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ABSTRACT 
 

Diversity patterns and controls on bacterial community composition were investigated from 

coastal salt marsh soils in southern Louisiana (USA) from 2012 – 2014. These salt marshes are 

part of an extensive coastal landscape that is experiencing land loss due to subsidence, sea-level 

rise, and anthropogenic activities, including from the impacts of the Deepwater Horizon oil spill 

in 2010. Prior to the oil spill, microbiology research focused predominately on biogeochemical 

roles and not on taxonomic representation in the soils or on understanding the significance of 

taxonomic diversity at the microbial level to marsh food webs or ecosystem dynamics. The 

purpose of this research was to characterize the taxonomic diversity of marsh soils and examine 

which sets of environmental parameters, including water inundation frequency and depth, 

vegetation, and salinity, contributed to the most variance in microbiome taxonomic diversity 

through time. Historical datasets and on-site measurements from the marshes were used to model 

marsh elevation and local flooding history, and multivariate statistical analyses were applied to 

determine bacterial community structure and variance. Regardless of sampling time or 

geographic location, bacterial communities were 80% similar at the phylum level, meaning that 

marshes were comprised of similar bacterial groups that likely reflected comparable ecosystem 

function. Subtle differences in marsh bacterial communities were coupled to geographic region, 

the depth of water that flooded the marsh surfaces, and salinity of that water, with most of the 

compositional variations being among the Alphaproteobacteria, Gammaproteobacteria, different 

classes of Chloroflexi, and subgroups within Cyanobacteria. Collectively, these results indicate 

that some bacterial groups are ubiquitous in natural salt marsh soils, and that efforts to remediate 

or restore coastal marshes after a disturbance need to consider the importance of key 
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environmental drivers, like salinity, to how marsh soil bacterial communities are structured and 

how ecological function can be maintained.   
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CHAPTER ONE  - BACKGROUND 

The coastal marshes of the Mississippi River delta are important, both environmentally 

and economically, because they provide habitats for fisheries that generate greater than $10 

billion annually in fish stocks and tourism (CWPPRA Task Force, 2015).  Louisiana marshes 

provide ecosystem services for approximately 30% of the United States commercial fishery 

production (Mac et al., 1998).  Saltwater marshes also protect the mainland from storm surges, 

buffer salinity for the mainland, sequester 44.6 Tg yr-1 of carbon, and have the capacity to 

enhance water quality and remove anthropogenic contamination, such as crude oil (Chmura et 

al., 2003).  Despite their importance, marshes are threatened by chronic natural stressors that are 

compounded by anthropogenic activities.  Natural stressors include sea-level rise, subsidence, 

and hurricanes, whereas anthropogenic activities include draining marshland for agriculture, 

crude oil spills, and river diversions (Couvillion et al., 2011; Tweel and Turner, 2012; Turner et 

al., 2016).  During the Deepwater Horizon oil spill of 2010, 4.9 million barrels of MC252 crude 

oil were released from the Macondo well into the Gulf of Mexico (Mendelssohn et al., 2012).  

Prior to the oil making landfall, little information was known about how the Gulf ecosystems, 

including salt marshes, would respond to oiling and how the oil would affect microbial 

communities in marsh sediments (King et al., 2015). 

Microbial communities are responsible for many biogeochemical processes that occur in 

salt marshes (e.g., nitrogen fixation, sulfate reduction, methanogenesis).  Microbes provide these 

essential ecosystem services, being at the base of the ecosystem, and contribute to nutrient 

storage or conversion for food webs (Valiela et al., 2002).  However, most microbial 

communities in marsh soils have been studied at a broad, ecosystem-scale.  A better 
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understanding of the nearshore processes that govern salt marsh ecosystems has been needed 

(Blum et al., 2004; Joye et al., 2014).  Moreover, few studies have identified the diversity of 

bacterial communities from Louisiana marshes, including community structure and taxonomic 

representation, or characterized changes in diversity spatially and temporally, as was done for 

other salt marsh systems (Bowen et al., 2009; Kostka et al., 2008; Bowen et al., 2011). 

Therefore, the purpose of this thesis project was to examine the 16S rRNA gene 

sequences retrieved from 2012 until 2014 in southern Louisiana marshes.  The research goal was 

to uncover bacterial diversity in salt marsh soils and determine which sets of environmental 

parameters, including water inundation frequency and depth, vegetation, and salinity, contributed 

to the most variance in the taxonomic diversity of marsh soil microbiomes through time.  This 

research project was part of a large, consortium effort to understand salt marsh ecosystem 

dynamics following the Deepwater Horizon oil spill.  The consortium, Coastal Waters 

Consortium (CWC), sampled marshes in three areas of southern Louisiana, at core sites studied 

by all the investigators, beginning in August 2011 and continuing through at least 2017. 

There are three main research hypotheses: 1) Marsh bacterial communities will share a 

core microbiome.  2) Marsh bacterial communities in the different study regions are influenced 

by different environmental conditions, such as salinity, temperature, and depth of water over the 

marshes.  3) Marsh flooding history explains bacterial community variation through time.  The 

findings from this research will significantly improve our understanding of salt marsh bacterial 

communities and environmental controls.  This thesis is organized into chapters for Materials 

and Methods (Chapter 2), Results (Chapter 3), and Discussion (Chapter 4).  The remainder of 

Chapter 1 focuses on the background for southern Louisiana marsh geology, geomorphology, 
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and previous microbiological research from coast salt marshes.  Tables and figures are included 

at the end of each chapter, and references for the entire thesis are at the end of the Discussion, 

prior to the Appendices. 

Geologic History of Southern Louisiana Marshes 

As of 2010, coastal marshes covered 14,666 km2 of land in southern Louisiana 

(Couvillion et al., 2011).  This area includes nine saline to fresh water basins formed as the 

ancestral Mississippi River began to develop deltas due to rising sea level caused by melting 

glaciers in the Pleistocene, roughly 15,000-17,000 years ago (Kolb and Van Lopik, 1958).  As 

sea level rose, the deeply incised Mississippi River channel began to fill and deposit increasingly 

finer sediment along the coastal margins (Kolb and Van Lopik, 1958).  The coastal marshes we 

see today began to develop 5,000 to 6,000 years ago during the relatively stable period (Mac et 

al., 1998). From 1,000 to 1,500 years ago, natural growth and decay of the delta lobes occurred 

as the Mississippi River changed course upstream (Mac et al., 1998).  Natural levees or 

embankments channelized river flow and allowed for further seaward land formation (Mac et al., 

1998).  Repeated breeches of the natural levees abandoned older delta lobes and formed new 

lobes seaward of the breech (Kolb and Van Lopik, 1958; Mac et al., 1998).  In southeast 

Louisiana, in order from oldest to youngest, the deltaic lobes are Sale-Cypremort, Cocodrie, 

Teche, St. Bernard, Lafourche, Plaquemines, and Balize, which is known as the bird foot delta 

and is the active lobe (Figures 1.1 and 1.2). 
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Figure 1.1:   Mississippi River delta lobes, numbered in chronological order of 
formation (modified from Kolb and Van Lopik, 1958). Light yellow shading indicates 
the extent of current coastal marsh and bottomland forest.  Yellow stars are the 
sampling regions with the two letters indicating the sampling region name.  Each 
sampling region is within a lobe of different deltaic age, labeled CO‒Cocodrie, GI‒
Grand Isle, PS‒Port Sulphur.  Base map from Mac et al. (1998). 



 

5 
 

 

Figure 1.2:   Approximate age of Mississippi River Deltas derived from C14 isotopic samples, from Kolb and Van Lopik (1958) with 
updated chronology from Tornqvist et al. (1996).  Relative age of the sample areas noted by stars with the regional acronym, and the 
corresponding delta lobe number from Figure 1.1 are labeled. 
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Coastal Marsh Geomorphology 

The Mississippi River delta has the largest marsh system in the conterminous United 

States. The Mississippi River drains a watershed of roughly 4.76 million km2 of land across the 

United States and Canada (Louisiana Department of Natural Resources, 2011). Currently, the 

Mississippi River and a major tributary, the Atchafalaya River, discharge 15,400 m3 sec-1 and 

carry approximately 240 billion kg of sediment annually (Mac et al., 1998).  Sediment input 

drives the marsh development and decay cycles. But, land use changes and anthropogenic river 

alterations have decreased the sediment load and increased base flow since the 1800s (Tweel and 

Turner, 2012).  Reduction in sediment from the Mississippi River has been implicated as causing 

major wetland land loss in southern Louisiana (Boesch et al., 1994; Mac et al., 1998; Tweel and 

Turner, 2012). 

Depending on the stage of delta lobe development, the marshes along coastal Louisiana 

have varying geomorphic properties and dominant processes (Sasser, 1994). All the studied 

marshes for this thesis are in decay (Figure 1.1), which begin as the river diverted water and 

sediment into a most recent, Balize lobe that began to form 500 years ago. The marshes on the 

abandoned, decaying lobes now experience transport and reworking of existing material (Sasser, 

1994).  The study region includes Terrebonne Bay (Cocodrie sampling area) to the west on the 

Teche and Lafourche lobes, the barrier island Grand Isle on the Lafourche lobe, and Barataria 

Bay (Port Sulphur sampling region) to the east on St. Bernard and Plaquemines delta (Figure 

1.1).  The relative ages of each of these lobes are shown in Figure 1.2, with the oldest being 

Teche and the youngest being Plaquemines (Kolb and Van Lopik, 1958; Tornqvist et al., 1996).  

The Teche delta lobe formed as the Mississippi River re-routed to form the Atchafalaya River, 
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approximately 4,000 years ago (Mac et al., 1998).  The lobe was abandoned and reworked during 

the development of the Lafourche lobe ~1,500 years ago that resulted in the formation of the 

barrier islands of Grand Isle (Tornqvist et al., 1996).  Soon after the initiation of the Lafourche 

delta, the Plaquemines lobe began to form ~1,300 years ago (Tornqvist et al., 1996).   

Marsh ground surface elevation is affected by opposing forces.  Subsidence in the region 

is occurring at a rate of -10 to -15 mm yr-1, which may be caused by tectonic activity or 

compaction of sediments over the past ~11,000 years (Shinkle and Dokka, 2004).  In addition,  

sea level rise (SLR) globally averages +2.9 mm yr-1 (National Oceanic and Atmospheric 

Association, 2013). Within southern Louisiana, SLR averages +9.05 mm yr-1, which is +0.025 

mm day-1, due to ground surface variation, prevailing winds, and differences in regional 

precipitation (Shinkle and Dokka, 2004; Center for Operational Oceanographic Products and 

Services, 2015).  But, the rate of subsidence varies from -2.3 mm yr-1 to -12.29 mm yr-1, which 

has caused lateral shifts in datum (Shinkle and Dokka, 2004).  To maintain equilibrium with 

sedimentation rates and sea level rise, marshes in southern Louisiana need to accumulate 

sediment (and organic matter) at the same rate of SLR or greater (Glick et al., 2013).   

Organic matter in marshes is mainly sourced from the dominant standing vegetation. 

Plant diversity is affected by flood inundation, flooding frequency, as well as the water body 

salinity (Penfound and Hathaway, 1938; Valiela et al., 2002).  Marshes in low-lying areas are 

marine, while freshwater marshes receive water with salinities (practical salinity units) <0.5 and 

lie at generally higher elevations and are buffered from tidal influences being further from the 

ocean.  Changes in elevation and salinity create plant zonation from lowland to upland marsh 

regions (Mac et al., 1998; Valiela et al., 2002).  Tidal salt marshes, with salinity influences 
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ranging from marine (salinity 30-35) to brackish (salinity 0.5 to 17), have lower plant species 

diversity and are dominated by only one to two species of cordgrass or rush grass, specifically 

Spartina alterniflora or Juncus roemerianus (Rietl et al., 2016).  Below the surface, each of these 

plants will alter the soil in the area surrounding the roots, known as the below ground 

rhizosphere, due to colonization by microorganisms and the addition of oxygen (Koretsky et al., 

2008).  Previous research on marsh ecosystem dynamics and biological diversity in Louisiana 

mostly focused on marsh geochemistry and control on vegetation, but there has been relatively 

limited research done on marsh soil microbial communities, especially compared to other marsh 

systems (Blum et al., 2004; Koretsky et al., 2005; Weston et al., 2006; Beazley et al., 2012; King 

et al., 2015). 

Overview of Water Sources and Environmental Influences  

Precipitation 

Precipitation in southern Louisiana is highest in June and lowest in October based on 

monthly rainfall averages from the National Atmospheric Deposition Program (NADP) (Figure 

1.3) (National Atmospheric Deposition Program, 2015).  Regional precipitation ranges from pH 

4.7 to 5.1 and contains varying concentrations of sulfate, nitrate, ammonium, sodium, chloride, 

and calcium (Figure A.1) (National Atmospheric Deposition Program, 2015).  August 

precipitation has the highest concentrations of sulfate and nitrate, and the lowest concentrations 

in chloride and sodium (Figure A.1).  Changes in concentrations have been attributed to the 

complex interplay among climate, ocean gas and particle exchange, and atmospheric chemical 

transformations (Koster and Suarcz, 1995; Iavorivska et al., 2016).  Precipitation on marshes  
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Figure 1.3:   Average monthly precipitation (±1SE) from 2006-2015 from monthly precipitation data 
recorded by the National Atmospheric Deposition Program (NADP) at site LA30 located near Franklinton, 
LA.  The data were accessed from the NADP data repository (National Atmospheric Deposition Program, 
2015).  The mean monthly precipitation (points), and standard error (error bars) were calculated. 
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have the potential to impact microbial communities, such as from solute introduction, but are 

likely minimal due to mixing and dilution with marine water (Valiela et al., 1978). 

Mississippi River influences 

Mississippi River inputs are primarily enriched in nutrients derived from overland flow 

and precipitation.  This water will pick up dissolved and particulate matter from weathering 

bedrock and from anthropogenic inputs depending on land use.  Land use changes in the 

Mississippi River basin have caused nitrate and phosphorus concentrations to increase and 

silicate concentrations to decrease (Turner and Rabalais, 1991; Tweel and Turner, 2012).   

