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ABSTRACT 
 
The main objective of this work is to implement web-based educational modules for 
chemical engineering students. Phase behavior is a topic with which the students seem to 
struggle with, particularly for mixtures, where a 2-D representation of the phase diagram 
falls far short of the understanding a 3-D model can provide. Using the platform-
independence of Java and the graphics capability of OpenGL, three phase diagram Java 
applets have been developed. Users can view these web-based 3D applets by installing a 
plug-in. These modules provide users with an ability to rotate the 3D models, slice 
through them, zoom into them and view their various 2D projections. Also, a molecular 
simulation applet for measuring chemical potential of binary mixtures has been 
developed, using a Java-based molecular simulation application-programming interface 
(API). 
 
First, the thesis presents a brief overview of phase diagrams and explains why modeling 
them using computer graphics is useful. While visualization involves the merging of data 
with the display of geometric objects through computer graphics, it is important to study 
the software issues involved in web-based visualization. The paper explains the 
visualization framework by describing the visualization pipeline and then using it as a 
guideline for the development of the modules. 
 
Next, the paper describes the development of the molecular simulation applet using a 
molecular simulation API  - Etomica. The Java applet provides for dynamic modification 
and interrogation of the simulation, while it is in progress, which enables students to see 
directly the effect of changing state conditions or molecular interactions on the behavior 
of the molecules and on the outcome of the simulation. 
 
It is hoped that by using these web-based 3D phase diagrams the chemical engineering 
students would gain a better understanding of the complicated 3D models, making this 
package a useful instructional aid. It is also hoped that the molecular simulation applet 
would be an effective tool to help students understand molecular simulations. 
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1 Introduction 

1.1 World Wide Web (WWW) as a medium of education 

With the rapid growth of the Internet and the broad acceptance of the WWW as a global 

medium for disseminating and processing information, the Internet and various web-

based technologies have shown a promising future in the field of education [2]. 

Nowadays, while computers and laptops are being widely used by undergraduate and 

graduate students, more and more universities are establishing wireless networks for 

providing easy and convenient access of the Internet [1]. The wide usage of multimedia 

over the web has opened new vistas in education by taking full advantage of our basic 

"senses" of learning such as visualizing 3D objects and nonlinear nature of thought 

processes [4]. The Internet no longer just provides information in the form of static web 

pages. More and more interactivity has resulted from the wide usage of various web-

based technologies.  

 

Today there exist excellent reviews and articles designed to guide professors, particularly 

new faculty, through the increasingly turbulent waters that are college teaching [1]. A 

consistent message in these and other publications on teaching effectiveness is that we 

are in times of change and that the traditional lecture-based delivery of course material 

needs to be substituted or supplemented with more innovative instructional methods.  

Many of these studies suggest that active involvement of students in the delivery of 

course material greatly facilitates learning and retention.  A number of studies have 

illustrated the effectiveness of using technology in the classroom [1]. 
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Various references [2, 3] provide a detailed review about the use of multimedia and web -

based visualization as an effective tool of education. Reference [4] describes the benefits 

of Java, as a programming language for developing web-based educational modules. 

While the use of Java applets can encourage asynchronous distance learning and thus 

help overcome the limitations (involving both time and space) inherent in traditional 

instructional techniques, there are various concepts and phenomena that inherently 

involve dynamic, multimedia and interactive information. Such information cannot 

usually be communicated effectively using paper or chalkboards or transparencies. The 

"mental picture" that a teacher has, is better conveyed to a learner if the information is 

presented in its appropriate form [4]. References [2]-[4] provide detailed insight into the 

pedagogical and technological issues involved in web-based educational modules. 

 

Visualization of three-dimensional phase diagrams and molecular simulation are some of 

the key areas in chemical engineering that would benefit greatly from the use of computer 

graphics and web-based visualization.  

 

1.2 Objective  

The goal of this thesis is to develop four web-based educational modules for chemical 

engineering students. The modules can be classified into the following two types: 

• Phase diagrams (Type I and II) 

Thermodynamics and phase behavior is a topic, which undergraduate chemical 

engineering students seem to struggle with, particularly for mixtures, where a 2-D 

representation of the phase diagram falls far short of the understanding a 3-D 
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model can provide. The applets will allow the student to walk through the phase 

diagram analyzing the familiar p-T-x (pressure-temperature-composition) and V-

T-x (volume-temperature-composition) surfaces in binary mixtures.  The static 

diagrams drawn in every thermodynamics or physical chemistry textbook can 

sometimes be difficult to understand and not convey the necessary information to 

the student. Students presented with simple p-T (pressure-temperature) or p-x-y 

(pressure-liquid composition-vapor composition) or T-x-y (temperature-liquid 

composition-vapor composition) projections of the phase diagram often have 

difficulty relating to other representations of the inherently three-dimensional p-

V-T-x (pressure-volume-temperature-composition) surface.  A visual tool would 

enable the student to more easily connect the different representations through 

manipulation and rotation of the model [1]. 

  

• Molecular simulation module for measuring chemical potential of binary 

mixtures 

Using the Etomica molecular simulation, a visual development environment 

developed by Dr. David Kofke at SUNY-Buffalo, the objective is to build the 

molecular simulation module for measuring chemical potential of binary 

mixtures.  Etomica is a Java application-programming interface (API) that 

provides the class files for constructing a molecular simulation module. It 

provides for dynamic modification and interrogation of the simulation, while it is 

in progress, which enables students to see directly the effect of changing state 

conditions or molecular interactions on the behavior of the molecules and on the 
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outcome of the simulation.  As a result, hypothetical in-class discussions can be 

replaced with real-time computer experimentation by students. The use of this 

module will facilitate an active-learning-based component of the molecular 

modeling course [1]. 
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Part Two - Visualization of Phase Diagrams 
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The first part of this thesis involves the development of web-based module for the display 

and exploration of 3D phase diagrams. There are six major types of binary phase 

diagrams, out of which two web modules for type I and one for type II were developed as 

part of this thesis. 

We begin with a brief overview of phase diagrams and explain why modeling them using 

computer graphics is useful. 

 

2 Phase Diagrams 

2.1 Phase Diagram of Pure Substances 

A phase diagram is a graphical way of depicting the interrelationship between pressure, 

temperature and volume, as well as the equilibrium between the phases (solid, liquid and 

gas) of fluids. For pure substances, the phase diagram is a surface in 3D Pressure (p), 

Volume (V) and Temperature (T) space. The Figure 2.1 depicts the projection of the 

phase diagram of a pure substance onto the 2D p-T (pressure-temperature) plane. 

 

 

A

B

 
Figure 2.1: Phase Diagram of a Pure Substance 
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The lines represent the conditions in pressure and temperature along which there is phase 

equilibrium. For example, from the triple point ( pT ) to the critical point ( cT ), the line 

(called the vapor-pressure curve) shows the combination of pressure and temperature 

along which we have vapor liquid equilibrium (one phase at high density and the other at 

low density, in equilibrium with each other). One practical everyday consequence of this 

line is that if one picks a pressure and finds the corresponding temperature on the line 

between pT  and cT , that temperature is the boiling point. Note that the boiling point is at 

lower temperatures at lower pressures – an effect familiar to people living at altitude, 

since water boils at lower temperatures in such situations. Along the line between pT and 

B, we have equilibrium between solid and liquid (the solidification line) and along the 

line between A and pT we have equilibrium between solid and gas (the sublimation line). 

 

2.2 Phase Diagram of Binary Mixtures 

However, when studying the phase behavior of a binary mixture, a new component, 

composition dependence (x) is introduced [conventionally, if the phase is vapor (or gas) 

the composition is denoted by (y)]. This is a number between 0 and 1 that represents the 

mole fraction of one of the substances in the mixture. If 1N  moles of species 1 and 2N  

moles of species 2 are present, then mole fraction ( iX ) is given by: 

iX = 
21 NN

Ni

+
 

Focusing on phase equilibrium, corresponding to the lines in Figure 2.1, for binary 

mixtures the region of phase equilibrium is enclosed in 3D surfaces. Textbooks usually 



 9 
 
 

portray such systems via a projection onto the p-T (pressure-temperature) plane along 

with slices that are parallel to either the T-x (temperature-composition) or p-x (pressure 

composition) plane.  

 

Reference [5] provides an excellent overview of phase diagrams. Figure 2.2 depicts the 

three isothermal p-x,y sections (each at fixed temperature) for the system cyclohexanone-

cyclohexane at the temperatures 450 K, 500 K, and 550 K.  The fine lines represent the 

dew point curves while the heavy lines represent the bubble point curves. In the p-x,y 

slices, the fluid is liquid above the bubble point line and vapor below the dew point line, 

and exhibits vapor-liquid equilibrium in the region between the lines. Figure 2.3 shows 

the three isobaric T-x,y sections (each at a fixed pressure) for this system taken from the 

same region of the phase. In the T-x,y slices, vapor exists above the dew point line (fine 

line) while the liquid exists below the bubble point line (heavy line). 

