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ABSTRACT  

Obesity has become one of the greatest public health issues in America. BodyMedia 

promotes their SenseWear Armband physical activity monitor as a way to help with 

weight management. Purpose: to assess the accuracy of the SenseWear Armband 

Mini-Fly (SWA-MF) in adults of different BMI categories during rest, recovery, and two 

walking speeds. Methods: Forty-six participants were assigned to one of three BMI 

classifications: normal weight (n =15; 18.5-24.9 kg.m-2 [kilograms per meter squared]), 

overweight (n=17; 25-29.9 kg.m-2), or obese (n= 14; ≥30 kg.m-2). Height and weight 

were measured. Participants began the test with15 minutes of seated rest, then walked 

on a treadmill for 8 minutes at 50 m.min-1 [meters per minute], engaged in a seated 

recovery for a second 15 minute period, and then walked on a treadmill for 8 minutes at 

75 m.min-1. During the test, participants wore the SWA-MF over their left triceps, and the 

ParvoMedics metabolic system was used to measure oxygen consumption. Calories per 

minute (kcal.min-1) [calories per minute] were used to quantify energy expenditure in 

both systems. Results: The SWA-MF error score was not affected by the participants’ 

BMI (p = 0.543.). The SWA-MF significantly underestimated measured energy 

expenditure during the resting condition by 0.21 kcal.min-1 (p < 0.001) and during the 

recovery by 0.27 kcal.min-1 (p < 0.001), but significantly overestimated measured energy 

expenditure during walking at 50 m.min-1 by 0.70 kcal.min-1 (p < 0.001). The SWA-MF 

was not significantly different from measured energy expenditure during walking at 75 

m.min-1 (p = 0.672) or over the duration of the total testing session (p = 0.913). Bland-

Altman plots for energy expended during the total testing session showed mean biases 

between -0.09 and 0.09 kcal.min-1, and 95% prediction intervals  between -1.16 and 

1.20 kcal.min-1.Conclusion: The primary finding from this study is that the validity of the 

SWA-MF does not differ among BMI groups. Secondary findings support that the SWA-

MF underestimates measured energy expenditure during seated resting and recovery 

periods and overestimates measured energy expenditure during brief periods of slow 

walking at 50 m.min-1. 
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CHAPTER I: INTRODUCTION 

 
Obesity has become one of the biggest health issues facing Americans (1, 2). In 

recent decades the prevalence of overweight/obesity has risen, according to data from 

the National Health and Nutrition Examination Survey (NHANES) that assesses the 

weight status of the population based on body mass index (BMI). Currently, 34.2% of 

the adult population are classified as overweight (BMI of 25-29.9 kg.m-2), and 33.8% of 

the population are classified as obese (BMI ≥ 30.0 kg.m-2) (3, 4). Obesity is often 

associated with co-morbidities including, but not limited to:  hypertension, heart disease, 

type II diabetes, and dyslipidemia (5-7). 

 

 Physical activity is a key component to maintaining a healthy weight status and 

helps to prevent weight gain (6, 8-10). Research has also shown that an increase in 

physical activity, in conjunction with dietary restrictions, is effective for inducing weight 

loss (9-13). Walking is the most commonly performed method of structured physical 

activity in adult populations (14). Walking is an easy, low-cost, and accessible activity 

that has been shown to be effective in health promotion and weight management. As a 

result, walking is commonly prescribed for physical activity (11, 14).   

 

There are many different subjective and objective methods to quantify physical 

activity. Subjective measures are less costly, but are limited in accurate physical activity 

measurements due to problems with individual recall (13, 15-17).  Objective monitors 

provide a more accurate measure of physical activity performed (16, 18). Pedometers 

and accelerometers are objective monitors that help to quantify physical activity (19). 
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Objective monitors have been shown to be effective at increasing compliance and 

adherence to exercise prescriptions (13).    

 

 The SenseWear Armband Mini-Fly (SWA-MF) (Body Media, Pittsburg, PA) is an 

objective physical activity monitor that uses a variety of different inputs to estimate 

energy expenditure of an individual. The SWA-MF uses acceleration, heat flux, galvanic 

skin response, and skin temperature to estimate total energy expenditure, physical 

activity energy expenditure, steps, and sleep variables (20). BodyMedia promotes their 

product as a tool for self-monitoring physical activity that is helpful for increasing 

compliance to physical activity recommendations, especially in obese populations (20). 

The first SenseWear Armband model came onto the market in the year 2000 and 

utilized software created by BodyMedia to analyze data collected. Changes from the 

first SenseWear Armband to the current SWA-MF include: taking out the heart rate 

sensor, adding in a third accelerometer, and allowing the monitor to be charged via USB 

cable rather than AAA battery (20). In addition, the current software version 7.0, uses 

propriety algorithms. The software uses propriety algorithms to analyze the data, and 

only the results from the analysis are seen by the user, but the specific algorithms used 

by the software have yet to be released to the public. Each advancement in the 

software indicates that there has also been a modification to some part of the algorithms 

that are used to assess raw data from the monitor. A change in the SenseWear monitor 

model or software version used could mean a change in the output given.  Therefore 

both the SenseWear monitor model and the software version used in research should 

be reported. The SWA-MF is worn over the triceps on the left arm, a location that has 
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been shown to be feasible for intervention studies (21, 22). The SWA-MF has potential 

to give more accurate energy expenditure estimation based on their integrated methods 

of sensors and wear location, compared to other objective monitors.  

 

 Several validation studies have indicated that the SenseWear Armband Pro2 has 

reasonably good validity for estimating energy expenditure (EE) in normal weight 

participants (23-25). However, results of studies conducted in overweight and obese 

populations have shown poor accuracy at assessing EE. Papazoglou, et al. (26) 

assessed the accuracy of the SenseWear Armband Pro2 with software 4.0 against 

indirect calorimetry and through the use of Bland-Altman plots and interclass 

correlations. They found that the SenseWear Pro2 overestimated measured energy 

expenditure in obese populations during treadmill walking (7.62 ± 2.0 vs. 5.8± 0.66 

kcal/min; p < 0.001), cycle ergometer (5.78 ± 1.66 vs. 4.85±0.5 kcal/min; p < 0.001), 

and stair stepping (7.26 ± 1.76 vs. 5.56 ±0.58 kcal/min; p < 0.001), but underestimated 

resting energy expenditure (1811± 346 compared to 1880 ±382 kcal/day; p < 0.001) 

(26). Similarly, Browning, et al. (27) reported that the SenseWear Armband Pro2, 

software version 7.0, significantly overestimated EE by 71.6 ± 46.7% (p = 0.003) during 

walking in an obese population (27).  

 

To our knowledge, no single study has compared the accuracy of the SWA-MF in 

normal weight, overweight, and obese populations, nor has any study examined the 

criterion-referenced validity of the latest software model in these populations. The latter 

point is important since the device uses proprietary algorithms that may change, as new 
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research becomes available. With BodyMedia specifically marketing their product for 

use in overweight and obese populations, its accuracy needs to be assessed before 

clinicians promote it to their patients. If the SenseWear Armbands overestimates energy 

expenditure in obese patients, this may lead them to believe they have expended more 

calories than they actually have, resulting in a positive energy balance. By evaluating 

the accuracy of the SWA-MF for estimating energy expenditure in different BMI 

categories, both researchers and the general population will have more information 

when selecting a device for their designated purpose. Therefore, the purpose of this 

study was to determine the validity and accuracy of the SWA-MF in normal weight, 

overweight, and obese individuals during seated rest, two walking speeds, recovery 

from the first walking bout and the total testing session.   

 

RESEARCH QUESTION 1: How accurate is the SenseWear Armband – Mini Fly for 

estimating resting energy expenditure (kcal/min) in normal weight (BMI 18.5-24.9 

kg.m2), overweight (25.0-29.9 kg.m-2), and obese (BMI ≥30.0 kg.m-2) adults? 

RESEARCH HYPOTHESIS 1: The SenseWear Armband – Mini Fly will be accurate at 

estimating resting energy expenditure, in all BMI classifications. 

 

RESEARCH QUESTION 2: How accurate is the SenseWear Armband – Mini Fly at 

estimating EE (kcal.m-1) during structured treadmill walking at 50 m.min-1 and  

75 m.min-1, in normal weight (BMI 18.5-24.9 kg.m-2), overweight (25.0-29.9 kg.m-2), and 

obese (BMI ≥30.0 kg.m-2). 
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RESEARCH HYPOTHESIS 2: The SenseWear Armband –Mini Fly, will be accurate at 

estimating EE of treadmill walking at 50 m.min-1 and 75 m.min-1 in the normal weight 

population, and will significantly underestimate EE in the overweight and obese 

populations. 

 

RESEARCH QUESTION 3: How accurate is the SenseWear Armband – Mini Fly for 

estimating EE (kcal.m-1) during the entire testing session in normal weight (BMI 18.5-

24.9 kg.m-2), overweight (25.0-29.9 kg.m-2), and obese (BMI ≥ 30.0 kg.m-2) adults? 

RESEARCH HYPOTHESIS 3: The SenseWear Armband –Mini Fly, will provide 

accurate estimates of EE during the entire testing session in the in the normal weight 

population, and will significantly underestimate EE in the overweight and obese 

populations. 

