reactive Power Control 

 Controlling real and reactive power injected into the electrical system is a 

common objective for grid-connected generators of all sizes. Power flow in a 

transmission line is described in equation (2.3) where   is real power,   reactive 

power,   complex power,    the voltage at the sending end of the line,    the 

receiving end voltage,   the current flowing in the line, and   the complex 

impedance of the line. 
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 Separating this equation into its real and imaginary parts yields the 

specific equations for real and reactive power flow in a transmission line, shown 

in equations (2.4) and (2.5). 
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 Substituting      for      allows equations (2.4) and (2.5) to be 

rewritten in terms of resistive ( ) and reactive ( ) impedances, equations (2.6) 

and (2.7). 
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Generally speaking,   can be assumed to be considerably smaller than   

for overhead transmission lines [11]. Because    ,   can be neglected for 

these lines. Also, the power angle   is assumed to be small, meaning that the 
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approximation        and        is valid. These assumptions allow 

equations (2.6) and (2.7) to be simplified for cases involving overhead 

transmission lines to equations (2.8) and (2.9). 

 

   
    

 
   (2.8) 

 

   
  (     )

 
 (2.9) 

 

Equation (2.8) reveals that real power flow from one end of a transmission 

line to the other is assumed to be directly proportional to the phase difference   

between the two ends of the line. Likewise, equation (2.9) shows that reactive 

power flows from high to low voltage ends of the line and is proportional to the 

difference between the two voltages. Therefore, controlling the power angle   

between a generator and the point of interconnection with a system will allow the 

real power injection to be controlled. Controlling the voltage of the generator 

relative to the system voltage will allow for control of reactive power injection or 

consumption. It should be restated, however, that these relationships are based 

on the assumption that    . In a lower voltage system, this assumption is not 

always valid.  
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Frequency and Voltage Droop Control 

 Frequency and voltage are the two most important parameters for 

maintaining system operation. Synchronous generators in the U.S. will attempt to 

operate at a constant 60 Hz frequency. The electrical system frequency, 

however, is subject to deviations caused by mismatched generation and load. 

Insufficient generation to service connected loads will cause the system 

frequency to drop, whereas the opposite will cause the frequency to increase. 

This makes sense when the power grid is imagined to be a large rotating 

machine. Injecting more power than is being taken out will cause this conceptual 

machine to spin faster as the spare energy is converted into rotational 

momentum. Significant frequency deviations will cause generators and loads to 

start disconnecting from the system to prevent equipment damage. This 

increases the potential for system instability, as other generators will try to pick 

up additional load to balance the generation and load; potentially exceeding their 

own limits and being removed from service themselves. 

 System voltage deviations can occur for a variety of reasons, including 

system faults, lack of reactive power to support voltage, and extreme load 

behavior. Like frequency deviations, system voltage deviations will cause 

machine damage, and system instability. High voltage will cause insulation 

problems throughout the system and connected machinery and can potentially 

burn out lighting and electronic systems. Low voltage is also a major problem 

because motors will start to increase the amount of current they draw in order to 
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satisfy their power demand, eventually exceeding their current rating. Motors will 

also eventually stall in low voltage conditions, prolonging the voltage recovery 

period after a disturbance. 

 When the assumptions from equations (2.8) and (2.9) are valid, frequency 

deviations are proportionally related to real power injection into the system, so 

long as load remains constant over the period the frequency is measured. This 

proportionality allows a constant gain to be used to equate the two parameters, 

shown in equation (2.10) [12]. 

 

         (    )  (2.10) 

 

This equation is implemented in a variety of control systems aimed at 

regulating system frequency. The main systems are generator governors, 

automatic generation controls, and manual transmission system controls. These 

all differ in the scope of their influence and how rapidly they respond, but they are 

all using this principle in order to regulate the system frequency. 

Voltage control operates on a similar principle. The voltage at the point of 

connection relative to the voltage of the generator is proportionally related to the 

amount of reactive power being injected into the system. Therefore, an equation 

similar to (2.10) can be formulated to control the system voltage at the point of 

system connection, equation (2.11). 
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Synchronous machines, generators, and condensers, are the most 

effective devices for controlling system voltage with reactive power support, but 

they are not the only devices with this capability. Shunt reactors, series and 

shunt capacitors, and other grid-connected technologies are also capable of 

injecting reactive power. In fact, many of these other technologies are preferable 

in most cases because large rotating machines are very expensive and have a 

large footprint, making them an unlikely choice in a distribution system. Control of 

voltage in this manner must also be somewhat restrained so that the voltage at 

the generator terminals does not exceed the machine ratings.  

Application of Existing Generation Controls to Microgrids 

 Several control schemes can be applied to DERs in microgrids to 

accomplish either frequency and voltage regulation or direct real and reactive 

power control. These schemes all require voltage and current measurements at 

the point of interconnection in order to synchronize with the grid and to estimate 

how much real and reactive power is being injected into the system. 

 If the microgrid is a low voltage system, the frequency and voltage 

controls will be unlikely to work properly if they are based on the same 

assumptions as high and medium voltage frequency and voltage regulation. 

Typically     in high and medium voltage systems, but low voltage systems 

tend to be more resistive than inductive. This means that the relationships 

between        and   are no longer approximately linear. Because these 

relationships are no longer approximately linear, a simple droop setting will no 
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longer be sufficient. Instead a separate, non-linear, control system is required to 

control   and   in place of   and  . 

 Set points and modes of operation can either be set by the owner of the 

DER or obtained from a microgrid controller via a communication channel. Each 

has its merits and demerits. For instance, centralized DER control in a microgrid 

is desirable because problems with load sharing are avoided and the microgrid is 

able to work together as a whole in order to preserve frequency by matching load 

and generation. However, costs associated with centralized control are higher 

due to communication and control hardware that must be installed, serviced, and 

powered. This may be especially true when microgrids cover large areas or 

where many DERs are installed. If the DERs are not owned directly by the utility, 

the equipment owners may also be reluctant to relinquish control of their private 

equipment to the utility company. This scenario avoids the capital expenditure on 

the part of the utility but would make organized microgrid control problematic. 

 Allowing DERs to be controlled independently of a central control 

hierarchy is advantageous because it avoids the need for communications 

between a central controller and every generator in the microgrid. Yet, in this 

scenario it is difficult to ensure that enough generating assets will be available to 

match load should the microgrid be suddenly islanded. Also, an adequate 

number of DERs would need to be operating on frequency and voltage droop 

control in order to regulate the system operation, a difficult problem if operation 

modes are left to private owner’s choice.  
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It is also worth mentioning again that the assumptions made in developing 

equations (2.10) and (2.11) are not necessarily valid in a low voltage microgrid 

because the system is no longer overwhelmingly inductive, meaning that the   

and   controls become more complex and more sensitive to system changes. 

Also, the average DER may not have enough capacity to regulate frequency and 

voltage without the help of other DERs providing some real and reactive power. 

There would be no way of guaranteeing this aid if set points and modes of 

operation are left entirely at the discretion of private DER owners. 

Furthermore, the most economic sharing of load is unlikely to be achieved. 

A high concentration of DERs on a single line could even completely bar other 

DERs on the same line from generating because doing so would create an 

overvoltage on the line. This scenario undermines the economic benefit 

associated with installing DERs to sell power back to utilities.  

The ideal scenario for a privately owned DER would be a plug and play 

system. This sort of system would only require installation and connection to the 

microgrid. Any sort of communication would be forgone and the DER would only 

be concerned with either injecting maximum power into the microgrid, subject to 

voltage constraints, or regulating frequency and voltage at the point where it is 

connected to the microgrid without having to custom tune and update the DER 

controls for each new installation. When such a plug and play DER control 

solution is developed, decentralized microgrids will be able to take advantage of 

the cost savings from forgoing the communications infrastructure and making 

participating in microgrid generation more accessible to the private sector. 
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Modeling A Microgrid System 

Models commonly used for distribution system protection studies 

resemble models used for dynamic simulation studies in transmission systems. 

Utility connections are assumed to be ideal sources capable of providing fault 

currents five or six times higher than the load current. Systems are also generally 

connected radially with power flowing in one direction. This system topology is 

considered to be static, never changing how the various lines are connected. 

This sort of configuration lends itself to easily identifying fault currents and 

producing relay settings to effectively protect the system. 

However, these assumptions do not necessarily apply to microgrids. The 

presence of DERs and increasingly interconnected systems can create 

bidirectional power flow. The effect of an ever-changing topology within the 

microgrid is that a single set of overcurrent relay settings will struggle to 

adequately protect the microgrid in all situations without misoperation. Therefore, 

in order to set microgrid overcurrent protection, multiple scenarios must be 

analyzed. To conduct HIL tests, a complete model, including controls, sources, 

loads, and cables must be created. A hardware test bed must be created as well 

if physical relays are to be integrated into the simulation.   

Modeling Utility Connections 

The connection of the microgrid to the utility need not be exhaustively 

modeled in order to accurately model microgrid operation. This is because the 

utility can usually be assumed to be much more robust than the microgrid itself 
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and any internal microgrid change or disturbance will have a negligible effect on 

the utility. Given that the power grid is composed of synchronous generators 

working in unison to manage frequency and voltage, it is reasonable to model the 

connected utility as a single synchronous generator with a generation capacity 

much larger than what the microgrid can provide. If the utility capacity is 

sufficiently larger than the microgrid, the utility can be further simplified to an 

ideal voltage source [13]. 

Modeling Distributed Energy Resources 

 Distributed energy resources can be rotating machine or inverter based. 

Modeling the machines and inverters themselves is straightforward, given that 

the machine or inverter parameters are available. Neatly packaged models for 

these sources are generally included in simulation packages. The controllers for 

these resources, however, may not be premade and require some amount of 

effort to model. Because the microgrid system, described in chapter three, to be 

modeled only contains inverter-based resources, the controls examined in this 

thesis will be specific to grid-connected inverters. 

 The first requirement for controlling a grid-connected inverter is accurate 

measurement of the system phase and frequency at the point of common 

coupling (PCC) of the inverter. This is accomplished with a phase lock loop 

(PLL). Measuring the voltage phase angle at the PCC is necessary for 

synchronization of the inverter control signals with the system. Controlling the 

phase difference between the inverter and system will be an important part of the 
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control method. PLLs are almost always included with simulation packages 

meant for simulating power electronics. 

