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Abstract 

 
Charged particle accelerators use various vacuum windows on their accelerating RF 

cavities to pass very high RF power through for the acceleration of particles. The 

accelerating cavities and the windows should be cleaned, baked and fully RF conditioned 

to eliminate poor vacuum caused by outgassing and other contamination. The linear 

accelerator (Linac) in the Spallation Neutron Source (SNS) contains various accelerating 

cavity structures and RF conditioning of their high power vacuum windows is necessary 

for present work as well as future upgrade and development. An example is the coaxial 

fundamental power coupler (FPC) with an annular alumina ceramic window for each of 

the 81 superconducting RF cavities in the SNS Linac. The FPC’s need to be tested up to 

650 kW peak in traveling wave and 2.6 MW in standing wave in 1.3 microsecond 60 

pulses per second RF. 805 MHz, 550-kW klystrons (700 kW maximum) are the main 

power source of the superconducting Linac and the conditioning power source of the 

FPC’s. The conditioning process has to be controlled very carefully not to damage the 

window; with the high power RF the initial vacuum is unpredictable and any unsafe 

vacuum level can damage the high quality ceramic windows. In this thesis, an 

Experimental Physics and Industrial Control System (EPICS) controlled RF conditioning 

system for the SNS RF Test Facility (RFTF) has been presented. Various RF and control 

instruments are integrated through the EPICS system on Linux platform to measure and 

to control the vacuum and the RF power while monitoring electron emission and 

unwanted arcing during the conditioning. Monitoring arcing at the window and flow and 



 vi

temperature of cooling water in high power RF load and ceramic window is necessary to 

interlock the RF not to have any kind of undesirable operation condition. The interlock 

system has been designed by using the Programmable Logic Controller (PLC) and an RF 

switch with microseconds response time. Usually the whole conditioning process takes 

several days, so it is necessary to get the flexibility to control, monitor, and archive the 

system operation remotely along with good upgradeability. To get these advantages in 

EPICS, VXI/VME based Input and Output Controller (IOC)s are used for controlling and 

monitoring the RF conditioning system. This thesis summarizes all the hardware and 

software design strategies, provides the results obtained so far at room temperature and 

describes the future research scope. 
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Chapter I 

 

Introduction 

1.1 Background 

Radio Frequency (RF) Linear Accelerators (Linac) have been accelerating the electrons 

or ions up to an energy level of several hundred GeVs through accelerating RF cavities. 

To supply the energy to the charged particle beam a large amount of RF power needs to 

be coupled into the accelerating cavity structure. High power klystron amplifiers are 

widely used for the generation of the required RF power for the accelerator. Furthermore, 

waveguides and couplers are used to supply the RF power from the klystron to the 

cavities. The accelerating cavities and the klystron amplifiers maintain vacuum inside 

their structures, while the waveguides and couplers’ airside pressures are typically that of 

the ambient environment. RF windows are used in the waveguides to separate the 

atmospheric pressure from the vacuum in the accelerator and the vacuum of the klystron. 

Ceramic windows are mostly used to pass large amounts of RF power with minimal loss. 

RF windows can usually be constructed in a hollow waveguide or a coaxial transmission 

line for both normal-conducting and superconducting cavities. Figure 1.1 shows a 

simplified diagram of the RF power transmission from the klystron to the accelerator. 



Beam Line

Klystron
Amplifier

Accelerator

RF Window

RF Window

Waveguide

Power
Coupler

 

Figure 1.1: RF power transmission from the klystron to the accelerator. 

 

Since the accelerating cavities operate under very high vacuum it is clear that the RF 

windows are very important to maintain the high vacuum and to transfer the high RF 

power. However, it is well known that these RF windows are the most likely part of an 

input power coupler to suffer catastrophic failure with window cracking or metal 

sputtering. This failure mostly occurs due to the severe arcing inside the structure when 

high RF power is applied prematurely under poor vacuum. Window failure may occur 

due to thermal stress and slight degradations in window RF performance may result due 

to large temperature gradients. It is been known that the RF windows can be conditioned 

with high RF power to the maximum performance before assembled to the clean 

accelerating cavities or klystron cavities. If proper conditioning under well-controlled 
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conditions is omitted, the windows can be permanently damaged.  Figure 1.2 shows an 

RF window for the rectangular waveguide designed by Thomson Electron Devices [1]. 

1.2 Problem Statement 

RF conditioning of the windows is one of the most important tasks to be done before 

placing it to the cavities. A number of research laboratories are working on in this field to 

develop a reliable conditioning system. Three important needs are identified for the RF 

conditioning process: first, the need for a high speed interlocking system, which can 

interlock the RF power as fast as possible during the arcing and other abnormal situation 

to avoid the damage of the RF windows; second, the need for a fully automated 

conditioning control system, with less human operations; and third, the need for 

conditioning and archiving test data with remote connectivity. 

 

 

Figure 1.2:  A schematic of a RF waveguide window [1]. 
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EPICS was originally developed by Los Alamos National Laboratory (LANL) and 

Argonne National Laboratory (ANL) jointly in early 90’s [30]. It is a set of software 

components and tools that application developers use to build distributed control system 

for Particle Accelerators, Large Experiments and major Telescopes. Such distributed 

control systems typically comprise tens or even hundreds of computers, PLCs, 

Instruments and Devices networked together to allow communication between them and 

to provide control and feedback of the various parts of the device from a central control 

room, or even remotely over the internet. All big laboratories in USA and other countries 

such as Australia, Japan, Germany, and UK are using EPICS to control their large 

machines. Now-a-days many private companies are also using EPICS for its flexibility 

and reliability and open source features. This is the reason to develop the RF conditioning 

system that can be EPICS based and integrated to the main control system of the SNS. 

1.3 Research Objectives 

The objectives of the current research are – (i) to study the existing RF conditioning 

processes and to define the problems, (ii) to design a reliable RF conditioning system 

using available resources, (iii) to implement the conditioning process with hardware and 

to select and setup all the instruments, (iv) to implement a complete control software in 

EPICS environment with good operator interfaces and remote control ability, (v) to 

evaluate the performance of the designed RF conditioning system for the RF windows. 
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1.4 Outline of the Thesis 

The research described in this thesis seeks to develop a new RF conditioning system to 

process the RF windows. The design, development, operation, tests and analysis of the 

proposed RF conditioning system have been presented in six chapters. Chapter I 

discusses the background of the RF conditioning process and also current research trends. 

 

Chapter II presents an overview of the SNS project in ORNL, basic descriptions of the 

Linac, Superconducting cavities and Power couplers. This chapter also describes the 

techniques for the RF conditioning process and presents the current research in this field.  

 

In Chapter III, the description of the proposed RF conditioning system and hardware 

design approaches has been given. This chapter also presents the basic operation, setup 

and wiring of some key instruments. 

 

Chapter IV presents the design and development of the control system software in EPICS 

for the RF conditioning process. The description of the basic software tools, which has 

been used to automate the RF conditioning process, has been presented also. 

 

Chapter V provides the operation, results and analysis of the proposed RF conditioning 

system.  
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The conclusions of the thesis are drawn in Chapter VI and some recommendations for the 

future research works are discussed. 

 

At the end, a list of references is attached which has been used for designing the proposed 

RF conditioning process and the vita of the author has been attached also.  
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Chapter II 

Literature Review 

This chapter presents the overview of the Spallation Neutron Source (SNS) project in 

Oak Ridge National Laboratory (ORNL) and it also provides the basic description of the 

Linear Accelerator (Linac), superconducting cavity, and power couplers used in this 

project. Furthermore, the definition, description and the need of the RF Conditioning 

Process are given at the last section of this chapter. 

2.1 Spallation Neutron Source (SNS) 

As neutrons has no charge, so they can be penetrated more deeply into materials than X-

rays, light, or electrons and thus revealed the bulk structures and properties of materials.  

The superior ability of neutrons to determine where atoms are and how they move make 

them an important tool for physics, chemistry, biology, materials science, and 

engineering. So, the future research in these fields is depending on a high quality neutron 

source. The neutron sources are mainly two types – such as reactor-based, which supplies 

steady state or continuous sources of neutrons and accelerator-based, which is the source 

for pulsed neutrons. For many research problems of interest, having neutrons available in 

a series of intense pulses is better than having a continuous neutron source. Accelerators 

can produce neutron pulses with a much higher intensity than that available from 

continuous sources. SNS is a new, accelerator-based science facility that will provide 
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neutron beams with up to ten times more intensity than any other such source in the 

world. SNS is being designed and constructed by a partnership of six U.S. Department of 

Energy (DOE) national laboratories (Argonne, Brookhaven, Jefferson, Lawrence 

Berkeley, Los Alamos, and Oak Ridge). ORNL in Tennessee is responsible for the civil 

construction, project management, design integration, and ultimately for operating the 

SNS. The other participating laboratories are responsible for design and construction of 

major technical subsystems that make up the facility [2].  

 

The basic theory behind the SNS is - when a high-energy proton bombards a heavy 

atomic nucleus, such as mercury then some of the neutrons are "spalled," or knocked out, 

in a nuclear reaction process called spallation. Other neutrons are "boiled off" as the 

bombarded nucleus heats up. It's something like throwing a baseball at a bucket of balls, 

resulting in a few being immediately ejected and many more bouncing around and falling 

out. For every proton striking the nucleus, 20 to 30 neutrons are expelled. In the SNS 

project, negatively charged hydrogen ions (H-), each of which consists of a proton orbited 

by two electrons, are produced by an ion source. These ions are injected into a linear 

accelerator, which accelerates them to very high energies. The ions are passed through a 

foil, which strips off each ion's two electrons, converting it to a proton. The protons pass 

into a ring where they accumulate in bunches. Each bunch of protons is released from the 

ring as a pulse. The high-energy proton pulses strike a heavy-metal target, which is a 

container of liquid mercury. Corresponding pulses of neutrons freed by the spallation 

process will be slowed down in a moderator and guided through beam lines to areas 



containing special instruments. Neutrons of different energies can be extracted and be 

used in a wide variety of experiments [3]. 

