
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

5-2007 

Embryology of Embryology of Manekia naranjoana  (Piperaceae) and its (Piperaceae) and its 

Implications for the Origin of the Sixteen-nucleate Female Implications for the Origin of the Sixteen-nucleate Female 

Gametophyte in Piperales Gametophyte in Piperales 

Tatiana Arias-Garzón 
University of Tennessee - Knoxville 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

 Part of the Ecology and Evolutionary Biology Commons 

Recommended Citation Recommended Citation 
Arias-Garzón, Tatiana, "Embryology of Manekia naranjoana (Piperaceae) and its Implications for the Origin 
of the Sixteen-nucleate Female Gametophyte in Piperales. " Master's Thesis, University of Tennessee, 
2007. 
https://trace.tennessee.edu/utk_gradthes/234 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268805169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=trace.tennessee.edu%2Futk_gradthes%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a thesis written by Tatiana Arias-Garzón entitled "Embryology of 

Manekia naranjoana (Piperaceae) and its Implications for the Origin of the Sixteen-nucleate 

Female Gametophyte in Piperales." I have examined the final electronic copy of this thesis for 

form and content and recommend that it be accepted in partial fulfillment of the requirements 

for the degree of Master of Science, with a major in Ecology and Evolutionary Biology. 

Joseph Williams, Major Professor 

We have read this thesis and recommend its acceptance: 

Edward E. Schilling, Taylor Feild 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council: 

 

I am submitting herewith a thesis written by Tatiana Arias-Garzón entitled 

“Embryology of Manekia naranjoana and its implications for the origin of the 

sixteen-nucleate female gametophyte in Piperales” I have examined the final 

electronic copy of this thesis for form and content and recommend that it be 

accepted in partial fulfillment of the requirements for the degree of Master of 

Science, with a major in Ecology and Evolutionary Biology. 

 

     ___Joseph Williams _______________ 

                                                           Major Professor 

 

We have read this thesis and recommend  

Its acceptance: 

 

______ Edward E. Schilling ______________ 

      

______ Taylor Feild____________________ 

  

 

 

                                                              Accepted for the council: 

 

                                                            ______Carolyn Hodges__________ 

                                                            

                                                             Vice Provost and  

                                                             Dean of The Graduate School



 

Embryology of Manekia naranjoana (Piperaceae) and its implications for 
the origin of the sixteen-nucleate female gametophyte in Piperales 

 

 

 

 

 

 

 

 

 

A Thesis Presented for 

The Master of Science 

Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

Tatiana Arias-Garzón 

May 2007 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2007 by Tatiana Arias-Garzón 

All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ii



 

 

ACKNOWLEDGEMENTS 
 
 

I would like to thank to the McClure Fund from the International Center at the 

University of Tennessee, and the Department of Ecology and Evolutionary 

Biology for the financial support. I want to express my gratitude to my advisor Joe 

Williams for giving me this wonderful opportunity at the University of Tennessee, 

and for always believed in me and my ideas. Special thanks to Branko Hilje and 

his family for helped during the field seasons in Costa Rica, their hospitality 

makes the difficult days in the field easiest.  To the members of my committee 

Dr. Edward Schilling and Dr. Taylor Feild for advice and feedback about my 

research. To all the people who helped me in Costa Rica especially for 

assistance in the field. To Mackenzie Taylor and Matt Valente, students like me, 

for the patience, the valuable discussions about the topic and for always 

supporting me and helping me during this time.  Finally I would like to dedicate 

this work with love, gratitude and admiration to my mother and my boyfriend 

Jesse Higginbotham.

 iii



 

ABSTRACT 

 

Piperaceae is unique among Piperales because it is the only tetrasporic 

group in the order and a great deal of diversity in the ontogenetic trajectories of 

the female gametophyte is found in its genera. The evolutionary developmental 

origin of the sixteen-nucleate female gametophyte remains unclear in the family 

until now. In Piperaceae, Manekia has been identified as sister to Zippelia, and 

this clade is sister to core Piperaceae (Piper, Peperomia). This research is the 

first attempt to understand the development of the female gametophyte of 

Manekia naranjoana in order to provide critical data on the origin of tetrasporic 

development in the family. Several aspects of the floral biology and phenological 

events taking place in the ovary, the flower and the inflorescence were explored. 

Manekia has a tetrasporic, sixteen nuclei female gametophyte, that is being 

produced from a single archesporial cell. The egg apparatus is located at the 

micropylar end of the female gametophyte. It is constituted of three cells, two 

synergids and an egg. The central cell nuclei consist of two nuclei, one from the 

micropylar end and the other one from the chalazal one. The eleven remaining 

nuclei are arranged toward the chalazal pole of the female gametophyte, and 

sometimes fuse. This description corresponds mostly to the Drusa type.  But 

Penaea type is also occasionally reported for first time in this study for the genus.  

Manekia and Zippelia share a similar structure of the female gametophyte with a 

total of 16 nuclei, and two nuclei in a central cell suggesting a triploid endosperm. 

The transition from monosporic to tetraporic female gametophyte development 

can be explained through the theory of modular construction and several kind 

modifications in the ontogenetic trajectories. Heterochronic and heterotopic 

changes, additions, and deletions in the development of the female 

gametophytes reflect evolutionary histories of the particular taxa implicated. A 

great deal of plasticity in terms of lack of polarity and nuclear fusion of antipodals 

was found in the chalazal module of the female gametophyte of Manekia.  
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CHAPTER I 
INTRODUCTION 

 
Understanding the origin and early evolution of flowering plants has been 

a point of interest to many scientists since Darwin (Darwin 1930, Hickey and 

Taylor 1996, Crepet 2000, Bell et al. 2005). Flowering plants represent around 

90% of all land plants and they are by far the most species-rich group of extant 

seed plants (Endress 2004, Soltis et al. 2005). Flowering plants first appear in 

the fossil record during the Early Cretaceous (aprox. 145 mya) and today they 

represent one of the most significant evolutionary radiations since the origin of 

land plants (Crane et al. 2004).  

 

Elucidating the origin of flowering plants and their evolutionary 

consequences relies on the interaction of robust phylogenetic analysis, and both 

comparative and developmental biology of extant plants (Friedman et al. 2004). 

Impressive progress has been made in the study of angiosperm relationships in 

the past twenty years (Donoghue and Doyle 1989, Chase et al. 1993, Zimmer et 

al. 2000, Qiu et al. 2005). It has become clear that Amborella, Nymphaeaceae, 

Hydatellaceae and Austrobaileyales (APG II 2003) represent a basal grade of 

earliest diverging lineages of extant angiosperms (Mathews and Donoghue 1999, 

Soltis and Soltis 2004, Saarela et al. 2007). Furthermore, Eumagnoliids (APG II 

2003) have been identified as an early-divergent monophyletic group, not among 

the basal grade, and the relationships among the member orders (Magnoliales, 

Laurales, Canellales and Piperales) are strongly supported (Qiu et al. 2005).The 

relationships among the largest clades such as Monocots, Eumagnolids and 

Eudicotyledons are unsatisfactorily resolved to date (Stevens 2001, Soltis and 

Soltis 2004, Qiu et al. 2005). These new phylogenies together with the new 

discoveries in developmental biology have transformed the interpretations about 

the evolution of many morphological traits in flowering plants. For example, it was 

once thought that the 7-celled/8-nucleate Polygonum type female gametophyte 
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was the strongest synapomorphy of angiosperms. Based on the new view of 

angiosperm phylogeny and the careful examination of embryological traits with 

new technology, this has turned out to be far from true: Amborella has an 8-

celled/9-nucleate female gametophyte (Friedman 2006), Nymphaeaceae and 

Austrobaileyales have a 4-celled/ 4-nucleate female gametophyte (Williams and 

Friedman 2002, Friedman and Williams 2003) and the basal groups of Monocots, 

Eudicots and Eumagnolids have a 7-celled/8-nucleate Polygonum type female 

gametophyte (Williams and Friedman 2004). Early extant angiosperms, in 

contrast to angiosperms as a whole, turn out to have a great deal of 

developmental diversity.  

 

Although the basal grade has become the focus of study for those 

interested in the origin of unique angiosperm traits, early lineages of monocots, 

eudicots, eumagnoliids, Chloranthaceae and Ceratophyllum are important for 

offering insight into early evolution of embryological and reproductive traits. 

Among basal angiosperms, Piperales is an exceptionally diverse clade in female 

gametophyte morphology and endosperm structure and offers a good example 

for the study of evolution of embryological and reproductive traits. Piperales and 

Monocotyledoneae were earlier considered to be sister groups (Burger 1977, 

Tucker and Douglas 1995). But molecular phylogenetic analyses have all now 

placed Piperales as sister of Canellales (Wanke et al. 2007) thus removing this 

taxon as a potential outgroup to the monocots as earlier suggested by Burger 

(1977). The monophyly of Piperales (Aristolochiaceae, Lactoridaceae, 

Piperaceae, Saururaceae and Hydnoraceae) is supported by distichous 

phyllotaxis, a single prophyll and oil cells (Soltis et al. 2005).  Hydnoraceae has 

not been included in the molecular phylogenies yet (it lacks chloroplasts due to 

its parasitic condition; Nickrent et al. 2002). Thus it now appears that Piperaceae 

is derived within basal angiosperms (nested within Eumagnoliids). 
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Piperaceae is known for its remarkable species diversity (Endress 1994, 

2004; Crane et al. 2004). This family is distributed pantropically and includes 

around 2000 species, most of which occur in Piper and Peperomia (Trealease 

and Yunker 1950, Callejas 1986, de Figueiredo and Sazima 2000, Jaramillo and 

Manos 2001, Jaramillo et al. 2004). Piperaceae also is well known for its 

reproductive diversity that includes different varieties of floral morphology and 

development, pollinators, seed dispersal mechanisms, and reproductive 

strategies (Martin and Gregory 1962, Tucker 1980, 1982a-b, 1985, 1993, 

Callejas 1986, Lei and Liang 1998, de Figuieiredo and Sazima 2000, Wadt and 

Kageyama 2004). One aspect of Piperaceae reproductive diversity frequently 

ignored, but of special significance to the question of early angiosperm evolution, 

is its embryology.   

