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ABSTRACT 

 

Identification, reconstruction and matching of fragmentary bones are basic tasks 

required to accomplish quantification and analysis of fragmentary human remains 

derived from forensic contexts. Appropriate techniques for three-dimensional surface 

matching have received great attention in computer vision literature, and various 

methods have been proposed for matching fragmentary meshes; however, many of 

these methods lack automation, speed and/or suffer from high sensitivity to noise. In 

addition, reconstruction of fragmentary bones along with identification, in the presence 

of reference model to compare with, in an automatic scheme have not been addressed. 

In order to address these issues, we used a multi-stage technique for fragment 

identification, matching and registration. 

 

The study introduces an automated technique for matching of fragmentary human 

skeletal remains for improving forensic anthropology practice and policy. The proposed 

technique involves creation of surfaces models for the fragmentary elements which can 

be done using computerized tomographic scans followed by segmentation. Upon 

creation of the fragmentary elements models, the models go through feature extraction 

technique where the surface roughness map of each model is measured using local 

shape analysis measures. Adaptive thresholding is then used to extract model features. 

A multi-stage technique is used to identify, match and register bone fragments to their 
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corresponding template bone model. First, extracted features are used for matching 

with different template bone models using iterative closest point algorithm with 

different positions and orientations. The best match score, in terms of minimum root-

mean-square error, is used along with the position and orientation and the resulting 

transformation to register the fragment bone model with the corresponding template 

bone model using iterative closest point algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

TABLE OF CONTENTS 

 

1. Introduction ................................................................................................................ ……..1 

1.1 Motivation ..................................................................................................................... 2 

1.2 Background ................................................................................................................... 3 

1.3 Overview ....................................................................................................................... 8 

2. Surface Properties ...................................................................................................... ……11 

2.1 Surface Curvature ...................................................................................................... 12 

2.1.1 Fundamental Forms ............................................................................................... 12 

2.1.2 Principal Curvatures.............................................................................................. 14 

2.1.3 Gaussian and Mean Curvatures .......................................................................... 15 

2.1.4 Curvedness ............................................................................................................. 16 

2.1.5 Shape Index ............................................................................................................. 16 

2.2 Surface Roughness ..................................................................................................... 17 

2.3 Surface Features ......................................................................................................... 21 

2.3.1 Feature Detection ................................................................................................... 23 

2.3.1.1 Differential-based Methods .............................................................................. 24 

2.3.1.2 Integral-based Methods .................................................................................... 32 

2.3.2 Feature Description ................................................................................................ 37 

2.3.2.1 Shape Context ..................................................................................................... 37 

2.3.2.2 Mesh HOG .......................................................................................................... 38 

2.3.2.3 Heat Kernel Signatures ..................................................................................... 40 

2.3.2.4 Spin Images ......................................................................................................... 40 

3. Surface Matching and Alignment ............................................................................ ……44 

3.1 Surface Matching ....................................................................................................... 45 

3.1.1 Image Based Methods ........................................................................................... 46 

3.1.2 Feature-Based Methods ......................................................................................... 47 



viii 
 

3.2 Surface Alignment ..................................................................................................... 54 

4. Proposed Method ....................................................................................................... ……59 

4.1 Template Bone Models .............................................................................................. 60 

4.2 Surface Models Generation ...................................................................................... 61 

4.3 Feature Extraction ...................................................................................................... 62 

4.3.1 Mesh Differential Properties ................................................................................ 63 

4.3.2 Surface Roughness ................................................................................................. 65 

4.3.3 Gaussian Mixture Model ...................................................................................... 68 

4.4 Matching and Registration ....................................................................................... 74 

4.5 Virtual Environment .................................................................................................. 76 

5. Results and Discussion .............................................................................................. ……81 

5.1 Results .......................................................................................................................... 82 

5.2 Discussion ................................................................................................................. 105 

6. Conclusion and Future Work ................................................................................... …..106 

6.1 Conclusion ................................................................................................................ 107 

6.2 Future Work .............................................................................................................. 107 

References ........................................................................................................................... …..109 

Vita ....................................................................................................................................... …..118 

  



ix 
 

LIST OF TABLES 

 

Table 4-1: Femur template and fragment bones roughness statistics and GMM results 

(cm) ....................................................................................................................................... 73 

Table 5-1: Fragment 1 matching and registration RMSE (cm) ............................................ 98 

Table 5-2: Fragment 2 matching and registration RMSE (cm) ............................................ 98 

Table 5-3: Fragment 3 matching and registration RMSE (cm) ............................................ 99 

Table 5-4: Fragment 4 matching and registration RMSE (cm) ............................................ 99 

Table 5-5: Fragment 5 matching and registration RMSE (cm) .......................................... 100 

Table 5-6: Fragment 6 matching and registration RMSE (cm) .......................................... 100 

Table 5-7: Fragment 7 matching and registration RMSE (cm) .......................................... 101 

Table 5-8: Fragment 8 matching and registration RMSE (cm) .......................................... 101 

Table 5-9: Fragment 9 matching and registration RMSE (cm) .......................................... 102 

Table 5-10: Fragment 10 matching and registration RMSE (cm) ...................................... 102 

Table 5-11: Fragment 11 matching and registration RMSE (cm) ...................................... 103 

Table 5-12: Fragment 12 matching and registration RMSE (cm) ...................................... 103 

Table 5-13: Matching minimum RMSE (cm) ........................................................................ 104 

Table 5-14: Overall evaluation ............................................................................................... 104 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

 

Figure 1-1: Bone samples from James Mellaart excavation, [3] ............................................. 2 

Figure 1-2: A high level overview of feature-based algorithms, [4] ..................................... 4 

Figure 1-3: Proposed framework ............................................................................................. 10 

Figure 2-1: Saddle surface with normal planes in directions of principal curvatures, [18]

............................................................................................................................................... 15 

Figure 2-2: Local shape variations based on shape index, Eq. 2-15, [20] ........................... 17 

Figure 2-3: Overview of mesh roughness algorithm, [21] .................................................... 19 

Figure 2-4: Mesh roughness example, [21] ............................................................................. 19 

Figure 2-5: (a) Noisy sphere, (b) bunny and (c) & (d) their roughness profiles, [22] ....... 21 

Figure 2-6: Shape image example, [28] ................................................................................... 27 

Figure 2-7: Volume and surface area integral invariant, [38] .............................................. 34 

Figure 2-8: (a) Orthogonal planes, (b) 8-bin projected 3D histogram orientation slices, (c) 

4-spatial polar slices with 8 orientation slices each, [27] .............................................. 39 

Figure 2-9: Spin image illustration, [45] .................................................................................. 41 

Figure 2-10: Spin image generation process, [45] .................................................................. 42 

Figure 4-1: Pelvis statistical shape atlas, [11] ......................................................................... 61 

Figure 4-2: Surface models generation process ..................................................................... 62 

Figure 4-3: Example of surface models generation process, [11] ........................................ 62 

Figure 4-4: Feature extraction process .................................................................................... 63 

Figure 4-5: Neighborhood notation of Gauss-Bonett scheme, [11] ..................................... 64 

Figure 4-6: Roughness maps of femur template bone at 1st , 2nd , 3rd , 4th and 5th 

neighborhood levels .......................................................................................................... 66 

Figure 4-7: Roughness maps of humerus template bone at 1st , 2nd , 3rd , 4th and 5th 

neighborhood levels .......................................................................................................... 67 

Figure 4-8: Roughness maps of pelvis template bone at 1st , 2nd , 3rd , 4th and 5th 

neighborhood levels .......................................................................................................... 67 

file:///C:/Users/Mustafa/Desktop/Thesis%20v1.6%20(1).docx%23_Toc373239073
file:///C:/Users/Mustafa/Desktop/Thesis%20v1.6%20(1).docx%23_Toc373239074
file:///C:/Users/Mustafa/Desktop/Thesis%20v1.6%20(1).docx%23_Toc373239080


xi 
 

Figure 4-9: Roughness maps of skull template bone at 1st , 2nd , 3rd , 4th and 5th 

neighborhood levels .......................................................................................................... 68 

Figure 4-10: Surface roughness of femur template bone model, histogram and 

distributions of Gaussian components ........................................................................... 70 

Figure 4-11: Surface roughness of skull template bone model, histogram and 

distributions of Gaussian components ........................................................................... 71 

Figure 4-12: Surface roughness of femur fragment bone model ......................................... 72 

Figure 4-13: Surface roughness of femur fragment bone model in Figure 4-12, histogram 

and distributions of Gaussian components .................................................................... 72 

Figure 4-14: Femur template bone model features ............................................................... 74 

Figure 4-15: Femur fragment bone model features ............................................................... 74 

Figure 4-16: Matching and registration process – A ............................................................. 75 

Figure 4-17: Matching and registration process – B .............................................................. 76 

Figure 4-18: Fragment models loaded in the developed virtual environment ................. 78 

Figure 4-19: Fragment models and template models loaded in the alignment dialog .... 79 

Figure 5-1: Template models, their roughness maps and detected features ..................... 85 

Figure 5-2: Fragment models .................................................................................................... 86 

Figure 5-3: Fragment models roughness maps ...................................................................... 86 

Figure 5-4: Fragment models detected features .................................................................... 87 

Figure 5-5: Simulated partial fragments ................................................................................. 87 

Figure 5-6: Fragments 1, 2 matched and registered, (Table 5-1, Table 5-2) ....................... 88 

Figure 5-7: Fragments 3, 4 matched and registered, (Table 5-3, Table 5-4) ....................... 89 

Figure 5-8: Fragment 4 matched and registered, (Table 5-4) ............................................... 90 

Figure 5-9: Fragments 5, 6 matched and registered, (Table 5-5, Table 5-6) ....................... 91 

Figure 5-10: Fragment 6 matched and registered, (Table 5-6) ............................................. 92 

Figure 5-11: Fragments 7, 8 matched and registered, (Table 5-7, Table 5-8) ..................... 93 

Figure 5-12: Fragment 8 matched and registered, (Table 5-8) ............................................. 94 

Figure 5-13: Fragment 9 matched and registered, (Table 5-9) ............................................. 95 



xii 
 

Figure 5-14: Fragment 10 matched and registered, (Table 5-10) ......................................... 96 

Figure 5-15: Fragments 11, 12 matched and registered, (Table 5-11, Table 5-12) ............. 97 



1 
 

1. INTRODUCTION 
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1.1 Motivation  

Mass disasters, cremation litigation, human rights investigations and many other types 

of modern cases raise questions such as “How many individuals are represented in a 

group of remains?” and “How can remains of single individual be identified within 

collection of remains from multiple individuals?” [1]. Cases and questions involving 

commingling issues are highly valuable and answering to these questions is highly 

valuable too. From a forensic anthropologist’s perspective, commingled remains 

confound the application of standard methods for the determination of the minimum 

number of individuals, MNI, and complicate the accurate assessment of the biological 

profile [2]. The refinement of methods and development of new tools focusing on 

fragmentary and commingled human remains are critical to enable forensic scientists to 

deal with individual fragmentary cases, issues surrounding mass disasters, and 

commingled mass graves. Figure 1-1 shows bone samples from James Mellaart 

excavation of skeletal remains of around 500 individuals at Çatalhöyük, Turkey [3]. 