 

The map of the SNS Project has been shown in the Figure 2.1. In the Front End building 

H- ions has been produced and sent it to the Linac Tunnel for the acceleration. Klystron 

building contains all the klystron amplifiers and other RF power sources for the Linac. 

After accumulating all the ions in the Ring they have been sent to the Target building for 

the production of neutrons. The Linac is mainly responsible for the acceleration of the 

neutrons and this is energized by the RF power. This thesis has been focused on the RF 

Conditioning Process of the window/couplers, which are the part of this Linac. The next 

section of this chapter describes how Linac accelerates the ions, general description of the 

Linac and basic structure and operation of the SNS Linac. 

 

 

Figure 2.1:  Spallation neutron source (SNS) in ORNL [2]. 
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2.2 Linear Accelerator (Linac) 

In 1927, R. Wideroe demonstrated the first RF linear accelerator at Aachen, Germany. He 

showed that electrons could be accelerated through a tube by applying a RF voltage to 

separated sections of the tube so that the electrons felt an accelerating electric field when 

they passed the gap. If it was arranged so that the electrons arrived at the next gap at the 

right phase of the RF voltage, they would be accelerated again, getting double the energy 

they would have gotten from just the application of the maximum field of the RF. The 

linear particle accelerator is a long linear array of accelerating "cells" powered by a RF 

source in the megawatt power range and in the gigahertz frequency range. [4].  

 

A main advantage of the Linac is its capability for producing high-energy, high-intensity 

charged-particle beams of high beam quality, where high beam quality can be related to a 

capacity for producing a small beam diameter and small energy spread. Other attractive 

characteristics of the Linac include the following points. 

• Strong focusing can easily be provided to confine a high-intensity beam. 

• Because the beam travels in a straight line, so power loss is minimum. 

• Injection and extraction of the beam are simple.  

• The Linac can be operated at any duty factor, all the way to 100% duty or a 

continuous wave, which results in acceleration of beams with high average 

current. 



2.2.1 Overview of Linac Structures 

In Figure 2.2, a simplified block diagram shows a Linac structure with accelerating 

cavities and focusing magnets, and supplied with electromagnetic energy by an RF Power 

system. Beam is injected from a DC injector system. A vacuum system is required for 

good beam transmission. Electrical power is used primarily by the RF power system. A 

cooling system (Water for normal-conducting Linacs and liquid helium for 

superconducting Linacs) removes the heat generated by the resistive-wall losses. Because 

the Linac uses a sinusoidally varying electric field for acceleration, particles can either 

gain or lose energy, depending on the beam phase relative to the crest of the wave. To 

provide efficient acceleration for all the particles, the beam must be bunched as shown in 

Figure 2.3. The bunches may be separated longitudinally by one or more RF periods [5]. 

 

DC Particle
Injector

Linac Structure
( Accelerating Cavities and Focusing Magnets)

RF Control System

Klystron RF Power
System

Electric Power
System

Vacuum
System

Cooling
System

Input
Beam

Output
Beam

 

 

Figure 2.2: Simplified block diagram of Linac [5]. 
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Beam bunch

Accelerating
Field

 

Figure 2.3: Beam bunches in an RF Linac [5]. 

 

It has been already mentioned that the RF power is used to accelerate the particles. To 

understand how this power is used to accelerate the particles, let’s assume a simple 

pillbox cavity with a single accelerating gap. In the Figure 2.4 the electric field within 

this pillbox has been shown. The length of the arrows represents the magnitude of the 

electric field, and it has been shown that the largest electric field is in the center of the 

cavity.  The electric fields oscillate at the resonance frequency of the structure. The force 

(in Newtons) on the particle is represented by Equation 2.1. 

 

F=qE                                                                          (2.1) 

Where, q is the charge of the particle, 1.60X10-19 Coulombs and E is the electric field in 

the cavity. Electric field is sinusoidally varying and a forward force accelerating the 

particles along the Linac at the positive peak.  However, when the electric field is 

negative, the particles are traveling in a shielded ‘drift’ space between cavities so the  
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Particle
Beam Line

 

Figure 2.4: The electric field in a pillbox cavity [6]. 

 

particles are never be exposed to a reverse force. Thus, the particles are accelerated by 

the oscillating electric fields and absorb energy from the cavities. RF power is coupled 

into the accelerating structures to accelerate the particles and it is generated by klystrons. 

Electromagnetic RF waves are transmitted to the accelerator through waveguides and 

couplers. One klystron provides the RF power to a small section of the accelerating 

structure; therefore many klystrons are required to provide the RF power to a large scale 

accelerator [6]. 

2.2.2 SNS Linac 

The SNS Linac is a pulsed proton Linac and the RF system of this Linac must support a 1 

msec beam pulse at up to a 60 Hz repetition rate.  The Linac consists of Radio Frequency 

Quadrupole (RFQ), Drift Tube Linac (DTL), Coupled Cavity Linac (CCL), a medium 

 13



(β=0.61) and high beta (β=0.81) superconducting RF (SRF) Linac, and two buncher 

cavities for transporting beam to the ring .  Pulsed RF Power is supplied to the RFQ and 

DTL by using seven 2.5 MW Klystrons of 402.5 MHz. These accelerating structures are 

followed by four CCL cavities. A single, pulsed, 5 MW, 805 MHz klystron provides 

power to each CCL cavity. The power from the klystron is split, and the cavity is driven 

through two RF windows. The CCL cavities are followed by eighty-one SRF cavities and 

each cavity is driven by a pulsed 550 kW klystron [7]. Figure 2.5 shows the SNS Linac 

with RF system partitioning.  The SRF Linac section occupies more than two third of the 

Linac. Although all vacuum components require high quality cleaning and preparation, 

the SRF component are subject to even more stringent requirements. 

 

The primary function of the front-end system is to produce a beam of H- ions to be 

injected into the Linac at 2.5 M eV. Here the RFQ bunches and captures a beam injected  

 

 

Figure 2.5:  SNS Linac with RF system partitioning [7]. 
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from the ion source, and then accelerates the beam to high-enough energies for injection 

into the DTL. The overall result is a significant increase in the focusing strength at low 

velocities, which enables acceleration of higher-current beams in Linac. In the SNS 

Linac, DTL accelerates the beam from 2.5 to 25 MeV, CCL further accelerates beam to 

186 MeV, and SRF accelerates beam to its final value of 1.0 GeV [8].   

 

SNS Linac is operated by pulsed RF power instead of Continuous Wave (CW) operation. 

If the accelerated beam current is small, most of the power in CW operation is not 

delivered to the beam but is dissipated in the structure walls. Instead, if the accelerator is 

operated pulsed, and the current per RF bucket is increased while maintaining the same 

average beam current, a larger fractional power is delivered to the beam and the 

efficiency is improved. The whole system is computer controlled with EPICS 

environment. 

2.3 Superconducting RF Cavities in the Linac 

An electromagnetic cavity resonating at a microwave frequency, which imparts energy to 

the charged particles, is a key component of the modern particle accelerators. Consider 

first the case of a charged particle moving at nearly the velocity (v) of light (β=v/c ≅ 1). 

As it traverses the half-wavelength (λ/2) accelerating gap in half a RF period, it sees the 

electric field pointing in the same direction for continuous acceleration.  Figure 2.6(a) to 

(c) shows the evolution of the typical superconducting accelerating structure for a 

velocity-of-light particle [9].  



 

 

 

Figure 2.6: Evolution of typical SRF cavities for the accelerators. 

(a) A cylindrical pill-box cavity, with beam holes and beam pipes, resonating in the 

TM010 mode for which the electric field is maximum on the axis. (b) As cylindrical shape 

is unsuitable for superconducting cavities because of multipacting so, rounding   the 

curved wall eliminates the problem.  (c) The typical accelerating structures consist of a 

chain of cavities. There are ports on the beam tubes to bring RF power in to establish the 

fields and to deliver power to the beam. There are additional ports for removing power 

induced by the beam in the higher-order resonant modes of the cavity [9]. 
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The two most salient characteristics of a superconducting accelerating cavity are its high 

average accelerating field, Eacc, and the high quality factor Q0, which is the intrinsic Q of 

the resonant cavity. The quality factor is a universal figure of merit for resonators and is 

defined in the usual manner as the ratio of the energy stored in the cavity (U) to energy 

lost (Pc) in one RF period. It measures the number of oscillations a resonator will go 

through before dissipating its stored energy. The Q0 depends on the microwave surface 

resistance of the metal. Since the power dissipation in the walls of a copper structure is 

substantial so the superconductivity is highly desirable to build the cavities. The 

microwave surface resistance of a superconductor is typically five orders of magnitude 

lower than that of copper, and therefore the Q0 is five orders of magnitude higher.  

 

In the SNS project, two types of superconducting cavities with geometrical β values of 

β=0.61 and β=0.81 are being used. Both types consist of six cells made from high purity 

niobium and feature one High Order Mode (HOM) coupler of the TESLA type on each 

beam pipe and a port for a high power coaxial input coupler.  Eacc=10.1 MV/m and 

Q=5X109 at 2.1 K for the β=0.61 and Eacc=12.5 MV/m and Q=5X109 at 2.1 K for the 

β=0.81 [10]. In the Figure 2.7 the image of the SNS superconducting RF cavities has 

been shown. 

