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Isaiah 46:3-4 (The Message Bible)

“Listen to me, family of Jacob,

everyone that’s left of the family of Israel.

I’ve been carrying you on my back

from the day you were born,

And I’ll keep on carrying you when you’re old.

I’ll be there, bearing you when you’re old and gray.

I’ve done it and will keep on doing it,

carrying you on my back, saving you.”
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Abstract

Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC)

sensitivity analysis is an efficient tool often employed in uncertainty analysis to

explore the entire parameter space of a model. Despite the usefulness of LHS/PRCC

sensitivity analysis in studying the sensitivity of a model to the parameter values used

in the model, no study has been done that fully integrates Latin Hypercube sampling

with optimal control analysis.

In this thesis, we couple the optimal control numerical procedure to the

LHS/PRCC procedure and perform a simultaneous examination of the effects of

all the LHS parameter on the objective functional value. To test the effectiveness

of our procedure, we examine the sensitive parameters in a deterministic ordinary

differential equations cholera model having seven human compartments and two

bacterial compartments. Our procedure cuts down on simulation time and helps

us perform a more comprehensive analysis of the influential parameters in the cholera

model, than would be possible otherwise.
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Chapter 1

Introduction

A mathematical model is an abstraction of a real-world problem into a math-

ematical problem. In particular, we create disease models as tools for discovering

underlying patterns in epidemiology. The model, thus, becomes a tool for studying

disease epidemiology along with the effect and targeting of various interventions.

When we create models, we must make simplifications and assumptions both about

the way the model is built and about the values of the parameters required. Moreover,

due to the uncertainty that may accompany choices for parameter values, it is often

important to understand the effects of model parameter values on specific outcome

measures (output). Uncertainty in the parameter values chosen introduces variability

to the model’s prediction of resulting dynamics. The more uncertain parameters

there are, the more significant the variability introduced. Thus, a sensitivity analysis

is often performed to assess this variability in the model predictions.

Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC)

sensitivity analysis is an efficient tool often employed in uncertainty analysis to

explore the entire parameter space of a model with a minimum number of computer

simulations [10]. It involves the combination of two statistical techniques, Latin

Hypercube Sampling (LHS), which was first introduced by McKay et al. in 1979 [2]

and further developed by Iman et al. [10], and Partial Rank Correlation Coefficient
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(PRCC) analysis. The goal of LHS/PRCC sensitivity analysis is to identify key

parameters whose uncertainties contribute to prediction imprecision and to rank these

parameters by their importance in contributing to this imprecision.

The LHS procedure is implemented by dividing the range of values for a given

parameter into equally probable intervals. The LHS scheme is a so-called stratified

scheme whereby probability distributions are assigned to parameters, the intervals in

the distribution are divided into equiprobable regions, and these intervals are then

each sampled without replacement. One advantage of the LHS procedure is that the

parameters are sampled independently of one another.

According to McKay et al. [2], the LHS method performs an un-biased estimate

of the average model output. The LHS sampling procedure is different from random

sampling because in LHS sampling, random samples can be taken one at a time, while

taking into account the row and column of the previously generated sample points.

Thus, compared to simple random sampling schemes, the LHS sampling procedure

requires fewer samples to achieve the same level of accuracy.

Correlation is a statistical technique used to measure the strength of the

relationship between the outcome measures and the parameters in a model. Using

the residuals obtained from the regression procedure, Partial Correlation characterizes

the linear relationship between the LHS parameters and the outcome measure after

discounting the linear effects of the LHS parameters (inputs), xj, on the outcome

measure (outputs), y [18]. PRCC is a robust sensitivity measure for nonlinear

but monotonic relationships between xj and y, as long as little to no correlation

exists between the inputs [18]. Compared to ordinary Partial Correlation Coefficient

procedure, PRCC is considered to be more powerful at determining the sensitivity of

a parameter that is strongly monotonic yet highly nonlinear [4]. If we use regression

coefficients obtained from the raw sample values of each parameter along with the

corresponding raw outcome measure, we obtain a Pearson correlation. If, on the other

hand, we use regression coefficients from rank-transformed values instead, we obtain

a Spearman or rank correlation coefficient. Note that the estimated PRCC and the
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standardized regression coefficient are considered to be essentially the same when

using ranks, and both measures exhibit the same pattern of sensitivity ranking [7].

Rank-transformation is done to reduce the effect of non-linear data, and it works

best when there is a monotonic relationship between the outcome measure and the

parameter of interest [8]. Specificially, when rank transformed data is used, the

rank correlation coefficient will indicate the level of monotonicity between the LHS

parameters and the outcome measures [5].

Several previous studies have used the LHS/PRCC procedure on ordinary

differential equations (ODE) systems without controls and then varied those ‘most

sensitive’ parameters in an investigation of optimal control problems [16, 15].

However, we are not aware of any work using the LHS/PRCC procedure with

optimal control of ODE systems wherein the outcome measure used is the value

of objective functional (at the optimal control). In our study, we couple the optimal

control numerical procedure to the LHS/PRCC procedure and perform a simultaneous

examination of the effects of all the LHS parameters on the objective functional value

evaluated at the optimal control and corresponding states. Our procedure cuts down

on simulation time and helps us perform a more holistic, comprehensive and accurate

analysis than would be possible if we studied the parameters one at a time.

Our study of LHS/PRCC parameter sensitivity analysis will be presented in

the next three chapters. In Chapter 2, we will outline the procedure for using

a combination of methods developed by Sally Blower and Denise Kirschner [18]

to perform the LHS/PRCC sensitivity analysis. In Chapter 3, we will implement

LHS/PRCC parameter sensitivity analysis in a deterministic cholera epidemic model.