Flow data throughout the year for the Mississippi River are collected by the United States 

Geological Survey (USGS) at several locations in Louisiana. The Belle Chasse station is the 

closest to the study area (U.S. Geological Survey, 2016) (Figure 1.4).  River diversions along the 

Mississippi River have been constructed by the Army Corps of Engineers, the USGS, and 

restoration agencies for flood control and to increase the potential for sediment introduction into 

the marshes (CPRA, 2017b).  River diversions predominantly affect the sampling area near Port 

Sulphur, where riverine input has decreased salinity throughout the year, but mostly during the 

spring (Figure 1.4 & 3.7).  In addition, river diversions have been projected to decrease salinity 

at Grand Isle from 16.07 in 2008 during median diversion flow average to 9.92 (standard 

deviation (SD) = 4.75) at a maximum proposed flow from the diversions (Roblin, 2008).  The 

efficacy of river diversions as a method of restoring marshes in southern Louisiana is uncertain, 

and the effects on alterations to the microbial communities have only recently been studied 

(Boustany, 2010; Couvillion et al., 2013; Glick et al., 2013; Mason et al., 2016; Marks et al., 

2016).  
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Figure 1.4:   Average monthly discharge rate (±1SE) of the Mississippi River from 2008-2015 at Belle Chasse station 
(site #07374525).  Monthly discharge data was obtained from the USGS data repository (U.S. Geological Survey, 
2016) at the Belle Chasse station for the extent of data available.  Monthly mean discharge values (points), and 
standard error (error bars) were calculated for each month. 
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Marine water influences 

Ocean water is limited in nitrogen compounds and phosphorus but abundant in chloride, 

sulfide, sulfate, magnesium, and potassium (Lyman and Fleming, 1940).  Eutrophication, oil 

spills, and bacterial or diatom bloom events can alter the seawater composition locally (Cerco 

and Cole, 1993; Falkowski et al., 1998; Yang et al., 2014; Joye et al., 2014).  However, due to 

global circulation patterns, concentrations of these ions do not vary widely in the ocean, and 

remain at the N:P:K “Redfield” ratio (Redfield, 1942).   

Depending on the time of year, the tidal variations control the flow of water into the 

marshes (Pethick, 1981). Water flux occur on daily to annual time scales based on data from tide 

predictions calculated by the National Oceanic and Atmospheric Administration (NOAA), 

NOAA Station #8762928 (Figure 1.5).  NOAA tide predictions are calculated from tidal datums 

of extreme high and low tides occurring as the sun and moon move water masses due their 

gravitational pull, which are corrected by current and historical observations (CO-OPS and 

NOAA, 2016).  Daily variation in the tidal range can be significantly different from year to year; 

however, the annual trends remain consistent (Figure 1.5).  Tides in southern Louisiana are 

highest in October through November and lowest during January and February.   

The Coastwide Reference Monitoring System (CRMS) was established under the Coastal 

Wetlands Planning, Protection and Restoration Act (CWPPRA) as a network of up to 391 

stations that record marsh conditions and effectiveness of marsh restoration in the area 

(CWPPRA Task Force, 2015). The network of tidal stations record water level and water quality, 

as well as monitor local and reginal marsh vegetation changes and land surface elevations along 

the coast (CWPPRA Task Force, 2015). Average annual water level in the sampling areas of  
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Figure 1.5:   Tide predictions from the Cocodrie, LA, NOAA station (#8762928) from 2014-2016 with red points indicating 
daily high tide and blue points indicating daily low tide with shading in between these values.  All water height values are 
referenced to the station mean tide level of 1.14 m above the standard datum (CO-OPS and NOAA, 2016). 
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Port Sulphur, Grand Isle, and Terrebonne Bay closely follow tidal predictions (Figure 1.6), with 

average daily water heights measured at CRMS stations from 2006 to 2016 peaking during 

October and being lowest in January through March (Figure 1.6). 

Salinity influences on vegetation 

Within the marshes of southern Louisiana, the water quality of one region is expected to 

vary from another region based on marsh elevation (DeLaune and Pezeshki, 1994), marsh 

accretion and erosion rates (Chmura et al., 2003), tide stage (Chambers et al., 2013), dominant 

vegetation (Visser et al., 2013; Koretsky et al., 2008), salinity (Jackson and Vallaire, 2009; 

Morrissey et al., 2014), among other factors. However, when water from precipitation, riverine, 

and marine sources interact within the marshes, salinity is considered to be one of the main 

controls associated with plant zonation patterns (Pennings et al., 2005). This is because salinity 

can change due to tides, meteorological activities and events (i.e., from changes in wind patterns 

due to storm fronts or from hurricanes), and river diversions, which affect flooding frequency 

and inundation depth (DeLaune and Pezeshki, 1994; Chambers et al., 2013; Glick et al., 2013).  

The effect of salinity on plant zonation is seasonal due to river or tidal flooding (Morris, 

2000), with more halotolerant plant species occupying upland marshes and more flood tolerant 

species colonizing marshes inundated by marine waters. As such, zonation results in variable 

biomass production, degradation rates, carbon fixation pathways (C3 vs C4), and symbiotic 

microbial relationships within the rhizosphere (Blum et al., 2004). Specifically for freshwater 

marshes, salinity increases reduce soil organic content, increases sulfate reduction rates and total 

nitrogen storage, and potentially alters microbial communities (Jackson and Vallaire, 2009; 

Ikenaga et al., 2010; Chambers et al., 2013).  
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Figure 1.6:   Time series of average daily sea-level (in cm) in the three sampling regions from 2006 to 2016, colored by regional 
gauging station.  Hourly water level data, relative to the NAD88 datum, were accessed from the CIMS data repository (CPRA, 
2017a) for each of the three regional CRMS stations.  The hourly water level values prior to October 2013 were corrected to the 
current Geoid 99 and mean water level for each day at each station was calculated for each day and plotted for a single calendar 
year. 
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In contrast, during the summer months when flooding is less frequent, the maximum available 

incoming solar radiation is converted to biomass, and upland marshes, which are also 

predominately freshwater systems, accumulate reduced nutrients (Cronk and Fennessy, 2016).     

Primary production in salt marshes varies widely, estimated at an average of 1873 g m-2 

yr-1 (Kaswadji et al., 1990), and is a combination of production from standing vegetation and 

microphytobenthos. For some marshes, up to 75% of organic matter in salt marsh sediments can 

originate from phytoplankton (Gebrehiwet et al., 2008). Estimates of production for S. 

alterniflora are upwards of 7000 g m-2 yr-1 for dry above- and below-ground biomass. Although 

predominately composed of lignocellulose, a highly refractory polymeric complex that is not 

easily broken down by animals (Benner et al., 1984), plant biomass can be completely 

decomposed in as little as seven months (White et al., 1978; Schubauer and Hopkinson, 1984) 

due to bacterial and fungal mineralization (Benner et al., 1986; Buchan et al., 2003).  The 

bacterial dominance of lignocellulose breakdown in salt marshes is unique, as the same process 

on land is controlled primarily by fungal processes (Benner et al., 1986).   

Current Understanding of Bacterial Communities in Salt Marshes 

Soils in salt marshes are typically characterized by strong reduction potential and are 

generally anoxic at ~1-2 cm below the surface (King, 1988; Kostka et al., 2008), being 

dominated by the reduction of sulfate and nitrate linked to decomposing organic matter by 

microbial activity (White et al., 1978; Valiela and Teal, 1979; King, 1988; Kostka et al., 2008). 

The transition from aerobic to anaerobic conditions is important to controlling rates of organic 

matter and other transformations, although bioturbation has the potential to mix biogeochemical 

gradients (Kostka et al., 2008). Nevertheless, microbial communities are critical in regulating 
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marsh biogeochemistry (Hartman et al., 2008) and are responsible for much of the nitrogen 

fixation, pH buffering, and oxidation of reduced compounds, in addition to organic matter 

decomposition (Lamers et al., 2012; Rietl et al., 2016).  

Although there have been many long-term studies focused on salt marsh geochemistry 

and studies of singular bacterial function (e.g., ammonium oxidation, sulfate reduction), the 

microbial composition within Louisiana marsh sediments and soils is not well defined and few 

studies have obtained a complete understanding of microbial diversity changes through time 

(Blum et al., 2004; Koretsky et al., 2005; Hartman et al., 2008; Gebrehiwet et al., 2008; Kostka 

et al., 2008; Bowen et al., 2009; Jackson and Vallaire, 2009; Ikenaga et al., 2010; Bowen et al., 

2011, 2012; Campbell and Kirchman, 2012; Graves et al., 2016).  Since the Deepwater Horizon 

in 2010, research focused on salt marsh microbial diversity in southern Louisiana has shifted 

from basic biogeochemical studies to investigations that attempt to quantify microbial diversity 

changes and the impacts of the oil spill on microbes (Beazley et al., 2012; Mendelssohn et al., 

2012; Mahmoudi et al., 2013; Joye et al., 2014; King et al., 2015).  Specifically, studies highlight 

the potential for persistence, resilience, and functional redundancy of the microbial communities, 

particularly those impacted by natural stressors like hurricanes or from the spill. Diverse 

microbes, based on 16S rRNA gene sequencing, were found that could potentially utilize 

different electron acceptors to enhance the degradation of crude oil (Amaral-Zettler et al., 2008; 

King et al., 2015) .  Because phylogenetic information does not yield functional information and 

can provide inconsistent results about functional changes (Graves et al., 2016), metagenomics 

approaches seek to identify microbial functional responses (Bowen et al., 2013; Rodriguez-R. et 

al., 2015).  However, correlation of bacterial diversity over large spatial scales using 16S rRNA 
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gene sequencing can provide more statistically significant results than functional gene markers 

(Angermeyer et al., 2016).  

Considering these recent results and emphasis on understanding broad scale patterns of 

bacterial diversity, this thesis research goal was to uncover bacterial diversity in salt marsh soils 

and determine which sets of environmental parameters, including water inundation frequency 

and depth, vegetation, and salinity, contributed to the most variance in the taxonomic diversity of 

marsh soil microbiomes through time. Theoretically, each sampling event collected soils from 

the dynamic system that was changing through time and space. The marsh soil was considered to 

represent a snapshot in time that was also part of a sequence of depositional and erosion events. 

With every centimeter into the soil, the microbial communities and sediment properties would 

become separated temporally, and so the research had to consider that successional patterns 

would be apparent. This research did not attempt to assign function to bacterial data collected 

from 16S rRNA genes, and geochemical and environmental controls were statistically analyzed. 

The bulk of the effort focused on collecting a wide array of data, including information about 

SLR and subsidence rates for the marshes. The connection between SLR and subsidence to 

marsh microbial communities in southern Louisiana has not been studied previously, but similar 

research has been done elsewhere (Larsen et al., 2010; Simon, 2013; Dini-Andreote et al., 2014).  
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CHAPTER TWO  - MATERIALS AND METHODS 

Field Sampling  

Prior to the current project, thirty marshes across the region were monitored to assess the 

impacts of the 2010 Deepwater Horizon oil spill with National Science Foundation funding 

(Turner et al., 2014).  In 2012, the Coastal Waters Consortium (CWC) was funded by the Gulf of 

Mexico Research Initiative (GOMRI) and the CWC established 12 core sampling locations, and 

the CWC installed boardwalks (Hooper-Bui et al., 2014).  After 2014, the CWC was refunded by 

GOMRI as CWC-II until 2017. For this project, salt marshes were sampled twice a year from 

2012 until 2014. Four marshes were selected near Cocodrie in western Terrebonne Bay (TB), 

which was the westernmost sampling area. Five marshes were used near Grand Isle (GI) on the 

western edge of Barataria Bay. A total of eight different sites were used near Port Sulphur (PS) 

on the easternmost sampling area in Barataria Bay and closest to the Mississippi River (Figure 

2.1). The higher number sites for PS was because the original CWC sites in 2012 had landowner 

permission revoked and new sites had to be chosen (and landowner permission granted) in 2013.  

At each of the marshes, soil samples were collected using push-cores at 5 m inland from the 

marsh vegetation edge directly off of boardwalk.  Push-cores were 10 cm in diameter and 

sectioned into sterile Whirlpak bags in the field at four 1 cm depths; 0-1cm (A), 1-2cm (B), 4-

5cm (C), and 9-10 cm (D).  Soil cores were collected in duplicate to have sufficient material for 

molecular and geochemical analyses.  A homogenized soil sample from up to two cm deep in the 

marsh soil surface was also collected (MS) in 50-ml tubes.  Soil samples were placed on ice and 

transferred to -20 °C within 48 hours.  For some select locations, MS samples were collected in 
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2011, and extreme weather and landowner issues caused some samples to go uncollected 

periodically (Table 2.1).  

Physical measurements at each of the marshes included the height of water over the 

marshes (if water was present), and inland soil pH, temperature, and salinity (see pages 21-22).  

Generalized sketches of the submerged and un-vegetated marsh bottom were constructed. From 

the open water at ~3m offshore, pH and temperature were measured with a 3-point calibrated 

Accumet Thermo (Fisher) meter, and salinity, dissolved oxygen, and temperature were measured 

at the surface and bottom of the water column using with a YSI meter.  A raw water sample was 

collected from ~0.25 m below the open water surface for major anion and cation geochemical 

analysis and for DNA extractions.  Water samples were frozen at -20°C within 24‒48 hours of 

collection.  

Figure 2.1:   Map of the sampling sites where sediment cores were collected twice a year from 
2012 to 2014.  See Table 2.1 for details for each sample site. 
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Table 2.1:   Samples were collected twice a year from 2012-2014.  Each cell contains the letter(s) 
corresponding to the sample depth.  MS-Marsh surface (0-2cm grab sample), A (0-1 cm) core 
section, B (1-2 cm) core section, C (4-5cm) core section, D (9-10cm) core section.  Colors 
indicate the type of samples collected; Red-Marsh Surface only, Yellow-Core samples only, 
Blue-Marsh Surface and core. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Site Jun-12 Oct-12 May-13 Oct-13 May-14 Oct-14 

GI-01 MS MS   A-D, MS   A-D, MS 
GI-02 MS MS   A-D, MS   A-D, MS 
GI-03   MS A-D, MS A-D A-D, MS A-D, MS 
GI-04   MS A-D, MS A, C, D A-D, MS A-D, MS 
GI-05 MS MS   A-D A-D, MS A-D, MS 
PS-01 MS           
PS-02 MS           
PS-03 A-D, MS           
PS-03A       A-D, MS   A-D, MS 
PS-04 A-D, MS           
PS-05     A-D, MS A-D MS A-D, MS 
PS-06     A-D, MS A-D A-D, MS A-D, MS 
PS-07       A-D, MS A-D, MS A-D, MS 
TB-04/CO-01 MS           
TB-02/CO-02 MS   A-D, MS   A-D, MS A-D, MS 
TB-05/CO-03     A-D, MS A-D A-D, MS A-D, MS 
TB-06/CO-04     A-D, MS A-D A-D, MS A-D, MS 
TB-01/CO-05     A-D, MS A-D A-D, MS A-D, MS 
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Data for individual field measurements are archived in the Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC) database: 

http://dx.doi.org/10.7266/N7XW4GQG, http://dx.doi.org/10.7266/N7RB72JB, 

http://dx.doi.org/10.7266/N70V89RN, http://dx.doi.org/10.7266/N7W37T8P, 

http://dx.doi.org/10.7266/N7S46PVP, http://dx.doi.org/10.7266/N74M92GC, 

http://dx.doi.org/10.7266/N7Q23X55. 