 

 
Figure 1-1: Bone samples from James Mellaart excavation, [3]  
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Since the quantification, analysis, and identification of fragmentary human remains 

derived from forensic contexts is of that importance, the reconstruction and matching of 

fragmentary human remains is the primary step to accomplish. Appropriate techniques 

for three-dimensional surface matching have received much attention in computer 

vision literature, and various methods have been proposed for matching fragmentary 

meshes; however, many of these methods lack automation, speed and suffer from high 

sensitivity to noise. In addition, reconstruction of fragmentary bones along with 

identification in the presence of reference model to compare with in an automatic 

scheme is not addressed, to the best of our knowledge. In order to address these issues, 

we used a multi-stage technique for fragment identification, matching and registration. 

 

1.2 Background 

In the area of three-dimensional surface matching, different techniques have been 

proposed for matching fragmentary meshes. Although most of the feature-based 

methods follow the same pipeline to achieve the goal, they have different 

methodologies. Generally, in order to solve the 3D surface matching problem using 

feature-based approaches, a feature extraction step, including detection and/or 

description, follows the data segmentation step.  These features are then used to match 
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surfaces either in pair-wise or multi-piece matching step. Figure 1-2 shows the general 

outline of feature-based algorithms, [4]. 

 

 

 

A geometric matching algorithm is proposed to reassemble generic fractured objects [4]. 

The algorithm first segments the fragments into a set of surfaces bounded by sharp 

curves using multi-scale edge extraction which is constrained to return cycles of edges. 

The algorithm then uses graph cut algorithm to partition the set of surfaces into original 

and fracture surfaces. Integral invariant descriptors are used to produce a set of fracture 

surface features (volume and volume distance) and a set of fracture edge features 

(deviation). In order to allow for fast retrieval of matching parts a relatively low 

dimension of features is used for fracture surface features as well as fracture edge 

features. The used features in [4] are position, principal components, principal 

directions and integral invariant descriptor at the position of the feature cluster. These 

features are calculated to represent fracture surface features, and then used for rough 

and fine registration of surface features. For pairwise matching, shape and topological 

pruning is used based on the features parameters to discard redundant and false 

Data 
Segmentation 

Feature 
Selection 

Pairwise 
Matching 

Multi-piece 
Matching 

Figure 1-2: A high level overview of feature-based algorithms, [4] 
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correspondences and to verify the correct ones. Forward search method is then used to 

find possible matches between fracture surfaces. Since forward search method needs a 

noise-free initial subset, some consistency tests are performed on pairs of 

correspondences including geometric and registration consistency. The set of possible 

matches between the fragments along with a quality rating for each match are used to 

iteratively compute a global multi-piece matching, perform a local multi-piece 

registration and merge matched fragments until the object is reassembled.  

 

Fractured surfaces matching algorithm is proposed to reassemble broken solids [5]. The 

algorithm uses multi-scale integral invariants of the fractured surface points to pick 

surface feature points. The matching process then is performed in two stages. An initial 

matching is done by comparing the multi-scale integral invariants of the surface feature 

points using distance metric. As a result, an initial matching point pairs are established. 

To increase the accuracy and speed up the matching process, some spatial compatibility 

constraints are used as surface similarity measures to discard the outliers and select an 

effective matching point set. In the second stage, hierarchal alignment greedy algorithm 

[6] is used to coarsely align the two fractured surfaces using the effective matching 

point sets. ICP is then used for fine alignment as the final step in the registration 

process. 
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A similar problem was addressed in the context of solving three-dimensional puzzle of 

comminuted articular fractures [7]. The algorithm is developed to be used as a pre-

operative planning procedure for reconstructing highly comminuted articular fractures 

in order to reduce the difficult surgical challenge of solving a complicated three-

dimensional puzzle. A semi-automatic fragment reconstruction approach is used to 

solve the puzzle problem. The algorithm first segment fracture surfaces into discrete 

patches using region growing algorithm based on surface normal direction that uses 

input seed points to propagate patches up to boundaries of high curvature. A facet 

whose normal deviated from the seeded region by greater than a threshold angle is 

classified as an edge, and not analyzed in future iterations. An iterative registration 

function is used to bring fragments surfaces into rough alignment with template, by 

aligning centers of mass and principal axes. The platform allows the user to adjust the 

alignment manually if the alignment algorithm fails. As a final step, ICP is used for fine 

alignment. 

 

A semi-automatic algorithm is proposed for bone fracture reconstruction [8]. The 

algorithm enables the user to specify matching surface regions between fragment pairs, 

and initiate a pairwise and global fragment alignment. The algorithm then merges 

iteratively individual fragments into a group of aligned fragments using graph-based 

model, where the graph nodes correspond to fragments and the edges represent the 

user-specified surface match or correspondence between fragments. A variant of ICP 
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algorithm is used to align fragments; where (1) the error metric is defined as the sum of 

point-to-plane distances instead of point-to-point distances and (2) the surfaces are 

selectively subsampled using significant geometric surface variations. 

 

In the area of quantification of bone fragments, fragmented remains are quantified in [9] 

using Geographic Information System (GIS) software to derive minimum number of 

elements (MNE) values and MNI estimates. The system takes the bone fragments, 

which are manually identified by experts, and then generate a map that can provide 

estimate for the element under investigation. The system is time consuming and is 

dependent on the observer in the manual identification of fragments. 

 

However, the majority of the presented methods lack either speed, sensitivity to noise, 

automation in reconstruction, or identification of pieces relative to a reference model. 

The core of the presented work is to introduce an automated method for identification, 

matching and registration of fractured pieces of fragmentary bones with the 

corresponding template model. Using statistical bone atlas, missing parts can further be 

interpolated to generate the complete bone [10] that can be used for extracting 

measurements and assessment of biological profile 
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1.3 Overview 

The purpose of this research is designed to work on fragments of four skeletal elements, 

femur, humerus, pelvis and skull bones. The first step involves generation of surfaces 

models for the fragmentary elements. This can be done using CT or laser scanner. In the 

case of CT scanning, a segmentation step is performed to generate the surface models. 

Upon creation of the fragmentary elements models, the next step is to extract features 

from each bone fragment by measuring surface roughness. Surfaces points with 

roughness above certain specified threshold values are denoted as feature points. A 

multi-stage technique is then used to identify, match and register these bone fragments 

to their corresponding template bone model. For each bone fragment, the features are 

used to be matched with template bone features using iterative closest point (ICP) 

algorithm. As long as it has been proven that ICP algorithm converge to a local 

minimum with respect to the mean-square distance metric, which means that it 

guarantees the correct registration given that the two shapes are somehow close in 

terms of position and orientation, we used different combinations of position and 

orientation of bone fragment relative to the template bone. For each combination, we 

applied ICP to try to match and register each fragment features with the four template 

bone’s features. The best match score, in terms of minimum root-mean-square error, is 

used along with the position/orientation and transformation to register the bone 

fragment with the corresponding template model. 
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We refer to template model here as an average mold that captures the primary shape 

information of a skeletal element.  Three dimensional  statistical  bone  atlases  are  

constructed  from  large  datasets  of  bones [11], [12], [13], [14].  The atlas guarantees 

point-to-point and surface correspondence across the entire sample, which allows for an 

accurate calculation of an average template. This template bone captures the global 

shape characteristics for each bone across an entire population which can then be used 

to guide the placement of the fragmentary pieces into anatomically correct space and to 

estimate missing fragments. 

 

The presented work is embedded in a 3D virtual environment where the user load 

surface models, start the procedure and view the final results. The user can accept or 

reject the matching and registration results after running the procedure, as well as 

she/he can manipulate each model separately either by hand or through GUI controls 

and start the procedure again. 

 

Figure 1-3 highlights the proposed framework where fragmentary pieces are first CT 

scanned and segmented to generate surface models. The resultant surface models are 

then used to extract fragmentary bones features, followed by matching and registration. 

The visual feedback block presents user interactions through developed 3D virtual 

environment.  
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The document is organized as follows. Chapter 2 covers surface properties and methods 

used for feature extraction in the literature, while chapter 3 covers matching and 

alignment methods. Chapter 4 introduces the proposed framework, while chapter 5 

presents the results and discussion, and finally chapter 6 states the conclusion and 

future work.  

 

 

Figure 1-3: Proposed framework 
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2. SURFACE PROPERTIES 
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2.1 Surface Curvature 

A spherical surface is different from plane in which it is curved while the plane is flat. 

In Riemannian geometry there is a way of making this general concept into a 

mathematical concept, which is called curvature [15]. A sphere and a plane both have a 

constant curvature value, i.e. the curvature at every point is the same. The difference is 

that the sphere has a non-zero curvature value at all points while the plane has a zero 

curvature value. 

 

2.1.1 Fundamental Forms 

A parametric surface is a surface in the Euclidean space    defined by a parametric 

equation. Surface curvature, area, differential properties such as the first and second 

fundamental forms, Gaussian, mean, and principal curvatures can be computed from a 

given parameterization [16]. A surface mesh can be either represented by or 

approximated to parametric surface, which is a general representation of surfaces.  

 

Given a surface defined in parametric representation, Eq. 2-1, 

 

 ⃗    ⃗      Eq. 2-1 

 

For example, 
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 ⃗                       Eq. 2-2 

 

where         and   are constants, and     are surface parameters, then the surface first 

derivatives can be defined, Eq. 2-3, 

 

  ⃗⃗⃗⃗  
  ⃗

  
                       ⃗⃗⃗ ⃗  

  ⃗

  
 Eq. 2-3 

 

where the surface first order properties (tangent plane, and normal vector) can be 

defined, Eq. 2-4, 

 

   ⃗⃗⃗⃗      ⃗⃗⃗ ⃗                      ⃗⃗⃗ ⃗  
  ⃗⃗⃗⃗     ⃗⃗⃗ ⃗

|  ⃗⃗⃗⃗     ⃗⃗⃗ ⃗|
 Eq. 2-4 

 

and the surface second derivatives can be defined, Eq. 2-5, 

 

   ⃗⃗ ⃗⃗ ⃗⃗  
 

  
(
  ⃗

  
)               ⃗⃗⃗⃗ ⃗⃗  

 

  
(
  ⃗

  
)               ⃗⃗⃗⃗⃗⃗  

 

  
(
  ⃗

  
) Eq. 2-5 

 

The first and the second surface fundamental forms can be defined, Eq. 2-6, Eq. 2-7. 
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                   Eq. 2-6 

                    Eq. 2-7 

 

where  

 

    ⃗⃗⃗⃗    ⃗⃗⃗⃗               ⃗⃗⃗⃗    ⃗⃗⃗ ⃗              ⃗⃗⃗ ⃗   ⃗⃗⃗ ⃗ Eq. 2-8 

     ⃗⃗ ⃗⃗ ⃗⃗   ⃗⃗             ⃗⃗⃗⃗ ⃗⃗   ⃗⃗               ⃗⃗⃗⃗⃗⃗   ⃗⃗ Eq. 2-9 

 

2.1.2 Principal Curvatures 

Surface curvature at point, which describes the local shape behavior, can be expressed 

in terms of the two principal curvatures,   ,   . The principal curvatures are the 

eigenvalues of matrix constructed from the coefficients of the first and the second 

fundamental forms of the surface, and they are the solution of Eq. 2-10, Eq. 2-11 [17]. 

The two principal curvatures characterize the rate of the maximum and the minimum 

bending of the surface and the tangent direction in which they occur. The two principal 

curvatures at any point on a surface can, according to Euler’s formula [17], determine 

the rate of surface bending along any tangent direction at the same point.  
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              |
        
        

|     Eq. 2-10 

                         
Eq. 2-11 

 

Figure 2-1 shows example of surfaces with normal planes in the direction of the 

principal curvatures, [18]. 

