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Abstract

Cognitive radio networks rely on the ability to avoid primary users, owners of the

frequency, and prevent collisions for effective communication to take place. Additional

malicious secondary users, jammers, may use a primary user emulation attacks to

take advantage of the secondary user’s ability to avoid primary users and cause

excessive and unexpected disruptions to communications. Two jamming / anti-

jamming methods are investigated on Ettus Labs USRP 2 radios. First, pseudo-

random channel hopping schemes are implemented for jammers to seek-and-disrupt

secondary users while secondary users apply similar schemes to avoid all primary

user signatures. In the second method the jammer uses adversarial bandit algorithms

to avoid channels already heavily disrupted from primary user communications and

concentrate efforts on channels heavily populated by secondary user communications.

In addition the secondary users apply similar methods to avoid channels heavily

occupied by jammers and primary users. The performance of these users is compared

with and without the algorithm through channel delay, impact of algorithm on

probability density functions, and user collision rate. Conclusions on made on the

effectiveness of each technique.
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Chapter 1

Introduction

1.1 The Issues

The rapidly expanding trend of wireless devices has created a fear of exhausting

the number of frequencies available in the usable spectrum which is causing more

advanced networking, shorter bandwidth, and lower powered devices to be used. It

is not uncommon for consumers to have upward of 10 or more wireless devices in

a single household. This has caused a demand for more efficient usage of different

frequency bands.

1.2 Some History

Software defined radios are radio communications systems where many of the parts,

previously physical, are implemented using software which is run on a separate

computer. The development of software defined radios has been very important for

research as it allows users to define their own modulation, control amplification,

change filters, and model other physical traits without the need for building physical

circuits.

Joseph Mitola III and Gerald Q. Maguire, Jr. proposed using software radio as

a platform for implementing cognitive radio in August of 1999, Mitola and Maguire
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Figure 1.1: Ettus Labs USRP 2 Without Cover

(1999). The idea they proposed as cognitive radio is a radio system where various

stimuli and cues are given to the device which allows it to act in specific ways and

fully understand its surroundings. Mitola and Magurie proposed that a system using

cognitive radio could identify where it is and what it is doing by its surroundings.

Examples of this include identifying that it is indoors because of the RF and LAN

activity around it or perhaps the inability to connect with exterior towers. It could

also use recent activity such as the purchase of a train ticket to identify that a train

ride may be in its future.

In November 2008, the FCC ruled to permit previously unlicensed users to operate

on licensed bands, given they avoid the users licensed to use that band, Commission

(2008). The previous rules stated that only users licensed to use a specific spectrum

were allowed to operate on this frequency. This caused cellular network bands to

operate under a very heavy load where other bands such as amateur radio, military,

and paging frequencies were not fully utilized. Cognitive radio proved to be a good

way to take advantage of the FCC’s ruling. Mitola and Maguire wanted to apply
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the cognitive ability of a radio to allow it to make many varied decisions without

any help from the user. Simon Haykin proposed a system where cognitive radios

were used to avoid licensed users when operating in bands unlicensed to the current

user. Haykin includes three cognitive tasks which are performed by the radio. This

includes an analysis of the whole radio-scene, the state of the current channel as well

as future modeling of the channel, and finally spectrum management and controlling

the power of transmission. This has been coined spectrum sensing cognitive radio as

opposed to the original proposal from Mitola and Maguire of full cognitive radio or

Mitola radio where environmental aspects outside of spectrum analysis are taken into

consideration by the radio. Full cognitive radio networks require sensors and other

detection devices in addition to anything required for general operation.

1.3 Cognitive Radio Networks

Spectrum sensing cognitive radios consist of a variety of users which behave in

different ways depending on the environment. The overall goal is for users who

are not licensed on their current channel to avoid all licensed users and prevent any

interference to them. The licensed users are called Primary Users (PU) because they

have primary rights to the channel. Their location is typically known to other users

and their transmission characteristics are identifiable but not always the same between

primary users due to different applications. These users include but aren’t limited to

military radios on the military band and emergency help request transmissions on the

emergency bands. According to the new FCC rules, the primary users are expected

to never receive any interference from unlicensed users.

Unlicensed users fall into the category of Secondary Users (SU) since their

transmissions are secondary in priority regarding the completion of the transmission.

