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ABSTRACT 

The demand for optimum putting conditions requires golf course superintendents to 

manage cool season creeping bentgrass (Agrostis stolonifera L.) in the transition zone and 

upper south.  Summer heat stress combined with low mowing heights and constant traffic 

are challenges that superintendents must face in order to successfully manage creeping 

bentgrass from early May to late September. A field experiment was conducted on a 

Crenshaw putting green under golf course conditions during the 2006 summer and twice 

during the 2007 summer in Knoxville, TN. 2006 enriched air treatments of ~692 ppm 

CO2 and ~891 ppm CO2 were compared to a control of ambient air (~363 ppm CO2). 

2007 enriched air treatments of ~716 ppm CO2 and ~1076 ppm CO2 were compared to a 

control of ambient air (~451 ppm CO2). Indirect heat stress was characterized by 

measuring the accumulation of total nonstructural carbohydrates (TNC) which is the sum 

of soluble carbohydrates and insoluble starch. The effects of CO2 enriched air on TNC 

during the ante meridiem (between 12 midnight and 12 noon) photoperiod were 

determined using near infrared reflectance spectroscopy (NIRS). The effects of CO2 

enriched air on turfgrass quality during the ante meridiem photoperiod were determined 

using normalized difference vegetative index (NDVI) chlorophyll measurements. Disease 

and visual quality differences amongst treatments or locations were measured on an incidental 

basis.  

  No significance occurred within the 2006 and 2007 TNC or NDVI analysis for 

differences amongst treatments. 2006 average TNC for shoots were 24.8, 20.1, and 28.5 

mg g-1 of tissue for the 363, 692, and 891 ppm CO2 levels, respectively. 2006 average 
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NDVI for shoots were 7.2, 7.3, and 7.3 for the 363, 692, and 891 ppm CO2 levels, 

respectively. 2007average TNC for shoots were 25.6, 18.9, and 23.1 mg g-1 of tissue for 

the 451, 716, and 1076 ppm CO2 levels, respectively. 2007 average NDVI for shoots 

were 7.9, 8.0, and 8.0 for the 451, 716, and 1076 ppm CO2 levels, respectively. All results 

were analyzed at 0.05 probability level within SAS 9.1.  No incidence of disease or visual 

quality differences among treatments or locations occurred. 
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The climatic United States transition zone extends from northeastern New Mexico 

to Virginia and is the most difficult region in which to manage grasses (Christians, 2003; 

Fry and Huang, 2004). The transition zone covers an area 300 to 700 miles north to south 

in the United States whereas the northern edge is roughly defined by Interstate 70 from 

Maryland through eastern Kansas and the serpentine southern margin touches parts of 

North Carolina, Kentucky and Tennessee (Dunn and Diesburg, 2004). The transition zone 

is cool enough in the winter to make it difficult to maintain perennial stands of many 

warm-season grasses, and yet it is warm enough in the summer to make things difficult 

for cool-season grasses (Christians, 2003).  In this zone, winter kill will affect warm 

season species while heat stress will harm cool season species (Fry and Huang, 2004).  

In the transition zone, creeping bentgrass (Agrostis stolonifera L.) is the desired 

species for golf course putting greens. Optimum growing conditions for creeping 

bentgrass occur with air temperatures between 16 and 24° C (Waddington et al., 1992).  

Optimum growing conditions for root growth occurs when soil temperatures are between 

10 and 18° C (Liu et al. 2002).  However, during the summer months soil temperatures 

are much higher in the transition zone, thus heat stress conditions occur. 

Heat stress is classified as either ‘direct’ or ‘indirect’. Direct heat stress is rapid 

increases in temperature causing cell death (Fry and Huang, 2004). Temperatures that 

approach 49°C cause direct heat stress resulting in immediate cell death (Carrow, 1996).  

Indirect heat stress occurs in creeping bentgrass when temperatures meet or exceed 30° C 

for several hours at a time (Waddington et al., 1992). Indirect heat stress is a common 

occurrence in the transition zone during the summer months of June, July, and August 



 3

and is one of the major factors limiting use of cool-season grasses (Beard and Daniel 

1965; Carrow, 1996; Beard, 1997; Huang, 2000). In addition to high daytime 

temperatures, high humidity acts as a buffer preventing large fluctuations from daytime 

to nighttime temperatures (McCarty, 2001).  

During summer heat stress periods, high temperatures cause early stomatal 

closure resulting in increased photorespiration while net or daytime respiration increases 

(Huang et al, 1998). Photorespiration is viewed as a process that diminishes net 

photosynthesis by ~25% unfortunately due to plants having evolved when the atmosphere 

had much higher levels of CO2 than it has today (Rachmiletvitch et al. 2004). 

Photorespiration results from the oxygenase reaction catalyzed by ribulose-1,5-

bisphosphate carboxylase/oxygenase in which the reaction glycollate-2-phosphate is 

produced and subsequently metabolized in the photorespiratory pathway forming the 

Calvin cycle intermediate glycerate-3-phosphate (Wingler et. al. 2000). In C3 

photosynthetic plants (cool season turfgrasses), photorespiration occurs when 

photosynthesis is inhibited by an over-abundant oxygen (O2) presence that prevents  

carbon dioxide (CO2) assimilation in the Calvin-Benson cycle (photosynthesis) during 

periods of above optimum air temperatures (Taiz and Zeiger, 1998). Oxidative stress can 

lead to inhibition of photosynthesis and respiration and thus plant growth (Huang 2004). 