Finally, in the Chapter 4, we will add a control to our model. We will then couple the

LHS/PRCC sensitivity analysis procedure to the optimal control analysis procedure

with the goal of studying the effects of the LHS parameters on the objective functional

value of our model.
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Chapter 2

Explaining the LHS/PRCC

Procedure

The following sections outline the steps in the Latin Hypercube Sampling/Pearson

Partial Rank Correlation Coefficient (LHS/PRCC) procedure. The examples and

illustrations in this chapter are done for a hypothetical model to illustrate the

procedure.

2.1 Steps for Sampling the LHS Parameters

To perform the Latin Hypercube Sampling, the following steps are included:

1. Start out with a mathematical model of interest. The LHS/PRCC procedure

can be applied to various types of mathematical models, including deterministic

or stochastic models, with continuous or discrete features.

2. List the parameters for the model and their corresponding values. Some of the

parameter values will be known with certainty and others will not.

3. Identify the uncertain parameters in your parameter list. For some of these, we

might know a possible range where the exact values might fall. In particular, we

4



define Baseline Values as the values of the parameters we know with certainty as

well as the middle (or near the middle) of the range of values for the parameters

whose exact values we are unsure of.

4. Next, we decide on the sample size for our analysis. The sample size will be

determined by the number of simulations we intend to run. Suppose we decide

to do N model simulations (or runs) for our analysis. Also suppose there are

K uncertain parameters, vi, 1 ≤ i ≤ K. Then the parameter space for the

uncertain parameters would be defined by K dimensions. Note that the choice

of N is not arbitrary. If N is the number of simulations, the following inequality

has to be satisfied: N > (4/3)K [11, 2].

5. Each of the K dimensions will correspond to an uncertain parameter and

the length of each dimension is determined by the number of runs, N ,

chosen. For each uncertain parameter, each of the N input values would be

selected/determined by the LHS sampling scheme.

6. To implement this LHS sampling scheme, we begin by specifying a probability

density or distribution function (pdf) for each uncertain parameter. This way,

the variability in the pdf becomes a direct measure of the variability of the

uncertain parameter. Each specified pdf describes a range of possible values

and the probability of occurrence of any specific value for the parameter. An

example of this could be the case where we specify a minimum and maximum

for a parameter and use those values to compute a uniform distribution for the

variable.

Note that the chosen probability density functions are determined by an

observed distribution of a plot of available data. For example, upon observation,

we may notice that our data are represented by one of the following:

(a) Left skewed or right skewed: This is observed when one part of the interval

of values has a higher probability of occurrence than the other.

5



(b) Multi-modal Weibull distribution: In this case, more than one region in the

interval has a definite probability of occurrence and we wish to study those

regions simultaneously.

(c) Triangular: We use a triangular distribution function when we wish

to reflect the expectation that values close to the peak of the triangle

distribution pattern are those considered to be more likely to occur.

(d) Uniform distribution: This occurs when the probability of occurrence of any

part of the interval is relatively even. In the case where data is not available,

the uniform distribution is most appropriate to use as the default [18]. In

this case, each interval in the pdf has an equal probability of being sampled.

Once we have determined the probability density function for all of the

uncertain parameters, we proceed with selecting the input values for each

of the N numerical simulations.

7. To sample the values for each parameter, each probability density function is

divided intoN non-overlapping equiprobable intervals. As a result, the sampling

distribution of the values for each parameter reflects the shape of the particular

pdf.

8. Every equiprobable interval of each parameter is then randomly sampled once.

The frequency of the selection of possible values of each parameter is determined

by the probability of occurrence in the pdf. Each parameter is sampled

independently; hence, the parameters are uncorrelated.

9. Once this step is complete, each of the K uncertain parameters, vi, 1 ≤ i ≤ K,

will have N values. Hence, we store the sampled values in an N × K

table/matrix. Note that the values for each column are random. They are

not arranged in any particular order according to magnitude. A sample LHS

matrix/table is illustrated in Figure 2.1. Note that for this table, each column

has entry, (rj, vi), or the jth sampled random value of the ith uncertain

6



Figure 2.1: A Sample LHS Matrix/Table.

parameter, where 1 ≤ i ≤ K, 1 ≤ j ≤ N . Thus, each row in the matrix

comprises K random values, each corresponding to a specific LHS parameter,

respectively.

2.2 Interpreting the Monotonicity Plots

As we discussed briefly in Chapter 1, a partial rank correlation measures the

strength of a relationship between two variables while controlling the effect of the

other variables, and it does this by indicating the degree of monotonicity between

a specific input and corresponding output variable. Thus, only outcome measures

having a monotonic relationship with input variables should be chosen for this type

of sensitivity analysis. Consequently, we first verify that a monotonic relationship

exists between each outcome variable chosen and the LHS parameters.
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Figure 2.2: A Sample Monotonicity Plot of vi for four outcome measures,
Out meas1, Out meas2, Out meas3 and Out meas4.

To investigate the level of monotonicity for an LHS test parameter, vi, for example,

we use baseline values for all parameters except this particular vi. (Recall that the

baseline has been set to a value at or near the middle of the range between the

minimum and the maximum values for vi.) We then pick column i, 1 ≤ i ≤ K and

run simulations using parameter values for vi from that column. This will result in

N simulations for this monotonicity test.

Suppose we have a test model with four outcome measures we will call, Out meas1,

Out meas2, Out meas3 and Out meas4. Hypothetical monotonicity plots are shown

for the LHS test parameter, vi and these outcome measures in Figure 2.2. In

the example shown in Figure 2.2 above, we see that monotonicity exists between

the uncertain parameter, vi, and the four outcome measures analyzed. However,
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(a) (b)

Figure 2.3: Sample graphs illustrating monotonicity and non-monotonicity
properties for LHS test variables, vj and vk

it is not always the case that we see such monotone relationships as the ones

portrayed. For example, observe in Figure 2.3, hypothetical monotonicity plots for

two independent LHS test variables, say vj and vk, where some monotonic and non-

monotonic relationships are seen. In the next two sections, we explore how to address

the sensitivity analysis in cases where monotonicity fails, as in Figure 2.3. In the

two sections that follow thereafter, we discuss other inferences one can make from

monotonicity plots.