These users may operate on any frequency range which they are permitted by the

FCC’s new rules. They are expected to scatter and halt transmission immediately

upon a PU’s appearance as a PU must not experience any interference. These users
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could be almost anything. A SU can use various tactics to avoid primary users but all

of them require an immediate halt to transmissions. If the primary user’s behavior

makes any further transmissions on that channel impossible, SUs can either change

frequencies and transmit on other channels to avoid the primary user or they can re-

route the transmission to another SU node in the network outside of the PU’s range.

A mixture of both of these may be applied depending on the characteristics of the

network. In this investigation node hopping will not be used so the effectiveness will

depend on channel hopping.

Where there are benevolent transmissions there are always others trying to disrupt

them and make it difficult continued communication. These users are jammers or

malicious secondary users. They may use an assortment of jamming techniques. In

Brown and Sethi (2007) the threat of denial of service attacks through the use of false

primary user signals, false users, and traditional jamming is investigated. Others

such as Sampath et al. (2007) investigate using cognitive radio’s ability to switch

channels rapidly to jam legacy wireless networks as well as other cognitive radio

networks. In Peng et al. (2009) identification and avoidance of primary user emulation

attacks is investigated. Peng et al. (2011) investigates the impact of a balanced

approach consisting of traditional jamming and a primary user emulation attack.

A stochastic zero-sum (Markovian) game model regarding primary user emulation

attacks is performed in Zhu et al. (2010). Li and Han (2010b) and Chen et al. (2008)

also investigate cognitive radio primary user emulation attacks. This will be the

focus of this investigation. A primary user emulation attack occurs when a malicious

secondary user, a jammer, imitates a primary user to cause other secondary users

to flee from the channel. This type of attack can be used to cause interruptions to

secondary user networks or for selfish use of spectrum. However the jammer executes

its malicious intent, mitigation of these obstacles are the only way to ensure proper

transmissions.
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1.4 The Network

The network used in this investigation will consist of four total users. There is one

primary user, two secondary users, and one jammer. Ettus Labs USRP II radios were

used due to their availability and ease of operation. The network was designed to

maximize the ability to switch hopping patterns and allow the use of random channel

hopping patterns. This network will form the testbed for each of the tests performed

in this investigation.

Figure 1.2: Ettus Labs USRP 2 Used in Investigation

The network was designed using the RFX2400 daughter board which operates on

a frequency range of 2.4 to 2.47 gigahertz. The computers were all Dell Optiplex

580s with 2.8 gigahertz processors, has 2 gigabytes of RAM, and runs Ubuntu Lucid

Lynx (10.04) as the operating system. The same computers were used throughout

the entire investigation.

The communication parameters were set to a bit rate of 100kps using a modulation

of differential binary phase-shift keying (DBPSK). These were the original defaults

on the radio. The gain and amplitude were left at a default value of ”midpoint” and

0.25 respectfully. It is assumed that all of the radios are within transmission range of

each other so the gain and amplitude were left high to ensure this happened. Each

test comprised of a series of transmissions with an average delay of 2.35 to 2.63ms
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Table 1.1: Experimental Characteristics for the Ettus Labs USRP 2

Radio
Radio Platform Ettus Labs USRP 2
Daughter-Board RFX2400
Channel Frequency 2.4 - 2.47 Ghz
Computer Comm. Ethernet - CAT 5

Computer
Computer Dell Optiplex 580
Processor AMD X2 240 - 2.8 Ghz
RAM 2 Gigabytes
Operating System Ubuntu Lucid Lynx - 10.04

Communications / USRP Settings
Bit Rate 100kps
Modulation DBPSK
Gain Midpoint
Amplitude 0.25
Average Delay 2.35-2.63 ms
Packets Per Test 1999

from transmission to response. The various transmission lengths were optimized to

give good averages while showing data trends in a timely manner.

Though the daughter board allowed transmissions past 2.47 Ghz the frequency

range for this investigation was conducted between 2.4 and 2.47 Ghz. Frequencies

above 2.47 Ghz causes erroneous data and performed differently. Due to a hardware

constraint each user could only listen or transmit on each channel but not both

simultaneously.