 

 

Figure 2-1: Saddle surface with normal planes in directions of principal curvatures, [18] 

 

2.1.3 Gaussian and Mean Curvatures 

Gaussian and mean curvatures, Eq. 2-12, Eq. 2-13, are another two measures of the 

surface curvature. They have greater geometrical significance than the principal 

curvatures, and can also be used to describe the local behavior of the surface. 
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       Eq. 2-12 

  
     

 
 Eq. 2-13 

 

2.1.4 Curvedness 

A different formula for representing surface curvature is proposed in [19] based on the 

principal curvatures. Curvedness, Eq. 2-14, measures the intensity of the surface 

curvature and describes how strongly curved the surface.  

 

   √
  

     
 

 
 

Eq. 2-14 

 

2.1.5 Shape Index 

A quantitative measure of surface shape is proposed also in [19], which describes 

different surfaces shape by assigning different values except for planar points, which 

have indeterminate value. Based on shape index, Eq. 2-15, local surface shapes can be 

classified into cup, cap (|     |   ), rut, ridge (  |     |   ) and saddle (       ). 

Figure 2-2 shows different local shape variations based on the definition of shape index. 

 

       
 

 
      (

     

      
) Eq. 2-15 
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Figure 2-2: Local shape variations based on shape index, Eq. 2-15, [20] 

 

2.2 Surface Roughness 

Surface roughness is one of the surface properties and it is generally used to describe 

the level of noise presented on the surface. A new roughness measure is proposed in 

[21] to be used for 3D visual masking, based on the idea that rough region can hide 

some geometric distortions with quite similar frequencies. Surface roughness is used in 

a geometric matching scheme for reassembling fractured objects [4] to classify the faces 

of the fractured objects into original, which come from the boundary surface of the 

unbroken object, and fracture faces, which were created when the object broke. 

 

Different methods have been proposed to measure surface roughness. In [22], surface 

roughness is defined as the root mean square of the difference between the mean 

curvature and the average mean curvature of L-ring neighborhood where L is the 

neighborhood level at which the surface roughness is being computed, Eq. 2-16. Mean 

curvature at point is calculated by averaging all directional curvatures at object’s point, 

Eq. 2-17. A normalization step is done, by resizing the model so that the average 



18 
 

distance between the centroid and all vertices is a unit sphere, before calculating the 

mean curvature in order to compare two different models on the same ground and 

removing the scale factor. 

 

  √
 

 
∑                

 

   

 

Eq. 2-16 

 

       
 

|     |
∑      

          

 
Eq. 2-17 

 

 

A different roughness measure is proposed [21] for visual masking applications, and is 

calculated by adaptively smoothing the 3D object, and calculating the curvature of each 

point of the smoothed version and the original version of the object. An average 

curvature value is processed for each point which corresponds to the mean of the 

curvature of all points from its local window. Roughness map is then constructed by 

processing an asymmetric difference between each point’s average curvature values on 

the original and the smoothed version of the object, Eq. 2-18. Figure 2-3 shows an 

overview of the presented algorithm in [21]. Figure 2-4 shows an example of surface 

roughness generated in [21]. 
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Figure 2-3: Overview of mesh roughness algorithm, [21] 

 

 

Figure 2-4: Mesh roughness example, [21] 
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 Eq. 2-18 
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Surface roughness is incorporated in generating surface curvature information instead 

of integral invariants in [4] because the latter is more expensive in the sense of 

computations and unstable at the small scales. Roughness is calculated as the 

integration of bending energy       over the local neighborhood, Eq. 2-19, where the 

bending energy is defined in terms of squared differences of normal vectors at the local 

neighborhood, Eq. 2-20. 

 

       
 

 
 ∑

||      
||

 

||    || 

 

   

 Eq. 2-19 

 ̅        
 

|     |
 ∑      

         

 Eq. 2-20 

 

Concepts of local and global roughness are introduced in [22], where the local 

roughness is described as the average behavior of all vertices in their local region, 

generally one neighborhood, whereas the global roughness is described as the average 

behavior of all vertices with respect to larger region, generally a complete surface. In 

this sense, a roughness profile or local-to-global roughness plot can be generated which 

captures the information about the roughness of the object from local region around 

vertices to global region which is the entire object. Figure 2-5 shows an example of the 

roughness profile for a sphere with 14% random noise added in the radial direction, 

and for bunny using roughness measure proposed in [22]. 
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2.3 Surface Features 

Features is a term often used to refer to prominent elements that capture most of the 

relevant shape information such as corners or sharp edges. Feature-based methods have 

become a broadly used paradigm in shape representation, retrieval, matching and other 

applications due to their excellent performance in practice [23]. In matching 3D shapes, 

correspondence problem is one of the important challenges where the goal is to find 

matches between point in two 3D shapes. The advantage of using features-based 

Figure 2-5: (a) Noisy sphere, (b) bunny and (c) & (d) their roughness profiles, [22] 
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methods for correspondence problems is the ability to identify similar points on two 

shapes, therfore reducing the set of potential correspondence candidates. Similarity 

problem is another challenge in which a quantification critera has to be established to 

deremine the degree of similarity between two shapes. Feature-based methods allow to 

represent the shape as a collection of primitive elements that simplify the solution of the 

problem. 

 

Feature-based methods can be divided into two main stages. The first stage is feature 

detection, where the goal is to find the location of stable point that capture most of the 

relevant shape information (features). The second stage is feature description, where the 

goal is to find a way to represent (describe) the shape properties at these feature points 

[23]. In order to adopt for differences in position, direction and scaling, feature detectors 

and descriptors should be affine-invariant, to insure stability under transformation that 

an object can undergo. 

 

Thus, one of the main challenges of a general feature-based 3D shape analysis method is 

to find a set of features that are invariant to shape transformations and carry sufficient 

information to allow using these features for finding correspondence and similarity. 
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2.3.1 Feature Detection 

One of the basic requirements of any feature detector is robustness. In other words, the 

feature detector should be able to detect the same set of corresponding points in two 

instances of a shape. Although there is no single way to define a feature, there is a 

common sense in selecting a feature; detected feature points should contain sufficient 

information to distinguish a shape from the others.  

 

Usually feature detection is achieved via local curvature analysis [24]. Different shape 

encoding methods have been used to detect feature points. A valuable survey of surface 

curvature calculation methods is presented in [25] along with a suite of test cases that 

has been developed to evaluate the accuracy of these methods. The survey categorizes 

the developed mesh curvature calculation methods into two groups. The first group, 

surface fitting methods, involves finding a function that fits the mesh locally, either by 

interpolation or by approximation, and calculating the curvature of the fitting function. 

If the function is interpolating, then the function goes through each vertex, and in this 

case a specific relationship between the number of vertices and the number of 

coefficients is required in order to solve the problem for the fitting function coefficients. 

If the function is approximating, then the function minimizes some measure of distance 

from the vertices, and a minimum number of vertices is required to compute the 

function coefficients as a solution to a least square minimization. The second group, 

discrete methods, involves developing discrete approximations based on the definition 
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of curvature. These methods do not use an intermediate analytical fit of the surface. 

Discrete methods often approximate an integral equation around a vertex by a 

summation of contributions attributed to each face or edge adjacent to the vertex.  

 

2.3.1.1 Differential-based Methods  

Differential surface properties are used heavily in the previous work to describe the 

local characteristics of the surface at point, either in the form of first order differential 

properties representing face normal or tangent plane, or in the form of second order 

differential properties representing principal curvatures, or in the form of third order 

differential properties representing directional derivatives of the principal curvatures 

[11]. 

 

In [26], a generalized feature extraction approach is proposed for 2D and 3D objects in 

mesh representation whenever the feature to be calculated can be written as a signed 

sum of features of the elementary shape (triangle in the 2D case and tetrahedron in the 

3D case), and the feature of the elementary shape can be derived in an explicit form. As 

a proof of concept, mesh area (for 2D objects) and volume (for 3D objects) are first 

introduced and then the work extended to calculate shape moments and Fourier 

transform. 
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A 3D feature detector is proposed in [27] to extract features from uniformly triangulated 

meshes by extending the difference of Gaussian, DoG, operator to non-planar surfaces 

instead of dealing with volumetric grids. Feature detection is done in three steps. First, 

the extrema of the function’s Laplacian (DoG) are found across scales using a one-ring 

neighborhood. The scale space representation of scalar function   defined on a mesh 

can be built progressively as Eq. 2-21. 

 

                                       
Eq. 2-21 

 

where    is the Gaussian kernel defined as Eq. 2-22. 

 

       
       ⁄    

  √  
 Eq. 2-22 

 

and the discrete convolution operator   is defined as Eq. 2-23, Eq. 2-24.  
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 Eq. 2-23 
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  Eq. 2-24 
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Convolved functions are subtracted in order to obtain the difference of Gaussian 

operator, Eq. 2-25. 

 

                                 
Eq. 2-25 

 

Second, the extrema are thresholded, by selecting the top 5% of the maximum number 

of vertices, sorted by magnitude. Third, the unstable extrema are eliminated, thus 

retaining those mesh locations exhibiting some degree of cornerness using Hessian 

operator. 

 

Mean curvature is used in a different framework [28] that concerned about describing 

the 3D surface in 2D image, named shape image. This way, the problems of detecting 

features, building descriptors and matching surfaces are reduced from 3D space to 2D 

space and hence become simpler. Shape image, the proposed 2D representation, is 

developed in [28] using conformal mapping which create a conformal surface 

representing image,   , calculated by minimizing the harmonic energy over the surface. 

A one-to-one correspondence is supposed to exist between the vertices in the surface 

patch,  , and the vertices in its conformal image,   . Shape attributes at each vertex of 

the surface patch,  , are used to interpolate and compute the corresponding attributes 

values at each pixel of the conformal image. 
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Conformal representation surface        is represented by conformal factor function, 

      , and mean curvature function,       . Figure 2-6 shows the human neocortical 

surface (a) and its corresponding mean curvature (b) and conformal factor (c). The 

composite shape image is shown in (d), [28]. In order to extract feature points from the 

shape image, a diffusion-based algorithm is used to extract distinctive features which 

are then used for matching purpose. 

 

 

Figure 2-6: Shape image example, [28] 
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In order to avoid the blurring effect of Gaussian smoothing, inhomogeneous linear 

diffusion filtering, Eq. 2-28, is used instead in [28] to generate a set of diffusion images 

at different scales.  

 

   
  

     ( ( |    |
 
)   ) Eq. 2-26 

 

where     is the divergence operator,   is the gradient operator,     is the original image, 

   is the resulting image at a specific scale and   is a common diffusivity which 

combines information from the conformal factor function,         and the mean 

curvature function,       . Peronal-Malik’s model is used as a numerical solution for 

Eq. 2-28. To extract extrema, difference of diffusion is used instead of difference of 

Gaussians, Eq. 2-29.  

 

                                      
Eq. 2-27 

 

Feature points are identified as local minima/maxima of the     images across scales, 

which are done by comparing each pixel in the     images to its eight neighbors at the 

same scale and nine corresponding neighboring pixels in each of the neighboring scales. 

If the pixel value is the maximum or minimum among all compared pixels, it is selected 
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as a candidate key-point. This algorithm is carried out through all the channels of the 

vector image:                 . The maximum and minimum which are found in 

every channel are considered as the interest points, which are used then for matching 

purpose. 

 

Local shape variations are used in a multi-scale feature extraction algorithm to sample a 

representative set of feature points to be used for registration of 3D surfaces [29]. Shape 

index, one of the representations for local shape variations, is used to estimate local 

curvature at a point on the surface, Eq. 2-15. Local shape variation at a point is 

estimated by calculating the standard deviation of the shape index values of the points’ 

neighbors, Eq. 2-28, Eq. 2-29, based on the assumption that the distribution is Gaussian, 

and points on the surface with high local shape variations are selected as feature points. 