 

Piperaceae is unique among Piperales because it is the only tetrasporic 

group in the order and a great deal of diversity in the ontogenetic trajectories of 

the female gametophyte is found in its genera. The evolutionary developmental 

origin of the sixteen-nucleate female gametophyte remains unclear in the family. 

Comparative analyses of female gametophyte ontogenies are necessary to 

understand the evolutionary pathways in the main evolutionary lines of 

Piperaceae. In Piperaceae, Manekia (Arias et al. 2006) has been identified as 

sister to Zippelia (Liang and Tucker 1995), and this clade is sister to core 

Piperaceae (Piper, Peperomia; Jaramillo and Manos 2001, Jaramillo et al. 2004). 

Embryological studies in Piperaceae have been focused on Piper, Peperomia 

and Zippelia (Johnson 1914, Prakash et al. 1994, Lei et al. 2002), but Manekia 

remains completely unknown. 

 

Manekia is a widely distributed genus of perhaps four species (Arias et al. 

2006) with a Neotropical distribution (Trelease and Yuncker 1950, Arias et al. 

2006). It is a vine with terminal and axillary flowers (see Jaramillo and Callejas 

2004) and fruits embedded in the inflorescence rachis; these are two taxonomical 
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features that differentiate the genus from Piper, Peperomia and Zippelia 

(Jaramillo et al. 2004). Little is known about its floral morphology, anatomy and 

reproductive phenology, because the plant flowers in the high canopy of lowland 

and montane tropical rain forest, where the flowers are typically inaccessible.  
 

This research is the first attempt to understand the development of the 

female gametophyte of Manekia naranjoana using a combination of pollination 

experiments and microscopy techniques. Additionally, the studies of 

development of Manekia naranjoana are placed in a comparative context within 

Piperales. The embryology and other reproductive events such as some aspects 

of the floral biology in Manekia naranjoana (Piperaceae), including morphological 

characters of evolutionary interest for the order Piperales are presented for the 

first time in this study. I also combined observations of the embryological events 

of Manekia with several developmental and phenological events taking place in 

the ovary, the flower and the inflorescence of this species in a timeline 

framework. 

 

The new phylogenetic hypothesis for Piperales (Jaramillo 2004, Soltis and 

Soltis 2004) is valuable for comparative analyses that seek to identify 

evolutionary transitions and key reproductive features in the evolution of the 

clade. The monosporic, 7-celled/ 8-nucleate female gametophyte (Polygonum-

type) is a very conserved character among early eumagnoliids, including basal 

clades in Piperales (Williams and Friedman, 2004). On the other hand, 

Piperaceae is diverse in both megasporogenesis and female gametophyte 

development. Megasporogenesis is tetrasporic: cell walls do not form after 

meiosis so that the female gametophyte initiates from four free megaspore nuclei 

instead of from one, as is typical in seed plants. Tetrasporic development in 

Piperaceae is followed by at least three known patterns of female gametophyte 

development. The Fritillaria type (7-celled/8-nucleate) has been reported in Piper 

(Kanta 1962, Nikiticheva et al. 1981, Prakash et al. 1994), the Peperomia type 
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(9-celled/16-nucleate) in Peperomia (Johnson 1914, Swamy 1944, Nikiticheva et 

al. 1981, Plyushch 1982, Smirnov and Grakhantseva 1988), and the Drusa type 

(15-celled/16-nucleate) female gametophyte in Zippelia (Lei et al. 2002). The 

large amount of variation in female gametophyte development in Piperales is 

difficult to interpret because of the lack of information from critical taxa like 

Manekia. There have been many embryological studies in Piperaceae but some 

of them are now outdated or lack a comparative and evolutionary context. Lei et 

al. (2002) provide the only modern study, on Zippelia. Establishing ancestral 

states of morphological features, like female gametophyte development, in the 

clade comprising Manekia and Zippelia is critical to understanding the origin of 

such traits in its sister clade, which comprises the overwhelming majority of the 

family (Williams and Friedman 2004). 

 

Reproductive ontogenies in flowering plants comprise several dynamic 

and interacting processes that occur between times of pollination through seed 

dispersal. These include pollen transfer, stigmatic receptivity, anthesis, pollen 

tube growth, interaction between male gametophyte and sporophytic tissue, 

female gametophyte development, double fertilization and finally embryo and fruit 

development. These reproductive ontogenies are tremendously dependent on 

each other, but little is known about the relationships among them. Because 

developmental aspects like ontogenies of pistils, pollen tube, and female 

gametophyte are often studied separately in angiosperms, the relative timing of 

these ontogenies is hardly known. Studies of plant reproduction and 

development that utilize a combination of techniques and observations to 

understand relationships among these diverse ontogenies would provide a better 

understanding of angiosperm evolution. 

 

The female gametophyte is implicated in several processes of the life 

cycle in flowering plants, such as pollen tube guidance (Barrett and Harder 1996, 

Hiscock et al. 2002, Barrett 2003, Edlund 2004), double fertilization, embryogeny 
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(Forbis et al. 2002) and the maternal control of seed development (Stephenson 

and Bertin 1983, Willson and Burley 1983, Floyd and Friedman 2000, Yadegari 

and Drews 2004). Female gametophyte development in angiosperms takes place 

in two key phases: megasporogenesis and megagametogenesis (Johansen 

1950, Gifford and Foster 1989, Johri et al. 1992). Megasporogenesis refers to the 

developmental stages through which megaspores (haploid spores) are produced, 

whereas megagametogenesis refers to the developmental stages through which 

the female gametophyte is formed from the “functional megaspore” to produce 

the female gametes, the egg cell and the central cell (Gifford and Foster 1989, 

Johri et al. 1992). These processes encompass several variations during growth. 

For example, cell wall formation during megasporogenesis and the number of 

mitotic divisions during megagametogenesis are factors affecting female 

gametophyte development (Yadegari and Drews 2004). Additionally, the genetic 

composition of nuclei and cells varies among developmental pathways. As a 

consequence, more than fifteen different patterns of female gametophyte 

ontogeny have been described (Maheshwari 1950, Gifford and Foster 1989, 

Johri et al. 1992).  

 

Angiosperms undergo three different patterns of megasporogenesis. 

Monosporic, bisporic or tetrasporic development refers to the process where a 

single functional megaspore cell is formed containing one, two or four haploid 

nuclei, respectively. During monosporic megasporogenesis meiosis I and II are 

each followed by cell wall formation, resulting in four haploid megaspore cells. 

Three of these degenerate and the chalazal-most one becomes the functional 

megaspore (Gifford and Foster 1989). Because a single nucleus gives rise to all 

nuclei in a monosporic female gametophyte, there is more genetic stability and 

less genetic variation (Haig 1989). With one exception all non-flowering seed 

plants plus the newly-defined basal grade of angiosperms have monosporic 

development (Williams and Friedman 2004). 
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Bisporic megasporogenesis includes cell wall formation after meiosis I but 

not meiosis II, and the functional megaspore contains two free nuclei. In 

tetrasporic megasporogenesis there is no cell wall formation after meiosis I or 

meiosis II resulting in a functional megaspore that contains four free nuclei, each 

with a different genetic composition (Haig 1989, Johri et al. 1992). In bisporic and 

tetrasporic development, the functional megaspore cell is a genetic mosaic, and 

its implications for female gametophyte development and the relationships 

between embryo and endosperm are poorly understood (Friedman et al. in press, 

Haig 1990). Bisporic and tetrasporic development have evolved repeatedly in 

angiosperms and one time in Gnetales. 

 

Megagametogenesis refers to the development of the female 

gametophyte from the functional megaspore. It takes place from the end of 

meiosis until a mature female gametophyte is formed and fertilized. During 

megagametogenesis the functional megaspore enlarges and divides mitotically 

to form the mature female gametophyte. The mitotic divisions first give rise to a 

coenocyte, a cell containing four, eight or up to sixteen free nuclei, and are then 

followed by cell wall formation.  At maturity the female gametophyte of all 

angiosperms has two gametes –the egg cell and the central cell.  

 

Double fertilization occurs when there are two gametic fusion events 

between the two male sperm cells and the egg cell and central cell of the female 

gametophyte. This produces a biparental diploid embryo and a biparental triploid 

(Yadegari and Drews 2004, Williams and Friedman 2004) or diploid endosperm 

(Friedman 1995, 2001, Williams and Friedman 2002, Friedman and Williams 

2003, 2004). Double fertilization and early embryogeny may be key innovations 

in the radiation of angiosperms (Friedman 2001), but double fertilization in basal 

angiosperms has rarely been observed, even though it is considered one of the 

key synapomorphies in angiosperms (Williams and Friedman 2002). It is 

important to document double fertilization in early angiosperms to understand its 
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generality in early lineages of flowering plants. This is particularly important in 

Piperaceae, because endosperm ploidy is quite variable. Furthermore it is 

unknown the number of cells that participated in the formation of the Piperaceae 

endosperm, (they could be three, four or fifteen-ploid). Little is known about the 

number of maternal nuclei that participate in the fusion of central cell with the 

sperm (Haig 1989) in taxa with high level of polyploidy. Classical studies of 

anatomical developmental characters using advanced techniques of light and 

fluorescence microscopy are necessary to interpret all these enigmatic questions 

(Friedman 2001). 

 

My primary goals were (1) to describe and understand female 

gametophyte development of Manekia naranjoana; (2) to provide an analysis of 

several reproductive and floral ontogenetic events in the context of the female 

gametophyte development; and (3) to investigate the evolutionary implications of 

my findings 
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CHAPTER II 
MATERIALS AND METHODS 

 

Study species 

Manekia is a widely distributed genus of perhaps four species (Arias et al. 

2006) with a Neotropical distribution, occurring from southern Nicaragua to 

northern Peru, and the Lesser Antilles to the Atlantic forest of Southern Brazil 

(Trelease and Yuncker 1950, Arias et al. 2006). It is a vine with terminal and 

axillary flowers (see Jaramillo and Callejas 2004) and fruits embedded in the 

inflorescence rachis; these are taxonomical features that differentiate the genus 

from Piper, Peperomia, and Zippelia (Jaramillo et al. 2004). Little is known about 

its floral morphology, anatomy and reproductive phenology, because the plant 

flowers in the high canopy of lowland and montane tropical rain forest, where the 

flowers are typically inaccessible. Manekia displays a combination of features of 

early and late successional species, and occurs in both mature and secondary 

rain forest (pers. observation). Manekia naranjoana is distributed in Central 

America from northern Nicaragua to southern Panama.  It bloomed in Costa Rica 

at the biological station Alberto M. Brenes between the middle of May and until 

the end of July 2006. While at Tapantí National Park (Costa Rica), this species 

flowered between the months of March and April 2006 and May and June 2005. 