 The most common control mode used by grid-connected inverters is 

control of the real and reactive power delivered to the grid by the DER. This 

introduces the need to calculate the power being delivered by the inverter. This 

can be done in the normal time domain or by transforming the voltage and 

current measurements into either the stationary    or rotating    reference 

frame using the conversion matrices in equation (2.12) and (2.13). Controlling 

inverters in either the    or    reference frame offers the advantage of time 

invariant controls. Time variant controls are difficult to implement because of their 

dependency on the time domain to perform calculations. Consequently, time 

invariant controls are usually preferable to time variant controls. 
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 The direct power control method uses the    reference frame to control 

real and reactive power directly. This method is similar to the direct torque control 



 

 31 

technique and uses no internal current loops or pulse width modulation 

component, working on the error between power set points and estimated power 

output obtained through power calculations. The advantage to this control 

strategy is its simplicity, although it does require a high sampling frequency [12]. 

The specifics of this control strategy and variations of it are discussed in detail in 

chapter three. 

Microgrid Protection Challenges 

The unique structure of microgrids makes their protection challenging. 

DERs, non-radial systems, and changing utility connections create several 

problems, not present in traditional distribution systems, which must be 

overcome before microgrids can see wide acceptance. 

Fault Isolation 

 In a radially connected system, fault isolation means opening the circuit 

breaker closest to the fault between the fault and the substation the feeder is 

connected to. This means that all loads beyond the fault will lose power, though 

in a radial system without DERs this is unavoidable. Therefore, opening more 

than one breaker is unnecessary, as the end result is the same. This makes 

coordinating overcurrent relays simple. All that is required is to simulate a fault at 

the far end of the line and set pick up currents and time delays such that the 

relays operate with the desired coordination time interval, usually 12-15 cycles. 
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 A microgrid system, with its potentially non-radial structure and DERs, is a 

more difficult system for fault isolation. Now it is essential to open breakers at 

both ends of a line in order to prevent DERs from feeding a fault on the line, as 

shown in figure 2.1. Likewise, all the breakers on a faulted bus must be opened 

instead of just the one on the line feeding the bus. This is difficult because fault 

currents coming from different directions could be very different depending on the 

way the system is connected. 

 

Figure 2.1 Fault isolation in system with DERs. 

 

Fault isolation can also be a problem when auto-reclosing schemes are 

used and DERs feed faults, preventing the ionized path inside the circuit breaker 

from dissipating. Some additional loss of mains protection would be needed to 

detect this condition and shut the DER off so the ionized path could dissipate and 

the fault clear. This is likely only a concern for medium and high voltage 

microgrid systems with powerful generation sources. 

Decreased Fault Current 

 The difference in available fault current is the most severe challenge for 

using overcurrent protection in microgrids. Fault current from the utility is usually 
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easy to distinguish from load current within the microgrid. This is because the 

utility connection tends to behave like a large synchronous machine during faults, 

outputting several times the rated current.  

 With so much fault current is available from the utility, the limiting factor in 

the system is the current ratings on the lines. Therefore, the protection is set 

above the current rating for the lines, knowing that current at this level is almost 

certainly due to a fault. This includes the choice of CT ratios and relay settings. 

The protection is set above the continuous current rating of the lines so that the 

system can be loaded to its maximum without the protection operating. 

 When the microgrid disconnects from the utility, the limiting factor in the 

system is no longer the line ratings. Most often, the generation in the microgrid 

will be much less than the power the utility can provide. Therefore the limiting 

factor is now the maximum output of the DERs. Rotating machines used as 

DERs are capable of providing fault currents much higher than the maximum 

rated current, but this increase is limited by the size of the machine. The result is 

nothing like the fault current provided from the utility. In addition, inverter based 

DERs will provide even less fault current. Individual inverter output varies based 

on the model and control scheme used but typical values can range from 110 to 

200% rated current during faults. An example of this difference is shown in the 

fault current calculations for line 2-3 of a real system is shown in table 2.1. This 

system is detailed in chapter three.   
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Table 2.1 Calculated fault currents in microgrid using CAPE. 

Fault 

On Bus 3 

Line 1-2 (A) Line 1-3 (A) Line 2-3 (A) 

On Grid 

Off Grid 

4819.5 

0.2 

0.0 

0.0 

4819.5 

359.8 

 

False Tripping 

When a fault occurs on a looped or meshed system, currents will tend to 

alter their flow direction to feed into the fault. In a microgrid distribution system 

this can occur where multiple feeders attached to the same bus or substation 

have DERs installed on them. Normally, the current provided by the DERs will 

flow to the loads on that line, with some excess flowing to other lines connected 

to the same substation bus. However, a fault on one of these lines will cause 

almost all of the current from DERs connected to lines from the substation to 

travel through the substation or bus and down the faulted line, as shown in figure 

2.2. 
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Figure 2.2 False tripping for fault on parallel line. 

 
This fault current provided by DER units will have to pass through the 

healthy part of the system in order to reach the fault. Depending on the type of 

DER and the sensitivity of the line relay settings, this can cause the relay on the 

healthy line to operate on overcurrent [13]. This problem could be very prevalent 

on a short line with DG units because the relay near the substation would likely 

have a much lower time delay setting that a relay on a long line where multiple 

coordination intervals have to be accounted for.  

Increasing the time delay for the affected relay on the healthy line could 

potentially solve this problem. Increasing the time delay, however, may not be 

practical, as faults on that line would then take longer to clear. Adding directional 

elements to relays protecting line terminals connected in parallel to other lines 

could be another possible solution.  
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Protection Blinding 

 Adding a DER unit to a line can have the unintended effect of blinding 

protective relays at the sending end of the feeder to faults occurring beyond the 

DER unit. In a radial system without DG units the protection would be set up for a 

two-phase fault at the remote end of the line. Faults at the remote end would 

cause the predicted large surge of current feeding into the fault. A DER in 

between the fault and feeder substation would add to the overall fault current at 

the fault location. However, the two sources are now in parallel with respect to 

the fault, so they split the fault current contribution. As a result, the current 

increase from the substation when the fault is applied is less dramatic. This 

phenomenon, if pronounced enough, can delay protection operation, even 

preventing it from operating until the DER is taken out of service [14].  

 A case study for this protection problem is given in [13], and [15]. In this 

example the protection-blinding problem is studied in the context of a medium 

voltage microgrid system. It is likely that this problem would apply mostly to such 

medium and high voltage microgrid systems where DERs can have much larger 

generation capacities than those found in a low voltage microgrid.  

Protection Schemes 

Many protection schemes exist and each one has advantages and 

disadvantages in each application. The following is a discussion of a few 

schemes to be tested for application to microgrids. 
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Overcurrent Protection 

 Protecting electrical systems using overcurrent detection is the simplest 

and most widespread form of distribution system protection. This can be 

accomplished using either fuses or overcurrent relays and circuit breakers. This 

protection detects the increased phase or ground current, depending on how it is 

connected, which results from the sudden decrease in impedance caused by 

faults. While fuses are a type of overcurrent protection, they are not used for 

coordinated system protection. Because they are not resettable, fuses are more 

often used as a last resort for isolating equipment threatened with damage due to 

an uncleared fault.  

A combination of relays and circuit breakers are most often the choice for 

primary system protection. Circuit breakers are different from fuses in that they 

isolate faults by mechanically opening contacts instead of melting at a prescribed 

current level like a fuse. Relays control circuit breaker operation based on a 

defined operation characteristic, discussed in chapter one. These well defined 

characteristics, coordination ability, and ability to reset, make relays and breakers 

far more preferable to fuses for primary system protection. 

Overcurrent protection is in widespread use because of its low cost 

relative to other techniques. This protection strategy tends to be the least 

expensive option because it only requires CTs to operate. Other schemes may 

require voltage transformers (VTs) in order to operate. CTs are usually less 

expensive than VTs because they are not physically attached to the power line, 

whereas a VT must be rated for the full phase to ground voltage of the line. 
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Figure 2.3 a) Current transformer connection. b) Voltage transformer connection. 

 

In this case the less expensive solution is not a trade-off in reliability. 

Overcurrent protection has proven adequate for radially connected distribution 

systems, where the goal is to remove faulted lines and prevent damage to the 

distribution system and connected machines. Inverse time overcurrent relays are 

able to take advantage of the unidirectional power flow in this configuration to 

make protection coordination relatively simple [7].  

In figure 2.4 CTI refers to the coordination time interval between relay 

settings. This CTI is typically 12-15 cycles. 
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Figure 2.4 Coordination of overcurrent relays in a radial system. 

 

 

In addition to time overcurrent operation, overcurrent relays can be set to 

operate instantaneously when measured current exceeds a set limit. This sort of 

operation is useful when no coordination is required and large inrush currents are 

not expected. This instantaneous operation can also have a set time delay 

incorporated, known as a definite time element. Digital relays are typically able to 

operate in all these modes simultaneously with instantaneous and definite time 

settings above the expected inrush currents to guarantee that large fault currents 

will be detected and cleared as quickly as possible. 

Definite time 
overcurrent relay 
coordination levels 

Coordination of 
inverse time 
overcurrent relays 

Relays 
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Figure 2.5 Rules of thumb for setting overcurrent relays. 

 

Directional Overcurrent Protection 

 Directional overcurrent elements are used to supervise relay operation, 

making it sensitive only to faults in the desired direction. This is accomplished by 

comparing the measured operating current from the system to a polarizing 

quantity. Many directional relay designs exist, and each one is polarized 

differently and has different maximum torque, operation, and restraint 

characteristics.  
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Figure 2.6 a) Phasor representation of 60 degree directional element. b) Directional 
element supervision of overcurrent operation.  

 

Typical polarizing inputs are the negative sum of phase voltages,     , for 

phase-to-phase fault protection, or the neutral current on the wye connected side 

of a close by transformer,   , for ground fault protection. These are good 

polarizing signals because phase voltages keep approximately the same phase 

relationship during phase-to-phase faults and transformer neutral currents will be 

in phase with the fault current for ground faults. 

b) a) 
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Figure 2.7 Directional overcurrent relay connection. 

 

In practice, the directional element would likely be used to supervise the 

operation of an overcurrent relay, blocking operation for reverse faults.  

