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ABSTRACT 

Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a necrotizing skin disease 

endemic to West Africa and Australia. The cytopathicity, cell cycle arrest and 

immunosuppression characteristic of BU are attributed to the production of a plasmid-encoded, 

macrolide toxin, mycolactone. The core of mycolactone is a product of two large polyketide 

synthases (PKS) and is conserved among all mycolactone congeners.  Heterogeneity of the 

toxin is a result of differences in the polyketide side chain, the product of a third PKS. The 

mycolactone plasmid (MP) was initially thought to be restricted to M. ulcerans.  However, 

other mycolactone producing mycobacteria (MPMs) have now been identified in association 

with diseased frogs and fish.  Although plasmids are common in environmental mycobacteria, 

nothing is known about the ability of these plasmids to participate in horizontal transfer.   This 

work investigates the expression of mycolactone in heterologous hosts, M. fortuitum and M. 

marinum, as well as the ability of MPMs to participate in conjugation.  

 In this work a 152 kb fragment of the 154 kb MP plasmid from M. ulcerans 1615 was cloned 

into pBeloBAC11 and introduced into E. coli.  This plasmid, pMYCO7017, contains the 

mycobacterial plasmid origin of replication as well as the mycolactone gene cluster.  A 

Kanamycin resistance gene was introduced into pMYCO7017 by transposon mutagenesis.  A 

construct, pMYCO7017::TnKm, containing an insertion outside the mycolactone gene cluster, 

was isolated for further work.  Electroduction was used to transfer pMYCO7017:TnKm from 

its E. coli host into both M. marinum 1218 and a plasmid minus strain of M. fortuitum. 

One M. marinum and four M. fortuitum transformants were verified by PCR analysis.  Lipids 

were extracted from the transformants, and then analyzed by TLC and cytotoxicity assay, but 

results were inconclusive.  However, when lipid extracts were analyzed by mass spectrometry 

and HPLC, a novel molecule was discovered indicating that one transformant, M. fortuitum 

10394.6 (pMYCO7017::TnKm) was able to produce the mycolactone core.  This work is the 

first example of heterologous expression of an M. ulcerans mycolactone PKS genes.  

Importantly, the gene cluster contained on pMYCO7017::TnKm is expressed.  These results 

further suggest that the requirements for synthesis of the mycolactone core differ from those for 

the side-chain.  
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CHAPTER 1 : LITERATURE REVIEW 

1.1  Buruli ulcer disease 

1.1.1   Ecology and environment 

 Buruli ulcer is an emerging disease associated with lethargic rivers, stagnant swamps and 

other inert water bodies in tropical (Van der werf, 1999) and temperate climates 

(Johnson, 1999) in over thirty countries around the world (WHO).  In highly endemic 

areas of West Africa, the prevalence of Buruli ulcer may be as high as 151 cases per 

100,000 people and may be equal to or greater than rates of tuberculosis infection 

(Amofah, 2002). Although the exact mode of transmission remains elusive, it is thought 

that Mycobacterium ulcerans, the causative agent of Buruli ulcer, is introduced into the 

human host through trauma to the skin. This hypothesis has been supported by case-

control studies in Benin (Debacker, 2006), Cameroon (Pouillot, 2007), southeastern 

Australia (Quek, 2007), and Ghana (Raghunathan, 2005).  These studies revealed that the 

risk of Buruli ulcer disease is decreased when people wear protective clothing, namely 

long trousers and long sleeve shirts, which help to shield the skin.  

The specific ecological niche of M. ulcerans has not yet been determined and after 

dozens of years, there is only one example of an M. ulcerans culture obtained from the 

environment (Portaels, 2008). Additionally, the exact mode of transmission of Buruli 

ulcer disease is still unknown, but several different routes of infection are currently being 

investigated.  M. ulcerans has been shown to form biofilms on aquatic plants (Marsollier, 

2004) and the bacteria may be introduced into the skin by a prick from sharp grasses or 

weeds (Meyers, 1974). While direct contact with endemic water bodies in certain African 

countries is a documented risk factor for Buruli ulcer disease (Raghunathan, 2005), only 

a small percentage of cases in Australia are associated with direct contact with 

contaminated water.  However, many Australian Buruli ulcer patients reported spending 

time within close proximity to swampy or marshy water bodies. This observation 
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suggests that direct contact with contaminated waters is not always necessary for a person 

to acquire Buruli ulcer disease.   

Scientists are now searching for potential vectors, namely insects that may harbor the 

bacterium and transmit it from contaminated water sources to the human host.  Marsollier 

and colleagues have shown that a predacious water insect, Naucoridae, can be 

experimentally infected with M. ulcerans and that the bacterium is able to colonize the 

salivary glands of these predacious aquatic insects. The insects can then transmit M. 

ulcerans to mice through a bite (Marsollier, 2002), raising the possibility that these 

predacious, biting insects may be potential vectors in Buruli ulcer transmission. In the 

Daloa region of the Ivory Coast, an area heavily endemic for Buruli ulcer, up to 5% of 

Naucoridae collected from the environment test positive for M. ulcerans DNA 

(Marsollier, 2002).  

Mosquitoes are known to be a vector for several diseases of human importance including 

Malaria, Dengue Fever, and Yellow Fever, to name a few.  Consequently, mosquitoes are 

also being investigated as potential vectors for transmission of Buruli ulcer disease.  

Mosquitoes were collected and pooled into groups of 1 – 23 individuals from six different 

locations during a Buruli ulcer outbreak in Australia (Fyfe, 2007).  Two out of 42 

mosquito pools tested PCR positive for IS2404, IS2606, and KR, M. ulcerans - specific 

DNA sequences (Fyfe, 2007).  Further research is needed to elucidate the extent of the 

role of mosquitoes in transmission of Buruli ulcer. 

During the on-going search for the environmental niche of M. ulcerans, PCR has been 

used to examine a variety of environmental samples, resulting in M. ulcerans DNA being 

detected in water filtrate, biofilms, vertebrates and invertebrates (Williamson, 2008). This 

illustrates that M. ulcerans is widely distributed in aquatic environments and suggests 

that there may be some kind of trophic role in transmission of the bacterium to humans.  

It is possible that there is not simply one mode of transmission and, in fact, there may be 

multiple pathways of infection occurring simultaneously in endemic sites around the 

world. 
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1.1.2    Pathology and clinical presentation of Buruli Ulcer Disease 

Buruli ulcer disease often begins as an innocuous nodule or papule, similar in appearance 

to a spider bite, and surgical excision at this stage is usually curative (Van der werf, 

1999).  However, the harmless initial appearance of the disease, often in combination 

with various socio-economic factors and cultural beliefs, may partially explain why 

individuals in this stage of infection may not seek medical treatment.  Next, the infection 

may progress to large areas of indurated skin, called plaques, or sizeable areas of edema.  

If left untreated, these preulcerative lesions can develop into large, necrotic ulcers within 

weeks to months (Raghunathan, 2005). The exact incubation time for the disease is 

unclear due to the slow growth of the causative organism and the uncertainty of exactly 

how the disease is transmitted.  Figure 1 shows both the non-ulcerative and ulcerative 

stages of Buruli ulcer disease. 

Buruli ulcer disease can be clinically diagnosed by (1) culture of M. ulcerans from 

ulcerative lesions, (2) detection of acid fast bacilli (AFB) in lesions, (3) histopathological 

features, and/or (4) PCR detection of M. ulcerans DNA in patient sample (Guarner, 

2003).  Differential diagnoses that must be ruled out include squamous cell carcinoma, 

tropical phagedemic ulcer, actinomycosis, noma, leishmaniasis, yaws, and scrofuloderma 

(Guarner, 2003). 

Buruli ulcers can cover up to 15% of the skin surface (George, 1999) and will have 

undermined edges.  There is generally necrosis of the subcutaneous fat, which leads to 

subsequent sloughing of the overlying skin (Van der werf, 1999).  Another defining 

characteristic of Buruli ulcers is the relative lack of immune cells present at the site of 

infection and the absence of an inflammatory response.  Antibiotic therapy has shown 

little success in treatment of Buruli ulcer.  Surgical excision of diseased tissue, with 

margins extending into healthy tissue, followed by skin grafting is currently the best 

treatment available for patients. 
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Figure 1. The non-ulcerative and ulcerative stages of Buruli ulcer disease. 
Surgical excision and skin grafting are often the only treatment option for patients with 
the ulcerative stage disease.  This surgical treatment is usually curative, but often leaves 
patients with complications, such as joint contractures. (Photographs from the World 
Health Organization website, http://www.who.int/buruli/photos/en/index.html)  

 

http://www.who.int/buruli/photos/en/index.html
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Acid-fast bacilli can be readily detected in the sloughed skin (Van der werf, 1999) and 

extracellular M. ulcerans can be isolated from discrete infectious foci within the center of 

ulcerative regions.  However, tissue necrosis usually extends a great distance from the 

actual site of bacterial infection, which led researchers to hypothesize that M. ulcerans 

may produce a diffusible toxic substance (Connor, 1965). 

1.2  Mycolactone, a polyketide-derived macrolide toxin 

1.2.1   Background information and mycolactone discovery 

As clinicians continued to study the pathology of Buruli ulcer disease, it became clear 

that the tissue damage characteristic of Buruli ulcers often extends beyond the scope of 

discrete M. ulcerans infectious foci.  In 1965, Connor and Lunn hypothesized that a 

bacterial exotoxin may be responsible for the expansion of these necrotic ulcers (Connor, 

1965).  There were multiple attempts to isolate, identify and characterize the M. ulcerans 

toxin with preliminary reports describing it as a heat-stable substance present in sterile 

culture filtrate (Hockmeyer, 1978), (Krieg, 1974), (Olson, 1995).  In 1974, Krieg and 

colleagues postulated that the M. ulcerans toxin was a phospholipoprotein – 

polysaccharide complex.   

The toxin was known to be present in sterile filtrate (SF) and preliminary reports 

suggested that the toxin was proteinacious. George et al exposed SF from M. ulcerans 

broth cultures to protease enzymes with the intent to inactivate the toxin (George, 1998).  

However, protease – treated SF showed the same level of cytotoxic activity on L929 

fibroblast cell cultures as untreated SF.  Additionally, proteins are inactivated by 

excessive heat, as this type of treatment causes irreversible denaturing.  The cytotoxic 

activity in M. ulcerans sterile filtrate was not heat sensitive.  These two experiments, 

taken together, illustrated that the M. ulcerans toxin was not a protein (George, 1998). 

In the same study, log phase cultures of M. ulcerans were subjected to an extraction 

process, which utilized a 2:1 ratio of chloroform and methanol, in order to further purify 

the toxic substance from the SF.  Proteins, salts, and highly polar molecules separate into 

the aqueous phase, while the organic phase retains most of the cell-derived lipids 



 

 

6

(George, 1998).  The organic phase was dried down and acetone was added to precipitate 

the non-soluble phospholipids, leaving less polar lipid molecules in solution.  Thin layer 

chromatography (TLC) was used to further separate and purify the various lipid species 

present in the sample. Two separate lipid bands isolated from the TLC plates were 

cytotoxic to L929 murine fibroblasts in cell culture (George, 1998).  Early suspicions 

were confirmed; M. ulcerans does produce an exotoxin, which was ultimately 

characterized as a lipid (George, 1998).  In 1999, the M. ulcerans lipid toxin was further 

described as a lipid-like polyketide and given the name, “Mycolactone” (George, 1999). 

1.2.2   Biological activity of mycolactone 

Mycolactone is a polyketide – derived macrolide consisting of a 12 membered macrolide 

ring connected to a polyketide side chain (Stinear, 2004).  Macrolides are lipid like 

molecules that are smaller than proteins, but have extremely potent biological activities 

(George, 1999).  M. ulcerans belongs to the order Actinomycetales and members of this 

order are well known to produce macrolides as secondary metabolites, which, in turn, 

have diverse biological effects on eukaryotic cells.   Erythromycin (antibiotic), rapamycin 

(immunosuppressant), FK506 (immunosuppressant), amphotericin B (antifungal), and 

avermectin (antihelmetic) are all examples of well known macrolides (George, 1999).   

Buruli ulcers are characterized by extensive necrosis of the dermis and subcutaneous 

adipose tissue, with the edges of the ulcerative lesions undermined (Read, 1974).  There 

is a surprising lack of inflammatory response and ulcers are non-purulent and painless.  

The same observations can be made when M. ulcerans bacterial cells are injected into the 

dermis of guinea pigs (Read, 1974), (George, 1999).  More importantly, since the 

isolation and characterization of the mycolactone toxin, it has been shown that injection 

of the toxin alone is sufficient to produce the redness, edema, and painless ulceration 

characteristic of Buruli ulcer disease (M. ulcerans infection) (George, 1999).  Several 

studies, using both the guinea pig model of infection and cell culture, have investigated 

the biological effects of M. ulcerans, sterile culture filtrate, and purified mycolactone 

(Adusumilli, 2005), (Coutanceau, 2007), (Dobos, 2001), (En, 2008), (George, 1999), 
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(George, 2000), (Guarner, 2003), (Gooding, 2001), (Synder, 2002), (Torrado, 2007), 

(Read, 1974). 

In 1974, Read and colleagues first utilized cell cultures of L929 murine fibroblasts to 

more closely study the cytopathic effect (CPE) of M. ulcerans culture filtrate (CF).  The 

biological effects of mycolactone on L929 murine fibroblasts in cell culture are now well 

documented and this method of cytopathicity assay is commonly used to ascertain the 

CPE of M. ulcerans cells, CF, lipid extracts, and purified mycolactones.  After 24 hours 

of exposure to CF (which contains mycolactone as well as multiple bacterial-derived 

proteins) (Read, 1974) or pure mycolactone (George, 1999), L929 murine fibroblasts will 

round up and arrest in the G0/G1 stage of the cell cycle.  This is largely due to radical 

alterations in cytoskeletal rearrangement (Synder, 2002). Forty eight hours post-exposure, 

L929 cells (1) decrease in cell number and size, (2) have pyknotic nuclei that are 

displaced toward the cell wall, (3) display karyorrhexis (fragmentation of the nucleus), 

and (4) lift off the cell culture plates as they become necrotic and undergo apoptosis 

(Read, 1974), (George, 1999), (Synder, 2002).   

At high doses above 15 μg/ml, mycolactone will cause L929 cell necrosis, as detected by 

lactate dehydrogenase release, after 4 – 24 hours of exposure (Adusumilli, 2005).  

Exposure to much lower amounts of mycolactone (15 ng/ml to 150 ng/ml of 

mycolactone) causes L929 murine fibroblasts to undergo apoptosis (Adusumilli, 2005).  

Additionally, work with mycolactone negative mutants of M. ulcerans has shown that the 

pathology of M. ulcerans can be replicated by mycolactone alone (Adusumilli, 2005) 

Mycolactone, a small hydrophobic molecule, is thought to enter cells by passive diffusion 

since no evidence of receptor mediated active transport has been observed (Snynder, 

2002). Once inside the cells, mycolactone localizes to the cytoplasm.  A dose-dependent 

increase in intracellular calcium levels is observed, although this is most likely secondary 

to mycolactone-induced cytoskeletal remodeling and damage to calcium containing 

compartments within the cell (Synder, 2002).  
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Mycobacterial infections with M. marinum, M. tuberculosis, and M. bovis BCG, are 

typically intracellular and can be found residing within resident macrophages.  There has 

been one report suggesting an intra macrophage growth stage of M. ulcerans in the 

human host, but M. ulcerans cells remain mostly extracellular during the disease process.  

This may be partially due to the immunosuppressive properties of the mycolactone toxin, 

which has been shown to (1) decrease TNF-α production by monocytes, (2) inhibit 

dendritic cell migration to the site of infection, and (3) inhibit dendritic cell maturation, 

which in turn prevents T cell priming (Gooding, 2001), (Coutanceau, 2007). 