  The Calvin-Benson cycle may become wasteful to plant energy with the 

consumption of ATP, NADPH, and other reducing equivalents for the production of CO2 

and NH3 (Wingler et al. 2000). Rather than carbohydrates being stored, carbohydrate 

losses occur and often exceed net photosynthesis (carbohydrate synthesis) during the 
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summer months. Respiratory oxygen uptake has been shown to not increase by an 

instantaneous elevation of CO2 (Davey et al., 2004). Photorespiration is an energy 

consuming process that is detrimental when carbon is released rather than fixed. Simply 

put, the turf plant uses more energy than it produces during periods of indirect heat stress. 

 Soil temperatures above 30° C cause decreased root growth and function 

(Dernoeden, 2002). Fewer roots for a plant will reduce energy storage areas of 

carbohydrates that the plant requires for everyday processes. As a result, creeping 

bentgrass, in the transition zone, is especially susceptible to summer heat stress (Fry and 

Huang, 2004). Seaweed extract (SWE)-based cytokinin treatments showed 39% higher 

heat stress tolerance than that of trans-zeatin riboside standards (Zhang and Ervin 2008). 

Current recommendations for managing creeping bentgrass during the summer are 

increased mowing heights and reduced mowing frequency, to one or two times per week 

(Beard, 2002; McCarty, 2001). Common practices in the transition zone also include 

increasing air circulation across the turf surface using greenside fans to reduce favorable 

conditions for disease. Alternatively, rolling and mowing has been shown beneficial in 

reducing indirect heat stress (Strunk, 2005). Alternating mowing with rolling maintained 

higher quality putting greens versus traditional practices of mowing daily or six times per 

week. Increased fungicide applications and syringing are two management practices 

necessary to alleviate disease wilt during summer heat stress periods (Dernoeden, 2002). 

Syringing is a term used within the turfgrass industry for a light sprinkling of water on 

turf usually during the hottest part of the day to prevent wilting.  
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With increased awareness of global warming, governments are interested in 

projects to examine the effects of rising atmospheric CO2 levels in various crops and 

forage production systems. Current global atmospheric CO2 average levels are 

approximately 367 ppm (IPCC, 2001). These levels have increased more in the last 

twenty years than in the previous one-hundred on record, and levels are expected to 

continue increasing with the continued use of fossil fuels (IPCC, 2001). Prior research 

has shown CO2 enrichment in fruit and forestry ecosystems are methods to increase plant 

photosynthetic processes, and thus overall plant health and growth rates through 

increased energy storage. Perennial ryegrass (Lolium perenne L.) exhibited increased root 

growth when enriched with CO2 (Jongen et al., 1995). Perennial ryegrass grown for 

1.8144e6 s (21 days) @ 720 ppm had 175% greater biomass than control plants grown at 

450 ppm CO2 (Hodge et al., 1998).  

Respiration is a key factor to CO2 levels within the plant that affect energy 

storage. High respiration rates cause negative carbon exchange rates (CER’s) within the 

plant. Negative CER’s refer to diminishing carbohydrate reserves due to the plant 

diverting energy towards shoot growth. When carbon is limiting, the shoots become 

priority for the plant and root depletion soon occurs. Root dieback is caused by the lower 

priority of root versus shoot growth, respectively (Carrow, 1996). Elevated atmospheric 

carbon (Ca) reduces stomatal conductance and transpiration, yet improves water use 

efficiency; while, at the same time stimulating higher rates of photosynthesis 

(carbohydrate production) (Drake, 1997). As temperatures increase, the rate of 

photosynthesis decreases (Huang, 2004). At these high atmospheric temperatures 
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(indirect heat stress) the abundance of CO2 available in the cells for plants in the 

boundary layer and stomatal cavity of the leaf decreases and O2 increases (Taiz and 

Zeiger, 1998). Enriching atmospheric concentrations of CO2
 before stomatal closure, to 

increase carbohydrate energy production and storage during ante meridiem (AM) 

photoperiod hours is one way to potentially reduce the effects of summer heat stress that 

occurs on creeping bentgrass putting greens during the post meridiem photoperiod hours 

of the day in the transition zone.  Thus, CO2 enrichment has the potential to counter the 

negative effects of indirect heat stress.  

Elevated CO2 applications for plants in light conditions have been studied in 

several species. Elevated CO2 increased yield at high N levels yet showed less N 

concentration within the plants in Triticom aestivum (Fangmeier et al., 1996). Elevated 

CO2 increased biomass and leaf photosynthetic rates were always higher in elevated CO2 

of Pinus taeda in the summer suggesting seasonal effects of temperatures on 

photosynthesis (Tissue et al., 1997). Elevated CO2 applications increased sucrose and 

phloridizin concentrations in apple (‘Gala’/ Malling (M9)) leaves (Kelm and Flore, 

2005).  A 44% increase in photosynthetic accumulation was observed in 39 tree species 

grown in elevated levels of CO2 (Gunderson, 1994), and elevated CO2 increased light-

saturated net photosynthesis in sweet-gum trees (Liquidambar styraciflua) (Herrick and 

Thomas, 1999). A 64% increase in photosynthate occurred when C3 grassland species 

were grown in enriched CO2 (560 ppm) levels versus ambient CO2 (368 ppm) levels 

(Jongen et al., 1999). Free Air CO2 Enrichment (FACE) locations world-wide have been 

experimenting with increased CO2 levels on crops, forestry, and other ecosystems.  FACE 
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studies showed dramatic yield increases in cotton and wheat (Culotta, 1995).  

Approximately 50% increases were seen in cotton yields and a more subtle but 

significant 10% yield increase in wheat varieties. In FACE, studies with managed 

grasslands, root carbon:nitrogen ratios increased in Lolium perenne, and root lengths 

increased in Trifolium repens  (Jongen, M., et al., 1995).  Atmospheric CO2 enrichment 

also had significant effects on flavonoid compounds in green, well-developed flag leaves 

of Triticum aestivum (wheat) (Peñuelas, J., et al., 1999).  No research has been conducted 

on the effects of CO2 enrichment in managed turfgrass conditions and in particular, 

creeping bentgrass putting greens in the transition zone. Since the putting green is the 

most important facet of any golf course, the aesthetics and performance of the greens 

often determine the quality of a golf course. Therefore, the objective of this study is to 

determine if elevated CO2 treatments provide increased photosynthetic efficiency or 

energy storage on creeping bentgrass putting greens during periods of indirect heat stress 

is warranted. 