 

Figure 2.2: P-x,y Curves for Cyclohexanone/Cyclohexane. From [5]. 
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Figure 2.3: T-x,y Curves for Cyclohexanone/Cyclohexane. From [5]. 

Although two-dimensional plots are useful, the complete character of binary phase 

equilibrium is not well understood unless the three-dimensional nature of the equilibrium 

is conveyed using the pressure-temperature-composition plot as shown in Figure 2.4.  

The graphs shown in the Figure 2.2 and Figure 2.3 are in fact slices of the 3D phase 

equilibrium region shown in Figure 2.4. 

 

In 3D space, the bubble-point locus and the dew-point locus become surfaces that 

connect along the sides of the diagram to form the vapor-pressure curves. The upper ends 

where the surfaces connect form the critical curve [5]. In the Figure 2.4, the solid lines 

show the isothermal sections, while the dashed lines show the isobaric sections. Bubble-

point curves are red, Dew-point curves are green and the Vapor-pressure curves are 

white. The white tie lines that connect the intersections of isothermal and isobaric 

sections indicate the state where the liquid and vapor states coexist in equilibrium [5]. 
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Figure 2.4: P-T-x,y Curves for Cyclohexanone/Cyclohexane. From [5]. 

 

2.3 Interpreting Phase Diagrams 

“Referring to Figure 2.5, imagine starting with pure cyclohexanone as a liquid at a 

particular temperature (say 500 K) and at a pressure somewhat above the white vapor 

pressure curve (marked "start").  Then add increasing amounts of cyclohexane at the 

same conditions (P,T).  The mixture moves along the directed yellow line, remaining a  

liquid until the composition crosses the bubble point curve (at B), after which a vapor 

phase appears.  Adding still more cyclohexane moves the composition toward the dew  

point curve (at D) where the liquid phase disappears completely. Higher cyclohexane 

compositions at this temperature and pressure yield only a vapor phase”[5]. 
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Figure 2.5: Interpretation of P-T-x,y Curves for Cyclohexanone/Cyclohexane. From 

[5]. 
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3 Visualization Framework 

Now, that we have an idea about phase diagrams, it is not difficult to see why computer 

graphics/visualization could provide an effective solution to the problem of visualizing 

3D phase diagrams.  

 

The task of generating 3D phase diagrams can be divided into writing computer programs 

for the following 2 parts: 

1. Data Generation: Computer programs that would generate actual data points, 

depicting the phase behavior of the substances. 

2. Computer Graphics Modeling: Computer programs that would read the actual 

data values and visualize them into the relevant geometry and provide various 

interactivity features. 

 

Fortunately, the first part was taken care by one of our research group members, Dr.Clare 

McCabe. The computer program written by Dr. McCabe generated constant pressure 

slices for the phase diagrams of all the three modules based on the so-called SAFT 

equation of state [18]. Each slice generated over 6000 data points and there were more 

than 15 data files for each of the phase diagrams.  

 

As far as the second part is concerned, it is important to first understand the issues 

involved in data visualization, particularly in a web-based environment. It is then 

important to choose the right software for web-based visualization. A critical goal in this 

research is that the visualization of the phase diagram be platform-independent. To date, 
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there is no interactive platform-independent capability for visualizing and interacting 

with 3D phase equilibrium regions for binary mixtures. Previous efforts in this area have 

resulted in visualizations for SGI and for PCs [5]. 

 

3.1 Understanding the Visualization Pipeline 

Data is comprised of numbers. Data are not geometric objects and they cannot be 

displayed directly by using simple graphic systems. We can visualize information only 

when we combine data with geometry. For instance, in order to display data in the form 

of two dimensional graphs or charts, we must convert the numbers (data) into geometric 

objects like lines, dots etc. “A simple definition of visualization is the merging of data 

with the display of geometric objects through computer graphics” [6]. 

 

According to references [6-8], Figure 3.1 shows the general visualization pipeline along 

with assigned client-server scenarios concerning web-based visualizations.  

The visualization pipeline can be divided into 3 stages: 

3.1.1    Step I - Data Gathering and Analysis 

In scientific applications, data is generated in a variety of ways, including 

simulation results, mathematical modeling, physical measurements, etc. Data 

may already exist in the form of application data, e.g., business data, file 

system data etc. The raw data rarely provides enough information in and of 

itself – poor insights follow from the inspection of large columns of data. 

Therefore, typically in many engineering applications, data is analyzed by 

plotting various graphs using applications like Microsoft Excel, Xgraph, etc.  
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Figure 3.1: Conceptual Picture of the Components of a General Visualization 

Pipeline 

Such methods are sufficient for 2-D data; however, for 3-D and higher  

dimensional data, more specialized methods are required. 

 
3.1.2 Step II - Filtering and Geometric Modeling 

The multidimensional information (data) could be extremely large in size. For 

instance, medical imaging data such as that from magnetic-resonance 

imaging, can be at a resolution of 512x512x200 points (or ~50M words or 

100MB at 16 levels of color per pixel) [6]. As a result, we cannot assume that 

any operation, however simple it appears, can be carried out easily. 

Therefore, the first part of the step II consists of applying various data 
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reduction or filtering techniques such as sampling (uniform, random) in order 

to reduce the number of data points. The second part of step II consists of 

mapping of the data to a geometric model.  Without mapping data onto a 

geometric model such as lines, curves, 3D charts/objects, in many cases the 

data would not be useful. This is particularly true of scientific data, which, 

whether experimental or simulated, is likely to be continuous (i.e., lie on 

surfaces in some appropriate dimensional space). A contrary example might 

be statistical data in the social sciences, such as income by zip code, in which 

case plotting the raw data may be insightful. 

3.1.3 Step III - Rendering and Interactivity 

This final stage of the visualization process involves the creation of discrete 

geometry model. This stage processes the viewing transformation, the projection 

and finally the rasterization of the image data.  Various interactivity features such 

as zooming, clipping plane, lighting etc. can be provided for enhancing the 

visualization. 

The web-based visualization scenario can be classified into two types [7]: 

• Server-based or “Fat Server” 

In server-based web visualization, all the graphics processing parts from step (I) 

to step (III), including discretization, is done on the server side. The data is in the 

pure geometric form, for example, triangle strips, and is transferred over the net 

to the client. The client simply displays the transferred image data. As indicated 

by the shaded bars on the right side of the visualization pipeline shown in Figure 

3.1, most of the visualization process is carried out at the server side. This 
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scenario requires a high-speed visualization server along with a high-speed 

network connection, in order to provide a high level of graphical interactivity. 

• Client-based or “Fat Client” 

In client-based web visualization, most of the processing stages are carried 

out at the client end. As indicated by the shaded bars on the right of Figure 

3.1, the borderline between step (I) and step (II) typically represents the 

boundary of the server’s task and the client’s task. As long as the client end 

uses high-end graphics acceleration hardware, a high degree of interactivity 

can be easily achieved.  

3.2 Software 

As the graphics capabilities of even the cheapest personal computers, driven by computer 

gaming, now rival and surpass the high-end graphics workstations of less than a decade 

ago, increasingly client-based solutions are becoming the norm. In our approach, we use 

the “Fat Client” or client-based web visualization scenario. 

Key Issue: How do we make the 3D phase diagrams easily and widely accessible for 

students? 

Alternatives: 

Platform independence and client-side rendering was our primary objective. Table 3.1 

describes the issues involved and the available software solutions. Java [9], which is 

available on a wide variety of platforms, provided a feasible and attractive choice. 

Applets are programs that run in the Internet browser and therefore provide easy and 

wide accessibility. 
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Table 3.1: Issues and Solutions in Software Selection 

Issue        Software Solution 

Wide accessibility Java Applets 

3D graphics 1. Virtual Reality Modeling Language 

2. Open GL 

 

Virtual Reality Modeling Language (VRML) [8] is a web-based 3D modeling language 

that utilizes the 3D graphics acceleration hardware for the visualization process. VRML 

maintains platform-independence by using Java. However, a plug-in needs to be installed 

in order to view the VRML module. On the other hand, OpenGL is the premier 

environment for developing portable, interactive 2D and 3D graphics applications. 

OpenGL is highly optimized in hardware and software and is targeted to a variety of 

platforms. 

According to the study conducted in [8], the Figure 3.2 depicts a detailed performance 

evaluation of the OpenGL, and the VRML-based implementation of a client-side system. 

For small numbers of triangles, the VRML implementation shows slightly better 

performance. However, for large numbers of triangles, corresponding to complex 

surfaces, we observe a superior performance of the OpenGL implementation.  

We therefore chose to use OpenGL along with Java for our implementation, because in 

contrast to VRML, besides superior performance, OpenGL also allows direct access to 

the rendering pipeline.  
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Figure 3.2: Transfer and Display Times of Triangles Using VRML and OpenGL. 

From [8]. 

 

Now the buzz question, “Will Java affect the performance of my code?” 