The size of a point’s neighborhood is defined as its scale, which is practically chosen to 

be the number of rings surrounding the point. 

 

   
  √

∑    (  )      
  

     

 
 Eq. 2-28 
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 Eq. 2-29 
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Local shape variation is also used for detecting and extracting line-type features on 

point-sampled surfaces at multiple scales [30]. Surface variation parameter is calculated 

at each point as a ratio of Eigen-values, Eq. 2-31, of the covariance matrix,  , constructed 

from the k-nearest neighbors of that point, Eq. 2-30, and as long as the parameter   

changes, they could obtain the parameter value at different scale. In these equations  ̅ is 

the centroid of the local neighborhood, and          are the Eigen-values of the 

covariance matrix. An automatic scale selection method is used to determine feature 

weights by selecting the strongest local maximum in the surface variation at all points 

across the scale axis. The feature weight is then calculated as the summation of number 

of times that the surface variation exceeds a certain threshold across all the scales in 

order to account for the persistence of features over all scales. 
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]         Eq. 2-30 

       
  

        
 Eq. 2-31 

 

A similar method is presented in [31] to extract feature lines from a surface point cloud. 

The work classifies the surface behavior at point to one of four patterns, named crease, 

border, corner or junction, and typical surface pattern. The crease pattern consists of 

crease lines that either terminates in junctions or singleton ends or they close to form a 
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loop. The border pattern consists only of border loops. Input points that lay on a crease 

are called crease points, points on the border loops are border points. At a junction the 

corresponding data point is called a corner or junction point and at singleton ends the 

corresponding data point is called end points. In order to classify the points, the 

algorithm uses the centroid and the correlation matrix of a set of neighbors around the 

point to define a correlation ellipsoid that adopts the general form of the neighbor 

points. Based on the eigenvalues of the correlation matrix, they estimate the 

curvature,  , and defined four penalty functions for each point; the curvature penalty 

function that encapsulate the curvature information, Eq. 2-32, the crease and the border 

vector valued penalty functions which encapsulate the information of how well the 

eigenvalues fit to the crease case or the border case, Eq. 2-33, Eq. 2-34, and a corner 

penalty function, Eq. 2-35, where            , and            are the covariance 

matrix Eigenvalues and Eigenvectors respectively. Given these penalty functions, a 

minimum spanning pattern is computed on a subset of the neighbor graph and the 

short branches of the minimum spanning pattern are removed in a second step to 

construct the surface feature lines. 

 

        
    

    
 Eq. 2-32 

 ⃗⃗⃗       
                |                   | 

     
       Eq. 2-33 
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       Eq. 2-34 

        
           

     
 Eq. 2-35 

 

Automatic detection of intrinsic geometric features is also addressed in [32] using faces 

normal vectors. A novel notion of relative edge strength is introduced which indicates 

whether two edges are likely to compose a feature curve. The concept is extended to 

define strong curves and strong vertices that are used then in the detection algorithm. 

 

Geometric snakes have been used in [33] to extract feature lines based on normal 

variation of adjacent triangles. This system requires user interaction to specify an initial 

feature curve, which is then evolved under internal and external forces and re-projected 

onto the surface using a local parameterization. 

 

2.3.1.2 Integral-based Methods 

Despite differential surface properties play a central role in geometry processing, they 

are sensitive to noise and cannot be directly computed on multiple scales. On the other 

hand, integration of geometric functions over the neighborhood diminish or eliminate 

these obstacles. Recently, integral invariants have been proved to be more stable, less 

sensitive to noise and can be directly computed and used on muliple scales [34]. 
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Integral invariants were first introduced in [35], [36] along with integral distance and 

area invariants as examples, to show the superior performance of integral invariants on 

noisy data, especially for the reliable retrieval of shapes. This open the door to define 

different integral invariants like integral volume invariants which were proposed in [4], 

[5], [34], [37] for local analysis of surfaces in 3D space. 

 

Integral invariants are defined by integrating spatial functions over moving domains 

centered at surface points [4]. As we are dealing with surfaces in 3D space, we are 

interested in presenting proposed integral invariants descriptors in the literature that is 

related to surfaces in 3D space.  

 

Volume integral invariant,      , of a point   on boundary surface of a domain   is 

proposed in [5], [6], [34] as: 

 

       ∫         
     

 Eq. 2-36 

 

assuming that a surface in    is the boundary of a domain  ,          if the point x is 

contained in  , and 0 otherwise.       denotes a ball with radius   and center  .  In 

other words,       is the volume of the intersection of ball with radius   centered at   
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with the domain,      ⋂ , Figure 2-7. If the patch of surface contained in       is 

planar, then the integration result will be the volume of half ball, or       
 

 
   .  

 

 

Figure 2-7: Volume and surface area integral invariant, [38] 

 

In [4], volume integral invariants are defined as a scaled version of the previous 

definition, Eq. 2-36, in order to normalize the integration results, so that the planar 

patch around the point   will have a value of 0.5. 

 

       
 

    
∫         
     

 Eq. 2-37 

 

Volume distance integral invariant,       , defined in [4] as the weighted integral of 

the squared distance function over the entire ball      . 
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∫           
     

 Eq. 2-38 

 

Surface area integral invariant,       , of a point   on boundary surface of a domain   

is proposed in [34] as Eq. 2-39. 

 

        ∫         
     

  
      

  
 Eq. 2-39 

 

In other words,        is the surface boundary of the intersection of sphere with radius 

  centered at   with the domain,       ⋂ , Figure 2-7. Here, if the patch of surface 

contained in        is planar, then the integration result will be the surface area of half 

sphere, or            . It is worth to note, as known, that the surface area integral is 

the derivative of the volume integral.  

 

Volume integral,      , based on the definition in Eq. 2-36, and surface area integral, 

      , are related to mean curvature   at   as     as in Eq. 2-40, Eq. 2-41 [34]. 

 

       
  

 
    

 

 
           Eq. 2-40 

                          
Eq. 2-41 
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And volume distance integral,       , is related to the difference of the principal 

curvatures       at   as     as in Eq. 2-42 [4]. 

 

                 
  

  

  
       Eq. 2-42 

 

Integral invariants are particularly suited for multi-scale representation since the scale is 

given by the radius of the kernel,   and because features smaller than radius   hardly 

influence the result of computation, therfore integral invariants, for relatively larger 

scales, are robust to noise. 

 

To select feature points, the term point bumpiness, Eq. 2-43, is defined in [5] based on 

the volume integral invariant. 
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 Eq. 2-43 

          
           

   
 Eq. 2-44 

 

  is selected to be 6,      is 0.1 times the average size of all fragments,           ⁄ . 

The feature points are selected as the points with bumpiness above a pre-defined hard 

threshold, Eq. 2-45. 
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  Eq. 2-45 

 

In [4], volume and volume distance integral invariants are used with different scales in 

the feature points selection process. For each invariant at some scale, its range of values, 

say      , is divided into 32 levels. For each pair of levels,      , an arbitrary point 

whos value is in between is used in depth first search on  -nearest neighbors to cluster 

the points and extract connected components. A dense set of overlapping feature 

clusters is produced to be used in the matching process.  

 

2.3.2 Feature Description 

Given a set of feature points, a shape descriptor, representation or description, at these 

feature points can then be computed. Construction of shape descriptor depends very 

much on the representation in which the shape is given and the kind of information 

available, and the desired invariance properties [23]. 

  

2.3.2.1 Shape Context 

The concept of shape context descriptor is introduced in [39] to describe the structure of 

the shape as relations between a reference point and the rest of the shape points. Given 
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the coordinates of a point   on the shape, the shape context descriptor at point   is 

constructed as a log-polar histogram of the directional vectors from   to the rest of the 

points,    . The descriptor is generic and applicable to any shape representation in 

which the point coordinates are explicitly given including mesh representation, point 

cloud representation or volume representation. 

 

2.3.2.2 Mesh HOG 

Mesh HOG, Mesh Histogram of Gradients, is introduced in [27] as a shape descriptor 

assuming the shape is defined in mesh representation and there is some given function 

  defined at the mesh vertices, maybe a geometric quantity such as curvature. The 

descriptor at point   is computed by creating a local histogram of gradients of   in the 

neighborhood of  .  

 

The gradient    is defined as a vector in the 3D space projected onto the 3 orthonormal 

planes, describing the local coordinate system at  , which is created based on the 

normal vector and the tangent plane. For each of the three planes, the plane is divided 

in 4 polar slices, starting with an origin and continuing in the direction dictated by the 

right hand rule with respect to the other orthonormal axis vector. When projected onto 

the plane, each vertex    falls within one of the spatial slices, Figure 2-8, (b). For each 

spatial slice, orientation histograms are computed with 8 bins for each of the projected 
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gradient vectors        of the vertices    that projected onto that spatial slice, Figure 2-8, 

(c). The final descriptor is obtained by concatenating histogram values for each of the 

three planes. 

 

 

Figure 2-8: (a) Orthogonal planes, (b) 8-bin projected 3D histogram orientation slices, (c) 

4-spatial polar slices with 8 orientation slices each, [27] 

 

Like Mesh HOG, local gradient orientation histograms are used in [28] as the key 

entries of the descriptor. The feature descriptor is computed as a set of orientation 

histograms on 4×4 pixel neighborhoods, which are relative to the key-point orientation. 

Histograms contain 8 bins each, and each descriptor contains an array of 4×4 

histograms around the key-point. This leads it to be a feature vector with 4×4×8 = 128 

elements.  
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2.3.2.3 Heat Kernel Signatures 

The heat kernel signature, HKS, is proposed in [40] based on heat diffusion equations 

and defined as the diagonal of the heat kernel, which reflect the stability property of 

point under the diffusion process. Given some fixed time values        , for each point 

  on the shape, the HKS is an n-dimensional descriptor vector, 

 

           
                  Eq. 2-46 

 

In order to adapt for the dependence of HKS on the global scale of the shape, a scale-

invariant HKS, based on local normalization is proposed in [41]. 

 

2.3.2.4 Spin Images 

The idea of spin images is introduced in [42], [43] and defined as a rotation invariant 

representation of surface variation that is obtained by projecting part of the surface, S, at 

a vertex   into the local coordinate system defined by the surface normal  ⃗⃗    at  . By 

varying the projection area, it is possible to control the representation continuously 

from local to global [44]. The projection of a point   to the Spin image of   uses a 

reminiscent of cylindrical coordinates. That is, the x-coordinate of the Spin image 

corresponds to the distance from   to the line in direction  ⃗⃗    passing through   and 
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the y-coordinate of the spin image corresponds to the signed distance from   to the 

tangent plane of  , Figure 2-9 [45], [46].  

 

 

Figure 2-9: Spin image illustration, [45] 

 

The part of S to be projected to the spin image of   depends on three parameters:  

 The width   of the spin image,  

 The bin size   of the spin image,  

 The support angle 

 

A vertex   of S is projected to the spin image of   if and only if: 

 

||  –   ||            and        ⃗⃗     ⃗   ⃗    Eq. 2-47 

 



42 
 

where ||  –   || denotes the Euclidean distance between   and  ,   denotes the 

resolution of the mesh, and    ⃗⃗     ⃗   ⃗  denotes the angle between the two vectors 

 ⃗⃗    and  ⃗   ⃗. Spin images have a variety of desirable properties, they are invariant 

with respect to rotation, translation, and scaling and robust with respect to noise and 

clutter. By adjusting   or  , Spin images can go from a local representation at   to a 

global representation of S. Figure 2-10 shows eight frames of an animation that motivate 

the name spin-image, [45]. The spin-image generation process can be visualized as a 

sheet spinning around the oriented point basis, accumulating points as it sweeps space. 