Flowering in these places seems annual but variable in a year. At the biological 

station Alberto M. Brenes two blooming peaks were reported for summer 2006. A 

large number of inflorescences were produced starting in May, whereas in June 

there was low production of inflorescences.  
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Study areas 

National Park Tapantí, Costa Rica: located in the province of Cartago, districts 

of Paraiso, Jimenez and El Guarco. It belongs to “La Amistad Pacifico” 

conservation area, occupying the Northeast region of the Talamanca Mountain 

Range.  Altitudes range from 700 to 3491 meters above sea level. It is one of the 

rainiest places in Costa Rica with an average rainfall of 7000 mm. Temperature 

ranges from 6 to 26°C. It comprises five different life zones: premontane 

rainforest, premontane forest, low montane rainforest, montane rainforest and 

sub-andean páramo. Manekia is found in premontane rainforest. 

 

Biological Station, Alberto M. Brenes, Costa Rica: it is located in the province 

of Alajuela, districts of Los Angeles de San Ramon. It belongs to “Arenal” 

conservation area. Altitudes range from 550-1650 meters above sea level. The 

annual precipitation range from 3500 to 5300 mm, with a dry season between 

March and April. The temperature ranges from 17 to 25 °C. The life zones 

comprise premontane rain forest and low montane rainforest. 

Collections 

Female gametophyte development and pollen tube growth: For the study of 

pollen tube growth and the female gametophyte development of Manekia 

naranjoana flowers and inflorescences in different developmental stages were 

collected and morphology was described in the field.  

 

Flowers were either fixed for 24 hr in 3:1 (95% ethanol: acetic acid) and 

stored in 75% ethanol or fixed in FAA (50 ml 95% ETOH: 5ml glacial acetic acid: 

10ml 40% formaldehyde: 35 ml dH2O) and stored in 75% ethanol (Williams and 

Friedman 2004). Reproductive material was dehydrated through an ethanol 

series, and was infiltrated and embedded in glycol methacrylate (JB-4 

embedding kit; Polysciences, Warrington, Pennsylvania, USA). Serial sections, at 

5 µm thick, were obtained and stained with aniline blue (flowers fixed in 3:1), 
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0.1% tolouidine blue (flowers fixed in FAA) according to the specific requirement 

(pollen germination, pollen tube growth and/or embryological analysis). Structural 

features of the pollen, female gametophyte and embryo were characterized using 

a combination of fluorescence and light microscopy. Images were processed with 

a Zeiss digital photo system (Carl Zeiss, Oberkochen, Germany) and Adobe 

Photoshop, version 7.0 (Adobe Systems, San Jose, CA). Camera Lucida 

drawings were made by tracing structural features of the female gametophyte 

over images in Photoshop. Vouchers were deposited in the Herbarium of Costa 

Rica (CR) and The University of Tennessee Herbarium (UT). 

 

Integration of floral ontogeny with female gametophyte development: two 

different scales of phenology were considered in this study, (a) the flowers and 

(b) the inflorescences. 

(a) Inflorescences: I recorded length, color, orientation, number of flowers in 

twenty inflorescences.  

(b) Flowers: Thirty flowers in five inflorescences for each developmental stage 

were described more or less according to the size of the inflorescence and 

its developmental stage. Ten flowers were analyzed at the base, ten at the 

middle part and ten at the top of the inflorescence. For each flower I 

recorded its length and width, color, presence of stigmatic secretions, 

stigmatic receptivity (Peroxtesmo KO peroxidase test paper). Presence of 

bubbling and change of color on the stigma was recorded. Additionally, 

flowers in different developmental stages were fixed to observe pollen 

tube growth in the lab using aniline blue and a fluorescence microscope, 

number of anthers, sequence of maturation of anthers (bud, in maturation, 

mature and open), and pollen viability (Kearns and Inouye 1993). 

Furthermore five inflorescences in early developmental stages were 

observed in the field and the sequence of maturation of flowers in the 

inflorescence was tracked until fruit formation, if possible. 
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Character evolution analyses 

Character evolution analysis were conducted using the most recent molecular 

and morphological phylogenetic trees for Eumagnoliids (Doyle and Endress 

2000, citations in Stevens 2001 onwards, Qiu et al. 2005), Piperales (Doyle and 

Endress 2000, Jaramillo et al. 2004, Wanke et al. 2007) and Piperaceae (Wanke 

et al. 2007). The families belonging to Piperales are all monophyletic as 

circumscribed in APG II (2003). Placement of genera within families in Piperales 

was based on Jaramillo and Manos (2000), and Jaramillo et al. (2004). I 

determined character states for Piperales from my own work (Manekia) and from 

original sources of embryological and reproductive biology studies. The ancestral 

states for discrete characters were determined based on parsimony, after 

mapping the characters on their respective phylogenies to analyze character 

evolution (MacClade 4.03; Maddison and Maddison 2001).  All characters were 

treated as unpolarized and unordered (all transitions among states are equally 

probable). Canellales was included as the outgroup. 
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CHAPTER IV 
RESULTS AND DISCUSSION 

 

Floral development 

Inflorescence development 

The inflorescences of Manekia naranjoana are terminal or axillary spikes 

enclosed by a thin-membranous prophyll (Figs 1 and 2; all figures are located in 

the appendix). A single individual can have from few inflorescences to >1200, 

while a single inflorescence bears 10-150 flowers. Flowers in an inflorescence go 

through approximately the same stages of development simultaneously (Fig. 2). 

Early in development inflorescences are erect (Fig.1) but they curve to be 

pendulous when the fruits are formed. Inflorescences also change in color, 

aroma, and texture, during development.  Their color varies from green yellow 

when the flowers are in bud (Fig. 1), to yellow when the stamens are mature and 

dehiscent (Fig. 2), to brown after the structural generation of stigma and 

abscission of stamens, and finally to dark green when in fruit. Inflorescences in 

anthesis are very aromatic, with an anise-like smell. The texture of an 

inflorescence changes from smooth when flowers are in bud to granular when 

anthers start to open (Figs. 1 and 2). In later developmental stages the mature 

inflorescences appear shrunken and irregular when only few fruits are formed in 

sectors of the infructescence.  

Flower, carpel and ovary development 

The Manekia naranjoana flower is bisexual, subtended by a single bract 

(Fig.3) and totally immersed in and fused with the adjacent parenchymatic tissue 

of the rachis. As a consequence there is no distinction between the external 

ovary wall and the rachis (Figs.4 to 6). The bract is hypopeltate, persistent, with 

marginal filamentous muticellular hairs and abaxial oil cells (Fig.3). The ovary is 

unilocular with a single orthotropus ovule (Figs.4 to 8). The flower appears to be 
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comprised of four syncarpic carpels, as judged by the occurrence of four vascular 

strands leading to the four to five stigmatic lobes (Figs.3, 5 and 6).  The stigmatic 

lobes are decurrent, with papillate unicellular protrusions with abundant ethereal 

oil cells immersed in the tissue (Fig. 4). Sometimes three to five stigmatic lobes 

were observed in flowers (Fig. 3) but more commonly four lobes were observed. 

After stigma receptivity the outer stigmatic surface accumulates callose (Figs.3 

and 6). 

 

The Manekia naranjoana carpel has incomplete postgenital fusion sensu 

Endress and Igersheim (2000). Early in stylar development there is a short open 

canal that almost reaches the ovule (Fig. 5). This canal has a single layer of 

small epidermal cells with dense cytoplasm.  The cells immediately adjacent to 

the walls of the stylar canal are oval, irregular and oriented longitudinally toward 

the ovule.   Later on in floral development this open canal closes through 

posgenital fusion from the base of the style to its middle part forming a solid 

transmitting tissue toward the base of the style, and a stylar canal from the 

middle of the style to the stigma (Figs. 4 and 6). The transmitting tissue has 

elongated cells oriented longitudinally toward the ovary (Fig. 6 and 23).  

 

Manekia naranjoana has four stamens in each flower at maturity, two are 

laterally inserted, and one apically inserted (Fig. 3), and one basally inserted. 

Anthers are rounded with short filaments that slightly raise them above the rachis 

surface when mature and ready to disperse pollen (Figs. 2 and 3). The flowers 

are dichogamous with incomplete protandry.  When mature, anthers open 

longitudinally and release pollen, but occasionally they fall off from flowers 

without opening. First, two lateral stamens are initiated at the same time before 

the onset of stigmatic receptivity, then after maturation an abscission zone is 

formed at the base of their short filaments. After stigmatic receptivity a third 

stamen is initiated on the apical portion of the flower (relative to the 

inflorescence), and after its maturation an abscission zone is formed at the base 

 14



 

of the filament (Figs. 3 and 6). The fourth basal stamen is the last formed in the 

flower; it is opposite to the third one and falls off through an abscission zone at 

the base of the filament.   

 

High rates of ovule abortion before and after fertilization, and 

embryolessness, were detected in Manekia naranjoana. Degenerate ovules were 

seen alongside with normal ovules at all stages of development from ovary 

development to fruit formation.  Empty ovaries were detected early in the 

development of the flowers, but fully formed ovaries degenerating after flower 

maturation were also observed. 

Ovule development 

The ovule of Manekia naranjoana is orthotropous with basal placentation, 

crassinucellar, and bitegmic (Figs. 5, 7 and 8). The ovule primordium appears at 

the bottom of the ovarian cavity before postgenital fusion has occurred. The inner 

integument appears first and forms the micropyle while the outer one initiates 

growth after the inner but does not participate in the formation of the micropyle 

(Fig.7 and 8). The micropyle is in contact with the wall of the ovarian cavity at 

maturity. The inner integument is three cell layers thick (Fig.7). Cells of the inner 

integument are small and compact with a dense cytoplasm, similar to nucellar 

cells. The outer integument cells are vacuolated, large, with less dense 

cytoplasm, and also three cell layers thick (Fig.7 and 8). 