Although Java is generally slow compared with C, performance is not greatly affected 

here because Java simply provides the platform-independence for these visualization 

modules. The compute-intensive part of the modules we are developing lies in the 

visualization, and OpenGL performs all the graphics calculations in a manner optimized 

for the client hardware.  

How to integrate Java with OpenGL? 

There are two primary choices for implementing OpenGL with Java: 

 1. Java3D (High Level API) 

 2. Java-OpenGL bindings (Low level programming) 

An excellent review [10] provides a deep understanding about the issues involved in 

using Java with OpenGL. 
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3.2.1 Java3D 

The Java 3DTM application-programming interface (API) provides a set of object-oriented 

interfaces that support a simple, high-level programming model. This enables developers 

to build, render, and control the behavior of 3D objects and visual environments. 

Java 3D is meant to give Java developers the ability to write applets and applications that 

provide three dimensional, interactive content to users. It uses either DirectX or the 

OpenGL low level API to take advantage of 3D hardware acceleration. 

 

3.2.2 Java-OpenGL Bindings 

Java-OpenGL bindings map the complete OpenGL and GLU API to Java and implement 

window handle functions (native and Java), while using the Java-Native-Interface (JNI) 

of Java or the JDirect-Interface of MS-JVM, Win32, X-Window and Mac. Although 

Java-OpenGL bindings are language bindings that provide all the advantages of OpenGL, 

they do possess certain disadvantages. First and foremost it that there are few 

standardized Java-OpenGL binding products available for all relevant platforms in the 

market. The following are a few: 

• Magician (well documented but not available for free). 

• GL4java  (freely available for a wide variety of platforms; well documented 

and has automatic web-installation for Win32 and Mac machines) [11]. 

These language bindings are meant to give graphics programmers the ability to make 

OpenGL function calls in Java by using simple prefixes (“gl” in case of GL4Java) to the 

corresponding OpenGL calls. Examples are given in Table 3.2 
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Table 3.2: OpenGL vs. GLJ4Java Function Calls 

 OpenGL functions Corresponding GL4Java functions 

glBegin(GL_POLYGON)  gl.glBegin(GL_POLYGON); 

glEnd() gl.glEnd( ); 

 

3.2.3 Java3D vs. Java-OpenGL Bindings 

The Figure 3.3 shows the difference between programming using Java3D and Java-

OpenGL bindings. Using the Java-OpenGL bindings, one can directly access the 

rendering pipeline. However, this flexibility is not available with Java3D.  Besides, an 

OpenGL programmer can use the language bindings in a manner very similar to using 

OpenGL, without having to learn the entirely new Java3D framework. The Table 3.3 

describes the differences between the Java3D and Java-OpenGL. Although Java3D 

provides a few benefits over Java-OpenGL, we chose to use Java-OpenGL because it 

gave us the flexibility of writing OpenGL programs in Java. 

 

3.2.4 Our Choice 

After a careful review of the literature [7], [8], [10], we decided to choose the GL4Java 

(Java-OpenGL) bindings for implementation of the phase diagrams. 
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Figure 3.3: Using Java3D vs. Using Java-OpenGL Bindings 
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Table 3.3: Comparison between Java3D vs. Java-OpenGL Bindings 

Java 3D OpenGL (Java-OpenGL bindings) 

High-level programming 

Java 3D is intended to help Java 

programmers without much graphics or 

multimedia programming experience, to 

use 3D in their applications [10]. 

Low level programming 

OpenGL is designed to optimize for the 

best possible speed and give 

programmers the greatest possible control 

over the rendering process [10]. 

A standard extension API.                      

Java platform licensees are given the 

option to implement the API if they like, 

but they're not required to implement it. 

As a result of this, the portability of Java 

3D codes is greatly reduced, since most 

Java3D vendors have to struggle keeping 

up with the constant changes [10]. 

A complete API 

OpenGL has become the industry's most 

widely used and supported 2D and 3D 

graphics application programming 

interface (API), bringing thousands of 

applications to a wide variety of 

computer platforms [10]. 

Severe availability constraints             

These are the result of Java 3D's status as 

an extension API. The only major vendor 

currently providing a Java 3D 

implementation is Sun, with its 

implementations for Solaris and Win32 

[10]. 

Available Everywhere 

OpenGL is available for every flavor of 

Unix, Windows, MacOS and many other 

operating systems [10]. 
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Table 3.3 Continued 

Java 3D OpenGL (Java-OpenGL bindings) 

Documentation deficits.                            

Java3D is not as well documented as 

OpenGL. The complexity of the 3D 

graphics API has made it difficult to 

document and provide easy support to its 

users [10]. 

Adequate Documentation 

Numerous books have been published 

about OpenGL, and a great deal of 

sample code is readily available, making 

information about OpenGL inexpensive 

and easy to obtain [10]. 
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4 Visualization Pipeline 

Given our understanding of the visualization pipeline, we can categorize the development 

of applets to describe the phase diagrams, based on the three steps portrayed in Figure 

3.1. 

 

4.1 Step I – Data Gathering and Analysis 

This is the first step involved in any visualization system. Before visualizing any data, it 

is important to gather the data and carefully analyze it.  

 

The data files generated by Dr. McCabe contained constant pressure slices of the phase 

diagrams. A constant pressure slice (here P=0.7 in dimensionless units) appeared in the 

format shown in Table 4.1 (all units in this table are dimensionless). The corresponding 

Excel plot for the constant pressure slice is shown in Figure 4.1. 

Table 4.1: File with Pressure Slice (P=0.7) Data 

 

Line Number 

 

Temperature 

 

Pressure 

 

Mol. Fraction (I) 

 

Mol. Fraction (II) 

 

1 

… 

3000 

… 

6000 

 

2.17558574 

… 

1.500 

… 

0.93778574 

 

0.70000000 

… 

0.70000000 

... 

0.70000000 

 

1 

... 

0.085 

… 

0 

 

1 

... 

.0.78857243 

... 

0 
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Figure 4.1: Temperature-Mole Fraction Plot of the Constant-Pressure (P=0.7)                          

File Data 

 

4.1.1 Observations 

1. Each line in the text file corresponds to two points on the Excel sheet. For 

instance, the points A (0.085,1.5) and B (0.78857243, 1.5) represent sample 

points that have been derived from the line (3000). In 3 dimensional space, the 

same points (3-D points defined as (Concentration, Temperature, Pressure)) 

would be A (0.085,1.5, 0.7) and B (0.78857243, 1.5, 0.7) respectively. 

2. After analyzing each slice, an Excel plot as shown in Figure 4.2 was plotted in 

order to understand the characteristic of the data. 

4.1.2 Analysis 

After carefully observing each of the data files for the phase diagram, we observed a 

consistent uniformity in the data values. No sporadic data values were observed. 
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Figure 4.2: Temperature-Mole Fraction Plots of the Constant-Pressure                              

(P=0.7, P=0.05, P=1.8) Data 

 

4.2 Step II – Filtering and Geometric Modeling 

In this step, we consider the various issues involved in visualization of large data sets. 

We further discuss about the various data reduction and geometric modeling techniques. 

  

4.2.1 Large Data Set Visualization 

Visualization, by definition, means interaction with people to give them a better insight 

about information [12]. Reference [12] explains how as humans, we perceive images and 

extract information from them. It further explains how important it is to ensure the right 

density of points in an image – with too few points we see an image as spurious 

connections; however, with too many points the entire image appears as a blob. 

Therefore, we often find sampling acceptable because our visual processing depends 
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upon approximate rather than exact properties of data [12]. Also, by sampling the data, 

we reduce the processing speed involved in plotting data. This allows for faster 

rasterization and better interaction of the visualized module. The results discussed in 

Reference [12] further explain the following two problems involved in large data 

visualization: 

1. Visual limits – It can be difficult to visualize data sets either due to the perceptual 

limitations of the user or due to the hardware limitations of the display device. 

2. Computational limits – When the data volume increases, the processing power, 

data storage or network traffic increases as a result of the high interaction of the 

visualization system. 

 

4.2.2 Filtering (Sampling) 

Several sampling techniques are described in Reference [12], amongst which uniform and 

random sampling techniques seemed appropriate for our data visualization system. Our 

data was largely uniform and monotonic in nature. Therefore, simple sampling 

techniques such as uniform sampling (selecting every nth data point from the data set) or 

random sampling (selecting a random data point from the data set) are suitable for the 

data filtering process. Our code provides the user with an option of selecting the number 

of data samples and the sampling technique (simple/random). 

 

4.2.3 Geometric Modeling 

There are two techniques described in  Reference [6] that are useful for modeling 

volumetric structured data sets (three-dimensional arrays of voxel or volume element  
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values that correspond to equally spaced data samples): 

1. Direct volume rendering:  

In direct volume rendering, every voxel is used in representing a model.  

The principal drawback of this method is the large amount of data involved in the 

process.  