Mycolactone also has analgesic properties, but the exact mechanism has not been well 

studied.  The painlessness of Buruli ulcers may lead patients to underestimate the 

seriousness of M. ulcerans infection, which in turn may explain how ulcerative lesions 

are allowed to expand to over 15% of the skin surface (En, 2008).  Recently, researchers 

have used a murine model to investigate the analgesic properties of mycolactone.  

Intraneural hemorrhage, vascular changes, thinning of the myelin lining of neural cells, 

histological damage, and general hyposensitivity are observed when mycolactone is 

injected into the footpads of mice (En, 2008).  These observations indicate that the lack 

of pain present at the site of M. ulcerans infection is due, at least in part, to actual nerve 

damage caused by exposure to mycolactone (En, 2008). 

1.2.3   Differences and similarities between M. marinum and M. ulcerans 

Mycobacteria can be broadly classified into the fast – growers, including M. marinum 

(doubling time, 6 to 8 hours (Yao, 2006)) and the slow – growers like M. ulcerans 

(doubling time approximately 36 to 48 hours (Mve-Obiang, 2003)).  M. marinum is 

commonly found in pools, aquaria, and marine environments where it is a natural 

pathogen of fish.  M. marinum is zoonotic, as it can also cause limited, intracellular, 

granulomatous infections in humans as a result of handling infected fish or exposure to 

infected environments (Ferreira, 2006).  Mycobacteriosis due to M. marinum infection 

occurs after abraded skin is exposed to contaminated water, and is characterized by skin 

lesions which are usually limited to the extremities (Stinear, 2008).  Human cutaneous 

infections caused by M. marinum can be effectively treated with drugs such as rifampin, 
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ethambutol, quinolones, doxycycline, and/or clarithromycin (Stinear, 2008).  Untreated 

infections or infections in immunocompromised individuals may develop into more 

serious conditions including tenocynovitis, arthritis, bursitis, and osteomylitis, but these 

conditions are rare (Ferreira, 2006). 

M. marinum is classically photochromogenic, meaning that exposure to light induces the 

bacterium to produce pigments, such as carotenoids.  The production of these pigments is 

protective against exposure to ultra violet light through the reduction of singlet oxygen 

species (Stinear, 2008) and supports the bacterium’s widespread distribution in the 

environment.  M. marinum cannot grow at temperatures above 37°C, with optimal 

temperatures generally ranging between 30°C and 32°C (Ferreira, 2006).  Thus 

ectotherms, such as fish and frogs, are suitable hosts.  In frogs, M. marinum infection 

causes a chronic, granulomatous, non-lethal disease and as a result, it has been 

hypothesized that frogs may be the natural environmental host for M. marinum (Ferreira, 

2006). 

M. ulcerans, on the other hand, has strikingly different phenotypic and growth 

characteristics when compared to M. marinum.  M. ulcerans is extremely 

difficult to isolate and culture directly from the environment, but it is known to 

be widely distributed in aquatic environments around the world, with clusters 

of endemic foci (Stinear, 2000).  The scope of the environmental distribution of 

M. ulcerans has been ascertained from the collection and screening of a wide 

variety of environmental samples, including both flora and fauna, which have 

tested PCR positive for M. ulcerans DNA (Williamson, 2008). 

M. ulcerans is not photochromogenic, which can be explained by the interruption of the 

gene, crtI, involved in the production of light-inducible carotenoids (Stinear, 2007).  In 

contrast to other mycobacterial infections, such as mycobacteriosis caused by M. 

marinum where the bacterium is largely intracellular, M. ulcerans remains primarily 

extracellular throughout the course of Buruli ulcer disease.  M. ulcerans, like M. 

marinum, has optimal growth between 30°C and 32°C, which explains the cutaneous 

nature of M. ulcerans infections.  The extracellular location of M. ulcerans during human 
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infection may be due to the production of the mycolactone toxin, which is cytotoxic, has 

anti-phagocytic activity and has been shown to induce apoptosis of antigen presenting 

cells (Stinear, 2007).  Additionally, the intracellular mycobacteria, M. tuberculosis and M 

.marinum, possess an ESX-1 protein secretion system responsible for the export of 

proteins involved in the formation of granulomas (Stinear, 2007).  Inactivation of this 

protein secretion system in M. marinum and M. tuberculosis reduces phagocyte uptake 

and intracellular spread.  The natural loss of this system in M. ulcerans may contribute to 

its predominantly extracellular lifestyle in the human host (Stinear, 2007). 

Despite their phenotypic differences, the recent publication of the genome sequences of 

both M. ulcerans and M. marinum has shed light on the close genetic relationship 

between these two organisms.  The 16S rRNA gene from M. ulcerans is greater than 

99.8% identical to the same gene in M. marinum (George, 1999), suggesting that M. 

ulcerans is an ecotype of M. marinum (Jenkin, 2003).   This close genomic relationship 

has also been confirmed by multilocus sequence typing (MLST) (Stinear, 2000).   These 

two species are phenotypically very different and cause distinct disease etiologies, and 

this is, in part, due to the ability of M. ulcerans to produce the polyketide toxin, 

mycolactone.  Mycolactone is critical for the destructive and necrotic pathogenesis of M. 

ulcerans, whereas M. marinum does not produce mycolactone and does not produce such 

a devastating ulcerative disease.   

It was anticipated that M. ulcerans would possess a unique mycolactone biosynthetic 

gene cluster, which would be absent in M. marinum.  Suppressive subtractive 

hybridization (SSH) has been utilized previously to identify genomic differences between 

closely related mycobacteria including M. tuberculosis, M. bovis, and M. bovis BCG 

(Jenkin, 2003).  Jenkin and colleagues took advantage of the high degree of genomic 

similarity between M. ulcerans and M. marinum and used suppressive subtractive 

hybridization (SSH) in order to identify the mycolactone synthesis gene cluster in M. 

ulcerans.  A unique type I polyketide synthase locus was identified in M. ulcerans as the 

genetic basis for mycolactone production (Jenkin, 2003). 

 



 

 

11

 1.2.3.1   Polyketide synthase systems 

Polyketides are large, structurally diverse lipid-like compounds and are often made as 

secondary metabolites by bacteria in the order Actinomycetales (Smith, 2007), (George, 

1999).  Over 10,000 polyketides have been identified so far and are synthesized by 

assorted organisms, both prokaryotic and eukaryotic (Smith, 2007).  Polyketide synthase 

systems are common in mycobacteria, where they are often involved in the production of 

cell wall mycolates (Stinear, 2008).  Within the genome of M. marinum, there are 27 

coding sequences predicted to encode polyketide synthases (Stinear, 2008) and in the 

genome of M. ulcerans there are 12 predicted polyketide synthases (Stinear, 2007). The 

biosynthetic pathways and enzymes necessary for polyketide production can be broadly 

grouped into categories based on their architectural organization (Smith, 2007).  Type III 

polyketide synthases (PKS) are freestanding enzymes that act alone in a repetitive 

manner (Smith, 2007).  Type III PKS synthesize polyketide molecules through a series of 

multiple condensation reactions in which malonyl-CoA serves as the primary starting 

molecule and extender unit (Song, 2006).   

Type II PKS are freestanding, monofunctional enzymes that act in a repetitive manner to 

synthesize polyketides using malonyl-CoA as the main building block.  The main 

difference between type II PKS systems and type III PKS systems is that type II PKS 

systems utilize an acyl-carrier protein (ACP) domain.  The ACP is responsible for the 

translocation of the growing polyketide molecule from one free standing enzyme to the 

next for iterative condensation reactions (Smith, 2007). 

The system utilized by M. ulcerans to produce mycolactone is a type I PKS (Stinear, 

2003).  Unlike type II and type III PKS whose enzymes are freestanding, the enzymes of 

type I PKS are covalently linked into large, multi-functional megasynthases (Smith, 

2007).  The main polyketide enzymes necessary for mycolactone biosynthesis are mlsA1 

and mlsA2, responsible for production of the 12 membered toxin core, and mlsB, which 

is responsible for assembly of the side chain (Stinear, 2004). Each enzyme contains a 

specific number of discrete catalytic domains.  The catalytic domains are grouped 
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together to form an assembly line arrangement of modules, with each module containing 

its own unique set of catalytic domains.   

The arrangement and order of the catalytic domains within each module directly influences the 

structure, stereochemistry, and β carbon processing of the polyketide molecule (Bali, 2006).  

Each module has a core set of catalytic domains including: an acyl transferase (AT) domain 

that recruits chain extension units from malonyl or methyl-malonyl; a β-ketosynthase (KS) 

domain which catalyzes the elongation of the polyketide chain by forming carbon – carbon 

bonds; and an acyl carrier protein (ACP) domain that serves as an attachment site for the 

extender units as well as the growing polyketide chain (Bali, 2006).  Each module within the 

enzyme may also contain optional domains that mediate the various types of reduction of the 

growing polyketide, such as: a ketoreductase (KR) domain that adds hydrogen to –C=O groups 

to give  -C-OH; a dehydratase (DH) domain responsible for removing oxygen and hydrogen, as 

a water molecule, from the polyketide; and/or an enoyl reductase (ER) domain that reduces the 

C=C double bond to give CH2-CH2 (Bali, 2006).  Figure 2 shows the arrangement of the type I 

PKS utilized by M. ulcerans to produce the core of mycolactone. 

1.2.3.2   The mycolactone plasmid 

In 2004, Stinear and colleagues determined that the unique type I polyketide synthase locus, 

including all polyketide synthases and associated polyketide modifying enzymes responsible 

for the synthesis of mycolactone, are encoded on a large plasmid, pMUM001.  This plasmid 

was first discovered as a defined band of roughly 170 Kb that was observed during pulsed field 

gel electrophoresis analysis of undigested whole cell DNA from M. ulcerans Agy 99 (Stinear, 

2004).  Southern hybridization experiments showed that this DNA band hybridized to M. 

ulcerans – specific polyketide synthase probes (Stinear, 2004).  After BAC end sequencing, 

insert sizing and restriction fragment profiling, the polyketide synthase locus was confirmed to 

be located on a circular plasmid of 174,155 bp (Stinear, 2004).   
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Figure 2. Arrangement of the catalytic domains within mlsA1 and mlsA2, the genes 
responsible for synthesis of the mycolactone core.  
(Adapted from www.med.monash.edu.au/microbiology/research/stinear.html) 
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The M. ulcerans plasmid, pMUM001, is the first example of plasmid – mediated 

virulence in mycobacteria (Stinear, 2004), however, there is a precedent for plasmid 

borne genes involved in the biosynthesis of secondary metabolites (Stinear, 2005).  For 

example, Streptomyces rochei possesses a plasmid, pSLA2-1 that encodes both type I and 

type II polyketide synthase clusters (Stinear, 2005).  However, the M. ulcerans polyketide 

synthase genes are particularly interesting for several reasons.  These genes encode some 

of the largest proteins ever reported (Stinear, 2005). The mlsA1 PKS gene is 50,973 bp 

long and encodes a 1.8 mega Dalton (MDa) protein.  The mlsA2 PKS gene is 7,233 bp 

long and encodes a 0.26 MDa protein.  These two genes together are responsible for 

synthesis of the mycolactone core.  The mlsB gene is 42,393 bp long and encodes a 1.2 

MDa protein responsible for production of the mycolactone side chain (Stinear, 2005).   

Another striking feature of the M. ulcerans mycolactone polyketide synthase (PKS) locus 

is that these three polyketide synthase genes are highly repetitive, with large segments of 

nucleotides with 99.7% sequence identity.  Only 9.5 Kb out of the total 105 Kb of coding 

sequence dedicated to these three PKS genes consists of unique, non-repetitive DNA 

sequence (Stinear, 2004).  Additionally, there is also greater than 97% sequence identity 

among the functional domains of the 18 PKS modules of the mycolactone type I 

polyketide synthase system (Stinear, 2004). 

There are 81 predicted protein coding sequences located on pMUM001, with 

roughly 105,000 bp out of 175,155 bp dedicated to the main PKS genes 

(Stinear, 2005).  The plasmid also has multiple copies of IS2404 and IS2606, 

insertion sequence elements (IS) that are generally positioned on either side of 

the PKS genes (Stinear, 2004). Other accessory genes involved in mycolactone 

production are: mup053, which encodes a p450 monooxygenase thought to 

hydroxylate the twelfth carbon of the mycolactone side chain and the mup045 

gene that encodes a Fab-H like type III ketosynthase thought to catalyze the 

ester bond formation necessary to join the mycolactone core and side chain 

(Stinear, 2004).  Additionally, pMUM001 has genes that are crucial the 
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replication, repA, and partioning, parA, of the plasmid so it may be passed on 

to future daughter cells (Stinear, 2004).  Figure 3 illustrates a circular 

representation of pMUM001 as constructed by Stinear et al. 

Currently, scientists believe that M. ulcerans has evolved from a M. marinum 

progenitor and diverged into a separate clonal lineage through acquisition of 

foreign DNA, namely the mycolactone plasmid, pMUM001 (Stinear, 2005). 

There is a precedent for this type of evolutionary bottleneck, as it has been 

observed for M. leprae, Y. pestis, and B. pertussis, to name a few (Stinear, 

2007).  M. ulcerans has all the genomic characteristics of a bacterium that has 

experienced such an event, including: (1) the proliferation of insertion 

sequence elements (there are 209 partial or complete copies of IS2404 and 83 

copies of IS2606 in the M. ulcerans genome); (2) accumulation of pseudogenes 

(M. ulcerans has 743 predicted genomic pseudogenes); (3) chromosomal 

rearrangements; (4) genome downsizing (M. ulcerans genome is 5.6 Mb 

compared to the M. marinum genome of 6.6 Mb (Stinear, 2008); and (5) the 

acquisition of foreign genes, often via plasmids or bacteriophages (Stinear, 

2007).   

Although, the consensus is that M. ulcerans acquired the mycolactone plasmid through 

some type of horizontal gene transfer, the exact origin of the mycolactone plasmid has 

not been determined.  The repA gene of pMUM001 shares 68.3% amino acid identity 

with the repA of pJAZ38, a plasmid harbored by M. fortuitum (Stinear, 2004).  The 

polyketide synthase system possessed by M. ulcerans has strong homology to two 

different PKS systems within the genome of M. marinum, but seems to be more closely 

related to PKS systems harbored by Streptomycetes (Stinear, 2008).  It is possible that M. 

ulcerans acquired a core set of PKS genes from a bacterium in the Streptomycetes genra 

(Stinear, 2005) and that the mycolactone PKS system, as it exists today, has evolved as a 

result of multiple recombination and duplication events (Stinear, 2004).  Insertion 

sequence elements, like those found on the mycolactone plasmid, are known to mediate 

such duplications and rearrangements (Stinear, 2005).  
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Figure 3. Circular map of the mycolactone plasmid, pMUM001.  
Colors represent the functional classification of each gene (red, replication; light blue, 

regulation; light green, hypothetical protein; cyan, insertion sequence elements; yellow, 

intermediate metabolism; gray, lipid metabolism) (Stinear, 2004). 

 

Even though the exact manner of plasmid acquisition and evolution of the mycolactone gene 

cluster are not fully understood, it is clear that the ability of M. ulcerans to produce mycolactone 

has provided a survival advantage for the bacterium.  Mycolactone could play a role in the 

colonization and/or survival of M. ulcerans in an as-of-yet undiscovered environmental niche, as 

it is unlikely that mycolactone’s cytotoxicity to human cells is part of the bacterium’s primary 

survival strategy (Stinear, 2005).   