Additional sample collection 

Other research groups within the CWC concurrently collected samples and took 

additional measurements from the marshes as soil collection.  Additional parameters from 1 m 

inland and 10 m inland from the marsh edge included porewater dissolved hydrogen sulfide 

measured using Chemetrics colorimetric chemistries (Calverton, VA), vegetation coverage from 

stem counts, average plant height, and the number of unique observed plant species in the 

sampling area (Turner and Swenson, 2016).  Samples of marsh soil were also collected at 1 m 

and 10 m inland for hydrocarbon analysis, including normal (n)-alkanes and polycyclic aromatic 

hydrocarbon compounds and alkylated homologs.  Hydrocarbon characterization was done using 

previously described methods (Turner et al., 2014). 

Laboratory Analysis 

Aliquots of homogenized soil from each depth were separated from thawed samples in 

the lab for measurements of gravimetric water content (% H2O), total organic carbon (TOC), pH, 

and total nucleic acids extractions. 

http://dx.doi.org/10.7266/N7Q23X55
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Soil analyses 

The % H2O and TOC concentrations of the 2012-2014 soils were measured using the 

thermogravimetric loss-on-ignition method modified from Veres (2002).  Triplicate 3 g aliquots 

were weighed and placed in pre-weighed tins.  Samples were dried for 12 h at 105°C to 

determine the % H2O by weighing cooled dry samples and calculating the percentage of water 

(Equation 1): 

  𝑊𝑊𝑊𝑊𝑊𝑊𝑒𝑒𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑊𝑊𝑒𝑒𝑐𝑐𝑊𝑊 = 100 ∗ (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑚𝑚𝑜𝑜𝑠𝑠𝑠𝑠+𝑡𝑡𝑠𝑠𝑡𝑡)−(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑜𝑜𝑠𝑠𝑠𝑠+𝑡𝑡𝑠𝑠𝑡𝑡)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑜𝑜𝑠𝑠𝑠𝑠

   Equation 1 

The dried soils were heated to 550°C for 6 h, then placed into a desiccator to cool before 

weighing at room temperature to calculate TOC, following the methods outlined by Schulte and 

Hopkins (1996) (Equation 2):  

 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 ∗ (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑜𝑜𝑠𝑠𝑠𝑠+𝑡𝑡𝑠𝑠𝑡𝑡)−(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑚𝑚𝑜𝑜𝑠𝑠𝑠𝑠 𝑚𝑚𝑜𝑜𝑡𝑡𝑎𝑎𝑑𝑑 𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑡𝑡𝑠𝑠𝑜𝑜𝑡𝑡+𝑡𝑡𝑠𝑠𝑡𝑡)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑜𝑜𝑠𝑠𝑠𝑠

  Equation 2 

The contribution of carbonate to TOC was determined to be insignificant after several analyses 

(<0.1% TOC).  Therefore, the LOI values were as TOC.   

Soil pH was determined from each sample according to the method outlined by Thomas 

(1996).  Duplicate 2 g aliquots from each core section (A-D depths) and marsh surface (MS) 

sample were added to 10 mL of 0.01M CaCl2 solution and mixed at 100 rpm for one hour.  

Aliquots were centrifuged at 4°C for 10 min and the supernatant was pushed through an 11μm 

filter to remove particulate organic matter.  The measurements of the filtered supernatant were 

done using a calibrated Accumet Thermo (Fisher) glass electrode and pH meter.  The readings 

from two measurements were averaged for each sample. 
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Water analyses 

Frozen water was thawed, sonicated in the collection bottles for 10 minutes, and filtered 

into HDPE bottles through a 0.22 μm Sterivex PES filter to obtain filtered water that would be 

analyzed for major anion and cation concentrations on a Dionex (Thermo Fisher) dual column 

ion chromatograph (IC) reagent free system.  Cation samples were preserved with nitric acid, and 

no preservation was used for anions prior to IC measurements done with six cation and seven 

anion standards. Ion data are archived in the GRIIDC database: 

https://data.gulfresearchinitiative.org/data/R1.x139.143:0056. 

Microbial diversity analyses 

For the 2012‒2014 soil samples, total nucleic acids were extracted using the sucrose lysis 

method, which was modified from Guerry et al. (1973), Somerville et al. (1989), Zhou et al. 

(1996), and Mitchell and Takacs-Vesbach (2008). Methods were consistent with previous 

research done from marsh sediments before and after the Deepwater Horizon oil spill (Liu, 

2011). Briefly, each of the soil core depths were thawed at room temperature. Triplicate 

extractions were done for each soil sample, whereby 0.5‒2.0 g of thawed soil were mixed with 

sucrose lysis buffer and centrifuged at maximum speed in 15 mL conical centrifuge tubes for 3 to 

5 min prior to incubation at 37°C for 60-90 min. After the first incubation, a mixture of 

proteinase K/CTAB/SDS was added to each extraction prior to incubation at 55°C for 12-16 

hours at 100 rpm on a rocking platform. Following the last incubation, slurries were centrifuged 

at 10,000 x g to separate solids from the supernatant.  In triplicate volumes, 1 mL of supernatant 

was mixed with 10M ammonium acetate prior to centrifugation at 10,000 x g for 10 min. The 

three separate volumes were mixed with 100% isopropanol to precipitate the nucleic acids at -
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20°C, prior to centrifugation at 10,000 x g for 10 minutes. Pellets were washed twice using 

molecular grade ethanol. After drying, nucleic acid pellets were re-suspended in TE buffer.  

For each core section, the triplicate extractions that were each used for three precipitation 

volumes that were pooled and homogenized.  The 260/280 nm and 230/280 nm adsorption 

values were quantified by using a Nanodrop spectrophotometer (ThermoFisher Nanodrop 

ND1000), and DNA extractions were also visualized by using electrophoresis with ethidium 

bromide stained TBE gels. The homogenized extractions were sent for 454 tag pyrosequencing 

of the V1-V3 region of 16S rRNA genes using Titanium series Roche 454 at the Molecular 

Research (MRDNA) laboratory in Shallowater, Texas (Dowd et al., 2008).  The Texas facility 

cleaned, tagged, and amplified the 16S rRNA gene amplicons prior to sequencing.  The raw 

amplicons were compiled by sample and reported back to the lab with quality scores.  

Use of Coastal Wetland Monitoring Datasets 

To assess the frequency and duration of flooding over the marshes in southern Louisiana, 

data from the NOAA (https://tidesandcurrents.noaa.gov/tide_predictions) and CRMS 

(https://www.lacoast.gov/crms2) websites and were acquired.  Data are stored in the Coastal 

Protection and Restoration Authority’s Coastal Information Management System (CIMS), as per 

the data plan outlined in the Master Plan (CPRA, 2017b). CRMS data are available publicly from 

the Coastwide Information Management System (CIMS) data repository 

(http://cims.coastal.la.gov/).   

https://tidesandcurrents.noaa.gov/tide_predictions
https://www.lacoast.gov/crms2
http://cims.coastal.la.gov/
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NOAA tidal predictions 

NOAA creates predictions of the currents based on harmonic constants and tidal datums 

from the position of the earth and moon.  Calculations at each station include the high and low 

tidal heights and times for each NOAA station (CO-OPS and NOAA, 2016).  Tidal stations were 

separately selected for the regions of Port Sulphur (8761819), Grand Isle (8761724), and 

Terrebonne Bay (8762928).  Hourly tide predictions were downloaded for each station from 

2014-2016, aggregated, and Similarity Percentage (SIMPER) analysis was run on different 

groupings of the predicted water height using the packages vegan, dplyr, and reshape2 in R 

(Oksanen et al., 2007; Wickham, 2012; Wickham and Francois, 2015).  SIMPER analysis based 

on Bray-Curtis dissimilarity matrices were used to determine the similarity of daily high and low 

tides between regions during the months of sampling.  

CRMS marsh accretion rates and station data 

The CRMS data having the longest coverage, proximity to the sampling sites, and rate of 

marsh accretion from three stations closest to each marsh sampling location for each region were 

acquired.  Marsh accretion data were used to indicate if marshes are accreting or subsiding and to 

evaluate the regional variability of marsh elevation, water height, subsidence, and productivity.   

Briefly, marsh accretion is determined by CRMS network staff by collecting soil cores 

and measuring the thickness of marsh sediment and organic matter from an insoluble powder of 

feldspar applied surrounding a survey pin at each location during installation (Folse et al., 2014).  

CRMS cores are collected at 6-12 month intervals. Accretion rates for each candidate CRMS 

station used in this study were plotted in Figure 2.2. Accretion results were not spatially 

referenced to a datum, and could not be used in correlation with another dataset.  Therefore, 
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selecting a CRMS marsh with the median value of marsh accretion for an area was assumed to 

provide more accurate measurements than the highest or lowest accretion rates from any single 

site. CRMS stations with median rates of marsh accretion were selected from Port Sulphur and 

Terrebonne Bay, but because the marshes at Grand Isle were accreting at roughly the same rate, 

the station with the longest sampling duration (until October 2016) and largest coverage was 

selected.  The CRMS stations that were selected to represent each region were Port Sulphur – 

CRMS-4529, Grand Isle – CRMS-0164, and Cocodrie – CRMS-0355.    
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Figure 2.2:   Marsh accretion for three stations from each region.  A linear 
regression line was plotted with a 95% confidence interval in gray.  Pin 
height was reported in mm from each of the nine directions around the pin 
above the NAVD88 datum. 
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Data coverage assessed as a percentage of the data collected from the start of each station’s 

recorded measurements were 94.5% for Port Sulphur, 97.5% at Grand Isle, and 98.3% at 

Cocodrie.  The length of time sampled among the CRMS sites in Port Sulphur, with data only 

extending back to July 2007 (one year prior to the other two regional datasets). During the 

sampling period of 2007 to 2015, the coverage was 94.5%, but data coverage was 99.9% from 

2012 to 2014, the duration of this study. 

The CRMS network records hourly water levels at each gauging station, as well as 

surface water salinity and temperature (CPRA, 2017a).  The gauge height accuracy at each 

station is assessed twice a year based on surveys conducted in the field by CRMS staff.  Each 

station records the “Raw Water Level,” which is corrected for biofouling, instrument drift, and/or 

instrument malfunction and reported as “Adjusted Water Level” (Folse et al., 2014).  As such, 

these measurements are not comparable through time or across different gauging stations, and 

the water level measurements had to be referenced to a datum.  At each station, the reported 

water level is converted to the North American Vertical Datum 1988 (NAVD88).  During this 

study, datum conversions had two different geoid models through time, Geoid12A was used 

prior to October 1, 2013, and GEOID99 was used from October 2013 to the present.  A 

correction factor is available for each station to correct from GEOID99 to GEOID12A on the 

CRMS website, referred to as “Shifted Water Elevation.”  For each station selected, the 

correction factor from GEOID99 to GEOID12A was -0.73 ft (Grand Isle Station #164), -0.9 ft 

(Terrebonne Bay station # 0355), and -0.86 ft (Port Sulphur station # 4529).  For this thesis, after 

the correction for each station was applied, the average daily water heights were plotted through 

time; refer to Figure 1.6. 



 

30 
 

Marsh elevation determination 

At each representative CRMS station, CRMS research staff measure the elevation of the 

marsh surface roughly twice a year from nine cardinal directions around a collared survey pin 

near each station (Folse et al., 2014).  The distance from each measurement point around the 

collar of the pin to the marsh surface is subtracted from the survey results of the collar to ensure 

that the average measurement of elevation from the location captured the variability in 

topography at each location, as well as between survey events (Figure 2.3) (Folse et al., 2014).  

Marsh elevation differs from accretion because elevation is referenced to a datum and can 

provide comparable results between datasets and through time.  

For this thesis, marsh elevation was assumed to change at a rate of change equal to marsh 

accretion adjusted to the mean elevation of on-site water height over the marsh in each region. 

The marsh elevation of each region was evaluated based on two calculations: 1) From a nearby 

marsh elevation calculated by CWPPRA (Folse et al., 2014); 2) a linear regression model of 

elevation change through time using the CRMS surveyed marsh elevation from a nearby marsh 

adjusted to sampled marsh elevation based on regional CWC field observations.  CRMS reported 

water marsh height over the marsh and CWC staff observed data were assessed using a paired t-

test to determine if the groups were significantly different.  If the test yields that the two groups 

are significantly different, a calculated marsh elevation will be used for the marsh elevation at 

CWC sites. 

The first method of evaluating marsh elevation is calculated by CWPPRA at each of their 

monitoring stations obtained using on site measurements (Equation 3).  
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Figure 2.3:   Time series data from marsh surface elevation, 2006‒2016.  Average marsh surface elevations from each survey 
period from CRMS stations are representative of each sampled region in the thesis.  Each point is the average value of 
measurements around a pin above the datum.  The values are not the actual marsh elevation but distance above the datum collected 
at 6 month to 12 month intervals by CRMS staff. 
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 The mark elevation is collected during survey events by CRMS staff approximately two times a 

year and elevation is adjusted roughly annually to once every two years (Folse et al., 2014): 

𝑀𝑀𝑊𝑊𝑟𝑟𝑀𝑀ℎ 𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝑊𝑊𝑊𝑊𝐸𝐸𝑐𝑐𝑐𝑐 (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁88, 𝑓𝑓𝑊𝑊) = 𝑀𝑀𝑊𝑊𝑟𝑟𝑀𝑀 𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝑊𝑊𝑊𝑊𝐸𝐸𝑐𝑐𝑐𝑐 (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁88, 𝑓𝑓𝑊𝑊)–𝑀𝑀𝑊𝑊𝑟𝑟𝑀𝑀 𝑊𝑊𝑐𝑐 𝑀𝑀𝑊𝑊𝑟𝑟𝑀𝑀ℎ 𝑆𝑆𝑆𝑆𝑟𝑟𝑓𝑓𝑊𝑊𝑐𝑐𝑒𝑒 (𝑓𝑓𝑊𝑊)  

            Equation 3 

Water elevation from the associated CRMS station is subtracted from the marsh elevation 

to obtain the reported in the CRMS data as “Adjusted Water Elevation to Marsh (ft),” in which 

positive values represent water over the marsh surface and negative values represent water levels 

below the marsh surface.  These values for water elevation over the marsh were compared to the 

observed height of water over the marsh during field sampling for this study using a paired t-test.  