2. Isosurface rendering:  

In this technique, only a subset of voxels is used for modeling. For a function 

f(x,y,z), an isosurface is a function defined by an implicit function f(x,y,z) = c, 

where c is the isosurface value. For the discrete visualization of voxels, isosurface 

methods seek to find the appr\oximate surface.  

In our modules, we had over 6000 data points in each of the 15 data files. Rendering 

these many data points using the direct volume rendering technique would be highly 

inefficient. Therefore, we chose the isosurface rendering technique in our visualization 

modules. 

We had two choices for modeling the geometric objects: 

i. Draw polygons connecting the sampled data points. 

ii. Use curve/surface-fitting techniques to reconstruct the underlying function (in 

this case, 3D surface). 

The following were the reasons for our choice of using interpolation techniques over 

drawing polygons : 

a. Representation  

Points, line segments and polygons form the basic graphic primitives. Using a 

very large number of such basic primitives generates smooth curves or surfaces. 
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However, by mathematically describing a small number of parameters such as 

“control points”, smooth curves and surfaces can be easily generated. According 

to [13], when data fitting becomes a primary concern for data produced by 

simulations or measurements, then data points may be used as control points in 

the representation model. 

b. Storage – less control points  

Imagine rendering a surface using approximately 1000 triangles. The same surface 

can be modeled using surface fitting techniques with just 16 control points. While the 

1000 triangles would only approximate the true surface, the control points can 

accurately represent the true surface. Storing 16 control points far reduces the 

overhead involved in saving 1000 triangles along with the normal vector information 

at each vertex. Also, in modules that provide interactive features like model rotating, 

volume slicing etc, using fewer control points for modeling greatly increases the 

rendering speed.  

 

4.2.4 Non-Uniform Rational B-Splines (NURBS) 

Since we decided to use interpolation techniques for the geometric modeling of the phase 

diagrams, it is important to choose a suitable representation for the same. References [8], 

[13] and [14] provide good reviews on geometric models for large data set visualization. 

NURBS modeling provides a suitable choice in our case, because it provides 

representation of almost any kind of geometric models, using a far fewer number of 

control points. 
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4.2.4.1 Bezier Surfaces 

The Bernstein polynomial of degree n (or order n+1) is given by 
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The Bernstein polynomials form the blending functions  for the Bezier surfaces. 

The Bezier surface is defined by  
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where ijP  is a set of m*n control points, u varies from 0 to 1 and v varies from 0 to 1. 

Bezier surfaces posses a number of properties [6], of which the convex-hull and 

continuity properties are particularly important. 

4.2.4.2 B-Spline Surfaces 

Although Bezier curves and surfaces are powerful, a potential problem with them is that 

the control points have global scope. A change in one control point affects the global 

shape of the curve or surface. 

 

An alternative to Bezier curves/surfaces is B-Spline curves/surfaces. The "B" in B-Spline 

stands for basis. Basis is almost similar to the blending function for Bezier surfaces, 

except for one small difference. In B-Splines, the blending function can be zero outside a 

particular range. The effect of defining such a range is that it limits the scope over which 
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a control point has influence.  

 

Thus, a B-Spline is defined by control points and the range in which each control point is 

active. These ranges are specified, indirectly, through something called a knot vector. The 

knot vector is a non-decreasing sequence of numbers between 0 and 1. 

 

Knot Vector = { 0u , ..., mu  | for all i 0 <= iu <= 1 and iu -1 <= iu } 

 

Given a knot vector with “m” knots as above, and assuming we have defined “n” control 

points ( 0P , ..., nP ), the degree of the curve is defined as p = m - n - 1. 

 

4.2.4.3 NURBS 

A NURBS is defined by control points and a knot vector. A Bézier curve is a B-Spline 

where the first p+1 knots = 0, the last p+1 knots = 1. NURBS posses all the properties 

(convex hull, continuous and local shape controllability) of 3D splines. They have an 

important additional property of shape invariance under transformation . This property 

ensures that NURBS curves are handled correctly in perspective views. We therefore 

decided to choose the NURBS surfaces for our Geometric Modeling step. 

 

4.3 Step III – Rendering and Interactivity 

The third and final step of the visualization process involves rendering of the geometric 

model and providing interactivity to the modules. The following discussion describes  
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rendering NURBS surfaces with OpenGL. 

 

4.3.1 NURBS Rendering 

The NURBS interface requires a NURBS context object that is passed into each call. So, 

the first thing to do is to create a NURBS context object: 

nurbs = gluNewNurbsRenderer(); 

gluNurbsCurve is the function that actually evaluates the NURBS. The first argument is 

the NURBS context object. The next two are the number of knots and a pointer to the 

knot vector. Then comes the width of each control point (3D vs.. 4D) and a pointer to the 

control points. The next argument is the “order” of the curve. The order is the degree + 1. 

And, looking back above, the order is equivalent to the number of knots minus the 

number of control points. The final argument is the "type" which is the same as the 

evaluator's target argument. 

Summing up, the Java-OpenGL code would look like: 

float knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0}; 

gl.gluBeginCurve(nurb); 

gl.gluNurbsCurve(nurb, 8, knots, 3, &ctlpoints[0][0], 4, GL_MAP1_VERTEX_3); 

gluEndCurve(nurb);  

The Figure 4.3 shows a snapshot of the NURBS surface modeled using OpenGL. 

 

4.3.2 Interactivity  

The module provides students with the following interactive features for better visualization 

of the phase diagrams. 
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Figure 4.3: OpenGL Representation of NURBS Model Using the 16 Control Points 

 

1. Click and drag the phase diagram to get different views of it. 

2. Right click (or control-click on single button mouse systems) to select/ deselect various 

options: 

a. Volume Slice feature  

This feature enables the students to slice a cutting plane through the entire phase 

diagram. One can view the 2D slices of the phase diagram as it appears at different 

temperatures or pressures. 

b. One can view the following projections by right clicking the mouse. 

a. Temperature-Pressure Projection 

b. Pressure-Concentration Projection 

c. Temperature-Concentration Projection 

3.  One can also use the following keyboard keys for: 
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 " Z " to Zoom in  

 " S " to Zoom out 

  " L " to Switch Lighting 
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5 Analysis and Implementation  

In this section, the various processes involved in the development of the visualization 

system are depicted using data flow diagrams. 

5.1 Analysis (Data Flow Diagrams) 

5.1.1 Context-Level Diagram (CLD) 

As shown in Figure 5.1, the Context-level diagram represents an overview of the 

visualization system.  

• Student and Teacher represent the external entities that interact with the system.  

• The Teacher provides visualization data, which are data files (text files) 

containing the 2D projections of the phase diagrams.  

• The Student visits the website, installs the Java-OpenGL plug-in and views the 

phase diagrams. 

• The phase diagram provides interactivity features like volume slice, zoom, 

lighting etc. 

 

 

 

 Figure 5.1: Context-Level Diagram of the Phase Diagram Modules 
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Figure 5.2: Level-0 Diagram of the Phase Diagram Modules 

 
5.1.2 Level-0 Diagram 
 
As shown in Figure 5.2, the Level-0 diagram represents the lower level process model. 

The visualization system is divided into 2 processes: 

1. Data Filtering (Process 1.0):  

This process involves data sampling. The large data files are parsed and 

sampled at regular intervals. The reduced data is stored in data files (text 

files), which is then used for visualization. 

2. Phase diagrams (Process 2.0):  

This process involves the geometric modeling of the visualization data. It 

also involves providing interactivity features. 
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Figure 5.3: Level-1 Diagram of the Phase Diagram Modules 

 
5.1.3 Level-1 Diagram 
 
As shown in the Figure 5.3, the Level-1 diagram is a further decomposition of the phase 

diagram Process (2.0) 

• The phase diagram (Process 2.0) involves the geometric modeling (Process 2.1) 

of the visualization data and providing various interactive features (Processes 2.x) 

• Geometric Modeling (Process 2.1) involves the construction of the NURBS 

surfaces using the visualization data. 

• A student can interact with the phase diagram by slicing  (Process 2.2) through 

the phase diagram, changing the lighting of the system  (Process 2.4), zooming 

into the phase diagram  (Process 2.5) or viewing the p-x (pressure-concentration), 

p-T (pressure-temperature) and T-x (temperature-concentration) projections 

(Process 2.3). 
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5.2 Implementation – Class Diagram 

Here the class diagram gives an overall picture of the various java class files developed 

as part of the system. Also, the pseudo-code implementation, describe in the Appendix 

A.1, gives an overview of the various methods, constructors, etc. used in the class files. 

Based on the Data Flow Diagrams describes earlier, Figure 5.4 represents the 

implementation class diagram.  

1. Data Sampling Class (Data Filtering Process) 

• ParsePressure2.java – This class represents the Data Filtering process (Process 

1.0). It reads large data files (text files), samples data points at regular 

intervals and stores the samples in simple text files. 