M. ulcerans isolates from diverse geographic locations around the world produce a 

heterogeneous mixture of mycolactone congeners that have been designated A through D (Mve-

Obiang, 2005).  The structure of the toxin core remains constant, but M. ulcerans strains have 

been shown to produce variations in the toxin’s side chain, which may be linked to the severity of 

disease process (Mve-Obiang, 2005).  Multiple different M. ulcerans isolates have been screened 

in order to characterize their mycolactone profiles.  Mycolactone A/B is produced as the major 

mycolactone species by isolates from Malaysia and Western Africa and as a minor toxin species 
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by M. ulcerans strains from Australia, Japan, and China.  Mycolactone A/B is not produced by 

strains from Mexico (Mve-Obiang, 2005).  M. ulcerans isolates from Australia produce mainly 

mycolactone C, while strains from Japan and China produce mainly mycolactone D (Mve-

Obiang, 2005).  Figure 4 shows the structure of some of the mycolactone congeners. 

1.2.4   Other mycolactone producing mycobacteria 

The pathology of Buruli ulcer disease is now better appreciated since the discovery that M. 

ulcerans produces a cytotoxic polyketide, mycolactone, which is responsible for a majority of the 

tissue damage characteristic of Buruli ulcers (George, 1999).  Additionally, it is exciting that the 

mycolactone PKS gene cluster has been discovered and that this locus is located on an 

independently replicating plasmid, which may have been acquired by M. ulcerans through 

horizontal gene transfer (Stinear, 2004).  Plasmids are generally considered to be movable genetic 

elements, but this particular plasmid was thought to be unique and limited to the ulcerans species 

of mycobacteria.  Additionally, horizontal transfer systems are not well documented in 

mycobacteria, with only a few examples of conjugation demonstrated in M. smegmatis (Parsons, 

1998), (Bhatt, 2002), (Bhatt, 2003), (Wang, 2003), (Coros, 2008).  

 

 

Figure 4. The structure of mycolactone. 
The structure of two mycolactone congeners produced by M. ulcerans isolates.  Notice 

that the structural differences are limited to the toxin’s fatty acid sidechain. 
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1.2.4.1   M. liflandii 

In 2001, an M. ulcerans-like infection spread through a colony of African Xenopus 

tropicalis and Xenopus laevis frogs at the University of California in Berkley (Trott, 

2004).  The disease presented as cutaneous ulcers, with some incidence of generalized 

edema.  Ziehl-Neelson staining and microbiological culture of bacteria collected from 

diseased frogs clearly indicated that the frogs were suffering from a mycobacteriosis 

(Trott, 2004).  Sequence analysis was performed on the following genes: hsp65 (heat 

shock protein), 16sA, 16sB, 16sC (highly conserved regions of the 16s rRNA gene), ITS 

(an internal spacer between the 16s and 23s rRNA), rpoB (RNA polymerase B subunit), 

IS2404, and IS2606.  Genetic examination of mycobacterial isolates did not provide a 

clear-cut identification of the etiological agent, with sequence homology to both M. 

ulcerans and M. marinum, two very closely related species (Trott, 2004).    

Mve-Obiang and colleagues further characterized this non-ulcerans, mycolactone 

producing mycobacterium (MPM) as a new species, M. liflandii (Mve-Obiang, 2005).  M. 

liflandii was PCR positive for five pMUM001-specific genes including, mlsA1, mlsB, 

mup045, mup037 (a type II thioesterase), and repA (Mve-Obiang, 2005).  These genes 

had 99% sequence identity to the same genes in M. ulcerans.  Additionally, pulsed field 

gel electrophoresis of M. liflandii DNA plugs showed a unique band of 180 Kb that 

hybridized to pMUM001-specific genes (Mve-Obiang, 2005).  Lipids were extracted and 

analyzed by mass spectrometry, which detected a molecule of m/z 737.7.  Further 

analysis by tandem MS-MS revealed the mycolactone core at m/z 429.5 and a peak 

representing the mycolactone side chain at m/z 331.4, 28 daltons less than the side chain 

of mycolactone A/B.  This new mycolactone molecule was designated mycolactone E 

(Mve-Obiang, 2005).  The mycolactone plasmid possessed by this newly discovered 

MPM is roughly 180 Kb, slightly larger than the M. ulcerans mycolactone plasmid (Yip, 

2007). 

1.2.4.2  M. marinum MPM species 

Mycobacteriosis in fish caused by infection with M. marinum has been well documented 

for decades, but in the early 1990s, M. marinum infections became especially problematic 
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in Israeli aquaculture systems (Ucko, 2002).  Mycobacteria have been isolated from fish 

in Israel and compared to M. marinum on the basis of 16s rRNA and hsp65 gene 

sequence alignments.  All Israeli fish isolates have been categorized as M. marinum, but 

were clearly divided into two strains; mycobacterial strains infecting marine fish and 

those strains infecting freshwater fish (Ucko, 2002).  Furthermore, mass spectrometry 

analysis of lipids extracted from the Israel fish isolates proved that these M. marinum 

strains were unique based on their ability to produce mycolactone F, m/z 723 (Ranger, 

2006).  MS/MS analysis of these lipids detected the mycolactone core m/z 429, the 

structure of which remains constant throughout all mycolactone congeners described to 

date (Ranger, 2006).   

These newly discovered MPM strains produce a novel mycolactone molecule that differs 

from other toxin species due to differences in the fatty acid sidechain.  Figure 5 shows 

the structure of mycolactone F compared to mycolactone A/B.  Like other mycolactone 

producing mycobacteria, these M. marinum Israeli fish isolates possess a form of the 

mycolactone plasmid that ranges in size from 180Kb to 200 Kb, slightly larger than the 

plasmid harbored by M. ulcerans strains (Yip, 2007).  

1.2.4.3   M. pseudoshottsii 

Since the discovery and characterization of M. liflandii, several MPMs have been 

discovered and characterized.  1997 saw the beginning of a mycobacteriosis outbreak of 

striped bass, Morone saxatilis, collected from the Chesapeake Bay and some of its 

tributaries.  Researchers were able to obtain multiple different mycobacterial isolates 

from diseased fish, as polyinfections within individual fish were observed in 25% of 

samples (Rhodes, 2004).  Approximately 12% of fish were infected with a previously 

uncharacterized mycobacterial species (Rhodes, 2005).   
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Figure 5. The structures of mycolactone A/B and mycolactone F. 
Comparison of the structure of (A) mycolactone A/B, produced by M. ulcerans strains, 

and (B) mycolactone F, produced by M. marinum strains isolated from Israeli fish.  

Notice that structural differences are limited to the fatty acid sidechain. (Ranger, 2006) 

  

After high performance liquid chromatography analysis of mycolic acid profiles, 

biochemical testing, and observation of growth characteristics, one new isolate seemed to 

most closely resemble M. shottsii, also a new species discovered during the outbreak in 

the Chesapeake Bay (Rhodes, 2003).  However, the new mycobacterial isolate was PCR 

positive for IS2404 and IS2606, a genotypic trait of M. ulcerans.  The new isolate was 

named M. pseudoshottsii to reflect its similarity to M. shottsii, but clearly designate it as a 

new species (Rhodes, 2005). 

The 16s rRNA sequence of M. pseudoshottsii showed that this isolate was closely related 

to M. ulcerans, M. marinum MPM strain DL240490 isolated from Israeli fish, and M. 

liflandii (Ranger, 2006).  M. pseudoshottsii was PCR positive for  several mycolactone 

associated genes including repA, mlsA, mlsB, mup045, and pMUM001 insertion sequence 

elements IS2404 and IS2606 (Ranger, 2006).  M. pseudoshottsii was differentiated from 

M. ulcerans due to the absence of an M. ulcerans-specific hypothetical membrane protein 

gene, uhp-mem (Ranger, 2006).  Mass spectrometry analysis of lipids extracted from M. 

pseudoshottsii isolate L15 detected mycolactone, m/z 723, and the mycolactone core, m/z 
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429, was detected by MS/MS (Ranger, 2006).  Further analysis of the 

mycolactone molecule produced by M. pseudoshottsii led to the discovery that 

this MPM was producing yet another congener of mycolactone, designated 

mycolactone F (Ranger, 2006).  The mycolactone plasmid harbored by M. 

pseudoshottsii was determined to be 200 Kb, larger than pMUM001 found in M. 

ulcerans strains (Yip, 2007). 

DNA-DNA hybridization (DDH) studies have been utilized to compare these 

newly discovered MPMs with M. ulcerans in the hopes of shedding some light on 

the evolutionary story of mycolactone production.  This method of genetic 

comparison has been used for over 30 years in bacterial taxonomy to determine 

the degree of relatedness between different species and/or strains (Yip, 2007).  

Based on this method of comparison, MPMs are very closely related to M. 

ulcerans (Yip, 2007).  Moreover, it is significant that MPMs are 99% identical to 

each other at the nucleotide level, as shown by multilocus sequence analysis 

(MLSA) and variable number tandem repeat loci (VNTR) (Yip, 2007).  MLSA 

has been used to compare and contrast the frequency of mutation found in 

chromosomal genes versus the frequency of mutation of genes found on the 

mycolactone plasmid.  

 In MPMs, the frequency of mutation of chromosomally encoded genes was 

synonymous with the mutation frequency of plasmid-borne genes, suggesting 

that the mycolactone plasmid co-evolved with all mycolactone producing 

mycobacteria (Yip, 2007).  These data imply that MPMs have evolved from a 

common progenitor after acquisition of the mycolactone virulence plasmid and 

not as a result of multiple exchanges of the plasmid (Yip, 2007).  Present day 

differences between M. ulcerans and other MPMs have evolved as these 

mycobacteria have evolved to occupy different ecological niches (Yip, 2007). 
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1.3   Plasmids in mycobacteria 

1.3.1   Plasmids in non-ulcerans mycobacterial species 

Plasmids have been described in multiple mycobacterial species isolated from both 

environmental and clinical settings.  M. avium is predominantly a pathogen of birds and 

is commonly found in the environment, but in recent years, this mycobacterium has been 

causing infections in immunocompromised patients (Beggs, 2005).  Crawford and 

colleagues were the first to identify plasmids in M. avium (Crawford, 1979) and five 

years later they characterized a 15.3 Kb plasmid, pLR7 (Beggs, 1995).  M. avium’s 

plasmid, pLR7, is very simple and is known to harbor genes encoding a Rep protein and a 

surface-associated protein (Beggs, 1995).  Although preliminary data suggests that M. 

avium strains that possess this plasmid may experience enhanced intracellular survival in 

the human host (Beggs, 1997), more research is needed to fully understand if pLR7 

enhances virulence. 

Plasmids have also been found in M. scrofulaceum, M. chelonae, and M. abscessus 

species and subspecies (Bachrach, 2000), (Gavigan, 1997), (Labidi, 1984), (Labidi, 

1992), (Meissner, 1984).  The plasmids range in size from 7 Kb up to 115 Kb and are 

typically found in low copy numbers within bacterial cells.  The 115 Kb plasmid, pVT1, 

harbored by M. scrofulaceum, is known to contain a gene encoding mercuric reductase, 

which presumptively enhances the bacterium’s survival in contaminated aquatic 

environments (Meissner, 1984).  M. scrofulaceum also has another plasmid, pMSC262 

(Bachrach, 2000).  These plasmids have not been fully annotated and the exact function 

of most of the genes remains largely unknown.   

M. fortuitum isolates may completely lack plasmids or can possess up to six or more 

individual plasmids ranging in size from 7 Kb to 112 Kb (Labidi, 1984).  Three M. 

fortuitum plasmids, pAL5000, pJAZ38, and pMF1, have been extensively studied for 

their potential utility as tools for mycobacterial genetics studies (Bachrach, 2000), 

(Gavigan, 1997), (Labidi, 1992).  Linear plasmids have been identified in other, lesser 

known mycobacterial species, including M. xenopi, M. celatum, and M. branderi,, but 
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there is no indication that these plasmids are essential to the metabolism of these bacteria 

(Picardeau, 1997). 

1.3.2   Plasmid biology and host range 

Mycobacteria, namely M. tuberculosis and M. leprae, were some of the first bacteria to 

be recognized as the causative agents of human disease, and yet knowledge of the 

molecular biology of mycobacteria continues to lag behind  that of most other groups of 

pathogenic bacteria (Bachrach, 2000).  Many of the genetic tools used in microbial 

genetics are ill suited for genetic manipulation of mycobacteria.  Mycobacteria have a 

thick, waxy, hydrophobic cell wall that makes traditional prokaryote cell lysis methods 

and genetic transformations extremely difficult.  Additionally, medically important 

pathogens, such as M. tuberculosis and M. leprae, grow extremely slow, making work 

with these microorganisms very time-consuming.   

The Rep regions of several of the plasmids identified in mycobacteria have been 

sequenced and show high degrees of sequence homology with each other (Gavigan, 

1997), (Bachrach, 2000).  Scientists are diligently investigating the host range of these 

plasmids to assess their potential use in mycobacterial transformations and heterologous 

expression of genes (Bachrach, 2000).  For example, the plasmid pCLP, harbored by M. 

celatum, cannot be replicated by M. smegmatis, but the plasmid pMF1 isolated from M. 

fortuitum, can be carried and replicated by both M. tuberculosis and M. smegmatis 

(Bachrach, 2000).  M. fortuitum’s plasmid, pJAZ38, has a rep region similar to pLR7 (M. 

avium) and pMSC262 (M. scrofulaceum) and can be successfully replicated by M. 

smegmatis (Gavigan, 1997).  M. fortuitum’s plasmid pAL5000 is one of the most well-

studied mycobacterial plasmids and has served as the basis for several mycobacterial 

vectors (Gavigan, 1997). 

Nucleotide sequencing has enabled a broader understanding of mycobacterial plasmids.  

The ability to compare the nucleotide similarity of the rep regions of various 

mycobacterial plasmids may provide useful insight into their host range.  For example, 

the repA gene from the M. ulcerans plasmid, pMUM001, shares greater than 68% amino 



 

 

24

acid identity with rep from the M. fortuitum plasmid pJAZ38 and 55.6% amino acid 

identity with the same rep gene in pVT2, a plasmid harbored by M. avium (Stinear, 

2005).  

Although plasmids are common in mycobacteria outside of the M. tuberculosis complex, 

none of these plasmids have ever been directly linked to virulence until the discovery of 

the M. ulcerans plasmid, pMUM001 (Stinear, 2005).  In fact, there are very few reports 

that have even assigned functions to the genes on these plasmids and consequently, it is 

thought that lateral gene transfer of plasmid DNA between mycobacteria is not essential 

to pathogenesis or virulence (Stinear, 2005).  pMUM001, first isolated from M. ulcerans, 

is the first example of a mycobacterial plasmid that confers the ability to produce a toxin 

that is responsible for pathogenesis of the mycobacterial disease, Buruli ulcer.  

Importantly, other mycobacterial species have been discovered that possess forms of this 

plasmid and that can also produce the virulence-enhancing toxin, mycolactone.   

1.3.3   pMYCO7017 contains the majority of the M. ulcerans plasmid 

Insight into the biology and host range of pMUM001 has been hindered by (1) the slow 

growth of the plasmid’s native host, M. ulcerans, (2) difficulty performing genetic 

manipulations with mycobacteria due to the high G + C nucleotide content, and (3) the 

extremely large size of the plasmid, 174 Kb.  Additionally, like other mycobacterial 

plasmids, pMUM001 is also present in very low copy numbers within mycobacterial 

cells.  For these reasons, very little work has been done to investigate the ability of other 

non-ulcerans mycobacterial species to replicate the mycolactone plasmid and 

heterologously produce mycolactone.   