 

DEFINITION OF TERMS 

Normal weight: Individuals with a BMI between 18.5-24.9 kg.m-2 

Overweight: Individuals with a BMI between 25-29.9 kg.m-2 

Obesity: Individuals having a BMI ≥ 30 kg.m-2  
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CHAPTER II: REVIEW OF LITERATURE 

1.0 Introduction 
 

  In the United States (U.S.), rates of overweight and obesity along with 

obesity-related co-morbidities have increased in recent decades (7, 9, 28, 29). Physical 

activity is a key component to reducing body weight in overweight and obese 

individuals, and is important for maintaining a healthy weight (6, 9, 10, 30). Methods of 

accurately assessing physical activity are needed to better define the relationship 

between physical activity and weight loss.  

Advances in technology allow a single monitor to take data from multiple inputs, 

including body acceleration and physiological signals (e.g. heat flux and skin galvanic 

response), allowing for more accurate estimation of an individual’s energy expenditure 

during physical activity.  The SenseWear Armband is an example of such a monitor. 

BodyMedia promotes their SenseWear Armbands to overweight and obese individuals 

and medical health professionals to encourage adherence to physical activity 

recommendations by providing information on total daily energy expenditure (TDEE) 

and energy expenditure during physical activity (20). Even though the SenseWear 

Armband is promoted  to obese and overweight individuals, results on how accurate this 

monitor is in this population are inconclusive (26, 27). This review of literature will 

discuss the need for monitors to accurately assess energy expenditure during physical 

activity and describe how different versions of the SenseWear Armband have 

progressed in technology in an attempt to meet this need.  
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2.0 Obesity 

2.1 Definitions & Prevalence  

 

Many organizations including the American College of Sports Medicine (ACSM), 

the World Health Organization (WHO), and the National Heart Lung and Blood Institute 

(NHLBI) use the body mass index (BMI) to define overweight and obesity (9-11). BMI is 

a rough index of adiposity, and may be used as an index of adiposity at the population 

level, although due to its failure to account for lean vs. fat tissue its use can lead to 

misclassification of individuals (31). The BMI scale classifies individuals according to 

their height and weight, and BMI = body weight (kg) / (height2) (m). Classifications range 

from underweight to obese class III (Table 1) (11).  

 

Table 1.1. Body Mass Index (BMI) Classifications   

BMI (kg.m-2) Classification  

Less than 18.5 Underweight 

18.5-24.9 Normal weight  

25-29.9 Overweight  

30-34.9 Obese Class I 

35-39.9 Obese Class II 

≥ 40   Obese Class III 

 

The overweight classification ranges from 25-29.9 kg.m-2 and accounts for 34.2% 

of the population and those with a BMI greater than or equal to 30.0 kg.m-2, obese 

classification, account for 33.8% of the population (4, 29, 32, 33).  
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The prevalence of severe obesity (BMI > 40 kg.m-2) has increased as well; 

between 1986 and 1990 this group quadrupled and continued to increase by three fold 

from 1990 to 2000 (28, 34). Some evidence is suggesting that the classification of 

obese class III is increasing twice as fast as the obese class I classification (28).  

2.2 Causes of Obesity  

 

Obesity is a multifaceted condition that involves many potential causes for the 

rapidly increasing rates (5). While there is a genetic component to obesity, there are 

also many environmental factors contributing to the world-wide secular trend towards 

increased obesity rates (9). Environments help to shape behaviors and choices made 

within them. Some of the current environmental factors contributing to obesity include: 

the promotion of non-active transport methods (e.g. personal automobiles, city 

transportation systems), sedentary jobs over manual labor, sedentary leisure activities, 

and calorie-dense foods that are both cheap and highly palatable over healthier options 

(9, 28, 32). The combination of genetic and environmental factors has led to energy 

imbalances and weight gain (32).  

 

2.3 Comorbidities of Obesity  

 

 Physical activity is strongly correlated to body weight classification. By not being 

physically active, caloric balance becomes more difficult to achieve. Physical inactivity, 

or insufficient participation in physical activity, is associated not only with weight gain, 

but also with hypertension, coronary heart disease, type II diabetes, dyslipidemia, some 

cancers, osteoarthritis, metabolic syndrome, lower quality of life, and higher mortality 
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rates  (5-7). It is important to note that while many of these conditions have been 

associated with inactivity, there have also been some studies performed that have 

linked some of these conditions to being overweight/obese, independent of activity level 

(7, 9, 35).  

2.4 Economic Cost of Obesity  

 

 The association of overweight/obesity and many chronic medical conditions, 

means that those who are overweight or obese have higher health care costs (9). The 

health care costs of obesity can be accumulated directly from the obesity link or 

indirectly through comorbidities of obesity. In 1995 the direct cost of obesity was 

estimated to be 5.7% of the U.S. health expenditure and indirect costs were roughly 

$47.6 billion (9). It has been suggested that those with even higher BMIs accumulate 

even higher costs (12, 32, 36). Andreyeva, et al. (36) estimated that, in 2004 an 

individual who has a BMI greater than 30 kg.m-2is likely to spend 33% more on health 

care than someone with a BMI less than or equal to 25 kg.m-2. The analysis continued 

by showing individuals with a BMI greater than 35 kg.m-2 will have medical expenditures 

more than twice that of normal weight individuals (36). More recently, Sturm (37) 

suggested that in 2005 individuals who are severely obese, having a BMI greater than 

or equal to 40 kg.m-2; pay between two and four times more in health care costs 

compared to someone who is of a normal weight (37).   

 

It is estimated that obesity comorbidities cost more than health conditions caused 

by both smoking and alcohol consumption (32). Obesity is associated with an increase 

in medical costs of $395/year while smoking is associated with an increase of $230/year 
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and health conditions caused by alcohol consumption account for roughly a $150/year 

increase (32). In the early 2000s, cancer, diabetes, and coronary heart disease, all of 

which are associated with higher BMI status, accounted for the largest costs in health 

care spending (32). Hypertension, which is the most common comorbidity of obesity, 

has contributed to increased health costs over recent years, with direct costs equating 

to roughly $131 billion/year (7, 35).  In 2002, Sturm (32) estimated that there was an 

increase of 36% in health care costs (i.e. doctor visits and medical stays) and an 

increase of 77% in medications in individuals who were overweight and obese 

compared to normal weight individuals (32). 

 

2.5 Solutions for Obesity  

 

As seen from the large increases in obesity prevalence, obesity comorbidities, 

and medical expenditures associated with these conditions, obesity is a threat to the 

health and well-being of society. Many organizations and individuals advocate that there 

should be a focus/emphasis on preventing obesity (9, 29, 34). There are many different 

ideas on how to combat obesity ranging from creating environmental strategies to 

community or individual based interventions. A key concept in all obesity treatment 

involves negating the positive energy balance by either increasing physical activity or 

decreasing the amount of calories consumed (9). Weight reduction is achieved through 

creating a negative energy balance (i.e. through increasing physical activity, dietary 

restriction, surgery, or weight loss drugs). The reduction of weight (≥5% of current body 

weight) may help to reduce medical expenditures by an estimated 8 to 20% (12).  
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Physical activity is beneficial because it can cause weight loss, as well as 

decrease the risk of many comorbidities of obesity. Moreover, physical activity has 

benefits on cardiovascular risk factors, independent of weight reduction. Blair (6) has 

conducted research on the ‘fit versus fat’ debate. His research supports the notion that 

physical fitness and body fatness are independently related to risk of mortality. Those 

who are “fit and fat” have a 50% reduced risk of mortality compared to those who are 

normal weight but unfit (6). Physical activity needs to be performed to counteract the 

trends of the rising obesity rates and rising medical expenditures (8).  

 

3.0 Energy Balance and Imbalances 

3.1 Components of Total Daily Energy Expenditure 

 

Overweight and obesity result from a person being in positive energy balance for 

extended periods of time. A positive energy imbalance results when more calories are 

consumed than expended in an individual’s TDEE. TDEE has three components: 

resting metabolic rate (RMR), thermic effect of food (TEF), and physical activity energy 

expenditure (PAEE) (39). Other factors such as climate and pregnancy may also affect 

an individual’s TDEE (39).   

 

RMR accounts for the largest portion of TDEE (about 60-75%) and includes the 

energy needed to fuel metabolic reactions and rest periods.  Individual differences in 

RMR arise from that amount of fat-free mass an individual has, and their sex (39, 40). 

TEF usually is the smallest component, accounting for up to 10%, of TDEE. This 

component of TDEE accounts for energy expended during the digestion process of food 
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and stimulating the metabolic rate (39). The final component of TDEE, accounting for 

15-30%, is PAEE (39). PAEE is the most modifiable component of TDEE and it 

depends on the activity level of an individual (both planned and spontaneous) (40). The 

frequency, duration, and intensity of activity bouts all affect PAEE (39, 40).  Other 

influences on PAEE include one’s fitness level, and the muscular efficiency of the 

activities performed (40, 41).  

 

Body mass is considered to be one of the most important factors when 

estimating TDEE, therefore individuals who are overweight or obese will have a higher 

TDEE. Having a higher body mass, especially more fat free mass, will require more 

internal work, which will be reflected in the RMR (39, 42, 43). It is estimated that obese 

individuals have a RMR that is about 13% higher than normal weight individuals (40).  