Differential Protection 

 Differential protection is one of the most effective protection techniques in 

use for detecting faults. It works on the same principle as the ground fault circuit 

interrupters found in homes and commercial systems. Currents entering and 

exiting the zone of protection are measured with current transformers and 

compared. If the difference between these currents is not within the range 

expected as a result of CT mismatches, internal power dissipation, and small 
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phase differences between the two measurements, then a fault is assumed to 

exist inside the zone and the differential relay will operate circuit breakers on 

both sides of the zone. Each zone would commonly be a single line or bus, but 

can include transformers and more complex arrangements. 

 

Figure 2.8 Differential relay connection. 

 

This protection scheme is very effective in most applications, and is 

insensitive to external faults. Overlapping differential schemes ensure that no 

piece of the system is left unprotected. In order to improve security, many 

differential relays use restraint windings in order to set a minimum differential 

current required to operate the relay. Further, slope characteristics are also used 

to account for CT tap mismatches and other factors that prevent measured 

currents from perfectly cancelling. For all of its benefits, the need to have CTs at 

both ends of the protection zone physically wired into a comparison circuit 

creates a practical limitation for the size of the zone to be protected. It is also 
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more expensive than an overcurrent approach due to the added hardware 

needed to implement the differential scheme. 

 

Figure 2.9 Differential operating regions with dual slope characteristic. 

 

Pilot Protection 

 Protection using communication channels, pilot relaying, behaves very 

much like differential protection. The difference is that each relay makes its own 

measurements and decisions but also coordinates with the relay at the other end 

of the line via communications, rather than comparing currents in a control circuit. 

Before the relays will actually operate, they will look for permission from the relay 
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at the other end of the line. They may operate together or individually based on 

the specific pilot protection scheme in use. 

 

Figure 2.10 Pilot protection operating logic. 

 
 Several pilot protection schemes are used for specific protection 

applications. Each has its own operating logic determining how the operation of 

one relay affects the operation of the other. Using a communication channel 

rather than a comparison circuit allows this differential-like scheme to cover 

protection zones over much longer distances. However, communication channels 

can fail and create an added expense. 
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Genetic Algorithms 

The genetic algorithm is an optimization process modeled on biological 

evolution. Genetic algorithms are not likely to produce an analytically perfect 

solution; in fact it is extremely unlikely that the perfect solution will be reached. 

However, a progressively better solution will be reached after each generation 

until an acceptable solution is reached which, though imperfect, is adequate.  

In a simple genetic algorithm, the classifier being optimized would be a 

binary string referred to as the chromosome. This chromosome is mapped to the 

features of the problem being optimized. Because the individual elements in the 

chromosome are being mapped, the order of the elements within the 

chromosome is unimportant, so long as the order remains consistent. 

Genetic algorithms use three genetic operators to control the replication process. 

These are replication, crossover, and mutation.  

The replication operator simply reproduces a parent chromosome without 

any changes. Crossover mixes elements of two chromosomes into a new 

chromosome. The intent is to account for effect of mating in the optimization 

process. In crossover, elements of a chromosome will be swapped with the 

corresponding elements in another chromosome with a probability    . The hope 

of the crossover operator is that the best elements of two chromosomes would 

be combined to form a chromosome better than either of its parents. The 

mutation operator gives each element in the new chromosome a probability      

of changing from a zero to a one [17]. 
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In practice, the set of chromosomes are randomly initialized to form a 

starting generation and each one is tested. During testing, each chromosome is 

evaluated by an objective function related to the behavior being optimized. This 

objective function, along with any additional evaluation metrics, is used to create 

a fitness function for each chromosome. All chromosomes in the generation are 

sorted based on the fitness functions and the best are replicated to create the 

next generation.  Mutation and crossover modify the chromosomes before they 

are all reevaluated. This continues until the finishing criteria are met. 

Summary 

 This chapter has presented much of the relevant subject matter for the 

modeling and testing that are conducted in the following chapters. The principles 

used for controlling real and reactive power injection along with frequency and 

voltage regulation have been discussed. Some considerations for applying these 

control strategies to microgrids have also been examined. 

 The methods of modeling microgrid systems have also been discussed 

along with ways to reduce the complexity of the model without affecting the 

results. Microgrids present many unique protection challenges, which were 

presented in this chapter. General protection strategies with possible application 

to microgrids were also examined. Finally, the generic structure of the genetic 

algorithm was detailed for use in tuning of controls. 

 Most of the topics presented in this chapter have been examined before 

either individually or with a few of the other topics. However, this thesis will be 
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bringing them all together in order to conduct protection strategy and hardware 

testing. Hardware testing related to protection is seldom conducted, making 

microgrid protection testing with real hardware a largely unexplored topic. 
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CHAPTER 3, MATERIALS AND METHODS 

 This chapter will explain how the microgrid model is designed and the 

accompanying hardware test bed is constructed. 

Microgrid Model 

 The microgrid modeled for this thesis is a simplified model of the Oak 

Ridge National Laboratory Distributed Energy Communications and Controls 

(DECC) lab microgrid. It is simplified in the sense that unbalanced sources and 

loads have been omitted. Simplified inverter models have also been substituted. 

Microgrid Structure  

 The ORNL DECC lab microgrid is a radial two-bus system spread over 

two buildings fed by 2.4 kV lines. The microgrid circuit in both buildings operates 

at 480 V.  Each building contains an inverter with 144 kW DC power supply 

powered from an independent circuit, along with resistive and inductive load 

banks more than capable of handling the maximum output from the inverters. 

 The cables in the two buildings are sized for the maximum expected load 

current supplied by the utility. This is between 300 and 350 A, so most of the 

cables are either     or     AWG. This is an adequate rating for microgrid 

operation as well. A 480 V cable also exists between the two buildings in addition 

to the 2.4 kV cable coming from the substation. This connection allows both 

buildings to operate together in microgrid mode while disconnected from the 2.4 

kV system. The cable is actually a combination of two parallel runs of 336 kcmil 
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three-conductor cable with a third two-conductor run acting as the neutral. This 

cable is rated for a combined 600 amps. 

 The DECC microgrid also has many single-phase devices which are being 

neglected in this model. These devices include battery storage, a photovoltaic 

installation, and several heat pump testing stations. These devices are being 

neglected in order to simplify the modeling and because they will introduce 

imbalances which are not yet within the scope of the protection testing. Several 

three-phase motors and a synchronous condenser are also being ignored in the 

model due to their infrequent use. The microgrid also employs a unified power 

flow controller to change the impedance of the 480 V line between the two 

buildings. In the future, it will be used to redistribute power flow in a looped 

system. This device has been neglected because modeling it in RSCAD would 

be very difficult, and the impedance of the lines is assumed to be constant during 

the small time frame the protection study is interested in.
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Figure 3.1 DECC lab microgrid model.
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Distributed Energy Resources 

 Modeling the individual power sources is not necessary for protection 

purposes. It is assumed that their power output and DC bus voltage will be 

essentially constant during the period of the fault. Therefore, it is sufficient to 

model grid-connected inverters independent of the battery bank or photovoltaic 

installation they are connected to. A solely inverter based microgrid has been 

chosen for two reasons. First, it best matches what is actually in the DECC lab 

microgrid. Second, the choice of an all inverter-based microgrid creates a worst-

case scenario for detecting off grid fault currents. Reduced fault current during 

islanding is the primary difficulty for microgrid protection. A rotating machine will 

always produce more fault current than an equally sized inverter, likely several 

times more. The choice of an all inverter model is also likely to be the most 

forward thinking scenario because it favors very heavy penetration of battery 

storage, photovoltaics, and fuel cells. 

 

Figure 3.2 RSCAD models used for modeling a) inverters and b) load banks. 

 

 

a) b) 



 

 53 

 In lieu of creating a switching model of the inverters in RSCAD, a 

controlled voltage source is being used to model the DER inverters. This choice 

allows the amount of processing power needed to run the model on RTDS to be 

reduced. Also, switching harmonics and the model of the energy source attached 

to the inverter DC bus are not necessary for studying protection.  

The controlled voltage source accepts the modulation signal that would 

normally be compared to a saw tooth waveform to generate firing pulses in a 

switching model. In essence, this controlled voltage source is an ideal inverter of 

sorts with an extremely high switching frequency, and an infinite power source on 

the DC bus. The series impedance for the voltage source is just a 2    inductor 

and the connected cables. 

Inverter switching may be ignored in this model, but the majority of the 

inverter controls used to create the modulation waveforms are still being 

modeled. The control scheme chosen is the direct power control discussed 

earlier. This control scheme is based on active and reactive power calculations in 

   coordinates shown in equations (3.1) and (3.2).  

 

             (3.1) 

 

              (3.2) 

 

The error between each measurement and its associated set point is 

minimized using proportional-integral (PI) controllers. The outputs of these 
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controllers are voltage signals in the rotating    reference frame. Using phase of 

the grid voltage measured by a PLL, these    signals are converted into polar 

form resulting in signals in    coordinates. These signals are then converted into 

three-phase voltages in the time domain. These voltage signals will be of 

different magnitude and out of phase with the grid voltage such that the desired 

amount of active and reactive power will be injected.  

 

Figure 3.3 Real and reactive power control. 

 

Frequency and voltage regulation using direct power control is just an 

extension of real and reactive power control. From the previous chapter it is 

known that carefully balancing the amount of real and reactive power injected will 

result in regulation of frequency and voltage. However, in this model the cable 

reactance is not several magnitudes larger than the resistance. Therefore, the 

relationships between        and   are no longer approximately proportional. 

This necessitates using separate PI controllers for frequency and voltage, 

instead of just a proportional gain input to the real and reactive power control. 
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Figure 3.4 Adaptation on PQ control for frequency and voltage. 

 

The DERs being modeled are inverter systems, and can only be expected 

to provide      of rated current during faults. To accomplish this, an additional 

current limiting controller is needed. Either the real and reactive power control or 

the frequency and voltage regulation control would try to ramp current output 

very high during faults so this current limiting control must be completely 

separate from the existing controllers. This control will only be used for the 

instant that the fault is present. 

 

Figure 3.5 Adaptation of PQ control for current limiting. 
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The frequency and voltage controllers are switched in or out depending on 

the status of the microgrid switch, so long as the frequency and voltage control 

are enabled. Current limiting control is switched in when measured output current 

exceeds      of the inverter current rating and a fault is present on the system. 

Should current limiting control fail to limit fault currents, the inverter will shutdown 

when the measured current reaches      of rating. For this thesis, 120% of 

normal rated load current is assumed to be the fault current magnitude. 