However, Stinear et al have done some work to investigate the stability of the ori region 

of pMUM001 (Stinear, 2005).  A 6 Kb region of pMUM001, encompassing the putative 

parA, repA, and ori, was cloned into the vector pCDNA2.1 and the construct was marked 

with an apramycin gene.  Electroporation was used in an attempt to introduce this 

construct into M. marinum, M. smegmatis, and M. fortuitum; however, transformation 

was only successful with M. marinum.  The M. marinum transformants were cultured 
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with apramycin as selective pressure for the transformants to maintain the vector 

construct along with the pMUM001-derived DNA.  Late log phase cultures of M. 

marinum transformants were switched to antibiotic-free media for 12 days in order to test 

the stability of the pMUM001-derived genes, ori, repA, and parA in the absence of 

selective pressure.  In the absence of antibiotic selection, M. ulcerans’ ori, repA, and 

parA genes were not sufficient to maintain the construct in M. marinum.   

The aim of this current work was to further investigate the stability of M. ulcerans 

mycolactone genes in other, faster growing mycobacterial species.  In order to 

circumvent the difficulty of direct manipulation of pMUM001, a whole-genome M. 

ulcerans bacterial artificial chromosome (BAC) library was previously constructed at the 

Clemson University Genomics Institute (Tomkins, 2001).  The hope was to create a 

BAC, with a selectable marker and an E. coli origin of replication, as well as the 

mycolactone synthesis genes.  The BAC used for this study, pMYCO7017, contains a 

152 kb fragment of M. ulcerans plasmid DNA and includes the majority of the M. 

ulcerans virulence plasmid, pMUM001.  Figure 6 shows a linear representation of 

pMYCO7017 depicting the size and location of the genes necessary for mycolactone 

production.  Notice that the pMYCO7017 construct also contains the mycobacterial 

replication (rep) and partioning (par) genes.  The creation of this construct, 

pMYCO7017, has, for the first time, enabled investigation of the host range and stability 

of the M. ulcerans mycolactone plasmid in heterologous hosts. 

 

Figure 6. Linear arrangement of pMYCO7017, total length 152 Kb. 
*  mup027c,  similar to the  IS116 / IS110 / IS902 family of transposases  
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1.4  Conjugation 

DNA can be transferred between prokaryotic cells by transformation, transduction or 

conjugation.  During transformation, a bacterial cell may take up free DNA that is present 

in the environment.  Bacteriophages are responsible for transferring fragments of nucleic 

acid between bacteria through the process of transduction.  Conjugation, on the other 

hand, is the direct transfer of DNA from one cell to another.  Each of these processes 

have been vital to inter and intra-species spread of virulence determinants, such as 

antibiotic resistance, throughout microbial communities. 

A crucial step of successful conjugative DNA transfer is intimate cell surface contact 

between the donor and recipient cells (Grohmann, 2003).  In gram negative bacteria such 

as E. coli, this close cell-to-cell contact is often established with specialized conjugative 

structures called sex pili (Grohmann, 2003).  Sex pili are similar to the structures 

involved in the type IV secretion system (Grohmann, 2003).  The donor cell uses a sex 

pilus to penetrate the gram negative outer membrane, periplasm, and inner membrane.  

To date, no sex pili have been elucidated in mycobacteria, although mycobacteria may 

possess homologous structures capable of facilitating intimate cell contact that have yet 

to be characterized. 

Plasmid DNA is almost always the centerpiece of conjugative transfer; however, it 

cannot be transferred through the narrow sex pilus to the recipient cell in its circularized 

form.  Most detailed work on plasmid conjugation apparatus has been conducted with 

gram negative organisms such as E. coli. In gram negative bacteria, the plasmid DNA 

must be nicked and a single strand of DNA may be lead through the sex pilus to the 

recipient cell, where it is copied and re-circularized.  The genes necessary for conjugation 

are often cis-acting elements, encoded on the same DNA element involved in the transfer.  

There may also be trans-acting, chromosomally encoded elements necessary for 

conjugative plasmid DNA transfer.   
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Various gram negative conjugation systems have been described, but the IncP transfer 

system present on the broad host range plasmid, RP4, serves as an excellent example to 

help better understand this process.  Two protein complexes are essential for the 

conjugative transfer of RP4; the relaxosome and the mating-pair formation (mpf) 

complex (Grohmann, 2003).  The relaxosome is a “multiprotein-DNA complex” that 

localizes to the plasmid’s origin of transfer site, oriT (Grohmann, 2003).  The relaxosome 

cleaves a specific phosphodiester bond of the double stranded plasmid DNA at a unique 

nic site within the oriT (Grohmann, 2003).  The relaxosome remains covalently bound to 

a single strand of the plasmid DNA and is then linked to the mpf complex by a TraG 

coupling protein.  It is the mpf complex that is responsible for trafficking the relaxosome-

TraG-donor DNA complex from the donor, through the sex pilus, to the recipient cell. 

Enterococcus faecalis, a gram positive bacterium, possesses a pheromone-inducible 

conjugation system.  Horizontal transfer of the pCF10 plasmid involves chromosomally 

encoded pheromones which act on plasmid-encoded response machinery.  Horizontal 

transfer of the pCF10 plasmid occurs when donor cells encounter high concentrations of 

cCF10 pheromone produced by recipient Enterococcus cells.  Self-induction of 

conjugation by endogenous production of cCF10 pheromone by donor Enterococcus cells 

is reduced by the plasmid encoded membrane protein, PrgY. Additionally, donor cells 

also produce endogenous iCF10, an inhibitor peptide that neutralizes residual endogenous 

pheromone that escapes the control of PrgY (Kozlowicz, 2006).   

Both cCF10 (pheromone) and iCF10 (inhibitor) are taken into donor Enterococcus cells 

where they bind to PrgX.  PrgX represses initiation of transcription of the plasmid-

encoded conjugation operon under normal conditions when iCF10 concentrations are far 

greater than cCF10 pheromone concentrations.   However, when recipient cells are 

nearby, the concentration of cCF10 increases and overwhelmingly binds PrgX within the 

donor cells.  cCF10 prevents the repression activity of PrgX and leads to expression of 

the conjugation operon, followed by conjugative transfer of the pCF10 plasmid 

(Kozlowicz, 2006). 
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Although conjugation has been well-studied in gram negative bacteria, especially in E. 

coli conjugation between gram positive bacteria is rare and not well understood.  The 

thick cell wall of gram positive bacteria is one of the major hurdles limiting their 

conjugative capabilities.  The cell wall of acid fast mycobacteria is even more complex 

and extremely thick.  Mycobacteria possess an inner cell membrane, which is then 

covered by a thin layer of peptidoglycan. Next, there is a complex matrix of galactan, 

arabinan, mycolic acid, and other hydrophobic molecules (Brennan, 2007). Despite this 

formidable barrier to conjugation, relaxases have been described in some gram positive 

bacteria, such as the mobilization (Mob) protein family.  This type of relaxase has been 

described in Streptococcus, Bacillus, Clostridium, Staphylococcus, and proteobacteria 

(Grohmann, 2003).  Additionally, a putative conjugative relaxase has been discovered on 

the M. avium plasmid, pVT2 (Grohmann, 2003).  The presence of relaxase genes on 

plasmids harbored by these gram positive bacteria suggests that conjugative plasmid 

transfer may proceed in a manner similar to the IncP system (Grohmann, 2003). 

Conjugative transfer of plasmids is known to occur between bacteria of the Streptomyces 

genra and the Tra protein is essential to this process.  Streptomyces Tra proteins are 

similar to known septal DNA translocator proteins.  Plasmids harbored by Streptomyces 

do not typically encode any resistance traits or virulence determinants, but simply confer 

the ability to replicate and transfer the plasmid (Grohmann, 2003), although there are 

examples of large linear plasmids which encode antibiotic biosynthetic pathways.  

Movable plasmids are often small and exist in multiple copies within a cell.  

Interestingly, one large, low-copy number plasmid has been isolated from Streptomyces 

coelicolor.  SCP2 is 31,317 bp and is able to accept large fragments of DNA, such as 

entire antibiotic biosynthetic gene clusters (Grohmann, 2003).   

1.4.1   Mycobacterial Conjugation 

The evolutionary history of M. ulcerans, namely the origin and acquisition of the 

mycolactone plasmid, continues to be investigated.  Current research postulates that M. 

ulcerans evolved from a M. marinum progenitor through acquisition of the mycolactone 

plasmid, although the original source of this plasmid remains a mystery.  However, it has 
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been shown that the repA gene of pMUM001 shares 68.3% amino acid identity with the 

repA of pJAZ38, a plasmid harbored by M. fortuitum (Stinear, 2004).  The polyketide 

synthase system possessed by M. ulcerans has strong homology to two different PKS 

systems within the genome of M. marinum, but seems to be more closely related to PKS 

systems harbored by Streptomycetes (Stinear, 2008).  It is possible that M. ulcerans 

acquired a core set of PKS genes from a bacterium in the Streptomycetes genra (Stinear, 

2005) and that the mycolactone PKS system, as it exists today, has evolved as a result of 

multiple recombination and duplication events (Stinear, 2004).   

Conjugative systems in gram negative bacteria have been extensively studied and most 

often involve plasmid transfer from donor to recipient through a conjugative sex pilus.  

Double stranded plasmid DNA is nicked at a specific nic site within the oriT.  A relaxase 

binds to one strand of the nicked DNA and facilitates transfer of the single stranded DNA 

into the recipient cell.  Once in the recipient, re-circularization of the DNA is mediated 

by the same donor relaxase and does not require recipient cell recombination functions 

(Wang, 2003).    

An exception to this plasmid only rule has been discovered in Hfr (high frequency of 

recombination) strains of E. coli.  In Hfr E. coli strains, oriT (origin of transfer) sites have 

been introduced into the chromosome via integration of conjugative elements, and the 

oriT, in turn, allows E. coli to mobilize their chromosomes at a high frequency (Parsons, 

1998).  A similar phenomenon has been discovered in the fast-growing mycobacterium, 

M. smegmatis.  A DNA transfer system has been described in which multiple cis-acting 

sequences on the chromosome, designated bom (basis of mobility), mobilize sections of 

donor chromosomal DNA to recipients (Wang, 2003).   

Studies on the plasmid biology of mycobacteria and conjugation are in their infancy 

(Derbyshire).  However it is clear that the mechanism of DNA transfer in M. smegmatis 

is quite different from the classical plasmid conjugative transfer systems described in 

gram negative bacteria for two main reasons.  First of all, DNA transfer in M. smegmatis 

only occurs between distinct donor and recipient strains, as transfer of bom sequences 

from donor to recipient does not confer ability to become a donor.  This is different from 
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conjugative transfer in E. coli, where F+ donor strains transfer plasmid DNA to F- 

recipient strains.  When the F plasmid re-circularizes in the recipient strain, the oriT is 

restored, thus converting the F- recipient to an F+ donor.   

The second major difference in M. smegmatis DNA transfer is the requirement for 

recombination events in the recipient cells.  DNA transfer between M. smegmatis donor 

and recipient strains occurs as follows (1) multiple bom sequences in the donor 

chromosome mobilize segments of DNA in preparation for transfer to the recipient; (2) 

once donor chromosomal DNA is in the recipient, the recA protein facilitates a gap-repair 

like process of recombination with homologous regions of the recipient chromosome 

(Wang, 2003), (Bhatt, 2003).  This mechanism has been supported by experiments in 

which M. smegmatis bom sequences have been cloned into non-mobilizable plasmids and 

consequently these plasmids were mobilized to recipient strains (Bhatt, 2003).  Following 

the conjugal transfer of the bom-containing test plasmids into the recipient M. smegmatis 

strains, the plasmid is re-circularized not by relaxase-mediated ligation (as seen in gram 

negative conjugation systems), but rather by a mechanism similar to gap repair (Bhatt, 

2003).  The donor test plasmid is rescued by homologous recombination using the 

recipient’s chromosome as a template for gap repair of the double stranded DNA break 

(Bhatt, 2003), (Wang, 2004).  Chromosome mobilizing systems similar to the M. 

smegmatis bom system have also been observed in Streptomyces species (Parsons, 1998).  

This realization is extremely intriguing considering the fact that the M. ulcerans 

mycolactone polyketide synthase genes have homology to polyketide synthases located 

within the genome of Streptomyces.   

A recent publication reported the existence of a M. tuberculosis-specific insertion 

sequence, IS6110, in a recipient strain of M. smegmatis (Coros, 2008).  The IS6110-like 

insertion sequence has 67% amino acid identity to the native element found in M. 

tuberculosis (Coros, 2008).  The authors stipulate that the presence of this M. 

tuberculosis-specific IS element within the genome of a recipient strain of M. smegmatis 

suggests a horizontal DNA transfer event.  This is supported by the fact that many of the 

genes required for DNA transfer in M. smegmatis have been identified in M. tuberculosis 
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(Coros, 2008).  This discovery has exciting implications toward elucidating the existence 

of horizontal DNA transfer between mycobacterial species and the phenomenon will 

certainly be investigated further.  
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CHAPTER 2 : MATERIALS AND METHODS 

 

2.1   Bacterial strains and culture conditions 

The strains used in this study are listed in Table 1. Escherichia coli EC100 (Epicentre, 

Madison, Wisconsin) was cultured on Luria-Bertani (LB) with 1.5% agar (wt/vol). LB 

media was made using reagents obtained from Fisher Scientific (Fairlawn, New Jersey). 

Escherichia coli strains carrying pMYCO7017 were grown overnight at 37°C on LB agar 

or in broth containing 12.5 μg per ml Chloramphenicol (Sigma Chemical Company, St. 

Louis, Missouri). E. coli pMYCO7017::TnKm was cultured overnight at 37°C on LB 

agar or in broth containing 50 μg per ml Kanamycin (Sigma Chemical Company). 

Mycobacterial strains were cultured at 32°C in Middlebrook 7H9 broth medium (Difco 

Labs, Sparks, Maryland) or on solid media containing 1.5% wt/vol agar (Fisher 

Scientific). Middlebrook 7H9 media was always supplemented with 10% (vol/vol) oleic 

acid, albumin, dextrose supplement (OADC). Mycobacterial transformants carrying 

pMYCO7017::TnKm were grown in Middlebrook 7H9 broth medium or on agar (Difco) 

supplemented with OADC (10% vol/vol) and Kanamycin at a concentration of 50 μg per 

ml and were incubated at 32°C. 

2.2  BAC library construction and isolation of pMYCO7017 DNA 

A whole-genome M. ulcerans bacterial artificial chromosome (BAC) library was 

constructed at the Clemson University Genomics Institute as previously described 

(Tomkins, 2001). Briefly, DNA from M. ulcerans 1615 was prepared in agarose plugs, 

then partially digested with HindIII. DNA fragments were separated by PFGE, cloned 

into pBeloBAC11, and then transformed into E. coli DH10B by electroporation. The 

BAC used for this study, pMYCO7017, contains a 152 kb fragment of M. ulcerans 

plasmid DNA and includes the majority of the M. ulcerans virulence plasmid, 

pMUM001. 
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Table 1. Bacterial strain information. 

Species Strain Source a Reference 
E. coli  DH10B (pMYCO7017) CUGI This work 

 EC100 Epicentre Epicentre 
 EC100 (pMYCO7017::TnKm) UTK This work 

M. fortuitum 10394 UAM (Bachrach, 2000)  
 10394.1 (pMYCO7017::TnKm) UTK This work 
 10394.4 (pMYCO7017::TnKm) UTK This work 
 10394.6 (pMYCO7017::TnKm) UTK This work 
 10394.10 (pMYCO7017::TnKm) UTK This work 
M. marinum 1218 c ATCC 927 b (Collins, 1975) 
  1218 white mutant d UTK This work 
 DL240490 NCM (Ucko, 2005) 
 1218Y(pMYCO7017::TnKm) e UTK This work 

M. smegmatis mc2 155 AECM (Lee, 1991) 
M. ulcerans 1615 ATCC 35840 b (Pettit, 1966) 
 1615::Tn118 UTK (Stinear, 2004) 
a AECM, Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein 
College of Medicine, Bronx, NY; CUGI, Clemson University Genomics Institute, Clemson, SC, USA (Jeff 
Tomkins); NCM, Israel Oceanogrphic and Limnological Research, Ltd., National Center for Mariculture, Eilat, 
Israel; UTK, Department of Microbiology, University of Tennessee, Knoxville, TN; UAM, Universidad 
Autonoma de Madrid, Spain (M. J. Garcia); 
b ATCC, American Type Culture Collection 
c Light-inducible pigment production 
d No pigment production 
e Constitutive pigment production 
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  2.3   Pulsed field gel electrophoresis 

A freezer stock of E. coli DH10B(pMYCO7017) (Clemson University) was revived by 

thawing on ice for 10 minutes, then 100ul of cells were transferred onto LB agar 

containing Chloramphenicol at a concentration of 12.5 μg per ml.  The cultures were 

incubated overnight at 37°C. One colony was picked and inoculated into a 1 liter flask 

containing 500 ml LB broth and 12.5 μg per ml Chloramphenicol. Cultures were 

incubated at 37°C with shaking at 250 rpm for 10 hours. The QIAGEN Large Construct 

Kit was used to extract BAC DNA according to the manufacturer protocol in the 2002 

handbook (QIAGEN, Valencia, California) (Figure 7).  