In the transition zone temperatures causing indirect heat stress do not occur until 

mid morning or noon (~10am-12pm) when temperatures meet or exceed 30°C. High 

temperatures reduced plant density, tiller density, root number, and root biomass (Xu and 

Huang 2001). Therefore, CO2 enrichment during the early morning hours may reduce the 

effects of indirect heat stress in creeping bentgrass putting greens. C3 grasses produce 

greater amounts of nonstructural carbohydrates and have greater declines in nitrogen 

content than do C4 grasses under elevated CO2 (Barbehenn et al. 2004). Hypothetically, it 

would be anticipated that enriching creeping bentgrass greens given CO2 during the 
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morning or ante meridiem hours would increase the grass’s photosynthetic rate resulting 

in increased total nonstructural carbohydrate (TNC) production. Photosynthetic 

efficiency is the fraction of light energy converted into other forms of energy for use. The 

hypothesis tested was, “Increased CO2 levels will counter the negative effects of indirect 

heat stress.” This research aims to answer two questions within the hypothesis and 

provide valuable insight to the golf course superintendent. One, what are the effects of 

CO2 enrichment on carbohydrate synthesis and metabolism in creeping bentgrass 

(Agrostis stolonifera L.) on putting greens in the transition zone? Two, what are the 

optimum CO2
 enrichment levels and timing to compensate for reduced photosynthesis 

(indirect heat stress) of creeping bentgrass (Agrostis stolonifera L.) grown under summer 

heat stress conditions in the transition zone? 
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ABSTRACT  

The demand for optimum putting conditions requires golf course superintendents to 

manage cool season creeping bentgrass (Agrostis stolonifera L.) in the transition zone and 

upper south.  Summer heat stress combined with low mowing heights and constant traffic 

are challenges that superintendents must face in order to successfully manage creeping 

bentgrass from early May to late September. A field experiment was conducted on a 

Crenshaw putting green under golf course conditions during the 2006 summer and twice 

during the 2007 summer in Knoxville, TN. 2006 enriched air treatments of ~692 ppm 

CO2 and ~891 ppm CO2 were compared to a control of ambient air (~363 ppm CO2). 

2007 enriched air treatments of ~716 ppm CO2 and ~1076 ppm CO2 were compared to a 

control of ambient air (~451 ppm CO2). Indirect heat stress was characterized by 

measuring the accumulation of total nonstructural carbohydrates (TNC) which is the sum 

of soluble carbohydrates and insoluble starch. The effects of CO2 enriched air on TNC 

during the ante meridiem (between 12 midnight and 12 noon) photoperiod were 

determined using near infrared reflectance spectroscopy (NIRS). The effects of CO2 

enriched air on turfgrass quality during the ante meridiem photoperiod were determined 

using normalized difference vegetative index (NDVI) chlorophyll measurements. Disease 

and visual quality differences amongst treatments or locations were measured on an incidental 

basis.  

  No significance occurred within the 2006 and 2007 TNC or NDVI analysis for 

differences amongst treatments. 2006 average TNC for shoots were 24.8, 20.1, and 28.5 

mg g-1 of tissue for the 363, 692, and 891 ppm CO2 levels, respectively. 2006 average 
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NDVI for shoots were 7.2, 7.3, and 7.3 for the 363, 692, and 891 ppm CO2 levels, 

respectively. 2007average TNC for shoots were 25.6, 18.9, and 23.1 mg g-1 of tissue for 

the 451, 716, and 1076 ppm CO2 levels, respectively. 2007 average NDVI for shoots 

were 7.9, 8.0, and 8.0 for the 451, 716, and 1076 ppm CO2 levels, respectively. All results 

were analyzed at 0.05 probability level within SAS 9.1.  No incidence of disease or visual 

quality differences among treatments or locations occurred. 
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INTRODUCTION 

Putting greens have become the defining characteristic that often determines the 

reputation and notoriety of a golf course. The golf course superintendent often spends the 

majority of his/her time focused on putting green speeds, playability and overall 

aesthetics. With the ever present player demand for optimum putting conditions, 

superintendents utilize a turf species not common to warm season climates. Agrostis 

stolonifera L. (creeping bentgrass) is a preferred species on putting greens for its ability 

to produce an ideal putting surface (Fry and Huang, 2004). Thus, superintendents within 

the transition zone choose to intensely manage this cool season turf species. The 

transition zone extends from northeastern New Mexico to Virginia, and is the most 

difficult region in which to manage grasses (Christians, 2003; Fry and Huang, 2004).  

The transition zone covers an area 300 to 700 miles north to south in the United States 

whereas the northern edge is roughly defined by Interstate 70 from Maryland through 

eastern Kansas and the serpentine southern margin touches parts of North Carolina, 

Kentucky and Tennessee (Dunn and Diesburg, 2004). The transition zone is cool enough 

in the winter to make it difficult to maintain perennial stands of many warm-season 

grasses, and yet it is warm enough in the summer to make growth difficult for cool-

season grasses (Christians, 2003).    

In the transition zone, creeping bentgrass often undergoes long periods of indirect 

heat stress. Indirect heat stress occurs in creeping bentgrass when temperatures meet or 

exceed 30° C for extended periods of time (Waddington et al., 1992). Indirect heat stress 

is the most common type of heat stress in the transition zone occurring in early May to 
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late September. High daytime temperatures coupled with high humidity limit variation in 

evening temperatures, which causes a reduction of shoot growth, shoot density, root 

length, tillering, and overall turf quality (Waddington et al., 1992; Xu and Huang 2001). 