 

Energy expenditure during physical activity will also be increased in an 

overweight individual because more work must be performed during weight-bearing 

activities, such as walking or running (39, 40, 42, 44, 45).  Browning, and colleagues, 

have extensively studied the effects of body mass on walking in females. In 2005, 

Browning, et al. (44) compared walking speeds and energy expenditure in normal 

weight and overweight women. Five walking speeds were evaluated; those who were 

overweight expended 11% more energy than normal weight participants (1.40 vs. 

1.47m/s, p = 0.07). This study associated the 11% higher energy expenditure to the 

greater oxygen consumption in the overweight women, meaning that at the same speed 

they would require more aerobic effort to continue the activity (44). A few years later, 
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Browning and Kram (45), reviewed the relationship between obesity and walking 

energetics. Their review showed that obese adults have a greater metabolic cost by 10-

12% during walking, compared to normal weight adults, and 25% increased metabolic 

weight in obese adolescents. The results of this study pointed to total body mass being 

one of the biggest factors in metabolic cost of weight-bearing activity (45).   

 

3.2 Measuring Energy Expenditure  

 

The most accurate way to measure TDEE is through the use of doubly labeled 

water (46).  In this collection method, participants consume water with a known amount 

of specific isotopes (i.e. Deuterium and oxygen-18) and a few days to two weeks later 

will give a urine sample to test how much of the isotopes are left. This measure allows 

researchers to accurately assess energy expenditure in the free-living environment. 

While this methodology is considered to be the gold standard for measuring TDEE, 

information regarding the pattern of physical activity (i.e. frequency, intensity, and 

duration of bouts) and the “context” of the activity (location and social setting) cannot be 

determined. For this reason and due to the costly procedure, doubly labeled water is not 

commonly used in research (15, 39, 46) 

 

Direct calorimetry includes the use of a room calorimeter and is another 

technique to assess energy expenditure. This method of data collection is often not 

feasible, due to expensive equipment, and the inability for data collection outside of the 

lab (39). Indirect calorimetry is another valid standard for collecting energy expenditure 
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data, and is a more realistic method to use in most studies (compared to DLW or direct 

calorimetry). A participant wears a mouth piece, allowing inspired and expired gas to be 

analyzed, which ultimately allows for assessment of energy expenditure and substrate 

utilization (47).  

 

4.0 Subjective Measures of Physical Activity  

 

 Subjective instruments are one option to measuring physical activity behaviors 

and roughly estimate PAEE. Subjective measurements are one of the most cost 

effective forms of physical activity measurements, and are easy to administer. There are 

many types of subjective instruments including: physical activity diaries or logs, 

questionnaires, interviews, and surveys (15, 18, 48). Subjective measures can be used 

to collect population level information, as a way to self-monitor or to obtain a more in-

depth look at physical activity behaviors (13, 17, 18). Subjective measures can be more 

accurate when more detail is included in the data collection. For example, specifying the 

type, duration, intensity, and frequency will help to create a better picture of the activity 

behaviors and will usually result in greater validity (17, 46). Many subjective methods, 

including questionnaires, have been validated as a way to assess physical activity (17).   

 

 While subjective methods are considered to be valid means of assessing 

physical activity, there are many limitations to their use. Their greatest weakness is that 

they are based on self-reported data (15). Self-reported data has a recall bias and often 

overestimates physical activity (13, 15, 18). While most activities are overestimated, 
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some spontaneous activities and activities of daily living, such as walking, may be 

underestimated (15-17). Subjective measures can be a useful tool to assess physical 

activity, but depending on the research purpose, they may not be as accurate as 

objective monitors.  

 

 

5.0 Objective Monitors  

 

 With the increase in obesity rates, there is a need for accurate, reliable 

assessment of physical activity, and objective monitors can provide a solution. Objective 

monitors use either physiological markers or body movement to assess how much 

activity is being performed (15). Two common types of objective monitors include 

pedometers and accelerometers. Benefits of these monitors include low cost and 

feasibility, in addition to the fact that they are considered to be accurate and valid tools 

for assessing physical activity.  

 

5.1 Pedometers 

 

 Pedometers collect data on the number of steps an individual takes. The early 

versions of pedometers were created with the use of spring levers and were often worn 

on the hip. As technology has progressed pedometer accuracy has improved with the 

piezoelectric pedometers, which are now preferred over the spring levered pedometers. 

With the advent of piezoelectric pedometers, the potential wear sites of pedometers 

have increased (19, 49). While some pedometers are still worn on the hip, some have 
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been designed to be worn on the foot (e.g., Step Watch 3), in pockets (e.g.  Omron 

pedometer and Fitbit Zip), or on a wrist (e.g. Nike Fuelband) (19). Most recent 

pedometers have been studied to show accuracy and validity in a variety of populations 

(19).  

 

Early spring-levered pedometers, and some piezoelectric pedometers may not 

count steps accurately at slower walking speeds (19, 49). This presents a possible 

issue in the accuracy of obese and elderly populations because individuals within these 

populations may have slower self-selected walking speeds (19, 50). Despite this 

concern, many piezoelectric pedometers have shown good accuracy in obese 

populations, with step counting errors not being significantly correlated to BMI status 

(19, 49-51). Recent studies have also shown that newer versions of pedometers do a 

much better job of counting steps at slower walking speeds.  

 

In 2003, Swartz, et al. (51) investigated the relationship between BMI and the 

accuracy of Yamax SW-200, an electric pedometer (51). The study included three BMI 

classifications of normal weight, overweight, and obese. Pedometers were placed at the 

waistline/belt level in three different places: on the anterior midline of the thigh 

(according to manufacturer protocol), on the individual’s side, and along their back. 

Subjects walked on a treadmill at five different walking speeds and all pedometer 

outputs were compared to direct observation and counting of steps. Results of this 

study did not find significant differences in the accuracy of pedometer output between 

the different BMI classifications or waist circumference measurements (51).  
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The following year, Melanson, et al. (50) looked at the accuracy of pedometers in 

older (46-85 years) obese patients, which created a focus of the study on the accuracy 

during slow walking. The pedometers used in this study included three spring levered 

pedometers, Yamax SW-200-024, Walk-4-Life LS 2500, and the Step Keeper HSB-

SKM, and one piezoelectric pedometer, Omron HF-100. Each pedometer was placed 

on the body according to manufacturer recommendations. This study concluded that the 

older, spring levered monitors were not as accurate for assessing the number of steps 

taken at slower speeds when compared to the piezoelectric pedometers. This study 

also supported the concept that BMI was not a determinant in the step count error (50).  

Crouter, et al. (49), in 2005, examined the difference in accuracy between a 

spring levered and piezoelectric pedometer in overweight and obese individuals based 

on their BMI, waist circumference, and the tilt of the pedometer. The study compared 

outcomes from the Yamax Digiwalker SW-200 and the New Lifestyles NL-2000 to the 

actual steps taken (counted by the investigators). The piezoelectric pedometer was 

more accurate than the spring levered pedometer in overweight and obese populations 

in both lab and free-living conditions. The error observed in the spring levered 

pedometer was correlated with the pedometer tilt (p < 0.05), more than waist 

circumference and BMI (49).  

 

Finally, the StepWatch 3 is a pedometer that is worn on the ankle. This 

pedometer is one of the most accurate and records steps within 3% of actual steps 

taken during a wide range of walking speeds (19). Previous studies have shown that 
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pedometer accuracy may be affected by slower walking speeds or pedometer tilt when 

worn at the waist, but the StepWatch 3 accuracy is not affected by adiposity or slow 

walking speeds (52, 53). Studies have shown that piezoelectric pedometers can be 

accurate at a variety of speeds and are not influenced by BMI status. 

 

5.2 Accelerometers    

 

  Accelerometers are objective monitors that measure the acceleration of body 

movements in one to three planes (54, 55).  Accelerometers have been shown to be 

valid in a variety of lab and free-living situations (55, 56). As technology progresses, 

equations to analyze accelerometer data have become more accurate (e.g., pattern 

recognition) and this has allowed researchers to achieve improved accuracy for TDEE, 

energy expenditure during physical activity, and classify different modes of activity (55, 

57, 58).   

 

One drawback to using accelerometers is that outcomes or activity counts, 

cannot be directly compared between monitors. While outcome measures are all related 

to acceleration and frequency, different brands may incorporate different outcome 

variables or use equations based on different cutpoints, which does not allow for direct 

comparison between research studies (55, 59). While raw data outcomes may be hard 

to directly compare, researchers are able to compare duration and intensity of physical 

activity bouts (55, 59). 
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Bassett and John (19), in a review article, considered a variety of pedometers 

and accelerometers that are commonly utilized. The article pointed out many limitations 

and inaccuracies of accelerometers and the equations used to analyze the 

accelerometer data to estimate energy expenditure. Equations work best for predicting 

the energy expenditure of activities that they are developed on but are less accurate for 

predicting energy expenditure of other activities. Another limitation of using 

accelerometers is that different brands cannot necessarily be compared. The article 

pointed out a study in which the Actical monitor recorded less counts per day of daily 

physical activity than the ActiGraph during free-living environments. The RT3 activity 

monitor does not provide raw data, but converts the data into outcomes (kcals, duration, 

and intensity of activity). The RT3 commonly overestimates moderate and vigorous 

PAEE and underestimates free-living energy expenditure. Finally, the SenseWear 

armband and software was found to underestimate energy expenditure of many 

activities (19).    

