
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2003

3D Visualization Modules for Chemical Engineering – A Web-3D Visualization Modules for Chemical Engineering – A Web-

Based Approach Using Java and OpenGL Based Approach Using Java and OpenGL

Sharad Anant Gupta
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gupta, Sharad Anant, "3D Visualization Modules for Chemical Engineering – A Web-Based Approach
Using Java and OpenGL. " Master's Thesis, University of Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/1969

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1969&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Sharad Anant Gupta entitled "3D Visualization

Modules for Chemical Engineering – A Web-Based Approach Using Java and OpenGL." I have

examined the final electronic copy of this thesis for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Master of Science, with a

major in Computer Science.

Peter Cummings, Major Professor

We have read this thesis and recommend its acceptance:

Robert Ward, Jian Huang

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Sharad Anant Gupta entitled “3D
visualization modules for chemical engineering – A web-based approach using Java and
OpenGL ”. I have examined the final electronic copy of this thesis for form and content
and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Master of Science, with a major in Computer Science.

 Peter Cummings

 Major Professor

We have read this thesis and
recommend its acceptance:

Robert Ward

Jian Huang

Accepted for the Council:

Dr. Anne Mayhew

Vice Provost and
Dean of Graduate Studies

(Original signatures are on file with official student records)

3D visualization modules for chemical engineering

- A web-based approach using Java and OpenGL

A Thesis
Presented for the
Master of Science

Degree
The University of Tennessee, Knoxville

Sharad Anant Gupta
December 2003

 ii

DEDICATION

I would like to dedicate this thesis to my parents, Anant Gupta and Anita Gupta, and my
family for all their love and support over the years. I would also like to dedicate this to

my fiancée Akanksha, for her love and encouragement to pursue this goal.

 iii

ACKNOWLEDGEMENT

I would like to thank a number of people whose help and guidance have allowed me to
reach this milestone. First, I would like to specially thank my thesis advisor, Dr. Peter
Cummings for his guidance and endless support. His knowledge and expertise in the
areas of Computer Graphics and Chemical Engineering proved invaluable in the
completion of this thesis. His patience and faith in me were a constant source of
inspiration.

I am grateful to Dr. Clare McCabe for her great support and guidance in the development
of the 3D visualization modules and also to Dr. Ariel Chialvo for his support in the
development of the molecular simulation module. I would like to sincerely thank Dr.
David Kofke, Professor at SUNY-Buffalo, for his co-operation and support in the
development of the molecular simulation module.

I would also like to thank my thesis committee members, Dr. Ward and Dr. Huang for
taking time to review and direct my thesis work. Lastly, I would acknowledge the support
of the NSF grant DUE-9752243, with the help of which this thesis project could be
completed successfully.

 iv

ABSTRACT

The main objective of this work is to implement web-based educational modules for
chemical engineering students. Phase behavior is a topic with which the students seem to
struggle with, particularly for mixtures, where a 2-D representation of the phase diagram
falls far short of the understanding a 3-D model can provide. Using the platform-
independence of Java and the graphics capability of OpenGL, three phase diagram Java
applets have been developed. Users can view these web-based 3D applets by installing a
plug-in. These modules provide users with an ability to rotate the 3D models, slice
through them, zoom into them and view their various 2D projections. Also, a molecular
simulation applet for measuring chemical potential of binary mixtures has been
developed, using a Java-based molecular simulation application-programming interface
(API).

First, the thesis presents a brief overview of phase diagrams and explains why modeling
them using computer graphics is useful. While visualization involves the merging of data
with the display of geometric objects through computer graphics, it is important to study
the software issues involved in web-based visualization. The paper explains the
visualization framework by describing the visualization pipeline and then using it as a
guideline for the development of the modules.

Next, the paper describes the development of the molecular simulation applet using a
molecular simulation API - Etomica. The Java applet provides for dynamic modification
and interrogation of the simulation, while it is in progress, which enables students to see
directly the effect of changing state conditions or molecular interactions on the behavior
of the molecules and on the outcome of the simulation.

It is hoped that by using these web-based 3D phase diagrams the chemical engineering
students would gain a better understanding of the complicated 3D models, making this
package a useful instructional aid. It is also hoped that the molecular simulation applet
would be an effective tool to help students understand molecular simulations.

 v

CONTENTS

Chapter Page

Part One – Introduction ..1

1 Introduction ...2

1.1 World Wide Web (WWW) as a medium of education2
1.2 Objective ...3

Part Two - Visualization of Phase Diagrams ...6

2 Phase Diagrams ..7

2.1 Phase Diagram of Pure Substances ...7
2.2 Phase Diagram of Binary Mixtures ...8
2.3 Interpreting Phase Diagrams ...11

3 Visualization Framework ..13

3.1 Understanding the Visualization Pipeline..14
 3.1.1 Step I – Data Gathering and Analysis14

 3.1.2 Step II – Filtering and Geometric Modeling............................15
 3.1.3 Step III – Rendering and Interactivity16

3.2 Software ..17
3.2.1 Java3D... 20
3.2.2 Java-OpenGL Bindings ...20
3.2.3 Java3D vs. Java-OpenGL Bindings ..21
3.2.4 Our Choice ..21

4 Visualization Pipeline ..25

4.1 Step I – Data Gathering and Analysis ...25
4.1.1 Observations ..26
4.1.2 Analysis ...26

4.2 Step II – Filtering and Geometric Modeling ...27
4.2.1 Large Data Set Visualization ..27
4.2.2 Filtering (Sampling) ..28
4.2.3 Geometric Modeling ...28
4.2.4 Non-Uniform Rational B-Splines (NURBS)30

4.2.4.1 Bezier Surfaces ...31
4.2.4.2 B-Spline Surfaces ..31
4.2.4.3 NURBS ...32

4.3 Step III – Rendering and Interactivity ...32
4.3.1 NURBS Rendering ..33
4.3.2 Interactivity ..33

 vi

5 Analysis and Implementation ...36

5.1 Analysis (Data Flow Diagrams) ..36
5.1.1 Context-Level Diagram (CLD) ... 36
5.1.2 Level-0 Diagram ..37
5.1.3 Level-1 Diagram ..38

5.2 Implementation – Class Diagram...39

 6 Results and Discussions ..41

6.1 Type I (Butane + Methane) ...41
 6.2 Type I (Butane + Propane)..41
 6.3 Type II (Perflouromethane + Ethane) ..49

Part Three - Molecular Simulation Module – Chemical Potential of Binary

Mixtures ...54

7 Molecular Simulations ...55
7.1 Molecular Simulation Models ...55
7.2 Advantages and Disadvantages of Molecular Simulation56
7.3 Chemical Potential ..57

 7.3.1 Widom Insertion Technique ...57
 7.3.2 Particle Swap Technique ...58

8 Analysis and Implementation ..59

8.1 Analysis ...59
 8.1.1 Simulation Elements ...59
 8.1.2 Data Flow Diagrams ..59
 8.1.2.1 Context-Level Diagram (CLD)59
 8.1.2.2 Level – 1 Diagram ...65
 8.2 Implementation – Class Diagram..68

9 Results and Discussions ...70

 9.1 Molecular Simulation Applet ..70
 9.2 Testing ...71

 10 Conclusions ...77

List of References ..78

Appendix ..81

Vita ..99

 vii

LIST OF TABLES

Table Page

3.1 Issues and Solutions in Software Selection ...18
3.2 OpenGL vs. GLJ4Java Function Calls ...21
3.3 Comparison between Java3D vs. Java-OpenGL Bindings23

4.1 File with Pressure Slice (P=0.7) Data ..25

8.1 Etomica Elements and the Corresponding Implementation in the Module ..60

9.1 Argon-Argon Simulation Conditions ..72
9.2 Argon-Argon Simulation Results ..73
9.3 Argon-Krypton Simulation Conditions ...74
9.4 Argon-Krypton Simulation Results ..75

 viii

LIST OF FIGURES

Figure Page

2.1 Phase Diagram of a Pure Substance ...7
2.2 P-x,y Curves for Cyclohexanone/Cyclohexane ...9
2.3 T-x,y Curves for Cyclohexanone/Cyclohexane ...10
2.4 P-T-x,y Curves for Cyclohexanone/Cyclohexane11
2.5 Interpretation of P-T-x,y Curves for Cyclohexanone/Cyclohexane12

3.1 Conceptual Picture of the Components of a General Visualization
Pipeline ..15

3.2 Transfer and Display Times of Triangles Using VRML and OpenGL19
3.3 Using Java3D vs. Using Java-OpenGL Bindings22

4.1 Temperature-Mole Fraction Plot of the Constant-Pressure (P=0.7)
File Data ...26

4.2 Temperature-Mole Fraction Plots of the Constant-Pressure
(P=0.7, P=0.05, P=1.8) Data ..27

4.3 OpenGL Representation of NURBS Model Using the 16 Control Points .34

5.1 Context-Level Diagram of the Phase Diagram Modules36
5.2 Level-0 Diagram of the Phase Diagram Modules37
5.3 Level-1 Diagram of the Phase Diagram Modules38
5.4 Class Diagram of the Phase Diagram Modules ..40

6.1 Individual Constant-Pressure Slices for a Butane-Methane Mixture42
6.2 All Constant-Pressure Slices for the Butane-Methane Mixture43
6.3 An Orthogonal View of the 3D Phase Diagram Applet for the

Butane-Methane Mixture ..43
6.4 Pressure-Temperature Projection View of the Applet for the

Butane-Methane Mixture ..44
6.5 Pressure-Concentration Projection View of the Applet for the

Butane-Methane Mixture ..44
6.6 Temperature-Concentration Projection View of the Applet for the

Butane-Methane Mixture ..45
6.7 Individual Constant-Pressure Slices for the Butane-Propane Mixture........46
6.8 All Constant-Pressure Slices for the Butane-Propane Mixture47
6.9 An Orthogonal View of the 3D Phase Diagram Applet for the

Butane-Propane Mixture ...47
6.10 Pressure-Temperature Projection View of the Applet for the

Butane-Propane Mixture ...48
6.11 Pressure-Concentration Projection View of the Applet for the

Butane-Propane Mixture ...48

 ix

6.12 Temperature-Concentration Projection View of the Applet for the
Butane-Propane Mixture ...49

6.13 Individual Constant-Pressure Slices for the Perflouromethane-Ethane
Mixture ..50

6.14 All Constant-Pressure Slices for the Perflouromethane-Ethane Mixture....51
6.15 An Orthogonal View of 3D Phase Diagram Applet for the