2. Phase diagram Classes (phase diagram modeling process) 

1. Surface2.java – Main Applet class that creates an instance of the 

SurfaceCanvas2.java class 

2. SurfaceCanvas2.java – This class performs the following functions: 

i.  Geometric Modeling (Process 2.0): Reads the reduced data points from 

the files and models the phase diagram using NURBS modeling. 

ii. Phase diagram rendering and interactivity: Provides the interactive 

features (Volume Slice, 2D projections, Lighting, Zoom etc.) 

3. MatrixFuncs.java – Provides for the rotation of the phase diagram around an 

axis. 
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Figure 5.4: Class Diagram of the Phase Diagram Modules 
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6 Results and Discussions 

6.1 Type I (Butane + Methane)  

As shown in the Figure 6.1, the constant-pressure slices are plotted for the entire 3D 

phase diagram for the butane-methane mixture. The Figure 6.2 shows all the constant-

pressure slices for the same mixture in order to give a 3D perspective of the model. The 

Figure 6.3 shows an orthogonal view of the 3D phase diagram applet, constructed using 

the visualization data. The Figure 6.4 shows the p-T (pressure-temperature) projection 

view of the applet, while the Figure 6.5 shows the p-x (pressure-concentration) 

projection view, and the Figure 6.6 shows the T-x (temperature-concentration) projection 

view of the applet for the butane-methane mixture. 

 
6.2 Type I (Butane + Propane) 
 
As shown in Figure 6.7, the constant pressure slices are plotted for the entire 3D phase 

diagram for a butane-propane mixture. The Figure 6.8 shows all the constant-pressure 

slices for the same mixture in order to give a 3D perspective of the model. The Figure 6.9 

shows an orthogonal view of the 3D phase diagram applet, constructed using the 

visualization data. The Figure 6.10 shows the p-T (pressure-Temperature) projection 

view of the applet, while the Figure 6.11 shows the p-x (Pressure-Concentration) 

projection view, and the Figure 6.12 shows the T-x (Temperature-Concentration) 

projection view of the applet for the butane-propane mixture. 
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Figure 6.1: Individual Constant-Pressure Slices for a Butane-Methane Mixture 
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Figure 6.2: All Constant-Pressure Slices for the Butane-Methane Mixture 
 
 
 
 

 
 

Figure 6.3: An Orthogonal View of the 3D Phase Diagram Applet for the                               

Butane-Methane Mixture 
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Figure 6.4: Pressure-Temperature Projection View of the Applet for the                        

Butane-Methane Mixture 

 

 
 

Figure 6.5: Pressure-Concentration Projection View of the Applet for the                       

Butane-Methane Mixture 
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Figure 6.6: Temperature-Concentration Projection View of the Applet for the               

Butane-Methane Mixture 
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Figure 6.7: Individual Constant-Pressure Slices for the Butane-Propane Mixture 
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Figure 6.8: All Constant-Pressure Slices for the Butane-Propane Mixture 
 
 
 
 

 
Figure 6.9: An Orthogonal View of the 3D Phase Diagram Applet for the  

                                       
 Butane-Propane Mixture 
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Figure 6.10: Pressure-Temperature Projection View of the Applet for the                        

Butane-Propane Mixture 

 

 

 
 

Figure 6.11: Pressure-Concentration Projection View of the Applet for the                     

Butane-Propane Mixture 
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Figure 6.12: Temperature-Concentration Projection View of the Applet for the              

Butane-Propane Mixture 

 

6.3 Type II (Perflouromethane + Ethane) 
 

Type II phase diagrams are characterized by the existence of a region of liquid-liquid 

immiscibility at high pressure. Liquid-liquid immiscibility occurs when two liquids do 

not mix in all proportions – an extreme example is oil and water. As shown in Figure 

6.13, the constant-pressure slices are plotted for the entire 3D phase diagram model for a 

perflouromethane-ethane mixture. The Figure 6.14 shows the all the constant-pressure 

slices for the same mixture in order to give a 3D perspective of the model. The Figure 

6.15 shows an orthogonal view of the 3D phase diagram applet. The Figure 6.16 shows 

the p-T  projection view, while the Figure 6.17 shows the p-x projection view, and the 

Figure 6.18 shows the T-x projection view of the applet for the perflouromethane-ethane 

mixture. 
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Figure 6.13: Individual Constant-Pressure Slices for the Perflouromethane-Ethane 

 
Mixture 
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Figure 6.14: All Constant-Pressure Slices for the Perflouromethane-Ethane Mixture 
 
 
 

 
 

Figure 6.15: An Orthogonal View of 3D Phase Diagram Applet for the  

Perflouromethane-Ethane Mixture 
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Figure 6.16: Pressure-Temperature View of the Applet for the Perflouromethane-

Ethane Mixture 

 

 
 

Figure 6.17: Pressure-Concentration View of the Applet for the Perflouromethane-

Ethane Mixture 
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Figure 6.18: Temperature-Concentration View of the Applet for the 

Perflouromethane-Ethane Mixture 
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7 Molecular Simulations 

As part of the fourth and final module of this project, a molecular simulation module for 

measuring chemical potential in mixtures, using the particle swap method [15] has been 

developed. The module (pure Java applet) has been developed using the molecular 

simulation API, Etomica (detailed description in the Appendix A.3).  Prof. Kofke was a 

collaborator on this section of the thesis. 

 

7.1 Molecular Simulation Models 

A molecular simulation is a computer experiment based on a molecular model. A 

molecular simulation API provides certain elements such as objects that represent 

molecules (diameter, mass, shape), potentials that describe interactions (e.g. collisions) 

between molecules and methods for measuring the physical conditions of various 

configurations or states of the simulation [16]. 

 

There are two widely used molecular simulation models: 

1. Molecular Dynamics (MD)  

Molecular Dynamics is a deterministic method that integrates the equations of 

motion to examine the evolution of a system over a period of time. 

2. Monte Carlo (MC) 

Monte Carlo simulations are stochastic processes that do not have an 

element of time. Instead they use ensemble averaging to generate a large number 

of randomly selected configurations of a system. 
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In both MD and MC simulations, averages are taken over the ensemble of configurations, 

and these can be used to “measure” the physical properties of the model system. 

7.2 Advantages and Disadvantages of Molecular Simulation 

Advantages  

• Simulations are relatively inexpensive compared to normal lab experiments. 

Compared with the actual scientific experiments that require expensive 

instruments, molecular simulations require relatively much cheaper 

computational power. While most experiments would require months of man-

hours to conduct the experiments, a molecular simulation could accomplish 

the same task in a matter of hours, if not in minutes. 

• Using molecular simulations, researchers can conduct simulations on 

potentially hazardous or toxic chemicals without causing any harm to the 

environment.  

• Molecular simulations provide molecular-level insight into macroscopic 

phenomena. Such insight is difficult at best to obtain experimentally (e.g., it 

may require complex experiment such as neutron scattering) and impossible to 

obtain experimentally in some cases. 

Disadvantages  

• Since simulations are based on molecular models, it is imperative to use a 

model accurately describing the system. An inaccurate model representing the 

system may result in incorrect understanding. 
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• Depending upon the simulations that are conducted, extremely high levels of 

computational power may be required to obtain the necessary results.  

Presently, simulations are limited to systems and phenomena that extend over 

micron length and nanosecond time scale. However, with the increase in the 

availability of higher computational power, the gap between the available and 

required computational power is gradually decreasing. 

7.3 Chemical Potential  

According to [17], the chemical potential determines phase equilibria and is an important 

quantity to determine by molecular simulation. Various methods exist for calculating the 

chemical potential for pure substances. The equation of state can be numerically 

integrated from a reference state to derive the chemical potential [17]. However, here we 

are interested in obtaining it from a molecular simulation.  

 

7.3.1 Widom Insertion Technique 

Attention has largely been concentrated on the particle insertion method of Widom, as 

this method can be incorporated into a simulation code with minimal effect on 

performance. Using the Widom insertion method, the chemical potential for pure fluid is 

computed by performing a number of test insertions of a similar molecule. A new 

molecule (of the same species) is inserted at a random position and the potential energy 

(U) experienced by the inserted particle is measured. The chemical potential ( µ ) 

measured over ‘n’ test insertions is given by: 

                                                  >−<= )exp(ln kT
UkTµ  



 58 
 
 

where, ‘k’ denotes the Boltzmann constant and ‘T’ denotes the Temperature. The Widom 

insertion method to compute potential can be extended to mixtures and multi-component 

systems too. However, for dense systems, direct particle-insertion methods are known to 

yield poor statistics [15]. In dense systems successful trial insertions of test particles are 

rare events.  