The hopping schemes were pseudo-random for secondary users and random for

jammers and primary users which provided an environment where the pseudo-random

string would not cause issues since the other two users were random. Psuedo-random

strings had to be used to maintain synchronization between users. The jammer and

primary users also ran continuously across all testing so even similar seeds would not

impact results.
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1.4.1 Header Structure

The header structure for each packet is very important in this investigation as it

allows each user to operate properly during the test. Not all sections of the headers

are directly used by the radios. Some of the data transmitted is solely used by the

primary investigator for debugging and for ensuring quality data is collected.

Figure 1.3: Header Structure Used In The Investigation

The structure consisted of a string of undetermined length and four unsigned short

integers with a packed length of two bytes each.

The first provided the users with the type of packet being sent. Two user types

were defined in the code, ”p” for a primary user and ”s” for a secondary user. A

packet labeled ”p” caused each user to behave as instructed in the presence of a

primary user and ”s” for secondary users.

The next part of the header was the normalized channel frequency. This was the

current channel the user was on. Due to overlapping frequencies and the small area

for testing the users were instructed to only accept packets from users on the same

channel. The normalized value was used since 2,400,000,000 Hertz was too large to fit

into the short integer type. The number 240 would be sent instead and then converted

to the proper value once received.

The following slot held different values depending on the user. Secondary users

stored data regarding the current pdf to ensure that proper communications were

performed between the two secondary users. The jammer used this slot to differentiate

7



itself from the primary user solely for the principal investigator’s benefit. This was

used during the testing phases and was ignored during data collection.

The final slot contains a packet number. Every user transmitted the count of the

current packet to prevent a user detecting a packet twice. This also helped identify

each transmission for data analysis and allowed the secondary users to maintain

synchronization.
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Chapter 2

Passive Primary Emulation Attack

Avoidance - An Unassertive Game

of Cat and Mouse

2.1 Introduction

Cognitive radios must be well adapted to detect the presence of licensed users and

avoid them at all cost. As mentioned in Chapter I, there exist many proposed

techniques for avoiding primary users but in Zhu et al. (2010) it is proposed that

primary and secondary users exist within a zero-sum game where both secondary

users and primary users reach a beneficial stalemate. This occurs when following two

random schemes where it is equally probable for each user to appear on a specific

channel. In this chapter this passive game of cat and mouse is investigated and

an analysis is made. Previous work on this subject has been mainly computational

analysis, Chen et al. (2008), so the experimental results should lead to some beneficial

conclusions. It is predicted that there will be an observed point where both users may

ignore the tactics of the other as changing tactics will not benefit the user.

9



2.2 Theory

This section contains the theory behind the physical system model designed. The

system was designed around a model proposed in Zhu et al. (2010) and Li and

Han (2010b). It is proposed that the jammer and secondary user will satisfy the

requirements of a zero-sum game.

2.2.1 Channel Model

We assume that there are totally N channels. Each channel can be simulated using a

two-state Markov Chain where the states are idle (I) and occupied (O). In the occupied

state the primary user or jammer is operating on the channel and the secondary user

is unable to transmit. In the idle state the channel is free of primary users and

jammers and the secondary user is free to transmit. The transition probability can

be determined from the probability matrix :

Qn =

 1− P n
IO P n

OI

P n
IO 1− P n

IO


where P n

IO (P n
OI) means the transition probability from idle to occupied (occupied to

idle). pnI and pn0 are the initial probabilities of channel n being idle.

The actual channels are assumed to possess the same characteristics to simplify

calculations. This allows the results to reflect purely on the occupation of the channels

and not the performance statistics of each channel, though it cannot be completely

controlled in a real life scenario.

2.2.2 Secondary User Model

At the beginning of each time slot secondary users sense to see if the channel is

occupied. If it is occupied by a primary user or jammer, it switches to the next

unused channel. This exploitation of open channels allows users to take advantage of

10



Figure 2.1: USRP 2 Cognitive Radio Network - Final Lab Setup

all unused channels. This pattern is used before every transmission at the start of the

time slot. Mathematically, it is assumed that all secondary users have perfect sensing.

For simplicity, we assume that the secondary user can access only one channel at a

time.

2.2.3 Attacker Model

In this case, cognitive radio attackers use an attack called Primary User Emulation

where attackers copy the traits of a primary user to cause faulty busy states on

available channels. For simplicity, we assume that the PUE attack can jam only one

channel at a time.