A black start may also be required in some cases. For this, ideal three-

phase waveforms are fed directly to the controlled voltage source for one 

second. This simply acts as a reference signal for the frequency and voltage 

control to synchronize to until they begin regulating the system on their own.  
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Figure 3.6 RSCAD inverter control model. 
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Control Tuning with Genetic Algorithm 

 

 Gains used in the PI controllers for the DER controls are tuned using a 

variation of the basic genetic algorithm structure described in chapter two. This 

method was chosen for several reasons. The first was the speed with which an 

answer was provided. This method is able to provide a solution quickly relative to 

tuning the controls by hand or with an average model. Working gain parameters 

were found for pairs of PI controllers in times ranging from one to six hours 

depending on the accuracy of the initial guesses, and the number of 

chromosomes, or sets of gains, tested in each generation. This is much faster 

than other optimization techniques. Simulated annealing, for example, could take 

almost a day to optimize the same set of controls. Increasing the number of 

chromosomes per generation in a genetic algorithm increases the chances of 

guessing a working combination, increasing the accuracy of the final result. This 

also increases the chances of making a lucky guess, finding an acceptable 

solution in the first generation of parameter sets. 

The second reason the genetic algorithm is chosen for tuning is to take 

advantage of automating the tuning process. This is advantageous because it 

allows gains to be retuned quickly every time either the controls or the microgrid 

model are significantly changed. This ability is key to the overall development of 

the control scheme, as the ideal control method is not always immediately clear 

at the beginning of the project. Automating the tuning process allows multiple 

schemes to be tested quickly and their performances compared. Automation also 
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benefits the overall process by allowing other tasks to be pursued while the gain 

tuning is taking place, allowing for progress on multiple fronts simultaneously. 

The third reason for using a genetic algorithm to automate the tuning 

process is that an analytically perfect solution is not necessarily needed for 

microgrid controls because the system topology is constantly changing. It is true 

that each possible topology has a perfect solution, which can be calculated in 

advance and applied to the controls depending on the current system topology, 

but this requires a level of effort beyond the scope of this thesis. Rather, a 

parameter set which works well over the range of expected conditions is found, 

and the system is assumed to always be operating in a configuration other that 

what the controls were optimized for. 

The genetic algorithm used to tune the controls differs from the simple 

algorithm presented in chapter two in many important areas. The chief difference 

is that the elements in each chromosome are real numbers rather than binary 

values. Because of this, the range of values used to generate the initial 

generation of chromosomes becomes very important, as initial values more than 

one or two orders of magnitude away from working values will likely not result in 

any working parameter sets. Therefore, using a range of values spanning many 

orders of magnitude is recommended. However, some experiential knowledge 

may provide some insight into the range encompassing the acceptable gain 

values, allowing better initial guesses to shorten the tuning process. 

Using real numbers instead of binary strings also changes the way the 

crossover and mutation operators function within the algorithm. The crossover 
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operator spliced whole sections of binary strings chromosomes into other 

chromosomes in the simple algorithm. The use of real numbers for the 

chromosome elements prompts the decision to treat each element independently 

with respect to crossover. This decision is based on the observation that 

proportional and integral gains likely differ by several orders of magnitude. 

Therefore, allowing a value evaluated in a position corresponding to a 

proportional gain to be inserted into a position corresponding to an integral gain 

will very likely produce an inferior result. 

The intent of the mutation operator is to introduce a helpful degree of 

randomness into the algorithm. For a binary string, this is accomplished by 

swapping binary values, ones for zeros. When using real numbers this involves 

scaling with a random number. Without this scaling, the possible values for each 

gain would be limited to the set of initial values used to initialize the algorithm. 

This scaling is based on a random value taken from a normal distribution 

centered at one with a standard deviation of one as well. The absolute value of 

this random value is used to ensure that the gains remain positive. The result of 

this is an algorithm that favors small changes in values being tested, but that 

leaves room for the occasional large change on the off chance that it will be 

beneficial. 

An additional operator included in the algorithm, which was not a part of 

the simple example given in chapter two, is tracking the overall best two 

chromosomes from all generations and reinserting them into each new 

generation unchanged. This addition was envisioned when the observation was 
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made in practice that a generation many times produced a single chromosome 

which performed significantly better than all the other chromosomes. Sometimes, 

when the top chromosomes were used to create the next generation, none of the 

new chromosomes performed as well as the outstanding chromosome from the 

previous generation. This operator is added to prevent well performing 

chromosomes from being diluted by inferior parameter sets through subsequent 

generations. 

Most of the gains used in the microgrid model controls fell in the range of 

         , making this a reliable range over which to initialize the first 

generation of chromosomes. These initial values are combined in a random 

process where each number is just as likely to be used as any other. When a full 

set of initial chromosomes is complete each number is multiplied by a different 

value taken from the normal distribution described earlier. This forms the set of 

initial parameter sets to be evaluated. 
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Figure 3.7 Results of genetic algorithm optimization process for three iterations with direct 
carryover of top two results from each generation. 

 

Each chromosome, meaning parameter set, is inserted into an RTDS 

simulation designed to highlight the behavior being optimized and an objective 

function quantifying the chromosome’s performance s measured after a set time 

passes. For this thesis, the objective function is simply the sum of the absolute 

values of the error between set points and measured values being controlled by 

the PI controllers being tuned. This is known as single objective function 

optimization; multiple function objective functions are possible if a very specific 

behavior is sought after. Because just a single objective function is used, the 

fitness function is simply the inverse of the measured objective function. This is 

where the overall best two performing chromosomes would be added. Since this 

is the first iteration of the algorithm, these two chromosomes are initialized to 
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zero and have a very low fitness function so that they will not affect the algorithm 

this first time through.  

All of the chromosomes are then sorted based on their fitness functions, 

and the top six are used to create the next generation of chromosomes. The 

chromosomes with higher fitness functions are more likely to have their elements 

used in creating this new generation. The set of new chromosomes are multiplied 

by random values from a normal distribution, as before, and the process repeats. 

 

Figure 3.8 Flowchart of tuning algorithm. 

 

Image courtesy of 

Kumaraguru 

Prabakar 
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The process continues until one of the convergence criteria is met. The 

primary convergence criterion is that the objective function of the best performing 

chromosome be below a specified small threshold, indicating that the controls 

are controlling the desired parameter very closely to the desired set point. A 

secondary convergence criterion is that the best chromosome remains 

unchanged for three generations, indicating that the optimization is stuck. This 

criterion is introduced to prevent tying up the RTDS simulator with an 

optimization that is not producing a desired result. When the best performing 

chromosome does not change for two iterations, the number of chromosomes 

created for the next generation is doubled in order to give the optimization 

process more chances to produce a desirable result.  

Hardware-In-Loop 

 The hardware-in-loop setup used for testing the microgrid protection 

strategies is built around a RTDS unit from RTDS Technologies and three SEL 

351S relays coordinated with a SEL RTAC. 

SEL 351S 

 The SEL 351S relays used in this thesis are the best selling digital relays 

in the U.S. They are well suited for overcurrent protection applications. They can 

operate in current, voltage, and pilot protection schemes. The relays also have 

several protection elements that monitor the system simultaneously. Six setting 

groups can also be predefined and swapped on the fly based on logic 
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programmed into the relays settings or by external command signals from an 

operator or automation controller. 

 Prior to this thesis the relays were not modified and were still configured to 

accept the normal CT and VT secondary side inputs. This is an issue because 

the RTDS is not capable of sourcing current from its analog outputs. Therefore, 

two options exist to provide a current input to the relays using the analog output 

signals. 

 The first option is to use power amplifiers to convert the output signals into 

current waveforms. The voltage signals would also require amplification as the 

RTDS analog outputs can only produce      . This option is not chosen 

because of the extra expense of the amplifiers and the added safety precautions 

they would likely require.  

 The second, more preferable, option is to input both the voltage and 

current measurements into the relay directly as a control signal. This approach 

bypasses the normal current and voltage inputs as well as the internal 

transformers and circuits that convert the electrical inputs into control signals 

used by the relay logic. Because the relay still expects these scaling factors to be 

in place, they must be modeled in RTDS instead.  
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Figure 3.9 RTDS analog output models accounting for analog to digital conversion inside 
relay. 

 
 The ratios of input amps and volts to control voltage that takes place in the 

normal analog to digital conversion circuit are shown in Table 3.1, obtained from 

the relay manual. The turns ratios of the internal transformers are found by 

applying a known voltage from the RTDS into the relay and observing the 

corresponding reading on the relay’s onboard HMI. The pin locations for the 

inputs, shown in figure 3.10, can be obtained from the relay manual [18]. A wiring 
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diagram for connecting the current and voltage signals to the ribbon cable 

connector is shown in the appendix. 

 

Figure 3.10 SEL 351S input pin out connections. 

 

Table 3.1 Resultant scale factors for 351S input module from relay manual. 

 

Rear Input 

Channels 

Input Channel 

Nominal 

Rating 

Input 

Value 

Corresponding 

J2 Output Value 

Scale Factor 

(Input / Output) 

            

            

1   

300   

1   

67     

45.6    

299.1    

21.92 
 

 
 

223.97 
 

 
 

 

 The circuit breaker close and trip command circuits must be handled 

differently than the voltage and current signals. Relays do not output a signal to 

trip or close circuit breakers. Instead they operate on DC current from the 

substation auxiliary power system and batteries, which power the circuit breaker 

control circuit. The relay only controls contacts, which allow the DC current to 

flow. The RTDS digital inputs require at least       of current in order to register 

logic true. Therefore, a       power supply is inserted in series with the signal in 

order to provide the current the circuit requires. These logical inputs are 



 

 68 

combined with the circuit breaker logic in RTDS. A wiring diagram for connecting 

the circuit breaker logic circuits can be found in the appendix. 

 

Figure 3.11 Inputs for circuit breaker controls from SEL 351S relays. 
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Figure 3.12 Signals between RTDS and 351S relays. 

 

 Settings for the relays are stored in text files, which can be modified and 

loaded onto the relays via either USB, serial, or Ethernet connections. The 

platform for managing the modification and downloading of these files is 

AcSELerator Quickset. This software package is freely available from SEL 

through its SEL Compass download manager. 

RTAC and HMI 

 The SEL RTAC is a common solution for automation in industrial 

applications and substations. The RTAC can operate on logic input and output 

circuits like those used on the SEL 351S relays for circuit breaker controls. 