 

 

Figure 2-10: Spin image generation process, [45] 

 

Spin images are used as local descriptors at the identified feature points for 3D 

registration in [29]. A modified version of spin images is proposed in [44], folded spin 

images, where the spin images of a canonical form of the surface are used as surface 

descriptors instead of using spin images of the oriented surface. This modification is 

done to obtain a surface descriptor that is invariant to isometric deformations. The 

dependence on orientation is eliminated by setting the support angle α to 180º and by 
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folding the spin image along the median y-coordinate, such that the y-axis corresponds 

to the unsigned distance. 
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3. SURFACE MATCHING AND ALIGNMENT  
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Surface matching and alignment are two fundamental issues in computer vision and of 

both theoretical interest and practical importance as they are closely related to many 

applications such as shape recognition, classification, and registration. Given two 

surfaces in 3D space, the goals of surface registration are, to: 

1. Determine whether the two surfaces are similar in terms of shape through using 

some similarity measure or shape distance metric, similarity problem 

2. Establish correspondences between the two surfaces, correspondence problem 

3. Find the rigid transformation between the two surfaces, alignment problem 

 

3.1 Surface Matching 

Surface matching is the process of determining whether two surfaces are equivalent in 

terms of shape, and if so,  how to establish correspondences between these two surfaces. 

One of the important requirements of any surface matching algorithm, in addition to 

the accuracy and efficiency, is the robustness to noise and surface resolution. Many 3D 

surface matching methods have been proposed in the area of shape recognition, 

classification and registration including appearance-based methods, object silhouettes-

based methods, exhaustive search methods, 3D correlation methods and feature-based 

methods. Despite the variance of the matching methods presented in the literature, 

feature-based methods become the most effective, and hence the most used, methods 

for matching partial 3D surfaces, which is the focus of the present work.  
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Matching of partial surfaces is a much harder problem than global matching, as it 

requires searching and defining the corresponding sub-parts before measuring the 

similarities [47]. Moreover, the similarity measures of the presented matching methods 

are based mainly on the global properties of the 3D models [47] such as moment 

invariants, Fourier descriptors, histograms and shape distributions, and harmonic 

based representations. These methods can easily cause similar local features of sub-

parts to be misaligned and, consequently, result in an improper global similarity [47], 

[48]. 

 

3.1.1 Image Based Methods 

Instead of matching two surfaces directly in 3D space, which may be unnecessary, 

computationally expensive or lack of accuracy, different image based matching 

methods are proposed in the literature to match partial 3D surfaces based on 2D image 

processing methods. To do so, appropriate geometric surface attributes,  e.g. mean 

curvature or  texture, are mapped into the parameter plane, or parametric map, through 

global optimization and the resulting map is a diffeomorphism, i.e., one-to-one. The 

resulting 2D parametric maps preserve both the shape and the continuity of the 

underlying surfaces, and they are stable, insensitive to resolution changes and robust to 

occlusion and noise [49]. Harmonic Mapping [50], conformal mapping [28], [51], [52], 
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[53] and least-squares conformal mapping [49] are examples of the image-based 

methods in the literature. Although this approach reduces all computations to the 2D 

settings, it is limited to 3D surface with disc-like topology [28], [49], [50], [51], [54] 

which makes the problems of face recognition and brain mapping be the best 

applications for such methods. 

 

Matching of 3D partial surfaces can be achieved through matching of spin images [45]. 

The magnitude of linear correlation coefficient,  , is used to express the similarity   

between two images   and  , Eq. 3-1. 

 

       (     (      ))
 
  (

 

   
) Eq. 3-1 

 

where   is the number of the overlapping pixels used in the computation,   is a 

weighting factor. 

 

3.1.2 Feature-Based Methods 

Given two surfaces, their shape distance, or distance metric, is a scalar that quantifies 

the similarity of these two surfaces. Although there is no single definition for similarity 

measure exists, usually similarity measures are in some sense the inverse of distance 

metrics that generates large values for similar objects and either small, zero or negative 
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values for dissimilar objects [55]. In a feature-based scheme, typically a similarity 

measure between two surfaces can be achieved by combining, in a way or another, the 

distance metric of the surfaces feature points, e.g. the inverse of the Euclidean distance 

between either the positions of the feature points, Eq. 3-2, or the descriptor values of the 

feature points, Eq. 3-3. Point pairs whose distance above certain threshold can be 

considered similar. A comprehensive survey on different similarity measures presented 

in the literature can be found in [56]. Also a survey on shape correspondence can be 

found in [57]. 

 

           ||      ||  Eq. 3-2 

           ||      || Eq. 3-3 

 

Statistical approach is used in to match 3D partial surfaces using differential geometry 

[58], [59], [60]. Curve distance,   , Eq. 3-4, is introduced to measure the similarity 

between two points from different surfaces              , and used to construct a 

point-pair set,   , Eq. 3-5. 
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Eq. 3-5 

 

where       and       are the Gaussian and mean curvatures of the surface    at point 

  . Plane points, whose Gaussian curvature and mean curvature are zero, are discarded 

before matching as they will reduce the matching efficiency. 

 

They also introduced the similarity distance between 2 triangles     
   

   
  

    
   

   
 , Eq. 3-6. 
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and the absolute distance between     
   

   
             

   
   

 , Eq. 3-7. 
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A triangle pair set,   , is also defined, Eq. 3-8. 
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Eq. 3-8 

 

For a specified transformation    in   , they defined the scoring function for similar 

triangle pair, Eq. 3-9. 
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Eq. 3-10 

 

The optimal transformation is the transformation with the maximum score, Eq. 3-11. 

 

             (        ) Eq. 3-11 

 

In [5], fractured surface matching is accomplished in two stages. An initial matching is 

done by calculating the difference between the values of volume integral invariants 

over different scales, Eq. 2-36, calculated at selected feature points, Eq. 2-43, of the two 

surfaces and a difference less than a specified threshold is selected for the next step. In  

Eq. 3-12, (  
     

  ) is an initial matching point pairs if they satisfy the condition. 
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 Eq. 3-12 

 

To reduce huge number of initial matchings and discard initial matching outliers, local 

surface similarity or similarity of surface patches is used and expressed as a collection 

of geometric compatibility constraints, distance constraints, Eq. 3-13, normal vector 

constraints, Eq. 3-14, and uniqueness constraints, Eq. 3-15. The surface patch of a point 

  is defined as its neighbor surface, experimentally selected as 0.2 times the average size 

of all fragments. Assuming that the surface patches of an initial point pair have   

matching points pairs, each point (  
      

   ) should satisfy the compatibility 

constraints to set the initial point pair (  
     

  ) as true point pairs. 

  

{
 
 

 
 
|     |                

   ||  
       

  ||

   ||  
       

  ||

                          

 Eq. 3-13 

 

where      is grid precision.  

 



52 
 

{
 
 

 
 

|     |     

     
        

  

     
        

  

  |     |   
    

 Eq. 3-14 

{
  (  

      
     

       
  )

  (  
       

     
      

  )
 Eq. 3-15 

 

The optimal matching is achieved in the second stage using greedy algorithm [6], which 

is based on growing and combining the best correspondences, by minimizing the 

distance metric, Eq. 3-16, from point pair level up to build a hierarchy of 16 points 

correspondence, a partial correspondence. This partial correspondence is used to 

compute the transform       that minimizes the matching error, Eq. 3-17, which is 

applied then to the entire feature point set   .  
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 Eq. 3-17 

 

A similar greedy algorithm is used in [27] in order to select the set of best matches. For 

each descriptor vector,   
 , at feature point   from surface   , the best matching 

descriptor vector,   
 , at feature point   from surface    can be found in terms of the 
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Euclidean distance between these two vectors, Eq. 3-3. A cross validation is performed, 

by checking that best match for   
  from   , and best match for    

  from   , and the first  

candidate match is accepted. 

 

Forward search algorithm is used in [4] after passing several consistency tests on pair of 

correspondences. Correspondence pairs are constructed by finding for each cluster, 

instead of point, in    all the clusters in    having the same descriptors values. Several 

filtering stages are applied. First, the clusters bounding curves signatures are compared 

and only the consistent ones are moved to the next stage. Second, feature clusters 

topology are used then to discard redundant and false correspondences by considering 

feature correspondence pairs generated by different descriptors, and confirming the 

correspondence pairs of feature clusters belonging to different descriptors in a bottom-

to-top scheme. Overlapped clusters are considered corresponding to the same 

descriptor. Third, geometric and registration consistencies are added to select pair of 

feature correspondences. Geometric consistency is achieved by comparing distance and 

deviation of normal vectors between correspondences pairs. All geometrically 

consistent correspondence pairs are checked using local registration by minimizing the 

sum of squared distances between corresponding points.  
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3.2 Surface Alignment 

Surface alignment or registration is the problem of finding the rigid transformation 

between two surfaces. While different methods have been proposed for finding 

alignment of 3D data [57], the Iterative Closest Point (ICP) algorithm [61] becomes the 

most well-known method and the most widely used method for fine geometric 

alignment of 3D models [62], [63]. ICP is generally applicable to any two objects 

represented by point clouds and it has been proven to converge to a local minimum 

with respect to the mean-square distance metric. The basic idea of ICP is that, given two 

shapes represented as two point clouds, the algorithm iteratively: 

1. Establishes point correspondences given the current alignment of the data 

2. Computes a rigid transformation based on the established correspondence, [62] 

 

The main limitation of ICP is that it is guaranteed  to find a locally, not globally, optimal 

alignment as it is a local optimization method and therefore is only effective when the 

initial position of the input shapes is close to the correct alignment [6]. 

 

Various ICP variants have been proposed in the literature and they are classified in [63] 

based on: 

1. Selecting source points 

2. Matching 

3. Weighting the correspondences 
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4. Removing outliers 

5. Assigning error metric 

6. Minimizing the error metric 

 

The proposed ICP variants differ based on selection of some points from the input point 

clouds, and they range from using: 

1. All the input points, [61] 

2. Uniformly subsampled points, [64] 

3. Randomly sampled points, [65] 

4. Normal-space sampled points, [63] (to Ensure that samples have normal 

distributed as uniformly as possible) 

 

In terms of differences in matching, different techniques are proposed. 

1. Closest point, [61] (stable, slow) 

2. Normal shooting, [66] (good for smooth meshes) 

3. Closest compatible point, [67], [68], [69], [70] (based on features, e.g. normal, 

color,…) 

4. Projection, [71], [72] 

 

In terms of differences in weighting the correspondences, assigned weights are based 

on: 
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1. Inter-point distance, [67] 

2. Compatibility of normal [63], colors [67] 

3. Noise characteristics, [63] 

4. Covariance matrices, [62] 

 

In terms of differences in removing outliers, they range from removing: 

1. None, [61] 

2. The worst percent pairs, [70], [73] 

3. Pairs with distance above threshold, [63] 

4. Pairs on mesh boundaries, [64] 

5. Inconsistent pairs with neighboring pairs, [71] 

 

In terms of assignment and minimization of error metric, most of the variants minimize 

the sum of squared distances between corresponding point using closed form solutions 

to determine the rigid transformation       that minimizes the error [62]. 