2.2.1 Excluding outcome measures for LHS parameters

In the monotonicity plots for our hypothetical vj (Figure 2.3a), we observe that as

vj changes, there is a non-monotonic relationship with outcome measure, Out meas2.

However, the effect is minimal since the observed range of values for Out meas2 is

small (i.e., 8,246 to 8,249) for numbers of order 103. Therefore, we would consider vj

in runs for the other three outcomes, but not for Out meas2. Doing so will ensure that

that the lack of monotonicity for Out meas2 does not give us an erroneous reading for

the other outcome measures. In Figure 2.3b, there is a lack of monotonicity with the
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increasing size of vk for outcome measure, Out meas3. Here again, due to the small

range of observed values, we can see that it is not reasonable to conclude that the

observed trend has much to do with Out meas3. So for these results, we would re-run

the LHS sampling procedure, this time excluding vk for Out meas3, and leaving vk

in the analysis for the other three measures.

2.2.2 Truncating the LHS parameter range when non-monotonicity

exists

Examine the monotonicity plot for Out meas2 in Figure 2.3a once more and

notice that the graph could be broken up into two monotonic regions. If instead

of the small range of outcome measures observed for Out meas2, the range had

been several hundred or thousand units, we would have considered truncating the

range and looking at each truncated half separately. In general, if non-monotonic

regions exist over large intervals for any of the uncertain parameters, and if the

interval can be split into two or more intervals over large ranges for both the LHS

parameter and the outcome measure, we may choose to adjust the chosen intervals

(by selecting only monotonic regions) for that parameter and re-generate Table 2.1

before proceeding with the next steps of running statistics on our simulation results

or proceeding with PRCC analysis. Note that the range chosen for analysis is

determined by feasible parameter values. Moreover, exploring the PRCC analysis

after excluding non-monotonic parameters and subsequently within monotonic sub-

ranges for the parameters that remain can provide a clearer and more accurate picture

of the remaining parameters’ sensitivity.

2.2.3 Predicting strength of PRCC values

Monotonicity plots are useful for making conjectures about which parameters we

would expect to have strong PRCC values. This is a way of verifying that our results

are reasonable. In Figure 2.3a, for example, where monotonicity is observed for
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Out meas1, Out meas3 and Out meas4, we notice that the range of values spanned

by the outcome measures is not negligible. Since the range is larger for Out meas1

and Out meas3, we can infer that that parameter vj has a sizeable effect on these two

outcome measures. On the other hand, since the range is very small for Out meas4,

we will most likely observe a much smaller effect for that outcome measure.

2.2.4 Truncating the LHS parameter range due to variation

in the output values on certain subintervals

For Out meas1, Out meas2, and Out meas4, the hypothetical parameter, vk

(Figure 2.3b) might actually take on any value on the interval, [1 × 109, 10 × 109].

However, the PRCC result for LHS in this range might suggest that the parameter is

not important, while indeed the parameter is extremely sensitive within the smaller

range, [1 × 109, 4 × 109]. If we run the LHS analysis for this smaller range, the

parameter may show up as an important predictor of change in the outcome measure.

On the other hand, we will only see negligible change to the outcome measure in the

range, [4× 109, 10× 109].

2.3 Handling the PRCC Steps

Once we have adjusted our LHS parameter ranges and generated a final version

of the table in Figure 2.1, we may then proceed with running our simulations to use

with PRCC analysis. For each of our N simulations, all the K values in each row in

the table in Figure 2.1 are used as input values for the numerical simulation of the

model. (See Figure 2.4.)

Upon completion of the N simulations, frequency histogram and descriptive

statistics (minimum, maximum, mean, variance, 95% confidence interval, etc.) could

be calculated for the outcome measures (e.g., total infected on the last day of an

infection, cumulative number infected, etc.). The minimum and maximum of these

11



Figure 2.4: How Parameter Values Are Selected Per Run.

outcome measures, for example, would reflect the likely ranges of possible outcomes.

The frequency distributions of the outcome measures can also be used to assess

the probability of specific outcomes. Nevertheless, these statistics do not provide

precise information on the model’s sensitivity to its parameters. Thus, we see that

to answer the question of which parameters contribute the most uncertainty to our

model prediction, we cannot use these statistics or frequency distributions. Instead,

we will use the non-parametric partial rank correlation coefficients to determine the

most sensitive parameters.

2.3.1 PRCC Methodology

Rank transformation procedures are procedures in which a parametric procedure

is applied to the ranks of the data instead of the data themselves [6]. The ranking

12



is simply done by arranging the values of our data in rank order and then assigning

the smallest a value of 1, the next smallest a value of 2 etc. The transformation

usually results in uniform residuals for the transformed variables. It is useful in non-

parametric analysis such as Partial Rank Correlation when working with non-uniform

data.

Hence, to perform PRCC, we will first rank the LHS matrix and the matrix for

the outcome measure using a sort routine. For each parameter and each outcome

measure, two linear regression models are found, the first representing that ranked

parameter in terms of the other ranked parameter values and the second representing

the ranked outcome measures in terms of the other ranked parameter values. A

Pearson correlation coefficient for the residuals from those two regression models

gives the PRCC value for that specific parameter. (See Equations (1) and (2) in

[18].) These steps are illustrated in Figure 2.5.

2.3.2 PRCC results

The Partial Rank Correlation analysis equips us with Partial Rank Correlation

Coefficients (PRCC) and corresponding p-values with which to assess the level of

uncertainty an LHS parameter contributes to the model.