2.4 Input Power Couplers 

The main function of the input power coupler is to transfer RF power from the klystron to 

the cavity and hence the beam. There are two major varieties of input couplers, such as 

hollow waveguide and coaxial. The basic structures of these couplers have been shown in 



 
 

(a) β=0.61 (b) β=0.81 
 

Figure 2.7: Image of the SNS superconducting RF cavities [10]. 

 

the Figures 2.8 to 2.9. In a waveguide coupler the electric field of the RF wave couples to 

the field of the waveguide propagating in the TE01 mode. The length of the shorted 

waveguide stub on the other side of the beam tube can be adjusted to maximize the 

damping of the unwanted higher order modes (HOMs). However, the coaxial coupler is 

compact and suitable for low frequency cavities, and medium HOM power extraction. 

Here the TM011 HOM electric field coupled to a coaxial antenna coupler despite a loop 

can be used at the end of the center conductor to couple to the magnetic field. The detail 

description of these couplers can be found in [9]. The following discussions will focus on 

the coaxial coupler windows to be used with superconducting accelerating cavities. 

2.4.1 Coupler Windows 

The primary role of the window is to protect the cavity vacuum from the atmospheric 

pressure and to transfer the RF power with a very low loss. Usually a warm window, 

located far from the superconducting cavity, is used for the high average power 

application. On the other hand, for the low average power applications (less than 10 kW), 

when window associated RF losses are less of a concern, and then the cold window,  
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Figure 2.8: Basic structure of a hollow 
waveguide coupler [9]. 

Figure 2.9: Basic structure of a coaxial 
coupler [9]. 

located near the cavity, is used. Low thermal conductivity, availability in the needed 

purity and sizes has been made alumina the best material for constructing windows [9].  

2.4.2 Characteristics of the SNS Coupler 

Each of the 805 MHz superconducting cavities of the SNS is powered via a coaxial 

Fundamental Power Coupler (FPC) with a 50 Ω characteristic impedance and a warm 

planar alumina window. The couplers must be able to withstand at least the peak power 

delivered by the SNS klystrons, 550 kW for a 1.3-msec pulse length at a repetition rate of 

60 pulses per seconds (pps) [11]. The parameters of the SNS superconducting cavity 

couplers are shown in the Table 2.1 and Figure 2.10 shows the schematic and the image 

of the SNS power coupler. 

 

 The coupler includes the antenna, coaxial window which is a planar annular disk-type 

made of 95% alumina ceramic, and the waveguide to coaxial transition which has a  
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Table 2.1: Required parameters of the SNS coupler [11]. 

Parameter Operation Processing 
Qext about 7X105 NA 

Impedance 50 Ω 
Peak power 550 kW 1 MW max 
Pulse length 1.3 ms 1.3 + ms 

Repetition rate 60 pps 60 pps max 
Average power 48 kW 60 kW 

Bias ± 2.5 kV ± 2.5 kV 
 

 

  

(a) Schematic of the FPC (b) Window and inner conductor; and outer 
conductor  

 

Figure 2.10: SNS input power coupler [11]. 
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doorknob type impedance matching structure. The transition alone must have good 

impedance matching to assure best performance when integrated with the ceramic 

window. Even a small mechanical change inside the structure can result in a significant 

change in the RF performance. The planar alumina window includes impedance-

matching elements as well as TiN anti-multipacting coating. 

 

Multipacting in the coaxial line and at the window can produce window limitations and 

failures [See more discussion in the section 2.5]. Extensive simulations have been 

performed to study the multipacting behavior of the FPC and the levels and locations 

have been predicted [12]. The FPC includes the possibility of biasing the inner conductor 

via a capacitor gap between the doorknob and the inner conductor itself at variable 

voltages between –2.5 and + 2.5 kV. The gap is filled with Kapton® foil, which is 

capable of withstanding the biasing voltage [13].  So, this capacitor helps to control the 

multipacting during high power conditioning and operation.  

2.5 High Power RF Conditioning 

Multipacting in RF structures is a resonant process with secondary electron emission 

phenomenon in which a large number of electrons build up and collide with structure 

walls, leading to a large temperature rise and eventually causes the thermal breakdown. 

At present, multipacting still damages many types of RF vacuum structures, such as low-

β cavities, couplers, transmission lines, and RF windows [9]. This also plays the most 

important role for damaging the RF windows in the couplers and limiting the maximum 
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peak power by arcing. In addition to multipacting, sometimes the dielectric stresses, 

thermal induced stresses, material imperfections, and ohmic losses also damages the 

windows. However, many of these phenomena may be the result of multipacting. It has 

been known that proper high power conditioning can remove the multipacting and 

associated problems. 

 

So, it is essential for the RF window to be conditioned with high RF power before 

attaching the assembly to the cavity. The goals of the conditioning are to increase the 

amount of the RF power through the window while maintaining good vacuum and 

limiting arcs. During conditioning it is important to ensure nonlinear heating, a sign of 

multipacting, does not occur. The goal is achieved by slowly increasing the RF power 

while waiting for the vacuum pressure to decrease and minimize the arc rate [6].  

2.5.1 Conditioning Methods from the Literature 

A conditioning method called ‘tickle processing’ has been developed by Pisharody, et. al. 

[14].  In this method, 100 micro seconds pulses of 20-50kW are superimposed on top of 

the primary RF pulses, at 1% to 50% duty cycle, as shown in the Figure 2.11(a). This 

shorter RF pulses limit the vacuum bursts and thus improve the efficiency of the 

processing by achieving much swifter progress. By using this method, a power level of 

300 kW CW was obtained in 20 hours at Jefferson Laboratory (JLAB). The highest 

power achieved was 430 kW at 33% duty cycle.  

 

The description of another conditioning method has been found in [15] and [16]. This 



 

 
 

(a) Tickle processing at 400kW [14] (b) Window temperature vs. input power 
[15] [16]. 

 
Figure 2.11: RF conditioning process in the literatures. 

 

process involves recording the window temperature as a function of RF input. The 

window temperature should increase linearly with RF input. A nonlinear increase is an 

indication of multipacting. Figure 2.11(b) shows the graph of this process. The 

multipacting and nonlinear heating may lead to the failure of the window. 

 

Thomas Jefferson National Accelerator Facility (TJNAF) has developed another RF 

conditioning system described in  [17] to condition the SNS FPCs. The control system 

has been designed by using the software LabView from the National Instruments and the 

testing was started in the JLAB with both traveling and standing wave modes. This 

system was transferred to ORNL and has been used extensively to condition all the SNS 

FPCs.  

2.5.2 Brief description of the RF conditioning 
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It has been already mentioned that the RF windows of the couplers should be conditioned 

before placing it for the real operation. Otherwise, it can be damaged due to the severe 



arcing with poor vacuum for the premature application of the RF power. In this section, 

we have summarized the conditioning process, requirements and some results from the 

previous literatures.  

 

The typical setup for the conditioning process is to place two window assemblies back-

to-back so that the RF power enters the vacuum waveguide region through one coupler 

and then exits through the second coupler to a room temperature matched load. Since it is 

difficult to maintain atmospheric pressure on one side and vacuum on the other side of a 

window, this back-to-back construction is useful. Usually the lower sections of these 

couplers are connected with a bridge waveguide and for the smooth transmission of the 

power and to maintain the vacuum. Another advantage of this setup is, two couplers can 

be conditioned together, which will save money and time. Figure 2.12 shows a schematic 

of this setup. 

 

Connecting
Waveguide

Two couplers
back-to-back

Power InputPower Output

Vacuum
Side

Air Side

 

Figure 2.12: Typical setup for the RF conditioning. 
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To avoid any kind of catastrophic window failure it is necessary to use the fast interlock 

during the conditioning stage as well as during normal operation. As an example, if 

arcing occurs during the conditioning process then the input RF power should be turned 

off as fast as possible to protect the window.   So, it is important to have an electron 

pickup probe and arc sensors close to the window to diagnose and protect against arcing 

and multipacting. Moreover, if the vacuum level near the window degrades to above 

5X10-7 mBar, then the RF should be turned off fast to avoid sputtering and coating the 

ceramic with metal or removing the anti-multifactor coating from the window.  

 

During the conditioning the power level should be increased slowly to get the best 

results. Furthermore, the vacuum system should have a high pumping capacity for 

effective conditioning in a reasonable time. Vacuum pressure is usually increased with 

electron activity, glow discharge, and arcing. Moreover, during these events some 

outgasing of various molecules, such as H2, CO2, N2, has been observed. However, pulsed 

power conditioning with short pulses is very useful to limit the outgasing and to limit the 

duration of the arc. 

  

The RF window should be conditioned both for the traveling wave mode and the standing 

wave mode. In traveling wave mode one end of the waveguide, which transfers power, is 

connected with a matched load and during the standing wave mode a short should replace 

this load.  After conditioning, the windows should be kept under vacuum until the coupler 

is ready for attachment to the cavity.  
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Figure 2.13 and 2.14 shows the KEK/Toshiba experience in conditioning cylindrical and 

coaxial windows, and JLAB experience in conditioning the SNS FPCs, respectively. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2.13: KEK/Toshiba experience in conditioning [18]. 

 

 

Figure 2.14: JLAB conditioning experience with SNS FPCs [17]. 
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Chapter III 

Design and Instrumental Setup 

In this chapter the complete instrumental setup, block diagrams, description of the overall 

RF conditioning process, and hardware design approaches are given. We have also 

provided the operational basics, programming structures, cabling and wiring of some key 

instruments.  