 

7.3.2 Particle Swap Technique 

An alternative way of measuring chemical potential, as suggested by Reference [15] is by 

using the particle swap method. Instead of sampling the potential energy changes 

resulting from particle insertion or removal, the potential energy changes associated with 

the virtual transformation of a particle of species A into a particle of species B is 

sampled. For a two-component mixture of species A and B, such as Argon-Kryton 

system, this method directly provides values of the differences between excess chemical 

potentials (excess values with respect to the perfect gas values). The chemical potential is 

calculated as follows: 

µµ =∆ A - µ B 

         )exp(ln1 −+− ∆−−= BAUββ  

      )exp(ln1 −+− ∆−= BAUββ  

where U∆ A+B-  denotes the change in potential energy that results from the 

transformation of a B particle into an A particle, likewise U∆ B+A- for an A particle. Also, 

kT=β where, ‘k’ denotes the Boltzmann constant and ‘T’ denotes the Temperature. In 

this equation, the symbol ...  indicate an average of the quantity over the simulation. 
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8 Analysis and Implementation 

8.1 Analysis 

The development of the molecular simulation module for measuring chemical potential 

required the following: 

1. Developing a simulation module using the various classes in Etomica. 

2. Implementing a Meter Class, measuring the chemical potential using the Particle 

Swap technique described earlier. 

8.1.1 Simulation Elements 

The Table 8.1 describes the various elements of Etomica that were used are described, 

along with a brief description about the manner in which they were used in the 

development of the chemical potential module. Refer to Appendix A.3 for a detailed 

description of the Etomica class files. 

8.1.2 Data Flow Diagrams 

The Data Flow Diagrams represent an overview of the system that was developed. 

8.1.2.1 Context-Level Diagram (CLD) 

As shown in Figure 8.1, the Context-Level Diagram represents an overview of the system 

(applet) that was developed 

• Student and Etomica-Molecular Simulation API, represent the external entities of 

the system. 

• Student interacts with the various class files in Etomica, using the graphical web 

based interface provided by the applet. 

The Student specifies the various simulation parameters and runs the simulation. Etomica 

displays the results in the form of tables, charts etc. 
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Table 8.1: Etomica Elements and the Corresponding Implementation in the Module 

 
Etomica Element Implementation of Chemical 

Potential Module 

Simulation – Main class holding the 

various elements of the simulation 

An instance of the Simulation class was 

created  

Phase – Container of molecules that 

interact with each other 

A Phase Class was instantiated 

Space – physical framework that provides 

the ability to create vectors, tensors, 

boundaries (periodic/non-periodic 

boundary conditions), and coordinates 

Since this was a 2D simulation, an  

instance of Space2D was created. 

Periodic boundary conditions were used 

for the simulation. 

Integrator – Generates the new 

configurations of the phase by defining the 

movement of atoms/molecules. 

Etomica doesn’t have an NPT 

integrator. Therefore, the Gear4NPH 

integrator, which approximates an NPT 

simulation, was used instead. 

Controller – Controller controls all actions 

performed by the integrators in a  

smulation. (includes the start/stop button) 

The controller class was extended to 

create a new controller class 

(ControllerJT). Using the new controller 

class, the simulation starts off with the 

NVE integrator, runs for a maximum of 

100 steps and transfers the phase to the 

Gear4NPH integrator. It displays the  
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Table 8.1 Continued  

Etomica Element Implementation of Chemical 

Potential Module 

 start/stop button on the applet. 

Species – A Species is a collection of 

identically formed Molecules. Molecules 

can consist of one or more Atoms. 

SpeciesSpheresMono class, species in 

which molecules are made of a single 

spherical atom were used 

  Species A ⇒  Black colored 

species 

 Species B ⇒  Blue colored 

species 

Potential – The potential class defines the 

interactions between Atoms 

Lennard-Jones inter-atomic potential, 

spherically symmetric potential of the 

form  

12 6( ) 4* [( ) ( ) ]U r
r r
σ σε= −  

 ε ⇒  Strength of the pair interaction,  

 σ ⇒  Atom size parameter, 

specified the interaction between 

species A and species B molecules. 

Three interactions are required: A-A, B-

B and A-B. 

Display – View the results of the  1. An instance of DisplayPhase class  
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Table 8.1 Continued 

Etomica Element Implementation of Chemical 

Potential Module 

simulation in the form tables, plots of data 

curves, molecular movements etc. 

was created to display the molecular 

movements.  

A scale slider modified the scale of the 

display. 

 2. A DisplayPlot displaying the rdf 

values for AA, AB, BB interactions 

3. A DisplayTable class displayed the 

results of the simulation in a table. 

4. DisplayBoxes were used to set the 

following parameters in both Real 

and Lennard-Jones Unit: 

 Pressure  

 Temp 

 Density    

 Mass of a species 

 Sigma (σ ) for a species 

 Epsilon (ε ) for a species 

Modulator – An interface to make changes 

to the properties of another object. 

An instance of the Modulator class was 

created to link the “scale” property of  
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Table 8.1 Continued 

Etomica Element Implementation of Chemical 

Potential Module 

 the DisplayPhase with the scale slider. 

Device – Devices provide graphical 

interfaces for modifying these fields. 

1. A DeviceSlider was created to 

change the mole fraction of the 

species. 

2. DeviceButtons were used to  

 Restart the simulation 

 Reset the running averages of 

the simulation. 

Meter – Meters measure various physical 

properties of a Phase. 

1. A new meter called 

MeterParticleSwap, was created for 

measuring the chemical potential 

using the particle swap technique. 

2. Meters for measuring radial 

distribution function (rdf) values for 

A-A, B-B, and A-B interactions 

between molecules were used.  

3. Meters were created for measuring  

 Pressure 

 Temperature 
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Table 8.1 Continued 

Etomica Element Implementation of Chemical 

Potential Module 

  Density 

 Configurational Energy 

 Chemical potential using  

 Widom Insertion technique 

 

 

 

 

 

 

 

Figure 8.1 Context-Level Diagram of the Molecular Simulation Module 
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8.1.2.2 Level-1 Diagram 

The Level-1 Diagram, as shown in Figure 8.2, shows the interaction of the Student with 

the Molecular Simulation Applet (Process 1.0).  The student can specify the following:  

• Select the mole fraction of species A and species B by using a Jslider (Process 1.1) 

• Set the initial conditions (Process 1.2) by setting the Pressure, Temperature and 

Density values in Real/Lennard-Jones Units. 

• Choose the types of species (Process 1.3) by using a drop down list. Specify the 

Mass, Epsilon and Sigma values for the species. 

• Control the progress of the simulation (Process 1.4) by starting, stopping, resetting 

and restarting the simulation. 

• Specify the scale of display (Process 1.5) of the molecular movements. 

The Data Flow Diagram, depicted in Figure 8.3, shows the interaction of the Molecular 

Simulation Applet with the various class files in Etomica. 

• An instance of the Simulation, Phase, Space2D, Controller, Integrator, Modulator 

class are created. 

• Since the applet measures the chemical potential for binary mixtures, an instance of 

species A and species B is created using the Species class. 

• Several Meters: MeterParticleSwap, MeterRDF, MeterPressure, MeterDensity, 

MeterTemperature, MeterConfigurationalEnergy and MeterWidomInsertion are 

created for measuring various simulation results. 

• DeviceSlider and DeviceButton instances are created to manipulate the user input. 

• The results are displayed using the DisplayTable, DisplayPhase, DisplayBox and 

DisplayPlot classes. 
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Figure 8.2: Level-1 Diagram of the Molecular Simulation Module (Part 1) 
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Figure 8.3: Level-1 Diagram of the Molecular Simulation Module (Part 2) 
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8.2 Implementation – Class Diagram 

The class diagram, Figure 8.4, gives an overall picture of the various java class files 

developed as part of the system. Also, the pseudo-code implementation, described in 

Appendix A.2, gives an overview of the various methods, constructors etc. used in the 

class files. 
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Figure 8.4: Class Diagram of the Molecular Simulation Module 
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9 Results and Discussions 
 
9.1 Molecular Simulation Applet 
 
The Figure 9.1 shows a screenshot of the molecular simulation applet for measuring 

chemical potential of binary mixtures. Referring to Figure 9.1, A is used to set the 

controls (start/stop/restart) for the simulations, B is used to set the initial simulation 

conditions (pressure, temperature, density in real/Lennard-Jones unit), C is used to set the 

mole fraction of the mixture, D is used to select the species A/B, set the sigma and 

epsilon values for the A-A, A-B and B-B interactions, E is used to display the molecular 

simulation, F is used to display the rdf plots while G is used to display (in the form of a 

table) the chemical potential values of the mixture, measured by the Widom and particle 

swap methods. 

 

 

Figure 9.1: Screenshot of the Molecular Simulation Applet for Measuring the 

Chemical Potential of Binary Mixtures 
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9.2 Testing 

The chemical potential is calculated as follows: 

µµ =∆ A - µ B 

         )exp(ln1 −+− ∆−−= BAUββ  

      )exp(ln1 −+− ∆−= BAUββ  

where U∆ A+B-  denotes the change in potential energy that results from the 

transformation of a B particle into an A particle, likewise U∆ B+A- for an A particle. 