The magnitude as well as the statistical significance of the PRCC value of

a parameter indicates that parameter’s contribution to the model’s prediction

imprecision. The parameters with large PRCC values (> 0.5 or < −0.5) as well

as corresponding small p-values (< 0.05) are the most important [19]. The closer the

PRCC value is to +1 or −1, the more strongly the LHS parameter influences the

outcome measure. The sign indicates the qualitative relationship between the input

variable and the output variable. A negative sign indicates that the LHS parameter

is inversely proportional to the outcome measure.
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Figure 2.5: An Illustration of the Partial Rank Correlation steps.
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A sample PRCC output is shown in Figure 2.6 for six test parameters, v1 through

v6. Also, three outcome measures (Out meas1, Out meas2, and Out meas3) have

been considered. The corresponding PRCC plot for Out meas1 is shown in Figure

2.6. Note that in these plots, the x-axis corresponds to the regression coefficients

for outcome measure while the y-axis represents regression coefficients for the LHS

parameter we are studying.

For each plot in Figure 2.6, the y-axis represents the residuals for ranked LHS

parameter values while the x-axis represents the residuals of the ranked outcome

measure. On the top of each plot are two values [x, y], with x representing the PRCC

value and y representing the corresponding p-value. The data from this figure can be

imported into a table for easier analysis. See Table 2.1.

In this table, important contributors to uncertainty have both their PRCC values

(orange) and their p-values (grey) highlighted, not just one or the other. The symbol,

(*) is used to indicate possible contributors (PRCC values: ∼0.5 to 0.69 or -0.5

to -0.69). We use (**) to indicate very likely contributors to uncertainty (PRCC

values: ∼0.7 to 0.79 or -0.7 to -0.79). Finally, (***) is used to indicate highly likely

contributors to uncertainty (PRCC values: ∼0.8 to 0.99 or -0.8 to -0.99).

From Table 2.1, we would conclude that in our hypothetical example, parameters

v3, v5, and v6 have an important influence on the model as a whole. Also notice

that the small p-value associated with them indicate that they appear important

for at least two outcome measures; so, we would conclude that they are important

contributors to our model’s prediction imprecision.
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Figure 2.6: PRCC Plots for Out meas1.

Table 2.1: Output from PRCC Analysis.

Out meas1 Out meas2 Out meas3
PRCC p-value PRCC p-value PRCC p-value

v1 0.4335 0.016705 0.063085 0.74051 -0.09318 0.62432
v2 -0.13719 0.46973 -0.06742 0.72334 0.045885 0.80973
v3 ***0.83025 1.39E-08 *0.60836 0.000362 **0.78816 2.33E-07
v4 -0.15604 0.41028 0.16662 0.37886 0.2302 0.22102
v5 -0.00968 0.9595 ***-0.88865 5.52E-11 ***-0.88101 1.33E-10
v6 ***-0.74466 2.37E-06 *-0.53965 0.002086 -0.00793 0.96682
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Chapter 3

Applying the LHS Procedure to a

Cholera Epidemic Model

3.1 Background

Cholera is an acute water-borne diarrheal disease caused by infection of the

human intestines by the bacterium Vibrio cholerea. The disease can be transmitted

either directly by human-to-human contact (fecal-oral transmission) or indirectly via

environment-to-human contact (food and water-borne transmission). The cause of

death is mainly dehydration, and in severe cases, without treatment, death may occur

within hours of infection. Preventive measures include improved sanitation and water

supply and more recently, oral vaccines.

The spread of cholera is currently viewed as a global threat to public health and

a key indicator of lack of social development. As of 2010, there were 317,534 cases

and 7,543 deaths reported worldwide, with as much as 115,106 cases originating in

Africa, 179, 594 in the Americas, and 13,819 cases in Asia [13]. Nevertheless, studies

show that this statistic only reflects 5-10% of the actual number of deaths [14]. The

ensuing enormous loss of life and economic burden caused by the disease underscore

an urgent need for a better understanding of the disease dynamics.
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3.2 Details of the Cholera Model

The model studied in this thesis is an extension of the a model developed by Neilan

et al. [16] and found in the dissertation work of Peng Zhong [15]. It is a system of

nine ordinary differential equations shown below. Figure 3.1 has been provided as a

diagrammatic representation of these equations.

dS

dt
= −

[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
S(t)

+b
(
S(t) + Ŝ(t) + IS(t) + IA(t) +RS(t) +RA(t) + V (t)

)
−dS(t) + ω3Ŝ(t) + ω4V (t)− uS(t) (3.1)

dIS
dt

= p
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
S(t)

−dIS(t)− γ2IS(t)− e2IS(t) (3.2)

dRS

dt
= −dRS(t) + γ2IS(t)− ω2RS(t) (3.3)

dŜ

dt
= −

[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
Ŝ(t)− dŜ(t) (3.4)

−ω3Ŝ(t) + ω1RA(t) + w2RS(t)− uŜ(t)

dIA
dt

=
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
Ŝ(t)− dIA(t)− e1IA(t)

−γ1IA(t) + (1− p)
[
βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)

]
S(t) (3.5)

dRA

dt
= −dRA(t) + γ1IA(t)− ω1RA(t) (3.6)

dV

dt
= u(Ŝ(t) + S(t))− ω4V (t)− dV (t) (3.7)

dBH

dt
= η1IA(t) + η2IS(t)− χBH(t) (3.8)

dBL

dt
= χBH(t)− δBL(t) (3.9)

Each differential equation describes the disease dynamics for either a human or

bacterial subpopulation (or class). Of the nine classes, seven describe the disease

dynamics for humans and the other two describe the disease dynamics for the bacterial
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Figure 3.1: Cholera Epidemic Model.

population. There are two classes of susceptible humans, S and Ŝ, respectively. When

members of the S class fall sick, they can either proceed to the symptomatic infected

class, IS, or the infected asymptomatic class, IA. On the other hand, members of

the Ŝ class have a natural immunity that causes them to proceed to the infected

asymptomatic class and subsequently the recovered asymptomatic class without ever

showing symptoms of the disease. Members of both the Ŝ and the S class can

be vaccinated and, thus, they move to the vaccinated compartment (V ). The two

bacterial compartments consist of one class characterized by low levels of infectivity

(BL) and another class with hyper-infectious transmission (BH).