Perflouromethane-Ethane Mixture ..51
6.16 Pressure-Temperature View of the Applet for the

Perflouromethane-Ethane Mixture ..52
6.17 Pressure-Concentration View of the Applet for the

Perflouromethane-Ethane Mixture ..52
6.18 Temperature-Concentration View of the Applet for the

Perflouromethane-Ethane Mixture ..53

8.1 Context-Level Diagram of the Molecular Simulation Module64
8.2 Level-1 Diagram of the Molecular Simulation Module (Part 1)66
8.3 Level-1 Diagram of the Molecular Simulation Module (Part 2).................67
8.4 Class Diagram of the Molecular Simulation Module69

9.1 Screenshot of the Molecular Simulation Applet for Measuring the
Chemical Potential of Binary Mixtures ..71

9.2 Comparison of the Applet RDF Plots for the Argon-Argon Mixture
and the Fortran Code RDF Plots ...74

9.3 Comparison of the Applet RDF Plots for the Argon-Krypton Mixture
and the Fortran Code RDF Plots ...76

A.1.1 Class Parsepressure2 – Constructor Summary ...83
A.1.2 Class Parsepressure2 – Method Summary ...83
A.1.3 Class Surface2 – Constructor Summary ...83
A.1.4 Class Surface2 – Method Summary ...84
A.1.5 Class SurfaceCanvas2 – Constructor Summary ...84
A.1.6 Class SurfaceCanvas2 – Method Summary ...85
A.1.7 Class MatrixFuncs – Constructor Summary ..87
A.1.8 Class MatrixFuncs – Method Summary ...88

A.2.1 Class ChemicalPotential – Constructor Summary89
A.2.2 Class ChemicalPotential – Method Summary ...89
A.2.3 Class ChemicalPotential – Inner Class Summary90
A.2.4 Class ControllerJT – Inner Class Summary ...90
A.2.5 Class ControllerJT – Constructor Summary ..91
A.2.6 Class ControllerJT – Method Summary ...91
A.2.7 Class MeterParticleSwap – Constructor Summary92
A.2.8 Class MeterParticleSwap – Method Summary ..93

 x

A.3.1 Etomica – Simulation Class ...95
A.3.2 Etomica – Phase Class ...96
A.3.3 Etomica – Potential Class ..97

 1

Part One – Introduction

 2

1 Introduction

1.1 World Wide Web (WWW) as a medium of education

With the rapid growth of the Internet and the broad acceptance of the WWW as a global

medium for disseminating and processing information, the Internet and various web-

based technologies have shown a promising future in the field of education [2].

Nowadays, while computers and laptops are being widely used by undergraduate and

graduate students, more and more universities are establishing wireless networks for

providing easy and convenient access of the Internet [1]. The wide usage of multimedia

over the web has opened new vistas in education by taking full advantage of our basic

"senses" of learning such as visualizing 3D objects and nonlinear nature of thought

processes [4]. The Internet no longer just provides information in the form of static web

pages. More and more interactivity has resulted from the wide usage of various web-

based technologies.

Today there exist excellent reviews and articles designed to guide professors, particularly

new faculty, through the increasingly turbulent waters that are college teaching [1]. A

consistent message in these and other publications on teaching effectiveness is that we

are in times of change and that the traditional lecture-based delivery of course material

needs to be substituted or supplemented with more innovative instructional methods.

Many of these studies suggest that active involvement of students in the delivery of

course material greatly facilitates learning and retention. A number of studies have

illustrated the effectiveness of using technology in the classroom [1].

 3

Various references [2, 3] provide a detailed review about the use of multimedia and web -

based visualization as an effective tool of education. Reference [4] describes the benefits

of Java, as a programming language for developing web-based educational modules.

While the use of Java applets can encourage asynchronous distance learning and thus

help overcome the limitations (involving both time and space) inherent in traditional

instructional techniques, there are various concepts and phenomena that inherently

involve dynamic, multimedia and interactive information. Such information cannot

usually be communicated effectively using paper or chalkboards or transparencies. The

"mental picture" that a teacher has, is better conveyed to a learner if the information is

presented in its appropriate form [4]. References [2]-[4] provide detailed insight into the

pedagogical and technological issues involved in web-based educational modules.

Visualization of three-dimensional phase diagrams and molecular simulation are some of

the key areas in chemical engineering that would benefit greatly from the use of computer

graphics and web-based visualization.

1.2 Objective

The goal of this thesis is to develop four web-based educational modules for chemical

engineering students. The modules can be classified into the following two types:

• Phase diagrams (Type I and II)

Thermodynamics and phase behavior is a topic, which undergraduate chemical

engineering students seem to struggle with, particularly for mixtures, where a 2-D

representation of the phase diagram falls far short of the understanding a 3-D

 4

model can provide. The applets will allow the student to walk through the phase

diagram analyzing the familiar p-T-x (pressure-temperature-composition) and V-

T-x (volume-temperature-composition) surfaces in binary mixtures. The static

diagrams drawn in every thermodynamics or physical chemistry textbook can

sometimes be difficult to understand and not convey the necessary information to

the student. Students presented with simple p-T (pressure-temperature) or p-x-y

(pressure-liquid composition-vapor composition) or T-x-y (temperature-liquid

composition-vapor composition) projections of the phase diagram often have

difficulty relating to other representations of the inherently three-dimensional p-

V-T-x (pressure-volume-temperature-composition) surface. A visual tool would

enable the student to more easily connect the different representations through

manipulation and rotation of the model [1].

• Molecular simulation module for measuring chemical potential of binary

mixtures

Using the Etomica molecular simulation, a visual development environment

developed by Dr. David Kofke at SUNY-Buffalo, the objective is to build the

molecular simulation module for measuring chemical potential of binary

mixtures. Etomica is a Java application-programming interface (API) that

provides the class files for constructing a molecular simulation module. It

provides for dynamic modification and interrogation of the simulation, while it is

in progress, which enables students to see directly the effect of changing state

conditions or molecular interactions on the behavior of the molecules and on the

 5

outcome of the simulation. As a result, hypothetical in-class discussions can be

replaced with real-time computer experimentation by students. The use of this

module will facilitate an active-learning-based component of the molecular

modeling course [1].

 6

Part Two - Visualization of Phase Diagrams

 7

The first part of this thesis involves the development of web-based module for the display

and exploration of 3D phase diagrams. There are six major types of binary phase

diagrams, out of which two web modules for type I and one for type II were developed as

part of this thesis.

We begin with a brief overview of phase diagrams and explain why modeling them using

computer graphics is useful.

2 Phase Diagrams

2.1 Phase Diagram of Pure Substances

A phase diagram is a graphical way of depicting the interrelationship between pressure,

temperature and volume, as well as the equilibrium between the phases (solid, liquid and

gas) of fluids. For pure substances, the phase diagram is a surface in 3D Pressure (p),

Volume (V) and Temperature (T) space. The Figure 2.1 depicts the projection of the

phase diagram of a pure substance onto the 2D p-T (pressure-temperature) plane.

A

B

Figure 2.1: Phase Diagram of a Pure Substance

 8

The lines represent the conditions in pressure and temperature along which there is phase

equilibrium. For example, from the triple point (pT) to the critical point (cT), the line

(called the vapor-pressure curve) shows the combination of pressure and temperature

along which we have vapor liquid equilibrium (one phase at high density and the other at

low density, in equilibrium with each other). One practical everyday consequence of this

line is that if one picks a pressure and finds the corresponding temperature on the line

between pT and cT , that temperature is the boiling point. Note that the boiling point is at

lower temperatures at lower pressures – an effect familiar to people living at altitude,

since water boils at lower temperatures in such situations. Along the line between pT and

B, we have equilibrium between solid and liquid (the solidification line) and along the

line between A and pT we have equilibrium between solid and gas (the sublimation line).

2.2 Phase Diagram of Binary Mixtures

However, when studying the phase behavior of a binary mixture, a new component,

composition dependence (x) is introduced [conventionally, if the phase is vapor (or gas)

the composition is denoted by (y)]. This is a number between 0 and 1 that represents the

mole fraction of one of the substances in the mixture. If 1N moles of species 1 and 2N

moles of species 2 are present, then mole fraction (iX) is given by:

iX =
21 NN

Ni

+

Focusing on phase equilibrium, corresponding to the lines in Figure 2.1, for binary

mixtures the region of phase equilibrium is enclosed in 3D surfaces. Textbooks usually

 9

portray such systems via a projection onto the p-T (pressure-temperature) plane along

with slices that are parallel to either the T-x (temperature-composition) or p-x (pressure

composition) plane.

Reference [5] provides an excellent overview of phase diagrams. Figure 2.2 depicts the

three isothermal p-x,y sections (each at fixed temperature) for the system cyclohexanone-

cyclohexane at the temperatures 450 K, 500 K, and 550 K. The fine lines represent the

dew point curves while the heavy lines represent the bubble point curves. In the p-x,y

slices, the fluid is liquid above the bubble point line and vapor below the dew point line,

and exhibits vapor-liquid equilibrium in the region between the lines. Figure 2.3 shows

the three isobaric T-x,y sections (each at a fixed pressure) for this system taken from the

same region of the phase. In the T-x,y slices, vapor exists above the dew point line (fine

line) while the liquid exists below the bubble point line (heavy line).

Figure 2.2: P-x,y Curves for Cyclohexanone/Cyclohexane. From [5].

 10

Figure 2.3: T-x,y Curves for Cyclohexanone/Cyclohexane. From [5].

Although two-dimensional plots are useful, the complete character of binary phase

equilibrium is not well understood unless the three-dimensional nature of the equilibrium

is conveyed using the pressure-temperature-composition plot as shown in Figure 2.4.

The graphs shown in the Figure 2.2 and Figure 2.3 are in fact slices of the 3D phase

equilibrium region shown in Figure 2.4.

In 3D space, the bubble-point locus and the dew-point locus become surfaces that

connect along the sides of the diagram to form the vapor-pressure curves. The upper ends

where the surfaces connect form the critical curve [5]. In the Figure 2.4, the solid lines

show the isothermal sections, while the dashed lines show the isobaric sections. Bubble-

point curves are red, Dew-point curves are green and the Vapor-pressure curves are

white. The white tie lines that connect the intersections of isothermal and isobaric

sections indicate the state where the liquid and vapor states coexist in equilibrium [5].