The second method of determining marsh elevation was done by analyzing the change in 

marsh surface elevation through time from the representative regional CRMS station elevation 

data.  Unlike the CRMS calculated marsh elevations that provide a static elevation, the marsh 

surface elevation was calculated as the linear regression, changing with time.  The regional rate 

of marsh elevation change was calculated as the slope of the best fit linear regression from 

2006/2007 – 2016 of the corrected pin height measurements.  The slope of the line was assumed 

to represent the average regional elevation change. However, the first coefficient or y-intercept 

was not based on marshes sampled by the CWC.  The elevation of CWC sampled marshes has 

not been determined. So, for this thesis, marsh elevation was calculated as the difference in 

means between CRMS water elevation at the hour of sampling and the CRMS recorded water 

height over the marsh at each sampling location within a region.  A total of 45 water height 

observations were made from 5‒10 m inland at all sampling sites during 2011‒2016 sampling.  

Differences were noted if ponded water was on the marsh, and ponded water depths were not 

used.  
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The CWC-measured water heights over the marsh were compared to the residuals of the 

linear regression of CRMS sea-level elevation at the hour of sampling at each region.  The two 

means were compared at each region using a paired t-test.  The difference in means from the 

observed water heights and residuals was calculated, and the values were subtracted to obtain a 

correction factor in centimeters.  The correction factor was applied to the first coefficient (y-

intercept) of the marsh elevation linear regression.  The resulting equation yielded hourly marsh 

elevation at each region.   

Marsh flooding and Marsh Inundation Index 

Once the marsh elevation was calculated for each region, the hourly water elevation 

relative to the marsh surface was calculated.  Hourly water level measurements adjusted to 

NAVD88 datum were subtracted from the calculated marsh elevation to yield water height over 

the marsh.  Positive values of water over the marsh indicate flooding, and negative values 

indicated periods where water level is below the average marsh surface.  

The tidal cycle of the Gulf of Mexico is generally diurnal, and a single cycle occurs every 

24 hours and 50 minutes (DiMarco and Reid, 1998).  A 24-hour cycle was chosen to represent a 

tidal cycle, and the hourly water level data were divided into 24-hour segments.  For each time 

period, data for adjusted water depth over the marsh were analyzed, which totaled 10,454 

intervals from July 2006 until October 2016 at Grand Isle and Terrebonne Bay, and from July 

2007 until October 2016 at Port Sulphur.  From the 24-hour water height over the marsh 

measurements, the maximum water height and flooding duration were determined.  Maximum 

water heights relative to the NAVD 1988 datum in a 24-hour period varied from -10.01 cm to + 

195.7 cm for all regions.  The range of maximum water heights over the marsh in 24 hours 
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ranged from <10 cm to over 45 cm above the marsh.  The percentage of time a marsh was 

flooded was calculated as the number of hours with positive values of marsh water heights 

divided by the number of hours in each interval (24), multiplied by 100.  

The Marsh Inundation Index (MII) is a new calculation developed for this thesis research 

to categorize water depths and flooding duration, ranging from zero to four and based on the 

mean and standard deviation of the maximum water heights. The least flooded time periods were 

assigned a MII value of 0, which represented less than 30% of the time (5 hours) being flooded 

by 10 cm or less water over the marsh surface.  A value of MII 1 indicated a marsh was flooded 

less than 50% of the time (12 hours) by a maximum water height of between 10.1 cm and 20 cm.  

A value MII 2 indicated inundation greater than 54% (13 hours) and a maximum water height of 

less than 30 cm.  MII 3 corresponded to inundation duration greater than 62% (15 hours) and a 

maximum water height of between 30 cm and 45 cm.  MII 4, the highest value, represented 

marsh surface inundation greater than 62% of the time and a maximum water height of greater 

than 45 cm.  Of the 10,454 observations, the average maximum water height in 24-hour cycle 

from 2006 to 2016 was 15.74 cm (MII 1), the first quartile was 5.22 cm (MII 0), the third 

quartile was 25.6 cm (MII 2), and a SD = 16.8 cm.  

16S rRNA Gene Sequence Processing 

Raw amplicon files for the 2012-2014 samples were provided by MRDNA, which totaled 

4,522,073 reads. All failed reads, low-quality reads (Q-score <30), and non-bacterial rRNA 

sequences were removed using the computer program MOTHUR V1.36.1 

(http://www.mothur.org/wiki/Main_Page), following the pipeline modified from Schloss et al. 

(2011). Amplicons were aligned to the Silva reference alignment database release 119 (Pruesse 

http://www.mothur.org/wiki/Main_Page
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et al., 2007) modified for MOTHUR by Schloss (http://blog.mothur.org/2014/08/08/SILVA-

v119-reference-files). Amplicons were chimera-checked using the aligned Silva gold reference 

database with the program Uchime (Edgar et al., 2011). Taxonomic identities were assigned to 

each read also using Silva release 119 reference file in MOTHUR (Pruesse et al., 2007; Schloss 

et al., 2009).  Data for each sample is archived in the GRIIDC database: 

http://dx.doi.org/10.7266/N7GT5K39, http://dx.doi.org/10.7266/N7C24TCW, 

http://dx.doi.org/10.7266/N73N21BJ, http://dx.doi.org/10.7266/N77D2S2W, 

https://data.gulfresearchinitiative.org/data/R1.x139.143:0044, 

https://data.gulfresearchinitiative.org/data/R1.x139.143:0045. 

Operational taxonomic units (OTUs) were generated to describe and compare the marsh 

bacterial communities across sample depth, marsh location, and region.  Sequences from each 

file were merged and clustered using an average neighbor algorithm (Schloss and Westcott, 

2011).  Sequences were “denoised” by clustering at a distance threshold of 85% with an OTU 

cutoff of 0.03 (97%) and 0.05 (95%) (Schloss and Westcott, 2011).  OTUs were classified based 

on the consensus taxonomic identification at the 85% cutoff using the Silva reference file release 

119 (Pruesse et al., 2007).  Clusters at the different OTU cutoffs were used to assess the α- and 

β-diversity (Schloss et al., 2009).  Bacterial community richness was estimated using the Chao1 

and nonparametric bootstrap calculations (Smith and van Belle, 1984; Colwell, 2006).  

Community diversity was assessed using the Shannon and Simpson indexes, and the overall 

coverage of sampling was assessed using Good’s coverage for an OTU definition (Good, 1953; 

Magurran, 2013).  After processing, the presence of shared OTUs in a sample at a relative 

abundance of greater than 1% was determined using the commands make.shared and 

http://blog.mothur.org/2014/08/08/SILVA-v119-reference-files
http://blog.mothur.org/2014/08/08/SILVA-v119-reference-files
http://dx.doi.org/10.7266/N7GT5K39
http://dx.doi.org/10.7266/N7C24TCW
http://dx.doi.org/10.7266/N73N21BJ
http://dx.doi.org/10.7266/N77D2S2W
https://data.gulfresearchinitiative.org/data/R1.x139.143:0044
https://data.gulfresearchinitiative.org/data/R1.x139.143:0045
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get.microbiome in MOTHUR to evaluate core microbiomes (Schloss and Westcott, 2011).  The 

make.shared command produced a count of each identified OTU from the merged samples, and 

get.coremicrobiome returned a shared file to calculate the relative abundance of each OTU 

within all merged samples present from 1‒100%.  The datasets created were curated using the 

most recent updates to the R computer program packages dplyr, and reshape2 (v 3.3.2 “Sincere 

Pumpkin Patch”) (R Core Team, 2015; Wickham, 2012; Wickham and Francois, 2015).  

A core microbiome is defined as one or more OTUs that are one percent relatively 

abundant within all of the samples.  OTUs were assessed at a 95% similarity threshold, and 

OTUs shared in at less than 1% of any sample are not detectable by the method, and may be 

considered part of the rare core microbiome (Shade and Handelsman, 2012; Bowen et al., 2012).  

A 95% similarity threshold was chosen which do not group samples at the species level of 

identification, but is associated with genus-level taxonomic identification.  Genus level 

taxonomic identification yields a reduced number of singletons and doubletons, and more 

identification due to the many unidentified species within marsh environmental samples.  

Samples were grouped initially by site at each sampling time, for each region.  When selecting 

the samples to merge, only groups with at least 3 samples were used.  Comparing a core 

microbiome from 2 samples would not be statistically relevant. 

All bacterial data were converted into relative abundance values, ranging from 0 to 1 (or 

0% to 100%).  The total sum of each bacterial community within a phylogenetic level was 

divided by the count of individual reads from each species.  This was performed for each 

phylogenetic level, for each sample.  This technique allows samples to be compared but assumes 

that the number of bacterial reads and the taxonomic identifications within the sample are 
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representative of the entire population in situ.  One downfall of using relative abundance 

transformations for bacterial data is that each value is not an independent variable because they 

are fractions of the whole (Paliy and Shankar, 2016).  The change in one value affects the 

relative abundance values of all communities within a sample at a specific taxonomic level.  

Other methods of assessing bacterial community abundance could have been used, but because 

the data encompasses many zero values, the number of approaches diminishes due to potential 

error (Paliy and Shankar, 2016).  Total normalization is a well-established method when 

assessing bacterial community composition (Paliy and Shankar, 2016).   

Statistical Analyses 

Data Transformation 

Multiple types of data transformation were used for measurements that encompass long 

gradients, short gradients, zeros, and discrete response variables (Paliy and Shankar, 2016).  

Transforming the data was completed to create equal variances between measurements of 

different units and magnitudes.  Categorical data such as region and depth were not transformed 

into continuous variables.  Transformations applied to all n=245 observations in this research 

included: Hellinger transformation: √(xij/ ∑ 𝑥𝑥𝑡𝑡
𝑠𝑠=1  i+); where i-species, j-object and i+-denotes all 

i’s (Rao, 1995); log transformation: log10(x+1) (Paliy and Shankar, 2016); normalization: 

(xi/∑ 𝑥𝑥𝑠𝑠
𝑠𝑠=1 i)*100 ; where i-species completed for each samples (Paliy and Shankar, 2016). 

Environmental variables were collected using a variety of techniques, and the data were 

both discrete and continuous.  Counts, categorical, time, and quantitative values were all used 

and transformed to reduce dimensionality and scaling when comparing datasets.  To reduce 
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statistical error, diversity index values were transformed using the Hellinger transformation that 

is well suited for large values within a dataset, and those containing many zeros (Paliy and 

Shankar, 2016).  All field measured environmental variables measured both in the field and from 

the lab were log10(n+1) transformed.  The log transformed variables included the measurements 

of normal alkane concentrations, salinity, water depth, sulfide concentrations, vegetation 

coverage, canopy height, pH, and temperature.  Missing values were assigned an NA and were 

handled through various methods, including deletion of entire samples or pairwise deletion. 

The hypothesis that the sample has a sufficient coverage can be assessed by Good’s 

coverage and rarefaction curves (Good, 1953; Morales et al., 2009). Good’s coverage gives a 

value from 0-1 (or 0-100%) that indicates if the number of OTUs identified at a similarity cutoff 

is representative of the overall population.  Adequate Good’s coverage values indicate that the 

number of sequences and identified OTUs for a sample are representative of the entire 

population, assessed for this thesis as >80% coverage. 

Data Validation  

Data assessment and validation were completed for each measurement and dataset used 

in this thesis.  Each laboratory analysis or collaborator provided measurements that met three 

criteria: 1) have adequate coverage (>90%) from 2012 – 2014; 2) use previously established 

collection methods in the field or by following standards (ASTM, USGS); 3) be comprised of 

minimal outliers or easily explained outliers.  
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Bray-Curtis Dissimilarity matrix based analyses 

To determine the similarity or difference among bacterial diversity grouped by time, 

depth, and spatial distribution, the similarity percentage analysis (SIMPER) was used from the 

vegan package in R (Oksanen et al., 2007).  SIMPER is based on Bray-Curtis dissimilarity 

matrices and provides the percentage of dissimilarity between groupings, as well as the 

contribution of taxonomic assessment to that total dissimilarity from a comparison (Clarke, 

1993).  To determine the significance of these relationships 99 permutations of the analysis were 

run to evaluate the P-values associated with each analysis.  The Bray-Curtis Dissimilarity Index 

(BCDI) assesses dissimilarity between two groups as a value from 0‒1, with 1 being the most 

dissimilar.   

Principal Component Analysis  

Principal Component Analysis (PCA) is a multivariate analysis used to identify bacterial 

community relationships using relative abundance data.  PCA plots visualize two or more axes 

that are linear components that explain variance among communities (Legendre and Gallagher, 

2001).  The axes are listed from most to least variance, and thus the first two axes should identify 

the taxa or loadings that explain the most variance, which is farthest away from the central point 

in either the positive or negative direction.  Communities that explain low variance plot very 

close to one another, near the central point.  The total number of axes (ranks) explains how many 

dimensions the data have based on orthogonal projections from the previous axis, starting with 

the first (Legendre and Gallagher, 2001).  PCA has its drawbacks in that rare and low abundance 

communities can skew the interpretations (Paliy and Shankar, 2016), although low abundance 
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communities can be removed so that only the upper 95% of all bacterial communities were 

assessed.    

Canonical Correspondence Analysis 

Canonical Correspondence Analysis is based on Chi-squared distance matrices and 

performs weighted linear mapping of the variables.  The CCA is most widely accepted with the 

abundance and environmental data due to the presence of gradients that exist within the relative 

abundance and environmental parameters (Paliy and Shankar, 2016).  Variables to be used in the 

CCA were selected to identify and explain the variation related to the MII.  Hypothesis two 

focused on the interaction of bacterial communities and the MII values, which was the only 

continuous variable paired with a categorical value of either region or depth.  When using 

categorical variables, dummy variables were decomposed into n-1 CCA axes, where n is the total 

number of factors of the variable.  For a regional classification variable, two dummy variables 

were created of binary indication of the variable were assessed, since regional differences are not 

continuous.  The results were plotted as centroids, and not vectors. 

A stepwise CCA model was completed using forward and backward modeling based on 

variable significance at a threshold P-value of 0.01 using the R program and “vegan package” 

(Oksanen et al., 2007).  To reduce model instability, only parameters with low multicollinearity 

were used in the model, tested using a variance inflation factor of less than or equal to nine 

(Craney and Surles, 2002). 
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General Linear Models 

To determine what environmental variables were meaningful in explaining variation in 

the bacterial communities, a lasso regularized general linear model was done using the package 

“glmnet” in the program R (Friedman et al., 2009).  The environmental variables used in the 

model were screened first for collinearity using a variance inflation factor (VIF) cutoff of 9 from 

linear regression (Craney and Surles, 2002).  The Lasso regression method was used to select a 

sparse number variables that were associated with bacterial changes by analyzing the parameter 

lambda (λ[lambda]) in the form of Equation 4 (Tibshirani, 1996).   
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= 𝑅𝑅𝑆𝑆𝑆𝑆 + 𝜆𝜆� �𝛽𝛽𝑗𝑗�
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 Equation 4 

Lasso regularization was used to minimize the predicted coefficient of lambda, the tuning 

parameter, using an L1 penalty.  In Equation 4, y is the dependent response variable with p 

predictors of the ith sample, β[beta] is the coefficients vector, with β[beta]0 being the intercept 

and RSS is the residual sum of squares of the jth predictor.   

