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ABSTRACT 

 
Standard biological assays are time consuming, occur at the end of an 

experiment, use bulky and expensive equipment and require skilled expertise. Lab 

on chip instruments seek to miniaturize these systems, improve ease of use and 

lower costs while offering real time measurements and accuracy. We have 

developed an electrical cell-substrate impedance sensing system using vertically 

aligned carbon nanofibers. The system is able to sense and measure biological 

cells’ impedance in real time. By using carbon nanofiber arrays, the system is able 

to offer more sensitive measurements compared with traditional coplanar 

electrodes. This is the first demonstration of using vertically aligned carbon 

nanofibers (VACNF) to observe changes in cellular impedance. This work is not 

only an improvement over existing cell substrate impedance measurement 

systems, but also is an extension of carbon nanofiber application creating a new 

possibility for using VACNF in the bio-sensing area. At the same time, by using 

carbon nanofiber arrays, we have enhanced the possibility for integration of 

measurement system as a lab on chip system.  
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CHAPTER 1 
INTRODUCTION  
 

1.1 Cell impedance measurement system  

 
Electrical cell-substrate impedance sensing (ECIS) has gained much 

interest in the biosensing arena. Biologists are interested in impedance sensing 

for both scientific and medical reasons [1]. This technique helps researchers in a 

wide range of applications such as medical diagnosis, cytotoxicity assessment, 

medical and pharmaceutical testing, and biochemical and environmental agent 

detection. ECIS has been used for cell attachment and spreading, cell proliferation, 

cell differentiation, barrier function, signal transduction assays, cell invasion, 

cytotoxicity, in situ cell electroporation and monitoring, cell migration and wound 

healing, cell chemotaxis, and cell – extracellular matrix (ECM) protein interactions.  

Figure 1 shows the principle of ECIS. An AC voltage is applied to coplanar 

electrodes. Between any two electrodes, there exists an electric field. Disturbance 

of the electric field will occur, as cells are introduced onto one of the electrodes, 

and results in a change of current and voltage. The ECIS system is based on 

following this principle. Now a days, a commonly used system in cell impedance 

measurement is to employ small planar gold film electrodes deposited on the 

bottom of cell culture dish and measure the impedance using impedance analyzers 

or lock in amplifiers [1].  

Typical cell measurements use biochemical reactions to observe cellular 

changes. These can only (typically) be observed at the end of an experiment.  

ECIS is advantageous over these standard techniques in that it monitors the cells’ 

behavior in real time and is a label free method. Thus a much richer dataset is 

possible using ECIS measurements to monitor cells. Additionally, because there 

are multiple electrodes, multiple populations of cells can be observed at any given 

time. However the ECIS system as employed in literature has severe drawbacks. 

The system, as seen in Figure 1, uses the planar gold electrodes. Current 

microfabrication techniques limit the size of these electrodes and commercially 
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available electrodes are typically on the order of 100-300 µm. The size of a cell is 

on the order of 5µm to 50µm, depending on the type of cell. Thus, it is difficult to 

get a one to one ratio of electrode to cell. Additionally, it could be advantageous to 

have multiple electrodes in contact with an individual cell. This is not possible using 

current microfabrication techniques. Planar electrodes are limited to approximately 

10µm in size with a 10µm pitch.  

This work, improves the resolution of current planar electrode arrays, by 

employing vertically aligned carbon nanofibers (VACNF) as electrodes.  The use 

of these electrodes will provide increased resolution. Also, due to the physical 

nature of these nanostructures, the sensitivity of the impedance measurement will 

be increased.  

 

Figure 1. Overview of Impedance Sensing. The presence of a cell disturbs the electric 
field lines from between a pair of electrodes. This electric field disturbance translates into 
a change in measured current. 
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Figure 2. Commercially available gold film coplanar platform 

 

Figure 2 shows the commercial product of gold film coplanar uses in ECIS. 

During the measurement, cells will be placed and cultured in each well on the 

platform. Cells will spread and attach to the gold layer on the bottom. By analyzing 

the voltage change, researchers are able to analyze the cells’ behavior in real time. 

The approach is label free, meaning very little skill is required to use the system. 

 

Figure 3 shows how the impedance changes for cell in different stages. 

When cells are first seeded unto a substrate (stage 1), they descend by gravity 

before adhering to the surface via biochemical processes (stage 2). This is 

correlated with an increase in impedance. During stage 2, there is a fluctuation in 

impedance over time due to the kinetic behavior of cells. Once the cells are 

adhered, they will respond to stimulants, both biochemical and mechanical, by 

undergoing cellular changes, such as membrane compromise, which will be 

reflected in a change in impedance (stage 3). 
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Figure 3. Impedance Change in as cell adhered to working Electron [2] 

 
 
 

1.2 Nanotechnology 

Nanotechnology has shown rapid development in recent years. In 

bioresearch, nanotechnology has opened many new research avenues for 

biologists due to the small size, tailoring ability, and multi-functionality of 

nanoparticles [3]. There are many application of nanotechnology have been 

introduce by researchers in very wild area, such as pH sensor [4], gas sensor [5], 

and also in many biological applications [6] [7]. For the vertically aligned carbon 

nanofibers (VACNF), due to their excellent structural and material properties, we 

believe that VACNF could become a novel biosensing platform for cells and other 

biological molecules. VACNF has many irregularities and defect sites as a function 

of its unique structural properties. This allows improved immobilization of enzymes. 

This also offers a highly conductive path to external pads. As another property, the 

VACNF electrodes have been reported as high electron field emitters [8]. These 

properties can enhance the sensitivity of the planar electrode pattern and allow the 

VACNF electrodes to become novel candidates for biosensing applications. The 

size of carbon nanofibers allows for the high resolution measurements. The 

Stage 1 Stage 3 Stage 2 
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diameter a single of VACNF is approximately 100 nm. In our case, the diameter 

for each single fiver is in the range of 80 nm to 150 nm. Compared with the size of 

a cell, which is around 1 μm -100 μm for different type of cells. Therefore, for each 

cell, there will be multiple VACNF electrodes in contact with it.  

In this master’s thesis we have designed and fabricated a VACNF platform 

to replace the coplanar electrode platform in the traditional electric cell substrate 

impedance measurement system. The VACNF electrodes have very outstanding 

characteristics and structure, and this will increase the sensitivity and resolution of 

the measurement system.  

 

1.3 Thesis Organization 

 
The thesis is organized as follows. Chapter 2 surveys the literature on 

electric cell substrate impedance sensing and vertically aligned carbon nanofibers. 

Chapter 3 discussed the Vertically Aligned Carbon Nanofibers (VACNF) platform 

fabrication process including the PECVD method, component analysis, 

multiphysics simulation using COMSOL and equivalent circuit model for SPICE 

simulations. Chapter 4 discusses the custom measurement system setup and cell 

culture process, as well as transferring of cells to the measurement platform. 