 11

Figure 2.4: P-T-x,y Curves for Cyclohexanone/Cyclohexane. From [5].

2.3 Interpreting Phase Diagrams

“Referring to Figure 2.5, imagine starting with pure cyclohexanone as a liquid at a

particular temperature (say 500 K) and at a pressure somewhat above the white vapor

pressure curve (marked "start"). Then add increasing amounts of cyclohexane at the

same conditions (P,T). The mixture moves along the directed yellow line, remaining a

liquid until the composition crosses the bubble point curve (at B), after which a vapor

phase appears. Adding still more cyclohexane moves the composition toward the dew

point curve (at D) where the liquid phase disappears completely. Higher cyclohexane

compositions at this temperature and pressure yield only a vapor phase”[5].

 12

Figure 2.5: Interpretation of P-T-x,y Curves for Cyclohexanone/Cyclohexane. From

[5].

 13

3 Visualization Framework

Now, that we have an idea about phase diagrams, it is not difficult to see why computer

graphics/visualization could provide an effective solution to the problem of visualizing

3D phase diagrams.

The task of generating 3D phase diagrams can be divided into writing computer programs

for the following 2 parts:

1. Data Generation: Computer programs that would generate actual data points,

depicting the phase behavior of the substances.

2. Computer Graphics Modeling: Computer programs that would read the actual

data values and visualize them into the relevant geometry and provide various

interactivity features.

Fortunately, the first part was taken care by one of our research group members, Dr.Clare

McCabe. The computer program written by Dr. McCabe generated constant pressure

slices for the phase diagrams of all the three modules based on the so-called SAFT

equation of state [18]. Each slice generated over 6000 data points and there were more

than 15 data files for each of the phase diagrams.

As far as the second part is concerned, it is important to first understand the issues

involved in data visualization, particularly in a web-based environment. It is then

important to choose the right software for web-based visualization. A critical goal in this

research is that the visualization of the phase diagram be platform-independent. To date,

 14

there is no interactive platform-independent capability for visualizing and interacting

with 3D phase equilibrium regions for binary mixtures. Previous efforts in this area have

resulted in visualizations for SGI and for PCs [5].

3.1 Understanding the Visualization Pipeline

Data is comprised of numbers. Data are not geometric objects and they cannot be

displayed directly by using simple graphic systems. We can visualize information only

when we combine data with geometry. For instance, in order to display data in the form

of two dimensional graphs or charts, we must convert the numbers (data) into geometric

objects like lines, dots etc. “A simple definition of visualization is the merging of data

with the display of geometric objects through computer graphics” [6].

According to references [6-8], Figure 3.1 shows the general visualization pipeline along

with assigned client-server scenarios concerning web-based visualizations.

The visualization pipeline can be divided into 3 stages:

3.1.1 Step I - Data Gathering and Analysis

In scientific applications, data is generated in a variety of ways, including

simulation results, mathematical modeling, physical measurements, etc. Data

may already exist in the form of application data, e.g., business data, file

system data etc. The raw data rarely provides enough information in and of

itself – poor insights follow from the inspection of large columns of data.

Therefore, typically in many engineering applications, data is analyzed by

plotting various graphs using applications like Microsoft Excel, Xgraph, etc.

 15

Figure 3.1: Conceptual Picture of the Components of a General Visualization

Pipeline

Such methods are sufficient for 2-D data; however, for 3-D and higher

dimensional data, more specialized methods are required.

3.1.2 Step II - Filtering and Geometric Modeling

The multidimensional information (data) could be extremely large in size. For

instance, medical imaging data such as that from magnetic-resonance

imaging, can be at a resolution of 512x512x200 points (or ~50M words or

100MB at 16 levels of color per pixel) [6]. As a result, we cannot assume that

any operation, however simple it appears, can be carried out easily.

Therefore, the first part of the step II consists of applying various data

 16

reduction or filtering techniques such as sampling (uniform, random) in order

to reduce the number of data points. The second part of step II consists of

mapping of the data to a geometric model. Without mapping data onto a

geometric model such as lines, curves, 3D charts/objects, in many cases the

data would not be useful. This is particularly true of scientific data, which,

whether experimental or simulated, is likely to be continuous (i.e., lie on

surfaces in some appropriate dimensional space). A contrary example might

be statistical data in the social sciences, such as income by zip code, in which

case plotting the raw data may be insightful.

3.1.3 Step III - Rendering and Interactivity

This final stage of the visualization process involves the creation of discrete

geometry model. This stage processes the viewing transformation, the projection

and finally the rasterization of the image data. Various interactivity features such

as zooming, clipping plane, lighting etc. can be provided for enhancing the

visualization.

The web-based visualization scenario can be classified into two types [7]:

• Server-based or “Fat Server”

In server-based web visualization, all the graphics processing parts from step (I)

to step (III), including discretization, is done on the server side. The data is in the

pure geometric form, for example, triangle strips, and is transferred over the net

to the client. The client simply displays the transferred image data. As indicated

by the shaded bars on the right side of the visualization pipeline shown in Figure

3.1, most of the visualization process is carried out at the server side. This

 17

scenario requires a high-speed visualization server along with a high-speed

network connection, in order to provide a high level of graphical interactivity.

• Client-based or “Fat Client”

In client-based web visualization, most of the processing stages are carried

out at the client end. As indicated by the shaded bars on the right of Figure

3.1, the borderline between step (I) and step (II) typically represents the

boundary of the server’s task and the client’s task. As long as the client end

uses high-end graphics acceleration hardware, a high degree of interactivity

can be easily achieved.

3.2 Software

As the graphics capabilities of even the cheapest personal computers, driven by computer

gaming, now rival and surpass the high-end graphics workstations of less than a decade

ago, increasingly client-based solutions are becoming the norm. In our approach, we use

the “Fat Client” or client-based web visualization scenario.

Key Issue: How do we make the 3D phase diagrams easily and widely accessible for

students?

Alternatives:

Platform independence and client-side rendering was our primary objective. Table 3.1

describes the issues involved and the available software solutions. Java [9], which is

available on a wide variety of platforms, provided a feasible and attractive choice.

Applets are programs that run in the Internet browser and therefore provide easy and

wide accessibility.

 18

Table 3.1: Issues and Solutions in Software Selection

Issue Software Solution

Wide accessibility Java Applets

3D graphics 1. Virtual Reality Modeling Language

2. Open GL

Virtual Reality Modeling Language (VRML) [8] is a web-based 3D modeling language

that utilizes the 3D graphics acceleration hardware for the visualization process. VRML

maintains platform-independence by using Java. However, a plug-in needs to be installed

in order to view the VRML module. On the other hand, OpenGL is the premier

environment for developing portable, interactive 2D and 3D graphics applications.

OpenGL is highly optimized in hardware and software and is targeted to a variety of

platforms.

According to the study conducted in [8], the Figure 3.2 depicts a detailed performance

evaluation of the OpenGL, and the VRML-based implementation of a client-side system.

For small numbers of triangles, the VRML implementation shows slightly better

performance. However, for large numbers of triangles, corresponding to complex

surfaces, we observe a superior performance of the OpenGL implementation.

We therefore chose to use OpenGL along with Java for our implementation, because in

contrast to VRML, besides superior performance, OpenGL also allows direct access to

the rendering pipeline.

 19

Figure 3.2: Transfer and Display Times of Triangles Using VRML and OpenGL.

From [8].

Now the buzz question, “Will Java affect the performance of my code?”

Although Java is generally slow compared with C, performance is not greatly affected

here because Java simply provides the platform-independence for these visualization

modules. The compute-intensive part of the modules we are developing lies in the

visualization, and OpenGL performs all the graphics calculations in a manner optimized

for the client hardware.

How to integrate Java with OpenGL?

There are two primary choices for implementing OpenGL with Java:

 1. Java3D (High Level API)

 2. Java-OpenGL bindings (Low level programming)

An excellent review [10] provides a deep understanding about the issues involved in

using Java with OpenGL.

 20

3.2.1 Java3D

The Java 3DTM application-programming interface (API) provides a set of object-oriented

interfaces that support a simple, high-level programming model. This enables developers

to build, render, and control the behavior of 3D objects and visual environments.

Java 3D is meant to give Java developers the ability to write applets and applications that

provide three dimensional, interactive content to users. It uses either DirectX or the

OpenGL low level API to take advantage of 3D hardware acceleration.

3.2.2 Java-OpenGL Bindings

Java-OpenGL bindings map the complete OpenGL and GLU API to Java and implement

window handle functions (native and Java), while using the Java-Native-Interface (JNI)

of Java or the JDirect-Interface of MS-JVM, Win32, X-Window and Mac. Although

Java-OpenGL bindings are language bindings that provide all the advantages of OpenGL,

they do possess certain disadvantages. First and foremost it that there are few

standardized Java-OpenGL binding products available for all relevant platforms in the

market. The following are a few:

• Magician (well documented but not available for free).

• GL4java (freely available for a wide variety of platforms; well documented

and has automatic web-installation for Win32 and Mac machines) [11].

These language bindings are meant to give graphics programmers the ability to make

OpenGL function calls in Java by using simple prefixes (“gl” in case of GL4Java) to the

corresponding OpenGL calls. Examples are given in Table 3.2

 21

Table 3.2: OpenGL vs. GLJ4Java Function Calls

 OpenGL functions Corresponding GL4Java functions

glBegin(GL_POLYGON) gl.glBegin(GL_POLYGON);

glEnd() gl.glEnd();

3.2.3 Java3D vs. Java-OpenGL Bindings

The Figure 3.3 shows the difference between programming using Java3D and Java-

OpenGL bindings. Using the Java-OpenGL bindings, one can directly access the

rendering pipeline. However, this flexibility is not available with Java3D. Besides, an

OpenGL programmer can use the language bindings in a manner very similar to using

OpenGL, without having to learn the entirely new Java3D framework. The Table 3.3

describes the differences between the Java3D and Java-OpenGL. Although Java3D

provides a few benefits over Java-OpenGL, we chose to use Java-OpenGL because it

gave us the flexibility of writing OpenGL programs in Java.

3.2.4 Our Choice

After a careful review of the literature [7], [8], [10], we decided to choose the GL4Java

(Java-OpenGL) bindings for implementation of the phase diagrams.

 22

Figure 3.3: Using Java3D vs. Using Java-OpenGL Bindings

 23

Table 3.3: Comparison between Java3D vs. Java-OpenGL Bindings

Java 3D OpenGL (Java-OpenGL bindings)

High-level programming

Java 3D is intended to help Java

programmers without much graphics or

multimedia programming experience, to

use 3D in their applications [10].