  

A small hypostase is formed in M. naranjoana where tannins are 

accumulated in the nucellar cells at the base of the ovule.  The cells are 

schlerenchymatous, with thick cell walls (Fig. 8). The hypostase is not evident 

until female gametophyte maturation. 
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Female gametophyte development  

For the study of the female gametophyte in Manekia naranjoana two hundred 

samples were fixed. Each sample has an average of five slides, so more than a 

thousand slides were observed using a light microscope. Each sample has an 

average of five flowers each, making an approximate average total of a thousand 

flowers observed in all the different developmental stages (Table 1).  

Megasporogenesis 

Female gametophyte development in Manekia naranjoana starts at the 

micropylar end of the ovule when a single first hypodermal cell grows in size and 

becomes different from the rest of nucellar tissue. This single sporogenous cell 

gives rise to the megaspore mother cell through mitosis by a single unequal 

periclinal division (Figs. 9-11). There was no evidence of multiple archesporial 

cells. The archesporial cell cuts off a parietal cell and more cell divisions occur 

above the archesporial cell that below it. This parietal tissue pushes the 

megaspore mother cell down and deep into the nucellus making it crassinucellar 

(Fig. 11). As a result a four-layered parietal tissue is formed (Figs. 12-13). Once 

the megaspore mother cell is deep into the tissue it becomes more ovoid. During 

interphase and before the beginning of meiosis, the genetic material duplicates 

making the nucleus bigger (Fig 13).  

 
Table 1. Number of samples and flowers in different developmental stages analyzed in 

this study  

Developmenta
l stages of 

inflorescences 

Floral 
primordium 

Inflorescence 
with mature 

lateral anthers 

Inflorescence 
with 

receptive 
stigmas 

Inflorescence 
with lateral 

and apical 
anthers 

Inflorescence 
with 

fertilized 
flowers 

Infructescence 

Number of 
collections 

 
45 

 
35 

 
50 

 
35 

 
20 

 
15 

Number of 

flowers 

 
225 

 
175 

 
250 

 
175 

 
100 

 
75 
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When the megaspore mother cell is mature, the first meiotic division takes 

place. The location of the nucleus in the mature megaspore mother cell can be 

central, micropylar or chalazal; there is not a strong polarization of the nucleus in 

the cell. The megaspore mother cell becomes larger and more vacuolized, then 

the nucellar tissue is pushed to the edges of the megaspore mother cell and its 

cells are crushed, making the edges of the megaspore mother cell appear dark. 

Starting with the prophase I, condensed chromosomes are found attached to the 

nuclear membrane (Fig. 14). The spindle of the first nuclear division of the 

megaspore mother cell is parallel with the vertical axis of the ovule. Once meiosis 

I has ended an ephemeral dyad is formed. The size of the cell is around 15 µm 

wide x 35 µm long; its shape is still ovoid.  Two nuclei are formed, one toward the 

micropylar pole and the second one toward the chalazal one. Nuclear envelopes 

were not found to have formed around the two chromosome complements of the 

dyad in any of the slides that were examined, suggesting that: (1) nuclear 

membranes do not form after the meiosis I, and there is a direct skip to 

metaphase of meiosis II, or (2) telophase I plus prophase II were not detected in 

the collections because they happen very fast, so the probabilities of finding 

these stages are very low. Prophase, metaphase and anaphase of meiosis I 

were detected (Fig. 14 to 15a-b).   

 

During meiosis II the spindle of the micropylar nucleus in the dyad is 

parallel to the vertical axis of the ovule, while the spindle of the chalazal nucleus 

is more or less perpendicular to the vertical axis of the ovule (Fig. 16a-b). 

Metaphase, anaphase, telophase of meiosis II were seen (Fig 16a-b). Following 

meiosis II nuclear membranes form four free megaspore nuclei within an ovoid 

coenocyte. Cytokinesis was never observed at this stage. 

 

Variation in megaspore arrangement range from: a tetrapolar arrangement 

one micropylar, one chalazal and two lateral nuclei (Figs. 17a-b), to the most 

common pattern we observed, a bipolar arrangement with a micropylar nucleus 
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and three chalazal nuclei (“1+3” arrangement; Fig. 18). Coenocytes have always 

had dense cytoplasm and several small vacuoles (Fig.17a-b) or one large 

vacuole (Fig. 18). The four nuclei are usually of almost equal size (8 µm x 8 µm) 

but sometimes the chalazal one is smaller.  

Megagametogenesis 

The four megaspore nuclei in the coenocyte undergo the first mitotic 

division after the end of meiosis. During prophase of the first mitosis the four 

nuclei were most commonly distributed in a 1+3 arrangement (Fig. 18a-c, Fig. 

30). At the end of the first mitosis eight nuclei are formed and these were usually 

arranged with two nuclei located at the micropylar pole and six closer to the 

chalazal pole. Fig. 19 illustrates prophase of mitosis II. The eight nuclei each 

undergo a second mitosis producing a 16- nucleate immature female 

gametophyte (Fig.20a-f). A clear polarization of the nuclei forming the sixteen-

nucleate female gametophyte was not always observed; but as a general pattern 

four nuclei were observed toward the micropylar side of the female gametophyte 

and twelve closer to the chalazal side. Fig. 20 illustrates the less common pattern 

of quadripolar distribution of nuclei, in which four domains of cellularization are 

present. 

 

After the second mitosis the nuclei are indistinct and nearly the same size 

as first. Almost all of them were observed surrounded by dense cytoplasm, with 

distinct cell membranes and sometimes even cell walls (Fig.20a-f). Several 

specimens showed 16-nucleate female gametophytes with more than four nuclei 

at the micropylar end, but when the egg was observed mature just three cells 

were observed forming the egg apparatus (Figs. 21a-b).  

 

There is a great deal of variation in the arrangement of nuclei in the 

mature female gametophyte of Manekia naranjoana (Fig.20a-f, Fig. 30). Three 

nuclei are located at the micropylar end forming the egg apparatus, with two 
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lateral pyriform synergids and a central egg (Fig. 21a-b). When mature the nuclei 

of the egg apparatus are bigger but their shape and form does not change with 

respect to the nuclei at the chalazal end.  The polar nuclei are usually located 

closer to the chalazal end of the female gametophyte, where the two nuclei most 

often fused (Figs. 20a and detail in 22). The central cell nuclei do not have a 

clear polarization, sometimes they were found closer to the medium axis of the 

female gametophyte, and sometimes they were located toward the chalazal end. 

The two nucleoli of the fusion nuclei were always found close to each other but 

they were not fused. One time the central cell was observed to have four nuclei 

fusing together before fertilization (see Fig. 27). The eleven remaining nuclei are 

arranged from the middle zone to the chalazal pole of the female gametophyte, a 

few times in groups of four (Fig. 20a-f). Their compartmentalization is not very 

strong toward the chalazal end.  

 

This description corresponds mostly to Drusa type according to the 

classification of different female gametophytes made by Maheshwari (1950) even 

though the distribution of the nuclei sometimes resembles a Penaea type of 

female gametophyte.  Sometimes at the chalazal end several antipodal nuclei 

were observed fusing together. 

 

Pollen tube growth and Fertilization  

In collections from natural populations done in summer 2005, pollen tubes 

were found growing into the stigma and style and penetrating the ovule (Fig. 23 

and 24). But in hand crosses using self pollen  on a single individual carried out 

during the summer 2006, no evidence of pollen tube germination or growth was 

found (adhesion, hydration, or germination of pollen). In the last pollination 

experiments there was no evidence of viable pollen in any of the samples that 

were examined. This study shows that stigmas in Manekia naranjoana are wet 

(positive reaction to Peroxtesmo KO peroxidase test paper). According to Kearns 
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and Inouye (1993) the test paper shows changes in peroxidase level and the test 

paper will not work in dry stigmas. 

 
In naturally pollinated inflorescences, single pollen tubes were observed 

growing between cells within the short style (Figs. 23 and 24). Pollen tubes enter 

the ovarian cavity penetrated the micropyle and then discharged nuclei into the 

mature female gametophyte.  Pollen tubes were observed penetrating the tissues 

at the stigmatic surface and growing between the cells at the top portion of the 

style; instead of growing along its epidermal walls. In the middle portion of the 

style the pollen tube reaches the transmitting tract and grows through cells to 

reach the micropyle and ovule. The stigmatic surface in self-pollinated stigmas 

was observed to have callose depositions (Fig. 6); additionally many mature 

ovules also displayed callose depositions when we stained with Aniline Blue. 

Pollen grains on the stigmatic surface, generally were in clusters, held together 

by a mucilaginous substance. 

 

In sections of ovules where pollen tubes were found penetrating the 

micropyle, then pollen tubes penetrate the female gametophyte and enter one of 

the degenerating synergids. The contents of the pollen tube (two male gametes 

and cytoplasm) are released, as indicated by dark staining coloration within the 

synergid adjacent to the egg wall.  In this stain several chromatic material is 

evident (Fig. 25). In some female gametophytes that had evidence of pollen tube 

entry a central cell nucleus with two nucleoli was observed close to a second 

nucleus with a single nucleus (Fig. 26). This endosperm ploidy corresponds to 

Drusa type. One time the central cell was observed to have four nuclei fusing 

together before fertilization (Fig. 27), this endosperm ploidy would correspond to 

Penaea type,upon fertilization.  Antipodal nuclei were found fusing occasionally  

in mature female gametophytes. Early embryo and endosperm were very rare in 

the collections (Fig. 28). 
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Integration of floral ontogeny with the female gametophyte 
development 

Flowers of Manekia naranjoana were in the same developmental stages 

throughout the inflorescence. Almost all flowers in the inflorescences are mature 

and receptive in a short time interval. Stamens mature and open at the same 

time, stigmatic receptivity is synchronized in the majority of flowers, and the 

developmental stage of the ovule and female gametophyte within these flowers  

are almost uniform. Once the inflorescence comes out from the leaf sheath the 

two lateral stamens mature first and open five to twelve days later, followed by 

pistil maturation and stigma receptivity from twelve to eighteen days after bud 

burst.  

 

 During anthesis the inflorescences become very aromatic. When the 

infructescences are formed they become very rigid and hang from the vine. After 

the opening of anthers and the receptivity of stigmas several kind of floral visitors 

where found on the inflorescences, among them several species of aphids, ants 

and two species of spiders making nets among the flowers. Different types of 

eggs were also found in the inflorescences suggesting some insects complete 

their life cycle in them.  The actual pollinator was not found.  