However, the real power of the RTAC is in the serial communications ports, 

allowing for effective monitoring of relay statuses and measurements as well as 

centralized control of relay functions. 
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Figure 3.13 SEL RTAC 3530. 

 

 The RTAC described in this thesis is interfaced with both the RTDS and 

the three SEL 351S relays. The connections with the RTDS are only used to 

monitor the status of circuit breakers and the operational state of the inverters. 

The logic inputs of the RTAC are rated for       , so an additional DC power 

supply must be used to power these circuits. The signals in the simulation are 

used to control the individual digital output channels as switches in DC circuits 

wired into the RTAC inputs. A wiring diagram for this is shown in the appendix. 
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Figure 3.14 Circuit breaker and inverter status output signals to RTAC. 

 
 The RTAC is connected to the relays serially using a proprietary SEL 

communications protocol. For this thesis, a baud rate of 38400 bits per second 

was chosen because this rate is closer to the expected baud rate in a real world 

application. Much higher baud rates are available with this hardware, however. It 

is very important that the auto-detect baud rate option is not chosen when 

configuring the connections. This option appears at first to be a convenience, but 

experience has shown that this option will prevent the communications from 

operating properly. 
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 All of the RTAC settings are stored in an RTAC project file modifiable in 

the SEL AcSELerator RTAC program. Each relay has to be added in this project 

file and its communication port, protocol, and baud rate must be specified. 

Several settings have to be changed for each relay in order for the RTAC to 

function as intended in this project. The options for monitoring the voltage and 

current measurements in each relay need to be enabled. It is useful to set up an 

event server on the RTAC in order to automatically collect event reports from the 

relays every time they operate. 

 

 

Figure 3.15 Example event collection files. 

 

 The relays will not automatically accept trip and close commands sent by 

the RTAC. In order to allow these signals to be sent to the relays, a transparent 

access point and transparent access point router must be set up inside the RTAC 

for each relay to be controlled. The “Fast Operate Enable” setting must also be 

enabled in each relay’s setting file. This setting allows the relay to receive remote 

operate commands. 
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Figure 3.16 a) Relay communication settings. b) RTAC connected devices and access 
points. 

 

 The RTAC tag processor can handle basic tag mapping. However, custom 

logic programs can also be created. This is a much more powerful option and is 

used in this thesis to send circuit breaker statuses to relays. Custom logic is also 

used to initiate setting group changes in the relays based on the status of the 

microgrid switch. All of the signals for circuit breaker status and setting group 

changes is handled using relay remote bits. 

a) b) 
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Figure 3.17 Custom logic for breaker statuses and setting group changes using relay 
remote bits. 

 

   

Figure 3.18 a) Remote bits controlling relay setting group changes. b) Remote bit 
controlling the circuit breaker status signal in the relay. 

 

Creating an HMI to run on the RTAC is relatively simple. The HMI is 

created using the SEL diagram builder software. Once all of the loaded tags on 

the RTAC are imported into the diagram builder, associating signals with meters, 

trends, and breaker controls is straightforward. The breakers that do not have a 

real relay controlling them are represented with a breaker status block tied to the 

status of one of the logic inputs connected to the RTDS, while an annunciator tile 

represents the breakers associated with the SEL 351S relays. The annunciator 

a) b) 
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tile allows controls and trends associated with that breaker to be displayed on the 

child diagram instead of cluttering the one line diagram. 

 When opened in the RTAC web browser, the HMI allows for all of the 

relevant variables associated with the three relays to be monitored in real time. 

The HMI also allows breakers to be opened and closed remotely without making 

direct changes to the simulation. This means that the relays will document the 

event in an event report stored on the relay. Event reports can be obtained from 

the RTAC web interface for analysis of the protection’s performance. 

 

 

Figure 3.19 RTAC HMI one line diagram. 
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Figure 3.20 RTAC HMI relay child diagram. 

Summary 

This chapter has detailed the process of modeling the ORNL DECC lab 

microgrid. The modified genetic algorithm used to tune the DER inverter controls 

is also described in detail. Connections, settings, and control logic used to 

configure the relays, RTAC, and their connections to RTDS are also detailed. 
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CHAPTER 4, RESULTS AND DISCUSSION 

 Using the model and hardware presented, potential microgrid protection 

strategies are evaluated. This is done by applying faults on the buses in each of 

the two buildings that make up the microgrid. In each of these tests, the delay of 

operation for each relay is measured in order to assess whether or not the 

appropriate relays operate, and that those relays are operating within an 

acceptable time range.   

Time Overcurrent Protection 

The first protection scheme to be tested is a single setting overcurrent 

scheme using a time overcurrent characteristic and no directional control. This 

scenario is analogous to converting a portion of a distribution system into a 

microgrid without giving any consideration to protection modifications. In this 

case the protection is set for the expected utility fault current. Because, only 

three physical relays are available at the time of testing, so all other relays are 

being modeled in RSCAD. Relay settings are shown in table 4.1. 
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Table 4.1 Overcurrent relay settings. 

Relay # Curve Type 

Physical 

Relay? Ipickup TD 

1 

2 

3 

4 

5 

U4 

U5 

U4 

U4 

U5 

Y 

Y 

Y 

N 

N 

12.0 

3.0 

12.0 

12.0 

3.0 

4.0 

0.75 

2.52 

1.25 

0.75 

 
 
 To test this protection scheme, faults are applied on each of the two buses 

in the microgrid and the cable between the two buses as well as on a bus outside 

the microgrid. Three phase faults are applied by inserting an extremely small 

resistance between the lines and ground, and the response times of the relays 

measured. The results are shown in the following table and figures. 

 

Table 4.2 Overcurrent protection operating times. 

 

 3 Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - 14.6 - - 16.4 
Building 3114 22.1 15.7 - - 15.7 
Building 3129 - - - 15.1 15.3 

Between Buildings - - 18.5 - 16.2 

Off Grid 

External - - - - - 
Building 3114 - 14.0 - - 15.0 
Building 3129 - 14.1 - - 15.1 

Between Buildings - 14.2 - - 15.2 
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Figure 4.1 a) Fault in building #3114 while on grid. b) Fault in building #3114 while off grid. 

 

 

Figure 4.2 a) Building #3114 bus voltages during fault in building #3114 while on grid. b) 
Building #3114 inverter rms current output during fault. c) Inverter current passing 
through circuit breaker 2 during fault.  

a) b) 
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Figure 4.3 a) Fault in building #3129 while on grid. b) Fault in building #3129 while off grid. 

 

 

Figure 4.4 a) Building #3114 bus voltages during fault in building #3129 while on grid. b) 
Building #3114 inverter rms current output during fault. c) Building #3114 inverter current 
passing through circuit breaker 2. 
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Table 4.2 shows that external faults are not detected by relay 1, resulting 

in the shutdown of both DERs. This is because relay 1 is set in anticipation of the 

large fault current provided by the utility but only measures the fault current 

produced by the DERs. For these inverter-based systems, there’s a full order of 

magnitude difference between the two. Only relays 2 and 5 are set to detect the 

DER fault currents, so only they operate. When the same fault is applied on the 

bus in building #3114 relays 2 and 5 operate the same, shown in figure 4.1 a), 

but now relay 1 observes the utility fault current and operates. Figure 4.1 shows 

that relays 3 and 4 fail to operate in both the on and off grid cases. This is 

because they are observing DER fault current in both cases and do not operate 

because they are set for utility fault current. Were this a normal distribution 

system, only opening the breaker upstream from the fault would be adequate 

because no DERs would be present. However, now that DERs are present, it is 

preferable for relay 3 to operate so that building #3129 can remain in operation.  

Figure 4.2 a) shows the phase voltages on the faulted bus, which collapse 

to zero when the fault is applied as expected. Figure 4.2 b) shows that the 

inverter output during the fault is held at 1.2 per unit until the trip signal is 

received from relay 2, causing the inverter to be shut down when the circuit 

breaker opens. Figure 4.2 c) simply shows the inverter output current flowing 

through circuit breaker 2. 

Table 4.2 shows that a fault applied in building #3129 while on grid is 

isolated well from the rest of the system. This happens because the fault is 

occurring at the end of a radial distribution line so the normal distribution 
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protection methodology works well in this case. However, figure 4.3 b) shows 

that an off grid fault in building #3129 has the same result as a fault in building 

#3114 while off grid.  

From this test it is observed that this time overcurrent strategy works well 

to detect fault current provided by the utility, but struggles to detect fault current 

provided by inverters. Relays protecting each inverter are able to detect their 

fault current adequately because the fault current provided by them does not 

change from on grid to off grid operation. However, the current measured by 

relays on the line between the two buses during faults changes immensely. As a 

result, a fault in the microgrid while off grid will not be isolated and the inverters 

will eventually shut down because of the sustained fault current being provided. 

This scenario is unlikely to damage any part of the system outside of the 

inverters themselves because the system is designed for utility fault currents.  

Also, because this microgrid is radial, a fault occurring on the bus where 

the microgrid connects to the utility is only cleared on the utility side because the 

fault current on the microgrid side is inverter fault current and the protection is set 

for utility fault current. If it is acceptable that a fault inside the microgrid will cause 

a total loss of the system, then there is no need to modify protection. However, 

continuing to serve as many loads as possible is the motivation for creating 

microgrids in the first place, so failing to isolate faults is unacceptable. Therefore, 

leaving existing protection unmodified is not a viable option. 
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Variable Setting Overcurrent 

Variable setting overcurrent protection is different from the previous time 

overcurrent scheme only in that it is configured to change protection settings 

when the microgrid is disconnected from the grid. This allows protection settings 

to be developed specifically to protect the microgrid and switched in when the 

utility connection is severed. This is accomplished using two distinct setting 

groups and an automation controller to initiate the setting change. This 

configuration represents the minimum additional investment possible that 

attempts to address the protection challenges associated with microgrids. As in 

the previous scenario, three relays are physical hardware and the others are 

modeled in RSCAD.  

 

Table 4.3 Variable setting overcurrent relay settings. 

Relay # Physical Relay? 