To select a lambda value that minimize MSE, cross-validation sampling approach was 

used with 10 folds to approximate the MSE of all 245 samples (Friedman et al., 2009).  When 

running the sample for each region, the sampling folds were decreased to 5 or 6 due to a 

reduction in sample size. Lambda selection for the selection of parameters can be extended 

beyond the minimum MSE to +1MSE, which could reduce the total number of parameters that 

are useful in the model.  For the entire dataset, the model was used at a +0.5MSE cutoff, and all 

regional models were extended +0.5SE to reduce variables with lower total number of samples. 
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CHAPTER THREE  - RESULTS 

Environmental Physiochemistry Based on Field Sampling 

Seventeen environmental parameters were measured in conjunction with a collection of 

245 marsh soil samples (Table 2.1).  For all parameters used in this study, the averages and 

maximum and minimum values were calculated (Table 3.1).  Measurement coverage was 

determined and utilization of a measurement for statistical purposes was evaluated. From the 

field data, although inland water depth was only measured for 109 (44%) of the soil samples, 

average water depth when measured was 11.69 cm at Port Sulphur, 9.47 in Grand Isle, and 23.5 

cm in Terrebonne Bay. These values were compared to CRMS data during sampling. Because of 

incomplete records, inland sulfide data and incoming solar radiation were not used for statistical 

analyses.  Specifically, the average concentration for inland sulfide was 27.36 ppm for 48% of 

the samples, mostly because there was no water available for which to measure dissolved sulfide.  

The average incoming solar radiation was 929 W m-2 for 50% of samples when measured.  

Hydrocarbon data had 96% sampling coverage, with all but 10 samples having analyses. 

The average total n-alkane concentration for all samples during the study was 20.7 mg kg-1. Total 

n-alkane concentrations from inland soils were used to calculate proportions of n-alkane chain 

length, with 5.8% low (C10 ‒C18), 34.9% medium (C19 ‒C26), and 57.1% high (C27 ‒C35) chain 

length values (Figure 3.1). These values differed significantly between regionals base on 

ANOVA calculations (P-value = <0.0001) (Table 3.1).  Total n-alkane data were also used to 

calculate carbon preference index (CPI), average chain length (ACL), and the C29/C19 ratio.   
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Figure 3.1:   n-alkane chain length as a percentage of the total n-alkane concentrations from 2012 through 2014 
measured at each site.  Average total concentrations are listed in Table 3.1. 
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Table 3.1:   Summary average values from the environmental parameters collected in the field 
and diversity values obtained from 95% similarity threshold OTU calculation. 

 

 

The salt marsh plant observations differed by region, the highest average number of plant 

species observed was at Grand Isle with an average of 2.1 species per site, and lowest at 

Terrebonne Bay where there were only 1.4 species on average observed per site (Table 3.1).  The 

canopy height was highest at Terrebonne Bay, with plants averaging 66 cm tall. The greatest 

vegetation coverage occurred at Port Sulphur, with an average coverage of 36% (Table 3.1). 

Salinity measured from edge water in the field was the highest at Port Sulphur, with an 

average value measured of 19.1. Salinity was also measured at CRMS gauging stations, and this 

dataset was used to evaluate long-term changes in salinity regionally. The highest average 

salinity recorded was at Grand Isle, and the lowest average salinity values was at Port Sulphur 

(Figure 3.2).  Differences between the salinity measured at the CWC sites during field research 

Max Mean Min Max Mean Min Max Mean Min
Plant Species Observed (Count) 4 2.08 1 2.00 1.57 1 2 1.39 1

Vegetation Coverage (%) 88 34.89 4 75.00 36.01 8 95 29.98 2
Cano opy Height (cm) 98.50 65.86 38.50 120 63.57 30.00 145 66.00 45.00

Inland Water Depth (cm) 30.50 7.57 0 18.50 4.51 0 55.00 12.53 0
MII 4 2.73 1 2 1.17 0 3 1.71 1

Edge Water pH 8.08 7.62 7.17 8.39 8.04 7.10 7.89 7.65 7.10
Edge Water Temp (°C) 29.60 27.41 25.30 32.50 26.86 24.50 31.20 28.29 24.60

Salinity field (ppt) 16.18 11.57 7.10 35.20 19.10 7.50 22.40 14.64 9.40
Salinity CRMS (ppt) 17.82 10.88 8.25 25.30 20.19 15.96 19.89 16.88 12.64

Conductivity CRMS (ms/cm) 28.91 18.93 13.72 39.63 27.81 18.93 40.56 27.48 21.36
Total alkanes (mg/Kg) 33.60 14.84 2.29 64.01 29.43 6.00 88.26 19.27 1.68

LMW Alkanes (C10 ‒C18) (%) 13.51 4.79 0.722 41.50 3.68 0.346 21.64 9.11 0.753
MMW Alkanes (C19 ‒C26) (%) 68.34 32.25 8.19 62.47 44.05 18.28 65.71 29.35 16.96
HMW Alkanes (C27 ‒C35) (%) 84.89 61.63 30.69 73.77 50.96 17.26 72.37 57.63 29.03

CPI 4.82 3.26 1.17 6.74 3.71 1.30 4.11 3.03 1.35
ACL Tanner 29.97 28.19 25.84 29.05 27.11 25.69 28.90 28.26 26.35

OTUs (Count) 4,484 2,415 1,258 5,246 2,595 1,188 6,331 3,162 1,525
Chao1 Diversity 7,307 4,323 2,032 8,546 4,816 2,155 13,666 5,937 2,661

Shannon Diversity 7.63 6.84 5.86 7.68 6.90 5.40 7.71 6.84 5.24
Simpson Diversity 0.001 0.003 0.015 0.001 0.003 0.026 0.001 0.003 0.031

Bootstrap Diversity 5,416 3,001 1,529 6,310 3,177 1,488 7,887 3,850 1,854

Port Sulphur Grand Isle Terrebonne BayParameter
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and the CRMS network during the same time period, particularly for the spring of 2013 data, 

were because CRMS stations used were not proximal to CWC sites. Local hydrological 

variations likely affected the values. 

Marsh Surface Elevations and Inundation History  

By definition, coastal salt marshes are flooded periodically, and tidal cycles are the 

underlying cause of daily fluctuations in water elevation. Changes in marsh surface elevation 

affect how much of a marsh is flooded over time. If marshes are flooded for longer periods of 

time, and to greater water depths, then this may be because surface elevation is not keeping up 

with sea-level rise. Marshes need to accrete faster than the local to regional sea-level rise, or 

subsidence rates, to keep from being flooded for longer periods of time. Changes in marsh 

surface elevation may affect marsh vegetation and microbial ecosystems, which is why marsh 

surface elevation, accretion rates, and flooding histories were derived in this study from the 

regional CRMS station data using linear regressions of marsh accretion rates (Figure 3.3) and 

gauged water heights (Figure 3.4). These changes were used to determine marsh elevation and 

flooding histories.  

For the three regions, average accretion rates were slower than changes in water level at 

the marshes, which resulted in modest changes in marsh elevations over time. For instance, at 

Port Sulphur, the average accretion rate was +0.37 cm yr-1 from 2007 to 2016, and +0.86 cm yr-1 

during the sampling period (Figure 3.3), but water level changes were faster at an average of 

+1.00 cm yr-1 from 2007 to 2016 and +1.62 cm yr-1 during the sampling period (Figure 3.4).   
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Figure 3.2:   Salinity at each region as an average (± 1 SE) of the ~3m offshore 
measurements at each sampling site, and from regional CRMS Stations during the time of 
sampling.  Both measurements were adjusted for temperature.  Error bars that are not 
shown are smaller than the symbols used for the average value of the field salinity, no 
error bars are displayed for the CRMS data since there were no calculations used in the 
creation of the value. 
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Figure 3.3:   Time series data from marsh accretion (±1SE) and linear regression colored by CRMS station, 2006-2016.  Marsh 
accretion was measured from the surface to a marker horizon in cores collected on site roughly twice a year.  The feldspar marker 
horizon was placed on site during the CRMS station instillation. 
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Figure 3.4:   Hourly water level adjusted to the NAVD88 datum for each 
representative station from the regions of Grand Isle, Terrebonne Bay, and 
Port Sulphur.  Yellow lines indicate the calculated marsh elevation through 
time.  Blue lines are the liner regression by least squares method for the water 
elevation through time. 
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Consequently, extrapolated marsh elevation changes were +0.43 cm yr-1 (R2 = 0.13, P-

value=<0.001) from 2007 to 2016, and +0.26 cm yr-1 (R2 = 0.009, P-value = 0.16) during the 

sampling period. This meant that from 2012 to 2014, the marsh surface did not change by more 

than 0.5 cm, and samples taken from cores were not significantly affected by the addition of new 

material to the marsh. Similarly, accretion rates at Grand Isle were slower, being +0.37 cm yr-1 

from 2006 to 2016 and +0.33 cm yr-1 during the sampling period, compared to water level 

changes at +1.32 cm yr-1 from 2006 to 2016 and +0.73 cm yr-1 for the sampling period. But, 

extrapolated marsh surface elevation changes at Grand Isle were faster at +0.81 cm yr-1 (R2 = 

0.58, P-value = <0.001) from 2006 to 2016, and the same rate during the sampling period +0.81 

cm yr-1 (R2 = 0.14, P-value = <0.001). At Terrebonne Bay, the average accretion rate was +1.08 

cm yr-1 from 2006 to 2016, and +1.52 cm yr-1 during the study period.  Accretion rates for each 

of the regions represented the median value of the three closest stations, and were similar to 

other reported values in the region.  Water level measured at the Terrebonne Bay CRMS station 

changed in 2010, noted in Attachment C3-23.2 of the CPRA (2017b) master plan. For the 2010 

to 2016 data, the long-term increase in water depth was +2.90 cm yr-1, and +2.32 cm yr-1 during 

the specific sampling interval. The marsh elevation changes were +1.20 cm yr-1 (R2 = 0.63, P-

value = <0.001) from 2006 to 2016, and +0.44 cm yr-1(R2 = 0.08, P-value = <0.001) at 

Terrebonne Bay.  

Based on the calculated hourly marsh elevation and water depth at each region, the 

average height of water at Port Sulphur was -11.4 cm, meaning that water levels, on average, 

were below the marsh surface. Similarly, at Grand Isle, water levels were also, on average, below 

the marsh surface, at -0.719 cm. At Terrebonne Bay, however, likely due to faster increases in 
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water height and lower accretion rates, water depth over the marsh was, on average, +2.73 cm.  

The marshes at Port Sulphur were flooded 31.4% of the year (or 114.7 days per year) from 2007 

to 2016, whereas the marshes at Grand Isle were flooded 47.1% annually (or 171.7 days), and 

Terrebonne Bay marshes were flooded the most at 73.8% of the time (or 269.3 days per year).   

To assess whether these changes reflected differences in tidal cycle patterns regionally 

and over time, SIMPER was used to compare daily high and low tidal predications during the 

sampling period and trends in the long-term data. Results indicated significantly similar values 

(P-value <0.001) for daily tidal predictions during sampling period and from the long-term data. 

Tidal cycles in May or October, when field sampling occurred, were 91% similar between all 

regions. Tidal variations at Terrebonne Bay were >90% similar over the three years of prediction 

data, and >87% similar at both Grand Isle and Port Sulphur. Therefore, fluctuations in tidal 

cycles could not be linked to changes in water flooding the marshes.  

Marsh Inundation Index (MII) through time 

Using the calculated marsh elevations, the Marsh Inundation Index (MII) was used to 

categorize flooding height and duration of time water was over the marsh surfaces.  From a total 

of 10,4564 intervals (i.e., days) calculated for the three regions, inundation duration ranged from 

0 to 24 hours, and the maximum water height over the marsh in any 24-hour interval ranged from 

-40.45 cm to +195.7 cm.  For each region, the MII values were normally distributed (Figure 3.5), 

averaging 0.88 (n = 3,204 intervals) at Port Sulphur, 1.32 (n = 3,688) at Grand Isle, and 2.06 (n = 

3,582) at Terrebonne Bay.  As expected, considering the extrapolated changes in water height 

over time, average MII values increased through time at each region (Figure 3.6).   
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Figure 3.5:   Marsh Inundation Index (MII) from the 
calculated marsh height and hourly water level from the 
CRMS stations within each region.  The y axis is a count 
of the total number of intervals matching the parameters 
for each MII value, 1 - 4 shown on the x axis. 
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Figure 3.6:   Annual average MII values from each region (±1SE) from 2006-2016. 
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These results confirmed that water depth over the marshes, and the duration of flooding 

of the marsh surfaces, increased through time in all regions because marsh accretion rates were 

less than the rates of water level rise.  Overall, Grand Isle marshes experienced less flooding than 

at Port Sulphur or Terrebonne Bay during the sampling period. 

Changes in flooding history were compared to salinity changes from each region to 

evaluate the type of water that had flooded the marshes based on MII (Figure 3.7) and water 

height over the marsh (Figure 3.8). For Port Sulphur and Terrebonne Bay, higher MII values 

were significantly related to lower salinities (R2 = 0.042 and 0.006, P-values = 0.002 and 0.0003, 

respectively), but higher salinities were related to higher MII values for Grand Isle, although this 

relationship was not significant (R2 = 0.03, P-value = 0.12). These results mean that when 

marshes at Port Sulphur and Terrebonne Bay were inundated for longer periods of time and to 

greater water depths, the water was, on average, less saline and likely associated with regional 

riverine input rather than input from the marine waters in the Gulf.  