Maintaining creeping bentgrass putting greens during these unfavorable conditions 

requires creativity and intense management for golf course superintendents. 

Intense management for creeping bentgrass putting greens during indirect heat 

stress includes syringing greens to prevent wilt and disease and frequent fungicide 

applications. Trinexapac-ethyl will reduce shoot elongation and growth, increase shoot 

density, increase rooting, and reduce the need for daily mowing (Shepard and Dipaola, 

2000). Compounded with applications of trinexapac-ethyl, a superintendent often strives 

to reduce mowing frequency and increase mowing height during times of indirect heat 

stress in order to prevent injury, decreased rooting, greater water needs and reduced turf 

vigor (McCarty, 2001). Once again though, demands for high quality putting surfaces 

require the turf to be mown everyday (Beard, 2002). Mowing everyday versus less 

frequent mowing will reduce shoot density during periods of indirect heat stress (Beard, 

2002; Huang, 2004). Alternating rolling and mowing versus daily mowing provides 

higher quality creeping bentgrass putting greens during periods of indirect heat stress 

(Strunk, 2005). Simply alternating mowing and rolling practices provides consistent 

putting green surfaces and reduces the frequency of wounding stress caused by daily 

mowing. Lastly, greenside fans are used to improve environmental conditions for 

creeping bentgrass putting greens during periods of indirect heat stress.  Any additional 
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management practice that will potentially reduce the negative effects of indirect heat 

stress on creeping bentgrass putting greens is warranted. 

Elevated CO2 applications for plants in light conditions have been studied in 

several species. Elevated atmospheric carbon (Ca) reduces stomatal conductance and 

transpiration, yet improves water use efficiency; while, at the same time stimulating 

higher rates of photosynthesis (carbohydrate production) (Drake, 1997). Enriching 

atmospheric concentrations of CO2
 before stomatal closure, to increase carbohydrate 

energy production and storage during ante meridiem (AM) photoperiod hours is one way 

to potentially reduce the effects of summer heat stress that occurs on creeping bentgrass 

putting greens during the post meridiem photoperiod hours of the day in the transition 

zone.  Thus, CO2 enrichment has the potential to counter the negative effects of indirect 

heat stress. 

Elevated CO2 applications increased sucrose and phloridizin concentrations in 

apple (‘Gala’/ Malling (M9)) leaves (Kelm and Flore, 2005).  A 44% increase in 

photosynthetic accumulation was observed in 39 tree species grown in elevated levels of 

CO2 (Gunderson, 1994), and elevated CO2 increased light-saturated net photosynthesis in 

sweet-gum trees (Liquidambar styraciflua) (Herrick and Thomas, 1999). A 64% increase 

in photosynthate occurred when C3 grassland species were grown in enriched CO2 (560 

ppm) levels versus ambient CO2 (368 ppm) levels (Jongen et al., 1995). Free Air CO2 

Enrichment (FACE) locations world-wide have been experimenting with increased CO2 

levels on crops, forestry, and other ecosystems.  FACE studies showed dramatic yield 

increases in cotton and wheat (Culotta, 1995).  Approximately 50% increases were seen 
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in cotton yields and a more subtle but significant 10% yield increase in wheat varieties. In 

FACE, studies with managed grasslands, root carbon:nitrogen ratios increased in Lolium 

perenne, and root lengths increased in Trifolium repens  (Jongen, M., et al., 1995).  

Atmospheric CO2 enrichment also had significant effects on flavonoid compounds in 

green, well-developed flag leaves of Triticum aestivum (wheat) (Peñuelas, J., et al., 

1999).  No research has been conducted on the effects of CO2 enrichment in managed 

turfgrass conditions and in particular, creeping bentgrass putting greens in the transition 

zone. Since the putting green is the most important facet of any golf course, the aesthetics 

and performance of the greens often determine the quality of a golf course.  

In this experiment, elevated levels of CO2 as treatments are examined for their 

potential to increase photosynthetic efficiency or energy storage to combat indirect heat 

stress within the transition zone on creeping bentgrass putting greens. The ultimate goal 

is to reduce the stress level of the turfgrass to assist the superintendent through the 

summer months. This research has the potential to benefit the golf industry by enabling 

golf course superintendents to better manage desired cool season turfgrass species in hot 

and humid conditions by improving the photosynthetic efficiency. 

MATERIALS AND METHODS   

To evaluate the effects of elevated CO2 field experiments were conducted during 

the heat stress periods of June thru August in 2006 and 2007 on a creeping bentgrass 

(Agrostis stolonifera L.) putting green at the University of Tennessee Intercollegiate Golf 

Practice Facility in Knoxville; TN. The putting green was sodded with soil free 

‘Crenshaw’ creeping bentgrass on a United States Golf Association specification sand-
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peat (90:10) root zone in April 2005. The putting green was mown six times per week at 

4 millimeters using a Toro Flex 21 walk behind mower (The Toro Co. Minneapolis; 

MN).  Nitrogen was applied at a rate of 4.9 kg N ha-1 every seven days using Harrell’s 

28-5-18 Bentgrass Special fertilizer (Harrell’s Fertilizer, Lakeland, FL) from April thru 

October.  Once a disease occurred and was identified, data was collected, and subsequent 

curative fungicide applications were applied. Trinexapac-ethyl (Syngenta Corporation, 

Wilmington, DE), a type II plant growth regulator, was applied to all plots at 0.4 L ha-1 

every 21 days as part of regular management. Irrigation was applied as needed to prevent 

wilt (applied three times week-1 at a 2.0 cm depth during periods of no rainfall).  Light 

sand topdressing at 1/8 to ¼ cubic yards per 93 m2 was applied every two weeks from 

April thru October of each year. 