The integrity and size of the DNA was verified by pulsed field gel electrophoresis 

(PFGE) using a CHEF-DR III system with a cooling module (BioRad, Hercules, 

California). An agarose gel was prepared using 1 gram of Sea Prep GTG Agarose (FMC 

BioProducts, Rockland, Maine) and 100 ml 0.5X TBE buffer (for one liter: 4.5 g tris 

base, 2.75 g boric acid, 2 ml 0.5M EDTA (pH 8.0)). 2.4 liters of 0.5X TBE buffer was 

added to the electrophoresis cell (BioRad). The buffer was pre-chilled in the chamber 

before the electrophoresis with a coolant pump, which was turned on and the temperature 

was set to 14°C. A 1 microliter slice (25 ng of DNA) of a 194 Kb low range PFG marker 

(New England BioLabs,Ipswich, Massechusetts) was loaded into the first well in the gel 

and the well was sealed with 1% agarose.  

The pMYCO7017 sample DNA was prepared as follows: 8 μl DNA, 1 μl loading dye, 1 

μl distilled, deionized water (ddH2O). Electrophoresis was run according to the following 

parameters: current 6 volts per cm, pulse angle 120°, and temperature 14°C. The ramp 

times were 3 seconds to 15.5 seconds for 12 hours followed by 15.5 seconds to 50 

seconds for 8 hours. The DNA was visualized by ethidium bromide staining and 

ultraviolet transillumination. A graph was made of the molecular weight of the band sizes 

of the 194 Kb low range PFG marker versus the distance they migrated in the gel. This 

graph was used to extrapolate the size of the pMYCO7017 DNA band, 152 Kb. 
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Figure 7. Qiagen Large Construct Protocol.  
The Large Construct Kit (QIAGEN) was used to isolate pMYCO7017 BAC DNA from 

E. coli DHB10(pMYCO7017). The protocol involves a modified alkaline lysis procedure 

followed by an ATP-dependent exonuclease digestion. DNA is bound to a resin column, 

washed, and eluted. The DNA is further concentrated by isopropanol precipitation, and 

then resuspended in an appropriate volume of TE buffer or water. (Adapted from 2002 

QIAGEN handbook.) 
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2.4   Creation of pMYCO7017::TnKm by transposon mutagenesis 

The EZ::TNTM <KAN-2> Insertion Kit (Epicentre, Madison, Wisconsin) was used to 

introduce a Kanamycin resistance transposon (Km) into pMYCO7017 by random 

mutagenesis according to the manufacturer protocol (Figure 8).  Briefly 77 ng BAC 

DNA, 1 μl 10X reaction buffer, 1 μl KAN-2 transposon, and 1 μl transposase enzyme 

were combined in a 0.2 ml tube (Eppendorf, Westbury, New York) and incubated at 37°C 

for 2 hours. The transposition reaction was stopped by adding 1 μl EZ-TN5 10X Stop 

Solution and heating at 70°C for 10 minutes. 

The new construct, pMYCO7017::TnKm, was transformed into E. coli ElectroMAX 

EC100 (Epicentre) by electroporation according to the manufacturer protocol. Briefly, 

1μl pMYCO7017::TnKm DNA and 50 μl bacterial cells were mixed and transferred to an 

electroporation cuvette. The cells were pulsed with 2.5 kV and 200 Ω resistance, then 

recovered in S.O.C. broth medium (Invitrogen) for 1 hour at 37°C with shaking at 150 

rpm. Electroporation was performed using a Gene Pulser II with pulse controller 

(BioRad) and 2mm electroporation cuvettes (Fisher Scientific, Fairlawn, New Jersey). 

The recovered bacterial cells were plated onto LB agar containing 50 μg per ml 

Kanamycin and incubated at 37°C overnight. 

 

 

 

Figure 8. Creation of pMYCO7017::TnKm. 
The EZ-Tn5 <KAN-2> transposon (Km) was randomly inserted into the DNA by 
incubating 77 ng pMYCO7017 DNA with 1 μl 10X reaction buffer, 1 μl KAN-2 
transposon, and 1 μl transposase enzyme. (Adapted from Epicentre catalogue number 
EZI982K.) 
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2.5   PCR screening of bacterial transformants 

PCR was used to select true E. coli EC100 (pMYCO7017::TnKm) transformants 

by probing for the enoyl reductase (ER) domain found within mlsA, a polyketide 

synthase gene found on pMYCO7017::TnKm. Additionally, PCR was used to find 

a clone containing a Km insertion outside the mycolactone gene cluster, 

specifically within the insertion sequence IS2606. For this particular screening, 

each clone subjected to two separate PCR reactions using primers in the following 

combinations; Kan-F with IS2606-R, and Kan-R with IS2606-F (Figure 9). Primer 

sequences are listed in Table 2.  

Reaction conditions for PCR amplification were as follows: each 50 μl reaction 

contained 1 μl each of forward and reverse primer (1.0 μM), 25 μl FailSafeTM PCR 

2X PreMix G buffer (Epicentre), 22.6 μl ddH2O, 1 unit of FailSafeTM PCR 

Enzyme Mix (Epicentre). A sterile toothpick was used to obtain bacterial cells 

which were directly added to each PCR reaction tube as a source of template 

DNA. Cycling conditions for ER were carried out as described previously 

(Williamson, 2008) in a Mastercycler (Eppendorf). Cycling conditions for both 

Kan-F/IS2606-R and Kan-R/IS2606-F reactions was as follows: initial 

denaturation at 98°C for 5 minutes, followed by 34 cycles of denaturation at 98°C 

for 1 minute, 55°C for 1 minute, 72°C for 1 minute and 30 seconds, and a final 

extension of 72°C for 10 minutes.  The 7 μl of each PCR reaction was combined 

with 1 μl 10X loading dye and samples were analyzed by electrophoresis (100 

volts for 60 minutes) using a 1% agarose (Invitrogen) and ethidium bromide. Band 

sizes were compared to a 1 kb DNA ladder (Invitrogen).  
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Figure 9. Nucleotide sequence for the <KAN-2> transposon and insertion sequence IS2606. 
The DNA sequence for the EZ-Tn5 <KAN-2> transposon was obtained from Epicentre (catalogue number EZ1982K). The boxes 

indicate the location of the Kan2-F and Kan2-R primers. The nucleotide sequence for IS2606 was obtained from the BuruList Web 

Server (http://genolist.pasteur.fr/BuruList). The highlighted areas indicate the location and sequence of the IS2606Long-F and 

IS2606Long-R primers.  

http://genolist.pasteur.fr/BuruList
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Table 2.  Oligonucleotides used in this study. 

 
Oligonucleotide Sequence (5′  3′) Description 
Kan2-F ACCTACAACAAAGCTCTCATCAACC Kanamycin transposon 
IS2606Long-R TAAGCGGCGTTTTCGGTTAG Insertion sequence 
   
IS2606Long-F CAAGACTGTCGTGGCTGTGC Insertion sequence 
Kan2-R GCAATGTAACATCAGAGATTTTGAG Kanamycin transposon 
   
parA-F CGTAGCCGTTTGGACGAC Plasmid partitioning 
parA-R GTCCTGGCGGATCTTTGAAC  
   
repA-F GCCTGGAACTCGACACCAAC Plasmid replication 
repA-R GCATCGACGCTCGCTACTTC  
   
ER-F GAGATCGGTCCCCGACGTCTAC pks enoyl reductase domain 
ER-R GGCTTGACTCATGTCACGTAAG  
   
mlsB-F CAGCCAACTGCGCTACTACA pks loading module 
mlsB-R AGGAGACACGGTTGGCTATG  
   
fabH-F GGAGATCGCCACCACCAGTGG Type III ketosynthase 
fabH-R GCACCACTTGCGCCGCATAGC  
   
mup027c-F AGCTGACCGAAGCCCTCTAC Plasmid  insertion sequence 
mup027c-R CAGTGCTCCTTGGAGGTAGG  
   

Kan118-F ACAGGATGAGGATCGTTTCG Mariner Kanamycin 
transposon  

Kan118-R CAATAGCAGCCAGTCCCTTC  
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2.6   Making bacterial cells electrocompetent 

Procedures were adapted from protocols described by Tanya Parish (Parish, 1998). E. 

coli EC100 (pMYCO7017::TnKm) cells were grown to mid log phase in 100 ml LB 

broth containing 50 μg per ml Kanamycin under the conditions described above. Cells 

were harvested by centrifugation in an MX-200 high speed microcentrifuge (TOMY, 

Tokyo, Japan) for 10 minutes at 3,000 x g, 4°C, washed once with a wash solution (10 

mM Tris-HCl (pH 7.5) plus 1 mM MgCl2). Washed cells were pelleted by centrifugation, 

then resuspended in 3 ml wash solution and chilled on ice for 10 minutes before use.  

Recipient mycobacteria were grown to mid log phase in 100 ml Middlebrook 7H9 broth 

under the conditions described above. Cells were harvested by centrifugation for 15 

minutes at 5,000 x g, 4°C. Cells were then made electrocompetent through a series of 

washes with ice-cold 10% sterile glycerol (ICSG) as follows; cell pellet was resuspended 

in 100 ml ICSG by vortexing, then collected by centrifugation for 15 minutes at 5,000 x 

g, 4°C. This procedure was repeated 3 times with decreasing volumes of ICSG; 50 ml, 25 

ml, and 10 ml, respectively. Mycobacterial cells were resuspended in a final volume of 3 

ml ICSG and chilled on ice for 10 minutes before use.  

2.7   Electroduction procedure 

Supplies for electroduction reactions were heat sterilized when possible and all external 

surfaces of supplies were decontaminated with 70% isopropanol. Electroduction reactions 

were performed inside a laminar flow biosafety cabinet. 350 μl of electrocompetent 

mycobacterial recipient cells (M. marinum 1218 or M. fortuitum 10394) and 50 μl 

electrocompetent E. coli EC100 (pMYCO7017::TnKm) donor cells were mixed in a 

sterile 2 ml Eppendorf tube, then transferred to an electroporation cuvette with a 0.2 mm 

gap (FisherBiotech). A Gene Pulser II (BioRad) was used to carry out the electroduction 

under the following conditions; 2.5 kV, 25 μF, and 1000 Ω pulse-controller resistance. 

For transfer of the pMYCO7017::TnKm construct from mycobacterial transformants 

back into electrocompetent E. coli, electroduction was carried out at 2.5kV, 45 μF, 

without a pulse controller. 
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 After the electric pulse, the cuvette was placed on ice for 10 minutes, then the 

electroduction suspension was transferred to a 50 ml Falcon tube (Becton Dickinson 

Labware, Franklin Lakes, New Jersey) containing 5 ml Middlebrook 7H9 broth 

supplemented with 10% OADC. Bacterial cells were allowed to recover for 2 hours at 

32°C.  Cells were then plated onto Middlebrook 7H9 agar with 10% OADC and 50 μg 

per ml Kanamycin and incubated at 32°C for 12 to 14 days. Potential transformant 

colonies were subcultured onto fresh selective media for further analysis. 

2.8   Conjugation procedure 

M. ulcerans 1615::Tn118 was used as the donor strain for the mycobacterial conjugation 

experiment.  It is a mycolactone negative mutant that was created by random mutagenesis 

using a mariner Kanamycin transposon.  M. ulcerans 1615::Tn118 and M. fortuitum 

10394 were grown to mid stationary phase in Middlebrook 7H9 broth supplemented with 

10% OADC under the appropriate conditions as described above. Filter mating between 

the donor and recipient strains was carried out as previously described (Lessard, 2004) 

with the following exceptions: media used was Middlebrook 7H9 broth or agar 

supplemented with 10% OADC; conjugation mixtures were incubated overnight at 32°C; 

following the final resuspension, 10 fold dilutions were made (10-1, 10-2, and 10-3) and 

100 μl of each dilution were plated onto selective media; plates were incubated at 37°C 

for 7-14 days or until potential transconjugant colonies appeared.  Plates were incubated 

at 37°C on selective media to kill the M. ulcerans 1615::Tn118 donor cells and encourage 

growth of and M. fortuitum 10394 transconjugants.  Each potential transconjugant colony 

was picked and vortexed in 1 ml of 0.01% SDS, then passed through a 25 gauge needle 

three times to break up large clumps of bacterial cells.  Next, ten-fold dilutions of each 

potential transconjugant suspension were made (10-1, 10-2, and 10-3) using M7H9 broth.  

Ten microliters of each 10-3 suspension was spread onto Kanamycin selective media and 

incubated at 37°C for 7 – 14 days. 

DNA was obtained from each potential transconjugant by the boil preparation method.  

One loopfull of each potential transconjugant was suspended in 400 microliters of sterile 

distilled, deionized water in a 2 ml free-standing, screw cap microtube (Denville 
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Scientfic, Inc., Metuchen, NJ).  The screw cap tubes were placed in a plastic floatation 

device and exposed to boiling water for 20 minutes.  The boil preparation tubes were 

removed from the boiling water and allowed to cool to room temperature, then 

centrifuged for 5 minutes at 4600 x g.  Three hundred microliters of supernatant was 

transferred to a new, sterile 0.2 ml Eppendorf tube and stored at 4.0°C until use.  The 

supernatant from each boil preparation contained whole cell DNA from each potential 

transconjugant. 

Whole cell DNA from each potential transconjugant colony was screen by PCR for both 

the ER domain of mycolactone gene cluster and the mariner Kanamycin transposon.  The 

oligonucleotide sequences for both ER and the mariner Kanamycin transposon can be 

found in Table 2.  Each PCR reaction was as follows: each 50 μl reaction contained 1μl 

each of forward and reverse primer (1.0 μM), 10 μl GoTaqTM 5X Green reaction buffer 

(Promega, Madison, Wisconsin), 17.6 μl ddH2O, 1 unit of GoTaqTM DNA Polymerase 

(Promega, Madison, Wisconsin), 1 μl dNTPs (Promega), and 5 μl DNA template. The 

thermocyling program used for the mariner Kanamycin transposon is as follows: initial 

denaturation at 94°C for 5 minutes, followed by 34 cycles of denaturation at 47°C for 1 

minute, 55°C for 45 seconds, 72°C for 30 seconds, and a final extension at 72°C for 10 

minutes.  The PCR amplicons were analyzed by 1% agarose gel electrophoresis with 

ethidium bromide staining and band sizes were compared to a 1 kb DNA ladder 

(Invitrogen).   