3.1 List of Instruments and Devices 

RF Conditioning process is a combination of many state-of-the-art instruments and 

devices from various companies. All of these devices can be operated remotely via RS-

232, RS-485, GPIB, or ETHERNET communications. The main devices for the RF 

conditioning process are – 

1. Programmable Logic Controller (PLC) 

2. Vacuum Gauge Controller (VGC) 

3. Cold Cathode Gauges (CCG) 

4. Signal Generator 

5. Peak Power Meter 

6. Vacuum Pumping Cart 

7. Arc Detector 

8. Fast RF Interlock Switch 
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9. Transmitter Control for the Klystron Amplifier 

10. High Voltage Converter Modulator (HVCM) 

11. Water Cooling System 

12. VXI/ VME based Input Output Controllers (IOC) 

● Vacuum IOC 

● Klystron IOC 

● RF Power IOC 

The description and parameters settings of some key instruments and devices, which fall 

into the scope of this thesis, are given in the section 3.3.   

3.2 Overall System Diagram 

The overall block diagram of the RF Conditioning System is shown in Figure 3.1. During 

the RF conditioning process of high power vacuum components such as cavities, 

couplers, windows, etc, it is necessary to monitor the vacuum quality, arcing, and forward 

and reflected RF power levels. The amplified RF from the klystron amplifier will be 

transmitted to the devices under processing through the waveguide transmission line. 

Between the klystron and a power coupler there are directional couplers to monitor the 

power signal (In this thesis, couplers are used as the devices under conditioning). The RF 

power will be transmitted to another power coupler through a connecting waveguide and 

finally reach the termination that is a water load for traveling wave processing or an 

adjustable short for standing wave processing. Another directional coupler is used 

between the load and the power coupler for monitoring the 
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Figure 3.1: Block diagram of the RF conditioning system [19].
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RF matching at the termination. Two RF power meters each with two channels are 

connected to the RF power IOC through RS-232 to measure the forward and 

reflected power levels at the input and the output ports of the couplers. 

 

Two cold cathode gauges (CCG) are used to monitor the vacuum inside each coupler 

and another two were used to continuously monitoring the pumping cart’s vacuum. 

These four gauges are connected to two MKS vacuum gauge controllers (VGC). 

Every VGC has five modules – analog module, which gives the pressure reading in 

raw analog format, relay module, which gives the relay status, communication 

module helps to communicate with other device, and two CCG controller modules 

measure the pressure. Analog modules and relay modules are directly connected to 

the PLC to supply the pressure and relay status information, respectively. If vacuum 

pressure crosses the predefined upper limit then the PLC will send a RF off request 

signal to the High Power Module (HPM) of RF power IOC.  

 

The RF power is increased or decreased to maintain the optimum vacuum while 

monitoring the vacuum. The IOC will shut down the RF interlock switch within a 

few microseconds during any kind of abnormal situation. So, PLC is used for 

continuously monitoring the vacuum level and other auxiliary systems like water 

load, flow and temperature conditions. Communication modules of VGC are also 

connected with the vacuum IOC through RS-485 for controlling the VGC’s 

remotely. RS-485 communication is little bit slower than the raw analog and digital 

communication. But if the vacuum pressure goes above the predefined maximum 
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upper limit then the RF power needs to be shut down as fast as possible; that’s why 

the raw analog and relay signals are directly connected to the analog input module 

and digital input module of the PLC for taking the necessary actions. The RS-485 

communication is used to configure the VGCs remotely.  

 

Signal generator is connected to the RF power IOC through RS-232 connection. The 

output of this signal generator goes to the RF interlock switch and delivered to the 

driver amplifier. If the IOC gives the permission to pass the signal then the switch 

passes the signal to the driver for klystron amplifier. A separate IOC controls the 

klystron amplifier and the modulator. An arc detector is used on each coupler to 

detect the arc during the RF conditioning process and it is connected to the HPM of 

the RF power IOC. RF power IOC shuts down the switch to interlock as soon as any 

arc occurs. So HPM is the main module to get all the signals for controlling the RF 

interlock switch. 

 

Since all IOCs and PLC are connected through Ethernet, it is possible to control and 

monitor the conditioning process from the main control room and anywhere else if 

desired. EPICS is to be used in the whole RF conditioning control system for more 

robust, flexible, but simple process control and monitoring. Main Operator Interface 

(OPI) screen was designed in such a way that the operator can observe the status of 

any instrument, set the parameters, control every step of the conditioning process, 

and archive the data and results.  
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3.3 Description of the Instruments and Devices 

In this section the basic operation, brief description, configuration and parameter settings 

of some key instruments are given. 

3.3.1 Programmable Logic Controller (PLC) 

Allen Bradley’s ControlLogix® PLC is used in the RF conditioning process for the high-

speed interlocking of RF signal to avoid any kind of abnormal situation. ControlLogix® 

is a new standard for the PLC to provide the high performance for the application 

requires in an easy-to-use environment [20]. The ControlLogix® system provides 

sequential, process, motion, and drive control together with communications and state-of-

the-art Input Output (I/O) in a small, cost-competitive package. The system is modular, 

so we can design, build, and modify it efficiently -with significant savings in training and 

engineering. A simple ControlLogix® system consists of a stand-alone controller and I/O 

modules in a single chassis. ControlLogix® 1756 model is used for our application. In 

Figure 3.2 the basic parts of the ControlLogix® PLC has been shown. The basic parts of 

a ControlLogix® PLC system are – 

a. I/O Chassis: The ControlLogix® system is a modular system which requires 

an I/O chassis to hold the various modules. Any module can be placed into 

any slot.  

b. Power Supply: Power Supply module is the main source of power for all the 

modules and it provides 1.2V, 3.3V, 5V and 24V dc power directly to the 

chassis backplane. 



 

 

 

ControlLogix 1756 System

ControlLogix I/O Chasis

Processor Module

Communication
Module

I/O Connection
Hardware

I/O ModulesPower Supply

 

Figure 3.2: Controllogix® 1756 system modules [20]. 
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c. Processor Module: Process input values to control outputs. 

d. Communication Modules: In the local chassis, it provides a port for 

communication to computers, other PLC processors, or I/O adapters at other 

locations. In an I/O chassis remote from the processor, it provides a port for 

interfacing I/O modules on the backplane to a processor at another location. 

e. I/O Modules: Converts input-circuit signals to backplane levels and converts 

backplane signals to output circuit levels. 

f. I/O Connection Hardware: Connection hardware that plugs onto the front 

of the I/O modules to provide connection points for I/O circuits. It is also 

called RTB (Removable Terminal Block). 

 

ControlLogix® wiring system has mainly two parts – 

a. Interface Modules (IFMs): Interface Modules are mounted on DIN rails 

provide the output terminal blocks for the I/O module. Use the IFMs with the 

pre-wired cables that match the I/O module to the interface module. 

b. I/O-module-ready cables. One end of this pre-wired cable assembly is an 

RTB that plugs into the front of the I/O module. The other end has 

individually color-coded conductors that connect to a standard terminal 

block. 

 

Figure 3.3 provides the wiring modules and peripherals for the I/O connection, Table 3.1 

lists the PLC modules which has been used for the RF conditioning process and Figure 

3.4 shows the pictures of the interface modules and pre-wired cable. 



 

 

 

Figure 3.3: Controllogix® 1756 wiring systems [21]. 

 

 

Table 3.1: List of PLC modules for the RF conditioning process [22]. 

 Main Module Interface Module Pre-wired Cable 

1 1756A10 ControlLogix 
Chassis - - 

2 1756-PA72/B PLC System 
Power supply - - 

3 1756-L1M1 PLC Processor - - 

4 1756-ENET/B Ethernet 
Interface module - - 

5 1756-IB32 Digital Input 
Module 1492-IFM40D24  1492-CABLE010-Z  

6 
1756-OB16D/A Digital DC 

Output Module (24V- 
Diagnostic) 

1492-IFM40DS24-4 1492-CABLE007-Y  

7 1756-IF8/A (0-10v) Analog 
Input Module 1492-AIFM8-3  1492-ACABLE005-TB 

(Single ended current) 

8 1756-OF4/A (4-20mA) 
Analog Output Module 

1492-AIFM4-3  
 

1492-ACABLE005-VB 
( Single Ended Current) 
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(a) Pre-Wired Cable (b) 1492-IFM40D24  (c) 1492-IFM40DS24-4  

  

 

(d) 1492-AIFM4-3 (e) 1492-AIFM8-3   

 
Figure 3.4: Pre-wired cable and interface modules [21]. 

 

3.3.2 Vacuum Gauge Controller (VGC) 

A multi-sensor high vacuum system from the MKS Instruments has been used for 

continuously monitoring the vacuum inside the coupler and vacuum pumping system. We 

have chosen MKS 937A for our purpose [23]. This system operates as many as five 

sensors simultaneously and supports Cold-Cathode (CC), standard-pirani, convection-

pirani and thermocouple sensors and capacitance manometer together to measure 

pressure from as high as 10,000 Torr down to ultra high vacuum. In Figure 3.5 the image 

of a MKS Vacuum Gauge Controller has been shown. This VGC has several modules 

and these should be configured before placing it for vacuum measurement. The 

description of those modules are given follows- 
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Figure 3.5: MKS 937A vacuum gauge controller [24]. 