The model proposed is unique because it incorporates the following features:

1. A separate class for the mildly infectious or, asymptomatic humans (Ŝ, IA, and

RA), a feature first suggested by King et al. [1].
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2. A hyperinfectious, short-lived bacterial state (BH) as suggested by Merrell

et al. [3] and Hartley et al. [12]. In the model, when symptomatic and

asymptomatic susceptible humans drink contaminated water, they are infected

at rate of βH , for hyperinfectious bacteria, and at a rate of rate βL, for bacteria

with a low level of infectivity.

3. A vaccinated class (V ).

4. Waning disease immunity rates for the Recovered classes (ω1 and ω2), for the

asymptomatic susceptible class (ω3) and for the vaccinated class (ω4).

As mentioned earlier, once infected, a proportion (p) of the susceptible individuals

will proceed to the symptomatic infected class while another proportion (1− p) will

move to the asymptomatic infected class. The latter will have partial immunity and,

thus, will experience mild or inapparent symptoms. The asymptomatic infected class

will also have fewer cholera-related deaths, e1, smaller bacteria shedding rate, η1, and

a larger recovery rate, γ1, than the symptomatic infected class. For our analysis, we

have assumed that the vaccination rate, u, is zero so that this is the study of the

model without any control. Table 3.1 outlines the parameters used in the model and

their values in system (3.1) - (3.9).

3.3 Performing the Latin Hypercube Sampling

For the cholera model, 14 uncertain or Latin Hyerpcube Sampling (LHS)

parameters are identified. These are the parameters deemed most significant in the

disease dynamics. To determine their various roles in the model predictions, we begin

by performing LHS analysis. In our analysis, 30 model simulations are performed and

the model is run for 180 days per run. Thus, the parameter space (or LHS matrix)

for the LHS parameters has dimension of length 14 with each dimension specifying

an uncertain parameter vector of length 30.
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Table 3.1: Parameter List for Cholera Epidemic Model.

Symbol Description Value

Ŝ0 Initial # susceptible humans with partial immunity 3000

S0 Initial # susceptible humans without partial immunity 10, 000− Ŝ0
IA0 Initial # asymptomatic infecteds 0

IS0 Initial # symptomatic infecteds 0

RA0 Initial # recovered humans (asymptomatic) 0

RS0 Initial # recovered humans (symptomatic) 0

V0 Initial # humans with vaccinated immunity 0

BH0 Initial concentration of highly infectious (HI) vibrios in
environment

0

BL0 Initial concentration of non-highly infectious (non-HI)
vibrios in environment

κL/2

p Probability of infecteds moving from symptomatic class to
infected class without partial immunity

0.6

r Scaling factor used to compute βH from βL. 0.1

βL Ingestion rate of non-HI vibrio from environment 0.008 day−1

βH Ingestion rate of HI vibrio from environment. r ∗ βL day−1

κL Half saturation constant of non-HI vibrios 103 cells/ml

κH Half saturation constant of HI vibrios κL/700
cells/ml

e1 Cholera-related death rate for asymptomatic infecteds e2/20 day−1

e2 Cholera-related death rate for symptomatic infected 0.03 day−1

γ1 Cholera recovery rate (asymptomatic) 0.75 day−1

γ2 Cholera recovery rate (symptomatic) 0.1 day−1

ω1 Rate of waning cholera immunity from asymptomatic
infecteds to susceptibles with partial immunity

1/180 day−1

ω2 Rate of waning cholera immunity from symptomatic
infecteds to susceptible humans with partial immunity

1/(365 ∗ 2)
day−1

ω3 Immunity waning rate: susceptibles without partial
immunity → susceptibles with partial immunity

1/(10 ∗ 365)
day−1

ω4 Immunity waning rate: humans with vaccinated immunity
→ susceptibles without partial immunity

0.001 day−1

s Scaling factor used to compute η2 from η1 100

η1 Rate of contribution to HI vibrios in environment by
asymptomatic infecteds

0.008 cells/ml-
day-human

η2 Rate of contribution to HI vibrios in environment by
symptomatic Infected.

s ∗ η1 cells/ml-
day-human

χ Transaction rate of vibrios from HI to non-HI state 5 day−1

d Death rate of vibrios 1/30 day−1

u Rate at which susceptible and asymptomatic infecteds are
vaccinated daily

0 day−1

b Natural birth rate of humans 0.03/365 day−1

d Natural death rate of humans 0.02/365 day−1
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Table 3.2: Baseline, Maximum and Minimum Values Used in the LHS Analysis.

Parameter Min Baseline Max

ω1 0.001 1/180 0.03

ω2 0.001 1/(2*365) 0.003

ω3 0.0003 1/(10*365) 0.001

p 0.3 0.6 0.9

r 0.01 0.1 1

e2 0.01 0.03 0.05

e1 = e2/20 0.0005 0.0015 0.0025

γ1 1/2 0.75 1

γ2 1/14 0.1 1/7

η1 0.0001 0.008 0.05

η2 1 100 200

s 0.001 0.008 0.08

BL0 κL/500 κL/2 κL
S0 6000 10000 - Ŝ0 10000

Maximum and minimum values are determined for each of the 14 LHS parameters

(Table 3.2). Note that the baseline value for each LHS parameter has been set to a

value at or near the middle of the range between the minimum and maximum values

for that parameter.

For each LHS parameter, each of the 30 input values are obtained by the sampling

a uniform probability density distribution. The 30 input values are then used to

populate the LHS matrix from which we output monotonicity plots for each variable.

We calculate two outcome measures for each run: Total Infecteds (i.e., sum of

Symptomatic and Asymptomatic infecteds at each time step) and Total Symptomatic

Infecteds, respectively. For additional intuition, on the top of each monotonicity plot,

we display percent change in population values for each outcome measure. In Total

Infecteds, for example, the percent change (PC) is calculated as: (Maximum #Total

Infecteds - Minimum #Total Infecteds) / Maximum #Total Infecteds. If percent

change equals zero, then we know that the outcome measure is not affected by the

chosen LHS parameter. This indicates that in our analysis, we can omit that outcome

measure for that parameter.
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3.3.1 Analyzing the Monotonicty Plots

Two outcome measures are evaluated in these plots: Total number of infecteds

(from symptomatic and asymptomatic compartments in the model) and total number

of symptomatic infecteds (from symptomatic compartment alone).