 

Accelerometers have been shown to be accurate and valid in a variety of 

conditions and are a good choice for many research applications (61). Many 

inaccuracies in estimating energy expenditure arise during free-living situations, rather 

than lab based research, because the body movements may come from smaller upper 

body muscle groups or if activities are intermittent in nature (56). With advances in 

technology and in the methods used to assess accelerometer data the trend for 

inaccurately assessing free-living activities is now becoming a trend for accuracy (57, 

60). With the growing trend for accelerometer use, further research is needed to 
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improve the technology, and to test the accuracy and validity of each new 

accelerometer (55). 

 

5.3 Monitors using a combination of methods  

 

Heart rate and oxygen consumption have a linear relationship for most physical 

activities. This linear relationship can provide a way to estimate energy expenditure by 

using heart rate on a physical activity monitor. While this method is often used in 

commercial physical activity monitoring devices, such as polar heart monitors and 

watches, there are some issues with using heart rate. Heart rate can be influenced by 

factors besides exercise, including stress, caffeine, fatigue, and fitness; thus, increases 

or decreases in heart rate may not always be relatable to energy expenditure (39, 62). 

Because heart rate is influence by a variety of factors, it has been shown to be poor 

indicator for assessing physical activity during sedentary behaviors and light intensity 

activities (80).  

 

The SenseWear Armband is one product that uses a combination of methods to 

estimate energy expenditure. This monitor quantifies physical activity by using a tri-axial 

accelerometer, galvanic skin response (GSR), a heat flux sensor, and near body 

temperature monitors (20). GSR, through the use of electrodes on the skin, senses 

physiological responses of the secretary activity of sweat glands (63). In the SenseWear 

monitors, the GSR records information on the amount of sweat lost by an individual and 

attributes it to the intensity of the activity, or to the surrounding environmental conditions 

(20).  The heat flux sensor measures the heat lost during physical activity, with more 
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heat lost being attributed to more work being done by the body. This sensor uses the 

difference between skin temperature and near body temperature to assess the heat loss 

(20). The SenseWear Armband’s ability to combine data from multiple sensors should 

improve the accuracy to estimate energy expenditure during physical activity.  

 

5.4 Wear Location  

 

Wear location of objective monitors can impact how much activity is, or is not 

recorded. In pedometers, if the wear location is on the hip of an obese or pregnant 

person, the monitor may be tilted farther away from the vertical axis, therefore not 

registering steps and giving lower step counts (19, 49, 51, 64, 79). In contrast, wearing 

a pedometer on the hip of a normal weight individual or on an ankle may result in 

increased accuracy in step counts (1) 

 

 Wear location of accelerometers has moved from the hip to include wear sites 

over the triceps, wrist, and leg (65, 66). The Genea accelerometer is a wrist worn 

monitor that was reported to have good validity. Esliger, et al (65) placed the Genea 

monitors on the waist, left and right wrist while subjects completed 12 different activities. 

The waist mounted GENEA was most highly correlated to energy expenditure (r = 0.87), 

followed closely by the left wrist worn monitor (r = 0.86) and then the right wrist worn 

monitor (r = 0.83). While the wrist worn monitors were less correlated with energy 

expenditure than the monitor worn at the waist, they were found to be accurate at 

estimating energy expenditure (65). In a different study validating Esliger’s cutpoints for 

the left wrist, during light, moderate, and vigorous physical activity against indirect 
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calorimetry were found to have lower accuracy when subjects performed a different 

group of activities (including treadmill-based, home and office activities, and sport 

activities). The GENEA was placed on left wrists, in individuals who were right-hand 

dominant. Only 41.4% of the energy expenditure from all activities explained by the 

GENEA, and only 52.8% of activities performed were correctly classified by intensity 

level. This study concluded that when the GENEA was worn on the left wrist, it did not 

meet accuracy standards for classifying activity intensity or energy expenditure (67).  

 

 The SenseWear Armband was designed to be worn on the upper arm, over the 

triceps (20, 68). While this device has been validated in a variety of populations and 

situations, there have been studies that report over estimation of energy expenditure for 

activities that involve large arm movements (69, 70). Davis, et al. (71) in 2007, looked at 

the effect of wearing long and short sleeves on the SenseWear Armband Pro2 energy 

expenditure estimates. Results showed that the monitor was accurate at quantifying 

energy expenditure against indirect calorimetry, regardless of the clothing’s sleeve 

length (71).  

 

6.0 SenseWear Armband  

6.1 Creation and Progression of the SenseWear 

 

 The SenseWear Armband is an objective physical activity monitor that uses a 

variety of integrated sensors to estimate and quantify energy expenditure. BodyMedia 

describes their product as,  
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“easy-to-use, reliable, and accurate way…to assess metabolic physical activity 

and energy expenditure outside the lab (20, 68).”  

 

While this product is often used in laboratory settings, it has been marketed to the 

general population and to health care providers as a method of accurately recording 

energy expenditure, with applications for obese and diabetic populations (20, 68).  

 

The SenseWear Pro1 monitor included a biaxial accelerometer, a heart rate 

monitor, a skin temperature sensor, two galvanic skin response (GSR) sensors, a heat 

flux sensor, and finally a near-body ambient temperature sensor (48, 68). The 

SenseWear Armband has improved with technological progress so that the latest 

version, the SenseWear Armband Mini-Fly (SWA-MF) includes a triaxial accelerometer, 

charges via a USB cable, does not contain the heart rate monitor (which was included in 

the SenseWear Armband Pro1) (68). Throughout the process of changing the physical 

monitor, the software has also progressed to incorporate new algorithms (e.g., pattern 

recognition).  According to BodyMedia, the SenseWear Armband uses pattern 

recognition to classify several activities such as walking, cycling, biking, and stair 

climbing, along with other modes of activity (68). BodyMedia uses proprietary 

algorithms, which are not released to the public. The resting algorithms use RMR 

prediction equations that take into account and individual’s height, weight, age, and sex 

(72). The latest version of the software is Version 7.0 (20). This software gives raw data 

counts, in addition to data that is converted to output measurements of energy 

expenditure (joules and METs), steps taken, and activity duration (27, 68).  
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6.2 SenseWear Pro1 Validation Studies   

 

 Validation studies have been completed with each new version of the 

SenseWear Armband. Liden et al, (69) was the first to validate the SenseWear 

Armband Pro 1 monitor through a series of studies. The studies examined the 

relationship between the accelerometer and the heat flux compared to indirect 

calorimetry in 40 participants in three BMI ranges (underweight, normal weight, and 

overweight) who were monitored during walking and biking at different speeds, and at 

rest. This study found that BodyMedia’s algorithms were within ±9.4% of the measured 

total energy expenditure across all activities (69).     

 

Jakicic, et al. (25) performed a validation on the SenseWear Armband Pro 1 

monitor and used software version 3.0. The validation consisted of 40, healthy weight 

subjects, who performed: walking, stair climbing, cycle ergometer, and arm ergometer. 

Results were compared against indirect calorimetry. The SenseWear Armband Pro1 

significantly underestimated the energy expenditure during walking (14.9 ±17.5 kcals; 

6.9 ± 8.5%; p < 0.001), stair climbing (28.2 ± 20.3 kcals; 17.7 ± 11.8%; p < 0.001), and 

the cycle ergometer (32.4 ±18.8 kcals; 28.9 ± 13.5%; p < 0.001). In contrast, during arm 

ergometry, the SenseWear Armband Pro1 over-estimated energy expenditure (21.7 ± 

8.7 kcals; 29.3 ± 13.8%; p < 0.001). Based on results from this study, it was 

recommended that BodyMedia created activity specific algorithms to increase the 

accuracy of the energy estimates (25). Overall, the SenseWear Armband Pro1 tended 

to under estimate energy expenditure of most activities.  
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6.3 SenseWear Pro2 Validation Studies  

 

BodyMedia took the results and recommendations of these studies to create 

more accurate software and monitoring devices, resulting in the SenseWear Armband 

Pro 2. Along with the new monitor came new software versions, 4.0 and 4.1, which 

began to use pattern recognition technology (20, 73). In 2004, Fruin, et al. (74) 

investigated the new generation of SenseWear Armband monitors in cycling, walking, 

and resting conditions. Thirteen healthy, young adults participated in the validation (74). 

Data from the SenseWear Armband Pro 2 was validated against indirect calorimetry. 