2.2.4 Zero-Sum Game Formulation

We model the game between the PUE attacker and the secondary user as a zero-sum

game. The elements of the game are given below:

• Strategy: The strategies of the attacker and the secondary user are the channels

to jam/access, respectively. We assume that mixed strategies are used, i.e., the

players choose channels in a random manner. We denote by {ui}i=1,...,N and

{vi}i=1,...,N the probabilities of accessing and jamming, respectively.

11



• Reward: The reward of the defender, R2, equals to piI when it senses channel

i and the PUE attacker is jamming another channel; otherwise, the reward is

0. Due to the assumption of zero-sum game, the reward of the attacker R1 is

equal to −R2.

The following proposition shows the mixed strategy at the Nash equilibrium,

whose proof is omitted.

Proposition 1. Define K as

K = max

{
k

∣∣∣∣ k−1
pN−k+1,I∑N
j=N−k+1

1
pjI

< 1

}
. (2.1)

Then, there is a unique Nash equilibrium point in the game, which is given by

ui =


1

piI∑N
j=N−K+1

1
pjI

, i = N −K + 1, ..., N,

0, i = 1, ..., N −K
, (2.2)

and

vi =


1−

K−1
piI∑N

j=N−K+1
1

pjI

, i = N −K + 1, ..., N

0, i = 1, ..., N −K
. (2.3)

2.3 Network Design and Implementation

The investigation consists of four primary components. There is a primary user, a

secondary user transmitter, a secondary user receiver, and a PUE jammer. The users

operate on a different sets of hopping schemes. Each of these can be seen in Figure

2.2 and further explanation is discussed in 2.3.1. Each is designed to comply with the

requirements of the network and to properly simulate a realistic user.

The primary user is the basis of the network. All other users work around the

presence of this user. It operates on a known frequency range and its transmissions

12



Figure 2.2: Probability of User Occupancy per Channel

are assumed to be received by all users in the network. It is simulated using a series

of beta distributions as they can properly model a user who primarily operates on

specific frequencies. This user transmits each packet then waits for a random period

of time, t. This simulates the uncertainty of when a primary user is going to emerge.

This user is only able to transmit on one channel at a time.

Figure 2.3: State Diagram for the Primary User

Though the primary user operates using the same specifications as shown in Table

1.1, not all transmissions are always detectable because of interference and users

13



operating in the wrong state for detecting transmissions. To fix this an assumption

was made that all transmissions were detectable. This was enforced by allowing all

users to transmit three times in quick succession so other users can fully detect its

presence. The packet number was used as a way to prevent users from improperly

reading duplicate transmissions as new. The topic of this paper was not to create

an ideal detection technique so this assumption was fitting. Each user detects what

type of user the packet originated from using the full contents of the header. If a bad

packet is received because of a current transmission or environmental interference,

detection will not occur and the two secondary users can become unsynchronized.

This would invalidate the rest of the data.

The secondary user receiver and transmitter both work on the exact same pseudo-

random channel hopping scheme. The two hopping schemes include an ordered

(1,2,3...n) scheme and a uniformly distributed scheme. More about the hopping

scheme will be discussed in the Section 2.3.1.

This user must be very attentive and always detect when a primary user

transmission signature appears. When a primary user or jammer appears both

secondary users hop to the next channel in the synchronized hopping scheme. Both

users transmit and receive but the transmitter is known as the user who initiates the

transmission. In addition, the receiver will wait for the transmitter as the receiver

transmits only when a packet from the transmitter arrives and rarely misses a primary

user or jammer.

The secondary users follow a pattern of transmit, receive, transmit acknowledg-

ment, and repeat. The transmitter initiates this process and will time out and rule a

packet as lost if the acknowledgment is not received in time. In this scenario, if either

user does not properly detect a primary user or jammer then the users will become

disconnected and may not regain contact. There were two attempts to correct this if

it arises. The first is that each primary user and jammer transmit a trio of packets

in quick succession to help both secondary users detect them. The receiver is also

programmed to wait for the transmitter if not detected to minimize the distance
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Figure 2.4: State Diagram for the Secondary User

between them. The transmitter tends to miss packets more often since it is initiating

the transmission process and users are unable to receive while transmitting.