The plots in Figures 3.2 and 3.3 indicate that all the LHS parameters have a

monotonic relationship with the outcome measures. Consequently, we do not adjust

the ranges chosen for the analysis and we proceed with the LHS matrix generated

after the LHS sampling (see Section 2.2). After this step, frequency histogram and

descriptive statistics (minimum, maximum, mean, variance, 95% confidence interval,

etc.) could be calculated for the outcome measures, but we omit that step here and

proceed with the Partial Rank Correlation Coefficient (PRCC) analysis.

3.3.2 Analyzing the PRCC Results

Next, we perform a multilinear regression analysis on the ranks obtained for the

outcome measures (i.e., Total Symptomatic Infecteds and Total infecteds) and for

the LHS parameters. We then perform a regression analysis on these ranks to obtain

the regression coefficents. Since these regression coefficents provide a measure of

the sensitivity of the model to the LHS parameters, we proceed to determine the

strength of the relationship between each LHS parameter and each outcome measure

by obtaining the PRCC values.

In PRCC analysis in general, the parameters with large PRCC values (> 0.5 or

< −0.5) and corresponding small p-values (< 0.05) are deemed the most influential

in the model. In both Figures 3.4 and 3.5, we have plotted residuals for ranked LHS

parameter values on the y-axis. On the x-axis of Figure 3.4, we have also plotted the

residuals for the ranked Total Infecteds, while on the x-axis of Figure 3.5, we have

plotted the residuals for the Total Symptomatic Infecteds.
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Figure 3.2: Monotonicity plots for ω1, ω2, ω3, p, βH, e1, e2, and γ1
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Figure 3.3: Monotonicity plots for γ2, η1, η1, βL, η2, BL0, and S0
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Note that on top of each PRCC plot are two values, [x, y], with x representing

the Pearson Partial Rank Correlation Coefficient (PRCC) value, and y representing

the corresponding p-value. Also observe that the PRCC plots for the two outcome

measures show that a strong correlation is observed for several LHS parameters.

The results from the PRCC plots are summarized in Table 3.3. In this table,

important contributors to uncertainty have both their PRCC values (orange) and

their p-values (grey) highlighted, not just one or the other. As before, (*) is used to

indicate possible contributors (PRCC values: ∼0.5 to 0.69 or -0.5 to -0.69), (**) is

used to indicate very likely contributors to uncertainty (PRCC values: ∼0.7 to 0.79

or -0.7 to -0.79) and (***) is used to indicate highly likely contributors to uncertainty

(PRCC values: ∼0.8 to 0.99 or -0.8 to -0.99).

From Table 3.3, we observe that the most influential LHS parameters for the

outcome measure, Total Infecteds (i.e., sum of symptomatic and asymptomatic

infecteds) are the following:

1. The waning immunity rate, ω1, when going from the recovered asymptomatic

population, RA, to the susceptible asymptomatic population SH

2. The ingestion rate, βH , from the environment of highly infectious vibrios

3. The ingestion rate, βL, from the environment of non-highly infectious vibrios

For the outcome measure, Total Symptomatic Infecteds, on the other hand, we observe

a strong correlation with the initial susceptible population, S0.

The four parameters, ω1, βH , βL and S0 will be important contributors to

uncertainty in the model. From Table 3.3, we notice that βL and S0 have higher

PRCC values than the other two parameters and conclude that βL and S0 are the

most influential parameters in the model.
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Figure 3.4: PRCC Plots for Total Infecteds.
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Figure 3.5: PRCC Plots for Total Symptomatic Infecteds.
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Table 3.3: Output from PRCC Analysis

Total Infectious Total Symptomatic Infecteds

Parameters PRCC p-value PRCC p-value

ω1: Waning RA to Ŝ *0.67692 4.00E-05 -0.04699 0.80525

ω2: Waning RS to Ŝ 0.1715 0.36485 -0.35212 0.056347

ω3: Waning Ŝ to S 0.20889 0.26794 0.13251 0.48515

p: Prop. Sympt. 0.10656 0.57518 0.37524 0.041024

βH = r ∗ βL *0.6368 0.000155 0.20728 0.27173

e1:Asympt. death rate 0.46806 0.009096 -0.10068 0.59655

e2:Sympt. death rate -0.27806 0.13681 -0.1235 0.51557

γ1 -0.0382 0.84114 0.28712 0.12396

γ2 -0.09226 0.62776 -0.26012 0.16508

η1 0.41337 0.023175 0.060938 0.74905

η2 = s ∗ η1 0.41748 0.021709 -0.25446 0.17479

βL: Low infectious ***0.86994 4.31E-10 0.13033 0.49243

BL0 -0.26088 0.16379 0.33594 0.069529

S0 -0.0008 0.99665 **-0.73322 4.05E-06
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Chapter 4

LHS/PRCC Applied to Cholera

Model with Control

4.1 Optimal Control formulation

The model we have studied so far has been implemented with no control (i.e.,

u = 0). In this chapter, we now introduce vaccination as a mitigation scheme with

the goal of reducing cholera-related deaths while maintaining minimal vaccination

cost. We apply optimal control analysis to our model and solve the system for the

optimal control scheme proposed by the model.

A control scheme for the cholera epidemic model is considered optimal if it

minimizes the objective functional:

J(u) =

∫ T

0

AIS(t) +Bu(t)(S(t) + Ŝ(t) + IA(t) +RA(t)) + C(S0 + Ŝ0)u
2(t) dt (4.1)

where A, B and C are balancing coefficients which transform the integrand into

units of dollars [15]. The goal of the objective functional is the minimize the number

of infecteds (the first term in Equation (4.1)) as well as the cost of vaccination. In the

equation, the cost is defined by both a linear term and a quadratic term. The linear
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term measures the total population vaccinated while the quadratic term measures the

non-linear costs that may result from high intervention levels.