 

 

a. Analog Module- This module provides the analog output signals for each 

sensor from the analog 25-pin D-type Connector and this signal can be 

sent to a data acquisition system. These includes buffered, logarithmic, 

and combination logarithmic output. We have used the logarithmic 

pressure output for our purposes and this output ranges from 0 to 10 V 

and is scaled to 0.6 V per decade of pressure change and are updated each 

50 to 250 ms depending on the number of sensors in the controller. The 

pressure P in Torr as a function of voltage V in volts can be calculated by 

using the following equation- 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
12

0.6
V

10P  
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b. Communication Module- This module gives the facility to control front 

panel functions or read pressure and other information remotely by direct 

computer communication. It supports RS-232 and RS-485 

communication protocol. Each module has two 9-pin D-connectors. One 

is male and another is female. As we have two VGC in our system, so we 
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have used the RS-485 protocol, which allows multiple devices to be 

connected on the same wires to a host computer [25]. 

c. Set Points- VGC has five adjustable relay set points.  These relays are 

tripped if the vacuum exceeds any predefined set point values and the 

status of the relays can be accessible through the rear 15-pin D-connectors 

in accessory module. The controller also includes additional protection 

and control set points to turn a cold cathode sensor off at higher pressures. 

d. Sensor Modules- The VGC system has three slots labeled, CC, A and B 

for placing different sensor modules with different configurations. For 

measuring the pressures in coupler and pumping cart each VGC have two 

cold cathode modules in slot CC and A respectively. 

 

There are some DIP Switches (SW) and jumpers in communication modules and analog 

modules for setting up different parameters and configuring the VGC for different 

sensors. Table 3.2 and Table 3.3 show the settings of Communication Module (COM) 

and Analog Module respectively.  

 

3.3.3 Signal Generator 

Signal Generator plays an important role for the RF conditioning process. Rhode & 

Schwarz® general-purpose signal generator SML-01 model has been chosen for it’s wide 

frequency range, large variety of modulation functions and high reliability – at an  
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Table 3.2: Switch settings for the communication modules. 

 

SW-1 Settings in COM module 
 

Bit Rate Parity Switch Position 

4 On 19,200 Even 
1,2,3 Off 

Connection Type Switch Position 

Normal RS-485, Multidrop Protocol 5, 6 On 
 

SW-3 Settings in COM module 
 

Address for VGC -001 
 Switch Position 

2,3,4,5,6 On ASCII: A, Digital: 1000001 
1,7 Off 

Address for VGC -002 
 Switch Position 

1,3,4,5,6 On ASCII: B,  Digital: 1000010 
 2,7 Off 

 

 

Table 3.3: Switch settings for the analog module. 

Parameters Settings Switch Position 

1 On Pressure Units mBar 2 Off 
3 Off Control/Combination 

Sensor Channels 
For Slot CC-B1 
For Slot A –B2 4 On 

Line Frequency 60 Hz 5 Off 
CC Sensor Delay 3 Sec 6 Off 

Configuration N/A 7 Off 
 

 

 

 



affordable price [26]. The image of this Signal Generator is given in the Figure 3.6. 

3.3.4 Power Meter 

It is necessary to continuously monitor the RF peak power in the coupler at the time of its 

conditioning process. Agilent® E4417A EPM-P series power meters have been selected 

for the RF conditioning process [28]. These meters measure the peak powers by using 

Agilent® model E9322A sensors. Each of the meters has two channels for measuring the 

power. Since the conditioning process needs four channels to measure the forward and 

reflected powers at the input and output of the couplers, two power meters has been used 

with four sensors.  In Figure 3.7 the image of the power meter and sensors are given.   

 

Zeroing and Calibrating: 

Before taking any measurements each power meter should be calibrated and zeroed with 

a reference power. Zeroing adjusts the Power Meter for a zero power reading with no 

power applied to the power sensor. Calibration sets the gain of each power meter channel 

and sensor combination using a 50 MHz 1 mW (0 dBm) signal. Power meter’s POWER 

REF is giving an output of this type of signal. So before taking the measurements each  

 

 

Figure 3.6: Rhode & Schwarz® SML-01 signal generator [27]. 
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(a) E4417A EPM-P Series Power Meter (b) E9322A Series Peak Power Sensors 

Figure 3.7: Peak power meter and sensors [29]. 

 

channel with a sensor should be connected to this POWER REF output and ‘Zero+Cal’ 

button should be pressed for zeroing and calibrating the sensors.    

3.4 Cabling and Wiring of the Instruments 

The PLC which has been used for the RF conditioning system has four I/O modules, 

analog input module, analog output module, digital input module and digital output 

module. Currently analog output module is not being used and this has been placed for 

the future purposes. In this section the wiring and connection diagrams of the PLC 

modules, VGC modules and IOCs are given.    

3.4.1 Accessory Module of VGC to Digital Input Module of PLC 

The accessory module supplies the relay status information from the VGC and this 

module should be connected to the digital input module of the PLC. Since digital input 

module requires 24 volt input, a 24 volt DC voltage source has been used here to fulfill 

the requirement.  The connection diagram between these two modules has been shown in 
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Figure 3.8. VGC-001 and VGC-002 are the vacuum gauge controllers for the Device 

Under Processing (DUP) and pumping cart respectively.  

3.4.2 Analog Module of VGC to Analog Input Module of PLC 

Analog module of the VGC gives the pressure reading of the CCGs in raw analog format 

and it has been connected to the analog input module of the PLC. PLC reads these raw 

pressure data, converts it to the digital value and supplies the pressure information to the 

vacuum IOC.  Figure 3.9 shows the connections between the accessory module of VGC 

and the analog input module of PLC.  

3.4.3 Digital Output Module of PLC to HPM 

PLC has been programmed in such a way that it will continuously monitor the set points 

and pressure reading data from the VGCs and send the 24-volt signal to the HPM in RF 

power IOC. But if the PLC detects any fault during the RF processing then it will send no 

voltage to the HPM. So, digital output module of the PLC is used for sending the 24-volt 

OK signal to the HPM of RF power IOC. In Figure 3.10 connection diagram has been 

shown between these modules. 

3.4.4 RS-485 Connections between VGC and Vacuum IOC 

VGC’s communication module can support both the RS-232 and RS-485 protocols. For 

the RF conditioning system RS-485 protocol has been chosen to communicate with the 

VGCs remotely. 8 channels UART Industry Pack (IP) IP-SI-8516 from the Hytec 

Electronics Ltd. has been used to support the RS-485 protocol and Hytec 8002 VME IP 

carrier board has been placed in the vacuum IOC to support  this 8516 IP module. This IP   
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Figure 3.8: Connections between accessory module of VGC and digital input module of 

PLC. 
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Figure 3.9: Connections between analog module of VGC and analog input module of 

PLC. 
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Figure 3.10: Connections between digital output module of PLC to the HPM of RF 
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module is connected with a terminal board by a SCSI cable and connections has been 

made between the communication module of VGC and the Hytec terminal board.   Two 

VGCs are connected by a daisy chain connection. Figure 3.11 shows all the necessary 

connections to communicate with the VGCs from the IOC by using RS-485 protocol. 
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Figure 3.11: RS-485 connections between VGC and the vacuum IOC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48



 49

 

Chapter IV 

Development of the Control System Software 

To control the whole RF conditioning processing efficiently it is necessary to design the 

control system software by focusing on the following facts – 

• The algorithm of the software should be flexible for the future upgradeability. 

• It should be modular, so that the debugging can be done easily with less time. 

• It should have a good Operator Interface (OPI). 

• All the results and data should be archived for future analysis. 

 

RF conditioning process has mainly two types of programming – 

1. High-level programming based on Experimental Physics and Industrial 

Control System (EPICS) for the IOCs. 

2. Low-level programming for the PLC. 

 

This chapter presents the brief description of programming style of the EPICS and PLC. 

It also provides the step-by-step analysis of the RF conditioning process control system 

software’s algorithm and PLC programming with the help of flow charts. 

 



4.1 Experimental Physics and Industrial Control System 
(EPICS)   

In this section some basic idea about the EPICS has been given. The detail description 

and the programming style of the EPICS can be found in [31].  The basic components of 

the EPICS are: 

• OPI: Operator Interface. This is a workstation that can run various EPICS tools. 

• IOC: Input/Output controller. This can be any platform that can support EPICS run 

time databases together with the other software components.  

• LAN: Local Area Network. This is the communication network, which allows the IOCs 

and OPIs to communicate. 

 

The Physical implementation of the EPICS is shown in Figure 4.1. EPICS provides a 

software component, channel access, which provides network transparent communication 

between a channel access client and an arbitrary number of channel access servers. The 

 

OPI OPI OPI

IOC

Instrument Instrument

IOC

Instrument Instrument

LAN

 

 

Figure 4.1: Physical structure of a control system based on EPICS. 
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descriptions and features of some key software components of EPICS which are used for 

the RF conditioning process are given in the following sections. 

4.1.1 IOC Software Components 

IOC can be various types but the most popular IOC is a single-board computer running 

the vxWorks real-time operating system and installed in a VME chassis. An IOC often 

performs input/output operations to attached hardware devices and associates the values 

of EPICS Process Variable (PV)s with the results of these input/output operations. An 

IOC can perform sequencing operations, closed-loop control and other computations. 

 

IOC can be classified in to two depending on the run mode. ‘Host-based’ IOC runs in the 

same environment as which it was compiled. Sometimes this is called a ‘Soft’ IOC and 

this is a program like any other on the machine. It is possible to have many IOCs on a 

single machine. On the other hand ‘Target’ IOC runs in a different environment than 

where it was compiled. IOC boots from some medium (usually network) and it is the only 

program running on the machine. RF conditioning process uses the ‘Target’ IOC for 

controlling the instruments.  

 

Many software components such as device support, device drivers, database, and 

sequencer are coming with the EPICS base or as an extension, which helps to control the 

instruments and devices connected with the IOC. Figure 4.2 shows the software 

components for the IOC in EPICS.   