Low level programming

OpenGL is designed to optimize for the

best possible speed and give

programmers the greatest possible control

over the rendering process [10].

A standard extension API.

Java platform licensees are given the

option to implement the API if they like,

but they're not required to implement it.

As a result of this, the portability of Java

3D codes is greatly reduced, since most

Java3D vendors have to struggle keeping

up with the constant changes [10].

A complete API

OpenGL has become the industry's most

widely used and supported 2D and 3D

graphics application programming

interface (API), bringing thousands of

applications to a wide variety of

computer platforms [10].

Severe availability constraints

These are the result of Java 3D's status as

an extension API. The only major vendor

currently providing a Java 3D

implementation is Sun, with its

implementations for Solaris and Win32

[10].

Available Everywhere

OpenGL is available for every flavor of

Unix, Windows, MacOS and many other

operating systems [10].

 24

Table 3.3 Continued

Java 3D OpenGL (Java-OpenGL bindings)

Documentation deficits.

Java3D is not as well documented as

OpenGL. The complexity of the 3D

graphics API has made it difficult to

document and provide easy support to its

users [10].

Adequate Documentation

Numerous books have been published

about OpenGL, and a great deal of

sample code is readily available, making

information about OpenGL inexpensive

and easy to obtain [10].

 25

4 Visualization Pipeline

Given our understanding of the visualization pipeline, we can categorize the development

of applets to describe the phase diagrams, based on the three steps portrayed in Figure

3.1.

4.1 Step I – Data Gathering and Analysis

This is the first step involved in any visualization system. Before visualizing any data, it

is important to gather the data and carefully analyze it.

The data files generated by Dr. McCabe contained constant pressure slices of the phase

diagrams. A constant pressure slice (here P=0.7 in dimensionless units) appeared in the

format shown in Table 4.1 (all units in this table are dimensionless). The corresponding

Excel plot for the constant pressure slice is shown in Figure 4.1.

Table 4.1: File with Pressure Slice (P=0.7) Data

Line Number

Temperature

Pressure

Mol. Fraction (I)

Mol. Fraction (II)

1

…

3000

…

6000

2.17558574

…

1.500

…

0.93778574

0.70000000

…

0.70000000

...

0.70000000

1

...

0.085

…

0

1

...

.0.78857243

...

0

 26

Figure 4.1: Temperature-Mole Fraction Plot of the Constant-Pressure (P=0.7)

File Data

4.1.1 Observations

1. Each line in the text file corresponds to two points on the Excel sheet. For

instance, the points A (0.085,1.5) and B (0.78857243, 1.5) represent sample

points that have been derived from the line (3000). In 3 dimensional space, the

same points (3-D points defined as (Concentration, Temperature, Pressure))

would be A (0.085,1.5, 0.7) and B (0.78857243, 1.5, 0.7) respectively.

2. After analyzing each slice, an Excel plot as shown in Figure 4.2 was plotted in

order to understand the characteristic of the data.

4.1.2 Analysis

After carefully observing each of the data files for the phase diagram, we observed a

consistent uniformity in the data values. No sporadic data values were observed.

 27

Figure 4.2: Temperature-Mole Fraction Plots of the Constant-Pressure

(P=0.7, P=0.05, P=1.8) Data

4.2 Step II – Filtering and Geometric Modeling

In this step, we consider the various issues involved in visualization of large data sets.

We further discuss about the various data reduction and geometric modeling techniques.

4.2.1 Large Data Set Visualization

Visualization, by definition, means interaction with people to give them a better insight

about information [12]. Reference [12] explains how as humans, we perceive images and

extract information from them. It further explains how important it is to ensure the right

density of points in an image – with too few points we see an image as spurious

connections; however, with too many points the entire image appears as a blob.

Therefore, we often find sampling acceptable because our visual processing depends

 28

upon approximate rather than exact properties of data [12]. Also, by sampling the data,

we reduce the processing speed involved in plotting data. This allows for faster

rasterization and better interaction of the visualized module. The results discussed in

Reference [12] further explain the following two problems involved in large data

visualization:

1. Visual limits – It can be difficult to visualize data sets either due to the perceptual

limitations of the user or due to the hardware limitations of the display device.

2. Computational limits – When the data volume increases, the processing power,

data storage or network traffic increases as a result of the high interaction of the

visualization system.

4.2.2 Filtering (Sampling)

Several sampling techniques are described in Reference [12], amongst which uniform and

random sampling techniques seemed appropriate for our data visualization system. Our

data was largely uniform and monotonic in nature. Therefore, simple sampling

techniques such as uniform sampling (selecting every nth data point from the data set) or

random sampling (selecting a random data point from the data set) are suitable for the

data filtering process. Our code provides the user with an option of selecting the number

of data samples and the sampling technique (simple/random).

4.2.3 Geometric Modeling

There are two techniques described in Reference [6] that are useful for modeling

volumetric structured data sets (three-dimensional arrays of voxel or volume element

 29

values that correspond to equally spaced data samples):

1. Direct volume rendering:

In direct volume rendering, every voxel is used in representing a model.

The principal drawback of this method is the large amount of data involved in the

process.

2. Isosurface rendering:

In this technique, only a subset of voxels is used for modeling. For a function

f(x,y,z), an isosurface is a function defined by an implicit function f(x,y,z) = c,

where c is the isosurface value. For the discrete visualization of voxels, isosurface

methods seek to find the appr\oximate surface.

In our modules, we had over 6000 data points in each of the 15 data files. Rendering

these many data points using the direct volume rendering technique would be highly

inefficient. Therefore, we chose the isosurface rendering technique in our visualization

modules.

We had two choices for modeling the geometric objects:

i. Draw polygons connecting the sampled data points.

ii. Use curve/surface-fitting techniques to reconstruct the underlying function (in

this case, 3D surface).

The following were the reasons for our choice of using interpolation techniques over

drawing polygons :

a. Representation

Points, line segments and polygons form the basic graphic primitives. Using a

very large number of such basic primitives generates smooth curves or surfaces.

 30

However, by mathematically describing a small number of parameters such as

“control points”, smooth curves and surfaces can be easily generated. According

to [13], when data fitting becomes a primary concern for data produced by

simulations or measurements, then data points may be used as control points in

the representation model.

b. Storage – less control points

Imagine rendering a surface using approximately 1000 triangles. The same surface

can be modeled using surface fitting techniques with just 16 control points. While the

1000 triangles would only approximate the true surface, the control points can

accurately represent the true surface. Storing 16 control points far reduces the

overhead involved in saving 1000 triangles along with the normal vector information

at each vertex. Also, in modules that provide interactive features like model rotating,

volume slicing etc, using fewer control points for modeling greatly increases the

rendering speed.

4.2.4 Non-Uniform Rational B-Splines (NURBS)

Since we decided to use interpolation techniques for the geometric modeling of the phase

diagrams, it is important to choose a suitable representation for the same. References [8],

[13] and [14] provide good reviews on geometric models for large data set visualization.

NURBS modeling provides a suitable choice in our case, because it provides

representation of almost any kind of geometric models, using a far fewer number of

control points.

 31

4.2.4.1 Bezier Surfaces

The Bernstein polynomial of degree n (or order n+1) is given by

inin
i uu

i
n

uB −−

=)1()(

The Bernstein polynomials form the blending functions for the Bezier surfaces.

The Bezier surface is defined by

ij
m
j

n

i

m

j

n
i PvBuBvuS)()(),(

0 0
∑∑

= =

=

where ijP is a set of m*n control points, u varies from 0 to 1 and v varies from 0 to 1.

Bezier surfaces posses a number of properties [6], of which the convex-hull and

continuity properties are particularly important.

4.2.4.2 B-Spline Surfaces

Although Bezier curves and surfaces are powerful, a potential problem with them is that

the control points have global scope. A change in one control point affects the global

shape of the curve or surface.

An alternative to Bezier curves/surfaces is B-Spline curves/surfaces. The "B" in B-Spline

stands for basis. Basis is almost similar to the blending function for Bezier surfaces,

except for one small difference. In B-Splines, the blending function can be zero outside a

particular range. The effect of defining such a range is that it limits the scope over which

 32

a control point has influence.

Thus, a B-Spline is defined by control points and the range in which each control point is

active. These ranges are specified, indirectly, through something called a knot vector. The

knot vector is a non-decreasing sequence of numbers between 0 and 1.

Knot Vector = { 0u , ..., mu | for all i 0 <= iu <= 1 and iu -1 <= iu }

Given a knot vector with “m” knots as above, and assuming we have defined “n” control

points (0P , ..., nP), the degree of the curve is defined as p = m - n - 1.

4.2.4.3 NURBS

A NURBS is defined by control points and a knot vector. A Bézier curve is a B-Spline

where the first p+1 knots = 0, the last p+1 knots = 1. NURBS posses all the properties

(convex hull, continuous and local shape controllability) of 3D splines. They have an

important additional property of shape invariance under transformation . This property

ensures that NURBS curves are handled correctly in perspective views. We therefore

decided to choose the NURBS surfaces for our Geometric Modeling step.

4.3 Step III – Rendering and Interactivity

The third and final step of the visualization process involves rendering of the geometric

model and providing interactivity to the modules. The following discussion describes

 33

rendering NURBS surfaces with OpenGL.

4.3.1 NURBS Rendering

The NURBS interface requires a NURBS context object that is passed into each call. So,

the first thing to do is to create a NURBS context object:

nurbs = gluNewNurbsRenderer();

gluNurbsCurve is the function that actually evaluates the NURBS. The first argument is

the NURBS context object. The next two are the number of knots and a pointer to the

knot vector. Then comes the width of each control point (3D vs.. 4D) and a pointer to the

control points. The next argument is the “order” of the curve. The order is the degree + 1.

And, looking back above, the order is equivalent to the number of knots minus the

number of control points. The final argument is the "type" which is the same as the

evaluator's target argument.

Summing up, the Java-OpenGL code would look like:

float knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};

gl.gluBeginCurve(nurb);

gl.gluNurbsCurve(nurb, 8, knots, 3, &ctlpoints[0][0], 4, GL_MAP1_VERTEX_3);

gluEndCurve(nurb);

The Figure 4.3 shows a snapshot of the NURBS surface modeled using OpenGL.

4.3.2 Interactivity

The module provides students with the following interactive features for better visualization

of the phase diagrams.