 

There exist other ICP variant methods that have been proposed in the literature for 

accelerating the algorithm using kd-trees, closest point caching, graphics processing 

unit (GPU) or parallelization as the algorithm is of quadratic complexity [62].  
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One of the most interesting variants of ICP is the one proposed in [62], Anisotropic ICP 

(A-ICP).  This is because all the priori proposed variants of ICP and the original ICP 

assume the isotropic zero-mean Gaussian noise. A-ICP proposed in [62] generalize the 

algorithm such that it can cope with anisotropic localization errors by assuming that the 

localization error in each point is normally distributed with zero-mean and a covariance 

matrix, Eq. 3-18. 

 

  ⃗    ⃗  ⃗
   ⃗

  Eq. 3-18 

  ⃗
      (  ⃗     ⃗     ⃗  ) Eq. 3-19 

 

where the columns of   ⃗
  are the principal axes of the localization error and   ⃗

  is a 

diagonal matrix with   ⃗   representing the standard deviation along the principal axis  , 

[62]. 

 

Assuming independence of localization errors of points, the covariance matrices   ⃗   ⃗⃗ 

of any two points  ⃗  ⃗ can be incorporated, Eq. 3-20, to determine the anisotropic 

weighted distance between the two points, Eq. 3-21, and hence to find the closest point, 

Eq. 3-22, Eq. 3-23.  

 

  ⃗ ⃗⃗     ⃗     ⃗⃗ Eq. 3-20 
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  Eq. 3-21 

      ⃗  ⃗  ||  ⃗ ⃗⃗  ⃗   ⃗ ||
 
 Eq. 3-22 

      ⃗          
  ⃗⃗ ⃗⃗    

      ⃗   ⃗⃗⃗ ⃗  Eq. 3-23 

 

where   is normalization constant. 

 

And assuming that the principal components of the localization error in each point are 

independent and normally distributed with zero means for both shapes, the A-ICP 

algorithm iteratively minimizes the anisotropically weighted fiducial registration error, 

Eq. 3-24, Eq. 3-25. 
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  Eq. 3-25 

 

where   ⃗⃗ ⃗ represents a point in  . 
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4. PROPOSED METHOD 
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In this chapter, we put our emphasis on the details of the proposed framework, 

highlighted in Figure 1-3. 

 

4.1 Template Bone Models 

A statistical shape atlas, SSA, is an average mold, or a template mesh, that captures the 

primary shape variation of a bone [11], along with its statistical modes of variations. A 

proposed method for creating a SSA and generating dense correspondence across 

populations for complex anatomical structures was developed in [11] based on the idea 

of active shape model. SSA is constructed by applying principal component analysis 

(PCA) on of a set of similar shape instances, or training shapes. This method utilized 

scale space and multi-resolution registration to ensure accurate correspondence 

between anatomical features. Figure 4-1 shows different training pelvis bones used as 

input to the SSA creation procedure, and the resulting mean or template bone along 

with one mode of variations. In the present study, we used femur [14], humerus, pelvis, 

and skull template bone surface models [12], [13]. 

 



61 
 

 

Figure 4-1: Pelvis statistical shape atlas, [11] 

 

4.2 Surface Models Generation 

Figure 4-2 shows the generation process of bones surface models. The bone fragments 

were first CT scanned using                       voxel resolution. The DICOM 

images acquired from the CT scans were then manually segmented, and surface models 

were generated though 3D reconstruction. Figure 4-3 shows example of surface models 

generation process, where the CT image is segmented to create a binary region of inside 

/outside the bone, which is used for generating the 3D surface model. 
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Figure 4-2: Surface models generation process 

 

 

Figure 4-3: Example of surface models generation process, [11] 

 

4.3 Feature Extraction 

After generation of fragments surface models, the process of feature extraction start by 

calculating mesh differential properties, upon which the surface roughness is measured. 

Then Gaussian Mixture Model (GMM) is used to extract adaptive threshold value from 
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the histogram of roughness values. By applying the extracted threshold value on the 

surface roughness, we could extract surface features. Figure 4-4 highlights the process 

of feature extraction. 

 

 

Figure 4-4: Feature extraction process 

 

4.3.1 Mesh Differential Properties 

Different methods were proposed for approximation of the surface differential 

properties. A valuable evaluation of different curvature estimation can be found in [74]. 

The evaluation showed that the Gauss-Bonett scheme gives the best results for 

estimation of overall curvature. Consequently, Gauss-Bonett scheme was chosen as the 

method for estimation of surface differential properties. Below are the details of the 

calculation of differentials properties using a discrete Gauss-Bonett scheme. Figure 4-5 

shows the neighborhood notation used in Gauss-Bonett scheme. 
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Figure 4-5: Neighborhood notation of Gauss-Bonett scheme, [11] 

 

The following steps are used for calculating mesh differential properties using Gauss-

Bonett scheme. 

1. Face normal, Eq. 4-1. 

2. Weighted vertex normal, Eq. 4-2. 

3. Gaussian and mean curvature, Eq. 4-3, Eq. 4-4. 

4. Maximum and minimum curvature, Eq. 4-5, Eq. 4-6. 

 

            Eq. 4-1 
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 Eq. 4-4 

     √            Eq. 4-5 

     √            Eq. 4-6 

 

where    is the deviation of normal  . 

 

4.3.2 Surface Roughness 

For the present application, curvedness showed the best results for presenting local 

shape variations. We have proposed a different multi-scale surface roughness measure 

based on weighting the variance of the point’s neighbors curvature. The newly 

proposed measure, Eq. 4-7, is based on the curvedness, Eq. 2-14, and it forms the 

weights based on the point-to-neighbors edge lengths. 
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 Eq. 4-7 
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                    ∑    

    

 Eq. 4-8 

 

where    is the roughness at point   ,   ̅ is the average curvedness of the neighbors, 

Eq. 4-8,    is the curvedness at neighbor     ,     is the length of the edge between   ,  , 
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   is the total edge length which is the summation of the edge lengths of the point  ’s 

neighbors, Eq. 4-8. The proposed measure can be computed at multiple scales by 

incorporating  -level neighborhood points in the equation,     1,2,… Figure 4-6 - 

Figure 4-9 show roughness maps of femur, humerus, pelvis and skull template bones 

computed at 1st, 2nd, 3rd, 4th and 5th neighborhood levels. 

 

 

 

Figure 4-6: Roughness maps of femur template bone at 1st , 2nd , 3rd , 4th and 5th 

neighborhood levels 
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Figure 4-7: Roughness maps of humerus template bone at 1st , 2nd , 3rd , 4th and 5th 

neighborhood levels 

  

 

 

Figure 4-8: Roughness maps of pelvis template bone at 1st , 2nd , 3rd , 4th and 5th 

neighborhood levels 
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Figure 4-9: Roughness maps of skull template bone at 1st , 2nd , 3rd , 4th and 5th 

neighborhood levels 

 

4.3.3 Gaussian Mixture Model 

Gaussian mixture model is a parametric model used for clustering data in which 

analytic Gaussian density functions are fitted to the data assuming the data were drawn 

from number of Gaussian distributions. In our problem, the clustering problem can be 

formalized as, assuming that there are a finite number of roughness probability density 

functions in the surface model, and each roughness distribution can be modeled by one 

Gaussian, then the surface model roughness can be modeled by a mixture of 

  component Gaussian distributions in some unknown proportions,             . 

The probability density function (PDF) of a data point   can be defined, Eq. 4-9, 

Eq. 4-10. 
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 Eq. 4-9 

                   ∑  

 

   

   Eq. 4-10 

 

where   is a vector containing parameters                    , and       are mean and 

covariance of the     Gaussian distribution, which can be described as, Eq. 4-11. 
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         Eq. 4-11 

 

and    is the     mixing weight.  Expectation Maximization (EM) algorithm can be used 

to find estimations for the unknown parameters   [75]. The EM algorithm is an iterative 

computation of maximum likelihood estimators when the available data can be viewed 

as incomplete [76]. The basic idea of the EM algorithm is to associate a complete data 

model to the incomplete observed data to simplify the computations of maximum 

likelihood estimates [76]. As the name implies, the EM algorithm consists of two steps, 

that are repeated alternatively up to achieve an arbitrarily small change, expectation of 

parameters given the current parameters estimates, and estimation of the parameters by  

maximizing of the likelihood of the expectation step. In [76], more details about 

Gaussian mixture model and EM algorithm were presented. 
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For the problem in hand, we’re assuming the calculated surface roughness of each 

template model is a mixture of two Gaussian distributions, that represents distribution 

of surface points with low roughness values (smooth surface points) and high 

roughness values (feature points). Figure 4-10 and Figure 4-11 show the histogram and 

the two distributions of Gaussian components of femur and skull template bone models 

surface roughness calculated using the proposed roughness measure, Eq. 4-7, Eq. 4-8.  

 

 

Figure 4-10: Surface roughness of femur template bone model, histogram and 

distributions of Gaussian components 
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Figure 4-11: Surface roughness of skull template bone model, histogram and 

distributions of Gaussian components 

 

Based on the idea that fractured surfaces introduce higher values of roughness, 

compared with native surfaces, we assumed that the calculated surface roughness of 

each bone fragment is a mixture of three Gaussian distributions, representing native 

surface smooth points, native surface features and fracture surfaces points. Actually, not 

all fracture surfaces points have high roughness values, but fracture surfaces have some 

points with high roughness values. Figure 4-12 shows the surface roughness of femur 

fragment bone model and Figure 4-13 shows histogram and distributions of Gaussian 

components of its surface roughness values. It is worth to note here that the features of 
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the original bone still can be detected by the proposed surface roughness measure, in 

the presence of high curvature, or high rough, points at the edge of  the fracture surface. 

 

         

Figure 4-12: Surface roughness of femur fragment bone model 

 

 

Figure 4-13: Surface roughness of femur fragment bone model in Figure 4-12, histogram 

and distributions of Gaussian components 
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By comparing Figure 4-10 and Figure 4-13, we can notice the difference between the two 

histograms. The histogram of the fragment bone surface roughness is spreading up to 

roughness value of 0.12 while that of the template bone is spreading up to 0.07 only. 

This means that the fragment bones introduce higher values of surface roughness to the 

histogram, i.e. a new range added that can be modeled by another Gaussian 

distribution. By taking a closer look to the second graph of the same figures, we can 

notice that the first two Gaussian distributions are very close. Table 4-1 shows statistics 

and GMM results of roughness of the template and the fragment bones surface models, 

which highlights our point of view. 

 

Table 4-1: Femur template and fragment bones roughness statistics and GMM results (cm) 

Model Min Max                   

Template 0.010213 0.068350 0.024019 0.003630 0.034277 0.009047 - - 

Fragment 0.014785 0.122825 0.025304 0.003833 0.037813 0.007334 0.054616 0.018046 

 

We’ve selected the mean of the second Gaussian distribution,   , resulting from GMM 

analysis as the threshold that filter out the features from template bone surface models. 

To extract similar points from the fragment bone, we’ve selected the range between the 

second,   , and the third,   , means as the range of roughness that include the features 

of the original bone, Figure 4-14 and Figure 4-15 show the extracted features from 

template and fragment femur bone models using GMM extracted thresholds. 
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Figure 4-14: Femur template bone model features 

 

 

Figure 4-15: Femur fragment bone model features 

 

4.4 Matching and Registration 

The process of matching and registration is highlighted in Figure 4-16 and Figure 4-17. 

Basically the process is divided into two stages. The first stage involves matching of the 

extracted fragment features with the features of the four template models     . 