Reliability of the monitor was established in this study through comparing two separate 

resting measurements. The SenseWear Armband Pro2 showed the largest errors in 

estimating energy expenditure during treadmill walking. The SenseWear Armband Pro2 

overestimated energy expenditure of walking on a flat surface by 13-27% (p <0.02), and 

underestimated energy expenditure by 22% when walking at an incline set at 5 (p < 

0.002). Cycling and resting had no significant differences from the criterion. Resting was 

not significantly different than indirect calorimetry and was highly correlated with indirect 

calorimetry (r = 0.93; p <0.001). While no significant differences were found among the 

total energy expenditure, the SenseWear Pro 2 was only moderately correlated to the 

measured values from indirect calorimetry (r = 0.47-0.69). The authors concluded that 

the SenseWear Armband Pro2 error was not impacted by gender, and they 

recommended that future studies look at more diverse populations and at light activity 

levels (74). 
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King et al. (48) chose to examine the validity of the SenseWear Armband Pro2, 

along with four other activity monitors at different walking and running intensities 

compared to indirect calorimetry. Twenty-one subjects were tested with five physical 

activity monitors, including the SenseWear Armband Pro 2, RT3, TriTrac-R3D, the 

Computer Science Applications (CSA; commonly known as the ActiGraph), and the Bio 

Trainer – Pro. The findings of this study showed the SenseWear Armband Pro2 slightly 

overestimated the energy expenditure of walking at different speeds. At 54 m/min the 

SenseWear Armband Pro2 over estimated accelerometer counts by 4.34 ± 0.49 counts 

(r = 0.65, p <0.01) and at 214 m/min overestimated by 13.44 ± 1.70 counts (r = 0.82; p 

<0.001). Despite this, the SenseWear Armband Pro2 had the highest correlations with 

indirect calorimetry (54 m/min, r = 0.65; 80 m/min, r = 0.82; 214 m/min, r = 0.82) and the 

least error at most speeds compared to the other monitors (48). Wadsworth, et al. (75) 

also found the SenseWear Armband Pro2 had significant correlations with resting 

energy expenditure (r = 0.79; p < 0.001) and good accuracy compared to indirect 

calorimetry in predicting the energy expenditure of rest and walking at a speed of 

3.5mph (r = 0.94; p <0.001) among healthy adults (75).     

 

The technology used to assess activity patterns in the SenseWear Armband Pro2 

was tested in 2007 by Welk, et al. (73). They had 30 subjects perform a variety of daily 

living activities while wearing the SenseWear Armband Pro2, the ActiGraph and IDEEA 

monitors, with IDEEA being used as the criterion. Welk and colleagues were able to 

compare the 3.9 and 4.1 software versions during their research. Mean SenseWear 

Armband Pro2 estimates of energy expenditure were within 0.10 METs of the mean 
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IDEEA criterion, but were only moderately correlated (range: r = 0.61 to r = 0.66). Other 

correlations from the ActiGraph exceeded r = 0.76. Results also supported that the 4.1 

version of the software was better at estimating total energy expenditure and physical 

activity intensity compared to the 3.9 software (within .10 METs; and 0.12 METs, 

respectively), based on having smaller error scores. This shows that the software is 

progressing and becoming more accurate (73). This study assessed only light and 

moderate-intensity activities, and did not examine vigorous activities. In the same lab, 

McClain, et al. (70) looked at the accuracy of the SenseWear Armband Pro2 energy 

expenditure estimates during steady state exercises compared to indirect calorimetry. 

Significant differences and poor correlations were found while standing still and walking 

with swinging arms (r = 0.44). Besides these limited conditions, the study found 

moderate to high correlations between the SWA and measured energy expenditure (r = 

0.77 to 0.88) (70).  

 

Malavolti, et al. (76) re-assessed the validity and accuracy of the SenseWear 

Armband Pro2 for measuring resting energy expenditure. Resting energy expenditure 

was tested in 99 healthy subjects, with indirect calorimetry being used as the criterion 

method. This study found that the SenseWear Armband Pro2 high correlations with the 

measured values in this population (r = 0.86, p <0.001), with the SenseWear Armband 

Pro 2 recording 1540 ± 280 kcal/day, which was not significantly different from the 

measured values. Researchers suggested further research using the SenseWear 

Armband Pro2 in overweight and underweight populations (76). 
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St-Onge, et al. (77) validated the SenseWear Armband Pro2 using the software 

version 4.02. While many of the previous studies had used a criterion method of indirect 

calorimetry, St-Onge used doubly labeled water (DLW). The study was designed to 

validate the SenseWear Armband Pro2 against TDEE and also tried to measure PAEE 

in free-living adults. Subjects were given DLW and asked to wear the SenseWear 

Armband Pro2 for a total of 10 days. TDEE was given as an output from both measures. 

PAEE was estimated from the DLW by subtracting each individual’s recorded RMR from 

the collected TDEE; 10% of the TDEE was also subtracted to account for TEF. The 

study concluded that the SenseWear Armband Pro2 was correlated to assess TDEE in 

individuals (r2 = 0.81, p < 0.01), and only slightly underestimated TDEE by a mean of 

117 kcal/day lower than DLW (p < 0.01). The SenseWear Armband Pro2 was less 

correlated to DLW when evaluating PAEE (r2 = 0.46, p < 0.01), with 46% of this variation 

being explained by inter-individual differences (77).  

  

Bernsten, et al. (24) used the SenseWear Armband Pro2 software version 5.1. 

This study tested the SenseWear Armband Pro2 accuracy during free-living activities 

that were structured in bouts, a concept similar to Welk’s research conducted three 

years earlier (73). The activities tested were: sport related activities, strength training, 

common occupation and home activities, and home repair. Bernsten looked at the 

accuracy of energy expenditure compared to indirect calorimetry. The SenseWear 

Armband Pro2 tended to overestimate the time spent in moderate to vigorous physical 

activity by 2.9%, which led to overestimates of energy expenditure at these intensity 

levels. Overall the SenseWear Armband Pro2 underestimated total energy expenditure 
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during free-living activities by 9%, and was moderately correlated (r = 0.73; p <0.001) 

when compared to indirect calorimetry. Much of the variance seen between the 

SenseWear Armband Pro2 and indirect calorimeter was due to individual differences of 

the subjects. This finding shows that this device may not be accurate at an individual 

level, but when individual inaccuracies are grouped together and analyzed, the 

inaccuracies become less because across the group. Bernsten pointed out that since 

BodyMedia algorithms are not shared, criterion for different intensity levels cannot be 

evaluated, and this may be the reason why time and energy expenditure in moderate to 

vigorous activity was overestimated (24).  

 

The final validation of the SenseWear Armband Pro2 in a general adult 

population was completed by Drenowatz, et al. (72) and looked at the validation of the 

SenseWear Armband Pro2 during treadmill running at levels of high intensity (greater 

than 65% of VO2max).  No previous research had looked into SenseWear Armband Pro2 

during vigorous activities. Twenty endurance trained athletes were tested at 65, 75, and 

85% of their maximal oxygen consumption. This study used the Oxycon Mobile portable 

indirect calorimeter to collect actual energy expenditure and analyzed the information 

with software version 6.1. Results showed that the SenseWear Armband Pro2 

correlation to the Oxycon was r = 0.66 ± 0.25 for the entire sample during vigorous 

exercise. MET values obtained at all intensities showed that the SenseWear Armband 

Pro2 was inaccurate at estimating PAEE above 10 METs, which was equivalent to 6 

mph during treadmill running (p < 0.05) (72).  
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6.4 SenseWear Armband Pro3 and Mini-Fly Validation Studies  

 

In 2005, BodyMedia released the third generation of the SenseWear Armband, 

the SenseWear Armband Pro 3, along with the SWA-MF. These monitors, while still 

collecting data from multiple sensors, also collected data on sleep duration, sleep 

efficiency, and duration of laying down (20). With a new version of the monitor, came a 

new round of validation testing. Johannsen, et al. (61) were the first to test the new 

versions of the monitor, both the SenseWear Armband Pro3 and the SWA-MF; with 

software version 6.1 to estimate TEE. Participants in this study had a wide range of BMI 

to help in creating generalizable results. Like St-Onge (77), Johannsen, et al. (61) used 

DLW as their criterion measure, and found that the SenseWear Armband Pro3 

underestimated TEE by 112 kcal/day, (error rate = 8.1% ±6.8%, p = 0.07) a 4% 

underestimation when compared to DLW, but this was not significant. The SWA-MF 

also underestimated TEE by 22 kcal/day (error rate = 8.3% ±6.5%, (p = 0.69)), which 

was an underestimation by less than 0.1% when compared to DLW. The SWA-MF 

seemed to be more accurate than the SenseWear Pro 3, but research supports the use 

of both these tools in research (61). 

 

Dudley, et al. (23) also examined the accuracy of the SenseWear Armband Pro3, 

using software 6.1, in normal weight, healthy adults during 18 different activities. This 

study compared SenseWear Armband Pro3 results against indirect calorimetry, and 

quantified physical activity in METs. Results showed that the SenseWear Armband Pro3 

had a tendency to overestimate METs during light to moderate activities by 15-70% 

(e.g. ironing, sidewalk walking, and light cleaning) (p < 0.05). The SenseWear Pro3 
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underestimated METs during high intensity activities by 20% (e.g. tennis, and track 

running) (p < 0.01), and a significant correlation was found between the error score of 

the devices and the intensity of activities (r = 0.70, p < 0.01) (23). 

 

6.5 Validation Studies with Special Populations 

 

   The SenseWear Armband monitors have been found to be valid across many 

studies in adult populations, with the newer generations of the monitor and software, 

together, becoming more accurate at estimating energy expenditure. While it is 

important to validate physical activity monitors in healthy populations, it is also important 

to expand the validation studies to include special populations. The SenseWear 

Armband models have also been used in validation studies with such special 

populations including: in persons with a stroke, pregnant women, older populations, and 

in children. Manns et al. (78) assessed validity of the SenseWear Armband Pro3 in 

estimating energy expenditure and step counts in persons who suffered from a stroke. 