 34

Figure 4.3: OpenGL Representation of NURBS Model Using the 16 Control Points

1. Click and drag the phase diagram to get different views of it.

2. Right click (or control-click on single button mouse systems) to select/ deselect various

options:

a. Volume Slice feature

This feature enables the students to slice a cutting plane through the entire phase

diagram. One can view the 2D slices of the phase diagram as it appears at different

temperatures or pressures.

b. One can view the following projections by right clicking the mouse.

a. Temperature-Pressure Projection

b. Pressure-Concentration Projection

c. Temperature-Concentration Projection

3. One can also use the following keyboard keys for:

 35

 " Z " to Zoom in

 " S " to Zoom out

 " L " to Switch Lighting

 36

5 Analysis and Implementation

In this section, the various processes involved in the development of the visualization

system are depicted using data flow diagrams.

5.1 Analysis (Data Flow Diagrams)

5.1.1 Context-Level Diagram (CLD)

As shown in Figure 5.1, the Context-level diagram represents an overview of the

visualization system.

• Student and Teacher represent the external entities that interact with the system.

• The Teacher provides visualization data, which are data files (text files)

containing the 2D projections of the phase diagrams.

• The Student visits the website, installs the Java-OpenGL plug-in and views the

phase diagrams.

• The phase diagram provides interactivity features like volume slice, zoom,

lighting etc.

 Figure 5.1: Context-Level Diagram of the Phase Diagram Modules

 37

Figure 5.2: Level-0 Diagram of the Phase Diagram Modules

5.1.2 Level-0 Diagram

As shown in Figure 5.2, the Level-0 diagram represents the lower level process model.

The visualization system is divided into 2 processes:

1. Data Filtering (Process 1.0):

This process involves data sampling. The large data files are parsed and

sampled at regular intervals. The reduced data is stored in data files (text

files), which is then used for visualization.

2. Phase diagrams (Process 2.0):

This process involves the geometric modeling of the visualization data. It

also involves providing interactivity features.

 38

Figure 5.3: Level-1 Diagram of the Phase Diagram Modules

5.1.3 Level-1 Diagram

As shown in the Figure 5.3, the Level-1 diagram is a further decomposition of the phase

diagram Process (2.0)

• The phase diagram (Process 2.0) involves the geometric modeling (Process 2.1)

of the visualization data and providing various interactive features (Processes 2.x)

• Geometric Modeling (Process 2.1) involves the construction of the NURBS

surfaces using the visualization data.

• A student can interact with the phase diagram by slicing (Process 2.2) through

the phase diagram, changing the lighting of the system (Process 2.4), zooming

into the phase diagram (Process 2.5) or viewing the p-x (pressure-concentration),

p-T (pressure-temperature) and T-x (temperature-concentration) projections

(Process 2.3).

 39

5.2 Implementation – Class Diagram

Here the class diagram gives an overall picture of the various java class files developed

as part of the system. Also, the pseudo-code implementation, describe in the Appendix

A.1, gives an overview of the various methods, constructors, etc. used in the class files.

Based on the Data Flow Diagrams describes earlier, Figure 5.4 represents the

implementation class diagram.

1. Data Sampling Class (Data Filtering Process)

• ParsePressure2.java – This class represents the Data Filtering process (Process

1.0). It reads large data files (text files), samples data points at regular

intervals and stores the samples in simple text files.

2. Phase diagram Classes (phase diagram modeling process)

1. Surface2.java – Main Applet class that creates an instance of the

SurfaceCanvas2.java class

2. SurfaceCanvas2.java – This class performs the following functions:

i. Geometric Modeling (Process 2.0): Reads the reduced data points from

the files and models the phase diagram using NURBS modeling.

ii. Phase diagram rendering and interactivity: Provides the interactive

features (Volume Slice, 2D projections, Lighting, Zoom etc.)

3. MatrixFuncs.java – Provides for the rotation of the phase diagram around an

axis.

 40

Figure 5.4: Class Diagram of the Phase Diagram Modules

 41

6 Results and Discussions

6.1 Type I (Butane + Methane)

As shown in the Figure 6.1, the constant-pressure slices are plotted for the entire 3D

phase diagram for the butane-methane mixture. The Figure 6.2 shows all the constant-

pressure slices for the same mixture in order to give a 3D perspective of the model. The

Figure 6.3 shows an orthogonal view of the 3D phase diagram applet, constructed using

the visualization data. The Figure 6.4 shows the p-T (pressure-temperature) projection

view of the applet, while the Figure 6.5 shows the p-x (pressure-concentration)

projection view, and the Figure 6.6 shows the T-x (temperature-concentration) projection

view of the applet for the butane-methane mixture.

6.2 Type I (Butane + Propane)

As shown in Figure 6.7, the constant pressure slices are plotted for the entire 3D phase

diagram for a butane-propane mixture. The Figure 6.8 shows all the constant-pressure

slices for the same mixture in order to give a 3D perspective of the model. The Figure 6.9

shows an orthogonal view of the 3D phase diagram applet, constructed using the

visualization data. The Figure 6.10 shows the p-T (pressure-Temperature) projection

view of the applet, while the Figure 6.11 shows the p-x (Pressure-Concentration)

projection view, and the Figure 6.12 shows the T-x (Temperature-Concentration)

projection view of the applet for the butane-propane mixture.

 42

Figure 6.1: Individual Constant-Pressure Slices for a Butane-Methane Mixture

 43

Pressure = 2.9

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mole fraction of butane

Te
m

pe
ra

tu
re

Figure 6.2: All Constant-Pressure Slices for the Butane-Methane Mixture

Figure 6.3: An Orthogonal View of the 3D Phase Diagram Applet for the

Butane-Methane Mixture

 44

Figure 6.4: Pressure-Temperature Projection View of the Applet for the

Butane-Methane Mixture

Figure 6.5: Pressure-Concentration Projection View of the Applet for the

Butane-Methane Mixture

 45

Figure 6.6: Temperature-Concentration Projection View of the Applet for the

Butane-Methane Mixture

 46

Pressure = 0.4

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

Mole fraction of butane

Te
m

pe
ra

tu
re

Pressure = 0.6

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

Mole fraction of butane

Te
m

pe
ra

tu
re

Pressure = 0.85

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

Mole fraction of butane

Te
m

pe
ra

tu
re

Pressure = 1

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

Mole fraction of butane

Te
m

pe
ra

tu
re

Pressure = 1.02

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

Mole fraction of butane

Te
m

pe
ra

tu
re

1 2

3 4

5

Figure 6.7: Individual Constant-Pressure Slices for the Butane-Propane Mixture

 47

Pressure = 1.06

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

Mole Fraction of butane

Te
m

pe
ra

tu
re

Figure 6.8: All Constant-Pressure Slices for the Butane-Propane Mixture

Figure 6.9: An Orthogonal View of the 3D Phase Diagram Applet for the

 Butane-Propane Mixture

 48

Figure 6.10: Pressure-Temperature Projection View of the Applet for the

Butane-Propane Mixture

Figure 6.11: Pressure-Concentration Projection View of the Applet for the

Butane-Propane Mixture

 49

Figure 6.12: Temperature-Concentration Projection View of the Applet for the

Butane-Propane Mixture

6.3 Type II (Perflouromethane + Ethane)

Type II phase diagrams are characterized by the existence of a region of liquid-liquid

immiscibility at high pressure. Liquid-liquid immiscibility occurs when two liquids do

not mix in all proportions – an extreme example is oil and water. As shown in Figure

6.13, the constant-pressure slices are plotted for the entire 3D phase diagram model for a

perflouromethane-ethane mixture. The Figure 6.14 shows the all the constant-pressure

slices for the same mixture in order to give a 3D perspective of the model. The Figure

6.15 shows an orthogonal view of the 3D phase diagram applet. The Figure 6.16 shows

the p-T projection view, while the Figure 6.17 shows the p-x projection view, and the

Figure 6.18 shows the T-x projection view of the applet for the perflouromethane-ethane

mixture.

 50

Pressure = 0.053

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Mole fraction of ethane

Te
m

pe
ra

tu
re

p=0.075

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Mole fraction of ethane

Te
m

pe
ra

tu
re

p=0.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Mole fraction of ethane

Te
m

pe
ra

tu
re

p = 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Mole fraction of ethane

Te
m

pe
ra

tu
re

p = 0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Mole fraction of ethane

Te
m

pe
ra

tu
re

p = 1.25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Mole fraction of ethane

Te
m

pe
ra

tu
re

1 2

3 4

5 6

Figure 6.13: Individual Constant-Pressure Slices for the Perflouromethane-Ethane

Mixture

 51

Figure 6.14: All Constant-Pressure Slices for the Perflouromethane-Ethane Mixture

Figure 6.15: An Orthogonal View of 3D Phase Diagram Applet for the

Perflouromethane-Ethane Mixture

p = 1.25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mol Fraction of ethane

Te
m

pe
ra

tu
re

 52

Figure 6.16: Pressure-Temperature View of the Applet for the Perflouromethane-

Ethane Mixture

Figure 6.17: Pressure-Concentration View of the Applet for the Perflouromethane-

Ethane Mixture

 53

Figure 6.18: Temperature-Concentration View of the Applet for the

Perflouromethane-Ethane Mixture

 54

Part Three - Molecular Simulation Module – Chemical

Potential of Binary Mixtures

 55

7 Molecular Simulations

As part of the fourth and final module of this project, a molecular simulation module for

measuring chemical potential in mixtures, using the particle swap method [15] has been

developed. The module (pure Java applet) has been developed using the molecular

simulation API, Etomica (detailed description in the Appendix A.3). Prof. Kofke was a

collaborator on this section of the thesis.

7.1 Molecular Simulation Models

A molecular simulation is a computer experiment based on a molecular model. A

molecular simulation API provides certain elements such as objects that represent

molecules (diameter, mass, shape), potentials that describe interactions (e.g. collisions)

between molecules and methods for measuring the physical conditions of various

configurations or states of the simulation [16].

There are two widely used molecular simulation models:

1. Molecular Dynamics (MD)

Molecular Dynamics is a deterministic method that integrates the equations of

motion to examine the evolution of a system over a period of time.

2. Monte Carlo (MC)

Monte Carlo simulations are stochastic processes that do not have an

element of time. Instead they use ensemble averaging to generate a large number

of randomly selected configurations of a system.