  

Figure 4.2: EPICS supplied software components for IOC [31]. 

 

Following sections describe the EPICS database and sequencer briefly. 

 

EPICS Database: 

EPICS control system may contain one or more IOCs and each IOC loads one or more 

databases telling it what to do and a database is a collection of records of various types 

and a record is an object with, a unique name, a behavior defined by its record type 

(class), controllable properties (fields), optional associated hardware I/O (device support), 

links to other records. Records are active; they can get or put data from other records or 

from hardware, perform calculations, and check values are in range and raise alarms, 

activate or disable other records, wait for hardware signals (interrupts). Record actions 

depend upon its record type and the settings of its fields and no action occurs unless a 

record is processed.  
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Sequencer: 

Depending on the state of the control system sequencer can make decision for what to do 

next. It is used for calibration and initialization of the equipment, fault detection, and to 

control and monitor the whole system by using some predefined states in the program. 

State Notation Language (SNL) is the tool to write the sequencer program and State 

Notation Compiler (SNC) helps to compile it. SNL is a ‘C’ like language to facilitate 

programming of sequential operations [32]. Sequencer program can be compiled easily 

and it can be executed fast in the real-time environment.  EPICS sequencer was 

developed by the Stanford Linear Accelerator Center (SLAC). Sequencer version 2.0.10 

is being used extensively to control the RF conditioning process. 

4.1.2 OPI Software Components 

Extensible Display Manager (EDM): 

Extensible Display Manager (EDM), developed by SNS/ORNL, is a tool to build and 

mange the displays for the control system [33]. It provides the ability to create and edit 

display content such as graphics, text, meters, sliders, buttons, plots, etc. and uses some 

facility such as EPICS channel access to execute the same content resulting in the 

dynamic presentation of live data. 

 

Strip-Tool: 

Strip-Tool is an application, which acquires data by channel access and plots it in real 

time as a strip chart. This is very useful for debugging controls applications and for 

monitoring data trends. 
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4.1.3 Other Software Components 

Channel Archiver and Archive Viewer: 

Channel archiver developed by LANL is a toolset for EPICS to archive the data and Java 

based archive viewer developed by SNS is used to view these archived data. 

 

Visual Database Configuration Tool (VDCT): 

VDCT, developed by Cosylab, is a very powerful tool to write and manage the EPICS 

databases graphically. 

4.2 Designing the Control System 

All the instruments, meters and devices connected with the IOCs are supplying the values 

of the requested parameters to the channels in the format of EPICS PVs. As described 

earlier EPICS databases are maintaining the link between these PVs and the instruments 

in the field through the IOCs. RF conditioning process constitutes several states with 

some predefined conditions and instructions. So supplied PVs from the instruments 

should be monitored continuously and depending on these real-time PV values the state 

of RF conditioning process has been determined. Then the process continues by 

following the conditions and instructions written in each state. The possible states during 

the RF conditioning process have been summarized below- 

• Initialize: Starts the control program, initializes and calibrates instruments. 

• Increase: Increases the RF power. 

• Decrease: Decreases the RF power. 
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• Hold: Hold on the current RF power. 

• Vacuum Upper Limit: Takes necessary actions when vacuum crosses the 

upper limit. 

• Fault Detection: This state starts in any kind of abnormal situation. 

• Ramp after Fault Detection: Starts the conditioning again after the fault 

diminishes. 

• End: Finishes the conditioning process. 

 

EPICS sequence program has been used to control and define the states. In this section 

each of the state has been described with the help of flow charts. 

4.2.1 Initialize State 

The main task of the sequence program is to control the RF power by analyzing the 

power and vacuum limits and the current values. When the program starts then it sets the 

RF power amplitude in the signal generator to the predefined RF lower limit.  The values 

of some parameters have been defined also. These parameters are only used for the 

programming purposes. Then the sequencer monitors the RF permit signal from the RF 

power IOC, which controls the RF interlock switch. If the RF permit is ON then the 

sequencer jumps to the ‘Increase’ state otherwise it goes to the ‘Fault Detection’ state. 

Figure 4.3 shows the flow diagram of the ‘Initialize’ state. 



Start

RF Amp = RF Lower Limit
RF = ON

Parameter Settings:

Check-Vac_Upper = FALSE
Check-Fault_Detect = FALSE

Dummy_Amp = 0.00
Check-End = TRUE

RF Permit?

GO
Increase

GO
Fault_Detect

ON OFF

 

Figure 4.3: Initialize state. 

4.2.2 Increase State 

The main task of the ‘Increase’ state is to increase the RF power and the step of the 

increment can be defined by the variable ‘RF Increment’. However, the sequencer jumps 

to the ‘Fault Detection’ state if the RF permit shuts OFF and this is true for all of the 

states in the program.  This state also monitors the vacuum limit, if it is within the limit 

then the sequencer jumps to the ‘Hold’ state to hold on the current RF power, but it jumps 

to the ‘Vacuum Upper Limit’ state if the vacuum crosses the upper limit. When the 

vacuum reaches below the lower limit then the state checks the variable ‘Auto Cycle’ and 

this cycling, which is a part of the RF conditioning process will be discussed in the next 

chapter.  If the ‘Auto Cycle’ is ON and RF power is greater than or equal to upper limit 
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then the state will hold on the current RF power until the ‘Soak Time’ has been elapsed 

and jumps to the ‘Decrease’ state but if the ‘Auto Cycle’ is OFF for the same RF power 

then it simply jumps to the ‘Hold’ state for holding on the current RF power. The 

sequencer is being looped around the ‘Increase’ state when the RF power is lower than 

the upper limit for the both ON and OFF condition of the ‘Auto Cycle’. The flow chart of 

the ‘Increase’ state has been shown in the Figure 4.4. 

4.2.3 Decrease State 

‘Decrease’ state decrease the RF Power by ‘RF Increment’ step and jumps to the ‘Fault 

Detection’ during the RF permit OFF situation. The program is being looped around the 

‘Decrease’ state if the RF power is greater than the lower limit; otherwise it jumps to the 

‘Increase’ state. Figure 4.5 shows the flow diagram of this state. 

4.2.4 Hold State 

‘Hold’ state is mainly used for holding on the current RF power input to the klystron 

amplifier from the signal generator. When the vacuum is within the limit and RF 

amplitude just crossed the upper limit then the sequencer is being looped around this 

‘Hold’ state. But if the RF amplitude lowers than the upper limit then it jumps to the 

‘Increase’ state to increase the RF power. Moreover, it jumps to the ‘Vacuum Upper 

Limit’ state if the vacuum crosses the predefined upper limit. If the ‘Auto Cycle’ and ‘RF 

Permit’ is ON then the state changes to the ‘Decrease’ state to decrease the RF Power.  

The conditions for the ‘Hold’ state are shown in the Figure 4.6. 
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Figure 4.4: Increase state. 
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Figure 4.5: Decrease state. 
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Figure 4.6: Hold state. 
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4.2.5 Vacuum Upper Limit State 

During the RF conditioning process if the vacuum crosses the predefined upper limit then 

the sequence program jumps to the ‘Vacuum Upper Limit’ state to decrease the RF 

power. The main difference between this state and the ‘Decrease’ state is – here the 

decreasing step defined by the variable ‘RF BO Increment’ is much bigger than the step 

in ‘Decrease’ state. Because if the vacuum crosses the upper limit then the RF power 

should be backed off by a significant amount and it should be looped around this state 

until the vacuum reached below the upper limit.  When the vacuum is in safe condition 

then the sequence program goes to the ‘Increase’ state for increasing the power.  Figure 

4.7 shows the flow diagram of the ‘Vacuum Upper Limit’ state. 

4.2.6 Fault Detection State 

In any kind of unwanted situation the RF power should be shut OFF and this is control by 

the variable RF permit. During the process if this permit is OFF then the program 

immediately jumps to the ‘Fault Detection’ state and shuts down the RF output from the 

signal generator, decrease the RF power to –40 dB and looping around this state until the 

fault clears. When the RF permit is ON then the sequencer moves to the ‘Ramp After 

Fault’ state. The flow diagram of this state has been shown in the Figure 4.8. 

4.2.7 Ramp after Fault Detection State 

Figure 4.9 shows the detail flow diagram of the ‘Ramp After Fault’ state. After any kind 

of fault it is desirable to increase the RF power at least by the amount of 1 dB from a very 

low power such as –40dB to avoid the occurrence of further fault. In  ‘Ramp after Fault’  
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Figure 4.7: Vacuum upper limit state. 

 

 

 62



 

 

RF Permit?ON OFF

GO
Ramp_After_Fault

Parameter Settings:

Check-Vac_Upper = FALSE
Check-End = TRUE

GO
Fault_Detect

Check-
Fault_Detect?

Dummy_Amp = Dummy_Amp
&

Check-Fault_Detect = TRUE

Dummy_Amp = RF Amp
&

Check-Fault_Detect = TRUE

TRUE FALSE

RF Amp = -40
RF = OFF

 

Figure 4.8: Fault detection state. 
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Figure 4.9: Ramp after fault state. 
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state the output of the RF power is turned ON from the signal generator and it is being 

looped around this state and increased the power by 1 dB until the Power crossed the 

lower limit. However when it crosses the lower limit the states switches to ‘Increase’ 

state.  