2.9   DNA extraction and PCR 

BAC DNA was extracted from mycobacterial cells by a protocol adapted from Lamour 

and Finley as described previously by Williamson et al (Williamson, 2008). Procedure 

was followed as described except that three loopfulls of each potential mycobacterial 

clone were vortexed in 400 μl lysis solution and one gram 1.0 mm glass beads (Sigma-

Aldrich).  PCR was used to probe for the following genes located on pMYCO7017; parA, 

repA, enoyl reductase domain (ER), mlsB, fabH, and mup027c. Primers used to screen 

transformants are listed in Table 2.  The thermocyling program used for mup027c is as 

follows: initial denaturation at 97°C for 3 minutes, followed by 35 cycles of denaturation 
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at 97°C for 1 minute, 59°C for 45 seconds, 72°C for 1 minute, and a final extension at 

72°C for 10 minutes. The thermocyling program used for ER was as followed described 

previously. All other thermocyling was as follows: initial denaturation at 98°C for 5 

minutes, followed by 32 cycles of denaturation at 98°C for 1 minute, 55°C for 1 minute, 

72°C for 1 minute and a final extension at 72°C for 10 minutes.  

Reaction conditions for PCR amplification were as follows: each 50 μl reaction contained 

1μl each of forward and reverse primer (1.0 μM), 25 μl FailSafeTM PCR 2X PreMix G 

buffer (Epicentre), 17.6 μl ddH2O, 1 unit of FailSafeTM PCR Enzyme Mix (Epicentre), 

and 5 μl DNA template. The PCR amplicons were analyzed by 1% agarose gel 

electrophoresis with ethidium bromide staining and band sizes were compared to a 1 kb 

DNA ladder (Invitrogen). 

2.10   Isolation and Analysis of lipids 

Lipid extraction from mycobacterial cells was performed as described previously (Mve-

Obiang, 2005). Mycobacterial cultures were grown to confluence on Middlebrook 7H9 

agar, with or without antibiotics, as described above. Lipids were extracted from 

mycobacterial pellets using chloroform : methanol (2:1) and the organic phase was dried 

down using nitrogen gas and a 50°C heat block. The lipid extract was solubilized in 

acetone (ASL) and ASLs were analyzed by thin layer chromatography as described 

previously using a solvent of chloroform : methanol : water (90:10:1) (Mve-Obiang, 

2005).   

Cell rounding and cell cycle arrest in the G0/G1 phase are typical affects observed when 

L929 murine fibroblasts are exposed to mycolactone in cell culture.  In order to ascertain 

the biological activity of the ASLs, and thus the presence or absence of mycolactone 

within the ASL extract from mycobacterial transformants, cypathicity assays were carried 

out as previously described (Snyder, 2003).  Briefly, murine L929 were grown overnight 

in Dulbecco Modified Eagle Medium (DMEM) supplemented with 5% heat-inactivated 

calf serum (Gibco BRL, Grand Island, New York) at 37°C with 5% carbon dioxide. 
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Serial 1:5 dilutions of ASLs, resuspended in ethanol, were added to L929 cultures, which 

were then observed by microscope for any cytopathic changes. 

2.11   Mass spectrometry of lipid extracts 

ASLs extracted from the different bacteria strains listed in Table 1 were analyzed using 

Shimadzu LC-20AD analytical HPLC system.  An autosampler was used to inject 50 μl 

into a reverse phase Phenomenex –luna 250X4.6 mm C18 column. Separation was 

obtained using acetonitrile /water mobile phase in a linear gradient of 55% -100% 

acetonitrile over 45 minutes at a flow rate of 2 ml per minutes.  Column elution was 

monitored using UV detection at both 254 and 360 nm. Data acquisition was controlled 

and analyzed using EZ-start 7.3 software.  
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CHAPTER 3 : RESULTS 

3.1   Analysis of pMYCO7017 

The M. ulcerans mycolactone plasmid has been difficult to study due to its low copy number and 

large size, which ranges from 155 Kb to 200 Kb across different mycolactone producing 

mycobacteria. To circumvent this difficulty, we constructed  a bacterial artificial chromosome 

(BAC) library using M. ulcerans whole-genome DNA in collaboration with the Jeff Tompkins and 

the genome center at Clemson University. During this process we were fortunate to clone nearly the 

entire mycolactone plasmid into the BAC vector as a single fragment. The resulting BAC, 

pMYCO7017, included the entire 110 kb mycolactone gene cluster.  

pMYCO7017 DNA was isolated from the E. coli transformant harboring it through the use of the 

Qiagen Large Construct kit.  The size and integrity of the DNA was checked by PFGE.  

pMYCO7017 was determined to be 152 Kb in size when compared to the 194 Kb low range PFG 

marker (Figure 10).  Additionally, the fragility of this large BAC construct is illustrated in Figure 

10 by the presence of the upper DNA band, which represents nicked and non-supercoiled DNA.   

3.2   Transposon mutagenesis of pMYCO7017 

The goal of this work was to introduce the M. ulcerans mycolactone gene cluster into a faster 

growing mycobacterial species as a first step towards achieving heterologous expression of the 

mycolactone gene cluster.  Construction of a strain with a mycolactone plasmid containing a 

selectable marker for use in mycobacteria was an essential first step for both studies on heterologous 

expression, and conjugation.  In addition, it was important that introduction of a selectable marker 

did not interrupt the genes for mycolactone biosynthesis.  The first problem encountered was that 

the BAC pMYCO7017 did not contain a good selectable marker for use in mycobacterial species.  

The BAC, pMYCO7017, contained a selectable marker chloramphenicol, but this is only useful in 

enteric bacteria and can not be used as a selectable marker in Mycobacteria species.  However,  

kanamycin provides strong selection in most species of mycobacteria.  In order to provide selection 

for pMYCO7017 in mycobacterial species, the EZ::TNTM <KAN-2> insertion kit from Epicentre 

was used to introduce a Kanamycin transposon into pMYCO7017 by random mutagenesis as 

described in the materials and  
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Figure 10. The size and integrity of pMYCO7017 was verified by pulsed field gel 
electrophoresis.  
Pulsed field gel electrophoresis of pMYCO7017.  BAC DNA was isolated from E. coli 

using the Qiagen Large Construct Kit and analyzed by PFGE under the conditions 

described.  Lane 1: 194 Kb Low range PFG Marker.  Lane 2: pMYCO7017 DNA, upper 

band contains nicked and non-supercoiled DNA; lower band contains intact, supercoiled 

pMYCO7017 DNA. 
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methods section. Two separate mutagenesis reactions were carried out. After each 

mutagenesis reaction, the resulting pMYCO7017::TnKm constructs were transformed 

into electrocompetent E. coli EC100 by electroporation.  Each set of E. coli EC100 

(pMYCO7017::TnKm) transformants was cultured on LB agar plates containing 50 μg 

per ml of Kanamycin.   

3.3   PCR screening of  E. coli transformants carrying pMYCO7017::TnKm 

3.3.1   E. coli EC100 (pMYCO7017::TnKm) transformants from first reaction 

The first Kanamycin transposon mutagenesis reaction and electroporation into E. coli 

resulted in fourteen potential E. coli EC100 (pMYCO7017::TnKm) transformants. The 

first step in analyzing the E. coli EC100 (pMYCO7017::TnKm) transformants was to 

probe them for the presence of ER, the enoyl reductase domain of the polyketide synthase 

genes mlsA1 and mlsA2.  ER can be found on pMYCO7017::TnKm and would therefore 

only be present in E. coli after a successful transformation reaction.  Through colony 

PCR, it was determined that thirteen out of the fourteen colonies from the first 

mutagenesis and electroduction reaction were positive for ER (Figure 11).  These 

thirteen colonies were subcultured onto fresh LB + Kanamycin plates for further analysis. 

 

DNA was isolated from E. coli EC100 (pMYCO7017::TnKm) transformant number 2 

and quantified by spectrophotometry to be 85 ng/μl.  The nucleotides were sequenced 

outwards from the Kanamycin transposon located on pMYCO7017::TnKm using the 

Kan2-F primer.  NCBI BLAST was used to determine that the closest match to the 

resulting DNA sequence was module 9 within a polyketide synthase gene of 

pMYCO7017::TnKm. Transformant number 2 contained a pMYCO7017::TnKm 

construct in which the Kanamycin transposon was interrupting a gene necessary for the 

production of the mycolactone toxin, and thus was not of interest for this study. 
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Figure 11. ER PCR results for potential E. coli EC100 (pMYCO7017::TnKm) 
transformants from the first mutagenesis reaction. 
Lanes 1 – 14 represent individual E. coli EC100 colonies that grew on LB + Kanamycin 

plates after the first electroporation reaction with pMYCO7017::TnKm. 

 

 

3.3.2 E. coli EC100 (pMYCO7017::TnKm) transformants from second reaction 

A second reaction, completed exactly as described previously, was carried out 

in order to introduce a Kanamycin transposon into pMYCO7017 by random 

mutagenesis. The resulting construct, pMYCO7017::TnKm, was transformed 

into E. coli EC100 by electroporation. Thirty eight potential transformant 

colonies grew on LB + Kanamycin and were subcultured onto fresh selective 

media for analysis.  

A different strategy was used for screening the second round of E. coli EC100 

pMYCO7017::TnKm) transformants than was used previously.  Colonies were 

specifically screened for the presence of the Kanamycin transposon (TnKm) 

within the insertion sequence IS2606.  This was accomplished by carrying out 

two colony PCR reactions for each transformant.  Reaction one involved the 

use of a forward primer located within IS2606 and a reverse primer located 

near the 5’ end of TnKm.  Reaction two utilized a forward primer located near 
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the 3’ end of TnKm and a reverse primer located within IS2606.  If present, the 

molecular weight of the PCR amplicon from each reaction was calculated by 

gel electrophoresis when compared to a 1 Kb molecular weight standard.  

Additionally, if a PCR product was obtained from both reactions, this indicated 

that TnKm was located completely within the boundaries of the IS2606 

element. 

A total of 38 E. coli EC100 pMYCO7017::TnKm) transformants were screened 

in this manner.  Two transformants were PCR positive for both Kan/IS2606 

reactions (Figure 12).  By adding together the combined total size of both 

amplicons, it was determined that the entire Kanamycin transposon was 

contained within an IS2606 element in the pMYCO7017::TnKm constructs 

harbored by transformants 2 and 10 (Figure 13).   

 

PCR products from transformant number 10 for both reactions (IS2606Long-

F/Kan2-R and Kan2-F/IS2606Long-R) were purified using the QIAQuick PCR 

Purification Kit (QIAGEN) and sequenced using primers specific for the 

Kanamycin transposon.  The resulting nucleotide sequence was compared to 

sequences in the database of NCBI BLAST, resulting in a match to 

Mycobacterium ulcerans insertion sequence IS2606.  Thus, the 

pMYCO7017::TnKm construct carried by E. coli transformant number 10, 

contained a selectable Kanamycin marker in an IS2606 element and not 

interrupting the mycolactone gene cluster.  This pMYCO7017::TnKm construct 

was utilized for all subsequent electroductions, with the goal of introducing the 

mycolactone gene cluster, with a selectable marker, into faster growing 

mycobacterial species. 
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Figure 12. Results of PCR screening of E. coli EC100 (pMYCO7017::TnKm) 
transformants from the second Kanamycin transposon mutagenesis reaction. 
PCR screening of E. coli EC100 (pMYCO7017::TnKm) transformants 1 through 10.  

Each lane represents the colony PCR results of an individual colony.  (A) Results of 

reaction one, using primers IS2606Long-F and Kan2-R. Colony 2 amplicon 1 size:  1200 

bp.  Colony 10 amplicon 1 size: 350 bp.  (B) Results of reaction two, using primers 

Kan2-F and IS2606Long-R.  Colony 2 amplicon 2 size: 600 bp.  Colony 10 amplicon 2 

size: 1450 bp. 
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Figure 13. Schematic representation of the location of the Kanamycin transposon 
within IS2606. 
These pMYCO7017::TnKm constructs were harbored by two different E. coli 

transformants.  Blue bars represent IS2606 DNA, aqua bars represent the Kanamycin 

transposon. (A) Transformant 2: Schematic map of TnKm location in 

pMYCO7017::TnKm harbored by E. coli transformants 2, as determined from PCR 

amplicon sizing.  (B) Transformant 10: Schematic map of TnKm location in 

pMYCO7017::TnKm harbored by E. coli transformant 10, as determined from PCR 

amplicon sizing.   
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3.4 Transfer of pMYCO7017::TnKm into mycobacteria by electroduction 

Following construction of pMYCO7017::TnKm, which contains the M. ulcerans 

polyketide synthases and polyketide-modifiying enzymes necessary for mycolactone 

production, in addition to a Kanamycin resistance gene, the next step was to try to 

introduce pMYCO7017::TnKm  into a faster growing species of mycobacteria.  The most 

common way to introduce naked DNA into bacterial cells is transformation.  The first 

step of transformation is to make the bacterial cell competent to take up foreign DNA by 

chemically weakening the cell wall, usually with calcium chloride or rubidium chloride.  

Competent cells are then mixed with the DNA of interest and transformed, either by heat 

or electrical shock.  In this study, the DNA of interest was pMYCO7017::TnKm, an 

extremely large, low copy number plasmid harbored by E. coli.  Obtaining the microgram 

amounts of intact pMYCO7017::TnKm plasmid DNA needed to carry out a successful 

transformation reaction was exceptionally difficult.  Additionally, the thick, waxy cell 

wall of mycobacteria makes transformation difficult and consequently, mycobacterial 

transformation frequency is often very low.   

In order to circumvent these difficulties, DNA can be introduced into mycobacteria by a 

process called electroduction.  “Electroduction is the direct transfer of plasmid DNA 

from one organism to another by electroporation” (Parish, 1998).  Electroduction was 

used to introduce pMYCO7017::TnKm plasmid DNA into mycobacteria.  The cell walls 

of the donor cells, E. coli EC100 (pMYCO7017::TnKm), and the recipient cells, either 

M. marinum 1218 or M. fortuitum 10394, were weakened through a series of washings, 

then they were mixed together and exposed to an electrical shock.  Table 3 contains 

results from  the multiple electroduction attempts to introduce pMYCO7017::TnKm into 

M. marinum, M. fortuitum, M. smegmatis, and M. ulcerans.  Out of 39 separate 

electroduction reactions, a total of 114 potential electroductants  grew on selective media 

and were screened for the presence of pMYCO7017::TnKm.  Eleven out of the 114 

potential electroductants were PCR-confirmed to be true, having acquired 

pMYCO7017::TnKm by electroduction.  There was 1 M. marinum electroductant and 10 

M. fortuitum electroductants. (Table 4). A more detailed description of the analysis of 

these electroductants is detailed in the next sections. 
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Table 3. Electroduction of pMYCO7017::TnKm into Mycobacterial species. 

Recipient strain Electroduction reactions 
Genotype 

ERa 

M. marinum 1218 16 1/1 
M. marinum DL240490 8 0/0 
M. smegmatis mc2155 7 0/0 
M. fortuitum 10394 6 10/113 
M. ulcerans 1615A 2 0/0 
a ER, enoyl reductase domain of the polyketide synthase gene, mlsA 

 

 

 

3.5 Analysis of M. marinum electroductant 

After sixteen separate electroduction reactions involving billions and billions 

of M. marinum cells, there was one successful electroductant, which was named 

M. marinum 1218 (pMYCO::TnKm).  The genotype of M. marinum 1218 

(pMYCO::TnKm) was confirmed by PCR, specifically probing for 6 

pMYCO7017::TnKm genes (Figure 14).  The electroductant remained PCR 

positive for the pMYCO7017::TnKm genes after multiple subcultures, proving 

that the construct could be replicated in M. marinum 1218 and effectively 

passed to successive generations (Figure 14).  This suggests that 

pMYCO::TnKm is stably maintained in M. marinum. 

Wild type M. marinum 1218 is characterized by light-inducible carotenoid 

production whereas M. ulcerans has a mutation in a key gene required for 

carotenoid biosynthesis.   However, the successful transductant was unique due 

to its constitutive carotenoid production, even in the absence of light.  The 

severity of electrical shock used during the electroduction procedure may result 

in cellular damage or mutations of this sort (personal communication).  