 56

In both MD and MC simulations, averages are taken over the ensemble of configurations,

and these can be used to “measure” the physical properties of the model system.

7.2 Advantages and Disadvantages of Molecular Simulation

Advantages

• Simulations are relatively inexpensive compared to normal lab experiments.

Compared with the actual scientific experiments that require expensive

instruments, molecular simulations require relatively much cheaper

computational power. While most experiments would require months of man-

hours to conduct the experiments, a molecular simulation could accomplish

the same task in a matter of hours, if not in minutes.

• Using molecular simulations, researchers can conduct simulations on

potentially hazardous or toxic chemicals without causing any harm to the

environment.

• Molecular simulations provide molecular-level insight into macroscopic

phenomena. Such insight is difficult at best to obtain experimentally (e.g., it

may require complex experiment such as neutron scattering) and impossible to

obtain experimentally in some cases.

Disadvantages

• Since simulations are based on molecular models, it is imperative to use a

model accurately describing the system. An inaccurate model representing the

system may result in incorrect understanding.

 57

• Depending upon the simulations that are conducted, extremely high levels of

computational power may be required to obtain the necessary results.

Presently, simulations are limited to systems and phenomena that extend over

micron length and nanosecond time scale. However, with the increase in the

availability of higher computational power, the gap between the available and

required computational power is gradually decreasing.

7.3 Chemical Potential

According to [17], the chemical potential determines phase equilibria and is an important

quantity to determine by molecular simulation. Various methods exist for calculating the

chemical potential for pure substances. The equation of state can be numerically

integrated from a reference state to derive the chemical potential [17]. However, here we

are interested in obtaining it from a molecular simulation.

7.3.1 Widom Insertion Technique

Attention has largely been concentrated on the particle insertion method of Widom, as

this method can be incorporated into a simulation code with minimal effect on

performance. Using the Widom insertion method, the chemical potential for pure fluid is

computed by performing a number of test insertions of a similar molecule. A new

molecule (of the same species) is inserted at a random position and the potential energy

(U) experienced by the inserted particle is measured. The chemical potential (µ)

measured over ‘n’ test insertions is given by:

 >−<=)exp(ln kT
UkTµ

 58

where, ‘k’ denotes the Boltzmann constant and ‘T’ denotes the Temperature. The Widom

insertion method to compute potential can be extended to mixtures and multi-component

systems too. However, for dense systems, direct particle-insertion methods are known to

yield poor statistics [15]. In dense systems successful trial insertions of test particles are

rare events.

7.3.2 Particle Swap Technique

An alternative way of measuring chemical potential, as suggested by Reference [15] is by

using the particle swap method. Instead of sampling the potential energy changes

resulting from particle insertion or removal, the potential energy changes associated with

the virtual transformation of a particle of species A into a particle of species B is

sampled. For a two-component mixture of species A and B, such as Argon-Kryton

system, this method directly provides values of the differences between excess chemical

potentials (excess values with respect to the perfect gas values). The chemical potential is

calculated as follows:

µµ =∆ A - µ B

)exp(ln1 −+− ∆−−= BAUββ

)exp(ln1 −+− ∆−= BAUββ

where U∆ A+B- denotes the change in potential energy that results from the

transformation of a B particle into an A particle, likewise U∆ B+A- for an A particle. Also,

kT=β where, ‘k’ denotes the Boltzmann constant and ‘T’ denotes the Temperature. In

this equation, the symbol ... indicate an average of the quantity over the simulation.

 59

8 Analysis and Implementation

8.1 Analysis

The development of the molecular simulation module for measuring chemical potential

required the following:

1. Developing a simulation module using the various classes in Etomica.

2. Implementing a Meter Class, measuring the chemical potential using the Particle

Swap technique described earlier.

8.1.1 Simulation Elements

The Table 8.1 describes the various elements of Etomica that were used are described,

along with a brief description about the manner in which they were used in the

development of the chemical potential module. Refer to Appendix A.3 for a detailed

description of the Etomica class files.

8.1.2 Data Flow Diagrams

The Data Flow Diagrams represent an overview of the system that was developed.

8.1.2.1 Context-Level Diagram (CLD)

As shown in Figure 8.1, the Context-Level Diagram represents an overview of the system

(applet) that was developed

• Student and Etomica-Molecular Simulation API, represent the external entities of

the system.

• Student interacts with the various class files in Etomica, using the graphical web

based interface provided by the applet.

The Student specifies the various simulation parameters and runs the simulation. Etomica

displays the results in the form of tables, charts etc.

 60

Table 8.1: Etomica Elements and the Corresponding Implementation in the Module

Etomica Element Implementation of Chemical

Potential Module

Simulation – Main class holding the

various elements of the simulation

An instance of the Simulation class was

created

Phase – Container of molecules that

interact with each other

A Phase Class was instantiated

Space – physical framework that provides

the ability to create vectors, tensors,

boundaries (periodic/non-periodic

boundary conditions), and coordinates

Since this was a 2D simulation, an

instance of Space2D was created.

Periodic boundary conditions were used

for the simulation.

Integrator – Generates the new

configurations of the phase by defining the

movement of atoms/molecules.

Etomica doesn’t have an NPT

integrator. Therefore, the Gear4NPH

integrator, which approximates an NPT

simulation, was used instead.

Controller – Controller controls all actions

performed by the integrators in a

smulation. (includes the start/stop button)

The controller class was extended to

create a new controller class

(ControllerJT). Using the new controller

class, the simulation starts off with the

NVE integrator, runs for a maximum of

100 steps and transfers the phase to the

Gear4NPH integrator. It displays the

 61

Table 8.1 Continued

Etomica Element Implementation of Chemical

Potential Module

 start/stop button on the applet.

Species – A Species is a collection of

identically formed Molecules. Molecules

can consist of one or more Atoms.

SpeciesSpheresMono class, species in

which molecules are made of a single

spherical atom were used

 Species A ⇒ Black colored

species

 Species B ⇒ Blue colored

species

Potential – The potential class defines the

interactions between Atoms

Lennard-Jones inter-atomic potential,

spherically symmetric potential of the

form

12 6() 4* [() ()]U r
r r
σ σε= −

 ε ⇒ Strength of the pair interaction,

 σ ⇒ Atom size parameter,

specified the interaction between

species A and species B molecules.

Three interactions are required: A-A, B-

B and A-B.

Display – View the results of the 1. An instance of DisplayPhase class

 62

Table 8.1 Continued

Etomica Element Implementation of Chemical

Potential Module

simulation in the form tables, plots of data

curves, molecular movements etc.

was created to display the molecular

movements.

A scale slider modified the scale of the

display.

 2. A DisplayPlot displaying the rdf

values for AA, AB, BB interactions

3. A DisplayTable class displayed the

results of the simulation in a table.

4. DisplayBoxes were used to set the

following parameters in both Real

and Lennard-Jones Unit:

 Pressure

 Temp

 Density

 Mass of a species

 Sigma (σ) for a species

 Epsilon (ε) for a species

Modulator – An interface to make changes

to the properties of another object.

An instance of the Modulator class was

created to link the “scale” property of

 63

Table 8.1 Continued

Etomica Element Implementation of Chemical

Potential Module

 the DisplayPhase with the scale slider.

Device – Devices provide graphical

interfaces for modifying these fields.

1. A DeviceSlider was created to

change the mole fraction of the

species.

2. DeviceButtons were used to

 Restart the simulation

 Reset the running averages of

the simulation.

Meter – Meters measure various physical

properties of a Phase.

1. A new meter called

MeterParticleSwap, was created for

measuring the chemical potential

using the particle swap technique.

2. Meters for measuring radial

distribution function (rdf) values for

A-A, B-B, and A-B interactions

between molecules were used.

3. Meters were created for measuring

 Pressure

 Temperature

 64

Table 8.1 Continued

Etomica Element Implementation of Chemical

Potential Module

 Density

 Configurational Energy

 Chemical potential using

 Widom Insertion technique

Figure 8.1 Context-Level Diagram of the Molecular Simulation Module

 65

8.1.2.2 Level-1 Diagram

The Level-1 Diagram, as shown in Figure 8.2, shows the interaction of the Student with

the Molecular Simulation Applet (Process 1.0). The student can specify the following:

• Select the mole fraction of species A and species B by using a Jslider (Process 1.1)

• Set the initial conditions (Process 1.2) by setting the Pressure, Temperature and

Density values in Real/Lennard-Jones Units.

• Choose the types of species (Process 1.3) by using a drop down list. Specify the

Mass, Epsilon and Sigma values for the species.

• Control the progress of the simulation (Process 1.4) by starting, stopping, resetting

and restarting the simulation.

• Specify the scale of display (Process 1.5) of the molecular movements.

The Data Flow Diagram, depicted in Figure 8.3, shows the interaction of the Molecular

Simulation Applet with the various class files in Etomica.

• An instance of the Simulation, Phase, Space2D, Controller, Integrator, Modulator

class are created.

• Since the applet measures the chemical potential for binary mixtures, an instance of

species A and species B is created using the Species class.

• Several Meters: MeterParticleSwap, MeterRDF, MeterPressure, MeterDensity,

MeterTemperature, MeterConfigurationalEnergy and MeterWidomInsertion are

created for measuring various simulation results.

• DeviceSlider and DeviceButton instances are created to manipulate the user input.

• The results are displayed using the DisplayTable, DisplayPhase, DisplayBox and

DisplayPlot classes.

 66

Figure 8.2: Level-1 Diagram of the Molecular Simulation Module (Part 1)

 67

Figure 8.3: Level-1 Diagram of the Molecular Simulation Module (Part 2)

 68

8.2 Implementation – Class Diagram

The class diagram, Figure 8.4, gives an overall picture of the various java class files

developed as part of the system. Also, the pseudo-code implementation, described in

Appendix A.2, gives an overview of the various methods, constructors etc. used in the

class files.

 69

Figure 8.4: Class Diagram of the Molecular Simulation Module

 70

9 Results and Discussions

9.1 Molecular Simulation Applet

The Figure 9.1 shows a screenshot of the molecular simulation applet for measuring

chemical potential of binary mixtures. Referring to Figure 9.1, A is used to set the

controls (start/stop/restart) for the simulations, B is used to set the initial simulation

conditions (pressure, temperature, density in real/Lennard-Jones unit), C is used to set the

mole fraction of the mixture, D is used to select the species A/B, set the sigma and

epsilon values for the A-A, A-B and B-B interactions, E is used to display the molecular

simulation, F is used to display the rdf plots while G is used to display (in the form of a

table) the chemical potential values of the mixture, measured by the Widom and particle

swap methods.