Chapter 5 gives the results of the measurement system with standard RC circuits 

and of the VACNF with Bovine Aortic Smooth Muscle cells. Chapter 6 gives the 

thesis conclusion and outlines areas of future work.   
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CHAPTER 2 
LITERATURE REVIEW 
        

2.1 Electrical cell-substrates impedance sensing 

 
 The first idea of ECIS come up in 1980s, by Dr, Ivar Giaever who was 

working at General electric Research Laboratory in Niskayuna NY [9]. He was 

joined by Dr. Charles R. Keese who worked with him on a national science 

foundation grant. As researchers with a physics background, they were interested 

in the effects of electromagnetic fields on biological cells. In early experiments, Dr. 

Giaever and Dr. Charles applied a DC (time invariant) voltage to cells adhered to 

two electrodes. After the test, they found that the cells were dead on one of the 

electrodes. The reason for this problem due to electrochemistry and the high 

currents leading to ionization and not because of the high DC voltage. The problem 

was solved by applying an AC voltage. In the first ECIS system, a 1V AC signal 

was applied at 4 KHz, through a 1MΩ resistor. The current was limited by the 1MΩ 

resistor, and an approximate constant current of less than 1 µm was applied to the 

electrodes. This became the standard measurement architecture in today’s ECIS 

system. As another contribution, Drs. Giaver and Charles’ research group found 

the relationship between the solution resistance or constriction resistance changes 

and the radius of a circular working electrode. 

R (solution) ~ 1/r 

 By reducing the electrode radius, the electrode resistance can be made 

dominant over the solution resistance.  Therefore, in today’s ECIS system, the 

diameter of the working electrode is designed around 250 µm. This is large enough 

to contain a sizable population of cells and small enough to have a relatively small 

constriction resistance 

 In 1998, a very important paper of using ECIS to study cells interactivity was 

published by L. Reddy et. al [10]. In this paper, the author used ECIS to monitor 

human orbital fibroblastic cells after introducing prostaglandin and leukoregulin. 

These two types of drugs have a similar effect on cells. As the result of real time 
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ECIS, they were able to note that the cells had an immediate impedance change 

response with prostaglandin. However, it took 2 hours for the cells to responsd to 

leukoregunlin. The reason for the late response of the cells is that they had to 

synthesize proteins before they could respond [11].  This experiment shows that 

for different kind of drugs, cells show different response speeds. This helps to 

distinguish the drugs and study the cellular activity.  

 As the development of the ECIS technology has progressed, there have 

been many commercial products developed. Figure 4 shows a few of the standard 

electrode arrays. They range from circular to interdigitated and from one electrode 

to many electrodes. In the model this thesis uses for comparison,, there are 8 wells 

containing a single circular active electrode. The diameter for each electrode is 

250 µm. The maximum volume for each well is 600 µL. 50-100 cells can measure 

for each well. Figure 5 shows the schematic for each measurement unit. The white 

dot in the center is the working electrode which has 250 µm diameter, the gold 

circle sounding it is the interconnection. In this sample, gold is used as the material 

of interconnection. There is a ground electrode, common to all eight active 

electrodes, placed on the center of platform.  

 
 
 

 

Figure 4. The electrode array model from Applied Biophysics [2]. These arrays range 
from single pairs of electrodes to interdigitated electrode architecture 
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Figure 5. Schematic of each measurement unit of one of the electrode arrays [2] 

 
 
 

Today, ECIS already become an importance technique in bio-sensing and 

biology area. There are many application that have been developed. These 

applications include immunological response models, Insight into mechanisms of 

all phases of cell growth and reproduction, real time monitoring of cells in culture, 

cell-substrate interactions, and cell sorting.  The immune response to stimulations 

has been reported for cells such as epithelial and endothelial lung cells [12] [13]. 

These responses typically include blood coagulation activation, immune cell and 

cellular morphology changes. For example,  thrombin induces change in cells’ 

shape, cell-cell adhesion decreasing and release cytokine from endothelial cells 

and the ticin from Stachybotrys chartarum (an environmental contaminant) has 

been reported to induce changes in cell morphology and release of the 

inflammatory cytokine, Interleukin-8 from A549 cells [14] [15]. Studying the 

dynamic response of cells as they settle and adhere to the surface [16] [17] will 

help the study the cell adhesion and decision processes and become key to new 

genetics discoveries. Also, in stem cell studies, insight into cell differentiation can 

be one of the most significant studies, which will have a large potential boarder 

societal impact [18] [19]. Monitoring neuronal cells’ activity will help in 

understanding the brain-machine interfaces.  It would enable the studies of wound 

healing of a destroyed/impaired monolayer of cells and it could lead to the better 

understanding of how the cells repair themselves. Also by monitoring cell to cell 

contact that may inhibit or promote certain cell proliferation [20] [21]. These studies 



 

9 
 

could also be extended to bacteria or viruses and other molecular studies. 

Monitoring the motility and spreading of cells with different substrates will enable 

studies of cells’ interaction. This will is useful for determining the activation of cells 

on different proteins, for example, bovine serum albumin, gelatin bovine fetuin, or 

human plasma fibronectin [22]. Also it is useful in quantitative analyses of the 

interaction of cell and/or tissues with various macro and nano-particles or 

substrates. For example, this could help in studies in using networks of living 

neurons. It also could be used to understand how different organs work, such as 

using printing technology currently available to create organs. These 

characteristics are also useful for selective counting of a specific cell within a 

mixture of cells [23] [24]. 

 

 

2.2 Vertically Aligned Carbon Nanofibers 

 
The history of carbon nanofiber could be traced back to 1889 [25]. It was 

reported that carbon filaments are gases from carbon-containing gases using an 

iron crucible. However, due to the limitation of microtechnology in the early years, 

the development of nanofibers progressed very slowly. In the 1950s, as the 

development of high resolution electron microscopy came into being, the 

transmission electron micrographs of nanofiber was obtained by Radushevivh and 

Lukyanovich [26]. In 1990s, the discovery of C60 lead to abroad interest in carbon 

nanofiber and nanotube.  

The Plasma enhanced chemical vapor deposition (PECVD) process was 

introduce by Chen et. al. in 1997 [27]. In this paper, they successfully fabricated 

carbon nanostructures on Silicon substrates using the PECVD process.  This 

process lead to the development of nanostructure synthesis. It allows researchers 

to have better control over the position, alignment, diameter, length, chemical 

composition, and other characteristics of individual nanostructures.  
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Mekechko et. al. reported vertically aligned carbons nanofiber and its 

synthesis process in 2005 [28]. Carbon nanofibers are defined as cylindrical or 

conical structures that have diameters from a few to hundreds of nanometers, and 

lengths ranging from less than a micron to millimeters. In this paper, Mekechko 

introduced that the internal structure of the carbon nanofiber varies and is 

comprised of different arrangements of modified graphene sheets.  Figure 1 shows 

the internal structure of carbon nanofiber. 

According to Mekechko et. al., a graphene layer can be defined as a 

hexagonal network of covalently bonded carbon atoms. In general, nanofibers 

consist of stacks of curved graphite layers that form “cones” or “cups”, as shown 

in figure 6 (b). Angle alpha is defined as the angle between the fiber axis and the 

graphene sheet near the sidewall surface. In the very special case where α = 0, 

one or more graphene layer from the cylinder runs the full length of the 

nanostructure.  This type of nanofiber is called nanotube (CNT). 