Bacterial Community Diversity and Structural Differences 

The most abundant taxonomic groups retrieved from the soils are listed in Table 3.2.  The 

phylum Proteobacteria represented an average of 53% of all amplicons (SE = 0.45, SD = 7.0, n = 

245).  The top three most abundant classes were Deltaproteobacteria, Gammaproteobacteria, and 

Alphaproteobacteria.  The most abundant class of bacteria at each depth differed for the samples 

collected below the surface (B, C, and D) compared to those sampled collected from the surface 

(MS and A).  However, the most abundant bacterial class at depth from each region belonged to 

the Deltaproteobacteria, on average 18.9% at Port Sulphur, 19.9% at Grand Isle, and 20.0% at 

Terrebonne Bay.   
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Figure 3.7:   Salinity vs MII boxplot for all samples grouped by MII per region. Salinity was measured at each sampled 
marsh and the MII values were calculated from flooding duration and water depth based on changes in marsh surface 
elevation. The linear regression comparisons were significant for Terrebonne Bay (R2 = 0.1, P-value=0.006) and Port 
Sulphur (R2 = 0.05, P-value=0.042,), but not for Grand Isle.  The linear regression and 95% standard error are shown in 
grey, and each data point is also plotted in the background. 
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Figure 3.8:   Salinity vs water height over the marsh from CRMS collected salinity and calculated marsh elevations of 
all hourly samples and from 2006-2016.  The plot is a modified point cloud where the number of points within each 
geometric hex are noted on the right with lighter colors having higher number of points.  Red lines indicate linear 
relationship with the slope at Port Sulphur = -0.61 (R2=0.02, P-value <0.001), Grand Isle = -0.39 (R2=0.01, P-value 
<0.001), and Terrebonne Bay =0.44 (R2=0.01, P-value <0.001). The dark vertical line lies along the marsh elevation of 
zero, negative values indicated water below the marsh and positive values are the water height over the marsh. 
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Table 3.2:   Average relative abundance percentage of the most abundant bacterial classes from 
2012 to 2014, grouped by sampling year, season, year and season, depth, and region.  The 
highest average relative abundance for each bacterial taxon is shaded in blue. All values are the 
average relative abundance percent of the bacterial class per group. 

 

Grouping 

Delta-
proteobacteria 
(%) 

Gamma-
proteobacteria 
(%) 

Alpha- 
proteobacteria 
(%) 

Planctomycetacia 
(%) 

Sphingobacteria 
(%) 

Year 

2012 16.23 16.59 14.39 5.17 6.43 

2013 17.76 17.94 12.43 4.71 4.68 

2014 19.00 13.20 13.59 4.62 3.20 
Season 

Fall 19.26 15.04 12.58 4.71 3.81 

Spring 17.17 15.96 13.79 4.72 4.46 
Year and Season 

2012-Spring 16.90 16.91 11.96 5.28 7.04 

2012-Fall 13.69 15.39 23.62 4.75 4.15 

2013-Spring 16.00 18.41 13.86 4.82 5.29 

2013-Fall 19.44 17.49 11.06 4.60 4.08 

2014-Spring 18.35 13.37 14.38 4.43 2.78 

2014-Fall 19.54 13.05 12.94 4.78 3.56 
Depth 

Marsh Surface 
(0-2 cm) 15.67 16.14 16.79 6.08 5.71 

A (0-1 cm) 16.89 17.09 15.39 5.97 5.18 

B (1-2 cm) 18.94 16.78 13.19 5.05 4.18 

C (4-5 cm) 19.87 14.74 11.51 3.65 3.09 

D (9-10 cm) 20.03 12.67 8.58 2.62 2.29 
Region 

Grand Isle 17.93 18.89 14.56 5.24 4.69 

Port Sulphur 18.80 14.71 12.06 4.63 3.93 

Terrebonne Bay 17.83 12.73 13.01 4.23 3.76 
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At the A depth, the class Gammaproteobacteria (17.1%) was the most abundant, but the 

Alphaproteobacteria (16.8%) were the most abundant from the marsh surface samples (MS).  

There were seasonal differences among the bacterial classes (Table 3.2) 

The relative abundances of bacteria identified to the class level were analyzed via 

SIMPER and calculated BCDI values to determine similarities in community compositions by 

depth, season, and region.  Overall, the bacterial communities averaged 67.6% similarity at the 

class level and 81.6% similarity at the phylum level. When compared by depth, the bacterial 

communities were 67.6% similar to one another. Depths A and B were 71.9% similar, and depths 

MS and D being the least similar at 60.6% (Figures 3.9 ‒ 3.12).  Differences in the relative 

abundances in Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, 

Betaproteobacteria, and Flavobacteria explained the BCDI values. Compared to the sampling 

season (Figures 3.10 & 3.11), bacterial communities were 67.8% similar, with the most 

dissimilar times being between spring 2012 and spring 2014 (65.4% similarity) and the most 

similar times being between spring 2013 and fall 2013 (69.6% similarity).  Deltaproteobacteria, 

Alphaproteobacteria, Gammaproteobacteria, Sphingobacteria, and Flavobacteria explained the 

differences among the communities seasonally. Compared by region, the bacterial communities 

were 67.2% similar.  The most dissimilar regions were Terrebonne Bay and Grand Isle (65.9% 

similarity), and the most similar regions were Grand Isle and Port Sulphur (69.3%) (Figures 3.9 

& 3.11).  Based on the average contribution to the overall similarity between Grand Isle and Port 

Sulphur, Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Deltaproteobacteria, 

and Chlorobia explained the differences. But, between Terrebonne Bay and Grand Isle samples, 

Flavobacteria and Planctomycetacia contributed to the compositional differences.   
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Figure 3.9:   SIMPER overall similarity results from comparison at the phylum and class 
level between sampling depths from the soil cores. 
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Figure 3.10:   SIMPER overall similarity between of phylum and class level bacteria 
grouped by sampling period. 
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Figure 3.11:   SIMPER analysis and overall similarity between phylum and class level 
bacterial grouped by sampling region. 
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Figure 3.12:   Results from the SIMPER analysis of the bacterial relative abundances at the class level.  Each 
bar represents the average contribution to the overall similarity from each grouping, with the error bars 
displaying ±1SE.  The top 20 most influential bacterial classes are displayed, which all had an average 
contribution to the overall similarity > 1%. 
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PCA was used to identify the underlying compositional variation within the data where 

there is inherent multicollinearity between variables (Graham, 2003). The relative abundances of 

all bacterial classes were used and diversity data were grouped by sampling time, region, and 

depth to determine patterns and multivariate trends among samples.  The PCA according to the 

compositions explained 82% of the variation in the first two principal components (axes) among 

communities at the phylum level and 65% at the class level (Figures 3.13 and 3.14).  At the 

phylum level (Figure 3.13), PC1 explained 57.2% of the variation and the most influential 

loadings were Chloroflexi, Proteobacteria, and Bacteroidetes (Table 3.3).  PC2 explained 24.8% 

of the phylum level variation, due to loadings of Proteobacteria, Chlorobi, Chloroflexi, and 

Bacteroidetes.  The PCA at the phylum level indicated that the Terrebonne Bay communities 

were distinct from the communities in the other two regions. Similarly, the PCA completed at the 

class level along PC1 explained 45.6% from the loadings of Alphaproteobacteria and 

Deltaproteobacteria (Figure 3.13 and Table 3.3).  PC2 controlled 18.9% of the variance and was 

explained by Gammaproteobacteria.  In addition, for these results, PC3 was included in Table 3.3 

and was identified to be explained by Betaproteobacteria, Chlorobia, Deltaproteobacteria, and 

Epsilonproteobacteria. When the PCA was grouped by region (Figure 3.13), Terrebonne Bay 

communities from 2013 and spring 2014 were skewed in the negative loading direction 

explained by Chloroflexi and Alphaproteobacteria. Along PC2, also in the negative direction, the 

Grand Isle communities from spring and fall 2013 were explained by Gammaproteobacteria. 

Additional PCA were constructed based on the same variance and loadings, grouped by sampling 

year and depth (Figures A.2 ‒ A.4) to identify that the phylum Chloroflexi explained the greatest 

loadings for deeper sampling depths (C and D), specifically in 2014 and from Terrebonne Bay. 
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Table 3.3:   PCA loadings for bacterial classes.  The Eigenvalue and variance, as a percentage, 
are displayed, and the individual class levels are listed with their loadings for the first three PC 
axes; only PC1 and PC2 were plotted. 

 

PC 1 PC 2 PC 3 
Eigenvalue 96.89 40.22 22.92 
% variance 45.60 18.93 10.79 

Bacterial Class Loadings 
Deltaproteobacteria 0.4743 Alphaproteobacteria 0.2938 Betaproteobacteria 0.4488 
Anaerolineae 0.1480 Epsilonproteobacteria 0.1487 Chlorobia 0.4049 
Chlorobia 0.1155 Chlorobia 0.1474 Deltaproteobacteria 0.3793 
Epsilonproteobacteria 0.0991 Anaerolineae 0.1432 Alphaproteobacteria 0.2470 
vadinBA26 0.0938 vadinBA26 0.1137 Acidobacteria 0.1932 
Sphingobacteria -0.0978 Planctomycetacia -0.0653 Sphingobacteria -0.1502 
Gammaproteobacteria -0.0979 Chloroplast -0.0718 vadinBA26 -0.1815 
Planctomycetacia -0.1494 Flavobacteria -0.1888 Flavobacteria -0.2016 
Flavobacteria -0.1497 Sphingobacteria -0.1895 GIF9 -0.2651 
Alphaproteobacteria -0.7956 Gammaproteobacteria -0.8434 Epsilonproteobacteria -0.3317 
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Figure 3.13:   PCA of phylum level bacterial relative abundances with the vectors indicating the loadings of specific phyla.  The 
ordinal hulls group samples by region. 
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Figure 3.14:   PCA of class level bacterial relative abundance with the vectors indicating the loadings of specific phyla.  The 
ordinal hulls group samples by region. 
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Core Microbiome Membership 

To evaluate the presence and membership of a core microbiome, samples from each 

sampling event were merged, which included the MS sample if collected (Table 2.1).  Good’s 

coverage values for the merged samples range from 88.3% to 90.1%, indicating adequate 

coverage of the total bacterial community for OTU-based analyses.  OTUs calculated at 95% 

similarity for each sample totaled 662,450 and each sample contained an average of 2,704 OTUs.  

Of the 47 merged samples, only 20 samples (42%) shared OTUs that comprised 1% or more of 

the community, and only 3 (15%) of the samples had shared OTUs at greater than 2% of the 

community relative abundances.  For the shared OTUs, 73% were affiliated with Proteobacteria, 

of which 52% were Deltaproteobacteria and 31% were Gammaproteobacteria (Figure 3.15).  The 

most common core OTU belonged to the Deltaproteobacteria, either being closely related to 

previously uncultured groups or the Desulfobacteraceae, and specifically to the genus 

Desulfococcus. These groups are sulfate-reducing bacteria that can utilize low chain length n-

alkanes (C4 to C18) (Rueter et al., 1994; Aeckersberg et al., 1998). Gammaproteobacteria, 

comprised some shared OTUs, mostly at Grand Isle, and Deltaproteobacteria were only shared at 

Port Sulphur and Terrebonne Bay. 

When grouped by depth from each region, only 21 (32.8%) shared OTUs at the 1% 

relative abundance level from 64 merged samples were obtained, and 4 (6.3%) samples shared 

OTUs at greater than 2% relative abundance (Figure 3.16).  Alpha-, Beta-, Delta-, and 

Epsilonproteobacteria, as well as Chlorobia, Flavobacteria, Planctomycetacia, Sphingobacteria, 

and one subsection of Cyanobacteria, were represented.    
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Figure 3.15:   Histogram of the OTU counts of bacterial class from samples merged by site at 
each region for each sampling event at 95% sequence similarity that contain a core 
microbiome at 1% or greater by relative abundance.  The season is noted on the right side of 
the plot.  
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Figure 3.16:   Histogram of the OTU counts of bacterial class from samples merged by depth at 
each region for each sampling event.  The depth is noted on the right side of the plot.  Plots 
with no bars did not contain a taxonomic group in the microbiome at 1% or greater by relative 
abundance. 
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The shared OTUs were predominantly related to the Gammaproteobacteria (35%) at 

Grand Isle within upper depths (MS, A, B), or to the Deltaproteobacteria (26%) at Terrebonne 

Bay from the upper depths (MS, A-C).  All Deltaproteobacteria at Terrebonne Bay belonged to 

the family Desulfobacteraceae.  The shared OTUs at Port Sulphur were only from the lower soil 

depths (C, D), and were predominantly related to Betaproteobacteria, and specifically, the 

Nitrosomonadales that are known to be ammonium-oxidizers (Rosenberg, 2013).   

Environmental Controls on Bacterial Communities 

To determine what environmental controls were potentially significant in explaining 

compositional variability in the dataset, and at each region, a general linear model was run with a 

Lasso regularization.  The model parameters were reduced from a total of 34 measured 

parameters to 11 based on the VIF: number of plant species observed, MII value, CPI, low 

molecular weight n-alkanes (C10-C18), inland water depth, canopy height, vegetation coverage 

(%), edge water pH, edge water salinity (field collected), edge water temperature, and salinity 

(CRMS collected).  Based on the general linear model for all samples, a lambda was selected 

with +0.05 minimum MSE (λ = 1.54, % deviance = 23).  The selected lambda reduced the 

number of influential variables from 11 to 10 (Table 3.4 & Figure 3.17).  The same generalized 

linear modeling using Lasso parameter selection and 5-fold cross validation was completed for 

each region using a lambda selection +0.5 SE of the calculated model minimum MSE (Figure 

3.18).  In Port Sulphur, the lambda selection (λ = 1.27, % deviance = 37.5) reduced the number 

of influential variables from 11 to 10.  In Grand Isle, the lambda selection (λ = 1.71, % deviance 

= 38) reduced the number of influential variables to 9, and in Terrebonne Bay, the lambda 

selection (λ = 2.5, % deviance = 42.7%) reduced the variable number to 6.   



70 

Table 3.4:   Parameter selection based on a general linear model using Gaussian lasso regularization and a lambda selection of 
+0.5SE from cross validation calculated MSE.  Environmental parameters that were selected to be predictive in the model are
denoted with a check and highlighted in green. Parameters not selected are denoted with a dash.  All parameters were either
log(n+1)-transformed or Hellinger-transformed prior to modeling.

Environmental Parameter
All 

Samples
Port 

Sulphur
Grand 

Isle
Terrebonne 

Bay
LMW Alkanes (C10-C18)    
Carbon Preference Index  -  -
Canopy Height    -
Vegetation Coverage    
Inland Water Depth    
Salinity-CRMS Station Logger   - 
Salinity-Field Measured    -
Edge Water pH    
Edge Water Temp    -
Marsh Inundation Index (MII) -  - -
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Figure 3.17:   Lambda selection based on the MSE calculated for the entire dataset using a general linear model with Lasso 
regularization and 10-fold cross validation.  The x axis for each graph is the log of lambda, the y axis is the mean square 
error, and the top x axis shows the number of parameters associated with each lambda selected value.  Error bars are ±1SE, 
dashed gray lines are minimum and +1SE of the minimum lambda selection.  The dashed red vertical line is the +0.5SE 
lambda selection. 
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Figure 3.18:   Lambda selection based on the MSE calculated for each 
region using a general linear model with Lasso regularization and 5-
fold cross validation.  The x axis for each graph is the log of lambda, 
the y axis is the mean square error, and the top x axis shows the 
number of parameters associated with each lambda selected value.  
Error bars are ±1SE, dashed gray lines are minimum and +1SE of the 
minimum lambda selection.  The dashed red vertical line is the +0.5SE 
lambda selection. 
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The model results indicated that the MII value did not have predictive power in 

explaining the bacterial composition at Grand Isle or Terrebonne Bay, but was predictive at Port 

Sulphur (Table 3.4).  The parameters of vegetation coverage, edge water pH, LMW n-alkanes, 

and water height over the marsh also all had predictive power in the model.  CPI was the only 

parameter not predictive at Port Sulphur and not influential at Terrebonne Bay.  At Grand Isle, 

the MII value and CRMS-recorded salinity were not influential, yet all other parameters were.  