Data from the SenseWear Armband Pro3 was assessed using the software version 6.1 

and was compared against the Oxycon, a portable indirect calorimeter. This population 

was of special interest because of the effects that a stroke may have on an individual’s 

motor behavior and abilities. The SenseWear Armband Pro3 was tested both on the 

hemiplegic arm and non-hemiplegic arm of each participant. In patients who had a 

stroke, the hemiplegic arm may lose some of its function including minimizing or losing 

movement functions; it may also become less vascular, resulting in a cooler 

temperature along this body part. The study used interclass correlations to concluded 

that the SenseWear Armband Pro3 was most accurate on the non-affected side 
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compared to the hemiplegic arm (ICC = 0.702, ICC = 0.586, respectively) and steps 

poorly correlated in individuals who walked at a speed slower than 50 m/min (ICC 

<0.352). Because of the inaccuracy at slower walking speeds, Manns, et al, suggest a 

lower threshold for gait speed of 50 m/min (78). 

 

Another special population that was used in testing the accuracy and validity of 

the SenseWear Armbands was pregnant women. Pregnancy increases RMR and TDEE 

in woman, which potentially creates a challenge for the SenseWear Armband to 

accurately detect energy expenditure.  Bernsten, et al. (79) used the SenseWear 

Armband Pro2 software version 6.1, in 20 pregnant women during different activities 

and compared it to indirect calorimetry. Activities included: seated rest, stretching, brisk 

road walking, cycling and calisthenics, totaling 90 minutes. Regardless of the pregnancy 

trimester, the SenseWear Armband Pro2 underestimated energy expenditure by 9%, for 

the total bout of activity. Interclass correlation showed a strong correlation between the 

SenseWear Armband Pro2 and indirect calorimetry (ICC = 0.85; 95% CI 0.71- 0.93; p < 

0.001) (79).  

 

 Some researchers have examined the validity of the SenseWear Armbands in 

different populations based on age, including: older adults, children and adolescents. In 

2011, Mackey, et al, (21) validated the SenseWear Armband Pro3, software versions 

5.1 and 6.1, energy expenditure estimation in older adults. SenseWear Armband Pro3 

data was compared against DLW, and outputs from both software versions were 

compared to each other. Results showed strong correlations for total energy 
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expenditure between DLW and software versions 5.1 and 6.1 (r = 0.901, p < 0.001; r = 

0.893, p < 0.001, respectively) (21).   

 

In 2010, Backland, et al. (81) expanded the validity research in children by 

assessing the accuracy of the SenseWear Armband Pro 2 in overweight and obese 

children. This study looked at energy expenditure in a free-living environment and 

compared the SenseWear Pro2 to DLW. Software versions 5.12 and 6.0 were also 

compared. Results showed that version 5.12 was accurate than version 6.0 when 

assessing energy expenditure in obese and overweight children. Software version 5.12 

was not significantly different than DLW (p = 0.95); in contrast software version 6.0 

significantly underestimated energy expenditure by 18% (p < 0.001). A possible 

explanation for the underestimation by software version 6.0 is that the output given 

showed less time in physical activity being recorded compared to software version 5.12.  

This study supports that each new version of the software should be validated to 

evaluate if BodyMedia algorithms used are accurately estimating energy expenditure.        

Previous studies have shown validation of the SenseWear Armband Pro2, 

SenseWear Armband Pro3, and SWA-MF in a variety of populations and situations, 

however there is still concern regarding validity in obese individuals. It is imperative that 

the SenseWear Armband monitors are able to accurately estimate energy expenditure 

during physical activity and TDEE in this population because their marketing strategy 

targets this population (20). Research in this area has resulted in conflicting results of 

the validity in adult populations. 
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Papazoglou, et al. (26) examined the accuracy of the SenseWear Armband Pro2 

in obese individuals (BMI ≥ 30 kg.m-2) during rest and three different modes of activity, 

compared to indirect calorimetry. Activities included the cycle ergometer (at 60 watts 

and 60 RPM), stair stepping (with 16 cm step height), and walking (at 3 km/hr). Results 

showed that the SenseWear Armband Pro2 overestimated measured energy 

expenditure in obese participants during treadmill walking (7.62 ± 2.0 vs. 5.8± 0.66 

kcal/min; r = 0.03), cycle ergometer (5.78 ± 1.66 vs. 4.85±0.5 kcal/min; r = 0.18), and 

stair stepping (7.26 ± 1.76 vs. 5.56 ±0.58 kcal/min; r = 0.06), but underestimated resting 

energy expenditure (1811± 346 compared to 1880 ±382 kcal/day; r = 0.88, p < 0.001 

compared to r = 0.96, p < 0.001) (26).   

 

  In 2012, Browning, et al. (27) investigated the accuracy of different monitors, 

including the SenseWear Armband Pro2, compared to indirect calorimetry, in obese 

class III (BMI ≥ 40 kg.m-2) bariatric patients. The SenseWear Armband Pro2 non-

significantly underestimated steps taken, by 12% (p = 0.086), but significantly over 

estimated physical activity energy expenditure by 71.6 ± 46.7% (p < 0.001) compared to 

indirect calorimetry (27).  

 

The SenseWear Armband monitors have been validated in a variety of 

populations over the last decade, but research results have been inconsistent with 

regard to the accuracy of the SenseWear Armband in overweight and obese individuals. 

Another common trend among studies is that there is a lot of variance in accuracy at an 

individual level, but when the estimated energy expenditure is averaged across a group 
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is statistically accurate. Further research is needed to assess the validity of the 

SenseWear Armbands in overweight and obese populations, across different exercise 

intensities.    
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CHAPTER III: MANUSCRIPT 
 

Accuracy of SenseWear Armband Mini-Fly for Estimating Energy Expenditure in 

Normal Weight, Overweight, and Obese individuals 

Introduction  

Rates of overweight and obesity have increased in most countries over the past 

four decades (7, 9, 28, 29). Physical activity is a key component for reducing body 

weight in overweight and obese individuals and is important for maintaining a healthy 

weight (6, 9, 10, 30). There is a need for the general population to be able to quantify 

their level of activity to assist in improving or maintaining their weight status.  The ability 

to quantify physical activity allows for a better understanding of how many calories have 

been expended throughout the day. Many physical activity monitors have been 

developed to aid consumers in tracking their caloric expenditure, which can help them 

to achieve negative caloric balance.  

 

The SenseWear Armband Mini-Fly (SWA-MF) is marketed as a device to assess 

physical activity and sleep (20). The SenseWear Armband combines input from several 

different sensors in order to estimate energy expenditure. These sensors include: a tri-

axial accelerometer, galvanic skin response monitor, a heat flux sensor, and a near 

body temperature monitor (20).  The combination of sensors may be beneficial over a 

single sensor because it collects more data on the environment (surrounding 

temperature and humidity) and movement (including intensity level and planes of 

movement), which may allow for more accurate energy expenditure estimates. The 
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SenseWear Armband is promoted to consumers, and specifically targets overweight 

and obese individuals. 

 

Previous research validating different models of the SenseWear Armband and 

the software in normal weight populations have shown the monitor to be reasonably 

accurate for activities including: cycling, stair stepping, and rest (48, 70, 73, 76). In 

contrast, other studies that include participants who are overweight or obese have seen 

an overestimation of energy expenditure in previous SenseWear Armband monitors and 

software versions (26, 27). Thus, the purpose of this study was to assess the accuracy 

and validity of the SWA-MF at rest, during two treadmill walking speeds, recovery, and 

during the total testing session, in adults with normal, overweight, and obese body mass 

index (BMI) classifications.  

 

Methods 

Participants  

Forty-six participants, (15 men, 31 women) volunteered for the study. 

Participants had to be 18-45 years of age, apparently healthy, not pregnant, and able to 

walk without assistive devices. Individuals were recruited from The University of 

Tennessee, Knoxville and the surrounding community by paper flyers, online flyers, and 

word of mouth. Prior to testing, each participant signed an informed consent approved 

by the University’s Institutional Review Board (IRB).  
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SenseWear Armband – Mini Fly 

Participants wore a SWA-MF (55mm x 62mm x 13mm; 45.4g) (BodyMedia Inc., 

Pittsburgh, PA) on the upper left arm. The core SWA-MF device currently sells for $99, 

with an optional display device selling for an additional $29. The license that accesses 

more advanced software which is used by researchers to analyze the data is 

approximately $2,000; it provides access to raw data from each sensor, summary 

sheets for clinicians, and energy expenditure graphs. Without the license, consumers 

have access to a brief summary of energy expended and amount of time in each 

intensity level (sedentary, moderate, vigorous, and very vigorous). For this study, 

software version 7.0 was used, allowing data to be uploaded from the SWA-MF monitor 

to the software on the computer.  