 

 

 

Figure 6. Structure of carbon nanofiber and nanotube 

(a) Graphene layer (b) stacked cone nanofiber and (c) nanotube [28] 
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As the one of the property of carbon nanofiber, it has been reported as an 

electron filed emitter [29].  M.A. Guillorn et. al., reported a gated field emitter using 

a single VACNF as the field emitter cathode. According to Guillorn et. al., the dives 

could achieve significant operating current for extended period of time without 

causing degradation the VACNF tips.  

 There have been many reported applications of VACNFs. These include 

bio-chemical sensor and nervous system sensing. Using VACNF in bio-sensors 

was reported as an important application of VACNF, including as am enzymatic 

amperometric biosensor [30], and amperometric bienzymatic glucose biosensor 

[31]. The VACNF was reported as an effective strategy in biosensor, due the 

unique structural properties. The defect sites show not only high immobilization 

ability, but also show strong electrical current response. As application of VACNF 

in nervous system sensing, electrophysiological signals sensor [32] and dopamine 

and serotonin sensor have been reported [33].  As the advantage of using 

VACNFs, sensitive has been improved, also the carbon based electrodes have 

potential advantages over metal electrodes. This has contributed to precise, 

informative, and biocompatible interfaces. 
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CHAPTER 3 
VERTICALLY ALIGNED CARBON NANOFIBERS (VACNF) 
PLATFORM FABRICATION PROCESS 

3.1 PECVD  

 
Plasma enhanced chemical vapor deposition (PECVD) technique was used 

in this thesis to fabricate the carbon nano-fibers. This is a commonly used process 

in nano-fiber fabrication, and has been reported in many publications [34] [35]. 

Quartz substrate was used. The Quartz substrate shows excellent chemical 

resistance with high stability against a variety of solvents. Also it has great heat 

resistant with high dimensional stability over a wide temperature range. For the 

most important characteristic, it is a transparent substrates, therefore the cells are 

able to be viewed under inverted microscopes. 

During PECVD process, the chamber will be heat up to 700 ° C. Therefore 

a material that has a high temperature resistance is required for use as the 

substrate. Quartz has excellent chemical resistance and very high dimensional 

stability over a wide temperature range. 1000 Å Titanium (Ti) layer was placed on 

Quartz layer as the interconnection layer for the platform. Before the PECVD 

process, a thin layer of Chromium, Cr, was deposited over the wafer as a 

conducting surface. This Cr layer will act as a cathode during the PECVD process. 

300 nm diameter and 50 nm thick Nickel (Ni) dots was placed on the top Quartz 

substrate by using conventional electron-beam lithography [28]. VACNF will 

growth on the place where the Ni dots was placed. Figure 7 shows detail of PECVD 

process. 
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Figure 7. Detail of PECVD process 

 
 

In the PECVD process, after a wafer was placed into the reaction chamber, 

the reaction chamber was heated to 700 ° C, and the pressure inside of chamber 

was reduced to 10-5 Torr, which is close to vacuum environment. Low reaction 

pressure helps the fibers to grow more uniformly.  After achieving the condition 

mentioned above, ammonia (NH3) plasma was gently introduced from shower 

head, which is located on the top of chamber. This treatment will reform the 

deposited catalyst nanoparticles (Ni particle) to discrete catalyst. The catalyst 

nanoparticles act as the seed of VACNF and with the specific thickness and 

diameter that mentioned above, only a single nanoparticle is formed from each 

catalyst dot [28].  As the next step, acetylene (C2H2) was introduced to chamber. 

This will growth VACNF immediately. The reaction time is approximately 20 min. 

After the PECVD process, the Cr layer was removed. Reaction time length, size of 

Ni dots and speed of ammonia plasma and acetylene are introduced, all these 

factors will have effect on the growth of fiber. Generally speaking, the longer 

reaction time creates longer nanofibers. However, if the time is too long, the 

reaction could break the fiber that has already been grown. In the conditions 

above, the length of fibers that have been successfully grown is around 3.5 μm to 

7 μm with 80 nm - 110 nm diameter 
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3.2 VACNF platform   

 
Figure 8 shows the fabricated VACNF platform. The size of the platform is 

4 cm X 4 cm. And a total of 8 measurement units are fabricated on a single 

platform.  There is one reference electrode, which is 0.2 cm in width, 

interconnection and eight active electrodes with 300 μm diameter. Each active 

electrode is circular in shape. Figure 9 shows a single measurement unit, (a) 

VACNF, (b) interconnection, (c) Ground.  Ti was used as interconnection in this 

platform. This VACNF platform was design to replace the coplanar electron array 

produced by Applied Biophysics. Therefore a similar pad structure has been used. 

Figure 10 shows the schematics of a single measurement unit from applied 

biophysics. The diameter of the working electrode from one of the electrode arrays 

from applied biophysics is 250 μm. In our platform the working electrode was 

replaced by VACNF with 300 μm diameter.  

 

 

     

         Figure 8. VACNF Platform.                 Figure 9. VACNF Platform Measurement Unit 

(a) 

(b) 

(c) 
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.  

Figure 10. Schematic of measurement unit 
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Figure 11. (a)-(h) SEM image of VACNF for different samples 

(a) (b) 

(c) (d) 

(e) 
(f) 

(g) (h) 
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Figure 11 shows the image of the fabricated VACNF under scanning electron 

microscope (SEM). These samples were fabricated under the conditions 

previously described. Table 1 shows the length of the carbon nanofibers in the 

different samples. Even though all the VACNF were at strictly controlled conditions, 

it is very obvious that length of fibers have more or less individual differences.  The 

length of carbon nanofibers are in the range of 3.4 μm to 10 μm. 

 

 

Table 1 Length of Nano-Fiber 

Sample A B C D E F G H 

Fiber 

length  

(µm) 

4.892 10.475 6.852 3.313 3.516 6.711 4.034 3.617 

 6.234   3.626 5.071 10.09 3.416  

 
  

 

 Figure 12 shows the image of VACNF forest for each single measurement 

unit. The diameter of VACNF forest was designed to be 300 μm. The size of each 

VACNF forest are shown on Table 2. As a result, the diameters of VACNF forests 

very close to the designed size. From figure 12, we can observe that in some of 

samples, the VACNFs show fractures or folds, the main reason for this 

phenomenon is due to the alignment of Ni dots. Because of the very narrow size 

of the VACNF, it is very difficult to align the Ni dots perfectly. Once the Ni dot was 

placed on outside of designed regions, it will cause a fracture or fold on the VACNF 

forest. 
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Figure 12. (a)-(h) Image of Single Measurement unit 

(a) (b) 

(c) (d) 

(f) (e) 

(g) (h) 
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Table 2 Diameter of Singale Measurement unit 

 a b c d e f g h 

Diameter 

(µm) 

291.25 286.66 286.5 288.2 290.4 283.57 291.56 289.0 

 

 

3.3 Passivation layer fabrication and results  

 
 After fabrication of the first prototype of VACNF platform, a passivation layer 

was added on the top of platform to cover the interconnection layer and only allow 

the VACNF to be able to contact with cells. As per the developed process, before 

the Ni dots were placed on the Ti layer, a 200 Å SiO2 layer was placed on the top 

layer and only left small gaps where the Ni dots were planned to be placed. Figure 

13 shows the image of a single VACNF measurement unit with passivation layer. 