Setting Group 1 Setting Group 2 

Curve Type Ipickup TD Curve Type Ipickup TD 

1 

2 

3 

4 

5 

Y 

Y 

Y 

N 

N 

U4 

U5 

U4 

U4 

U5 

12.0 

3.0 

12.0 

12.0 

3.0 

4.0 

0.75 

2.52 

1.25 

0.75 

U4 

U5 

U5 

U5 

U5 

12.0 

3.0 

3.0 

3.0 

3.0 

4.0 

0.75 

0.5 

0.5 

0.75 
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 To test this protection scheme, faults are applied on each of the two buses 

in the microgrid and the cable between the two buses. Three phase faults are 

applied and the response times of the relays measured. The results are shown in 

the following table and figures. 

 

Table 4.4 Variable setting overcurrent protection operating times. 

 

 

   

Figure 4.5 a) Fault in building #3114 while on grid. b) Fault in building #3114 while off grid. 

 3 Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - 15.5 - - 17.4 
Building 3114 21.0 14.9 - - 15.0 
Building 3129 - - - 15.3 15.3 

Between Buildings - - 18.7 - 15.1 

Off Grid 

External - - - - - 
Building 3114 - 14.7 11.3 10.4 - 
Building 3129 - - 10.3 10.0 14.9 

Between Buildings - - 10.0 10.5 - 

a) b) 
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Figure 4.6 a) Building #3114 bus voltages during fault on that bus while off grid. b) 
Building #3114 inverter rms current output during fault. c) Building #3114 inverter current 
passing through circuit breaker #2. 

 

From this test it is observed that this time overcurrent strategy continues 

to detect fault current supplied by the utility. There is no need to change settings 

on the relays protecting the inverters as their fault current contribution does not 

change for off grid faults. The difference is that relays protecting lines in the 

microgrid are now set to operate on fault currents coming from the inverters after 

the system disconnects from the utility. These modified settings allow faults to be 

effectively isolated in most cases.  

This configuration resolves some, but not all, of the shortcomings 

associated with leaving protection unmodified. For instance, it is unable to 

effectively isolate a fault on the bus with the utility connection while the microgrid 

is connected, shown in figure 4.5 a). This is because when the fault is applied, 
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the relays are set for utility fault current. By the time the settings are switched, 

the inverters have already been taken off line. Also, relays between the two 

buses operate together for off grid faults. This is not a dramatic problem, as the 

fault is isolated. Yet, it is generally desirable that only one relay on the line 

operate when the line itself is not faulted. While this configuration performs better 

than the unaltered configuration, it is still not able to protect for every possible 

fault contingency. 

Variable Setting Overcurrent With Directional Control 

 Application of directional control on relays protecting the cable between 

the two buildings in the microgrid promises to allow these relays to discriminate 

between utility fault current and inverter fault current when faults occur while grid 

connected. This is observed as an issue for faults occurring on the microgrid 

cable and the bus connecting the microgrid to the utility. When these faults occur, 

the grid fault current is easily recognized and the appropriate circuit breaker 

opens, however, the relays inside the microgrid are set to detect utility fault 

current moving from one bus to the other. In this situation, the inverter attached 

to the second bus is feeding the fault, but the relays that should isolate the 

inverter do not detect the fault current.  

 By applying directional control, two setting levels can monitor system 

currents simultaneously. Using the relay at circuit breaker 4 as an example, the 

first level is polarized forward into the bus and used to supervise a time 

overcurrent element set for utility fault current. The second level is reverse 
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polarized toward the cable and used to supervise a time overcurrent element set 

much lower to detect inverter fault current. 

 This seems to be an elegant solution, however during implementation 

several problems arise. One being the lack of a wye connected transformer 

inside the microgrid. Neutral current from a transformer wye winding is a very 

good polarizing source for directional control as the neutral current is zero-

sequence and flows toward the fault. The absence of this polarizing source 

forces the use of voltage from a broken delta instrument transformer as a 

polarizing source. 

This introduces the second and third problems, the need to add VTs, and 

loss of the polarizing source during faults. VTs are being avoided in this thesis for 

their additional cost and drain on the system. Voltage polarizing will not work in 

this system because it is compact and has very little impedance between buses. 

As a result, faults inside the microgrid reduce voltage to near zero across the 

system. Therefore there is no longer a voltage to polarize the directional control 

with, as shown in figure 4.7. Thus, the directional control is expected to 

disappear precisely when it is needed. Attempts to apply directional control 

despite these serious concerns were unsuccessful. However, it is worth noting 

that directional control does not work for this very specific microgrid structure. 

Larger microgrids with larger impedances between buses and transformers 

providing a polarizing source may prove better suited for directional control.  



 

 88 

 

Figure 4.7 All voltage measurements inside microgrid are reduced to zero during faults. 

 

Variable Setting Overcurrent With Bus Differential 

This protection scheme is based on the variable setting overcurrent 

scheme tested previously but uses a differential relay to resolve issues that arise 

when faults occur on the bus connecting the microgrid to the utility. The time 

overcurrent settings change based on the status of the microgrid switch, while 

the differential relay requires no setting change. This is because the differential 

relay is only concerned with the balance of current entering and leaving the bus. 

This configuration makes use of CTs, but additional CTs would likely need 

to be added to accommodate the differential since the time overcurrent relays are 

using the existing CTs. Therefore, this scheme has the additional cost of the CTs 
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and the differential relay itself. Like previous scenarios, three relays are physical 

hardware and the others are modeled in RSCAD, including the differential relay.  

 To test this protection scheme, faults are applied on each of the two buses 

in the microgrid and on the cable between the two buses. Three phase faults are 

applied, and the response times of the relays measured. The results are shown 

in the following table and figures. 

Table 4.5 Variable setting overcurrent protection with bus differential relay 
operating times. 

 

 3 Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - 14.6 - - 16.0 
Building 3114 3.0 3.0 3.0 - - 
Building 3129 - - - 14.9 15.3 

Between Buildings - - 18.2 - 15.1 

Off Grid 

External - - - - - 
Building 3114 - 2.4 2.4 - - 
Building 3129 - - 10.5 9.2 15.0 

Between Buildings - - 10.1 10.0 - 
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Figure 4.8 a) Fault in building #3114 while on grid. b) Fault in building #3114 while off grid. 

 

   

Figure 4.9 a) Fault on the microgrid cable while on grid. b) Fault in the microgrid cable 
while off grid. 

a) b) 

a) b) 
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From this test it is observed that this time overcurrent strategy continues 

to work for protection from on grid fault current. Inverters are still protected, 

preventing them from continually feeding external faults. The relays protecting 

lines in the microgrid are set to operate on fault currents coming from the 

inverters after the system disconnects from the utility. The only failure of this 

scheme is that a fault on the microgrid cable while grid connected will only be 

cleared from one end, shown in figure 4.9. This is the same result that prompted 

the addition of a differential relay to the bus, to successfully isolate bus faults 

while grid connected. This result suggests that the addition of differential 

protection on the microgrid cable would allow the microgrid protection to protect 

against all three-phase microgrid faults.  

Differential Overcurrent Protection 

The preceding protection strategy shows the benefit of differential 

protection in microgrids. However, it is desirable to avoid replacing existing 

protection hardware in order to convert an existing system into a microgrid. 

Therefore, completely replacing existing overcurrent protection with differential 

relays is a possible, though less desirable, solution. In order to resolve the 

desires for effective microgrid protection and minimizing costs, the notion of an 

overcurrent based differential scheme is being tested. Appropriately choosing CT 

polarities and wiring multiple CTs together creates a differential protection 

scheme that makes use of overcurrent relays. 
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Take a bus differential scheme as an example; all CTs are oriented with 

their polarities directed into the bus. By then wiring all phase A, B, and C, CT 

connections into the corresponding secondary current inputs on an overcurrent 

relay, the relay measures the differential, rather than line, current for that bus. 

During normal operation, no differential current will be observed by the relay. 

This is because buses can be assumed to be lossless, and have constant 

voltage and phase along their span. Losses, voltage mismatches, phase 

differences, and multi-terminal lines are the major reasons for having specially 

designed differential relays capable of compensating for these differences. 

However, the system being tested does not have any of these considerations. 

When a fault occurs, a      , sinusoidal differential waveform is observed 

by the overcurrent relay, shown in figures 4.10 and 4.11. The magnitude of the 

waveform is the difference in instantaneous current entering and exiting the bus. 

This is because wiring the CTs together has the effect of cancelling the currents 

passing through the zone of protection, leaving the currents feeding faults inside 

the zone. The waveforms will correspond to the faulted phases. For instance, a 

three-phase fault will produce a balanced three-phase differential current, single 

phase faults produce single phase differential current, and phase to phase faults 

produce two differential waveforms      out of phase with each other. To the 

relay, these appear no different than normal fault currents. 

 



 

 93 

 

Figure 4.10 Three-phase differential current observed by the relay for a three-phase fault 
while grid connected.  

 

Figure 4.11 Three-phase differential current observed by the relay for a three-phase fault 
while off grid. 
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The benefit is that measured differential current is zero under normal 

operation. This allows a very low current pickup to be selected without fear of 

tripping on load current, energizing, or islanding. The fact that this protection 

scheme operates on differential current makes it insensitive to faults outside the 

protection zone. As a result, there is no need to coordinate with other protection, 

allowing either the minimum time dial setting, or even an instantaneous 

characteristic to be selected. This allows internal faults to be cleared extremely 

quickly.  

 To test this protection scheme, faults are applied on each of the two buses 

in the microgrid and on the cable between the two buses. Three phase faults are 

applied, and the response times of the relays measured. The results are shown 

in the following tables and figures. All overcurrent characteristics are set to their 

minimum settings,       pickup current and           time dial. The 

instantaneous overcurrent elements are set to       pickup as well. 

Table 4.6 Differential overcurrent protection operating times for three-
phase faults using very inverse (U3) curve. 

 

 Three-Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - 21.3 - - 21.8 
Building 3114 4.9 4.9 4.9 - - 
Building 3129 - - - 5.8 5.8 

Between Buildings - - 5.2 5.2 - 

Off Grid  

External - - - - - 
Building 3114 - 6.2 6.2 - - 
Building 3129 - 16.5 - - 19.9 

Between Buildings - 15.9 - - 19.1 
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Table 4.7 Differential overcurrent protection operating times for single-
phase faults using very inverse (U3) curve. 

 

Table 4.8 Differential overcurrent protection operating times for three-
phase faults using extremely inverse (U4) curve. 

 

Table 4.9 Differential overcurrent protection operating times for single-
phase faults using extremely inverse (U4) curve. 