Figure 9.1: Screenshot of the Molecular Simulation Applet for Measuring the

Chemical Potential of Binary Mixtures

 71

9.2 Testing

The chemical potential is calculated as follows:

µµ =∆ A - µ B

)exp(ln1 −+− ∆−−= BAUββ

)exp(ln1 −+− ∆−= BAUββ

where U∆ A+B- denotes the change in potential energy that results from the

transformation of a B particle into an A particle, likewise U∆ B+A- for an A particle.

Therefore, theoretically the chemical potential measured by swapping an A molecule

with a B molecule, should give the same value (though opposite in sign) as the chemical

potential measured by swapping a B molecule with an A molecule. The results were

tested with the Fortran code results generated by another member of our research group,

Dr. Ariel Chialvo. For an Argon-Argon (ideal case) mixture, the Table 9.1 shows the

simulation conditions. The simulation results are shown in Table 9.2. The resulting

Radial Distribution Function plots are shown in the Figure 9.2. Results for r >= 4.8 are

not meaningful since this is half of the box length of the simulation. Over the meaningful

range, the applet and Fortran code are giving essentially the same result.

For an Argon-Krypton mixture, Table 9.3 shows the simulation conditions. The

simulation results are shown in Table 9.4. The resulting Radial Distribution Function

plots are shown in the Figure 9.3. The applet results are very similar to those from the

Fortran code. The latter are smoother and better defined from having been run longer.

 72

Table 9.1: Argon-Argon Simulation Conditions

Simulation Condition Set Value

Pressure 4.59 Bar

Temperature 53.91 Kelvin

 73

Table 9.2: Argon-Argon Simulation Results

Simulation Condition Unit Module Result Fortran Code

Result

Number Density (2σ) 0.725 0.772

Configurational Energy (ε) -2.35 -2.55

Chemical Potential- Widom

Insertion- (Inserting A molecule)

(ε) -1.65 -1.8

Chemical Potential- Widom

Insertion- Inserting B molecule

(ε) -1.75 -1.8

Chemical Potential – Particle

Swap technique – (A molecule

swapped with B)

(ε) 0 0

Chemical Potential – Particle

Swap technique – (B molecule

swapped with A)

(ε) 0 0

Note: The value of the chemical potential measured by the particle swapping technique

should be approximately equal to the numerical difference of the chemical potential

values measured by inserting A and B molecules.

 74

Figure 9.2: Comparison of the Applet RDF Plots for the Argon-Argon Mixture and

the Fortran Code RDF Plots

Table 9.3: Argon-Krypton Simulation Conditions

Simulation Condition Set Value

Pressure 21.282 Bar

Temperature 53.91 Kelvin

 75

Table 9.4: Argon-Krypton Simulation Results

Simulation Condition Unit Module Result Fortran Code Result

Number Density (2σ) 0.6 0.587

Configurational Energy (ε) -2.82 -2.557701

Chemical Potential- Widom

Insertion- (Inserting Ar molecule)

(ε) 0.95 Not Available

Chemical Potential- Widom

Insertion- Inserting Kr molecule

(ε) -1.15 Not Available

Chemical Potential – Particle Swap

technique – (Ar molecule swapped

with Kr)

(ε) -1.302 -1.1083

Chemical Potential – Particle Swap

technique – (Kr molecule swapped

with Ar)

(ε) -2.317 -2.275

Note: The value of the chemical potential measured by the particle swapping technique

should be approximately equal to the numerical difference of the chemical potential

values measured by inserting A and B molecules. The differences between the Fortran

code and the applet can be attributed to differences in the numbers of molecules and in

the way the potentials are cut off.

 76

Figure 9.3: Comparison of the Applet RDF Plots for the Argon-Krypton Mixture

and the Fortran Code RDF Plots

 77

10 Conclusions

The four educational modules have been successfully developed and tested under the

Windows, UNIX and Mac platforms. The modules have been uploaded to the website:

http://www.cs.utk.edu/~gupta/ . The website provides a link to the necessary plug-ins

required for viewing the phase diagram applets on different platforms.

There are six types of phase diagrams, of which we have developed phase diagrams for

types I and II. As part of the future work, applets for types III-VI need to be developed.

However, the computer programs developed as part of this thesis can be used for the

future development process. Also, the programs can be extended further to incorporate

visualization of any kind of 3D data.

Last but not the least, the applets need to be incorporated into educational modules. These

modules would require adequate documentation, relevant background information,

examples, problem questions, etc. Once these modules are adequately documented,

professors can use them for assigning homework problems to students. On the other

hand, students can use these simple and interactive modules in order to gain a better

understanding of complex phenomena.

The graphics capabilities of OpenGL and the platform independence of Java indeed

provide a promising future for the development of web based education modules. It is

hoped that these web-based educational modules would make this package a useful

instructional aid.

 78

LIST OF REFERENCES

 79

1. C.McCabe, Colorado School of Mines, 2003.

2. T.Naps, J.B., R.Jimenez-Peris, M.McNally, Using the www as the delivery
mechanism for interactive, visualization-based instructional modules. ITiCSE97
Working group on visualization, 97.

3. K.Engel, D.I., Visualizing chemical data in the internet - data driven and
interactive graphics. Computer & Graphics, 1998. 22(6).

4. Kamthan, P., Java Applets in Education, in Internet Related Technologies. 1999.

5. K. Tian, K.J., W.Chapman, 3D visualization of phase diagrams. 2001.

6. Angel, E., Interactive Computer Graphics: A Top-Down Approach with OpenGL.
1999.

7. M.Jern, 3D Data Visualization on the Web. CODATA Euro-American Workshop
Visualization of Information and Data: Where We Are and Where Do We Go
From Here?, 1997. 24-25.

8. K.Engel, R.W., T.Ertl, Isosurface extraction techniques for Web-based Volume
Visualization. IEEE Visualization conference, 1999(October): p. 25-28.

9. Sun, http://sun.java.com 2001.

10. Day, B., 3D graphics programming in Java. 1998.

11. Goethel, S., GL4Java. http://www.jausoft.com/gl4java, 2001.

12. A.Dix, G.E., By chance - enhancing interaction with large data sets through
statistical sampling. Advanced Visual Interfaces, 2002: p. 167-176.

13. Graphics, S., http://www.opengl.org, OpenGL Programming Guide.

14. M.Sarfraz, A rational cubic spline for the visualization of monotonic data.
Computers & Graphics, 2000. 24(4): p. 509-516.

15. P.Sindzingre, C.M., G.Ciccotti, Calculation of partial enthalpies of an argon-
krypton mixture by NPT molecular dynamics. Chemical Physics, 1989. 129: p.
213-224.

16. Mihalick, B., Development of a standalone Java-based molecular simulation
environment, in Chemical Engineering. 2001, University of New York: Buffalo.

 80

17. D.M.Heyes, Chemical Potential, Partial Enthalpy and partial volume of mixtures
by NPT molecular dynamics. Chemical Physics, 1992. 159: p. 149-167.

18. Clare McCabe, A. Galindo, G, Jackson, Predicting the High-Pressure Phase
Equilibria of Binary Mixtures of Perfluoro-n-alkanes n-Alkanes Using the SAFT-
VR Approach. Chemical Physics, 1998. 102

 81

APPENDIX

 82

A.1 Phase Diagram - Pseudo-code

The parsepressure2 class (Figure A.1.1 and Figure A.1.2) reads the data files and samples

the data points at regular intervals. The interval, type of sampling, number of samples etc,

can be specified. The surface2 class (Figure A.1.3 and Figure A.1.4) creates an instance

of the surfaceCanvas2 class (Figure A.1.5 and Figure A.1.6), which is the Java-OpenGL

phase diagram applet). A thread is created to read the pressure, temperature values of the

volume slice. It implements the Runnable interface. The main class-surfaceCanvas2

initializes all the graphic functions. It extends the GLAnimCanvas class and implements

the MouseListener, MouseMotionListener, KeyListener, ActionListener interfaces.It

parses the text files and constructs the NURBS surfaces. It performs interactive functions

such as volume slice, p-x, p-T, T-x projections, light switch, log-scale, zoom, etc.

The MatrixFuncs class (Figure A.1.7 and Figure A.1.8) performs rotation of the phase

diagrams depending upon mouse movements

A.2 Molecular Simulation Module - Pseudo-code

The ChemicalPotential class (Figure A.2.1 – Figure A.2.3) is the main applet class

that holds all the simulation elements. Using the new Controller class, (Figure A.2.3 –

Figure A.2.6) the simulation starts off with the NVE integrator, runs for a maximum of

100 steps and transfers the phase to the Gear4NPH integrator. It displays the start/stop

button on the applet. The MeterParticleSwap class (Figure A.2.7 and Figure A.2.8) is the

meter class to measure the change in chemical potential via the Particle-Swap Method

(species1 -> species2)

 83

Constructor Summary

parsepressure2()

 Constructor takes no argument and creates an instance of parsepressure2 class

Figure A.1.1: Class Parsepressure2 – Constructor Summary

Method Summary

static void main(java.lang.String[] args)

 Main class that invokes the parse() method. The user can specify the

type of sampling method (simple/random), the number of sample points,

the data files etc.

Figure A.1.2: Class Parsepressure2 – Method Summary

Constructor Summary

surface2()

 Creates an instance of the surface2 class, taking no arguments

Figure A.1.3: Class Surface2 – Constructor Summary

 84

Method Summary

 void destroy()

 Destroy the applet.

 void init()

 Initialize the applet

 void run()

 The thread displays the Pressure, Temperature values after sleeping

for every 1000ms .

 void start()

 Start the applet.

 void stop()

 Stop the applet.

Figure A.1.4: Class Surface2 – Method Summary

Constructor Summary

surfaceCanvas2(int w, int h)

 Constructor that takes width and height of the applet as its argument.