Plots consisted of 0.2 m2 chambers constructed out of Mylar® (DuPont Teijin 

Films; Hopewell, VA) and angle iron. Individual chambers were constructed out of 

Mylar® because of its ability to emit 99% infrared radiation and its low permeability to 

CO2 and H2O vapor. On 1 July 2006, CO2 enrichment treatments were initiated five days 

per week from 7:00 AM to 12:00 PM for a six week period. In 2007, CO2 enrichment 

treatments were repeated two times. Session one began on 6 June 2007 and concluded on 

19 July 2007. Session two was initiated on 20 July 2007 and concluded on 20 August 

2007. Treatments were arranged as single factors with three treatments of approximately 

350, 700 and 900 ppm (+/- 25 ppm) CO2 and 450, 725 and 1025 ppm (+/- 25 ppm) CO2, 

in 2006 and 2007 respectively (Figure A-1, A-2 and A-3, respectively)1.  

                                                 
1 All tables and figures are located in the Appendix. 
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In 2006, a 24 cm diameter direct drive blower furnace fan (Dayton Electric Mfg. 

Co.; Niles, IL) provided the air flow for all nine plots. CO2 treatments were separated by 

reducing the air flow with a header to three separate 1.5 m PVC (4.55 cm diameter) pipes 

which in turn were reduced to 1.3 cm flexible tubing that delivered the air into the 

chamber. The CO2  (Liquid CO2, Air Gas; Knoxville, TN) was injected into the 1.5 m 

PVC pipes using a manifold and needle valves to regulate CO2 flow enrichment 

concentrations. The delivery system was lifted on and off the green daily for treatments 

and management (Figure A-4).  Air flow was 4 – m sec-1 (+/- 0.5 m sec-1). CO2 levels for 

each treatment were measured using a portable photosynthesis system CIRAS-1 (PP 

systems, Haverhill, MA). Temperature monitoring was done with an infrared 

thermometer (Mini IR Thermometer; Spectrum Technologies, Plainfield, IL). 

In 2007, three Stanley® blower shop fans (The Stanley Works #655702; New 

Britain, CT) provided the air flow for each level of CO2. Each fan connected to a 1.5 m 

(20 cm diameter) metal heating duct pipe which was reduced to three 4.0 cm flexible 

tubing that delivered the air into the chamber. The CO2  (Liquid CO2, Air Gas, Knoxville; 

TN) was injected into the 1.5 m metal heating duct using a manifold and needle valves to 

regulate enrichment levels. The delivery system was wheeled on and off the green daily 

for treatments and management (Figure A-5). Air flow was 7 – m sec-1 (+/- 0.5 m sec-1). 

CO2 levels for each treatment were measured using a portable photosynthesis system 

CIRAS-1 (PP systems, Haverhill, MA). Temperature monitoring was done with an 

infrared thermometer (Mini IR Thermometer; Spectrum Technologies, Plainfield, IL). 
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Turf color measurements were collected daily prior to and immediately following 

CO2 enrichment treatments using a TCM NDVI turf color meter (Spectrum Technologies, 

Plainfield, IL). The turf color meter measures reflected light from the turfgrass in the red 

(660 nm) and near infrared (780 nm -NIR) spectral bands conducted with a chlorophyll 

meter to determine normalized difference vegetative index (NDVI) (TCM NDVI 

Manual). Chlorophyll absorbs the red band (660 nm) of incoming radiation and the 

reflectance at that wavelength is relatively low due to the strong absorption of the light by 

the plant pigments (TCM NDVI Manual). The high reflectance in the NIR (850nm) band 

is caused by the cellular structure of the plant leaves, particularly the spongy mesophyll 

leaf structure (TCM NDVI Manual). 

One core from each plot was taken with a lever action hole cutter (Par Aide Pro; 

Lino Lakes, MN) to utilize in gas chromatograph and spectrophotometer TNC analysis. 

Cores measured 9 cm wide by 25.4 cm deep. Sand rootzone was removed by dipping the 

cores into a bucket of water and shaking gently. Roots were separated from the washed 

cores using a knife then each sample was wrapped in aluminum foil and immediately 

frozen in liquid nitrogen.   

An additional nine cores (2 cm diameter by 25 cm deep), were taken from each 

plot using a Core Profile Sampler (Standard Golf Company, Cedar Falls, IA) to 

determine total dry mass for TNC analysis. Sand rootzone was removed by dipping the 

cores into a bucket of water and shaking gently. Roots were separated from the washed 

cores using a knife then each sample was wrapped in aluminum foil and immediately 

frozen in liquid nitrogen.  
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In 2006, total nonstructural carbohydrate and individual carbohydrate analysis 

was done with a spectrophotometer and gas chromatograph, respectively. TNC levels 

were acquired through carbohydrate extraction, derivatization, and analysis. The storage 

carbohydrates were extracted and analyzed by standard methods.  Soluble carbohydrates 

were extracted 3X in 70% ethanol and analyzed using a modified phenol-sulfuric acid 

procedure (Dubois et al., 1962).   Starch in the residual pellet was analyzed using a 

procedure only slightly modified from that of Keller and Loescher (1989) which was 

derived in part from Ebell (1969). This digestion process is with amyloglucosidase and 

glucose for analysis via glucose oxidase and peroxidase reactions (Sigma procedure 

GAGO20; or Bergmeyer and Bernt, 1974). Plant tissue analysis for the phenol-sulfuric 

acid method and starch analysis was done with a BioSpec-1601 spectrophotometer 

system (Shimadzu Scientific Instruments; Columbia, MD). An Agilent 6850 Series II gas 

chromatograph (Quantum Analytics, Inc.; Foster City, CA) was used for analysis.  