As shown on figure 13(d), there are still a few Cr particle left on the platform. After 

PECVD process, Cr layer is supposed to be etched out, however, the passivation 

layer will be also etched out, if the process time was too long. In our case, the 

process time was reduced to 20 sec. In previous work, which is a platform without 

passivation layer, it was 1 min. Because of the short acting time to protect the 

passivation layer, there is some Cr particle left on platform. 

 As one of the problems, in some samples, after PECVD process, the 

interconnections show obvious damage.  Figure 14 (a-d) show the picture of the 

damaged interconnections. This problem only happens after placing the 

passivation layer on the platform. The process is the same as describe earlier in 

the thesis. Most of the interconnections damage occur where there is no covering 

by passivation layer. A possible reason for this problem is that, in our sample, the 

passivation layer was not covering the whole interconnection and/or the ground 

was not covered by SiO2 layer. Thus during the PECVD process, the platform was 

unevenly heated. This most likely caused the intersection damages. 
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Figure 13. Image of a single VACNF measurement unit with passivation layer 

(a) VACNF, (b) interconnection (c) passivation layer (d) Cr particle  

 

 
 
 As one of the problems, in some samples, after PECVD process, the 

interconnections show obvious damage.  Figure 14 (a-d) show the picture of the 

damaged interconnections. This problem only happens after placing the 

passivation layer on the platform. The process is the same as describe earlier in 

the thesis. Most of the interconnections damage occur where there is no covering 

by passivation layer. A possible reason for this problem is that, in our sample, the 

passivation layer was not covering the whole interconnection and/or the ground 

was not covered by SiO2 layer. Thus during the PECVD process, the platform was 

unevenly heated. This most likely caused the intersection damages. 

  

(a) 

(b) 

(c) 

(d) 
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(a)                                                                     (b) 

  

(c)                                                               (d) 

Figure 14. Damaged Interconnections on Samples 

 
 

Another problem that occurs is the displacement of the VACNF. This is 

mainly due the ailment of Ni nanoparticle. The Ni particle was supposed to be 

placed on the Ti layer. However, after passivation layer was introduced, the space 

for Ni placement was much narrower than without the passivation layer. This 

significantly increased the difficulty of Ni placement. In some cases, Ni particles 

were mismatched with the designed place. Part of the Ni particles were placed on 

SiO2 passivation layer. As a result, some of the VACNF samples show fracture or 

fold. And also this will cause the damage on interconnection as well.  

Damaged Interlocution Damaged Interlocution on Ground 

Damaged Interlocution 

Damaged Interlocution on Ground 
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Figure 15. VACNF Mismatched with Designed Place. 

 
 
 

 

Figure 16. Damaged VACNF and Interconnection I  

VACNF Edge 

Where the edge 
supposed to be as 

design 

Fracture of VACNF Interconnection 

Damage  
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Figure 17. Damaged VACNF and Interconnection II 

 
 
 

3.4 Component Analysis for VACNF Platform 

 
After the fabrication of the VACNF platform, component analysis was 

performed by taking an energy-dispersive x-ray spectroscopy (EDS) elemental 

analysis. The EDS analysis include the generation of an X-ray from the entire scan 

area of the SEM [36]. Figure 18 shows the SEM image for elements C, O Si, Ti 

and Cr. The different colors represent deferent element. 

  

Fractured 

VACNF 
Misplacement of 

VACNF 



 

24 
 

Figure 18. SEM Chemical Composition Image for Platform 
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(a) Platform under the SEM chemical composition image for C, Ni and Ti  

 
 
 

 
(b) Image of platform under SEM 

 
 
 
 

Figure 18. Continue 
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(c) Carbon under the SEM chemical composition image 

 

 

(d) Oxygen under the SEM chemical composition image 

 
Figure 18. Continue 
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(e) Nickel under the SEM chemical composition image 

 

 

(f) Silicon under the SEM chemical composition image 

Figure 18. Continue 



 

28 
 

 

(g) Titanium under the SEM chemical composition image 

 

 

(h)Chromium under the SEM chemical composition image 

 
Figure 18. Continue 
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There are 5 elements has been find from VACNF platform. Table 3 shows 

the SEM Spectrum Data for each element. Carbon element is mainly introduced 

by carbon nanofiber, which take the main component in VACNF platform. Oxygen 

and silicon is comes out of the Quartz substrate. Titanium is from the 

interconnection. The results shows that there are still a small amount of Nickel left 

on the VACNF. Figure 19 shows the EDS elemental analysis of each element 

distribution. The Y-axis shows the counts (number of X-rays received and 

processed by the detector) and the X-axis shows the energy level of those counts 

[36].  

 

 

 

Figure 19. Distribution Diagram for Elements 
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Table 3 SEM Spectrum Data 

 
 
 

3.5 Simulation using COMSOL 

 
For the purpose of explaining that using VACNF could improve the 

sensitivity of measurement from view of the physical structure, a simplified physical 

model was developed and simulated in the COMSOL program. COMSOL is a finite 

element analysis tool. Figure 20 shows the simulation result for coplanar 

electrodes and the VACNF platform. Some assumptions have been made.  First, 

we approximate that shape of a cell is a unit elliptical shape. Arrayed triangles are 

used to represent the VACNFs. This is similar to the shape of VACNFs. Carbon 

material was selected as the material properties of VACNF, which is the same 

material as the VACNF. For both coplanar and VANCF, interconnections were set 

as Ti, which is the same material in the fabricated VACNF platform.  Instead of 

modeling the Bovine Aortic Smooth Muscle cells, we used a muscle cell model, 

which is a built-in model in COMSOL. The values of the dielectric properties of the 

cell were edited to match our chosen cells. The property details are show on table 

4 – table 6. Input voltage potential was 1V. An active central electrode with two 

Element Series unn.C 
[wt %] 

Norm c 
[wt. %] 

Atom.C 
[at. %] 

Error  
[wt.%] 

Carbon K-series 66.885 55.77 71.94 12.18 

Oxygen K-series 15.92 15.89 15.92 5.80 

Silicon K-series 15.74 15.71 8.66 0.92 

Titanium K-series 11.34 11.32 3.66 0.87 

Nickel K-series 1.31 1.31 0.35 0,48 
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planar ground electrodes are assumed as the structure. Color in the figure 20 

shows the strength of voltage potential and line shows electrical field. 