Additionally, most slow-growing mycobacteria have only one copy of the 

rDNA operon (Parish, 1998).  A direct mutation to this operon can often lead to 
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spontaneous resistance to chemotherapeutic agents, such as Kanamycin (Parish, 

1998). 

The ability of M. marinum 1218 (pMYCO7017::TnKm) to heterologously 

produce the mycolactone toxin was investigated in several ways.  Lipids were 

extracted from M. marinum 1218 (pMYCO7017::TnKm) cells using 

chloroform:methanol (2:1).  The acetone soluble lipids (ASLs) were analyzed 

by thin layer chromatography, cytotoxocity assay, and mass spectrometry and 

compared with ASLs from M. ulcerans 1615 or pure mycolactone.  Figure 15 

shows that mycolactone was not detected by TLC in ASLs from M. marinum 

1218 (pMYCO7017::TnKm). 

 

 

 

 

 

 

Figure 14. Gel electrophoresis results of PCR screening of the M. marinum 
transformants. 
PCR amplicons were run on a 1.5% agarose gel at 100 volts for 45 minutes.  (1) 

Kanamycin transposon, (2) parA, (3) repA, (4) mlsB, (5) ER, (6) fabH, (7) p450. 



 

 

55

Table 4. Mycobacterial transformants positive for pMYCO7017::TnKm genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 PCR target 
 

kan parA repA ER mlsB fabH mup027c a 

M. fortuitum 10394.1 (pMYCO7017::TnKm) - + + + - + - 

M. fortuitum 10394.4 (pMYCO7017::TnKm) - + + + - + - 

M. fortuitum 10394.6 (pMYCO7017::TnKm) + + + + + + + 

M. fortuitum 10394.10 (pMYCO7017::TnKm) + + + + + + + 

M. marinum 1218 (pMYCO7017::TnKm) + + + + + + NDb 

a putative transposase with homology transposases in the IS116/IS110/IS902 family identified in other 
Actinomycetales 
b ND, not done 
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Figure 15. Thin layer chromatography analysis of acetone soluble lipids from M. 
marinum 1218 (pMYCO7017::TnKm). 
Mycolactone was not present in the lipid extract from the M. marinum electroductant.     

(1) ASLs from M. marinum 1218 (pMYCO7017::TnKm), (2) ASLs from M. marinum 

1218, and (3) ASLs from M. ulcerans 1615. 

 

Next, L929 murine fibroblasts were exposed to 1:5 serial dilutions of ethanol soluble 

lipids from M. marinum 1218 (pMYCO7017::TnKm).  L929 cells were observed for any 

cytopathic phenotypes and compared to cells exposed to pure mycolactone.  Figure 16 

shows the results of the cytopathicity assay after 15 hours.  Cells exposed to pure 

mycolactone rounded up and contained intra-cellular “blebs.”  L929 cells exposed to 

ASLs from the M. marinum electroductant are obviously unhealthy or even dead, but did 

not show the distinct effects seen after mycolactone exposure.  Mycobacterial ASL 

extracts are a complex mixture of lipids, and even L929 cells exposed to ASLs from wild 

type M. marinum 1218 were adversely affected.  In summary, ASLs from M. marinum 

1218 (pMYCO7017::TnKm) are damaging to L929 cells, but the affects are different 

from those seen as a result of exposure to mycolactone. 
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Finally, lipids from M. marinum 1218 (pMYCO7017::TnKm) were sent to Richard Lee 

and Engy Mahrous at the University of Tennessee Health Science Center in Memphis, 

TN for mass spectrometry analysis.  Depending on the conditions of the mass 

spectrometrometry analysis, mycolactone may be detected as an intact molecule with a 

mass of 765 (M+ + Na), 742.5, or 725 (M+ -OH) (George, 1999) (Figure 17). MS-MS 

produces fragments characteristic of the core lactone with an m/z peak at 423.3, 424, 

429.5 or 447 (M+ + Na) and the side chain may be detected in small amounts as an m/z 

peak of 359.4.  No mycolactone derived molecules were detected when the mass 

spectrum for ASLs from M. marinum 1218 (pMYCO7017::TnKm) was compared to that 

of M. ulcerans 1615 and M. marinum 1218 (Figure 18).   

Taken together, all data collected through analysis of M. marinum 1218 

(pMYCO7017::TnKm) confirms the following: (1) the M. marinum 1218 electroductant 

possesses the mycolactone gene cluster contained on pMYCO7017::TnKm; (2) M. 

marinum 1218 (pMYCO7017::TnKm) is able to replicate M. ulcerans mycolactone genes 

and pass them on to future generations; and (3) M. marinum 1218 (pMYCO7017::TnKm) 

does not produce mycolactone. 

 

 

 

 

Figure 16. Cytotoxicity assay of lipids extracted from M. marinum 1218 
(pMYCO7017::TnKm). 
L929 murine fibroblast cells after 15 hours of exposure to pure mycolactone, ASLs from 
M. marinum 1218 (pMYCO7017::TnKm), or ASLs from M. marinum 1218.   
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Figure 17. Possible fragmentation pattern of mycolactone. 
During mass spectrometry analysis, mycolactone may be detected as an intact molecule 

or it can break up to give two fragments.  (Adapted from Engy Mahrous, University of 

Tennessee, Memphis, TN) 
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Figure 18. Mass spectra of lipids extracted from M. marinum 1218 

(pMYCO7017::TnKm) vs. wild type M. marinum 1218. 

 
(A) wild type M. marinum 1218, (B) M. marinum 1218 (pMYCO7017::TnKm), and (C) 

M. ulcerans 1615. 
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3.6 Transfer of pMYCO7017::TnKm from mycobacteria back into E. coli 

In order to test the stability of the pMYCO7017::TnKm construct and to provide 

definitive proof of successful transduction, electroduction was used to transfer this BAC 

DNA from the electroductant M. marinum 1218 (pMYCO7017::TnKm) back into 

electrocompetent E. coli. THIS IS OUT OF SEQUENCE.  IT NEEDS TO GO WITH 

THE MARINUM EXPERIMENT., Two electroduction reactions were carried out and 

100 μl aliquots of the reaction mixtures were spread onto 18 separate LB + Kanamycin 

agar plates and incubated at 37°C overnight.  After incubation, all plates had colonies that 

were too numerous to count.  Seventeen were screened by colony PCR and found to be 

positive for TnKm, parA, repA, ER, and mlsB.  This experiment exemplifies the stability 

of pMYCO7017::TnKm, in that it was successfully transferred from E. coli to 

mycobacteria and back again. 

3.7 Spontaneous Kanamycin resistance 

Ideally, the outcome of attempts to transfer pMYCO7017::TnKm into M. fortuitum should have 

been easily evaluated by the ability of the organism to grow in the presence of the selectable 

marker, Kanamycin.  However, this work elucidated the fact that 80% of M. fortuitum colonies 

growing on solid media with 50 μg/ml of Kanamycin were spontaneously resistant to Kanamycin 

and did not possess the Kanamycin resistance gene or pMYCO7017::TnKm.  This background 

level of spontaneous Kanamycin resistance was observed in M. fortuitum colonies after both the 

electroduction experiments and conjugation experiments.  Spontaneous kanamycin resistance is 

commonly found in M. tuberculosis but is rare in M. ulcerans. 

 

3.8 Analysis of M. fortuitum electroductants 

Wild type M. fortuitum is known to possess multiple plasmids (Labidi, 1984), which may 

be problematic when attempting to introduce yet another, non-native plasmid into this 

species.  To avoid any potential molecular competition, a plasmid minus strain, M. 

fortuitum 10394 (Table 1) was utilized in electroduction experiments. Six separate 

electroduction reactions were carried out between E. coli EC100 (pMYCO7017::TnKm) 
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and M. fortuitum 10394, resulting in hundreds of potential electroductants that grew in 

the presence of Kanamycin, the selectable marker for pMYCO7017::TnKm.  One 

hundred and thirteen colonies were screened by PCR for the presence of ER, the enoyl 

reductase domain of the polyketide synthase genes.  Out of all colonies screened, 10 M. 

fortuitum 10394 colonies were PCR positive for ER, as illustrated in Table 4. 

Two electroductants, M. fortuitum 10394.1 (pMYCO7017::TnKm) and M. fortuitum 

10394.4 (pMYCO7017::TnKm), were PCR positive for 4 out of the 6 

pMYCO7017::TnKm-specific genes, including parA, repA, ER, and fabH (Table 4).  

Two additional electroductants, M. fortuitum 10394.6 (pMYCO7017::TnKm) and M. 

fortuitum 10394.10 (pMYCO7017::TnKm), were PCR positive for all 6 

pMYCO7017::TnKm-specific genes (Table 4).  The electroductants remained PCR 

positive for the pMYCO7017::TnKm genes after multiple subcultures, proving that the 

construct could be replicated in M. fortuitum 10394 and effectively passed to successive 

generations. 

The ability of the M. fortuitum 10394 (pMYCO7017::TnKm) electroductants to 

heterologously produce the mycolactone toxin was investigated in the same manner as 

described for the M. marinum electroductants.  Lipids were extracted from the M. 

fortuitum cells using chloroform:methanol (2:1).  The acetone soluble lipids (ASLs) were 

analyzed by thin layer chromatography, cytotoxocity assay, and mass spectrometry and 

compared with ASLs from M. ulcerans 1615 or pure mycolactone.  Figure 19 shows that 

mycolactone was not detected by TLC in ASLs from M. fortuitum 10394.1 

(pMYCO7017::TnKm) or M. fortuitum 10394.4 (pMYCO7017::TnKm).  A faint band of 

significance may be visible in ASLs from M. fortuitum 10394.6 (pMYCO7017::TnKm), 

but this is speculative.  Figure 20 shows the TLC results of ASLs obtained from M. 

fortuitum 10394.10 (pMYCO7017::TnKm) compared to ASLs from M. ulcerans 1615.  

Again, there is not a distinct mycolactone band for the electroductant, however, there is 

the shadow of a band present in area of interest. 

Acetone soluble lipids from all four M. fortuitum 10394 electroductants were 

resuspended in ethanol in preparation for cytotoxicity assays (Figure 21).  L929 murine 
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fibroblasts were grown overnight at 37°C with 5%, in 96 wells plates containing DMEM.  

L929 cells were exposed to serial 1:5 dilutions of ASLs from each electroductant and 

observed for cytopathic changes.  L929 cells exposed to ASLs from M. fortuitum 10394.4 

(pMYCO::TnKm) showed different affects than cells exposed to ASLs from wild type M. 

fortuitum 10394.  However it was unclear if these affects were the same affects seen after 

exposure to pure mycolactone.  L929 fibroblast cells did not show any cytotoxic affects 

or cell rounding after exposure to ASLs from M. fortuitum 10394.1 

(pMYCO7017::TnKm), M. fortuitum 10394.6 (pMYCO7017::TnKm), or M. fortuitum 

10394.10 (pMYCO7017::TnKm). 

 

Figure 19.  TLC analysis of acetone soluble lipids from M. fortuitum electroductants 
1, 4, and 6. 
TLC analysis of acetone soluble lipids from M. fortuitum electroductants 10394.1 (lane 

1), 10394.4 (lane 2), and 10394.6 (lane 3) compared to wild type M. fortuitum 10394 

(lane 4) and pure mycolactone (lane 5).  The arrow in lane 3 points to a faint band of 

significance indicating a molecule with a similar rf to mycolactone.   
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Figure 20.  TLC analysis of M. fortuitum electroductant 10. 
TLC analysis of acetone soluble lipids from M. fortuitum 10394.10 

(pMYCO7017::TnKm) (lane 1), compared to M. ulcerans 1615 (lane 2). 
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Figure 21. Cytotoxicity assay of lipids extracted from M. fortuitum electroductants. 
Representative pictures of cytotoxicity results after L929 murine fibroblasts were 

exposed to various compounds for 26 hours. 
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Lipid extracts from the four M. fortuitum 10394 (pMYCO7017::TnKm) 

electroductants were sent to Richard Lee and Engy Mahrous at the University of 

Tennessee Health Science Center in Memphis, TN for high performance liquid 

chromatography (HPLC),  mass spectrometry (MS) analysis, and/or tandem 

MS/MS analysis. Figure 22 shows the mass spectra from wild type M. fortuitum 

10394, M.fortuitum10394.1 (pMYCO7017::TnKm), M.fortuitum10394.4 

(pMYCO7017::TnKm), and M. fortuitum 10394.10 (pMYCO7017::TnKm).  There 

were no molecules with appropriate mass or fragmentation patterns characteristic 

of mycolactone.  

High performance liquid chromatography was performed on lipids extracted from 

the M. fortuitum 10394 electroductants and compared to the HPLC profile of lipids 

from M. ulcerans 1615.  The HPLC analysis of lipids from M. ulcerans 1615, M. 

fortuitum 10394.6 (pMYCO7017::TnKm), and wild type M. fortuitum 10394 are 

illustrated in Figure 23.  Panel A shows the typical HPLC results of lipids 

extracted from M. ulcerans 1615, where the asterix indicates the mycolactone 

toxin eluting off the column at 21.6 minutes.   

There was a unique molecule contained within the lipids from M. fortuitum 

10394.6 (pMYCO7017::TnKm) that also eluted off the column at 21.6 minutes 

that was not found in wild type M. fortuitum 10394.  The lipid species eluted at 

21.6 minutes was isolated for further analysis by ESI-mass spectrometry. 

ESI-mass spectrometry analysis of the lipid species eluted off the HPLC column at 

21.6 minutes detected a molecule with a m/z of 423.3, signifying the core of the 

mycolactone toxin (Figure 24).  M. fortuitum 10394.6 (pMYCO7017::TnKm) 

possesses the mycolactone gene cluster and is able to successfully utilize the M. 

ulcerans-derived genes to heterologously produce the mycolactone core. 
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Figure 22. Mass spectra of lipids extracted from M. fortuitum electroductants 1, 4, 
and 10 compared to wild type M. fortuitum 10394. 
Mass spectra of lipid extracts from (A) wild type M. fortuitum 10394, (B) M. 

fortuitum10394.1(pMYCO7017::TnKm), (C) M.fortuitum10394.4 

(pMYCO7017::TnKm), (D) M. fortuitum 10394.10 (pMYCO7017::TnKm, and (E) and 

M. ulcerans 1615. The starred peak in panel E represents the mycolactone core. 
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Figure 23. High performance liquid chromatography of lipids extracted from M. 
fortuitum 10394.6 (pMYCO7017::TnKm) compared to controls. 
High performance liquid chromatography of lipids extracted from (A)M. ulcerans 1615, 

(B) M. fortuitum 10394.6 (pMYCO7017::TnKm), and (C) wild type M. fortuitum 10394. 

The asterisk in panel A points out the time, 21.6 minutes, when mycolactone elutes from 

the column.  The asterisk in panel B indicates a unique molecule, not found in wild type 

M. fortuitum 103941034, which also eluted at 21.6 minutes. This molecule was isolated 

for further analysis by ESI-mass spectrometry. 
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Figure 24. ESI-MS analysis of the lipid species eluted at 21.6 minutes during HPLC 
of M. fortuitum 10394.6 (pMYCO7017::TnKm). 
ESI-MS analysis of the lipid species eluted at 21.6 minutes during HPLC for (A) M. 

ulcerans 1615, (B) M. fortuitum 10394.6 (pMYCO7017::TnKm), and (C) wild type M. 

fortuitum 10394.  The asterisk in each panel indicates the core of the mycolactone toxin. 
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3.9 Conjugation using M. ulcerans 1615::Tn118 as a donor 

Electroduction reactions attempting to introduce pMYCO7017::TnKm into the mycolactone 

negative mutant, M. ulcerans 1615A, were unsuccessful.  A M. ulcerans 1615A 

(pMYCO7017::TnKm) electroductant would have been the ideal donor for conjugation 

experiments since pMYCO7017::TnKm contains the mycolactone gene cluster and it harbors a 

Kanamycin selectable marker in a non-coding region of the DNA.  Instead, M. ulcerans 

1615::Tn118 was used as the donor for the conjugation experiments.  This strain was created 

previously by Armand Mve-Obiang in Dr. Pamela Small’s lab at the University of Tennessee in 

Knoxville.  M. ulcerans 1615::Tn118 is the result of random mutagenesis using a mariner 

transposon which interrupted the FabH gene of the mycolactone gene cluster.  Thus transfer of 

this plasmid could be evaluated on the basis of growth temperature and kanamycin resistance 

although expression of mycolactone could not be evaluated.  