CO2 levels were monitored throughout the 2006 and 2007 treatment sessions 

(Figures A-1, A-2, and A-3, respectively)). Temperature data was collected throughout 

the 2006 treatment session and shown next to nearby experiment station data (Figure A-

6). Temperature data was collected for session one and session two for the 2007 

treatment sessions and shown next to nearby experiment station data (Figure A-7 and 

Figure A-8, respectively). 

Statistical analysis for TNC levels and NDVI levels was completed with mixed 

model ANOVA and LSD means separation, on a completely random design (CRD) using 
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Statistical Analysis Software (SAS), version 9.1, 2003 SAS Institute Inc., Cary, NC, 

USA.   

RESULTS 

CO2 levels for the 2006 and 2007 treatment sessions (Figures A-1, A-2, and A-3, 

respectively) were interesting in that overall CO2 ambient averages were nearly 90 ppm 

higher for 2007. 2006 treatment levels for ambient, medium and high averaged 363, 692 

and 891ppm CO2, respectively. 2007 treatment levels for ambient, medium and high 

averaged 451, 716 and 1076ppm CO2, respectively. Treatment levels for 2007 were 

adjusted based on the initial findings of higher ambient levels. No explanation for such 

variation in an identical location has been concluded to be the cause other than inter-

annual variation. Daily readings were highest in the mornings and fell as the day went on 

but no exact trend was identified as to an hourly loss of atmospheric CO2. 

Temperature data collected throughout the 2006 treatment session (Figure A-6) 

was consistent in the experiment location to that of nearby experiment station data 

showing no significant differences that could explain our results. The same was the case 

with temperature data collected for session one and session two for the 2007 treatment 

sessions (Figures A-7 and A-8, respectively). 

For 2006, total nonstructural carbohydrate levels for shoots and roots showed no 

significance for any level of CO2 (Table B-1). 2006 average TNC for shoots were 24.8, 

20.1, and 28.5 mg g-1 of tissue for the 363, 692, and 891 ppm CO2 levels, respectively. 

2006 average TNC for roots were 13.5, 13.5, and 15.6 mg g-1 of tissue for the 363, 692, 

and 891 ppm CO2 levels, respectively.  In 2006, values could not be measured for random 
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plot samples therefore there is no statistical analysis from the gas chromatograph. The 

simpler starch analysis (spectrophotometer) was determined to be adequate, and therefore 

the GC analysis was omitted for 2007. For 2006, NDVI analysis showed no significant 

differences of green index measurements (Table B-2). Also for 2006 NDVI, no 

significance occurred between treatment measurements at 7:30 AM and 12:00PM. 2006 

average NDVI for 7:30 AM were 7.2, 7.3, and 7.3 for the 363, 692, and 891 ppm CO2 

levels, respectively (Figure A-10). 2006 average NDVI for 12:00 PM were 6.9, 7.0, and 

7.0 for the 363, 692, and 891 ppm CO2 levels, respectively (Figure A-10). 2006 mean 

pooled ash weights for shoot and root samples utilized in analysis processes are 

referenced in Table B-5. 

2007 analysis for session one was unable to be performed because several plots 

died from water deficit and high temperatures as a result of human error (Figure A-9). 

For 2007 session two, total nonstructural carbohydrate levels for shoots and roots showed 

no significance for any level of CO2 (Table B-3). 2007 average TNC for shoots were 

25.6, 18.9, and 23.1 mg g-1 of tissue for the 451, 716, and 1076 ppm CO2 levels, 

respectively. 2007 average TNC for roots were 12.2, 15.3, and 14.1 mg g-1 of tissue for 

the 451, 716, and 1076 ppm CO2 levels, respectively. TNC analysis was conducted using 

a phenol-sulfuric acid colorimetric method for two sets of sub-samples of shoots and 

roots. For 2007, NDVI analysis showed no significant differences of green index 

measurements for (Table B-4). Also for 2007 NDVI, no significance occurred between 

treatment measurements at 7:30 AM and 12:00PM. 2007 average NDVI for 7:30 AM 

were 7.9, 8.0, and 8.0 for the 451, 716, and 1076 ppm CO2 levels, respectively (Figure A-
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11). 2007 average NDVI for 12:00 PM were 7.9, 7.9, and 7.9 for the 451, 716, and 1076 

ppm CO2 levels, respectively (Figure A-11). 2007 mean pooled ash weights for shoot and 

root samples utilized in analysis processes are referenced in Table B-5. 

All results were analyzed at 0.05 probability level within SAS 9.1.  No incidence 

of disease or visual quality differences among treatments or locations occurred.  

DISCUSSION 

The lack of statistical difference for TNC during the 2006 session was determined 

to be a result of insufficient air flow (Flore, 2006). Temperatures within chambers 

consistently compared to the highest daily East Tennessee Research Station values, which 

subsequently may have affected photosynthesis (Figure A-6). During the 2006 session 

excessive condensation accumulated on the inside of the Mylar® chambers indicating 

insufficient air flow; thus, subsequent conditions favored photorespiration and potentially 

lowered levels of photosynthesis by disallowing light to the turfgrass canopy (Flore, 

2006). A decrease in turf quality determined by NDVI readings was expected over the 

study period. NDVI measurements of 6 or greater indicate adequate turf quality. 

However, NDVI analysis showed no significance at any CO2 level (Figure A-10). 2007 

NDVI analysis, showed no significance at any CO2 level (Figure A-11). Also, no 

significance was found between early morning measurements and subsequent daily 

measurements for NDVI.  

Statistically, no significant difference occurred among CO2 treatments. 

Throughout 2006, the lack of significance was believed to be a result of not enough air 

flow causing a build-up of condensation within the chambers (Figure A-12). 
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Condensation was prevented for 2007 sessions by increasing the air flow (Figure A-13). 