 

 

 

Figure 20. Simulation Result for Coplanar Model and VACNF Model 

 
 
 

In simulation results, the VACNF model shows stronger voltage potential 

than coplanar electrode model. The electrical field is define as: 

Ex =  −
𝑑𝑉

𝑑𝑥
 

Where Ex is the electrical field in x-detraction, dv/dx is the gradient of the electric 

potential in the x-direction. Therefor more concentrated electrical field line could 

be observed from VACNF model compare with coplanar model. This represents 

that for same amount of impedance change, the VACNF model will show larger 

potential change which means VACNF is more sensitive in impedance change 

than coplanar model. 
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Table 4 Property of Smooth Muscle cell 

Property Value Unit 

Relative Permittivity 20  

Heat capacity at constant pressure 3421 J/(Kg*k) 

Density 1090 Kg/m3 

Thermal Conductivity 0.49 W/(m*k) 

 
 
 

Table 5 Property of Titanium beta-21s 

Property Value Unit 

Relative permittivity 86  

Relative permeability 1  

Electrical conductivity 7.407e5 S/m 

Coefficient of thermal expansion 7.06e-6 1/k 

Heat capacity at constant pressure 710 J/(Kg*k) 

Density 4940 Kg/m3 

Young’s modulus 105e9 Pa 

Possion’s Ratio 0.33  

 

 

Table 6 Property of Carbon fiber 

Property Value Unit 

Heat capacity at constant pressure 1000 J/(Kg*k) 

Density 1200 Kg/m3 

Thermal Conductivity 0.2 W/(m*k) 
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3.6 RC circuit model 

 
Figure 21 shows the equivalent RC circuits [37].  The RC circuit of the planar 

electrodes are derived from literature [37]. The RC equivalent circuit of the VACNF 

was experimentally measured using a chemical analyzer instrument in 

electrochemical impedance mode. Circuits (a) show the RC with growth media 

solution without cell. Cp is the double layer capacitance. Rp represents the 

resistance combined with Warburg impedance and charge transfer resistance 

(Rct). Warburg impedance is reported as the impedance related to mass diffusion 

process occurring in the electrode electrolyte interface [37].  The expression of 

Warburg impedance is show as:  

Zw =
𝝎−

𝟏
𝟐𝐾𝜔

𝐴𝑒(1 + 𝑗)
 

Ae is the electrode area and K𝜔 (Ω sec-1/2cm2) is a constant determined by 

the electrochemistry and mobility of the ions involved in the charge transfer 

reaction. Charge transfer resistance (Rct) represent the electron transfer rate at the 

interface: 

Rct =
𝑉𝑡

𝐽0𝑍
 

Vt is the thermal voltage (KT/q) where K is Boltzmann’s constant, T is the 

temperature and q is the charge on an electron and is 25mV at room temperature. 

j0 is the exchange current density (A/cm2) and Z is the valence of ion involvedin 

the charge transfer reaction. 

Rs is the spreading resistance, which effects of the spreading of current 

from localized electrode to a distant counter electrode in the solution. The solution 

resistance is determine by: 

Rs =
𝜌𝐿

𝐴
 

𝜌 is the resistivity of the electrolyte, L is the length between sensing and 

counting electrodes, and A is the cross-sectional area of the solution through which 

the current passes.  For the coplanar electrode model, Rp = 50Ω, Cp = 1nF and 
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Rs = 1kΩ. The value for Cp and Rs are beads on literature [37]. And for Rp, the 

value was set to 50Ω, which is very low value to represent the resistance of gold 

layer. For VACNF model, Rp = 446Ω, Cp = 1nF and Rgap = 100k. The value of 

each elements are based on experimental results using a chemical analyzer in 

electrochemical impedance mode. For the cell model Rc = Rp/A, where A is the 

ratio between the surface area that cell are covering and the surface area of the 

electrode and VACNF [37]. In this simulation A is assumed to be 0.5 in both models 

for a fair comparison.  By running AC analysis in SPICE on coplanar electrode 

model and VANCF model, the impedance could be quantified after comparing the 

impedance changes between the cell and without cell for both model. The VACNF 

model shows a larger impedance change than the coplanar electrode model for 

input frequency is under 10-100 KHz range. Figure 22 shows simulation result for 

impedance differences between with cell and without cell for both the VACNF 

model coplanar electrode model. The coplanar electrodes show an impedance 

change of 200Ω in going form no cell adhered to a cell adhered. The VACNF 

electrode shows a ~500Ω change in going from no cell to cell adhered. This proves 

that the VACNF electrodes are more sensitive than coplanar electrodes. However, 

this is at the expense of the frequency response. The VACNF show an earlier 

frequency roll off than the coplanar electrodes by an order of magnitude (10kHz vs 

300kHz). 
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(a) RC Model without cell                           (b) RC Model with cell 

Figure 21. Equivalent RC Circuits Model 

 
 
 

 

 

Figure 22. Impedance difference with cell and without cell for VACNF model coplanar 
electrode model 

 



 

36 
 

CHAPTER 4 
MEASUREMENT SYSTEM SETUP AND CELL CULTURE 
 

4.1 Measurement System Setup 

 
A custom cell impedance electronic readout measurement system was 

designed using a lock-in amplifier to create a reference signal and collect the 

output signal. Figure 23 shows the system setup. The Quartz sample is connected 

via leads to a resistor in series with a voltage source. The lock in is used to 

measure the voltage across the electrodes. The VACNF are surrounded by a well 

to hold the cell culture and its growth medium. 

 

 

 

Figure 23. Cell impedance measurement system 

 

 

 

 

Figure 24. Simplified RC Equivalent Circuits 
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Instead of measuring the cell impedance directly, the system measures the 

voltage across the cell. Figure 24 shows the circuit diagram of the equivalent 

circuit. Vin is the same as Vsource from Figure 23. Vin and R act as a current 

source. By apply Ohms low and voltage division theory, the impedance of cell, 

Zcell is able to be calculated from the measured Vcell. The expression of 

impedance calculated is shown as:  

𝑉𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑉𝑐𝑒𝑙𝑙 + 𝑉𝑅 

𝑉𝑐𝑒𝑙𝑙 = 𝐼 ∗ 𝑍𝑐𝑒𝑙𝑙 

𝑍𝑐𝑒𝑙𝑙 =
𝑉𝑐𝑒𝑙𝑙

𝐼
     𝐼 =

𝑉𝑅

𝑅
 

𝑍𝑐𝑒𝑙𝑙 = 𝑉𝑐𝑒𝑙𝑙/ (
𝑉𝑅

𝑅
) 

𝑍𝑐𝑒𝑙𝑙 = (
𝑉𝑐𝑒𝑙𝑙

𝑉𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑉𝑐𝑒𝑙𝑙
) ∗ 𝑅 

 

Vcell and Vsource are recorded by a custom Matlab program through a data 

acquisition card. A reference resistor, R = 8.1k, acts as a source to limit the current 

(below 1mA) flowing through the cell, which is low enough to not kill the cells. 

Figure 25 shows a picture of the measurement system, it shows the lock in 

amplifier, the laptop, an interface board (c) and the connector to the VACNF 

sample electrodes (d).  

For doing measurement, a Matlab program was developed to active the 

lock-in amplifier and recorded the data. Using Lock-in amplifier as voltage source, 

which is able to create an input signal with different frequency. And also use lock-

in amplifier to measure the voltage accrues cells, which is Vcell that shows on the 

equation above. A printed circuit board (PCB) board (Figure 24 c) was designed 

to switch the measurement units on the VACNF platform. A connector (d) allow to 

attach the VACNF platform to measurement system.  This connector can also be 

used to connect the commercial array systems. 
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Figure 25.  Equipment using in Measurement 

(a) Laptop (b) lock-in amplifier (c) PCB connector (d) connector  

 

 

       

Figure 26. Platforms used in Measurement 

 

 
 

During the measurement, cells were placed inside of a plastic well as figure 

26 shows.  The maxima capacity of well is 1.5 mL. During our measurement, 1 mL 

of solution was placed in the well. The well is made of culture grade centrifuge 

tubes, and are thus biocompatible. The epoxy used to “glue” the well to the sample 

is also biocompatible.   
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4.2 Cell Culture Equipment and Process 

 
Cell culture plays an important role in this project. In order to measure cell 

impedance, healthy live cells are a necessary factor. Bovine Aortic Smooth Muscle 

cells were used in our preliminary experiments. These cells were purchased from 

Cell Applications Inc. in T25 proliferating flasks. Figure 27 shows the tools and 

equipment that are used in cell culture. The figure 27 shows the T25 cell culture 

flasks, cell scrapers, pipettes, aspirators and growth media used in culturing the 

cells.  