Therefore, theoretically the chemical potential measured by swapping an A molecule 

with a B molecule, should give the same value (though opposite in sign) as the chemical 

potential measured by swapping a B molecule with an A molecule. The results were 

tested with the Fortran code results generated by another member of  our research group, 

Dr. Ariel Chialvo. For an Argon-Argon (ideal case) mixture, the Table 9.1 shows the 

simulation conditions. The simulation results are shown in Table 9.2. The resulting 

Radial Distribution Function plots are shown in the Figure 9.2. Results for r >= 4.8 are 

not meaningful since this is half of the box length of the simulation. Over the meaningful 

range, the applet and Fortran code are giving essentially the same result.  

For an Argon-Krypton mixture, Table 9.3 shows the simulation conditions. The 

simulation results are shown in Table 9.4. The resulting Radial Distribution Function 

plots are shown in the Figure 9.3. The applet results are very similar to those from the 

Fortran code. The latter are smoother and better defined from having been run longer. 
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Table 9.1: Argon-Argon Simulation Conditions 

Simulation Condition Set Value 

Pressure 4.59 Bar 

Temperature 53.91 Kelvin 
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Table 9.2: Argon-Argon Simulation Results 

Simulation Condition Unit Module Result Fortran Code 

Result 

Number Density  ( 2σ ) 0.725 0.772 

Configurational Energy  (ε ) -2.35 -2.55 

Chemical Potential- Widom 

Insertion- (Inserting A molecule) 

(ε ) -1.65 -1.8 

Chemical Potential- Widom 

Insertion- Inserting B molecule  

(ε ) -1.75 -1.8 

Chemical Potential – Particle 

Swap technique – (A molecule 

swapped with B)  

(ε ) 0 0 

Chemical Potential – Particle 

Swap technique – (B molecule 

swapped with A)  

(ε ) 0 0 

Note: The value of the chemical potential measured by the particle swapping technique 

should be approximately equal to the numerical difference of the chemical potential 

values measured by inserting A and B molecules. 
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Figure 9.2: Comparison of the Applet RDF Plots for the Argon-Argon Mixture and 

the Fortran Code RDF Plots 

 

Table 9.3: Argon-Krypton Simulation Conditions 

Simulation Condition Set Value 

Pressure 21.282 Bar 

Temperature 53.91 Kelvin 

 

 



 75 
 
 

Table 9.4: Argon-Krypton Simulation Results 

Simulation Condition Unit Module Result Fortran Code Result 

Number Density  ( 2σ ) 0.6 0.587 

Configurational Energy  (ε ) -2.82 -2.557701 

Chemical Potential- Widom 

Insertion- (Inserting Ar molecule)  

(ε ) 0.95 Not Available 

Chemical Potential- Widom 

Insertion- Inserting Kr molecule  

(ε ) -1.15 Not Available 

Chemical Potential – Particle Swap 

technique – (Ar molecule swapped 

with Kr)  

(ε ) -1.302 -1.1083 

Chemical Potential – Particle Swap 

technique – (Kr molecule swapped 

with Ar)  

(ε ) -2.317 -2.275 

Note: The value of the chemical potential measured by the particle swapping technique 

should be approximately equal to the numerical difference of the chemical potential 

values measured by inserting A and B molecules. The differences between the Fortran 

code and the applet can be attributed to differences in the numbers of molecules and in 

the way the potentials are cut off. 
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Figure 9.3: Comparison of the Applet RDF Plots for the Argon-Krypton Mixture 

and the Fortran Code RDF Plots 
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10 Conclusions  

The four educational modules have been successfully developed and tested under the 

Windows, UNIX and Mac platforms. The modules have been uploaded to the website: 

http://www.cs.utk.edu/~gupta/ . The website provides a link to the necessary plug-ins 

required for viewing the phase diagram applets on different platforms.  

There are six types of phase diagrams, of which we have developed phase diagrams for 

types I and II. As part of the future work, applets for types III-VI need to be developed. 

However, the computer programs developed as part of this thesis can be used for the 

future development process. Also, the programs can be extended further to incorporate 

visualization of any kind of 3D data. 

Last but not the least, the applets need to be incorporated into educational modules. These 

modules would require adequate documentation, relevant background information, 

examples, problem questions, etc.  Once these modules are adequately documented, 

professors can use them for assigning homework problems to students. On the other 

hand, students can use these simple and interactive modules in order to gain a better 

understanding of complex phenomena. 

The graphics capabilities of OpenGL and the platform independence of Java indeed 

provide a promising future for the development of web based education modules. It is 

hoped that these web-based educational modules would make this package a useful 

instructional aid. 
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A.1 Phase Diagram - Pseudo-code 

The parsepressure2 class (Figure A.1.1 and Figure A.1.2) reads the data files and samples 

the data points at regular intervals. The interval, type of sampling, number of samples etc, 

can be specified. The surface2 class (Figure A.1.3 and Figure A.1.4) creates an instance 

of the surfaceCanvas2 class (Figure A.1.5 and Figure A.1.6), which is the Java-OpenGL 

phase diagram applet). A thread is created to read the pressure, temperature values of the 

volume slice. It implements the Runnable interface. The main class-surfaceCanvas2 

initializes all the graphic functions. It extends the GLAnimCanvas class and implements 

the MouseListener, MouseMotionListener, KeyListener, ActionListener interfaces.It 

parses the text files and constructs the NURBS surfaces. It performs interactive functions 

such as volume slice, p-x, p-T, T-x projections, light switch, log-scale, zoom, etc. 

The MatrixFuncs class (Figure A.1.7 and Figure A.1.8) performs rotation of the phase 

diagrams depending upon mouse movements 

A.2 Molecular Simulation Module - Pseudo-code 

The ChemicalPotential class (Figure A.2.1 – Figure A.2.3) is the main applet class  

that holds all the simulation elements.  Using the new Controller class, (Figure A.2.3 – 

Figure A.2.6) the simulation starts off with the NVE integrator, runs for a maximum of 

100 steps and transfers the phase to the Gear4NPH integrator. It displays the start/stop 

button on the applet. The MeterParticleSwap class (Figure A.2.7 and Figure A.2.8) is the 

meter class to measure the change in chemical potential via the Particle-Swap Method 

(species1 -> species2)  
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Constructor Summary 

parsepressure2()  

           Constructor takes no argument and creates an instance of parsepressure2 class 

Figure A.1.1: Class Parsepressure2 – Constructor Summary 

 

Method Summary 

static void main(java.lang.String[] args)  

          Main class that invokes the parse() method. The user can specify the 

type of sampling method (simple/random), the number of sample points, 

the data files etc. 

Figure A.1.2: Class Parsepressure2 – Method Summary 

 

Constructor Summary 

surface2()  

           Creates an instance of the surface2 class, taking no arguments 

Figure A.1.3: Class Surface2 – Constructor Summary 
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Method Summary 

 void destroy()  

          Destroy the applet. 

 void init()  

          Initialize the applet 

 void run()  

          The thread displays the Pressure, Temperature values after sleeping 

for every 1000ms . 

 void start()  

          Start the applet. 

 void stop()  

          Stop the applet. 

Figure A.1.4: Class Surface2 – Method Summary 

Constructor Summary 

surfaceCanvas2(int w, int h)  

                  Constructor that takes width and height of the applet as its argument. 

Figure A.1.5: Class SurfaceCanvas2 – Constructor Summary 
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Method Summary 

 void actionPerformed(java.awt.event.ActionEvent evt)  

          Checks the type of event such as volume slice, log/normal scale, 

lighting, PT/PX/TX projection etc. 

 void display()  

          Displays the nurb surfaces(phase diagram), axes etc. 

 void doCleanup()  

          Removes the MousListener, keyListener etc 

 double getPressure()  

          Returns the Pressure value at the slice 

 double getTemp()  

          Returns the Temperature value at the slice 

 boolean getVol()  

          Returns the Volume value at the slice 

 void init()  

          Initializes fonts, menu options, knot values for the NURBS surfaces 

and adds the Listener objects etc. 

 void initt()  

          Reads the data points and sets the material properties for the surfaces

Figure A.1.6: Class SurfaceCanvas2 – Method Summary 
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 void keyPressed(java.awt.event.KeyEvent e)  

          Invoked when a key has been released. 

 void keyReleased(java.awt.event.KeyEvent evt)  

          Invoked when a key has been released. 

 void keyTyped(java.awt.event.KeyEvent e)  

          Invoked when a key has been typed. 

 void mouseClicked(java.awt.event.MouseEvent evt)  

          Invoked when a mouse is clicked 

 void mouseDragged(java.awt.event.MouseEvent evt)  

          Invoked there is a mouse drag event. 

 void mouseEntered(java.awt.event.MouseEvent evt)  

          Invoked when a mouse enters the applet 

 void mouseExited(java.awt.event.MouseEvent evt)  

          Invoked when a mouse exits 

 void mouseMoved(java.awt.event.MouseEvent evt)  

          Invoked when a mouse is moved 

 void mousePressed(java.awt.event.MouseEvent evt)  

          Invoked when a mouse has been pressed 

Figure A.1.6 Continued 
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 void mouseReleased(java.awt.event.MouseEvent evt)  

          Invoked when a mouse has been released. 

 void 
preInit()  

          Sets doublebuffer to true. 

 void reshape(int width, int height)  

          Resizes the view. 