Fragment features are positioned at different locations (  ) with respect to the bounding 

box of the template model, and at each position, they are rotated around different 

coordinate system axes,     . For each position and orientation, fragment features are 

matched with template features using iterative closest point (ICP). 
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Figure 4-16: Matching and registration process – A 

 

From all matchings, we select the best matching score            based on the 

minimum root-mean-square error,        and extract its rigid transformation,  . The 

second stage involves registration of the fragment surface model with the template 

surface model based on the best matching score from the first stage. The fragment 

model is first positioned and oriented using (      , transformed by   and then 

registered with the template model    using ICP. If the output error from the 

registration process      is greater than the output error from the feature matching 

process     , then we are facing a false positive matching. To solve this issue, we 
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discard the template model with the max feature matching from the matching process 

and used the second best feature matching score template model to register with the 

fragment. If the registration error is smaller than the feature matching error, then we are 

done with the matching, registration and identification too. 

 

Figure 4-17: Matching and registration process – B 

 

4.5 Virtual Environment 

As part of the work, we’ve developed a virtual 3D environment that include surface 

roughness calculations, alignment using ICP, and our matching/registration procedure. 

The developed environment enables the user, through graphical user interface (GUI), to 
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load scanned models in either surface model file format (*.surf) or open inventor file 

format (*.iv). The GUI have the capability of loading one or multiple files at once each 

containing one or more models. Once the models loaded to the scene viewer, the user 

has the ability to: 

1. Do rotation, panning and zooming through interactive viewer widget as well as 

wheel controls 

2. Return to the home view, set the home view, view all the loaded models 

3. Switch between parallel and perspective projection modes. 

4. Change the lighting direction 

5.  Change background color 

6. Select specific model for further operation 

 

The loaded models are assigned random keys as well as random colors which can be 

updated through material editboxes. The user has the ability to apply transformation 

(translation, rotation and scaling) through user controls as well as interactive viewer. 

The transformations can be applied, reset or confirmed for the selected model(s). The 

interface enables the user to save the modified models separately. Figure 4-18 shows 

models loaded into the virtual environment. 
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Figure 4-18: Fragment models loaded in the developed virtual environment 

 

The GUI also provide the user the control to generate and export surface roughness 

values for the selected model(s) as well as all using variable neighborhood size, 

different local curvature measures (mean curvature, shape index, curvedness and 

signed curvedness) and different scale-space calculation scheme (difference-based, 

variance-based, edge weighted-based).  

 

For our application, after loading the fragment models in the scene to the viewer, the 

user can select different fragments through select tool, right click and select “align 

selected models with template”. This will pop-up a small dialog to choose which 
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template model to align with, or the user can check “All” to test alignemnt with all 

template bones. Once accept, a separate alignment dialog will appear showing the 

selected fragments and the template model(s) loaded. 

 

 

Figure 4-19: Fragment models and template models loaded in the alignment dialog 

 

In the alignment dialog, the user has the ability to apply any transformation to the 

loaded fragment models as well as to the template model before starting the algorithm. 

Default values for maximum iterations and minimum reltive error of ICP algorithm are 

loaded and can be changed by the user. The dialog enables the user to either start the 

matching/registration procedure for the selected model(s) or for all. Once done, the 
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GUI will display the fragment models registered with the proper template bone. The 

user can accept/reject matching(s)/alignemnt(s) by right clicking at the fragment and 

select accept/reject selected/all. If the alignment been accpted, it will be reflected to the 

fragment model in the main viewer, and it will be neglected if rejected. Aain, the user 

can apply transformations to the fragment(s) of rejected matching(s)/alignemnt(s) and 

start the procedure again. 
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5. RESULTS AND DISCUSSION 
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5.1 Results 

This study is part of NIJ grant (NIJ-2011-2805, SL#000944) entitled “Computerized 

Reconstruction of Fragmentary Skeletal Remains for Stature, Sex and Ancestry 

Estimation” [2]. In order to test our algorithm, sample of bone fragments from the 

Morton Shell Mound osteological collection served as the test sample. The Morton 

sample represents over 25,000 human bone fragments from approximately 125 

individuals. The collection is on temporary loan to the Department of Anthropology 

and Middle Eastern Studies at Mississippi State University from the Museum of Natural 

Science at Louisiana State University [2]. Bone fragmentation in the Morton sample 

ranges from slight (with greater than 33% of an element represented) to high (small 

fragments less than 2 cm) [2]. The samples provided to this study were restricted femur 

and humerus fragments and classified as being slight fragmentations. We also 

incorporated simulated partial fragments of the template bone. This study incorporated 

statistical bone atlases for four skeletal elements (femur, humerus, pelvis and skull) 

developed in [11], and used their average models as templates.  

 

To verify the proposed algorithm, for each fragment, matching scores against all the 

template bones at different positions and orientations, were listed, based on the root 

mean square error, where the root mean square error is calculated in centimeters as the 

average of distances between corresponding points. The template bone with the 
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minimum non-false-positive root mean square error was considered the best match, and 

the fragment was identified as being part of it.  

 

Figure 5-1 shows template models, their roughness maps and detected features. Figure 

5-2 - Figure 5-4 show fragment models, their roughness maps and detected features. 

Figure 5-5 shows simulated partial fragments. Figure 5-6 - Figure 5-15 show snapshots 

from the GUI after the matching and registration processes were completed. 

 

Table 5-1 - Table 5-12 show the feature matching and registration root mean square 

errors (RMSE) with each template model at different orientations and positions. The 

rotations used in this experiment are: 

1. Identity (model original orientation) (0,0,0) 

2. 180º around x-axis, (180,0,0) 

3. 180º around y-axis, (0,180,0) 

4. 180º around z-axis, (0,0,180) 

 

and the used positions are: 

1. Template model center, C 

2. Template model minimum (min x, y, z of the bounding box), Min 

3. Template model maximum (max x, y, z of the bounding box), Max 
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In Table 5-1 - Table 5-12, bold borders highlight the minimum root mean square error of 

matching fragment features with the corresponding template bone model. Red colors 

highlight false positive matchings which are detected by comparing feature matching  

errors and registration errors. Green colors highlight correct true positive matchings 

which are verified by comparing feature matching errors and registration errors. 

 

It is worth to note that RMSE values listed in Table 5-1 - Table 5-12, which represent the 

average of distances between corresponding points, are relative measures and only 

used to select the best template match for the tested fragment. RMSE values depend on 

many factors including the number of feature points in both the fragment and the 

template models. If we have a correct matching and enough iterations of ICP  are used 

in registration, RMSE value will be zero if and only if the fragment model completely 

and exactly coincides with template model, which is impractical. 
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Figure 5-1: Template models, their roughness maps and detected features 
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Figure 5-2: Fragment models 

 

Figure 5-3: Fragment models roughness maps  
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Figure 5-4: Fragment models detected features 

 

 

Figure 5-5: Simulated partial fragments 
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Figure 5-6: Fragments 1, 2 matched and registered, (Table 5-1, Table 5-2) 
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Figure 5-7: Fragments 3, 4 matched and registered, (Table 5-3, Table 5-4) 

 

 



90 
 

 

Figure 5-8: Fragment 4 matched and registered, (Table 5-4) 
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Figure 5-9: Fragments 5, 6 matched and registered, (Table 5-5, Table 5-6) 

 

 



92 
 

 

Figure 5-10: Fragment 6 matched and registered, (Table 5-6) 
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Figure 5-11: Fragments 7, 8 matched and registered, (Table 5-7, Table 5-8) 
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Figure 5-12: Fragment 8 matched and registered, (Table 5-8) 
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Figure 5-13: Fragment 9 matched and registered, (Table 5-9) 
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Figure 5-14: Fragment 10 matched and registered, (Table 5-10) 
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Figure 5-15: Fragments 11, 12 matched and registered, (Table 5-11, Table 5-12) 
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Table 5-1: Fragment 1 matching and registration RMSE (cm) 

RMSE Type  Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 0.802575 0.964580 0.912572 0.385311 

(0,0,0) Min 0.792741 0.560098 1.159475 0.715297 

(0,0,0) Max 0.929298 1.558419 0.813505 0.877184 

(180,0,0) C 0.733280 1.061273 0.699231 0.520537 

(180,0,0) Min 0.803595 0.967835 1.086065 0.674283 

(180,0,0) Max 0.792741 0.584711 1.159475 0.663049 

(0,180,0) C 1.251750 0.514663 0.941809 0.615125 

(0,180,0) Min 0.798748 0.958978 0.739336 0.535935 

(0,180,0) Max 1.031602 0.963872 1.050825 0.624497 

(0,0,180) C 1.318214 0.560098 1.159475 0.742322 

(0,0,180) Min 1.134816 0.616592 0.813505 0.621891 

(0,0,180) Max 0.998479 0.987909 0.757167 0.656431 

Registration - - - 0.191653 - 0.457082 

 
 

Table 5-2: Fragment 2 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 0.717382 0.820956 0.784872 0.455202 

(0,0,0) Min 0.816057 0.639038 1.296141 0.722036 

(0,0,0) Max 1.166123 0.557928 0.783834 0.698709 

(180,0,0) C 0.667225 0.764418 0.911756 0.829937 

(180,0,0) Min 0.785084 0.846746 0.987817 0.876161 

(180,0,0) Max 1.184897 0.633950 1.296141 0.652107 

(0,180,0) C 0.712840 0.557928 0.783834 0.685014 

(0,180,0) Min 0.772428 0.783334 0.847573 0.766267 

(0,180,0) Max 1.120830 0.837383 1.003036 0.650761 

(0,0,180) C 1.373790 0.639038 1.296141 0.676959 

(0,0,180) Min 0.710961 0.899850 0.783834 0.694614 

(0,0,180) Max 1.284121 0.945493 0.932003 0.718372 

Registration - - - 0.276091 - 0.498471 
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Table 5-3: Fragment 3 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 0.851570 0.970754 1.291666 0.698427 

(0,0,0) Min 1.003247 0.772353 1.297800 0.950202 

(0,0,0) Max 1.582501 0.640472 1.155850 0.755699 

(180,0,0) C 0.873902 0.881022 1.212483 0.888306 

(180,0,0) Min 0.902806 0.992278 1.164985 0.821211 

(180,0,0) Max 1.003247 0.792260 1.292888 0.890012 

(0,180,0) C 1.522238 2.051451 1.002017 0.933749 

(0,180,0) Min 0.850877 0.915115 1.163749 0.971257 

(0,180,0) Max 1.227372 1.064651 1.265988 0.836307 

(0,0,180) C 1.450552 0.789034 1.381006 0.778849 

(0,0,180) Min 1.569201 0.640472 0.898699 0.755699 

(0,0,180) Max 1.280068 0.972668 1.068066 0.834491 

Registration - - - 0.216632 - - 

 

Table 5-4: Fragment 4 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 0.634426 0.758959 1.083199 0.753343 

(0,0,0) Min 0.832352 0.809756 1.280035 1.151337 

(0,0,0) Max 0.697350 2.206949 0.755857 1.162084 

(180,0,0) C 0.689120 0.779390 0.719143 0.931962 

(180,0,0) Min 0.844802 0.826226 1.539378 1.023874 

(180,0,0) Max 0.832352 0.664907 1.374949 1.036417 

(0,180,0) C 1.633687 0.785814 0.717724 0.892938 

(0,180,0) Min 0.676583 0.856163 0.699361 1.019877 

(0,180,0) Max 1.118812 0.938659 1.177654 0.933198 

(0,0,180) C 1.678348 0.769760 1.319568 0.874453 

(0,0,180) Min 1.639266 0.676516 0.755857 0.889838 

(0,0,180) Max 1.299202 1.025759 1.181482 0.985922 

Registration - - 0.759642 0.400716 - - 
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Table 5-5: Fragment 5 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 0.653042 0.688023 1.288499 0.887601 