 

 

 

Figure 27. Tools and Equipment used in Cell Culture 

(a) Cell culture flasks, (b) pipettes, (c) cell growth media, (d) rubber ball aspirator, (e) cell 
scraper 

 
 

 
In order to keep the cells alive and healthy, cells were kept in an incubator.  

The condition of incubator was set to 37°C and 5% CO2, which is the ideal 

condition for cells’ growth [38].  The growth media is changed every 2-3 days once 

the cells have reached approximately 80% confluence. 5mL of media was added 
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to each T25 flask to give enough nutrient for cells. Subculture flask every week. All 

the processes have been done in a disinfected biosafety operation hood under 

strict aspectic conditions. 

The cell culture steps for culturing a population of cells in a T25 flask are 

outlined below: 

 Disinfect equipment and working area using 70% alcohol solution 

 Move cell flasks from incubator to biosafety hood 

 Remove growth media using pipettes from flask and place to waste liquid 

container 

 The used pipettes should be placed in waste container 

 Add 5 ml fresh growth media to flask 

 Disinfect the outside of flask and place it to incubator 

 

4.3 Cell Subculture and Plating to VACNF 

 
In order to measure the cell impedance, cells have to be moved from flasks 

and placed in to the testing platform. Cell sub-culturing technique was applied in 

this process. As a first attempt, cell scrapers were used. The specific steps are 

described below: 

• Remove growth media 

• Add 5ml HBSS to flask 

• Remove HBSS 

• Add 2ml growth media 

• Using cell scraper to scratch bottom of flask gently 

• Remove cell suspension onto VACNF sample 

However, after this process, all the cells were squeezed together and become 

a big “cell ball”. Usually cells need at least 1 week to separate evenly. Also the 

space on the measurement is very limited, only able to contain 1 ml growth media 
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in the well (image shows on figure 26). Therefore the cells find it difficult to survive 

in such a limited space.  

Instead of using cell scraper, trypsin was used subculture the cells instead. 

The procedure is outlined below:   

• Remove growth media 

• Add 5ml HBSS to flask 

• Remove HBSS 

• Add 2ml trypsin 

• Place flask in incubator (5 min) 

• Tap gently at underside of flasks. Cell will flowing in the media 

• Add 2ml of growth media 

• Move the cell suspension to a centrifuge tube 

• Spin down using centrifuge 

• Remove supernatant 

• Add 2ml of media 

• Put 1ml onto sample 

This process significantly increased viability, and results in a not “too large” and 

not “too small” population of cells on the VACNF samples. The purpose of trypsin 

is to force cells to isolate from flask bottom. Trypsin is an enzyme which has a 

function of dissolving protein. The reason of cell could stick on the flask is there is 

a thin protein layer between the cells and the flask surface. This thin layer of protein 

works as a layer of “glue” and keeps the cells adhered on the bottom of the flask. 

Trypsin will dissolve this protein layer and force the cells to float within the growth 

media. Similarly, trypsin also could dissolve protein in the cells and kill the cells if 

left for too long. However, trypsin will be inhibited when mixed with the growth 

media. The growth media contains plasma, amino acids and nutrients for the cells.  

By using this process, we were able to isolate individual cells from growth flasks 

and place cells onto the testing platform.  This technique increased the success 

rate of measurement. Figure 28 shows the cells that cultured directly on VACNF 

platform. The Black circle in the middle is the VACNF array. As the image shows 



 

42 
 

cells are evenly distributed on the VACNF array. When healthy these cells are 

elongated in shape. Unviable or dead cells show a rounded morphology. We were 

able to culture cells for up to 1 week on these VACNF samples as confirmed by 

visual microscope observation.  

 

 

          

Figure 28. Image of Confluent Layer of Cells Cultured Directly on VACNF Array 
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CHAPTER 5 
MEASUREMENT RESULTS USING VACNF PLATFORM 
 

5.1 System testing using RC circuits 

 
For calibrating the system, we utilized an RC circuit array with our system. 

A RC circuit test array was used as a measuring object, instead of electrode 

platform shows on figure 29. There are 8 different sets of RC circuits. The Value 

for each resistances are show on table 7.  For each well, there is a resistor series 

with a capacitor and anther resister is paralleled with resistor and capacitor. 

 

 

Figure 29. Applied Biophysics Test Array 
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Table 7 Resistance and Capacitance Value on Test Array 

Well Number Resistance (Ω) Capacitance (μf) 

1 1000 10 

2 2000 10 

3 3000 10 

4 4000 10 

5 5000 10 

6 6000 10 

7 7000 10 

8 8000 10 

 
 
 
 

 

Figure 30. Measurement Results for RC Board 

 
 

The measurement results for first three wells are shown in Figure 30. The 

dashed line shows the theoretical result by using Matlab to simulate. The back 

lines show the measurement results. From the figures it is obvious that on the high 

frequency range, our system shows very accuracy matchup between 

measurement results and theoretical simulation results. However, for the low 
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frequency range measurement show huge differences. The mismatch at low 

frequency range is due to the limitation of lock-in amplifier. In the lower frequency 

range, as one of the characteristic of RC circuits, is it shows larger impedance. 

The impedance value is calculated by  

𝑍𝑅𝐶 = (
𝑉𝑅𝑐

𝑉𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑉𝑅𝐶  
) ∗ 𝑅 

R and Vsource are constant numbers. So, in the lower frequency VRC shows as a 

very large voltage and for higher frequency it shows as a smaller voltage value. 

However, as a one limitation of this lock-in amplifier, we have to set the sensitivity 

of lock in amplifier manually before the measurement.  

  

5.2 Measurement for Different Objects with Multiple Frequencies  

 
Figure 31 shows measurement result for different objects with different 

frequency.  

 

 

 

Figure 31. Impedance for Different Objects with Multiple Frequency 
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In this measurement, we measured the impedance for air, which is an open 

circuit, cell growth media and growth media with cell solution. The impedance of 

growth media with cell was measured right after the cell suspension was placed 

on the VACNF platform.  Thus, there will be very little difference between 

measuring the growth media and the growth media with suspended cells. During 

all measurements, the VACNF platform was placed in the incubator, with set 

conditions as 37°C and 5% CO2 level. All three objects were measured by same 

measurement units. As the result, open circuit shows the largest impedance in all 

frequency ranges. Cell and growth media solution shows a small amount of 

decrease in impedance value compared with growth media only. This 

measurements result shows that whole measurement system was functional, and 

the system is able to measure the impedance of different objects. Also this result 

shows that our system has good stability with input frequency over 500Hz. 