Stated explicitly, the optimal control problem addressed by the model is the

following:

Find u∗ ∈ U such that

J(u∗) = min
u∈U

J(u) (4.2)

subject to the state system (3.1) - (3.9) and the initial conditions given in Table

3.1. Note that the control is the set U = {u ∈ L∞([0, T ])|0 ≤ u(t) ≤ umax, t ∈ [0, T ]}

for umax < 1.

We proceed to characterize our optimal control using Pontryagin’s Maximum

Principle [9]. Using this principle, we introduce nine adjoint functions that attach

our system of nine differential equations (3.1) - (3.9) to our objective functional.

According to Fleming and Rishel [20], we must begin our analysis by first showing

that the optimal control exists. From [15], we know that the an optimal control exists

and can apply Pontryagin’s Maximum Principle. The optimal control characterization

that results from applying Pontryagin’s Maximum Principle has the optimal control

expressed in terms of the state and the adjoint functions. The principle also converts

the minimization problem (4.2) into a problem of minimizing the Hamiltonian with

respect to the control at time t. The Hamiltonian is the following:
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H =

AIS(t) +Bu(t)(S(t) + Ŝ(t) + IA(t) +RA(t)) + C(S + S0)u
2(t)

+ λS

(
− ([βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)
]− b+ d+ u)S(t)

+ b(Ŝ(t) + IS(t) + IA(t) +RS(t) +RA(t) + V (t)) + ω3Ŝ(t) + ω4V (t)

)

+ λŜ

(
− ([βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)
] + d+ ω3 + u)Ŝ(t)

+ ω1RA(t) + ω2RS(t)

)

+ λIS

(
p[βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)
]S(t)− (d+ γ2 + e2)IS(t)

)

+ λIA

(
[βL

BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)
]Ŝ(t)− (d+ γ1 + e1)IA(t)

+ (1− p)[βL
BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)
]S(t)

)
+ λRS

(−(d+ ω2)RS(t) + γ2IS(t))

+ λRA
(−(d+ ω1)RA(t) + γ1IA(t))

+ λV (u(Ŝ(t) + S(t))− (ω4 + d)V (t))

+ λBH
(η1IA(t) + η2IS(t)− χBH(t))

+ λBL
(χBH(t)− δBL(t))

(4.3)

where λS, λŜ, etc. are the adjoint variables obtained for the states, S, Ŝ, etc.,

respectively. These adjoint variables satisfy the following equations:
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dλS
dt

= −Bu+ [βL
BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)
](λS − pλIS (4.4)

−(1− p)λIA) + (d− b+ u)λS − λV u
dλŜ
dt

= −Bu+ [βL
BL(t)

κL +BL(t)
+ βH

BH(t)

κH +BH(t)
](λŜ − λIA (4.5)

+(d+ ω3 + u)λŜ − (ω3 + b)λS − λV u
dλIS
dt

= −A+ (d+ γ2 + e2)λIS − bλS − γ2λRS
− η2λBH

(4.6)

dλIA
dt

= −Bu+ (d+ γ1 + e1)λIA − bλS − γ1λRA
− η1λBH

(4.7)

dλRS

dt
= −ω2λŜ − bλS + (d+ ω2)λRS

(4.8)

dλRA

dt
= −Bu− ω1λŜ − bλS + (d+ ω1)λRA

(4.9)

dλV
dt

= −ω4λS − bλS + (d+ ω4)λV (4.10)

dλBH

dt
= βH

κH(t)

(κH +BH)2
(S(λS − pλIS − (1− p)λIA) + Ŝ(λŜ − λIA)) (4.11)

+χλBH
− χλBL

dλBL

dt
= βL

κL(t)

(κL +BL)2
(S(λS − pλIS − (1− p)λIA) + Ŝ(λS − λIA)) (4.12)

+δλBL

with transversality conditions for each of the adjoint equations having a value of

zero at t = T. That is, λS(T ) = λŜ(T ) = λIS(T ) = λIA(T ) = λRS
(T ) = λRA

(T ) =

λV (T ) = 0.

The optimal control is characterized by:

u∗ = max

(
0,min

(
−B(S + Ŝ + IA +RA) + SλS + ŜλŜ − (S + Ŝ)λV

2C(S0 + Ŝ0)
, umax

))
.

The Hamiltonian, the adjoint equations, and their corresponding transversality

conditions, together with the optimality condition, make up the necessary conditions

for optimality when using the Pontryagin’s Maximum Principle. Using the control
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Table 4.1: Parameters in the Objective Functional.

Parameters Value

Maximum value of u (umax) 0.04
A 1
B 0.5
C 2

characterization, the state system of differential equations and the adjoint systems

of differential equations can be solved numerically using the forward-backward sweep

method [17].

In the next section, we will couple our optimal control analysis procedure to the

LHS/PRCC procedure. For each LHS/PRCC simulation, we will solve our problem

numerically for the objective functional value at the optimal control. That objective

functional value will be the outcome measure for that simulation. Our goal is to

study the sensitivity of the value of the objective functional at the optimal control

and state to the LHS parameters chosen.

4.2 Latin Hypercube Sampling Analysis

Following our optimal control characterization, we examine the same LHS

parameters and use the same LHS parameter ranges as the ones in Tables 3.1 and 3.2

in Chapter 3. Note that the control parameter u in Table 3.1 is set to a maximum

value of u = 0.04. Our outcome measure will be the objective functional value at the

optimal control and state and our goal is to investigate the level of influence these

LHS parameters have on the objective functional.