Terrebonne Bay had the least number of parameters that had predictive power in explaining the 

bacterial communities, yet the model explained the most deviance out of all that were run.  

Of these results, salinity was evaluated as being correlated with changes in bacterial 

community compositions (Jackson and Vallaire, 2009).  Salinity data collected on site (i.e., not 

CRMS-collected) were compared to calculated Chao1 α-diversity index values. Minimal 

changes in bacterial diversity at Port Sulphur and Grand Isle were noted, but a positive increase 

in diversity with salinity was observed for Terrebonne Bay samples (Figure 3.19).   

Flooding Controls on Bacterial Community Diversity 

The MII values were used in multivariate analysis to determine the effect of flooding and 

inundation on the soil bacterial communities.  Unlike PCA that is unconstrained, CCA used 

transformed environmental data to text for potential relationships between the bacterial 

communities constrained by specific environmental parameters. Many parameters could be 

evaluated, and flooding history based on MII values was selected for this thesis.  Statistical 

significance of α = 0.05 was assessed for the constraining variables and overall model using an 

ANOVA-like permutation test with 999 permutations (Table A.2) (Oksanen et al., 2007).    
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Figure 3.19:   Chao1 species richness values versus edge water salinity from all samples compared 
by region.  The diversity was calculated from 95% similarity threshold OTU analysis of each 
sample.  Terrebonne Bay was the only significant (R2 = 0.22, P-value <0.001) linear correlation 
between Chao1 diversity and salinity, all other regions were not significant. 



 

75 
 

Five different CCA models were completed: 1) all samples constrained by MII and 

region (Figure 3.20); 2) only samples with MII 0 or 3 constrained by MII (Figure 3.21); 3) Port 

Sulphur communities constrained by MII and sample depth (Figure 3.22); 3) Grand Isle 

communities constrained by MII and sample depth (Figure 3.23); and 5) Terrebonne Bay 

communities constrained by MII and depth (Figure 3.24).  In all CCAs analyzed, the MII value 

was significant (P-value <0.05) for the Port Sulphur region, but not in the other two regions (P-

value = 0.08) (Table A.3), as also indicated by Lasso parameter selection results.   

The CCA of all samples (n = 245) used MII values and regional information as the 

constraining variables, and the overall model was significant (P-value = 0.001), as was MII value 

(P-value = 0.009) and regional classification (P-value = 0.001) (Table A.3).  However, the 

constrained axes (CCA1 to CCA3) explained 9% of the total variation in bacterial composition at 

the class level (Table A.2).  The first axis explained 5.1% of the variance, both the MII and 

regional differences were explained with the environmental loadings.  The variation in CCA1 

was predominantly due to the scores of GIF9, Candidate Division OP9, Dehalococcoidetes, and 

Fusobacteria (Table A.4).  The second axis (CCA2) explained 2.9% of the variation and 

separated the regions of Port Sulphur and Grand Isle.  The largest scores of CCA2 were for 

Candidate Division OP11, Fusobacteria, OPB35, and Cyanobacteria Subsection II.  

The second CCA model was created using only the samples that were categorized as 

either MII 0 or 3, the largest MII value in the sampling set during sampling, and using the MII 

value as the only constraining variable (Figure 3.20).  The plot was completed using a total of 53 

samples from Terrebonne Bay and Port Sulphur.   
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Figure 3.20:   CCA of all samples with the MII value and region as constraining variables, grouped by MII 
value.  The relative proportion of each axis variance and Eigenvalue are listed along the axis.  Each ordinal 
hull is colored and labeled by MII value, with the sample also labeled by color. 
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Figure 3.21:   Ordination of the CCA with only samples of MII 0 and 3 with MII value as the 
constraining variable and samples grouped by MII value.  Each grouping and samples within each 
grouping are color coordinated with the MII value displayed.  The variance of each axis is displayed, 
the only constrained axis is CCA1.  The secondary axis on the top of the graph denotes the strength of 
the constraining variable vector (MII) from 0 at the axis intercept to 1 at the first tick. 
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Figure 3.22:   Ordination of the CCA with only samples from Port Sulphur with MII value and depth 
as the constraining variables, grouped by MII value.  Each grouping and samples within each 
grouping are color coordinated with the MII value displayed.  The variance of each axis is displayed.  
The secondary axis on the top and right of the graph show the strength of the constraining variable 
vector (MII) from zero to 1, with the scaled centroids of depth also plotted. 
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Figure 3.23:   Ordination of the CCA with only samples from Grand Isle and with MII value and depth 
as the constraining variables, grouped by MII value.  Each grouping and samples within each grouping 
are color coordinated with the MII value displayed.  The variance of each axis is displayed.  The 
secondary axis on the top and right of the graph show the strength of the constraining variable vector 
(MII) from zero to 1, with the scaled centroids of depth also plotted. 
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Figure 3.24:   Ordination of the CCA with only samples from Terrebonne Bay, with MII value and depth 
as the constraining variables, grouped by MII value.  Each grouping and samples within each grouping 
are color coordinated with the MII value displayed.  The variance of each axis is displayed.  The 
secondary axis on the top and right of the graph show the strength of the constraining variable vector 
(MII) from zero to 1, with the scaled centroids of depth also plotted. 
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MII 0 conditions were only met during May 2012 in Port Sulphur, but the MII 3 conditions were 

met by samples in both Terrebonne Bay and Port Sulphur.  The MII value (P-value = 0.017) and 

overall model (P-value = 0.01) were both significant (Table A.3).  The single constrained axis 

(CCA1) explained 5% of the bacterial variation, due to the scores of Candidate Division OP11, 

SAR202, SO85, Dehalococcoidetes, and uncultured Cyanobacteria (Table A.4).  The second axis 

was unconstrained (CA1), and explained 35% of the variation unexplained by the MII due to 

scores for GIF9, unclassified TA06, Candidate Division OP9, and uncultured Cyanobacteria.   

The sampling depth was used as the other environmental constraining variable for each 

regional CCA and grouped by the MII value classification. For Port Sulphiur, a CCA model was 

run with 88 samples using the Hellinger-transformed MII values and depth data as constraining 

variables. There were 22 MS samples and 18 core depths (A-D) with only one sample missing 

(Table 2.1).  The constraining variables explained 20.6% of the variance in the bacterial 

communities.  The cumulative proportion of the first two axes (Table A.2) explained 18.7% of 

the variance.  CCA 1 explained 16.1% of the variance due to the scores of Dehalococcoidetes, 

Epsilonproteobacteria, Candidate Division OP9, and Cyanobacteria Subsection 1.  CCA2 

explained 2.5% of the variance due to the scores of KD4-96, Cyanobacteria Subsections IV and 

III, and Candidate Divisions OP11 and OP10.  The vector of MII value was associated with 

CCA2, and the sampling depths were associated with CCA1.  For Grand Isle, there were 22 MS 

samples and 15 core samples from all depths (Table 2.1). Constraining variables in the Grand 

Isle CCA explained 22.2% of the total variation, with CCA1 explaining 17.8% of the variation 

and CCA2 explaining 2.5% (Table A.2), predominately due to Dehalococcoidetes, CD-TG-1 

Lineage IV, unclassified WCHB1-60, vadin BA26, and, in the positive direction, Cyanobacteria 
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Subsection I.  Along CCA2, the bacterial classes that explained variation included Fusobacteria, 

vadinHA49, Dehalococoidetes, and Cyanobacteria Subsection II, which were closely associated 

with the MII vector. For the Terrebonne Bay CCA, there were samples (n = 75) collected during 

MII values 1 through 3 (Figure 3.23), which comprised 15 samples per depth.  Depth was 

significant in explaining community variance (P-value = 0.001), but MII values were not (P-

value = 0.08) (Table A.3).  The overall CCA model was significant (P-value = 0.001) and all 

constraining variables explained 17.7% of the variance.  CCA1 explained 13.6% of the variance 

and changes in depth, influenced by RF3, Lineage I Endomicrobia, Epsilonproteobacteria, 

Dehalococcoidetes, and vadinBA26 (Figure A.6).  CCA2 explained 2.2% of the variance and 

was associated with the MII vector, and was explained by SAR202, Epsilonproteobacteria, 

Spartobacteria, and WD272.    
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CHAPTER FOUR - DISCUSSION 

Microbial communities in coastal salt marshes are responsible for important 

biogeochemical processes, including organic matter decomposition, nitrogen fixation, sulfate 

reduction, and methanogenesis. A better understanding of the processes that govern salt marsh 

microbial ecosystems has been needed because many of the earlier studies, particularly focused 

in the marshes in southern Louisiana, have been done at broad, ecosystem-scales (Kirby and 

Gosselink, 1976; Gosselink and Pendleton, 1984; Sasser, 1994; Visser et al., 1998). At the 

microbial scale, the taxonomic diversity and inferred ecological function of bacterial 

communities can indicate overall marsh system health (Blum et al., 2004; Bowen et al., 2009; 

Jackson and Vallaire, 2009; Beazley et al., 2012; Bowen et al., 2012; Mahmoudi et al., 2013; 

Graves et al., 2016), particularly in light of the impacts of natural and anthropogenic stressors to 

these systems (Rabalais et al., 2002; Mendelssohn et al., 2012; Zou et al., 2015). Yet, few studies 

have identified the diversity, taxonomic representation, and community structure of bacterial 

communities from Louisiana marshes, or characterized how diversity changes are affected by 

environmental conditions. Therefore, the goals of this thesis were to use 16S rRNA gene 

sequences to uncover bacterial diversity in salt marsh soils and to determine which 

environmental parameters, including water inundation frequency and depth, vegetation, and 

salinity, contributed to the most variance in the taxonomic diversity of marsh soil microbiomes 

through time. The analyses required a multidisciplinary, data-driven approach to determine what 

environmental measurements would be useful in predicting bacterial community changes, 

especially changes in marsh elevation over time and the impact of marsh flooding. 
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Similarity of Marsh Soil Microbiomes 

According to the α-diversity indices, the soil samples had high bacterial diversity, but 

there was no distinct core microbiome where OTUs with >1% relative abundances were shared 

across all samples. There were, however, many shared bacterial communities at much lower 

relative abundances, which may indicate similar taxonomic and functional patterns among the 

few shared communities with depth at each region (Schimel and Schaeffer, 2015). Moreover, the 

high diversity translated to there being >80% of the taxonomic representation that was shared at 

the phylum level, even if there were not shared OTUs, despite geographic separation and 

seasonal differences.  

The Proteobacteria was the most abundant taxonomic group retrieved from all the soil 

samples, and Proteobacteria were also associated with the majority of shared OTUs. In general, 

Proteobacteria have been identified previously as the most abundant phylum in the soil samples, 

and the different proteobacterial communities, along with Bacteroidetes and Actinobacteria, have 

been associated with the decomposition of plant organic matter, specifically lignocellulose 

(Buchan et al., 2003) or even oil-related compounds, as was identified after the Deepwater 

Horizon oil spill (Beazley et al., 2012). The relative abundances of proteobacterial communities, 

specifically at the class level, from the oil spill research were similar to the relative abundances 

for the various proteobacterial groups retrieved from this study (Atlas and Hazen, 2011; Beazley 

et al., 2012; Sims et al., 2013; King et al., 2015)  

The greatest differences in bacterial community compositions were between the 

uppermost soil samples and the deepest sampled depths.  Samples at each depth were equally 

dissimilar to changes temporally or spatially, and were attributed to the same dissimilar 
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communities.  The deposition of organic matter from winter wind-driven flooding or vegetation 

die-off after the growing season similarly affects upper cores through sampling, and geochemical 

changes with depth appear to be independent.  As accretion rates vary through time, marshes are 

periodically more or less flooded at each region, yet the underlying processes are consistently 

changing and affecting the same communities at the surface and at depth similarly  According to 

the literature, the upper few millimeters of marsh soil have negligible dissolved oxygen 

concentrations due to rapid deposition and decomposition of organic matter by microorganisms 

(Kirby and Gosselink, 1976; White et al., 1978).  It is likely that the shift from oxygen-enriched 

surface soil to oxygen-depleted soil at depth accounts for the community compositional 

differences identified in this study.  Moreover, the controls on oxygen levels in the soils may be 

linked to the S. alterniflora productivity associated with flooding (Teal and Kanwisher, 1966).  

Future research should include oxygen measurements from the soils to verify the role of oxygen 

in controlling bacterial diversity with soil depth. Moreover, the effect of organic matter 

deposition, which affects marsh accretion rates, should be evaluated against the bacterial 

community compositions.  Rapid rates of marsh accretion that keep up or exceed current rates of 

sea-level rise should influence the bacterial community diversity and biogeochemical processes.   

Influential Environmental Parameters 

The changes in microbial community taxonomic representation at the phylum and class 

levels, while small (<30%), were evaluated against a range of environmental controls. Lasso 

regularization was used to identify environmental parameters that could predict differences and 

changes in bacterial community compositions. Terrebonne Bay had fewer predictive parameters 

compared to the other regions, indicating that controls on bacterial diversity at Terrebonne Bay 
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were dissimilar to Port Sulphur and Grand Isle communities.  Among the parameters, conditions 

related to vegetation and salinity were the most important in predicting marsh bacterial 

community changes at all regions.   

At least one vegetation-related parameter, such as canopy height, vegetation cover, or 

species, was useful to explain changes in bacterial diversity at all regions, and all of the 

vegetation-related parameters were useful in the overall model.  Plant communities are known to 

have distinct rhizosphere microbial communities (Berg and Smalla, 2009) that affect above- and 

below-ground biomass.  Variable density and plant height in each region were influential to 

explain bacterial diversity, and these parameters have been found by other studies (Blum, 1993; 

Rooney-Varga et al., 1997; Rietl et al., 2016).  