4.2.8 End State 

In the Figure 4.10 the actions of the ‘End’ state has been shown. When the RF 

conditioning process has been finished, then this state turned OFF the RF power output 

from the signal generator, sets the power to –60 dB and jumps to the ‘Initialize’ state to 

start another conditioning process. Moreover, conditioning process can be stop any time 

by the user and when the user selects the stop button from the main control system then 

process jumps to this state immediately to shut off the RF conditioning. 
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RF Amp = -60
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Parameter Settings:
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Dummy_Amp = 0.00
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Figure 4.10: End state. 
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4.3 PLC Programming 

In the previous chapter the wiring and the description of the physical structures and 

various modules of the PLC has been described. However, to control and manage these 

modules the PLC should be properly programmed. RSLogix 5000 is supplied software to 

write the ladder logic program for the PLC [34]. It offers reliable communications, easy-

to-use, powerful functionality, and superior diagnostics. This software helps to connect 

with the PLC through the Ethernet or serial connection, helps to configure it; it is also a 

useful tool to download the ladder logic program and to debug the program in the real 

time.  

 

The screen shot of the RSLogix 5000 software has been shown in the Figure 4.11. This 

software has mainly four areas, which has been also shown in that figure. The upper left 

corner mainly shows the PLC status and mode information, all the ladder logic 

instructions and the addresses of the PLCs are shown in the upper right corner. While the 

ladder logic programming and configuration and setup areas are located in the lower 

section of the RSLogix 5000 software.  

 

The modular type PLC programming structures has been followed in RSLogix 5000 so 

that the debugging and future upgrading can be done easily and the same software 

modules can be used in another program. Every program has several ‘task’s and each 

‘task’ contain one or more programs and these programs have one or more routines, 

which are written by using ladder logic instructions. So before writing any PLC control  
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Figure 4.11: Screen shot of the RSLogix 5000 software for the PLC programming. 
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system the user should define and construct the flow diagram of the desired PLC 

operations.  In RF conditioning process the PLC always monitors the set point relay 

status of the VGCs through the digital input module and controls the 24-volt OK signal to 

the HPM through the digital output module based on the status of these relays. Again, the 

PLC stores the analog pressure reading from the VGCs in some internal registers so that 

the ‘Vacuum IOC’ can access these readings.  In the Figure 4.12 the flow diagram of the 

PLC ladder logic program for the RF conditioning process has been shown. 
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Figure 4.12: Flow chart of the PLC program. 
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Chapter V 

Operation, Results and Analysis 

5.1 Conditioning Setup 

The developed RF conditioning system can be used for the high power RF processing of 

any type of RF windows, couplers or cavities. To test the validity and performance of this 

conditioning system, two Fundamental Power Coupler (FPC)s, which are being used to 

supply RF power to the SNS superconducting cavities, have been chosen for the high 

power RF conditioning. As already mentioned in Chapter II, this coupler has a planar 

annular disk-type of coaxial window, which has been made of 95% alumina ceramic. 

Furthermore, this FPC must be able to transfer up to 550 kW peak power in 1.3 ms pulses 

at a repetition rate of 60 pulses per second (pps) during the operation of SNS accelerator. 

So, it is important to condition these FPCs before placing to the accelerator.  

 

For the conditioning process usually two couplers have been setup back-to-back so that 

the RF power enters the vacuum waveguide region through one coupler and then exits 

through the second coupler to a room temperature and matched load. Some self-

explanatory pictures from the real time RF conditioning setup at SNS RF Test Facility 

(RF-TF) has been given in Figures 5.1 through 5.6.  



 

Figure 5.1: Couplers, vacuum pumping cart and the directional couplers. 

 

 

Figure 5.2: Two couplers joined through the waveguide resonator at the bottom. 
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Figure 5.3: Klystron amplifier, power generator and the waveguide. 

 

 
 

Figure 5.4: RF power IOC and other instruments. 
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Figure 5.5: Klystron IOC, vacuum IOC and vacuum gauge controllers. 
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Figure 5.6: PLC, pre-wired cables and interface modules. 
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A 2.5 MW 805 MHz klystron has been used to transfer the RF power to a water cooled 

high power load through the FPCs and WR975 waveguide. To control the transmitted RF 

power levels three sets of directional coupler has been used. Among them, two have been 

placed between the klystron and the pumping cart and one has been placed between the 

test cart and the terminating load. Power meters’ sensors are connected to the two 

directional couplers at the input and output section of the FPCs to measure the forward 

and reflected power. Some attenuators are used in the directional couplers to protect the 

power sensors from the damage due to the high RF power. However, power meters’ 

channels have been calibrated to compensate this offset power and to display the real 

time power measurements through the couplers.  

 

High speed vacuum pumping is necessary for the efficient RF conditioning process. A 

pumping cart designed and developed by the Thomas Jefferson National Accelerator 

Facility (TJNAF) was used for testing the proposed conditioning system [35]. This 

mobile aluminum cart houses the vacuum system with a high speed pump, the connecting 

waveguide for the two FPC’s, a de-ionized water-compatible cooling manifold for the 

inner conductor extensions and all other necessary instrumentations.  

 

Before starting the automated conditioning process, the two FPCs should be installed 

properly in the pumping cart, the CCG sensors for measuring the vacuum should be 

connected with the cables, the arc detector sensors should be placed in the proper position 
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to detect arcs in the RF windows during the process and all other necessary connections 

such as water pipes, grounding cables should be checked. 

5.2 Description of the Main Operator Interface (OPI) 

The main Operator Interface (OPI) for the developed RF conditioning system has been 

designed by using the EDM software of EPICS. It has been designed in such a way that 

the operator can observe the status of any instrument, set the parameters, control every 

step of the conditioning process, and archive the data and results very easily. The EDM 

screen of the designed OPI is shown in the Figure 5.7. 

 

The designed OPI has mainly four sections and all the sections have been separated by 

different background colors. The topmost section provides the current date, time and two 

links to go to the main screen of the test facility and to exit from the current screen.  

 

The second section has all the control switches, such as calibration, start, stop, and auto-

cycle. It also shows the current processing state and the power from the main sequence 

program in the ‘Sequence State’ and the ‘Power State’ windows respectively. Moreover, 

some buttons has been placed on the right side of this section to browse all the IOCs’ and 

instruments’ information individually.  

 

The third section of the main OPI has been designed for setting up all the necessary 

parameters for the RF conditioning process. To increase the reliability of the proposed 

system both the hard-limit and soft-limit for the vacuum and RF power has been 



 

Figure 5.7: Main operator interface (OPI) screen for the RF conditioning system.
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provided. This section provides the control for the all soft-limits. Furthermore, the 

various increment steps and timings can be configured here also. 

 

The last section of the main OPI provides all the measurement data from the vacuum 

controllers, power meters and the signal generator. The condition of the RF interlock 

switch and water cooling system can be monitored here also. This section also contains 

two buttons for plotting the vacuum and RF power graphs during the conditioning 

process. EPICS StripTool software is being used to generate these graphs. Operator has 

the flexibility to configure the graphing display and save the data anytime. Moreover, the 

remaining soak time can be monitored from this section during the auto cycle 

conditioning.   

 

Sequence program is the main program which is running all the time during the RF 

processing and controls the sequence based on the real time power and vacuum 

measurements and other necessary conditions. Therefore, this program should be tested 

and debugged before the actual RF conditioning process to avoid any kind of trouble in 

the system. For fulfilling this purpose another OPI has been designed just for testing the 

sequence program with some dummy parameters. Figure 5.8 shows the OPI screen of 

that. In this OPI, some real time parameters such as current worst vacuum reading and the 

RF permit state can be controlled with some dummy values. However, in actual system 

the sequence program get these values from the HPM and the vacuum controllers. 

Furthermore, this OPI has all necessary options and parameter settings of the main OPI.   



 

Figure 5.8: OPI screen for testing the sequence program. 

5.3 Procedures for the RF Conditioning Process 

The procedure developed by the SNS for the RF conditioning of FPCs has been followed 

throughout the test [36].   

 

Qualified personnel with proper training are allowed to operate the conditioning process. 

Before starting the process the FPCs were baked at 200 degree Celsius temperature for 60 

hours by using TJNAF’s baking cart [35].     

 

The conditioning process consists of two wave modes – traveling wave mode and the 

standing wave mode. During the traveling wave mode RF power is being transferred 

from the klystron to load through the couplers to be conditioned. However, in standing 
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wave mode the load is replaced with a variable short, which produces a standing wave 

between the short and the klystron and this wave is being passed through the couplers 

thoroughly. The detailed procedures of each mode and the initial setup have been 

described below. 

5.3.1 Before Starting the RF Conditioning 

The following steps should be done before starting the conditioning –  

• Power meters’ sensors should be calibrated and zeroed by following the 

procedures in the operation manual [28]. Moreover, the offset value of the 

attenuator, placed in the directional couplers, should be added to the power meter 

channels for giving the correct power measurements.  

• The value of the relay set points for each gauge in the vacuum gauge controllers 

should be set and checked. Conditioning process will be shut down if the vacuum 

crosses this maximum limit. The limit 5X10-7 mBar has been chosen and it can be 

setup from the main OPI screen or manually from the instrument. Figure 5.9 

shows an OPI screen for the gauge setup in a vacuum controller.  

• The signal generator’s output should be connected to the interlock switch and 

proper operating frequency and parameters of the pulse modulation should be set 

up from the EPICS screen. In Figure 5.10, the OPI screen for the signal generator 

and power meter has been shown. 

• The connection of the fiber optic sensors of the arc detector should be checked.  

Moreover, they should be enabled from the OPI screen shows in the Figure 5.11.  



 

Figure 5.9: OPI screen for controlling the vacuum gauges in vacuum controllers. 