In Table 4.1, we see a list of the coefficients and other conditions used in the

forward-backward sweep method. Note that often, we might be interested in including

the optimal control balancing coefficients (i.e., A, B and C in the objective functional,

Equation 4.1) in the list of LHS parameters to investigate. However, we do not include

them in our LHS/PRCC parameter sensitivity analysis.
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To begin the LHS procedure, we will first verify that a monotonic relationship

exists between the objective functional value and the LHS parameters. For each

parameter, we run 20 simulations at a tolerance level of 0.1 for 180 days. In running

the simulations, we observe a lack of convergence of the forward-backward sweep

method when computing the objective functional values at the optimal control and

state for parameters, p, η1, η2, βL, and βH . Notice that the lack of convergence in βH

is anticipated since βH = r ∗ βL. With the exception of βL, we also observe a lack

of monotonicity for these parameters (see Figures 4.1 and 4.2). Non-monotonicity is

observed for other parameters (ω1 , ω2 and e1) as well. Nevertheless, the range of

objective functional values appears to be small for these parameters, hence, the lack

of monotonicity is ignored and more attention is given to the parameters with a lack

of monotonicity and/or lack of convergence.

Observe that if we had not encounered a lack of convergence, then we would

not make the same exception for p and η2 that we applied to ω1 , ω2 and e1. This

is because the lack of monotonicity observed occurs for a large range of objective

functional values for p and η2. As seen in section 2.2, we would proceed by truncating

the range for these parameters and re-run the LHS analysis, making sure to re-set the

baseline value to the middle of the new range chosen. Moreover, because η2 = s ∗ η1.,

we would adjust the range for η2 by changing the range for either s or η1, depending

on which one has the most contribution to the lack of monotonicity observed.

However, our goal is to only make predictions based on parameters for which the

forward-backward sweep method converges. We note that further work could be done

to understand difficulties with convergence. Thus, we remove parameters p, η1, η2,

βL, and βH from the analysis. We also remove parameter s since η2 is dependent on it

(i.e., η2 = s∗η1). This leaves us with 9 parameters out of the 14 we originally started

with. We re-run the simulations and find that the forward-backward sweep method

converges for all nine parameters when the corresponding objective functional values

are computed.
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From the monotonicity plots (Figures 4.3), we observe as before that the plots for

ω1, ω2 and e1 are not monotone. Nevertheless, since the range of objective functional

values appears to be small, the non-monotonicity is ignored. All the other parameters

studied appear monotone, thus, we proceed with the next phase of the analysis.

4.3 Partial Rank Correlation Coefficient Analysis

To verify the strength of the correlation between the LHS parameters and the

objective functional for the monotonic parameters, we perform the PRCC analysis

and create the PRCC plots (see Figure 4.4). These plots show residuals for ranked

LHS parameter values on the y-axis and residuals for the objective functional on the

the x-axis. As seen in previous sections, on top of each plot are two values, [x, y],

with x representing the Pearson Partial Rank Correlation Coefficient (PRCC) value,

and y representing the corresponding p-value. The parameters with large PRCC

values (> 0.5 or < −0.5) as well as corresponding small p-values (< 0.05) are the

most influential in the model. The PRCC plots show that there exists a strong linear

relationship between the objective functional and the LHS parameters, e2, γ2, BL0

and S0.
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Figure 4.1: Monotonicity plots for ω1, ω2, ω3, p, βH, e1, e2, and γ1

Figure 4.2: Monotonicity plots for γ2, η1, βL, η2, BL0, and S0
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Figure 4.3: Monotonicity plots for ω1, ω2, ω3, e1, e2, γ1, γ2, BL0, and S0

These results are tabulated in Table 4.2. In the table, (*) is used to indicate

possible contributors (PRCC values: ∼0.5 to 0.69 or -0.5 to -0.69), (**) is used to

indicate very likely contributors to uncertainty (PRCC values: ∼0.7 to 0.79 or -

0.7 to -0.79), and (***) is used to indicate highly likely contributors to uncertainty

(PRCC values: ∼0.8 to 0.99 or -0.8 to -0.99). Also as before, important contributors

to uncertainty have both their PRCC values (orange) and their p-values (grey)

highlighted, not just one or the other. Following this notation, we observe that

the parameter e2 is highly influential in the model and γ2, BL0 and S0 are even more

so. Of the nine parameters considered in the LHS/PRCC process, we conclude that

with respect to the objective functional, these four parameters are the most sensitive

parameters in the model.
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Figure 4.4: PRCC Plots for Objective Functional.

Table 4.2: Output from PRCC Analysis

Objective Functional

Parameters PRCC p-value

ω1: Waning RA to Ŝ 0.15602 0.51127

ω2: Waning RS to Ŝ -0.27364 0.24305

ω3: Waning Ŝ to S -0.3958 0.084087

e1: asymp death 0.20295 0.39081

e2: symp death **-0.79863 2.43E-05

γ1: asymp recovery -0.080794 0.7349

γ2: symp recovery ***-0.91028 2.57E-08

BL0 ***0.80268 2.05E-05

S0 ***0.94992 1.57E-10
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Conclusion

Our study of the influence of the LHS parameters on the objective functional is

useful for decision makers interested in knowing the parameters in a model to which

the objective functional value is most sensitive. The work in this thesis is novel due to

using the objective functional value at the optimal control as the outcome measure in

the LHS/PRCC technique. Using this technique, we can narrow down our parameter

list to the most sensitive with respect to the objective functional value and then study

their effect on the optimal control when we vary them.

It is of concern that when computing the objective functional values using the

forward-backward sweep method, there were some parameters for which the method

did not converge. For future utility of the code created for this analysis, the best

outcome would be for us to be able to study the sensitivity of any number of

parameters and have the simulations correctly predict the most influential parameters.

In general, the influence of the parameters on a model is a composite effect.

Consequently, when we remove parameters from the analysis, we lose information

on them and are not able to tell if they would have been influential. Thus, for future

study, further investigation needs to be done to obtain convergence of the method

used for all uncertain parameters.
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