 

The following sequence of reproductive events in Manekia naranjoana was 

observed in a single plant. 

 

Day 1: Early in its development inflorescences of Manekia naranjoana ranges in 

size from 3 to 5 cm long. They are light green to light yellow. The perianthless 

flowers are in bud and only bracts are identified on the surface of the 

inflorescence. Inflorescences are emerging from the leaf sheath (syleptic 

inflorescences) or the prophyll (proleptic inflorescences), when the first immature 

stamens begin to develop (Fig. 29).   
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The ovary is closed, and there is no stylar channel in the flower. The ovule 

is immature; the inner integument is starting to develop. At this stage an 

archesporial cell produces a megaspore mother cell through mitosis. The 

archesporial cell size is approximately 5 µm wide x 8 µm long and it shape is 

round to ovoid (Fig. 29). 

 
Day 5: The inflorescences have grown to 5 - 7 cm in length, they are light yellow. 

Immature anthers are observed growing over the bracts. The two lateral stamens 

in a flower are the first to emerge, and later a third apical stamen develops in that 

same flower. The pistil is immature and covered by the bract. The stylar channel 

starts to form but its cells are not totally differentiated (Fig. 29).  

 

In the ovule the inner integument is totally developed and it closes to form 

the micropyle, the outer integument is being formed but degenerates quickly. The 

ovule has a mature megaspore mother cell deep within the nucellar tissue with 

an extensive cytoplasm. So the megaspore mother cell is present before the two 

integuments completely envelop the nucellus. The megaspore mother cell when 

immature is small (less than 10 x 10 µm long) but comparatively bigger than cells 

surrounding it (less than 5 x 5 µm long), ovoid and have a very limited cytoplasm 

and a small nucleus (5 x 5 µm long). Once the megaspore mother cell is deep 

into the tissue, the cell matures, its cellular area grows (35 x 20 µm long) and its 

shape becomes more ovoid. During interphase and before the beginning of 

meiosis, the genetic material duplicates making the nucleus bigger (10 µm wide x 

15 µm long), and through vacuolization one or more big vacuoles are produced. 

 

 At this stage megasporogenesis takes place where the megaspore 

mother cell undergoes meiosis to form a coenocityc tetraspore. The size of the 

four nuclei are usually of almost equal size (8 µm wide x 8 µm long) but 

sometimes the chalazal one is smaller. When mature the coenocyte’s size is 

approximately 25 µm wide x 40 µm long. 
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Day 12: Inflorescences have grown to 10 - 14 cm long. They are yellow to light 

yellow-brownish. The lateral and apical stamens are mature. The basal stamen 

from the flower is formed but it is immature. Stigmatic lobes are formed and 

receptive (positive reaction to test paper Peroxtesmo KO peroxidase). In the 

stylar channel the cells are highly differentiated. In the ovule, 

megagametogenesis is taking place, the formation of the female gametophyte 

from the tetraspore where every cell undergoes two mitotic divisions to form a 

mature female gametophyte (Fig. 29). The immature female gametophyte is 40 

µm wide x 50 µm long, with a circular to ovoid shape. The size of nuclei in the 

mature female gametophyte ranges from 3 to 5 µm long, while the size of the 

coenocyte is about 35 to 40 µm wide and 50 to 60 µm long, and its shape is 

round to ovoid. 

 

Day 18: The inflorescence has grown to 14 - 22 cm long, it is light yellow-

brownish with dark brown dots. The basal stamen matures after anthesis and 

later fall off. The stigma gets oxidized and also the scars from the abscission 

zone of the stamens that felt off (Fig. 29).  

The female gametophyte is mature (Fig. 29). Pollen tubes are growing and 

discharging sperm nuclei for fertilization with the egg and central cell nuclei. 

 
Day 25: Inflorescences have grown to 22 - 25 cm long, green brownish. Fruit 

formation and early embryo development is taking place (Fig. 29). 

 
Day 35:  Infructescences 25 or more cm long, green brownish. Very few seeds 

are being developed in the inflorescence in comparison to the number of original 

flowers.  
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DISCUSSION  

Floral development  

Inflorescences  

The position of inflorescence (axillary, lateral and/or terminal) is an 

important taxonomic and architectural character in Piperaceae (Jaramillo and 

Callejas 2004, Callejas 1986). In the majority of species of Piper sensu stricto the 

inflorescences are lateral and the axes are sympodial (Callejas 1986), while a 

few groups of Piper  sensu lato such as Trianopiper have axillary inflorescences 

(Jaramillo and Callejas 2004). The inflorescences in Manekia are axillary and 

terminal; while Zippelia has only terminal inflorescences (Lei et al. 2002). The 

axes in both taxa are monopodial. Two types of plant construction can be 

identified in Piperaceae, a monopodial type of axis in the Manekia and Zippelia 

clade and one composed of sympodial modular units in the vast majority of 

species in Piper. 

 Piperaceae has an inflorescence with tiny reduced flowers lacking petals 

or sepals. Among these, Zippelia and Manekia have comparatively large flowers. 

The sequence of flower development in inflorescences was difficult to interpret 

for Manekia but the morphology, color, texture and other characters of the 

inflorescence were good predictors of the developmental stages of the flowers in 

an inflorescence. Additionally, flowers arrive at the same developmental stage in 

a short period of time among each other. 

Flower, carpel and ovary 

Bisexual flowers are found in all Piperaceae except the Asian and South 

Pacific species of Piper belonging to the subgenus Macropiper (Callejas 1986, 

Jaramillo and Manos 2001). Species of Piper have been reported as 

herkogamous and partially dichogamous (Semple 1974, Figueiredo and Sazima 
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2000) like Manekia. This suggests partial reproductive isolation by spatial and 

temporal separation of mature anthers from receptive pistils. But the significance 

of apical and basal anthers maturing after stigmatic receptivity for Manekia can 

not be interpreted because of the lack of data in terms of pollen tube growth. If 

stigmatic receptivity overlaps with the maturation of apical and basal anthers and 

the species is self-compatible, this could be causing reproductive assurance by 

self-pollination if cross-pollination does not happen.  

 

High rates of ovule abortion were observed before and after fertilization for 

Manekia. Several authors working in some species of Piper and Peperomia have 

also reported high rates of ovule abortion (Kanta 196, Martin and Gregory 1962, 

Semple 1974, Figueiredo and Sazima 2000). Additionally few fruits are formed 

for each inflorescence (four to five) in Manekia. Apomixis has been reported in a 

dioecious member of the family (Macropiper, Gentry 1955) but it was not 

observed in the species here studied. 

 

Manekia was interpreted as having four syncarpic carpels based on the 

presence of independent vascular strands inserting in each of the usually four 

stigmatic lobes. This case has also being reported by Tucker (1982a, b) for 

several species of Piper and by Han-Xing and Tucker (1995) for Zippelia.  

Ovule 

 All members of Piperaceae including Manekia have similar ovule 

structure. They have a single basal orthotropous ovule, with two integuments, 

they are crassinucellar and there is hypostase formation after the ovule reaches 

maturity (Gvaladze and Akhalkatsi 1990, Nikiticheva 1981, Igersheim 1998). The 

micropyle is formed from the inner integument in Manekia as also is the case in 

Zippelia (Lei et al. 2002). In some species of Piper the micropyle is formed from 

both integuments (Igersheim 1998). 
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Pollination biology and floral phenology 

 There was some evidence that sporophytic or stigmatic self-incompatibility 

occurs in Manekia naranjoana. However the hand pollination experiments to test 

for self-incompatibility were done in twenty inflorescences of a single individual. 

Even though many factors suggest self incompatibility (lack of germination of 

pollen), a larger sample using more than one individual needs to be used to show 

this. Stigmatic self-incompatibility has been reported in Saururus cernaus 

(Pontieri and Sage 1999). 

 

 The sequence of reproductive events in Manekia including several 

aspects of the floral phenology is an important series of data that hardly ever are 

reported in papers of reproductive biology. The developmental stages of flowers 

and inflorescences are predictors of the stages of development in the ovule and 

female gametophyte. Stigmatic receptivity is occurred around day twelve after 

floral burst; it lasted for approximately six days or more. At the onset of stigmatic 

receptivity the female gametophyte is still immature, but by day eighteen right 

when the stigmatic receptivity is ending the female gametophyte is mature. 

 

Female gametophyte 

The female gametophyte development for Manekia naranjoana is 

described for the first time in this study. During megasporogenesis a 

sporogenous cell gives rise to the single megaspore mother cell. The megaspore 

mother cell undergoes meiosis without cell wall formation. As a result four free 

megaspore nuclei are formed within an ovoid coenocyte. The four megaspore 

nuclei in the coenocyte undergo two mitotic divisions resulting in a sixteen-

nucleate female gametophyte. Three nuclei were located at the micropylar end 

forming the egg apparatus, with two lateral pyriform synergids and a central egg.  

The central cell contains two nuclei, one from the micropylar end and the other 

one from the chalazal one. The eleven remaining nuclei were arranged toward 
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the periphery of the chalazal pole of the female gametophyte, and sometimes 

fused. This description corresponds to the Drusa type. Few times, I found three 

nuclei located at the micropylar end forming the egg apparatus, a central cell 

containing four nuclei, one from the micropylar end, one from the chalazal end 

and two coming from each lateral pole. The eleven remaining nuclei were 

arranged three toward the chalazal pole, and three at each lateral pole. This 

description correspond the Penaea type. There was considerable variation 

arrangement of nuclei at both early and mature stages, but the extremes 

reported here were found at all stages (Fig. 30). 

 

 All the members of Piperaceae are reported as tetrasporic in previous 

studies but the development of the female gametophytes is different for several 

of its groups. For all the genera of Piperaceae (including data reported in this 

study) except for Peperomia there is no cell wall formation after meiosis I and II. 

However, Johnson (1914) described formation of rudimentary cell walls in the 

tetraspore of Peperomia.  Manekia and Zippelia have a single archesporial cell 

and a similar ontogenetic trajectory for the female gametophyte (Lei et al. 2002), 

while Piper (Fritillaria type) and Peperomia (Peperomia type) each has a different 

type of female gametophyte. Peperomia has occasionally more than a single 

archesporial cell (Johnson 1914).  Lack of clear polarization in the four nuclei of 

the tetraspore was sometimes observed in this study for Manekia (Fig. 30). 