 

5.3 A long term impedance measurement 

 

In this measurement, the impedance change in the bovine cells were 

observed for a longer time period. The test was continuously running for 500 min 

for monitoring and recording the impedance change of cell media solution. Two 

tests results are shown in Figure 32. Two different VACNF platform sample were 

used in the two experiments. During the whole measurement period, the VACNF 

sample was placed in the incubator to keep the cells alive. The input frequency 

was set to 2 kHz. From the measurement result shows above. Our system has 

good stability for input frequency over 500 Hz. And also as the results shows, in 2 

kHz, the impedance for different object shows largest difference with 2-5k Hz input 

frequency.  

The measurements results show that before 150 min, impedance increases 

in both tests. This is because, during this time period, cells are starting to 

precipitate in growth media, and are starting to settle, first via gravity and then via 
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biophysical chemical processes, onto the VACNF. After 200 min, most of the cells 

floating in the growth media are adhered to the VACNF and the impedance stays 

at a constant level. This measurement results proves that our measurement 

system is able to measure the impedance change in real time. It also shows that it 

has stable performance in long term measurement. 

 

 

Figure 32. Long Period Measurement for Impedance Changing 
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CHAPTER 6 
CONCLUSION AND FUTURE WORK 
 

In conclusion, we have demonstrated the first electrical cell impedance 

measurement system using vertically aligned carbon nanofibers. Because of the 

unique structure of VACNFs, using VACNFs improved the sensitivity of the 

measurement system compared to the traditional coplanar electrodes. The 

nanofibers were deterministically grown and the system has been verified in real 

time impedance measurements of biological cells adhering to the electrodes. 

Physical device simulation using COMSOL and equivalent RC circuits modeling 

have shown that the nanofibers have significant contribution for electrical field 

distribution. As a result, nanofibers increase the electrical potential compared with 

traditional planar electrodes. This will increase the sensitivity of the measurement. 

Thus, this work has expanded the possibilities of VACNF applications in 

biosensing.  

 

Future work includes improving the process of adding the passivation layer. 

As shows previously, after place a passivation layer, a significant arcing damage 

shows on platform and damage the interconnection. This process will help to 

analysis and understanding the effects and principle of VACNF in bio-sensing. 

Furthermore, as a lab-on chip or portable application, the system need to be 

integrated on a smaller scale. The current implementation uses a large lock in 

amplifier. This amplifier can only measure on well at a given time, and can only 

measure one frequency at a time. Thus, even though the resolution of the system 

can be significantly increased using the nanofibers, the measurement speed will 

be extremely slow. One possible solution is to replace the lock-in amplifier with a 

custom integrated circuit chip where the system would be able to measure different 

measurement units and multiple frequencies at same time for high speed high 

throughput measurements. 

  



 

49 
 

 
LIST OF REFERENCES 

  



 

50 
 

 
 

[1]  J.Wegener, "Electric Cell-substrate Impedance Sensing as a Nonivasive 
Means to Montior the Kinetices of cell Spreading to Artifical Sureface," 
Expeermental Cell Re, vol. 259, no. 1, pp. 159-166, 2000.  

[2]  "Applied biophysics," Applied biophysics,Inc, 2015. [Online]. Available: 
http://www.biophysics.com/cultureware.php. 

[3]  S. E. McNeil, "Nanotechnology for the biologist," Journal of Leukocyte 
Biology, vol. 78, no. 3, pp. 585-594, 2005.  

[4]  F. I. J.M.Corres, "High Senstivity Optical Fiber pH Snsor using poly (acrylic 
acid) nanofibers," IEEE, vol. 978, no. 1, pp. 4673-4642, 2013.  

[5]  X. G. H.Liu, "Electrospun Nickel Oxide Nanofiber for Gas Sensor 
Application," IEEE, vol. 978, no. 1, 2013.  

[6]  K. S.U.Kim, "Carbon Nanofiber Compoistes for the Electrodes of 
Electrochemical Capacitor," Chem.Phys.Lett, vol. 400, no. 1-3, pp. 253-253, 
2004.  

[7]  Jyongsik Jang, onwon Baea, Moonjung Choia, Seong-Ho Yoonb, 
"Fabrication and characterization of polyaniline coated carbon nanofiber for 
supercapacito," Carbon, vol. 43, no. 12, pp. 2730-2736, 2005.  

[8]  Ole Waldmanna, Arun Persauda, Rehan Kapadiab, Kuniharu Takeib, 
Frances I. Allena, c, Ali Javeyb, Thomas Schenkela, "Effects of palladium 
coating on field-emission properties of carbon nanofibers in a hydrogen 
plasma," Thin Solid Films, vol. 534, pp. 466-491, 2013.  

[9]  Ivar Giaever, Charles R. Keese, "Electric Cell-Substrate Impedance 
Sensing Concept to Commercialization," in Electric Cell-Substrate 
Impedance Sensing and Cancer Metastasis, Springer, 2012, pp. 1-19. 

[10]  Reddy L, Wang H, Keese CR, Giaever I, Smith T, "Assessment of rapid 
morphological changes associated with elevated cAMP levels in human 
orbital fi broblasts," Exp Cell Res , vol. 245, pp. 360-367, 1998.  

[11]  Lavanya Reddy, Hwai-Shi Wang,harles R. Keesea, Ivar Giaevera, Terry J. 
Smithb,, "Assessment of Rapid Morphological Changes Associated with 
Elevated cAMP Levels in Human Orbital Fibroblasts," Experimental Cell 
Research, vol. 245, no. 2, pp. 360-367, 1998.  

[12]  Kamon Kawkitinarong, Laura Linz-McGillem, Konstantin G. Birukov, and 
Joe G. N. Garcia, "Differential Regulation of Human Lung Epithelial and 
Endothelial Barrier Function by Thrombin," Cell Mol.Biol., vol. 32, pp. 517-
527, 2004.  

[13]  A.M. Malek and S. Izumo, "Mechanism of endothelial cell shape change 
and cytoskeletal remodeling in response to fluid shear stress," Journal of 
Cell Scince, vol. 109, pp. 713-726, 1996.  



 

51 
 

[14]  Jurgen F. Vanhauwe,Tarita O. Thomas, Richard D. Minshall, Chinnaswamy 
Tiruppathi, Anli Li, Annette Gilchrist, Eun-ja Yoon, Asrar B. Malik and Heidi 
E. Hamm, "Thrombin Receptors Activate Go Proteins in Endothelial Cells to 
Regulate Intracellular Calcium and Cell Shape Changes," The Journal of 
Biological Cheistry, vol. 277, pp. 34143-24149, 2002.  

[15]  Jamie H. Rosenblum Lichtenstein, Ramon M. Molina, Thomas C. 
Donaghey, Chidozie J. Amuzie, James J. Pestka, Brent A. Coull and 
Joseph D. Brain, "Pulmonary Responses to Stachybotrys chartarum and Its 
Toxins: Mouse Strain Affects Clearance and Macrophage Cytotoxicity," 
Tocicological and Its Sciences, vol. 116, pp. 113-121, 2010.  