The jammer is the third user in the network and it transmits on the two hopping

schemes with the same distribution, ordered (1,2,3...n) and uniformly distributed,

as the secondary users but not the exact same sequence. This user’s primary focus

is to disrupt the secondary user’s transmissions by making contact with it as many

times as possible. Each time the jammer does this it forces the secondary users to

change channels as they cannot differentiate it from a primary user. This increases

the chances that packets will be corrupted or disrupted entirely.

Since the jammer is alone and is a selfish user, it follows the design of the primary

user very closely. The only difference is that the jammer will halt transmissions at

the sign of the primary user so as not to be detected by it. This action does not

change the actions of a secondary user operating on this channel since differentiation

is impossible. The secondary users will change channel whether it is a PU or a

jammer. The jammer also hops at a consistently spaced interval of just under a
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Figure 2.5: State Diagram for the PUE Jammer

second as opposed to the randomly determined rate used by a primary user. The

jammer is expected to maximize disruptions so rapid transmissions are used.

2.3.1 Hopping Schemes

In this investigation we determine the effectiveness of the jamming/anti-jamming

technique by the number of collisions that occur during each test. The number of

collisions demonstrate the effectiveness of each method.

The primary user performs hops governed by a set of beta distributions to model

the nature of a primary user. A primary user typically has a known set of frequencies

it transmits over. The strength of the transmission may also be estimated since

transmissions locations are typically established stations. This was modeled with four

beta distribution curves which can be seen in Figure 2.6. Distributions were chosen so

a concentration on either size of the spectrum were utilized as well as a concentration

in the middle of the spectrum and the two extremes. These distributions were used

so that the primary user was able to appear at any channel in the spectrum but was

much less probable on certain channels.

The secondary user and jammer use the same distributions and the probability

of a user landing on each channel is equal to any other channel in the spectrum.

Two schemes were selected as both provide a uniform distribution under the applied

conditions. Also, secondary users will use their full potential bandwidth to take
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Figure 2.6: Probability Distributions of PU Hopping Schemes

advantage of their frequency hopping cognitive radio ability. The jammer will do the

same in order to maximize productiveness. Similarly to a game of hide and seek, if

one player is allowed to leave the boundaries then no one will be able to find them

without also leaving the boundaries.

The first is an uniformly distributed hopping scheme. This PDF satisfies the

requirement that all channels must be equally probable. The pseudo-random string

differs between jammer and secondary users but the probability for either user to

appear at a specific channel within the spectrum under test is equally probable. The

second scheme used was an ordered hopping scheme which consists of each channel

in order from least to greatest. This was chosen since, though it isn’t random, it will

give an equally distributed appearance across all channels within the spectrum since

all users are unaware of the state of the other users. The ordered behavior of the user

will appear to possess a uniform distribution because the previous state will remain

unknown. The two distributions can be seen in Figure 2.7.
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Figure 2.7: Probability Distributions of SU and PUE Jammer Hopping Schemes

2.3.2 Secondary User Synchronization

The development of cognitive radio networks presents a long standing issue in com-

munications known as synchronization. Since the two secondary users, transmitter

and receiver, had to operate simultaneously and act as one without confirming actions

with each other, they had to maintain a list of the next group of channels to hop.

This was implemented by hard coding pseudo-random sequences into each user and

ensuring that both users detected primary users. Also, users were programmed to

know when the other had fallen behind and to wait for them to catch up. Though

this could cause extended downtime it prevented users from getting so separated the

test became a total loss.

2.3.3 Physical Placement

During some of the preliminary testing it became apparent that the physical layout of

the radios were important. Phenomena such as multi-path was impacting the radios
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as they were positioned close to concrete walls and put in compact spaces. Severe

network degradation was observed at these locations. The original positioning can be

seen in Figure 2.8 and Figure 2.9.

(a) Example Location of Erroneous Place-
ment of Radios

(b) Final Placement of Radios on Stands

Figure 2.8: Images of Radio Placement

The final layout pulled the radios away from the wall and lifted them off of the

ground with electromagnetically permeable objects. Cardboard stands were used

so that all radios were equidistant from the floor to prevent reflection off of the

stand surface. They were positioned so that they were separated equally to minimize

environmental influences, i.e. transmission power impacting transmissions. The

original and final layout can be seen in Figure 2.9

(a) Original Erroneous Placement of Radios in
Room

(b) Final Placement of Radios in Room

Figure 2.9: Placement of Radios
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2.4 Data and Analysis

The investigation’s primary objective is to make a comparison of the effectiveness of

the proposed user behaviors on a cognitive radio network. Ideally, the jammer will

maximize collisions with the secondary user while the secondary user strives for the

opposite. A comparison is made of the number of collisions during each set of tests.