 

Data Collection 

          Participants were instructed to fast for three hours and to refrain from exercise for 

24 hours prior to being tested. Once in the lab, participants completed a heath history 

questionnaire to determine their eligibility. Once eligibility was established, 

anthropometric assessments were taken, including: height (m), weight (kg), and waist 

circumference (cm). After body measurements were taken, participants were organized 

into one of three BMI categories: normal weight (18.5-24.9 kg.m-2), overweight (25-29.9 

kg.m-2), or obese (≥30 kg.m-2).  Participants were then fitted with the SWA-MF, which is 

physical activity monitor that is worn over the left triceps. Next, participants were 

connected to a ParvoMedics TrueOne 2400 metabolic cart (ParvoMedics, Sandy, UT) 

via a Hans Rudolf uni-directional breathing valve and hose. The ParvoMedics system 



39 

 

measures energy expenditure via indirect calorimetry. The gas analyzers were 

calibrated, prior to testing, using room air and a gas tank of known concentrations of 

gases (16.0% O2, 4.01% CO2). A 3-Liter syringe was used to calibrate the Hans Rudolf 

pneumotachometer to measure the expired ventilation.  

 

         The study protocol began with 15 minutes of seated rest, followed by 

treadmill walking at a speed of 50 m.min-1 for 8 minutes, then a seated recovery for 15 

minutes, and finally treadmill walking for 8 minutes at 75 m.min-1. The ParvoMedics cart 

determined the measured energy expenditure (kcal.min-1) by continuously collecting 

information on oxygen consumption data and displayed the output in Calories (kcal) at 

60-second intervals. The SWA-MF data were downloaded after each test using 

BodyMedia software version 7.0 and stored on a laboratory computer. The BodyMedia 

software contains propriety algorithms which are not released to the public. Therefore 

results of any analysis need to attribute the validity and accuracy to the combination of 

the SenseWear Armband model and the software version used. The SWA-MF collected 

data for each minute and quantified energy expenditure in Joules.  Joules were then 

converted to kcals (using the conversion factor of 4.184 joules to one calorie) to allow 

comparison between the two devices. Energy expenditure (kcal/min) was determined 

for each activity (seated rest, treadmill walking at  50 m.min-1, recovery, treadmill 

walking at 75 m.min-1), as well as the total testing session.   
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Statistical Analysis 

Statistical analyses were performed using SPSS Version 21 for Windows (IBM 

Corp, Armonk, New York). The overall significance level was set at α = 0.05. Means 

and standard deviations for the participant’s characteristics (age, BMI, and waist 

circumference) and values for total energy expenditure over the total testing session 

were calculated. Error scores (ParvoMedics (measured) minus SWA-MF (predicted)) 

were created for energy expenditure (kcal.min-1). A positive error score indicates an 

under-estimation of energy expenditure by the SWA-MF and a negative error score 

indicates an over-estimation by the SWA-MF.  Physical characteristics and energy 

expenditure for the total testing session were split according BMI.  One-way ANOVAs 

were used to test for differences in age, waist circumference, and energy expenditure 

during the total testing session among BMI groups.  

 

A two-way repeated measures ANOVA (BMI group x condition) was used to 

analyze the error scores (measured minus predicted) for energy expenditure.  Any 

significant differences were then followed up using contrasts to determine if the error 

scores were significantly different.  

 

Bland-Altman plots were used to graphically represent the error scores of 

individuals in each BMI category, for the total energy expended during the entire testing 

session.  The SWA-MF error scores were plotted on the y-axis. The average of the 

measured and predicted energy expenditure values were plotted on the x-axis. Mean 

error score and 95% prediction interval (95%PI) are displayed on each plot. Individual 
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accuracy is represented by narrow 95%PI, along with mean bias and r2 close to zero. 

Data points below zero indicate an overestimation by the SWA-MF, and data points 

above zero indicate an underestimation.  

 

Results  

The participants’ physical characteristics are shown in Table 3.1. Of the 46 

participants, 32.6% were normal weight (n = 15), 37.0% were overweight (n = 17), and 

30.4% were obese (n = 14). 

 

 

Table 3.1. Descriptive characteristics of participants  

 

 

Variable  

All 

Participants  

(N = 46) 

Normal 

weight 

(n = 15) 

 

Overweight 

(n = 17) 

 

Obese 

(n = 14) 

Age (y) 27.1 (0.5) 24.8 (7.5) 27.6 (5.7) 29.1 (9.2) 

Percent Female  67.4% 86.7% 52.9% 64.3% 
BMI (kg.m-2) 27.9 (5.4) 22.6 (1.3) 27.4 (1.8) 34.3 (4.1) 

Female Waist 

Circumference (cm) 

(n= 31)* 

 

80.9 (11.4) 

 

71.8 (4.7) 

 

80.5 (6.3) 

 

94.7 (8.8) 

Male Waist 
Circumference (cm) 
(n= 15)* 

 
93.7 (8.5) 

 
80.3 (2.5) 

 
93.3 (6.1) 

 
99.8 (6.5) 

Mean (SD); Body Mass Index (BMI): normal weight (18.5-24.9 kg.m-2), overweight (25-

29.9 kg.m-2), obese (≥30.0 kg.m-2). * Significantly different among BMI categories, 

p<0.001.  
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Error scores (kcal.min-1) for each condition are shown in Table 3.2. The repeated 

measures ANOVA showed that the main effect of BMI group (p = 0.543), and the 

interaction effect (BMI group x condition) (p = 0.381) were not statistically significant. 

However, the repeated measures ANOVA did show a main effect of the four conditions 

(p < 0.001). Specifically, rest, recovery, and 75 m.min-1 treadmill walk had error scores 

that were not significantly different from each other (p > 0.05), but treadmill walking at 

50 m.min-1 differed from all other conditions (p < 0.001).  

 

The one-sample t-test showed that the SWA-MF significantly underestimated 

energy expenditure compared to the measured values during the resting condition by 

0.21 kcal.min-1 (p < 0.001), and during the recovery by 0.27 kcal.min-1 (p < 0.001). The 

SWA-MF significantly overestimated energy expenditure during treadmill walking at 50 

m.min-1 by 0.70 kcal.min-1 (p < 0.001). The SWA-MF was not significantly different from 

the measured values during treadmill walking at 75 m.min-1 (p = 0.672). The one-way 

ANOVA showed no effect for BMI group on energy expenditure over the total testing 

session (mean error 0.01 kcal.min-1; p = 0.913). 

 

Figure 1 shows the Bland-Altman plots for the energy expended over the total 

testing session, for normal weight, overweight, and obese individuals.  Patterns in the 

plots did not show bias toward over- or underestimation of the SWA-MF during the total 

testing session. In general the mean bias was between -0.09 and 0.09 kcal.min-1 . The 

95%PIs were highest for the overweight group, (-1.16, 1.20 kcal.min-1) and smaller for 

the normal weight, (-0.70, 0.87 kcal.min-1), and obese, (-0.88, 0.70 kcal.min-1) groups. 
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Table 3. 2. Energy expenditure (kcal.min-1) error scores (measured minus predicted) for 
all participants at rest, treadmill walking at 50 m.min-1, recovery, treadmill walking at 75 
m.min-1, and total testing session. 
 

Condition Error Score 95% CI p- value 
  Lower Upper  

Seated  Rest     0.21  0.12 0.29 p < 0.001 

Treadmill Walk (50 m.min-1)   -0.70 -1.06  -0.34 p < 0.001 

Recovery     0.27 0.18 0.35 p < 0.001 

Treadmill Walk (75 m.min-1)   -0.07 -0.40 0.26 p = 0.672 

Total testing session    0.01 -0.13 0.15 p = 0.913 

.  
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Figure 3.1 – Bland Altman plots depicting error scores (measured (ParvoMedics) minus 

predicted (SenseWear Armband-MF)) (kcal.min-1) for the total bout in normal weight, 

overweight, and obese individuals. Solid line represents the mean bias; the dashed 

lines represent the 95% prediction interval. 

r
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Discussion  

 The primary finding of this study was that the validity of the SWA-MF is not 

affected by BMI category (i.e. normal weight, overweight, obese). A secondary finding is 

that the SWA-MF underestimated energy expenditure during seated rest and recovery, 

and overestimated energy expenditure of treadmill walking at 50 m.min-1.  However, The 

SWA-MF was found to be accurate for estimating the energy cost of treadmill walking at 

75 m.min-1 and during the total testing session.   

 

 This is the first study to assess the accuracy of the SWA-MF across three BMI 

categories. Based on our results, the SWA-MF can be used for normal weight, 

overweight, or obese individuals without a bias error in estimation in any group based 

on BMI. This finding supports BodyMedia in their promotion for the use of the SWA-MF 

in overweight and obese population to be used as a tool in maintaining or losing weight.   

 

During seated rest and recovery, the SWA-MF significantly underestimated 

energy expenditure by 14% and 16%, respectively. While previous studies have not 

looked at short periods of rest, SenseWear Armbands have been previously reported as 

valid for estimating resting metabolic rate. Fruin, et al. (74), assessed the SenseWear 

Pro2, software 4.0, for estimating resting metabolic rate along with different treadmill 

walking speeds and grades. The study found the SenseWear Pro2 to be reliable (r = 

0.93 (p < 0.001)) and was highly correlated with indirect calorimetry ((r = 0.74 (p < 

0.004)) for estimating resting metabolic rate. Malavolti, et al. (76) examined the 

accuracy of the SenseWear Pro2 to estimate resting metabolic and found no significant 



46 

 

differences between the resting energy expenditures of the measured and predicted 

values. The seated resting and recovery bouts in our study were significantly different 

than the measured values; this may be due to the difference between the postures of 

supine rest and sitting. The ability for the SenseWear Armband to integrate posture into 

its algorithms for estimating energy expenditure may help to give more accurate 

measures during seated and sedentary time.  