Additionally the female gametophyte structure was variable sometimes according 

to the shape of the coenocyte. More pear-like female gametophytes produce 

tetrapolar arrangement of nuclei, while in more spheroid-like coenocytes the 

distribution of the nuclei was bipolar (Fig. 30). This change in structure in the 

female gametophyte with the shape of the coenocyte has also been reported in 

Peperomia (Maheshwari 1963).  

 

Lack of polarization was also frequently observed. The antipodal nuclei in 

the mature female gametophyte of Manekia have been observed having a 
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spontaneous pattern of fusion without any particular organization (Fig. 27); this 

was also reported by Lei et al. (2002) for Zippelia.  

 

Tetraspory and the origin of the sixteen nuclei female 
gametophyte in Piperales 

 

The tetrasporic development of the female gametophyte is a derived and 

homoplastic character in the phylogeny of flowering plants, but little is known 

about its specific developmental origins and its evolutionary significance. 

Piperales represents an excellent group to examine the consequences of the 

origin of tetraspory because of the high variation among its groups, in terms of 

female gametophyte development (Fig. 31) and because of strong evidence for 

its origin within Piperaceae.  

 

The phylogeny of Piperales, and a simple parsimony-based character 

analysis, suggests that monosporic development is ancestral in the order (Fig. 

31). Monosporic development of the female gametophyte has been found in its 

sister group Saururaceae (Quibell 1941, Raju 1961, Murty 1960, Yoshida 1961), 

and even though bisporic development has been suggested in Saururus, the 

evidence supporting this type of development is weak (Nikiticheva 1981). 

Aristolochiaceae and Lactoridaceae are also monosporic (Johri and Bhatnagar 

1955, Wyatt 1955, Nair and Narayanan 1961, Tobe et al. 1993).  In contrast, 

Piperaceae at least three different types of tetrasporic development are found 

(Fig. 31), and a fourth, Penaea-type was found as a variant in Manekia.  This 

suggests that the ancestor of Piperaceae was monosporic and once the 

tetrasporic condition was reached in Piperaceae variation in developmental 

pathways was easy to develop (Fig. 31). 
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 In Piperaceae the tetrasporic sixteen-nucleate female gametophyte could 

be considered an ancestral stage of the tetrasporic development in the family 

(Fig. 31). Two different parsimony arguments emerge when analyzing the 

phylogeny of Piperales in terms of female gametophyte development: (1) the 

sixteen nuclei female gametophyte of Manekia, Zippelia and Peperomia arose 

one time in Piperaceae, and the 7-celled/8-nucleate Fritillaria-type arose one 

time in Piper. Or (2) the sixteen-nucleate female gametophyte arose two times: 

once in Manekia and Zippelia and once in Peperomia; and the 7-celled/8-

nucleate Fritillaria-type arose one time in Piper.  

 

These two scenarios can be interpreted in terms of three basic traits of the 

female gametophyte: (1) the number of nuclei, (2) their origin (monosporic or 

tetraporic), and (3) the endosperm ploidy.  The tetrasporic sixteen nuclei female 

gametophyte of Manekia, Zippelia and Peperomia originates once from a 

monosporic 7-celled/8-nucleate female gametophyte and the tetrasporic 7-

celled/8-nucleate female gametophyte of Piper originates once in the family from 

a tetrasporic sixteen nuclei female gametophyte. Or the tetrasporic sixteen nuclei 

female gametophyte originates twice first from a monosporic 7-celled/8-nucleate 

female gametophyte in Manekia and Zippelia, and then from the tetrasporic 7-

celled/8-nucleate female gametophyte of Piper in Peperomia.  In terms of the 

ploidy of the endosperm the tetrasporic triploid (Manekia and Zippelia), nonaploid 

and dodecaploid (Peperomia) endosperms originates once from the monosporic 

triploid endosperm and the tetrasporic pentaploid endosperm in Piper originates 

once from a tetrasporic triploid (Manekia and Zippelia), nonaploid and 

dodecaploid (Peperomia) endosperms.  Or the tetrasporic triploid (Manekia and 

Zippelia), nonaploid and dodecaploid (Peperomia) endosperms originates twice. 

The tetrasporic triploid endosperm in Manekia and Zippelia originates once from 

a monosporic triploid endosperm, while the nonaploid and dodecaploid 

endosperms of Peperomia originates once from the tetrasporic pentaploid 

endosperm in Piper. 
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In terms of developmental biology many cellular events have to take place 

in the female gametophyte to switch from a monosporic to a tetrasporic condition. 

Heterochronic and heterotopic changes, additions and deletions early in the 

development of the female gametophytes influenced evolutionary stories of the 

particular taxa implicated (Fig. 31). Early in megasporogenesis several 

ontogenetic steps differ and ultimately determine the female gametophyte 

configuration. In monosporic taxa of Piperales the cell walls are persistent after 

meiosis I and II, additionally the three upper haploid cells degenerate. On the 

contrary the failure of cell wall formation (Manekia or Zippelia) or degeneration of 

the cell walls (Peperomia) after meiosis I and II, and the loss of megaspore 

nucleus degeneration determines the tetrasporic development (Fig. 31).   

 

Heterotopic changes (phyletic changes in location from which one organ 

differentiates in ontogeny; Gould 1977) took place in the nuclei of the coenocytic 

tetraspore after the end of meiosis II. The ancestral arrangement of the four 

independent megaspores in monosporic taxa of Piperales is linear or T-shaped. I 

suggest that through migration of nuclei to two or four domains were established 

in the megaspore of tetrasporic Piperaceae after the failure of cell wall 

formation(heterotopy).  In comparison to Saururaceae with a linear distribution of 

megaspores, in Manekia and Zippelia heterotopy occurs when three nuclei from 

the coenocytic tetraspore migrate to the chalazal end (Fig. 31). 

 

The origin of tetrasporic development started with the failure in cell wall 

formation during meiosis.  Four genetically different nuclei are being conserved in 

a single coenocyte while in monosporic development three of those nuclei are 

discarded and the genetic variation is limited to one single nucleus. As a result 

the nuclei of a monosporic female gametophyte are genetically homogeneous, 

while in tetrasporic taxa the nuclei that compound the female gametophyte are 

not all the same. This genetic mosaic in the coenocyte of tetraspores could 
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potentially have been an important event in the evolutionary history of 

Piperaceae (see Haig 1987, 1990).  

 

Many other changes are followed after this initial formation of the 

megaspore. While in monosporic groups of Piperales polarization of the nuclei 

starts after the first mitosis of the remaining megaspore, in tetrasporic groups two 

poles or four poles are established after meiosis II. This suggests acceleration in 

polarization of nuclei during the ontogenetic trajectory (Fig. 31). Acceleration of 

tetrasporic ontogenetic trajectories in Piperaceae is explain by the fact that more 

nuclei are present in the coenocyte after meiosis II, in comparison to the number 

of nuclei in the monosporic groups of Piperales (Fig. 31). In this way the mature 

female gametophyte in tetrasporic taxa is complete after two mitotic divisions but 

it has a higher number of nuclei (sixteen) in comparison to monosporic taxa were 

after three mitotic divisions the female gametophyte has a total of eight nuclei.  

 

During megagametogenesis of tetrasporic taxa a deletion on the tail of the 

developmental trajectory is suggested because mitosis III is not taking place as 

in the ancestral monosporic condition (Fig. 31). In any case the nuclei of a 

monosporic or tetrasporic coenocyte stop dividing mitotically when a set of four 

nuclei has been formed at the micropylar pole (Friedman and Williams 2003). 

The four nuclei at the micropylar pole contribute to the formation of the egg, 

synergids and the central cell nuclei. This set can be completed with a different 

number of cells and ploidy at the chalazal pole (Fig. 31).   

 

The mature female gametophyte in monosporic and tetrasporic taxa varies 

in the number of nuclei implicated in its construction, the polarity of such cells, 

the number of nuclei participating in the central cell nuclei, and the ploidy of such 

nuclei (Fig. 31). In tetrasporic development two developmental stages are 

fundamental in the determination of nature of the female gametophyte: (1) the 

arrangement of nuclei in the tetraspore which ultimately establish separate 
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cytoplasmic domains, and (2) the number of nuclei contributed to the central cell 

and hence to the endosperm. But as shown in this study there is a high amount 

of variation and/or plasticity in key steps of the ontogenetic trajectory for Manekia 

naranjoana. Peperomia, Manekia and Zippelia have developmentally unstable 

endosperm. 

 

Genetic diversity in the endosperm of Manekia and Zippelia is higher than 

in monosporic taxa of Piperales. In these two taxa the three nuclei participating in 

its formation are genetically different while in monosporic taxa two cells of the 

endosperm are genetically identical and just the male nucleus is genetically 

different (Fig. 31). In Piper and Peperomia the endosperm is considerably more 

genetically diverse than in monosporic taxa and tetrasporic Manekia and 

Zippelia, because of the participation of a high number of cells in the central cell 

nuclei with different genetical composition (Friedman et al. in press). 

 

Embryological plasticity 

The female gametophyte of Manekia naranjoana is highly variable at the 

key steps of the ontogenetic trajectory that will determine the identity of the 

female gametophyte. The arrangement of the four nuclei in the tetraspores 

observed in this study was variable (Fig. 30). In mature tetraspores a tetrapolar 

arrangement was rarely evident while a weak bipolar arrangement of four nuclei 

was more frequent, one nucleus at the micropylar end and three at the chalazal 

(Fig. 30). Strong polarity of nuclei in the coenocyte was seldom observed. This 

weak polarity of the nuclei of the coenocyte was also reflected at mature stages 

of the female gametophyte (Fig. 30). In the mature coenocyte we observed a 

bipolar distribution of nuclei as a general pattern (Fig. 30). However few mature 

coenocytes possessed a tetrapolar distribution of nuclei in the female 

gametophyte instead of a bipolar. Some other times any kind of pattern of 

distribution was not even evident (Fig. 30). Polarity could be interpreted as a 
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plastic character in Manekia tetrasporic female gametophyte. As an alternative 

the determination of structure in its female gametophyte has to be more 

associated with the origin of the megaspore (monosporic or tetrasporic) and the 

number of nuclei participating in the female gametophyte. 