 

  

 Single Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - - - - - 
Building 3114 4.7 4.7 4.7 - - 
Building 3129 - - - 6.2 6.2 

Between Buildings - - 6.0 6.0 - 

Off Grid  

External - - - - - 
Building 3114 - 5.9 5.9 - - 
Building 3129 - 17.0 16.5 16.5 - 

Between Buildings - 15.8 15.7 15.7 - 

 Three-Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - 20.9 - - 23.1 
Building 3114 4.2 4.2 4.2 - - 
Building 3129 - - - 3.8 3.8 

Between Buildings - - 3.7 3.7 - 

Off Grid  

External - - - - - 
Building 3114 - 3.7 3.7 - - 
Building 3129 - 21.2 - - 19.7 

Between Buildings - 16.1 - - 19.5 

 Single Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - - - - - 
Building 3114 3.3 3.3 3.3 - - 
Building 3129 - - - 4.4 4.4 

Between Buildings - - 4.4 4.4 - 

Off Grid  

External - - - - - 
Building 3114 - 3.9 3.9 - - 
Building 3129 - 16.8 - - 19.7 

Between Buildings - 15.6 18.9 18.9 - 
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Table 4.10 Differential overcurrent protection operating times for three-
phase faults using short-time (U5) curve. 

 

 

Table 4.11 Differential overcurrent protection operating times for single-
phase faults using short-time (U5) curve. 

 

Table 4.12 Differential overcurrent protection operating times for three-
phase faults using instantaneous overcurrent characteristic. 

 
  

 Three-Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - 19.8 - - 22.7 
Building 3114 3.3 3.3 3.3 - - 
Building 3129 - - - 4.2 4.2 

Between Buildings - - 3.9 3.9 - 

Off Grid  

External - - - - - 
Building 3114 - 3.7 3.7 - - 
Building 3129 - - - 6.0 6.0 

Between Buildings - - 5.7 5.7 - 

 Single Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - - - - - 
Building 3114 3.4 3.4 3.4 - - 
Building 3129 - - - 4.5 4.5 

Between Buildings - - 3.7 3.7 - 

Off Grid  

External - - - - - 
Building 3114 - 3.4 3.4 - - 
Building 3129 - - - 7.5 7.5 

Between Buildings - - 7.1 7.1 - 

 Three-Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - 21.2 - - 22.4 
Building 3114 3.1 3.1 3.1 - - 
Building 3129 - - - 2.8 2.8 

Between Buildings - - 3.3 3.3 - 

Off Grid  

External - - - - - 
Building 3114 - 3.2 3.2 - - 
Building 3129 - - - 3.6 3.6 

Between Buildings - - 3.7 3.7 - 
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Table 4.13 Differential overcurrent protection operating times for single-
phase faults using instantaneous overcurrent characteristic. 

 

 

  

Figure 4.12 a) Fault on microgrid cable while on grid. b) Fault on microgrid cable while off 
grid. 

 

This test demonstrates that a completely differential protection scheme is 

desirable for microgrid applications. Three and single-phase faults are 

successfully cleared for all locations inside the microgrid. The test also 

demonstrates that using overcurrent relays to monitor differential current works 

 Single-Phase Fault Protection Operation Delay (Cycles) 

Status Location Relay #1 Relay #2 Relay #3 Relay #4 Relay #5 

On Grid 

External - - - - - 
Building 3114 3.3 3.3 3.3 - - 
Building 3129 - - - 3.3 3.3 

Between Buildings - - 3.6 3.6 - 

Off Grid  

External - - - - - 
Building 3114 - 3.3 3.3 - - 
Building 3129 - - - 2.8 2.8 

Between Buildings - - 3.8 3.8 - 
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well for protecting the buses and short lines comprising the ORNL microgrid 

system. Based on the results it is apparent that either an instantaneous or short 

time overcurrent characteristic is the preferable choice of operating 

characteristic. This test does not, however, offer a solution for isolating the 

microgrid from external faults. Yet, differential protection need only be 

implemented up to a delta-wye transformer where directional relay can be 

polarized using the transformer neutral current.  

Because this is essentially a differential protection scheme, there is no 

need for setting group changes, or even digital relays, in order to implement this 

specific scheme. The result of this is that existing systems can be retrofitted as 

microgrids and existing overcurrent and instantaneous electromechanical relays 

can be repurposed for use in differential overcurrent protection. A consideration 

in evaluating each protection technology has been cost. This scheme has very 

low cost because it makes use of protection devices likely already in use in 

systems to be retrofitted as microgrids.   

Summary 

This chapter demonstrates the inadequacy of leaving protection 

unchanged when converting a distribution system into a microgrid. It is also 

shown that variable setting overcurrent protection protects well for islanded faults 

but is unable to isolate microgrid faults from the inverters while grid connected. 

Directional supervision is shown not to be a workable solution for this system. 
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However, it remains a possible solution for systems with larger impedances or 

those containing wye connected transformer windings with a grounded neutral.  

The benefit of differential protection for microgrid applications is apparent 

from testing. It is also shown that overcurrent relays can be secure, selective, 

and rapid in clearing microgrid faults.  
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CHAPTER 5,  CONCLUSIONS AND FUTURE WORK 
 

 
Several protection technologies and strategies have been evaluated for 

their effectiveness in microgrid protection. The process for constructing a real 

time, hardware in loop microgrid protection apparatus has also been developed. 

Conclusions 

 

 The protection challenges introduced in microgrid systems require more 

complex and innovative solutions than those encountered in a standard 

distribution system. Microgrids will likely see use in military installations, 

emergency shelters, hospitals, and other critical loads before gaining wide 

acceptance in residential, commercial, and industrial systems. The criticality of 

these loads makes allowing sources to self isolate from faults and black-starting 

the microgrid impractical and unacceptable.  

Therefore, a differential protection scheme is the preferable choice for low 

voltage microgrids where systems are compact and faults affect the entire 

microgrid. When funding for overhauling protection systems when converting to a 

microgrid is a problem, short time overcurrent and instantaneous overcurrent 

relays are an acceptable option for implementing the differential scheme. 

However, backup protection is always a requirement. This backup protection on 

low voltage systems should consist of overcurrent protection able to change 

settings for on and off grid conditions. This backup will not be as selective as the 

differential scheme, but it is able to isolate faults well in most cases. It is worth 
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noting that these conclusions are based on testing conducted on a radially 

connected, low voltage microgrid. Meaning that other options including voltage 

and directional protection may still be viable options for different microgrid 

voltage levels and configurations. It is also worth noting that this testing was 

conducted on totally inverter-based system. Systems with rotating machines will 

have larger off grid fault currents, making protection requirements less difficult to 

satisfy. Also, the inverter control methodology has a significant impact on the 

behavior of inverters during faults, which, in turn, affect the protection 

requirements. 

The main contributions of this thesis are, results of hardware-in-the-loop 

protection testing, an exploration of microgrid and protection modeling 

techniques, and an apparatus for studying protection and hardware integration 

into the ORNL DECC Lab microgrid. Results of protection testing involving 

physical relays are hard to come by, and this thesis provides valuable results on 

protection schemes likely to be considered for low voltage microgrid installations. 

Furthermore, the testing apparatus developed for this thesis can be reproduced 

and is easily applicable to additional protection testing for microgrids and 

traditional power systems. Also, this thesis is a useful resource for design of 

microgrid simulations, controls, and testing, particularly with low voltage 

microgrids.  
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Future Work 

 

 Variable setting overcurrent is recommended for use as a backup to the 

differential scheme. This scheme relies on communication channels to initiate 

setting group changes. If a differential scheme has failed, it is possible that 

communication channels may fail as well. Therefore, it is preferable that relays 

detect the need to change settings autonomously. One method of accomplishing 

this is based on negative sequence current. Relays typically see large negative 

sequence current from the utility, but this is diminished when the microgrid 

disconnects from the utility. Relay settings can be developed to use negative 

sequence to supervise overcurrent elements. Loss-of-potential logic could be 

used in a similar way to supervise protection settings. 

Another possibility is to use islanding detection schemes in inverters to 

detect when the microgrid disconnects from the utility. When islanding is 

detected, inverters can be set to output a specific magnitude of negative 

sequence current. Again, this current is picked up by the relays and settings are 

adjusted appropriately. 

 The testing in this thesis was conducted on a very specific type of 

microgrid. Now that the hardware is in place and the model constructed, it will be 

beneficial to conduct similar testing on microgrids at different voltage levels, 

configurations, and with different mixes of inverter-based and rotating sources. 
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Summary 

This chapter concludes that differential protection is the preferable solution 

for low voltage microgrid protection. It also concludes that variable setting 

overcurrent protection is likely the best choice for backing up the differential 

protection. This scheme relies on communication channels, so it is also stated 

that future work should include testing methods to remove the dependency upon 

communication channels. Future work should also include conducting similar 

testing on different voltage levels and microgrid configurations. 
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Relay ribbon cable connections: 

 
  

Wiring Diagram For Relay Analog Signals
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Analog signal outputs from RTDS: 
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Relay logic connections: 

 

 

  

Wiring Diagram For Relay Breaker Control Signals
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Relay logic signal I/O in RTDS: 
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Genetic algorithm for control tuning: 