 

During treadmill walking at 50 m.min-1, the SWA-MF significantly overestimated 

energy expenditure by 16%, but no significant differences were found while walking at 

75 m.min-1 between the measured and predicted values. SenseWear Armband monitors 

have previously been shown to overestimate energy expenditure during walking. One of 

the initial studies on the SenseWear Armbands by Jakicic, et al. (25) found the 

SenseWear Pro1, software 3.0, to significantly  underestimate treadmill walking at 80.4 

m.min-1 by 14.9 ±17.5 kcals, which was 6.9 ± 8.5%. Results from that study encouraged 

recommendations for BodyMedia to create activity specific algorithms to increase the 

accuracy of the energy estimates. Changes were made to both the software and 

monitor, and since these changes studies have had similar findings to our current study 

of overestimation at slow walking speeds (23, 48, 74, 78). The SenseWear Pro2 was 

tested by Fruin, et al. (74), and King, et al. (48), using software 4.0 during treadmill 

walking speeds of 54, 80, and 107 m.min-1. Fruin, et al. (74) found the SenseWear Pro2 

to significantly overestimated energy expenditure by 13-27% at 80.5 and 107.3 m. min-1, 

but energy expenditure was significantly underestimated by 22% while walking at 107.3 

m. min-1 with a 5% grade. King, et al (48), found high correlations for energy expenditure 
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between measured and predicted values at all walking speeds.  The SenseWear 

Armband Pro3, software 6.1 was assessed by Dudley, et al. (23) and Mann, et al. (78). 

These studies found that road walking was significantly overestimated by 0.8 kcal.min-1 

and treadmill walking at 50 m.min-1 was significantly overestimated by 0.33 kcal.min-1 

(23, 78).  

 

The majority of the previous studies used healthy, normal weight participants, but 

two studies focused on obese individuals and had similar findings for slow walking 

speeds. Papazoglou, et al. (26) found that the SenseWear Pro2 significantly 

overestimated energy expenditure by an average of 1.82 kcal.min1 in obese individuals 

(BMI ≥ 30 kg.m-2) while walking at 50 m.min-1. Similarly, Browning, et al. (27) found that 

the SenseWear Armband Pro2, software 6.0, significantly overestimated energy 

expenditure by 71.6 ± 46.7%, in bariatric patients with a BMI >40 kg.m-2. The SWA-MF 

and software 7.0, used in the current study, have reduced the prediction error on a 

group basis compared to these previous versions.  

 

For the total testing session, the mean bias for the SWA-MF was within 1 

kcal.min-1 of the measured energy expenditure. In addition this was not different 

between normal weight, overweight, and obese BMI groups. However the individual 

error was large, as can be seen in the Bland-Altman plots. During the total session, 

individual activities were significantly different from measured values, but the over- and 

under-estimation balanced each other so that over the total testing time the mean error 

was close to zero. The SWA-MF may not predict individual activities well, but over the 
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course of a testing period it may provide an accurate measure of energy expenditure. 

Future studies should investigate how the SWA-MF compares to total daily expenditure.  

 

To our knowledge, this is the first study to assess the validity of the SWA-MF for 

estimating the energy cost of walking across three BMI categories. Limitations of this 

study are that only four activities were examined (seated rest, recovery, and two walking 

speeds on a treadmill) and the sample size was small. In addition, BMI is not the most 

accurate indicator of adiposity. Future research studies should consider categorizing 

individuals using different body composition measures when testing the SWA-MF, and 

including a greater array of activities.  

 

Conclusion 

 Results of this study support that the SWA-MF is acceptable and provides 

similar mean biases among BMI categories. From both past research and our findings, 

a trend is shown that the SenseWear Armband commonly overestimates energy 

expenditure at slower treadmill walking speeds (< 75 m.min-1), but validity improves at 

faster treadmill walking speeds (≥ 75 m.min-1). During seated rest and recovery the 

SWA-MF significantly underestimated energy expenditure, but if algorithms were 

changed to incorporate posture accuracy would likely improve.   
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APPENDIX A 

 
INFORMED CONSENT FORM 

 
________________________________________________________________ 
 
Title of Research: Accuracy of the SenseWear Pro3 Armband During Rest and 
Treadmill Walking Across BMI Categories 
 
Principal Investigator: Bethany Forseth  
 
Location: Applied Physiology Laboratory, 1914 Andy Holt Ave, The University of 
Tennessee, Knoxville, TN  
________________________________________________________________ 
 
Purpose/Objective 
 
You are invited to participate in a research study on the accuracy of the SenseWear Pro 
3 Armband, a wearable physical activity monitor.  
The purpose of this study is to determine the accuracy of the SenseWear Pro 3 
Armband across BMI categories during rest and walking. 
 
The SenseWear Pro 3 Armband will be placed over the triceps muscle on the right arm, 
and will estimate calories under resting conditions and during treadmill walking. 
Simultaneously, the Parvomedics cart will collect data on your oxygen consumption and 
carbon dioxide production; these measurements will serve as the criterion measure to 
show how many calories were actually expended.  
 
INFORMATION ABOUT PARTICIPANTS’ INVOLVEMENT IN THE STUDY 
 
After reading and signing the informed consent, and filling out the Health History 
Questionnaire (HHQ), we will measure your height, weight, triceps skinfold, and waist 
circumference. After the measurements are taken, you will be fitted with the SenseWear 
Pro3 Armband and a mouthpiece (and noseclips) connected to a hose leading to the 
ParvoMedics cart. You will then be asked to rest in a seated position for 15 minutes, 
followed by walking on the treadmill at 50 m/min (1.86 mph) for 8 minutes, seated rest 
for another 15 minutes, and then walking at 75m/min (2.8mph) for 8 minutes. Should 
you decide to end your participation in the study at any time, you are free to do so.  
 
Because this is an activity-based study, we do ask that you wear comfortable athletic 
clothing, including a short-sleeved shirt and appropriate footwear. You should not 
exercise for 24 hours before your visit, and you should refrain from eating/drinking 
anything (except water) for 3 hours prior to your visit.  
 
 
Initials _____ 
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RISKS 
 
Potential risks include abnormal heart rate or blood pressure responses, muscle strains 
or pulls, falls, and, in rare instances, heart attack, stroke or sudden death.  To reduce 
these risks, you will only be invited to participate if you are comfortable with walking 
unassisted at 75m/min (2.8mph) for 8 minutes and do not have any contraindications to 
exercise. If you should have a serious injury during the course of the study, testing will 
be stopped immediately and you will receive appropriate medical treatment. 
 
However, in the event of an injury, UT does not automatically provide compensation for 
medical care.  
 
BENEFITS 
 
Anticipated benefits to this study include new knowledge on the accuracy of the 
SenseWear Pro3 armband. The results could lead to more accurate tools to monitor 
physical activity in different populations.  
 
You will also receive a free Omron pedometer and a handout that will include your 
current weight status, resting energy expenditure measures, and a personalized walking 
program.  
 
CONFIDENTIALITY 
 
Your data will be kept confidential throughout the study. All subject information will be 
coded and data will be secure, only being made available to those researchers and staff 
involved in the study. 
 
EMERGENCY MEDICAL TREATMENT 
All testing will be conducted in the Health and Physical Education and Recreation 
(HPER) building at the University of Tennessee – Knoxville campus. In the unlikely 
event of an adverse response to the during the physical activity protocols, you will 
receive appropriate treatment from trained clinicians 
 
 
INVESTIGATOR CONTACT INFORMATION 
 
If you have questions at any time about the study or the procedures (or you experience 
adverse effects as a result of participating in this study), you should immediately contact 
the principal investigator, Dr. David Bassett, 325 HPER Building, The University of 
Tennessee, Knoxville, TN, 37996, (865) 974 – 8766. If you have questions concerning 
your rights as a participant, contact Ms. Brenda Lawson with the Compliance Section of 
the Office of Research at (865)974-3466. 
 
 
Initials ____ 
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PARTICIPATION 
 
Your participation in this study is voluntary; you may decline to participate without 
penalty. If you decide to participate, you may withdraw from the study at any time 
without penalty and without loss of benefits to which you are otherwise entitled. If you 
withdraw from the study before the data collection is completed your data will be 
returned to you or destroyed.  
________________________________________________________________ 
 
 
STATEMENT OF CONSENT 
“I have read the above information. I have received a copy of this form. I agree to 

participate in this study.” 

 

___________________________________ 

Participant’s Name 

____________________________________   ____________________ 
Participant’s Signature        Date 
 
_____________________________________  ____________________ 
Investigator’s Signature     Date 
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University of Wisconsin – La Crosse. While there she completed a Bachelors of Science 

in Exercise and Sport Science with an emphasis in Fitness in the spring of 2012. The 

cold winters persuaded Bethany to move down south and attend the University of 

Tennessee, where she completed a Master of Science in Kinesiology – Exercise 

Physiology.  Bethany, against the will of her now-warmed-and-thinned-blood, will 

continue her graduate education in fall of 2014 as a doctoral candidate at the University 
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