 

Fusion of nuclei is a recurrent characteristic in tetrasporic female 

gametophytes of Piperales, and also seems a plastic character in the order. In 

monosporic female gametophytes the identity of individual nuclei is conserved. 

Fusion of antipodal nuclei with the nuclei in the endosperm has been reported for 

Zippelia (Lei et al. 2002). In any of these two cases this appears to be a factor 

influencing the structure of the female gametophyte as a whole. Also, this is not a 

process implicated and fixed in the ontogenetic trajectory of these groups like it is 

the case of the fusion of nuclei forming a triploid antipodal nucleus in the 

tetraspore of Piper. The central cell nuclei in Peperomia show a dramatic 

example of nuclear fusion. Johnson (1914) found that between four to fourteen 

nuclei group together in the center of the coenocyte forming a highly polyploid 

endosperm. In taxa with a high ploidy of the endosperm like Piper and 

Peperomia it is difficult to establish if double fertilization is taking place when the 

sperm is discharged in the coenocyte.  

 

The variability and/or plasticity in the structure of female gametophyte in 

Piperaceae is taking place at the chalazal pole of the female gametophyte. But 

the micropylar pole has been conserved in terms of structure and form. It is in 

this way that the theory of modular construction of the female gametophyte 

(Friedman and Williams 2003) lacks coherence in terms of cytoplasmically 

autonomous domains and even static terminal ontogenetic stages (see Friedman 

et al in press).  Additionally the variability observed in this study shows how even 

though the embryological types proposed by Maheshwari (1950) are useful to 

illustrate the embryological trajectories in flowering plants, they have to be 

carefully interpreted. Future studies in embryology should concentrate on 
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describing such variation in the developmental pathways instead of trying to 

accommodate data to embryological types that do not reflect the plasticity of 

such characters. 

 

Modularity in tetrasporic Piperaceae  

 

I interpreted my findings from Manekia in the context of female 

gametophyte diversity within Piperales.  Placing these data into an evolutionary 

framework could explain evolution of flowering plant endosperm. There are two 

sets of hypotheses that could be plausible: (a) the evolution of the female 

gametophyte through modular duplication, resulting in increases of endosperm 

ploidy, and (b) the evolution of the female gametophyte through gradual 

reduction, resulting in ploidy reduction of endosperm (Battaglia 1951). The first 

hypothesis deals with the concepts of cell modularity and duplication. Modular 

developmental subunits constructed through duplication have been proposed to 

explain the early evolution of the angiosperm female gametophyte. An ancestral 

four celled female gametophyte could be duplicated to form the 7celled/8nucleate 

female gametophyte (Williams and Friedman 2002, Friedman and Williams 2003, 

2004), which has a triploid biparental endosperm. The 7 -celled/8-nucleate 

female gametophyte is also known as the Polygonum type and it was largely 

considered the ancestral type of female gametophyte (Palser 1975). Virtually all 

early angiosperm female gametophytes consist of one or two modules, but the 

female gametophytes of some Piperaceae have not yet been interpreted in this 

context. The hypothesis of modular duplication suggests that the chalazal 

module of the Polygonum type (7celled/8nucleate female gametophyte) is a 

developmental novelty; this means that the second polar nucleus and the 

antipodal cells are angiosperm innovations (Williams and Friedman 2004). 

Friedman and Williams (2003) explain that key innovations between different 

types of female gametophyte lie in the modification of early development either 
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due to heterochronic or heterotopic changes of groups of nuclei in different 

cytoplasmic domains (micropylar and chalazal) of the developing female 

gametophyte. The developmental origin of bisporic and tetrasporic female 

gametophyte could also be explained using the hypothesis of modular 

duplication. In these cases, acceleration of module initiation result in additional 

modules being form. 

 

The second hypothesis deals with the evolution of female gametophyte 

through gradual reduction.  Ancestral female gametophytes have thousands of 

cells (i. e. gymnosperms), while more derived ones have a drastic reduction in 

the number of cells (varying from sixteen to eight to four). For example, 

Piperaceae was once thought to be a model for understanding evolutionary 

patterns among the earliest flowering plants (Arber and Parkin 1907, Burger 

1977, Donogue and Doyle 1989, Qiu et al. 2000, 2005). The female gametophyte 

of Peperomia was once considered to represent an intermediate stage in the 

origin of the angiosperm female gametophyte from a gymnosperm-like female 

gametophyte. This was because of the members of Piperaceae had female 

gametophytes with high numbers of cells and nuclei (i. e. 9-celled/16-nucleate 

and 15-celled/16-nucleate female gametophytes.) This morphological 

arrangement is more similar in appearance to the gymnosperm female 

gametophyte, with an even higher number of cells (Gifford and Foster 1989).  In 

contrast, the majority of angiosperms present a more reduced female 

gametophyte (i. e. 4 cell and 7celled/8nucleate female gametophytes), which was 

believed to be a derived condition (Johnson 1914, Gvaladze and Akhalkatsi 

1990), relative to Piperaceae. 

 

My findings from Manekia agree with the hypothesis of the evolution of the 

female gametophyte through modular duplication, resulting in increases of 

modules form a 7celled-8 nucleate Poygonum type with two modules. The effect 

of module increase through heterochrony is to increase endosperm genetic 
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variation. The second hypothesis about the evolution of the female gametophyte 

through gradual reduction resulting in ploidy reduction of endosperm (Battaglia 

1951) lacks support because of the phylogenetically derived placement of 

Piperaceae in all recent molecular phylogenies of flowering plants (Donoghue 

and Doyle 1989, Chase et al. 1993, Zimmer et al. 2000, Qiu et al. 2005). 

 

In terms of modularity (sensu Friedman et al. in press, Friedman and 

Williams 2003) the tetrasporic female gametophytes in Piperaceae can be 

interpreted as two modular or four modular according to the taxa and its 

ontogenetic trajectory (Fig. 31). Furthermore, the final number of nuclei in each 

module of a tetrasporic female gametophyte is always complete after two nuclear 

mitoses. Without exception the micropylar module is highly conserved in the 

number of nuclei. The number of final nuclei will be four and at least one of them 

always migrates to the central cell. This module receives the pollen tube, 

participates in the reproduction, and fertilization of the egg. The lateral modules 

and/or the chalazal module are highly variable in tetrasporic female 

gametophytes of Piperaceae, they can have four to twelve nuclei, and always 

participate with at least one nucleus in the central cell. These modules are 

implicated in the nutrition of the embryo. The more cells present in the 

supplementary modules, the higher the nutrients coming from the nucellar tissue 

to feed the embryo (Willemse 1981).  

 

 The female gametophyte of Manekia and Zippelia with sixteen nuclei 

establishes two modules in the tetraspore after meiosis. The initial micropylar 

module has one nucleus while the chalazal has three nuclei. At maturity the 

micropylar module has four cells and the chalazal module twelve cells (Fig. 31).  

So the differences between modules are based on the number of cells but the 

cytoplasmic domains still indicate two modules like the monosporic 7-

celled/8nucleate female gametophyte. The Penaea type rarely observed in this 

study has a quadripolar distribution of the sixteen nuclei in the female 
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gametophyte. Each of the four nuclei undergoes two mitoses, forming a female 

gametophyte with sixteen nuclei and four modules.   

The female gametophyte of Piper represents a highly organized and 

derived type of development. During the tetraspore development additionally to 

the formation of a micropylar domain with one nucleus and a chalazal domain 

with three nuclei, where there is a fusion of the three nuclei to form a triploid 

nucleus. In this case two modules are formed based again in cellular domains 

but the chalazal pole is genetically highly variable. At maturity the female 

gametophyte in Piper resembles the 7-celled/ 8-nucleate female gametophyte of 

the majority of flowering plants but in this case the chalazal domain has four cells 

that are each triploid (Fig. 31). 

  

Peperomia represents a special case in which four different domains are 

identified in the tetraspore after meiosis. In this case four different modules with 

four cells each are taking place in the construction of the female gametophyte in 

the genus. There is an addition of two lateral modules with four cells each in the 

ontogenetic trajectory (Fig. 31), in comparison to the rest of the monosporic and 

tetrasporic groups analyzed here. However and at maturity the cells in the female 

gametophyte of Peperomia do not show a very strong polarity to each domain. 

This makes the theory of modularity difficult to interpret in terms of cytoplasmic 

domains for this species. Or structural modules must be differentiated in such a 

small space that they are hard to distinguish. 

 

In terms of modularity the numbers of cells from each module migrating to 

the central region are essential. The contribution of nuclei and ratio of paternal 

vs. maternal genomes in the endosperm are highly variable in tetrasporic female 

gametophytes.  Selection favors endosperms with higher ploidy (Stebbins 1974), 

higher heterozygosity (Brink and Cooper 1947), and lower maternal vs. paternal 

conflict (Friedman et al. in press). The higher the levels of heterozygosity and 

ploidy the better nourished the embryo is expected to be (Friedman et al. in 
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press). The ancestral type of tetrasporic female gametophyte in Manekia and 

Zippelia receives in the central cell one nucleus from the micropylar module, one 

from the chalazal, but both of them are genetically different to each other 

(Fig.30). In comparison to Saururaceae which has a Polygonum type female 

gametophyte where two genetically identical haploid cells are participating in the 

central cell, and lately the endosperm (Fig. 31).  

 

The female gametophyte of Manekia and Zippelia has a higher heterosis 

and higher ploidy in comparison to Saururaeae, and as a consequence a more 

vigorous endosperm is formed (Fig. 31).  In Piper the central cell is composed of 

one haploid nucleus coming from the micropylar domain and a triploid cell with 

three different nuclei coming from the chalazal domain. So in this case the 

proportions of micropylar vs. chalazal contribution are unequal, and the chalazal 

domain has a higher contribution in terms of genetic diversity (Fig. 31).  

Peperomia represents an extreme case where heterozygosity and levels of 

ploidy are the highest among flowering plants; each of the four domains 

contributes with differently to the genetics to the central cell (Johnson 1914). 