CHAPTER 1, CLEAR ALL 
CHAPTER 2, CLOSE ALL 
CHAPTER 3, CLC 
CHAPTER 4,  
CHAPTER 5, FORMAT LONG G 
CHAPTER 6,  
CHAPTER 7, %% SET NUMBER OF PARAMETERS, GENERATIONS, AND CHILDREN 
PER GENERATION 
CHAPTER 8, GLOBAL JTCPOBJ T 
CHAPTER 9,  
CHAPTER 10, T = CPUTIME; 
CHAPTER 11,  
CHAPTER 12, GAINS = 4; 
CHAPTER 13, CHILD = 100; 
CHAPTER 14,  
CHAPTER 15, %% IMPLEMENT GENETIC ALGORITHM 
CHAPTER 16, JTCPOBJ = JTCP('REQUEST','127.0.0.1',4570); 
CHAPTER 17,  
CHAPTER 18, I = 0; 
CHAPTER 19, FLAG = 0; 
CHAPTER 20, B = 1000*ONES(6,1); 
CHAPTER 21, NEW_GEN = REPMAT([1E2;1E1;1E0;1E-1;1E-2;1E-3;],1,GAINS); 
CHAPTER 22, FITNESS = B; 
CHAPTER 23, HOLDOVER = REPMAT([1E6,0,0,0,0,0,0,0,0],2,1); 
CHAPTER 24, WHILE B(1) > .01 && FLAG == 0 
CHAPTER 25,     B 
CHAPTER 26,     I = I+1; 
CHAPTER 27,     CHILDREN = ZEROS(CHILD,GAINS); 
CHAPTER 28,     FOR II = 1:CHILD 
CHAPTER 29,         FOR III = 1:GAINS  % CROSSOVER , PRODUCING CHILDREN FROM 
COMBINATIONS OF PARENTS WITH LIKLIHOOD OF BEING USED PROPORTIONAL TO 
THE FITNESS FUNCTION 
CHAPTER 30,             INDEX = RANDOM('UNIFORM',0,SUM(FITNESS(:,1))); 
CHAPTER 31,             IF INDEX <= FITNESS(1,1) 
CHAPTER 32,                 CHILDREN(II,III) = NEW_GEN(1,III); 
CHAPTER 33,             ELSE IF INDEX <= SUM(FITNESS(1:2,1)) 
CHAPTER 34,                     CHILDREN(II,III) = NEW_GEN(2,III); 
CHAPTER 35,                 ELSE IF INDEX <= SUM(FITNESS(1:3,1)) 
CHAPTER 36,                         CHILDREN(II,III) = NEW_GEN(3,III); 
CHAPTER 37,                     ELSE IF INDEX <= SUM(FITNESS(1:4,1)) 
CHAPTER 38,                             CHILDREN(II,III) = NEW_GEN(4,III); 
CHAPTER 39,                         ELSE IF INDEX <= SUM(FITNESS(1:5,1)) 
CHAPTER 40,                                 CHILDREN(II,III) = NEW_GEN(5,III); 
CHAPTER 41,                             ELSE %IF INDEX <= SUM(FITNESS(1:6,1)) 
CHAPTER 42,                                 CHILDREN(II,III) = NEW_GEN(6,III); 
CHAPTER 43,                             END 
CHAPTER 44,                         END 
CHAPTER 45,                     END 
CHAPTER 46,                 END 
CHAPTER 47,             END 
CHAPTER 48,         END 
CHAPTER 49,     END 

CHAPTER 50,  
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CHAPTER 51, CHILDREN = CHILDREN.*ABS(RANDOM('NORMAL',1,1,CHILD,GAINS)); % 
MUTATION , MULTIPLYING EACH ELEMENT BY A RANDOM NUMBER FROM A CHI-
SQUARED DISTRIBUTION, 
CHAPTER 52,     % I'M NOT SURE IF THIS IS A GOOD WAY TO DO THE MUTATION 
CHAPTER 53,      
CHAPTER 54,     OBJECTIVE = ZEROS(CHILD,1); 
CHAPTER 55,     FOR II = 1:CHILD 
CHAPTER 56,         FPRINTF('\N%S%D','GENERATION: ',I) 
CHAPTER 57,         FPRINTF('\N%S%D\N','PARAMETER SET: ',II) 
CHAPTER 58,         FPRINTF('%S\N',DATESTR(CLOCK)) 
CHAPTER 59,         X = CHILDREN(II,:); % ITERATE THROUGH LIST OF CHILDREN 
PARAMETER SETS 
CHAPTER 60,         % SEND TO RTDS 
CHAPTER 61,         OBJECTIVE(II,:) = GET_OBJ(X,I,II); % REPLACE WITH OBJECTIVE 
FUNCTION FROM RTDS 
CHAPTER 62,     END 
CHAPTER 63,      
CHAPTER 64,     I = OBJECTIVE == 0; 
CHAPTER 65,     OBJECTIVE(I) = 100000; 
CHAPTER 66,      
CHAPTER 67,     FOR III=1:2 
CHAPTER 68,         ROW = 
[HOLDOVER(III,2),HOLDOVER(III,3),HOLDOVER(III,4),HOLDOVER(III,5)]; 
CHAPTER 69,         OBJECTIVE = [OBJECTIVE;HOLDOVER(III,1)]; 
CHAPTER 70,         CHILDREN = [CHILDREN;ROW]; 
CHAPTER 71,     END 
CHAPTER 72,     [B,I] = SORT(OBJECTIVE,'ASCEND');   % SORT PARAMETER SETS 
FROM BEST TO WORST BASED ON THE OBJECTIVE FUNCTION 
CHAPTER 73,     NEW_GEN = CHILDREN(I(1:6),:);   % USE TOP 10 SETS TO PRODUCE 
NEXT GENERATION 
CHAPTER 74,     FITNESS = ONES(6,1)./B(1:6); 
CHAPTER 75,     BEST(I,:) = NEW_GEN(1,:) 
CHAPTER 76,      
CHAPTER 77,     HOLDOVER = CAT(2,OBJECTIVE(I(1:2)),NEW_GEN(1:2,:)); 
CHAPTER 78,      
CHAPTER 79,     AVG_BEST(I,:) = MEAN(NEW_GEN,1); 
CHAPTER 80,     ACCURACY(I,1) = B(1) 
CHAPTER 81,      
CHAPTER 82,     CSVWRITE('TUNING_RESULTS.CSV',CAT(2,ACCURACY,BEST)); 
CHAPTER 83,     IF LENGTH(ACCURACY)>2 
CHAPTER 84,         IF ACCURACY(I) == ACCURACY(I-2) 
CHAPTER 85,             FLAG = 1; 
CHAPTER 86,         END 
CHAPTER 87,     END 
CHAPTER 88, END 
CHAPTER 89,  
CHAPTER 90, JTCP('CLOSE',JTCPOBJ); 
CHAPTER 91, DISP('ITERATION FINISHED.'); 
CHAPTER 92, E = CPUTIME-T; 

CHAPTER 93, MSG2 = SPRINTF('TOTAL EXECUTION TIME: %F', E/60) 
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Function for passing gains to simulation: 

CHAPTER 94, FUNCTION F = GET_OBJ(X,I,J) 
CHAPTER 95, %% 
CHAPTER 96, % TALK WITH RSCAD WITH 'LISTENONPORT' CAPABILITY 
CHAPTER 97, % THIS M FILE SHOULD BE ON THE SAME DIRECTORY AS THE 'JTCP.M' 
FILE. 
CHAPTER 98, % PART OF THE .M FILE IS BORROWED FROM RSCAD TRAINING FILES 
CHAPTER 99, % THIS .M FILE WILL GENERATE A FITNESS FUNCTION FOR GA 
OPTIMIZATION 
CHAPTER 100, % PIK-2012.03.05 (FOR THE RTDS PART) 
CHAPTER 101, % CREATED BY KUMARAGURU PRABAKAR 
CHAPTER 102, %% 
CHAPTER 103, EXPR2 = 'OBJ\S*=\S*(?<VAR_VALUE1>(-)?\D+(.\D+)?)\S*END'; 
CHAPTER 104,  
CHAPTER 105, GLOBAL JTCPOBJ 
CHAPTER 106, DISP(' '); 
CHAPTER 107,  
CHAPTER 108, MSG2 = SPRINTF('SETSLIDER "DRAFTVARIABLES : G2KPF" = %.8F;', 
X(1)); 
CHAPTER 109, DISP(MSG2); 
CHAPTER 110, JTCP('WRITES', JTCPOBJ, MSG2); 
CHAPTER 111,  
CHAPTER 112, MSG2 = SPRINTF('SETSLIDER "DRAFTVARIABLES : G2KIF" = %.8F;', 
X(2)); 
CHAPTER 113, DISP(MSG2); 
CHAPTER 114, JTCP('WRITES', JTCPOBJ, MSG2); 
CHAPTER 115,  
CHAPTER 116, MSG2 = SPRINTF('SETSLIDER "DRAFTVARIABLES : G2KPV" = %.8F;', 
X(3)); 
CHAPTER 117, DISP(MSG2); 
CHAPTER 118, JTCP('WRITES', JTCPOBJ, MSG2); 
CHAPTER 119,  
CHAPTER 120, MSG2 = SPRINTF('SETSLIDER "DRAFTVARIABLES : G2KIV" = %.8F;', 
X(4)); 
CHAPTER 121, DISP(MSG2); 
CHAPTER 122, JTCP('WRITES', JTCPOBJ, MSG2); 
CHAPTER 123,  
CHAPTER 124, JTCP('WRITES',JTCPOBJ,'START;'); 
CHAPTER 125,  
CHAPTER 126, JTCP('WRITES',JTCPOBJ,'SUSPEND 10;'); 
CHAPTER 127, JTCP('WRITES',JTCPOBJ,'TEMP_FLOAT = METERCAPTURE("OBJ");'); 
CHAPTER 128, JTCP('WRITES',JTCPOBJ,'SPRINTF(TEMP_STRING, "OBJ = %F END", 
TEMP_FLOAT);'); 
CHAPTER 129, JTCP('WRITES',JTCPOBJ,'LISTENONPORTHANDSHAKE(TEMP_STRING
);'); 
CHAPTER 130, JTCP('WRITES',JTCPOBJ,'STOP;'); 
CHAPTER 131,  
CHAPTER 132, PAUSE(1) 
CHAPTER 133, %% 
CHAPTER 134, RMSG = []; 
CHAPTER 135, RMSG2 = 'DUMMY'; 
CHAPTER 136,  
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CHAPTER 137, WHILE (ISEMPTY(REGEXP(RMSG2, EXPR2, 'ONCE')) == 1) 
CHAPTER 138,     RMSG = [RMSG JTCP('READ',JTCPOBJ)]; 
CHAPTER 139,     RMSG2 = CHAR(RMSG); 
CHAPTER 140,     IF(REGEXP(RMSG2, EXPR2)) 
CHAPTER 141,         [~, VALUE] = REGEXP(RMSG2, EXPR2, 'TOKENS', 'NAMES'); 
CHAPTER 142,         FTEMP2 = STR2DOUBLE(VALUE.VAR_VALUE1); 
CHAPTER 143,         F=FTEMP2; 
CHAPTER 144,         MSG2 = SPRINTF('VALUE RETURNED: %F', FTEMP2); 
CHAPTER 145,         DISP(MSG2); 
CHAPTER 146,         BREAK; 
CHAPTER 147,     ELSE 
CHAPTER 148,         CONTINUE; 
CHAPTER 149,     END 

CHAPTER 150, END 
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