Figure A.1.5: Class SurfaceCanvas2 – Constructor Summary

 85

Method Summary

 void actionPerformed(java.awt.event.ActionEvent evt)

 Checks the type of event such as volume slice, log/normal scale,

lighting, PT/PX/TX projection etc.

 void display()

 Displays the nurb surfaces(phase diagram), axes etc.

 void doCleanup()

 Removes the MousListener, keyListener etc

 double getPressure()

 Returns the Pressure value at the slice

 double getTemp()

 Returns the Temperature value at the slice

 boolean getVol()

 Returns the Volume value at the slice

 void init()

 Initializes fonts, menu options, knot values for the NURBS surfaces

and adds the Listener objects etc.

 void initt()

 Reads the data points and sets the material properties for the surfaces

Figure A.1.6: Class SurfaceCanvas2 – Method Summary

 86

 void keyPressed(java.awt.event.KeyEvent e)

 Invoked when a key has been released.

 void keyReleased(java.awt.event.KeyEvent evt)

 Invoked when a key has been released.

 void keyTyped(java.awt.event.KeyEvent e)

 Invoked when a key has been typed.

 void mouseClicked(java.awt.event.MouseEvent evt)

 Invoked when a mouse is clicked

 void mouseDragged(java.awt.event.MouseEvent evt)

 Invoked there is a mouse drag event.

 void mouseEntered(java.awt.event.MouseEvent evt)

 Invoked when a mouse enters the applet

 void mouseExited(java.awt.event.MouseEvent evt)

 Invoked when a mouse exits

 void mouseMoved(java.awt.event.MouseEvent evt)

 Invoked when a mouse is moved

 void mousePressed(java.awt.event.MouseEvent evt)

 Invoked when a mouse has been pressed

Figure A.1.6 Continued

 87

 void mouseReleased(java.awt.event.MouseEvent evt)

 Invoked when a mouse has been released.

 void
preInit()

 Sets doublebuffer to true.

 void reshape(int width, int height)

 Resizes the view.

Figure A.1.6 Continued

Constructor Summary

MatrixFuncs()

 Constructor that creates an instance of the MatrixFuncs class.

Figure A.1.7: Class MatrixFuncs – Constructor Summary

 88

Method Summary

 void multiplyMatrices(float[] mtx1, float[] mtx2, float[] dest)

 Given two 4x4 matrices in mtx1 and mtx2, multiply them and put the

result in dest.

 void rotateAroundX(float degs, float[] mtx)

 Given the angle in degs, create a 4x4 matrix in mtx which rotates

around the X axis.

 void rotateAroundY(float degs, float[] mtx)

 Given the angle in degs, create a 4x4 matrix in mtx which rotates

around the Y axis.

 void rotateAroundZ(float degs, float[] mtx)

 Given the angle in degs, create a 4x4 matrix in mtx which rotates

around the Z axis.

Figure A.1.8: Class MatrixFuncs – Method Summary

 89

Constructor Summary

Chemical

Potential

(int dim)

Constructor takes the space dimensions of the simulation. The constructor

class creates instances of the Simulation, Phase, Space, Integrator,

Controlle, Species, Potential, Display & all the Meter Classes.

Figure A.2.1: Class ChemicalPotential – Constructor Summary

Method Summary

static void main(java.lang.String[] args)

 main class that creates an instance of the ChemicalPotential Class

Figure A.2.2: Class ChemicalPotential – Method Summary

 90

Inner Class Summary

static class ChemicalPotential.ABEditor

 Inner class that provides Text boxes for entering Sigma, Epsilon

values in Real/LJ Units to specify the AB interactions

static class ChemicalPotential.Applet

 Creates an instance of the applet and adds the ChemicalPotential

Class to the panel

static class ChemicalPotential.MySpeciesEditor

 Inner class that provides Text Boxes for entering Mass (Mol.Wt),

Sigma and Epsilon (Real/LJ Units) to specify the AA/BB interactions

static class ChemicalPotential.SpeciesChooser

 Inner class that defines a drop-down menu to select LJ parameters to

mimic several real substances

Figure A.2.3 Class ChemicalPotential – Inner Class Summary

Inner Class Summary

 class ControllerJT.EnsembleToggler

 Inner class used to toggle between NVE and NPH ensembles

Figure A.2.4: Class ControllerJT – Inner Class Summary

 91

Constructor Summary

ControllerJT(chemical.Simulation sim, chemical.IntegratorGear4NPH nph,

chemical.IntegratorGear4 nve)

 Constructor uses the Simulation, integratorgear4NPH and integratorGear4 as

arguments

Figure A.2.5: Class ControllerJT – Constructor Summary

Method Summary

 boolean isDoNVE()

 returns doNVE

 void reset()

 Resets the integrators

 void run()

 Thread call to perform 100 steps using NVE integrator and

transferring control to the Gear4NPH integrator

 void setDoNVE(boolean b, boolean doStart)

 Transferring control from NVE integrator to the Gear4NPH

integrator

Figure A.2.6: Class ControllerJT – Method Summary

 92

Constructor Summary

MeterParticleSwap()

 Constructor with no arguments

MeterParticleSwap(chemical.Simulation sim)

 Constructor with Simulation class argument

MeterParticleSwap(chemical.Species s1, chemical.Species s2)

 Constructor used to specify the test species of the molecule that would be

swapped in

Figure A.2.7: Class MeterParticleSwap – Constructor Summary

 93

Method Summary

 Double currentValue()

 Performs Particle Swapping, doing nAvg attempts.

 etomica.

units.

Dimension

getDimension()

 Etomica method

static

chemical.

EtomicaInfo

getEtomicaInfo()

 Etomica method

 Void setactiv(boolean temp)

 Sets the Meter Active.

 Void setPhase(chemical.Phase p)

 Sets the phase and gets handle to appropriate species agent

 Void setSpecies(chemical.Species s1, chemical.Species s2)

 Sets the species, takes a prototype molecule, and gets handle to

appropriate species agent in phase

Figure A.2.8: Class MeterParticleSwap – Method Summary

 94

A.3 Molecular Simulation API - Etomica

Etomica, the molecular simulation API written in Java, provides classes that represent

species of molecules, the space that they occupy, the phase that they are in (gas, liquid,

solid), and the potentials or molecular interactions between them. This API also has

classes that perform MD or MC sampling, control the beginning and the end of the

simulation, and meter the thermo-physical properties of the system. The API effectively

provides a complete framework for developing and running an experiment on a molecular

model of a chemical system [16].

The following lists all of the major components of the Molecular Simulation API along

with their implementation and functionality.

• Simulation

The Simulation class (Figure A.3.1) of the Molecular Simulation API is the main

class that organizes the elements of a molecular simulation. It holds a handle to every

component object in the simulation and also contains methods to register and

deregister components. It also holds a Space object that is referenced by all the

simulation components whenever spatial values are needed, a Graphics object that

can be used to display the simulation in a GUI, as well as an object that specifies

the unit system used as a default for all I/O to displays and meters. Finally, the

simulation instance contains the element coordinator object, which is responsible

for linking all the components in the simulation together just before runtime [16].

 95

Figure A.3.1: Etomica - Simulation Class. From [16].

• Phase

The Phase class (Figure A.3.2) holds the atoms that interact with each other. It also

holds a configuration object that lays out the arrangement of molecules. The

boundary object defines the interaction of the molecules at the edges of the phase.

The Iterator Factory object helps in looping through the molecules. The Meter object

measures the physical properties of a given Phase. The Species Agents objects

aids in adding, counting and deleting molecules in a Phase [16].

• Space

Space provides some general physical framework of a simulation by providing the

ability to create vectors, tensors, boundaries (periodic/non-periodic boundary

conditions), and coordinates (position and momentum of a point in space) [16].

 96

Figure A.3.2: Etomica – Phase Class. From [16].

• Integrator

The Integrator class generates the new configurations of the phase by defining the

movement of atoms/molecules. For example, moves can consist of adding or

deleting molecules, translating the position of a molecule, or moving molecules

based on their present velocity and according to the equations of motion. Etomica

provides both the types of integrators (molecular dynamics and Monte Carlo

simulations) [16].

• Controller

Controller controls all actions performed by the integrators in a simulation. It is

capable of starting and stopping any and all integrators whenever necessary. A

simple representation of a controller is a Start/Stop button for a simulation [16].

• Species

A Species is a collection of identically formed Molecules. Molecules can consist

of one or more Atoms. Species holds the AtomType of the atoms in the Species’

 97

Molecules, as well as the configuration of the atoms in each of these molecules

[16].

• Potential

The Potential class (Figure A.3.3) defines the interactions between Atoms. A

Potential can have the property of being hard, soft, or both. Hard potentials

describe impulsive interactions between Atoms. Energy curves of this type of

interaction have discontinuities. Atoms engaging in this type of interaction have

definite collision times, which occur when the collisionDiameter of the two

Atoms is equal to their distance apart from each other.

Soft potentials are non-impulsive interactions between Atoms. Energy curves

of this type of interaction are smooth with no discontinuities. Atoms engaging in

this type of interaction do not have a definite collision time, but rather are

constantly subjected to the force caused by the potential. These potentials provide

a force method to acquire the effect of this force [16].

Figure A.3.3: Etomica – Potential Class. From [16].

 98

• Display

Using the Display class, one can view the results of the simulation in the

form of tables, plots of data curves, molecular movements etc. For example,

DisplayPhase shows the molecular movements of atoms/molecules within a

Phase [16].

• Modulator

Modulator provides an interface to make changes to the properties of another

object. For example, using a modulator, a Device such as a DeviceSlider, can be

linked to the temperature of an Integrator. The Modulator will simply read the

current value of the DeviceSlider and modify the temperature of the Integrator

accordingly [16].

• Device

Devices such as DeviceSlider, DeviceButton etc are objects that provide

access to and methods for changing or modifying fields of other objects. Devices

provide graphical interfaces for modifying these fields, as well as a Unit object for

determining the corresponding Units [16].

• Meter

A Meter is responsible for measuring and averaging properties during a

simulation. Meters measure various physical properties of a Phase. However, they

are not capable of displaying the results. Instead, Meters depend on Displays,

such as the DisplayBox or DisplayTable, to display the measured results [16].

 99

VITA

Sharad Gupta was born in 1977 and is from India. He attended elementary and high

school at Bombay. He received his B.S degree in Computer Engineering in fall 2000,

from the University of Bombay. He worked as a Software Engineer in a software

consultancy firm - Infosys Technologies Ltd. He began his graduate study at University

of Tennessee from Spring 2001 and worked as a Graduate Research Assistant in the Dept

of Computer Science.

After completing his MS degree in Computer Science, he decided to pursue an MBA

degree at the University of Tennessee. He plans to work as a technology consultant after

graduation.

	3D Visualization Modules for Chemical Engineering – A Web-Based Approach Using Java and OpenGL
	Recommended Citation

	Microsoft Word - Gupta Sharad_MS Thesis.doc