(0,0,0) Min 1.848610 1.091300 1.331419 1.131558 

(0,0,0) Max 0.815242 2.477213 0.969793 1.119564 

(180,0,0) C 0.747442 0.653291 1.154197 0.917926 

(180,0,0) Min 0.973369 0.869785 1.133173 0.937049 

(180,0,0) Max 1.639758 0.788989 1.306433 1.043943 

(0,180,0) C 1.627108 0.563865 0.873753 1.012574 

(0,180,0) Min 0.807728 0.823401 0.793645 0.963396 

(0,180,0) Max 1.019317 0.944453 1.232534 1.051472 

(0,0,180) C 1.929275 0.623213 1.331419 0.840516 

(0,0,180) Min 1.682084 2.394447 0.781884 1.217733 

(0,0,180) Max 1.193122 0.993110 0.842187 0.944739 

Registration - - - 0.212250 - - 

 

Table 5-6: Fragment 6 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 1.067816 1.017375 1.137926 0.519864 

(0,0,0) Min 0.769991 1.571829 0.991290 0.653663 

(0,0,0) Max 0.733875 1.617423 1.168724 0.765838 

(180,0,0) C 1.095761 0.999484 0.817612 0.604732 

(180,0,0) Min 0.922370 1.199356 0.897323 0.644030 

(180,0,0) Max 1.140861 1.084735 1.328621 0.717264 

(0,180,0) C 1.105867 1.193531 1.136828 0.572719 

(0,180,0) Min 0.809357 1.177787 0.776236 0.838214 

(0,180,0) Max 0.886105 0.619259 1.118246 0.689018 

(0,0,180) C 0.839027 1.353967 1.248824 0.688358 

(0,0,180) Min 0.935819 1.575506 1.116743 0.694483 

(0,0,180) Max 0.797450 0.741255 0.903432 0.784214 

Registration - - - 0.447495 - 0.650724 
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Table 5-7: Fragment 7 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 0.866351 0.895070 0.858046 0.625949 

(0,0,0) Min 1.216897 1.981192 0.950091 0.664104 

(0,0,0) Max 1.357860 1.939043 0.852324 0.815576 

(180,0,0) C 0.907307 0.744502 0.886752 0.794831 

(180,0,0) Min 1.117382 1.058749 0.823335 0.711124 

(180,0,0) Max 1.188870 1.725844 1.188366 1.028885 

(0,180,0) C 1.168265 1.955062 0.852324 0.946078 

(0,180,0) Min 0.898104 0.969566 1.031420 0.779191 

(0,180,0) Max 0.798713 0.608945 0.943754 0.714335 

(0,0,180) C 1.225997 0.740568 0.898191 0.706295 

(0,0,180) Min 1.165880 0.701325 0.852324 0.648455 

(0,0,180) Max 0.798630 0.707131 0.941355 1.254969 

Registration - - - 0.401983 - - 

 

Table 5-8: Fragment 8 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 0.825544 0.992510 1.000341 0.582249 

(0,0,0) Min 1.036173 0.698729 1.309680 0.724365 

(0,0,0) Max 1.148025 0.643173 0.931440 0.656876 

(180,0,0) C 0.795756 0.948780 1.058205 0.729856 

(180,0,0) Min 0.913503 1.002345 0.904657 0.639946 

(180,0,0) Max 1.326482 0.666594 1.023206 0.917776 

(0,180,0) C 1.009784 0.575545 0.931440 0.708202 

(0,180,0) Min 0.716187 1.014025 0.952813 0.726100 

(0,180,0) Max 0.929911 0.839107 1.061480 0.627843 

(0,0,180) C 1.210366 0.573982 1.309680 0.713132 

(0,0,180) Min 1.159956 0.598969 0.931440 0.663150 

(0,0,180) Max 0.973291 0.961756 0.829414 0.549071 

Registration - - - 0.389257 - 0.659601 
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Table 5-9: Fragment 9 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching  

(0,0,0) C 0.969511 1.310079 4.157721 3.582253 

(0,0,0) Min 0.851369 1.837184 5.674205 4.436572 

(0,0,0) Max 0.966758 1.682619 4.140410 3.687656 

(180,0,0) C 0.854517 1.441528 4.148481 3.687656 

(180,0,0) Min 1.977563 1.296698 4.189647 3.639694 

(180,0,0) Max 1.361051 1.902031 5.674205 3.971776 

(0,180,0) C 1.398325 1.701948 4.346008 5.700282 

(0,180,0) Min 1.937506 1.302198 4.058093 3.710260 

(0,180,0) Max 0.845232 1.317639 5.989043 3.924378 

(0,0,180) C 1.003068 1.813807 5.958167 3.137132 

(0,0,180) Min 1.118151 1.679994 4.135905 3.665310 

(0,0,180) Max 1.105052 1.433642 4.148181 2.949372 

Registration - - 0.845232 - - - 

 

Table 5-10: Fragment 10 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 0.96444 1.024249 1.376579 0.88377 

(0,0,0) Min 1.21091 1.125478 1.360447 1.11123 

(0,0,0) Max 1.38474 1.181153 1.355861 1.30193 

(180,0,0) C 0.93237 1.062953 1.333417 1.02804 

(180,0,0) Min 1.05104 1.124818 1.629149 1.09485 

(180,0,0) Max 1.21091 1.119254 1.430147 1.21935 

(0,180,0) C 1.38475 1.181153 1.344785 0.97362 

(0,180,0) Min 1.19566 1.127881 1.480803 1.42496 

(0,180,0) Max 1.42789 1.034258 1.307638 1.17133 

(0,0,180) C 1.21091 1.130641 1.250394 1.17021 

(0,0,180) Min 1.38475 1.181153 1.322909 1.18062 

(0,0,180) Max 1.20968 1.277763 1.515595 1.33316 

Registration - - 0.37425 - - 0.98825 
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Table 5-11: Fragment 11 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 0.753485 0.905731 0.698198 0.472178 

(0,0,0) Min 0.524365 0.620936 1.037405 0.684808 

(0,0,0) Max 0.525871 0.696011 1.171846 0.601883 

(180,0,0) C 0.700987 0.753764 0.713947 0.537053 

(180,0,0) Min 0.589620 1.024134 0.604302 0.532287 

(180,0,0) Max 0.612898 0.620936 1.037405 0.650855 

(0,180,0) C 0.486868 0.681591 1.171846 0.775401 

(0,180,0) Min 0.663404 1.079034 0.602452 0.511565 

(0,180,0) Max 0.661963 0.605899 0.880934 0.580683 

(0,0,180) C 0.809234 0.499618 0.958234 0.661455 

(0,0,180) Min 0.848543 0.729571 1.171846 0.693175 

(0,0,180) Max 0.562951 0.607215 0.718381 0.597892 

Registration - - 0.249710 - - 0.544000 

 

Table 5-12: Fragment 12 matching and registration RMSE (cm) 

RMSE Type Rotations Position Femur Humerus Pelvis Skull 

Matching 

(0,0,0) C 1.366484 1.430760 1.186663 0.414900 

(0,0,0) Min 1.132600 1.039763 1.336400 0.959977 

(0,0,0) Max 1.148431 0.983605 1.448458 0.460329 

(180,0,0) C 0.952497 1.342848 0.988702 0.532524 

(180,0,0) Min 1.114323 1.713051 0.968376 0.581360 

(180,0,0) Max 1.246817 0.784027 1.254724 0.777154 

(0,180,0) C 1.345439 0.955813 1.448458 0.479076 

(0,180,0) Min 1.608315 1.675711 0.954680 0.795663 

(0,180,0) Max 0.739734 0.947338 1.495229 0.507942 

(0,0,180) C 1.131481 1.527743 1.252292 0.848205 

(0,0,180) Min 1.147760 1.050073 1.132909 0.671835 

(0,0,180) Max 0.836843 0.755775 1.004744 0.571146 

Registration - - 0.278584 - - 0.449865 
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Table 5-13 summarizes matching minimum RMSE. In Table 5-13, green color highlights 

a correct matching, while red color highlights an incorrect matching. Table 5-14 list the 

test sample, total number of correct and incorrect matchings. 

 

Table 5-13: Matching minimum RMSE (cm) 

Fragment Femur Humerus Pelvis Skull Bone 

1 0.73328 0.514663 0.699231 0.385311 Humerus 

2 0.667225 0.557928 0.783834 0.455202 Humerus 

3 0.850877 0.640472 0.898699 0.698427 Humerus 

4 0.634426 0.664907 0.699361 0.753343 Humerus 

5 0.653042 0.563865 0.781884 0.840516 Humerus 

6 0.733875 0.619259 0.776236 0.519864 Femur 

7 0.79863 0.608945 0.823335 0.625949 Femur 

8 0.716187 0.573982 0.829414 0.549071 Humerus 

9 0.845232 1.296698 4.058093 2.949372 Femur 

10 0.932372 1.024249 1.250394 0.883769 Femur 

11 0.486868 0.499618 0.602452 0.472178 Femur 

12 0.739734 0.755775 0.954680 0.414900 Femur 

 

Table 5-14: Overall evaluation 

Test Samples Correct Matchings Incorrect Matchings 

12 10 2 
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5.2 Discussion 

From Table 5-13, and by looking to the fragment models, Figure 5-2, Figure 5-5, Figure 

5-6 -Figure 5-15, we can see that the proposed method did work well with fragments 

having original bone features, as it identifies the correct template bone for fragments 1, 

2, 3, 4, 5, 8 (fragments of humerus), 9, 10, 11, 12 (fragments of femur) although the 

fragments are from one side of the body and template from the other side. The method 

fails to identify the correct template for the fragments 6, 7 and detect them as being 

fragments of skull and humerus template model while they are actually fragments of 

femur. This is due to the assumption mentioned above, the fragment bones should have 

some of the original bone features in order for the proposed method to generate correct 

results. 
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6. CONCLUSION AND FUTURE WORK 
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6.1 Conclusion 

We’ve introduced an automated technique for matching of fragmentary human skeletal 

remains for improving forensic anthropology practice and policy. The proposed 

technique involved creation of surfaces models for the fragmentary elements using 

computerized tomographic scans followed by segmentation. A feature extraction 

technique is proposed where the surface roughness map of each model is measured 

using local shape analysis measures. Adaptive thresholding, based on Gaussian mixture 

model, is then used to extract model features. A multi-stage technique is then used to 

identify, match and register bone fragments to their corresponding template bone 

model. First, extracted features are used for matching with different template bone 

models using iterative closest point algorithm with different positions and orientations. 

The best match score, in terms of minimum root-mean-square error, is used along with 

the position and orientation and the resulting transformation to register the fragment 

bone model with the corresponding template bone model using iterative closest point 

algorithm. The proposed method showed good results assuming that fragment bone 

have features from the original bone. 

 

6.2 Future Work 

The presented work can be significantly improved in different aspects, including and 

not limited to: 
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 Extracting feature based on integral invariants instead of surface differential 

properties as it is more robust, can be computed at multiple scales by default. 

Although, integral invariants need to be optimized somehow as it is very expensive 

in terms of computations. 

 Matching based on feature clusters instead of feature points as it is more robust.  

 Registration based on AICP (Anisotropic ICP) instead of ICP as it incorporates 

point’s localization errors in calculating closest point as well as in calculating the 

rigid transformation, which is closer to the real case. 

 Estimating MNE, MNI. 
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