 

Embryology and its implications in systematics of Piperaceae  

 

The molecular phylogenies for Piperaceae place Manekia and Zippelia as 

sister groups (Jaramillo et al. 2004, Wanke 2007).  In this study we found a 

pattern of female gametophyte development for Manekia similar what was found 

in a previous study of Zippelia (Lei et al. 2002). In both genera the female 

gametophyte has a similar structure with sixteen nuclei, and two nuclei in a 

central cell where a triploid endosperm is formed.  The female gametophyte 

development is substantially different in the two more species-rich genera of the 

family Piper and Peperomia, not just between them but also in comparison to 

Manekia and Zippelia.  The genus Piper has a 7-celled/8-nucleate female 
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gametophyte, a central cell with four nuclei, and as a result a pentaploid 

endosperm (Swamy 1945, 1944; Kanta 1961,1962; Prakash 1994), while 

Peperomia has 9-celled/16-nucleate female gametophyte, and a central cell in 

which four to fourteen nuclei could participate (Johnson 1900, 1914; Campbell 

1901; Plyushch 1982; Smirnov and Grakhantseva 1988). This evidence suggest 

that a least three different ontogenetic pathways of tetrasporic development are 

taking place in Piperaceae. 

 

Manekia was largely considered based on morphological characters to be 

a part of Piper (De Candolle 1923, Jaramillo and Manos 2001). But contrasting 

morphological characters (Jaramillo et al. 2004, Arias 2006), molecular 

phylogenies (Jaramillo and Manos 2001, Wanke et al. 2007) and the 

developmental evidence found in this study suggest Manekia as more closely 

related to Zippelia. Some of the synapomorphies that Manekia and Zippelia 

share are:  a sixteen nucleate female gametophyte known as Drusa type, and 

triploid endosperm. Developmental evidence is offered in this study that indicates 

molecular analyses are congruent with the embryology of genera in Piperaceae. 
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CHAPTER V 

CONCLUSIONS  
 

 My analysis of female gametophyte development in Manekia 

naranjoana suggests a similar pattern of female gametophyte development for 

Manekia as was observed in a previous study of Zippelia.  This evidence shows 

that both groups share similar evolutionary stories in terms of female 

gametophyte structure and they are different from the overwhelming majority of 

species in the family. At least three different ontogenetic pathways of tetrasporic 

development occurs place in Piperaceae. Penaea type is being reported for first 

time in this study for the family. Their evolutionary significance relies on the 

assumption that the increase in ploidy of the endosperm promotes vigor in the 

embryo. The genetic diversity in the endosperm of Manekia and Zippelia is 

higher than in monosporic taxa of Piperales. Additionally, in Piper and Peperomia 

the endosperm is considerably more genetically diverse than in monosporic taxa 

and Manekia and Zippelia, because of the participation of a high number of cells 

in the central cell nuclei with different genetical composition.  

 

 The tetrasporic development of the female gametophyte is a derived 

character in Piperales. Heterochronic and heterotopic changes, additions and 

deletions have to take place in the female gametophyte ontogenies to switch 

from a monoporic to a tetrasporic condition. Female gametophytes in Piperaceae 

can be interpreted as two modular (Manekia, Zippelia and Piper) or four modular 

(Peperomia). With the increase in the number of modules there is an increase in 

the genetic variation in the central cells and ultimately the endosperm.  The 

micropylar module is highly conserved in the number of nuclei, while the chalazal 

pole is highly variable. The variability and/or plasticity in the structure of female 

gametophyte in Piperaceae are taking place at the chalazal pole of the female 
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gametophyte. Manekia naranjoana is highly variable at the key steps of the 

ontogenetic trajectory that will determine the identity of the female gametophyte. 

Fusion of nuclei and lack of polarity are recurrent events in the ontogenies of 

tetrasporic clades, while in monosporic female gametophytes the identity of 

individual nuclei and the polarity are highly conserved.  
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Figures 1-4. Inflorescences and floral morphology of Manekia naranjoana (Piperaceae). 
Scale Bars in Fig 1 = 1cm; Fig.2 = cm; Fig. 3 = 0.2cm, Fig. 4 = 50µm.2 
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Figure 1-4, continued 

 
Figure 1. Early inflorescence with floral primordial. 

Figure 2. Mature inflorescence with mature flowers, receptive stigmas and  apical anthers 
close to open (S). 

Figure 3. Close up of flowers in inflorescence, flowers are numbered ,as are associated 
structures, they are showing stigmatic lobes (ST), bracts (B), apical anthers in maturation 

(AA) and scars of abscission zones of lateral anthers indicated by arrows for flower 3. 

Figure 4. Cross-section of inflorescence and longitudinal section of flower at anthesis 
(Aniline Blue Staining) showing stigma (ST), oil cells (OC), stylar canal (SC), and 

postgenital fusion in the lower part of the style (PF) and micropyle (M) 
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Figures 5-8. Longitudinal sections of flowers and ovules of Manekia naranjoana stained 
with Toluidine Blue. Scale bars Figs. 5 and 8 = 50µm; Fig. 6 = 100µm; Fig.7 = 20µm. 

Figure 5 Early flower showing anthers (A), carpels (CP), stylar canal (C), vascular tissues 
(VT), ovule (O) and rachis (R). 

Figure 6 Flower after anthesis showing stigma (ST), abscission zone of stamens (SS), 
transmitting tract (TT) and vascular tissues (VT). 
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Figure 5-8, continued 

 
Figure 7 Ovule with megaspore showing outer integument (OI) and inner integument (II). 

Figure 8 Ovule at megagametogenesis showing hypostase (H) and outer (OI) and inner (II) 
integuments. 
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Figures 9-17. Megasporogenesis of Manekia naranjoana (Piperaceae). Scale bars 

= 10 µm. 

 

Figure 9. Metaphase of archesporial cell 

Figure 10. Anaphase of archesporial cell. 

Figure 11. Telophase of archesporial phase. 

Figure 12. Megaspore mother cell and pariental tissue. 

Figure 13. Mature megaspore mother cell in a crassinucellar ovule showing the inner 
integument (II). 

Figure 14 Megaspore mother cell in prophase. 

 

 59



 

Figure 9-17, continued 

 
Figure 15a-b. First meiotic division, anaphase I of the megaspore mother cell, serial and 

adjacent sections. 

Figure 16a-c. Second meiotic division, serial and adjacent sections. Figs. 16a-b. Chalazal 
cell in anaphase II. Fig. 16c. Micropylar cell in metaphase II. 

Figure 17a-b. Tetraspore, serial but not adjacent sections. 
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Figures 18-22. Megagametogenesis of Manekia naranjoana (Piperaceae). Scale 

bars = 10 µm. 
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Figure 18-22 

 

Figure 18a-c. First mitotic division of linear tetraspore in prophase, serial but not adjacent 
sections. Fig. 18a. central nucleus in prophase. Fig. 18b. Chalazal and micropylar nuclei, 

the chalazal one at prophase. Fig 18c. Central nucleus at prophase. 

Figure 19a-d. Eight nucleate stage in prophase (serial and adjacent sections). Fig. 19a. 
Four nuclei in prophase in this section, two at the micropylar end and two at the chalazal 

one. Fig. 19b. One nucleus in prophase at the chalazal end. Fig. 19c. Two nuclei in 
prophase one at the micropylar end and one at the chalazal one. Fig. 19d. One nuclei in 

prophase at the micropylar end. 

Figure 20.a-f. Sixteen nuclei female gametophyte. Fig. 20a. Central cell nucleate. Fig. 20b. 
Section with two nuclei, one at the micropylar end and one at the chalazal one. Fig. 20c. 

Four nuclei, two at the micropylar end and two at the chalazal. Fig. 20d. Two nuclei at the 
chalazal end. Fig. 20e. Four nuclei at the chalazal end. Fig. 20f. One nucleus at the chalazal 

end. 

Figure 21 a-b. Egg apparatus. Fig. 21a. Egg. Fig 21b. Synergids. 

Figure 22. Detail of a central cell nucleus, formed by fusio of two polar nuclei in the 
chalazal region. 
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Figures 23-28. Post-pollination events in Manekia naranjoana. Scale bars in Figs. 25, 26, 27 
= 10 µm; Fig. 28 = 15 µm ; Fig. 25 = 10 µm; Fig.24 =  20µm; Fig.23 = 40µm. 

Figure 23 Pollen tube (PT) growing in the transmitting tube. 

Figure 24. Pollen tube reaching the ovule (O). 

Figure 25 Pollen tube contents being discharged in the micropylar end of the female 
gametophyte, pollen tube discharged (PTD), synergid (SYN). 

Figure 26. Central cell nuclei (CCN)  fusing with a sperm nuclei (SN) in a female 
gametophyte,. 

Figure 27. Central cell nuclei (CCN) with four nuclei participating in the fusion. 

Figure 28. First mitosis of the endosperm, first cells of the endosperm (FCE). 
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Figure 29. The timeline of reproductive events in Manekia naranjoana including 
inflorescence, flower and female gametophyte development. (PGF) postgenital fusion 
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Figure 30. Variation in polarity of the tetraspore and the mature female gametophyte found 
in Manekia naranjoana. Tetraspore with strong early bipolar organization gives rise to a 
female gametophyte with two modules, while tetraspores that lack strong, early bipolar 
organization gives rise to a female gametophyte with four modules. * From figure 20 a-f 

Scale bar= 10 µm 
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Figure 31. Simple parsimony reconstruction of female gametophyte ontogenetic sequences. A: 

two modules, bipolar organization, one haploid nucleus initiates each module. B: two modules, 

bipolar organization, one haploid nucleus initiates the micropylar module and three haploid nuclei 

initiates the chalazal module. C: two modules, bipolar, one haploid nucleus initiate the micropylar 

module and one triploid nucleus initiates the chalazal module. D. Four modules, tetrapolar, one 

haploid nucleus initiates a module in each pole. 1: both modules with the same number of nuclei, 

same ploidy, and equal genetic contribution to the central cell nuclei. 2: three times more nuclei in 

the chalazal vs. the micropylar module, but nuclei with same ploidy and equal genetic contribution 

to the CCN. 3: both modules with the same number of nuclei, but ploidy of each chalazal nucleus 

is three times higher that the ploidy in the micropylar nuclei, and unequal contribution to the CCN. 

4: Four modules with the same number of nuclei each, same ploidy, and equal contribution of 

nuclei to the CCN. 
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