Shared OTUs in deeper soil samples at Port Sulphur were associated with moderate 

salinity values, which was not comparable to other regions.  The salinity measurements at Port 

Sulphur decreased with periods of flooding, yet this did not influence Chao1 diversity 

calculations.  The only significant change in diversity and salinity occurred at Terrebonne Bay, 

where higher salinity values correlated to greater taxonomic diversity. There was also a positive 

relationship between salinity and water height over the marsh for Terrebonne Bay samples.  

Salinity typically has a strong effect on bacterial diversity (Weston et al., 2006; Edmonds 

et al., 2009; Jackson and Vallaire, 2009; Ikenaga et al., 2010; Morrissey et al., 2014); however, 

few studies have focused on the effects of how decreases in salinity, or freshening of the water, 

within a region impacts bacterial diversity (Hart et al., 1991; Chambers et al., 2013; Marks et al., 

2016).  Lower salinity with increased water depth for the Port Sulphur marshes could be 
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explained by increased freshwater diversions in the region, as well as changes in marsh accretion 

rates that no longer keep up with sea-level rise. 

Lastly, the percentage of low chain n-alkanes was predictive at all regions.  The selection 

of short- versus long-chain species was dependent on the VIF, yet the CPI could be used to infer 

if longer chain n-alkanes are predictive, as well.  Of all samples, and especially at Grand Isle, 

both CPI and LMW n-alkanes were useful in modeling bacterial community changes.  The 

variation in n-alkane chain length and total n-alkane concentrations at both Port Sulphur and 

Terrebonne Bay may be a result of the distance to open ocean, and other marsh processes and 

conditions that will require further research to elucidate.  

Flooding History Controls on Bacterial Communities 

Low lying marshes are flooded almost daily, so the duration of flooding likely does not 

explain changes in microbial communities adapted to those environments. Within all regions, 

water height over the marsh was predictive, but the MII values were not. When constrained, in 

all models the MII values identified trends in classes of Cyanobacteria and Chloroflexi.  These 

two phyla are very diverse, and many cyanobacteria are capable of photosynthesis and nitrogen 

fixation (Church et al., 2005). The predictive power of MII values was only useful for the Port 

Sulphur communities, which was the region closest to the Mississippi River.  In Port Sulphur, the 

river diversions are caused salinity reduction, and the relative marsh elevations are the highest 

compared to the other two regions.  Port Sulphur marshes had the lowest rate of elevation 

increase and could be negatively impacted by sea-level rise and flooding more than at the other 

two regions.  The Terrebonne Bay marshes were almost always inundated, and so the MII values 

and salinity measured in this region were unable to predict changes in the bacterial communities.   
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Conclusions 

Bacterial communities from marsh soils in southern Louisiana share up to 80% of their 

taxonomic communities in common at the phylum level, despite different sampling depths, 

regional differences, and seasonal variability. Although inundation duration did not explain 

changes in the bacterial community compositions over time, the depth of water that had flooded 

the marshes did predict community changes, as well as salinity, plant biomass, n-alkane chain 

length measured from the soils.  In the future, remediation efforts done to restore coastal salt 

marshes, and monitoring programs, should include accurate measurements of water flooding 

depth and salinity when understanding how soil bacterial communities are structured and 

function ecologically. 
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Figure A.1:   Monthly mean concentrations of selected ions from precipitation in southern Louisiana 1983 to 2015 from 
NADP site LA30.  
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Table A.1:   PCA Loadings of the 5 most explanatory phylum level loadings in the positive and 
negative direction.  The eigenvalue and variance as a percentage, are displayed in the upper 
portion. In the lower portion, the individual class level bacterial are listed with their loadings for 
the first 3 principal component axes, only 1 and 2 were plotted. 

 
 

  

PC 1 PC 2 PC 3 
Eigenvalue 96.89 40.22 22.92 
% variance 45.60 18.93 10.79 

Bacterial Class Loadings 
Deltaproteobacteria 0.4743 Alphaproteobacteria 0.2938 Betaproteobacteria 0.4488 
Anaerolineae 0.1480 Epsilonproteobacteria 0.1487 Chlorobia 0.4049 
Chlorobia 0.1155 Chlorobia 0.1474 Deltaproteobacteria 0.3793 
Epsilonproteobacteria 0.0991 Anaerolineae 0.1432 Alphaproteobacteria 0.2470 
vadinBA26 0.0938 vadinBA26 0.1137 Acidobacteria 0.1932 
Sphingobacteria -0.0978 Planctomycetacia -0.0653 Sphingobacteria -0.1502 
Gammaproteobacteria -0.0979 Chloroplast -0.0718 vadinBA26 -0.1815 
Planctomycetacia -0.1494 Flavobacteria -0.1888 Flavobacteria -0.2016 
Flavobacteria -0.1497 Sphingobacteria -0.1895 GIF9 -0.2651 
Alphaproteobacteria -0.7956 Gammaproteobacteria -0.8434 Epsilonproteobacteria -0.3317 
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Figure A.2:   PCA of phylum level bacterial relative abundance with the vectors indicating the loadings of specific phyla.  The 
ordinal hulls are grouping bacteria by sampling year. 
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Figure A.3:   PCA of phylum level bacterial relative abundance with the vectors indicating the loadings of specific phyla.  The 
ordinal hulls are grouping bacteria by sampling depth. 
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Figure A.4:   PCA of Class level bacterial relative abundance with the vectors indicating the loadings of specific phyla.  The 
ordinal hulls are grouping bacteria by sampling year. 
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Table A.2:  CCA overall proportion of the constrained axes from the second hypothesis.  Each 
eigenvalue and proportion are from the constrained axes, with the cumulative proportion is 
calculated as a percentage of the total variance represented by the CCA model.  The Axis for 
the MII samples labeled CA1 is the proportion of the model which is unconstrained, in which 
only MII is used as an environmental variable.  Beyond the cumulative proportion of variance 
explained by the models, the remaining variance is unexplained by the supplied variables.  
For all models, MII was the first constraining variable.  For all samples Region was the input, 
and for all regional models Depth was the constraining variables 
 

Variable
Eigenvalue
Proportion Explained
Cumulative Proportion (%)

Variable
Eigenvalue
Proportion Explained
Cumulative Proportion (%)

CCA1
0.025
0.050
0.05

CA1
0.150
0.297
0.35

9.00

CCA - All

CCA - MII-0 and MII-3 Samples

CCA3
0.003
0.006

CCA1
0.031
0.051
5.00

CCA2
0.018
0.029
8.00

Variable CCA1 CCA2 CCA3 CCA4 CCA5
Eigenvalue 0.066 0.010 0.006 0.001 0.001
Proportion Explained 0.161 0.025 0.014 0.003 0.003
Cumulative Proportion (%) 16.1 18.7 20.1 20.4 20.6

Variable CCA1 CCA2 CCA3 CCA4 CCA5
Eigenvalue 0.081 0.011 0.006 0.002 0.001
Proportion Explained 0.178 0.025 0.012 0.005 0.001
Cumulative Proportion (%) 17.8 20.3 21.5 22.1 22.2

Variable CCA1 CCA2 CCA3 CCA4 CCA5
Eigenvalue 0.091 0.015 0.008 0.004 0.002
Proportion Explained 0.136 0.022 0.011 0.005 0.003
Cumulative Proportion (%) 13.6 15.8 16.9 17.5 17.7

CCA - Port Sulphur

CCA - Grand Isle

CCA - Terrebonne Bay
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Table A.3:   Results of Anova-like permutation tests run for each CCA.  The results for the 
whole CCA model as a sum of constraint eigenvalues is shaded blue, and the permutation test 
for each constraining variable in the model for each CCA is unshaded.  The type of 
transformation is listed at the end of the name of each variable, “.hell” is a Hellinger 
transformation performed on all values of the dataset for that measurement.  Categorical 
variables in the model were not transformed and were used in the model as binary values to 
explain the data, thus there are differing degrees of freedom within the model based on the 
number of individual categorical values.  Each categorical value is displayed in the plots 
without a vector to identify their centroid and loading of the model. 
 

Variable Df ChiSquare F Pr(>F)
Model 3 0.053 7.600 0.001
Residual-Model 241 0.555
mii.hell 1 0.006 2.689 0.009
region 2 0.046 10.055 0.001
Residual-Env. Variables 241 0.555

Variable Df ChiSquare F Pr(>F)
Model 1 0.025 2.783 0.01
Residual-Model 53 0.481
mii.hell 1 0.025 2.783 0.017
Residual 53 0.481

Variable Df ChiSquare F Pr(>F)
Model 5 0.085 4.265 0.001
Residual-Model 82 0.326
mii.hell 1 0.011 2.749 0.011
depth 4 0.074 4.643 0.001
Residual-Env. Variables 82 0.326

Variable Df ChiSquare F Pr(>F)
Model 5 0.101 4.339 0.001
Residual-Model 76 0.354
mii.hell 1 0.008 1.737 0.08
depth 4 0.093 4.990 0.001
Residual-Env. Variables 76 0.354

Variable Df ChiSquare F Pr(>F)
Model 5 0.118 2.972 0.001
Residual-Model 69 0.550
mii.hell 1 0.014 1.757 0.08
depth 4 0.104 3.275 0.001
Residual-Env. Variables 69 0.550

CCA - Terrebonne Bay

CCA-All Samples

CCA - MII-0 and MII-3 Samples

CCA - Port Sulphur

CCA - Grand Isle



 

108 
 

 
 

  

Table A.4:   Scores of individual CCA models with up to two variables, MII and 
region or nothing.  The MII 0 and 4 CCA has no second constraining variable, and 
thus the CA1 is the first unconstrained axis.  Each chart shows the first two 
constrained axes and the scores of each bacterial class. 
 

Fusobacteria 0.418 CD_OP11-unclassified 0.770
Cyanobacteria-uncultured 0.316 OPB35 0.556
JTB23 0.268 Acidimethylosilex 0.445
Opitutae 0.252 KD4-96 0.440
CD_TM7-unclassified 0.248 Lineage_IV 0.411
Hyd24-12-unclassified -0.693 Acaryochloris -0.239
TA06-unclassified -0.717 VC2.1 -0.304
Dehalococcoidetes -0.754 Deinococcales -0.442
CD_OP9-unclassified -0.840 SubsectionII -0.555
GIF9 -0.843 Fusobacteria -0.641

CD_OP11-unclassified 0.528 Cyanobacteria-uncultur 0.655
Dehalococcoidetes 0.455 CD_TM7-unclassified 0.577
KD3-62 0.452 KD4-96 0.562
GIF9 0.427 S085 0.551
Caldilineae 0.408 SAR202 0.542
SubsectionIV -0.400 Lineage_I_Endomicrob -1.009
Acidimethylosilex -0.430 OPS8-unclassified -1.060
Cyanobacteria-uncultured -0.455 CD_OP9-unclassified -1.072
S085 -0.457 TA06-unclassified -1.192
SAR202 -0.516 GIF9 -1.273

All Samples
CCA1 CCA2

MII 0 & 3
CCA1 CA1
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Table A.5:   Scores from regional CCA models.  Each chart shows 
the first two constrained axes and the scores of each bacterial 
class. 
 

SubsectionI 0.712 SubsectionIV 0.459
Flavobacteria 0.643 SubsectionIII 0.378
SubsectionIII 0.538 Candidatus_Kuenenia 0.375
SubsectionII 0.529 Cyanobacteria-uncultured 0.353
Acaryochloris 0.471 Thermodesulfobacteria 0.336
GIF9 -0.640 OPB35 -0.252
vadinBA26 -0.686 Chrysiogenetes -0.266
CD_OP9-unclassified -0.746 CD_OP10-unclassified -0.304
Epsilonproteobacteria -0.895 CD_OP11-unclassified -0.415
Dehalococcoidetes -0.938 KD4-96 -0.466

SubsectionI 0.544 Fusobacteria 0.981
Flavobacteria 0.509 Dehalococcoidetes 0.530
SM1A07 0.436 SubsectionII 0.479
TA18 0.385 Deinococcales 0.468
Acidimethylosilex 0.343 Hyd24-12-unclassified 0.449
vadinBA26 -0.838 TK10 -0.279
CD_OP11-unclassified -0.890 Cyanobacteria-uncultured -0.318
WCHB1-60-unclassified -0.900 Lineage_I_Endomicrobia -0.356
Lineage_IV -0.985 WD272 -0.441
Dehalococcoidetes -1.193 vadinHA49 -0.556

RF3 0.867 SAR202 0.602
SubsectionIII 0.691 Epsilonproteobacteria 0.432
SubsectionII 0.655 RF3 0.293
SubsectionI 0.617 Fusobacteria 0.283
Spartobacteria 0.468 OPS8-unclassified 0.281
GIF9 -0.662 CD_OP11-unclassified -0.293
vadinBA26 -0.710 Lineage_I_Endomicrobia -0.298
Dehalococcoidetes -0.827 SubsectionIII -0.300
Epsilonproteobacteria -0.846 WD272 -0.313
Lineage_I_Endomicrobia -0.861 Spartobacteria -0.323

Terrebonne Bay
CCA1 CCA2

Port Sulphur
CCA1 CCA2

Grand Isle
CCA1 CCA2
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Figure A.5:   Average bacterial relative abundance of the top 99% of bacterial phyla by region and season.   
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Figure A.6:   CCA of all samples showing the species scores with the MII and region as constraining 
variables.  The relative proportion of each axis variance and eigenvalue are listed along the axis.  Each 
ordinal hull is colored and labeled by MII value with the sample point is also labeled with the 
corresponding color.  The secondary axis on the top and right of the graph show the strength of the 
constraining variable vector, of MII and regional centroids. 
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Figure A.7:   Ordination of the CCA with only bacterial communities of MII 0 and 4 with MII as the 
constraining variable.  The proportion of the variance of each axis is displayed, the only constrained axis is 
CCA1.  The secondary axis on the top and right of the graph show the strength of the constraining variable 
vector (MII) from zero to 1. 
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Figure A.8:   Ordination of the CCA with only bacterial communities from Port Sulphur with MII and depth 
as the constraining variables.  The proportion of the variance of each axis is displayed.  The secondary axis 
on the top and right of the graph show the strength of the constraining variable vector (MII) from zero to 1, 
and the centroid of each depth category on the same scale. 
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Figure A.9:   Ordination plot of the CCA with only bacterial communities from Grand Isle with MII and depth 
as the constraining variables.  The proportion of the variance of each axis is displayed.  The secondary axis on 
the top and right of the graph show the strength of the constraining variable vector (MII) from zero to 1, and 
the centroid of each depth category on the same scale. 
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Figure A.10:   Ordination plot of the CCA with only bacterial communities from Terrebonne Bay with 
MII and depth as the constraining variables.  The proportion of the variance of each axis is displayed.  
The secondary axis on the top and right of the graph show the strength of the constraining variable vector 
(MII) from zero to 1, and the centroid of each depth category on the same scale. 
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