After filter mating between M. ulcerans 1615::Tn118 and M. fortuitum 10394, reaction mixture 

dilutions were plated on selective media and incubated at 37°C.  M. fortuitum 10394 can grow at 

this temperature, while M. ulcerans species cannot grow at 37°C.  Four hundred and eighteen 

colonies grew on the Kanamycin selective media and 100 of those colonies were subcultured for 

further study.  DNA was extracted by boil preparation as described and PCR was performed to 

probe for ER and the mariner Kanamycin transposon.  None of the 100 colonies screened were 

PCR positive for ER or the mariner Kanamycin transposon. 
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CHAPTER 4 : DISCUSSION 

 

Buruli ulcer is a devastating disease that affects thousands of people every year and yet 

the mode of transmission remains elusive.  Endemic foci are consistently found 

associated with slow moving or stagnant waters in both tropical and subtropical regions 

of the world.  Buruli ulcer disease is caused by a cutaneous infection with 

Mycobacterium ulcerans, a slow-growing, acid fast positive bacterium.  Attempts to 

culture the bacterium directly from the environment have been largely unsuccessful 

despite PCR detection of M. ulcerans DNA in various environmental samples.  

Consequently, most laboratory research has centered on M. ulcerans isolates obtained 

directly from Buruli ulcer patient lesions.   

The polyketide toxin, mycolactone, is responsible for the extensive necrosis, 

immunosuppression, and painlessness that are characteristic of Buruli ulcers.  M. 

ulcerans harbors a large, low copy number plasmid that contains the genes necessary for 

the production of mycolactone.  Plasmids are common in mycobacteria, but this is the 

first example of a mycobacterial plasmid that is directly associated with virulence.  The 

mycolactone plasmid was thought to be restricted to M. ulcerans until the recent 

discovery of several non-ulcerans mycolactone producing mycobacteria (MPM), which 

also possess versions of the mycolactone plasmid.  These MPMs have been isolated from 

frogs and fish, both in the U.S. and abroad, illustrating that mycobacteria harboring the 

mycolactone plasmid are more widely distributed in the environment than previously 

thought.   

The repertoire of tools available for the genetic manipulation of mycobacteria has been 

limited by the thick, waxy cell wall, slow growth rate, and the genome’s high G + C 

content.  Very little is known about the host range or biology of the M. ulcerans 

mycolactone plasmid for the reasons stated above, as well as its large size and low copy 

number.  Previously, experiments were carried out by Stinear and colleagues to test the 

stability of M. ulcerans’ plasmid-derived genes in the heterologous hosts M. marinum (M 
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strain), M. smegmatis (mc2155), and M. fortuitum 10394.  M. marinum was an appealing 

candidate for this experiment because of its extremely high level of genetic sequence 

similarity with M. ulcerans, including only one nucleotide difference within the 16S 

gene.  Additionally, M. ulcerans is thought to have evolved from a M. marinum 

progenitor through acquisition of the mycolactone plasmid.  M. smegmatis mc2155 is a 

highly transformable, fast-growing mycobacterial strain and considered to be the “E. 

coli” of mycobacteria.  Finally, M. fortuitum was a desirable candidate recipient for these 

studies because the rep region of the M. ulcerans plasmid has 68.3% amino acid identity 

to the rep of M. fortuitum’s plasmid, pJAZ38.  The M. fortuitum strain 10394 was chosen 

specifically because it has been cured of its own native plasmids which would 

presumably limit molecular competition within this host. 

Stinear et al cloned a 6 Kb fragment of the mycolactone plasmid into a vector, marked it 

with an apramycin resistance gene, and were able to successfully transform the construct 

into M. marinum.  The goal was to test the heterologous stability of pMUM001-derived 

genes, specifically those genes predicted to be involved with replication and partitioning 

of the mycolactone plasmid.  The ori site on the plasmid is where replication is initiated, 

specifically at the repA gene.  RepA encodes a plasmid-specific, cis-acting initiation 

protein essential to plasmid replication (Masai, 1983).  Partitioning loci, on the other 

hand, act independently of the plasmid replication machinery and are usually arranged as 

an operon that includes parA, parB, and parS (Stinear, 2005).  parB encodes a DNA 

binding protein which specifically binds to parS, a cis-acting centromere-like sequence 

(Stinear, 2005), (Masai, 1983).  The parA gene encodes a membrane associated ATPase 

that is crucial to the movement of the parB foci on the plasmid DNA (Masai, 1983).   

Stinear et al tested the stability of the M. ulcerans genes in M. marinum by allowing late 

log phase cultures of the transformant to incubate for several days without antibiotic 

induced selective pressure.  In the absence of antibiotic selection, M. marinum 

transformants subsequently lost the vector construct harboring the M. ulcerans plasmid 

genes ori, parA, and repA.  In contrast, the current work did not test the stability of the 

152 Kb mycolactone gene cluster in M. marinum transformant in the absence of antibiotic 
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selection.  Instead, M. marinum 1218 (pMYCO7017::TnKm) was passaged in the 

presence of antibiotic selection and remained PCR positive for pMYCO7017::TnKm 

specific genes for several months.  Both studies included back-transformation from M. 

marinum to E. coli as proof that the pMUM001-derived constructs were maintained as 

autonomous DNA elements in this heterologous host. 

Stinear and colleagues offer two possible explanations as to why the M. ulcerans 

mycolactone plasmid-derived construct was not maintained in M. marinum.  The first 

explanation was simply that M. marinum cannot stably maintain M. ulcerans pMUM001-

derived genes and that the putative par locus from pMUM001 is not functional in this 

species (Stinear, 2005).  A second possibility is that additional pMUM001 sequences may 

be required for plasmid maintenance that were not included in the 6 Kb pMUM001-

derived DNA fragment used for their study.  One pMUM001 sequence that was missing 

from their pMUM001-derived DNA fragment is a candidate parS site located 1.4 Kb 

upstream of parA.  The lack of the parS site within the 6 Kb pMUM001 DNA fragment 

used for their experiment may have affected plasmid partitioning to daughter cells 

(Stinear, 2005).  

The work described here had a similar goal, to investigate the stability of M. ulcerans 

mycolactone genes in a heterologous host.  To compare and contrast the work described 

here with the previous work of Stinear et al, one major difference was the vectors used 

and the size of the pMUM001-derived DNA fragment cloned into each respective vector.  

To circumvent the difficulties of working with the mycolactone plasmid in its native 

form, we utilized a 152 Kb fragment of the 155 Kb mycolactone plasmid and cloned it 

into the pBeloBAC11 vector.  The resulting bacterial artificial chromosome (BAC) could 

be carried and amplified by E. coli before transfer into other non-ulcerans mycobacteria.  

In Stinear’s work, the small size of the pMUM001-derived construct enabled the 

researchers to isolate microgram amounts of the DNA and to utilize electroporation in 

order to transform mycobacterial recipients.  In contrast, the large size of 

pMYCO7017::TnKm hindered the isolation of enough intact plasmid DNA to carryout 

electroporation experiments.  Instead, electroduction was used to transfer the 
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mycolactone gene cluster, in the form of pMYCO7017::TnKm, directly from E. coli to 

M. marinum.   In both Stinear’s work and in the experiments reported here, attempts were 

made to introduce pMUM001-derived DNA into M. marinum, M. smegmatis, and M. 

fortuitum.  In both cases, no M. smegmatis mc2155 transformants were obtained.  Stinear 

and colleagues were only successful in transforming the M. marinum M strain and 

achieved 1.3 x 105 ± 0.2 transformants per microgram of plasmid DNA (Stinear, 2005).  

We were also able to successfully transfer pMUM001-derived DNA into M. marinum 

1218, however, multiple attempts to introduce pMYCO7017::TnKm into M. marinum 

strain 1218 resulted in the creation of only one successful electroductant. 

Stinear and colleagues were unable to introduce their construct into M. fortuitum 10394 

and concluded that the pMUM001-derived ori did not support replication in this species 

(Stinear, 2005).  In contrast, the present work describes the first examples of the 

successful manipulation of the entire mycolactone gene cluster, in the form of a BAC 

designated pMYCO7017::TnKm, and its introduction into faster growing mycobacterial 

species, M. fortuitum 10394.  We have shown that the pMUM001-derived construct, 

pMYCO7017::TnKm, was stably maintained in M. fortuitum 10394 under the influence 

of antibiotic selection.  Furthermore, the M. ulcerans mycolactone genes harbored by 

pMYCO7017::TnKm were at least partially expressed in M. fortuitum 10394 leading to 

the heterologous production of the mycolactone core.  It would be advantageous to 

explore why M. fortuitum 10394.6 (pMYCO7017::TnKm) was only able to produce the 

core of the mycolactone toxin.   

There may be basic difference in the biosynthetic requirements for synthesis of the 

mycolactone side chain versus the toxin core.  Alternatively, there may be unique, trans-

acting chromosomal factors present in the M. ulcerans genome required for mycolactone 

production that are absent or non-functional in M. fortuitum and M. marinum.  Once 

available, the complete genome sequence of M. fortuitum will allow further investigation 

into the intricacies of mycolactone production in this heterologous host.  However, the 

genome sequences of both M. ulcerans and M. marinum are available for comparison.   
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Dr. Armand Ove-Obiang, a post-doc in Pam Small’s lab at the University of Tennessee, 

used random transposon mutagenesis to create a library of M. ulcerans mutants.  Two of 

the M. ulcerans mutants were only able to produce the mycolactone core and had 

transposon insertions interrupting chromosomal genes; two were annotated as magnesium 

chelatase and one as a succinate dehydrogenase.  A search of the M. marinum genome 

showed that these two genes are present in this close relative of M. ulcerans.  The 

Burulist and Marinolist websites were used to obtain the protein sequence for both the 

magnesium chelatase and succinate dehydrogenase genes in M. ulcerans and M. marinum 

respectively.  MultAlin (http://bioinfo.genotoul.fr/multalin/multalin.html) was used to 

compare the protein sequences and both conserved and non-conserved amino acid 

changes were observed.  The ramifications of the amino acid changes are unclear because 

the exact role of magnesium chelatase and succinate dehydrogenase in mycolactone 

biosynthesis is not known.   It will be interesting for future research to explore the 

potential role of trans-acting genes and their involvement in the production of 

mycolactone. 

Those that continue work on this project many endeavor to more closely investigate the 

heterologous expression of M. ulcerans pMUM001-derived genes through reverse 

transcriptase – real time PCR (RT-RT PCR).  With this type of PCR, mRNA is isolated 

from bacterial cells and subjected to a reverse transcriptase reaction to create a 

complimentary DNA (cDNA) library of total cell mRNA transcripts.  Next, the cDNA is 

used a template for a real time – PCR reaction using fluorescently labeled probes specific 

for the genes of interest.  This method would enable expression-level evaluation of 

pMUM001-derived genes in heterologous host species.   

The ability to transfer the mycolactone gene cluster, in the form of pMYCO7017::TnKm,  

into various non-ulcerans mycobacterial species in the lab is certainly a noteworthy 

achievement and will prove useful in future studies.  However, electroduction as a form 

of horizontal gene transfer does not generally occur in nature and therefore, does not 

offer a realistic explanation for how M. ulcerans evolved from an M. marinum progenitor 

through acquisition of the mycolactone plasmid.  Horizontal gene transfer of plasmid 

http://bioinfo.genotoul.fr/multalin/multalin.html
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DNA is well documented in gram negative bacteria and gram negative mechanisms of 

conjugative transfer have been described in detail.  This is not to say that horizontal gene 

transfer as a result of conjugation does not exist in gram positive or acid fast positive 

bacteria, but merely that these systems are not well understood.   

Genetics studies of pathogenic mycobacteria, such as M. tuberculosis and M. ulcerans, 

have been specifically hindered by the genera’s slow growth, thick cell wall, and G+C 

rich genomes.  Moreover, the search for conjugative systems in mycobacteria has been 

based upon the discovery of homologous genes that have already been described in gram 

negative conjugative systems.  The inherent problem with this strategy is that 

mycobacteria may possess unique conjugative systems that have not been previously 

described.  Such is the case with the basis of mobility (bom) system described in M. 

smegmatis, the first mycobacterial conjugation system ever described (Parsons, 1998).  

M. smegmatis donor strains are able to participate in a conjugation-like event in which 

sections of the chromosome are mobilized by bom sequences and transferred to distinct 

recipient strains of M. smegmatis.  Although this newly described system is similar to the 

phenomenon observed in Hfr strains of E. coli, this conjugative system is completely 

unique and unprecedented in Mycobacteria.   

Much work remains in order to figure out the details of the exact mechanisms responsible 

for conjugative transfer of chromosomal DNA via the bom system.  However, discovery 

of this novel system does illustrate the potential for the discovery of other conjugative 

systems in mycobacteria that have not yet been discovered through genomic analysis.  

Research has suggested that M. ulcerans acquired the mycolactone plasmid through 

horizontal gene transfer and plasmid DNA transfer through the process of conjugation 

cannot be ruled out as a possibility.  Therefore, conjugation filter mating experiments 

were carried out between M. ulcerans 1615::Tn118 and M. fortuitum 10394 as a 

preliminary investigation of this possibility.  M. fortuitum 10394 is a strain that has been 

cured of its own native plasmids and should experience less molecular competition upon 

introduction of a foreign plasmid.  Additionally, the M. ulcerans mycolactone gene 

cluster (in the form of pMYCO7017::TnKm) was successfully introduced into and 
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replicated by M. fortuitum 10394.  M. fortuitum 10394 (pMYCO::TnKm) electroductants 

were able to stably replicate this plasmid.  One particular electroductant, M. fortuitum 

10394.6 (pMYCO7017::TnKm) was subsequently shown to heterologously express the 

M. ulcerans mycolactone genes leading to the production of the mycolactone core. 

The conjugation experiments between M. ulcerans 1615::Tn118 and M. fortuitum 10394 were 

carried out under the conditions described as optimal for conjugation between M. smegmatis 

donor and recipient strains (Parsons, 1998).  Filter mating is ideal because it allows close contact 

of cells at high density and allows ease of recovery of potential transconjugants (Parsons, 1998).  

Conjugation experiments performed on solid media have been shown to be drastically more 

efficient that conjugation attempts in liquid media.  Despite all attempts to maximize 

mycobacterial conjugation conditions, no transconjugants were obtained after filter mating 

experiments.  This is not discouraging, as these are only preliminary experiments.  Additionally, 

mycobacterial conjugative systems have only recently been discovered and most of the details 

remain unknown.  Certainly, future investigations into mycobacterial conjugation may shed light 

on the potential for M. ulcerans to participate in this type of horizontal gene transfer.  

This work describes the first successful transfer of the mycolactone gene cluster and subsequent 

expression of M. ulcerans mycolactone genes in a heterologous host.  The ability of M. fortuitum 

10394 to replicate pMYCO7017::TnKm and express the mycolactone polyketide synthase genes 

has important implications.  Importantly, the BAC construct pMYCO7017::TnKm may be used 

in future research to learn more about the mycolactone gene cluster and the biology of the 

mycolactone plasmid.  
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