The first session of 2007 was unsuccessful when several plots died over a weekend from 

neglect due to researcher miscommunication (Figure A-14).  

2007 session two results determined that the CO2 enrichment was unable to 

compensate for the effects of indirect heat stress, potentially because other mechanical 

stresses such as frequent and low mowing added too much physiological stress. Previous 

FACE studies with CO2 enrichment was shown to increase TNC in cool season grasses; 

however, it was un-mown perennial ryegrass grown in optimal temperatures. Possible 

studies could be done to investigate CO2 enrichment on creeping bentgrass under optimal 

temperatures or un-mown during indirect heat stress. However, it was the goal of this 

study to evaluate the effects of CO2 enrichment under actual putting green conditions. 

Putting greens are generally in a state of luxury consumption, in which all necessary 

nutrients and adequate water are provided to the plant. The only limiting factor 

hypothesized was levels of CO2 in the ambient atmosphere. The levels of CO2 treatments 

were determined upon ambient levels as a standard, double ambient levels as our 

hypothetically most advantageous level and nearly triple ambient levels to possibly 

curtail or negate any advantage of CO2 fertilization. While the perennial ryegrass studies 

show the benefits of CO2 enrichment, they would not represent actual creeping bentgrass 

putting greens for golf courses.  

Additionally, CO2 enrichment periods may have been not long enough to provide 

differences. As was previously mentioned, high levels of CO2 contribute to stomatal 

closure (Drake et al., 1997). Therefore, coupled with high temperatures, treatments 
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receiving elevated CO2 may have closed their stomates sooner and photorespiration may 

have initiated sooner than in ambient treatments which may have offset any potential 

benefits being found statistically. Again, previous FACE studies on un-mown cool season 

grasses were under continuous CO2 regimes. A pasture grass, Austrodanthonia caespitosa, 

showed inhibited growth when grown at an elevated CO2 level of 550ppm (Williams et 

al., 2007). Ambient CO2 levels in 2007 averaged 450 ppm (90 ppm higher than 2006) 

possibly because of urban pollution and/or seasonal climatic differences; regardless, the 

elevated ambient CO2 levels may have been enough to offset the statistical significance 

of CO2 treatments.  

Additionally, several studies have recently shown non-successful attempts at 

enrichment with CO2 in various other grass species. In a study involving Pascopyrum 

smithii (C3 semi-arid grass), carboxylation/ rubisco regeneration reduced in elevated CO2 

to the point that the assimilation rate was similar in ambient vs. elevated treatments when 

adequate soil moisture was present (Lecain et al., 2003). Golf course greens are generally 

kept at adequate soil moisture levels throughout the summer months by managers with 

irrigation regimes which in this case may have contributed to no significant results. While 

elevated CO2 increased photosynthesis and biomass production in C3 grasses, there was 

observed decreases in stomatal conductance and transpiration rates (Kimball et al., 2002). 

This study feeds the notion that there may have been negative affects on the turf stand 

that off-set any potential benefit of the daily enrichment period from the treatments. 

Another study showed that elevated CO2 increased net primary production (NPP) of dry 

matter (g m-2 year) but suppressed root allocation that decreased positive effects of 
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precipitation and nitrogen (Shaw et al., 2002). Again, sufficient N and H2O are common 

cultural practices carried out on golf course putting greens throughout the year. Finally, 

sampling error may have contributed to the lack of CO2 treatment differences in TNC. 

For instance, the rinsing step and time of day (high temperature) before putting the 

sample in liquid nitrogen may have altered TNC levels because of varying cellular 

respiration rates.  

CONCLUSIONS 

This was an unsuccessful attempt at improving creeping bentgrass (Agrostis 

stolonifera L.) response to indirect heat stress with elevated levels of CO2. 

Superintendents managing creeping bentgrass on putting greens in locations where 

indirect heat stress is an issue, at this time, can not consider elevated CO2 to improve turf 

quality.  However, this research warrants further investigations in creeping bentgrass 

putting green management during indirect heat stress periods to fully understand the turf 

quality differences in regards to high temperatures and CO2 assimilation. 
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Figure A-1: Average CO2 levels for the summer of 2006 treatment period at 
Knoxville, TN; 17 July- 20 August, 2006. 
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Figure A-2: Average CO2 levels for the summer of 2007 session one treatment 
period at Knoxville, TN. 25 June- 19 July, 2007. 
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Figure A-3: Average CO2 levels for the summer of 2007 session two treatment 
period at Knoxville, TN. 27 July- 20 August, 2007. 
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Figure A-4: 2006 delivery system at Knoxville, TN; 17 July- 20 August, 2006. 
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Figure A-5: 2007 delivery system at Knoxville, TN. 25 June- 20 August, 2007. 
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2006 Temperature data
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Figure A-6: Regional highs and lows for the 24-hour period (depicted by bars), and observed temperatures within 
chambers (depicted by three lines for varying times) at Knoxville, TN; 17 July- 20 August, 2006. 
* Regional data taken from East Tennessee Research Experiment Center (ETREC)  
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2007 Session one Temperature data
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Figure A-7: Regional highs and lows for the 24-hour period (depicted by bars), and 
observed temperatures within chambers (depicted by three lines for varying times) 
at Knoxville, TN; 25 June- 19 July, 2007.  
* Regional data taken from East Tennessee Research Experiment Center (ETREC)  
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2007 Session two Temperature data
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Figure A-8: Regional highs and lows for the 24-hour period (depicted by bars), and 
observed temperatures within chambers (depicted by three lines for varying times) 
at Knoxville, TN; 27 July- 20 August, 2007. 
* Regional data taken from East Tennessee Research Experiment Center (ETREC)  
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Figure A-9: Loss of 2007 session one data due to necrosis from water deficit and a 
severe humidity drop at Knoxville, TN. 25 June- 19 July, 2007. 
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2006 NDVI Measurement of reflected light from turfgrass 
in the red (660 nm) and near infrared (780 nm -NIR)