[16]  Sungbo Cho and H Thielecks, "Electrical characterization of human 
mesenchymal stem cell growth on microelectrode," Microlctronic 
Engineering, vol. 85, pp. 1272-1274.  

[17]  John H. T. Luong, Mehran Habibi-Rezaei, Jamal Meghrous, Caide Xiao, 
Keith B Male, and A. Kamen, " Monitoring Motility, Spreading, and Mortality 
of Adherent Insect Cells Using an Impedance Sensor," Analytical chemistry, 
vol. 73, pp. 1844-1848, 2001.  

[18]  Cornelia Hildebrandt, Heiko Büth, Sungbo Cho, Impidjati, and H. Thielecke, 
"Detection of the osteogenic differentiation of mesenchymal stem cells in 2D 
and 3D cultures by electrochemical impedance spectroscopy," Journal of 
Biotenchnology, vol. 148, pp. 83-90, 2010.  

[19]  Sungbo Cho, Erwin Gorjup, and H. Thielecke, "Chip-based time-continuous 
monitoring of toxic effects on stem cell differentiation," Annals of Anatomy - 
Anatomischer Anzeiger, vol. 191, pp. 145-152, 2009.  

[20]  S. N. Bhatia, U. J. Balis, M. L. Yarmush, and M. Toner, "Effect of cell-cell 
interactions in preservation of cellular phenotype: cocultivation of 
hepatocytes and nonparenchymal cells," The FASEB Journal, vol. 13, pp. 
183-1990, 1999.  

[21]  Celeste M. Nelson and Christopher S. Chen, "Cell-cell signaling by direct 
contact increases cell proliferation via a PI3K-dependent signal," FEBS 
Letters, vol. 514, pp. 238-242, 2002.  

[22]  Ivar Giaever and C. R. Keese, "Use of Electric Fields to Monitor the 
Dynamical Aspect of Cell Behavior in Tissue Culture," IEEE Transactions on 
Biomedical Engineering, vol. 33, pp. 242-247, 1986.  

[23]  Nicholas N. Watkins, Supriya Sridhar, Xuanhong Cheng, Grace D. Chen, 
Mehmet Toner, William Rodriguez, et al., "A microfabricated electrical 
differential counter for the selective enumeration of CD4+ T lymphocytes," 
Lab on a Chip, vol. 11, pp. 1437-1446, 2011.  

[24]  S. K. Mohanty, S. K. Ravula, K. L. Engisch, and A. B. Frazier, "A micro 
system using dielectrophoresis and electrical impedance spectroscopy for 
cell manipulation and analysis," in international Confrenece on 
Tansducers,Solid-state sensors, Actucators and Microsystem, 2003.  



 

52 
 

[25]  C. Charmnber and T. Hugehes, "Manufacture of Carbon Filmaments". US 
Patent 405,480, 1889. 

[26]  L.V.Radushkevich, V.M.Lukyanovich and F. Zh.Patent 26, 1952. 

[27]  L.C. Chena, C.Y. Yangb, D.M. Bhusarib, K.H. Chena, b, M.C. Linc, J.C. 
Linb, T.J. Chuangb, "Formation of crystalline silicon carbon nitride films by 
microwave plasma-enhanced chemical vapor deposition," Diamond and 
Related Materials, vol. 5, no. 3-5, pp. 514-518, 1996.  

[28]  A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, 
D. H. Lowndes and M. L. Simpson, "Vertically aligned carbon nanofibers 
and related structures: Controlled synthesis and directed assembly," 
Journal of Applied Physics, vol. 97, 2005.  

[29]  M. A. Guillorn, A. V. Melechko, V. I. Merkulov, E. D. Ellis, C. L. Britton, M. L. 
Simpson, D. H. Lowndes and L.R.Baylor, "Operation of a gated field emitter 
using an individual carbon nanofiber cathode," Applied Physics Letter, vol. 
79, no. 21, p. 3506, 2001.  

[30]  Martha L. Weeksa, Touhidur Rahmanb , Paul D. Frymiera, Syed K. Islamb, 
Timothy E. McKnight, "A reagentless enzymatic amperometric biosensor 
using vertically aligned carbon nanofibers (VACNF)," Sensors and 
Actuators B: Chemical, vol. 133, no. 1, pp. 53-59, 2008.  

[31]  Ashraf B. Islam, Fahmida S. Tulip, Syed K. Islam, Touhidur Rahman, 
Associate, and Kimberly C. MacArthur, "A Mediator Free Amperometric 
Bienzymatic Glucose Biosensor Using Vertically Aligned Carbon Nanofibers 
(VACNFs)," IEEE, Snsors Journal, vol. 11, no. 1, pp. 2798-2804, 2011.  

[32]  Zhe Yu , Timothy E. McKnight , M. Nance Ericson , Anatoli V. Melechko 
,Michael L. Simpson, and Barclay Morrison , "Vertically Aligned Carbon 
Nanofiber Arrays Record Electrophysiological Signals from Hippocampal 
Slices," Nano Letters, pp. 2188-2195, 2007.  

[33]  Emily Rand, A.Periyakaruppan, Z,Tanake.etc, "A caron nanofiber based 
biosensor for simultaneous detection of dopamine and serotonin in the 
presence of asorbiced," Biosensors and Bioelectronics, vol. 42, pp. 434-
438, 2913.  

[34]  A. Kual, "Carbon nanofiber switches and sensors," in Frequency Control 
Symposium (FCS), 2012 IEEE International, Baltimore, MD, 2012.  

[35]  H. Cui, X. Yang, L. R. Baylor and D. H. Lowndes, "Growth of multiwalled-
carbon nanotubes using vertically aligned carbon nanofibers as 
templates/scaffolds and improved field-emission properties," Applied 
Physics Letter, vol. 86, 2005.  

[36]  B. Hafner, "Energy Dispersive Spectroscopy on the SEM:Aprimer," [Online]. 
Available: 
http://www.charfac.umn.edu/instruments/eds_on_sem_primer.pdf. 



 

53 
 

[37]  Alberto Yufera, Ablerto Olmo, Paula Daza and Daniel Cente, "Cell 
Biometerics Based on Bio-Impedance Measurements," in Advanced 
Biometric Techologies, pp. 343-363. 

[38]  R. I. Freshney, Culrure of Animal Cells, New Jersy: John and Sons, Inc, 
2010.  

[39]  M. J. N. Riguad B, "Bioelectrical impedance techniques in medicine. Part I: 
Bioimpedance measurement. Second section: impedance spectrometry," 
Critical Reviews in Biomedical Engineering [, pp. 257-351, 1996.  

 
 
 

  



 

54 
 

VITA 
 
 Yongchao Yu was born in Shenyang, China. When he was 4 years old, he 

moved to Japan with his family. In 1999, he and his family back to Beijing, China.  

In 2008, after he graduated from high school in Beijing, he came to the US and 

started his undergraduate study in Electrical Engineering at the University of 

Tenseness, Knoxville. After he graduated from UTK, he continued his masters 

study at UTK in August 2013. In 2015, he finished his thesis research under the 

advice of Dr. Nicole McFarlane.  


	Cell Impedance Sensing System Based on Vertically Aligned Carbon Nanofibers
	Recommended Citation

	Guide to the Preparation of