 

 

 

Figure 5.10: OPI screen for the signal generator and power meters. 
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Figure 5.11: OPI screen for setting up and monitoring the instruments connected with the 

HPM in RF power IOC. 
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5.3.2 RF Conditioning with Traveling Wave 

The conditioning process with the traveling wave have been summarized below- 

• Since the vacuum inside the coupler is very bad initially so the conditioning 

process should be start from a very low RF power and should be increased very 

slowly. Table 5.1 shows the various limits and parameters, which have been 

chosen to start the process. 

• Power and vacuum graphs should be opened by pressing the ‘Power Graph’ and 

‘Vacuum Graph’ buttons respectively. 

• After setting up all the parameters the conditioning process is started by pressing 

the ‘START’ button in the main OPI screen.  

• Initially processing has been started with 0.5 msec pulse width and 10 Hz pulse 

rate of the signal generator to reach 300 kW. 

• Run the converter modulator with low voltage and for higher power increase the 

set-point voltage gradually. Figure 5.12 shows the OPI screen to control he High 

Power Modulator (HPMod). 

• Cycle the RF power between 0 to 650 kW for more than 8 hours (12 hours is 

desirable) by selecting the ‘Auto Cycle’ ON and setting up the ‘Soak Time’ in the 

main OPI. 

• The next step is Cycle Constant Cycle (CCC) testing. Cycle RF power between 0 

to 650 kW for 1 hour, constant power run at 650 kW for 3 hours and again cycle 

RF power between 0 to 650 kW for 1 hour. 

 



 

Table 5.1: Example of the conditioning parameters. 

Parameters Value 
Vacuum upper limit 3.0X10-7 mBar 
Vacuum lower limit 2.5X10-7 mBar 

RF upper limit 2 dBm 
RF lower limit -20 dBm 
RF increment 0.1 dBm 

RF back off increment 3 dBm 
RF fault increment 1 dBm 

Soak time 30 sec 
Step interval 1.0 sec 
Pulse width 0.5 msec 
Pulse period 100 msec 

 

 

 

Figure 5.12: OPI screen for the high power modulator. 
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• After CCC testing conditioning should be done with DC bias (upto 2.5 kV) at the 

maximum power for 3 hours total. The steps are given below- 

a. Cycle RF power for 30 minutes with no (0 V) DC bias. 

b. Constant power for 30 minutes with no (0 V) DC bias. 

c. Cycle RF power for 30 minutes with negative (-2.5 kV) DC bias. 

d. Constant power for 30 minutes with negative (-2.5 kV) DC bias. 

e. Cycle RF power for 30 minutes with positive (+2.5 kV) DC bias. 

f. Constant power for 30 minutes with positive (+2.5 kV) DC bias. 

• Finally constant power should be supplied at the maximum power for more than 8 

hours and the conditioning with standing wave should be started after that. 

5.3.3 RF Conditioning with Standing Wave 

• Waveguide has to be terminated with a variable short. 

• Constant power should be given at different power levels, such as 100 kW steps 

to reach 600 kW maximum, for 3 to 4 hours in total. 

• Variable short should be moved for 7 to 8 times with 30 minutes at each power 

level. 

5.3.4 After the Conditioning 

• Pressing the switch labeled ‘STOP’ in the main OPI screen finishes conditioning 

process.  

• After the conditioning the High Voltage Converter Modulator (HVCM) and 

transmitters should be turned off. 
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• The data and graph for the power and vacuum should be saved for the future 

analysis.  

• All the windows, programs, computers and instruments should be turned off. 

 

In Figure 5.13, the RF conditioning steps described above are summarized graphically 

[36]. 

5.4 Results and Analysis 

Several experiments were performed at RF Test Facility (RF-TF) of SNS to determine 

the validity and performance of the proposed RF conditioning system.  In this section we 

will describe and present the results obtained so far. Usually, the following qualities are 

expected from an automated RF conditioning system- 

• Smooth starting with gradual increase of the RF power. 

• The control system will increase, decrease, hold or back off the RF power 

depending on the vacuum. 

• RF power will be shut down during any kind of fault and the system will increase 

the power automatically after the fault. 

• Auto cycling and constant power supplying should work efficiently. 

 

So, we will focus on these issues to present and analysis the results [37]. 



 

Figure 5.13: The summary of the RF conditioning procedures [36]. 
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5.4.2 Results in Traveling Wave Mode 

A number of power graphs and corresponding vacuum graphs has been presented here. In 

the power graphs the input and output forward power has been represented by blue and 

red colors respectively, while in the vacuum graphs these colors represented the vacuum 

pressure in the first and second couplers respectively. Figure 5.14 shows the first one-

hour conditioning results during the traveling wave mode. It also shows the smooth 

starting of the conditioning process with the gradual increase of power. In the Figure 

5.15, the magnify version of the conditioning process has been shown with a small timing 

scale in the X-axis. It is clear from this figure that how RF power is backed off and 

increased again when the vacuum has been crossed the predefined upper limit. Figure 

5.16 shows the two hours conditioning results. It is noticeable from this figure that after 

one hour conditioning the vacuum activities went high and during that time RF power has 

been hold on by the system. After two and half hour of conditioning during the traveling 

wave mode the modulator, which supplies the voltage to the klystron amplifier, was 

tripped off for the lack of required water flow to cool down the system. During this time 

the conditioning process stopped the RF power and started it again after the fault 

recovery. Figure 5.17 shows this data.  In the figure 5.18, the results of the auto cycle 

conditioning and the constant power conditioning has been shown. Finally, figure 5.19 

shows how the vacuum was changing during the soaking time of the auto cycle 

conditioning in magnified time scale of the X-axis. 

 

 



 

 

 

 

 

 

Figure 5.14: First one hour conditioning results in traveling wave mode.    
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Figure 5.15: RF power backs off when vacuum crosses the predefined upper limit. 
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Figure 5.16: Two hour conditioning data in traveling wave mode. 
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Figure 5.17: Power has been shut off during the modulator fault. 
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Figure 5.18: Auto cycle and constant power conditioning in traveling wave mode. 
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Figure 5.19: The effect in vacuum during the auto cycle conditioning. 
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5.4.3 Results in Standing Wave Mode 

The matched load is replaced with a variable short to condition the couplers in standing 

wave mode. Several data has been presented here. In the power graph, blue and green 

color represents the input and output forward powers, respectively, and in the vacuum 

graph they represent the vacuum pressure of the first and second couplers, respectively. 

Figure 5.20 shows the one-hour conditioning data during the standing wave mode. In the 

Figure 5.21, auto cycle and constant power conditioning in the standing wave mode has 

been shown. The difference between the input and output forward power has been much 

noticeable than the transmission wave mode. Since the wave is being transferred back 

and forth through the couplers in the standing wave mode and the positions of the 

directional couplers are fixed, this measurement difference has been occurred. Arcing 

was happening for several times during the standing wave conditioning and RF power 

was shut down by the system at that time. Figure 5.21 shows these results. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 5.20: RF conditioning in standing wave mode. 
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Figure 5.21: Auto cycle and constant power conditioning in standing wave mode 
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Chapter VI 

Conclusions and Future Research 

6.1 Conclusions 

Extensive research should be performed in material sciences to build and search the next 

generation materials for the aircraft, computer memory cells, electronic devices, 

automobiles, high temperature superconductors, new fuel cells, new drugs and medicine. 

For fulfilling these purposes, many accelerator facilities are being built around the world 

to produce neutron sources, synchrotron X-ray sources, etc, to understand and analyze 

materials at the atomic level. Moreover, with the advancement of the accelerator 

technology the research in the high power RF field is advancing. Since, RF power is the 

only source to energize the beam in the high-energy accelerators, it is very important to 

supply this power efficiently. Usually a large number of RF windows and couplers are 

used in an accelerator facility and they should be conditioned before installed on the 

actual system to avoid any kind of catastrophic failure. So, it is necessary to have an 

automated reliable RF conditioning system for saving time and money.  

 

The research described in this thesis has been performed by focusing on implementing 

such conditioning system integrated into EPICS environment that is the common control 

platform of large-scale scientific instrumentation. Although the proposed RF conditioning 
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system has been designed for conditioning the RF windows used in the accelerators, this 

system can be applied to condition various RF materials and windows used in any field or 

applications; it can be called a universal RF conditioning system. The achievement of the 

research can be summarized as follows- 

 

• Simple design with state-of-the-art instruments: The proposed RF 

conditioning system is simple yet robust. It has been designed by using some 

state-of-the-art instruments from the commercial companies, which are 

available in the market. Custom made instruments have been avoided 

throughout the design to make it more affordable to the other users. The use 

of PLC for the interlocking made this system more reliable. Proper 

communication protocols and hardware have been selected to communicate 

with the instruments. Moreover, the cabling and wiring between the 

instruments and IOCs have been designed, implemented and documented. All 

the IOCs and PLC have been programmed to perform the required tasks.  

 

• Automated control system with user friendly Operator Interfaces:  An 

EPICS based control system has been designed to automate and control the 

RF conditioning process. The designed control system is flexible, easy to 

manage and it can be controlled from anywhere throughout the network or 

internet.  User friendly Operator Interfaces have been designed to control the 
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process, to set the parameters, to monitor all the measurements, to plot the 

results and to archive the data.  

 

• The complete system has been tested in various wave modes: The 

designed RF conditioning system has been tested by conditioning some 

couplers in various wave modes, such as travelling wave mode and the 

standing wave mode. The performance of this control system is highly 

satisfactory.  

 

6.2 Future Research 

Some suggestions for the future research in this field has been summarized below- 

 

• More research work should be performed to interlock the water-cooling system. 

• Synchronize with the klystron and modulator fault.   

• More intelligence to select the soft limits automatically to further minimize any 

manual control. 
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