0

1

2

3

4

5

6

7

8

Ambient (363 ppm) Medium (691 ppm) High (890 ppm)

Treatment

G
re

en
 In

de
x 

(N
D

V
I 1

-9
)

7:30 AM
12:00 PM

 
Figure A-10: Effect of elevated CO2 treatments on NDVI (green index) for creeping 
bentgrass (Agrostis stolonifera L.) at Knoxville, TN; 17 July- 20 August, 2006. No 
significant differences occurred across all averaged treatment levels. Analyzed with 
mixed model ANOVA. LSD means separation shown (P<0.05). 
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2007* NDVI Measurement of reflected light from turfgrass in the red 
(660 nm) and near infrared (780 nm -NIR)
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Figure A-11: Figure A-3: Effect of elevated CO2 treatments on NDVI (green index) 
for creeping bentgrass (Agrostis stolonifera L.) at Knoxville, TN. 27 July- 20 
August, 2007. No significant differences occurred across all averaged treatment 
levels. Analyzed with mixed model ANOVA. LSD means separation shown (P<0.05). 
*Data obtained from session two of treatments within 2007 
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Figure A-12: Condensation observed within chambers deemed to be from too little 
air flow at Knoxville, TN; 17 July- 20 August, 2006. 
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Figure A-13: No condensation observed within 2007 chambers due to adequate air 
flow at Knoxville, TN. 25 June- 20 August, 2007. 
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Figure A-14: Loss of several plots within session one of 2007 caused the treatments 
to be halted and data analysis loss at Knoxville, TN. 25 June- 19 July, 2007. 
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Table B-1: Means of 2006 total nonstructural soluble carbohydrate analysis of 
samples with spectrophotometer (NIR at 540 nm) and gas chromatograph 
at Knoxville, TN. 17 July- 20 August, 2006. 

Treatment†   TNC‡ Shoots (mg)   TNC Roots (mg)   
Ambient  24.858  13.504  
Medium  20.062  13.504  

High  28.539  15.604  
LSD(0.05)  NS§  NS  

† = Avg: Ambient, Medium, and High (363, 692, and 891 ppm CO2, respectively).  
‡ = Total nonstructural carbohydrates expressed as an average (mg g-1 of tissue). 
§ = Means not significant at 0.05 probability level using mixed model analysis of 
variation for a completely random design (yij = µ + Ti + (T)ij); SAS 9.1, 2003 SAS 
Institute Inc., Cary, NC, USA. 
 
 
 
 
Table B-2: Means§ of 2006 normalized difference vegetative index‡ at Knoxville, TN. 

17 July- 20 August, 2006. 
Treatment†  7:30AM  12:00PM   

Ambient  7.2384 B  6.9624 B  
Medium  7.251 AB  7.0254 A  

High  7.277 A  7.0416 A  
LSD(0.05)      

† = Avg: Ambient, Medium, and High (363, 692, and 891 ppm CO2, respectively). 
‡ = Normalized difference vegetative index (NDVI = NIR – Red/ NIR + Red; whereas, 
NIR = Reflectance in the band of 850 +/- 5 nm and Red = Reflectance in the band of 660 
+/- 5 nm). 
§ Means followed by the same letter do not significantly differ at the 0.05 probability 
level using mixed model analysis of variation for a completely random design (yij = µ + 
Ti + (T)ij); SAS 9.1, 2003 SAS Institute Inc., Cary, NC, USA.
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Table B-3: Means of 2007 total nonstructural soluble carbohydrate analysis of 
samples with spectrophotometer (NIR at 540 nm) and phenol-sulfuric 
assay for session two treatment period at Knoxville, TN. 27 July- 20 
August, 2007. 

Treatment†  TNC‡ Shoots (mg) TNC Roots (mg)   
Ambient  25.638 12.197  
Medium  18.850 15.341  

High  23.078 14.114  
LSD(0.05)  NS§ NS  

† = Avg: Ambient, Medium, and High (451, 716, and 1076 ppm CO2, respectively).  
‡ = Total nonstructural carbohydrates expressed as an average (mg g-1 of tissue). 
§ = Means not significant at 0.05 probability level using mixed model analysis of 
variation for a completely random design (yij = µ + Ti + (T)ij); SAS 9.1, 2003 SAS 
Institute Inc., Cary, NC, USA. 
 
 
 
 
 
 
Table B-4: Means§ of 2007 normalized difference vegetative index‡ for session two 

treatment period at Knoxville, TN. 27 July- 20 August, 2007. 
Treatment†  NDVI 7:30AM  NDVI 12:00PM   

Ambient  7.9962   7.8773  
Medium  8.0035  7.9162  

High  8.0197  7.9146  
LSD (0.05)  NS  NS  

† = Avg: Ambient, Medium, and High (451, 716, and 1076 ppm CO2, respectively). 
‡ = Normalized difference vegetative index (NDVI = NIR – Red/ NIR + Red; whereas, 
NIR = Reflectance in the band of 850 +/- 5 nm and Red = Reflectance in the band of 660 
+/- 5 nm). 
§ Means do not significantly differ at the 0.05 probability level using mixed model 
analysis of variation for a completely random design (yij = µ + Ti + (T)ij); SAS 9.1, 2003 
SAS Institute Inc., Cary, NC, USA. 
 
 
 
Table B-5: Means for pooled ash weights of shoots and roots at Knoxville, TN. 17 

July, 2006- 20 August, 2007.  
Sample  2006 Ash weight (g)  2007 Ash weight (g)   
Shoots  7.96  8.49  

   Roots                          3.09                                     4.38 
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