Figure A.1.6 Continued 

Constructor Summary 

MatrixFuncs()  

           Constructor that creates an instance of the MatrixFuncs class. 

Figure A.1.7: Class MatrixFuncs – Constructor Summary 
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Method Summary 

 void multiplyMatrices(float[] mtx1, float[] mtx2, float[] dest)  

          Given two 4x4 matrices in mtx1 and mtx2, multiply them and put the 

result in dest. 

 void rotateAroundX(float degs, float[] mtx)  

          Given the angle in degs, create a 4x4 matrix in mtx which rotates 

around the X axis. 

 void rotateAroundY(float degs, float[] mtx)  

          Given the angle in degs, create a 4x4 matrix in mtx which rotates 

around the Y axis. 

 void rotateAroundZ(float degs, float[] mtx)  

          Given the angle in degs, create a 4x4 matrix in mtx which rotates 

around the Z axis. 

Figure A.1.8: Class MatrixFuncs – Method Summary  

 

 

 

 

 

 



 89 
 
 

Constructor Summary 

Chemical 

Potential 

(int dim)  

           

Constructor takes the space dimensions of the simulation. The constructor 

class creates instances of the Simulation, Phase, Space, Integrator, 

Controlle, Species, Potential, Display & all the Meter Classes. 

Figure A.2.1: Class ChemicalPotential – Constructor Summary 

 

Method Summary 

static void main(java.lang.String[] args)  

          main class that creates an instance of the ChemicalPotential Class 

Figure A.2.2: Class ChemicalPotential – Method Summary 
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Inner Class Summary 

static class ChemicalPotential.ABEditor  

          Inner class that provides Text boxes for entering Sigma, Epsilon 

values in Real/LJ Units to specify the AB interactions 

static class ChemicalPotential.Applet  

          Creates an instance of the applet and adds the ChemicalPotential 

Class to the panel 

static class ChemicalPotential.MySpeciesEditor  

          Inner class that provides Text Boxes for entering Mass (Mol.Wt), 

Sigma and Epsilon (Real/LJ Units) to specify the AA/BB interactions 

static class ChemicalPotential.SpeciesChooser  

          Inner class that defines a drop-down menu to select LJ parameters to 

mimic several real substances 

Figure A.2.3 Class ChemicalPotential – Inner Class Summary 

 

Inner Class Summary 

 class ControllerJT.EnsembleToggler  

          Inner class used to toggle between NVE and NPH ensembles 

Figure A.2.4: Class ControllerJT – Inner Class Summary 
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Constructor Summary 

ControllerJT(chemical.Simulation sim, chemical.IntegratorGear4NPH nph, 

chemical.IntegratorGear4 nve)  

          Constructor uses the Simulation, integratorgear4NPH and integratorGear4 as 

arguments 

Figure A.2.5: Class ControllerJT – Constructor Summary 

Method Summary 

 boolean isDoNVE()  

          returns doNVE 

 void reset()  

          Resets the integrators 

 void run()  

          Thread call to perform 100 steps using NVE integrator and 

transferring control to the Gear4NPH integrator 

 void setDoNVE(boolean b, boolean doStart)  

          Transferring control from NVE integrator to the Gear4NPH 

integrator 

Figure A.2.6: Class ControllerJT – Method Summary 
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Constructor Summary 

MeterParticleSwap()  

          Constructor with no arguments 

MeterParticleSwap(chemical.Simulation sim)  

          Constructor with Simulation class argument 

MeterParticleSwap(chemical.Species s1, chemical.Species s2)  

          Constructor used to specify the test species of the molecule that would be 

swapped in 

Figure A.2.7: Class MeterParticleSwap – Constructor Summary 
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Method Summary 

 Double currentValue()  

          Performs Particle Swapping, doing nAvg attempts. 

 etomica. 

units. 

Dimension 

getDimension()  

          Etomica method 

static  

chemical. 

EtomicaInfo 

getEtomicaInfo()  

          Etomica method 

 Void setactiv(boolean temp)  

           Sets the Meter Active. 

 Void setPhase(chemical.Phase p)  

          Sets the phase and gets handle to appropriate species agent 

 Void setSpecies(chemical.Species s1, chemical.Species s2)  

          Sets the species, takes a prototype molecule, and gets handle to 

appropriate species agent in phase 

 

Figure A.2.8: Class MeterParticleSwap – Method Summary 
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A.3 Molecular Simulation API - Etomica 

Etomica, the molecular simulation API written in Java, provides classes that represent 

species of molecules, the space that they occupy, the phase that they are in (gas, liquid, 

solid), and the potentials or molecular interactions between them. This API also has 

classes that perform MD or MC sampling, control the beginning and the end of the 

simulation, and meter the thermo-physical properties of the system. The API effectively 

provides a complete framework for developing and running an experiment on a molecular 

model of a chemical system [16]. 

 

The following lists all of the major components of the Molecular Simulation API along 

with their implementation and functionality.  

 

• Simulation 

The Simulation class (Figure A.3.1) of the Molecular Simulation API is the main 

class that organizes the elements of a molecular simulation. It holds a handle to every 

component object in the simulation and also contains methods to register and 

deregister components. It also holds a Space object that is referenced by all the 

simulation components whenever spatial values are needed, a Graphics object that 

can be used to display the simulation in a GUI, as well as an object that specifies 

the unit system used as a default for all I/O to displays and meters. Finally, the 

simulation instance contains the element coordinator object, which is responsible 

for linking all the components in the simulation together just before runtime [16]. 
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Figure A.3.1: Etomica - Simulation Class. From [16]. 

 

• Phase 

The Phase class (Figure A.3.2) holds the atoms that interact with each other. It also 

holds a configuration object that lays out the arrangement of molecules. The 

boundary object defines the interaction of the molecules at the edges of the phase. 

The Iterator Factory object helps in looping through the molecules. The Meter object 

measures the physical properties of a given Phase. The Species Agents objects 

aids in adding, counting and deleting molecules in a Phase [16]. 

• Space 

Space provides some general physical framework of a simulation by providing the 

ability to create vectors, tensors, boundaries (periodic/non-periodic boundary 

conditions), and coordinates (position and momentum of a point in space) [16]. 
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Figure A.3.2: Etomica – Phase Class. From [16]. 

 

• Integrator 

The Integrator class generates the new configurations of the phase by defining the 

movement of atoms/molecules. For example, moves can consist of adding or 

deleting molecules, translating the position of a molecule, or moving molecules 

based on their present velocity and according to the equations of motion. Etomica 

provides both the types of integrators (molecular dynamics and Monte Carlo 

simulations) [16]. 

• Controller  

Controller controls all actions performed by the integrators in a simulation. It is 

capable of starting and stopping any and all integrators whenever necessary. A 

simple representation of a controller is a Start/Stop button for a simulation [16].  

• Species 

A Species is a collection of identically formed Molecules. Molecules can consist 

of one or more Atoms. Species holds the AtomType of the atoms in the Species’ 



 97 
 
 

Molecules, as well as the configuration of the atoms in each of these molecules 

[16]. 

• Potential 

The Potential class (Figure A.3.3) defines the interactions between Atoms. A 

Potential can have the property of being hard, soft, or both. Hard potentials 

describe impulsive interactions between Atoms. Energy curves of this type of 

interaction have discontinuities. Atoms engaging in this type of interaction have 

definite collision times, which occur when the collisionDiameter of the two 

Atoms is equal to their distance apart from each other. 

Soft potentials are non-impulsive interactions between Atoms. Energy curves 

of this type of interaction are smooth with no discontinuities. Atoms engaging in 

this type of interaction do not have a definite collision time, but rather are 

constantly subjected to the force caused by the potential. These potentials provide 

a force method to acquire the effect of this force [16]. 

 

 

      

Figure A.3.3: Etomica – Potential Class. From [16]. 
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• Display 

Using the Display class, one can view the results of the simulation in the   

form of tables, plots of data curves, molecular movements etc. For example, 

DisplayPhase shows the molecular movements of atoms/molecules within a 

Phase [16]. 

• Modulator 

Modulator provides an interface to make changes to the properties of another 

object. For example, using a modulator, a Device such as a DeviceSlider, can be 

linked to the temperature of an Integrator. The Modulator will simply read the 

current value of the DeviceSlider and modify the temperature of the Integrator 

accordingly [16].  

• Device 

Devices such as DeviceSlider, DeviceButton etc are objects that provide  

access to and methods for changing or modifying fields of other objects. Devices 

provide graphical interfaces for modifying these fields, as well as a Unit object for 

determining the corresponding Units [16]. 

• Meter 

A Meter is responsible for measuring and averaging properties during a 

simulation. Meters measure various physical properties of a Phase. However, they 

are not capable of displaying the results. Instead, Meters depend on Displays, 

such as the DisplayBox or DisplayTable, to display the measured results [16]. 
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