Table 2.1: Experimental Results

Users Avg. Statistics 1

Jammer Secondary User Percent Num. of
Beta Dist. Distribution Distribution Correct2 Collisions2

α=0.5, β=0.5 Ordered Ordered 86.84 68.67
Uniform 84.64 21.67

Uniform Ordered 89.38 12.33
Uniform 85.50 20.67

α=1, β=5 Ordered Ordered 89.24 69.33
Uniform 92.72 20.67

Uniform Ordered 95.32 18.00
Uniform 97.13 17.00

α=3, β=1 Ordered Ordered 95.92 70.33
Uniform 91.92 25.67

Uniform Ordered 95.32 13.67
Uniform 92.58 20.33

α=2, β=2 Ordered Ordered 88.71 71.00
Uniform 91.38 24.33

Uniform Ordered 95.52 20.33
Uniform 95.66 12.33

1 Values shown are an average of three trials with five hundred transmissions each.

1 All collision and accuracy data was measured from the transmitter.

It was expected that a zero-sum case would exist and the data found in Table 2.1

agrees with this. It shows that it is more beneficial for a jammer using an ordered set.

Every case where the jammer used an ordered set the number of collisions were higher

than when a uniform distribution was used. A similar observation can be made for

the secondary user. It is observed that every time a uniform distribution was used the

secondary user benefited. It does need to be noted that every time a collision occurs,

it is not primarily a jammer’s action which caused it. The primary user and jammer
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both trigger the same response to secondary users so technically the probability of a

channel being occupied is the combined probability of the primary user and jammer.

Figure 2.10: Collisions at Various Hopping Schemes Used

When the data is displayed graphically this becomes quite obvious. In figure 2.10

it is very easy to see the trend. Each PU setting shows similar results. When both

users apply ordered distributions the jammer heavily benefits. The throughput values

in Figure 2.11 agree with this. Though the throughput data does not depend purely

on collisions but also on environmental influences it does show a general decrease.

All throughput values were very high due to concise packet design and the simplicity

of the network. The throughput data will not be collected in the second half of this

investigation.

When a threat of jamming is present the best way for a user to avoid interference

is avoid the jammer entirely. If the jammer cannot find the transmission then there is

no way it can inflict any of the malicious tools it may possess. The greater the number

of collisions with a user the greater the chance the jammer can maliciously influence

the network. Thus the jammer wants to maximize the number of times it comes into
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contact with the secondary users in the network. The data shows that these two users

have mutually exclusive optimal choices which is theoretically predicted in Section

2.2.

The throughput of the system is fairly high in all cases and is hard to analyze due to

the small change between them. The high throughput values may have resulted from

the short length of the packets used in the test. In a real-life application much longer

packets may be used and would be more prone to interruption. Shorter packets were

sent to help the detection process as it was of primary importance in this investigation.

As previously discussed in Section 2.3, when secondary users become uncoupled

and end up on different channels massive packet loss could occur and eventually

would invalidate the data. This occurs because they may never couple again. This

was one obstacle that had to be overcome in order to properly collect data. The

safeguards put into place, as discussed in Section 2.3, prevented infinite decoupling

from occurring. If decoupling occurs then the radios would catch up within a few

packet transmissions. This may be partially the reason for the throughput data not

always agreeing with the collision data.

It is interesting that there is a difference between the number of collisions for each

hopping scheme since both are uniformly distributed. This must be since the ordered

set is not a true uniform distribution since the next state depends on the current

state. This would show that the random hopping was less efficient at finding users. If

the ordered set produced more collisions, then the average time between each collision

was greater with the uniform distribution than the ordered, sweeping set.

2.5 Conclusions

It was demonstrated in this investigation that there is indeed a zero sum game in

regards to passive jamming and anti-jamming. This passive but intelligently designed

hopping scheme shows that a baseline could be formed from these results to assist
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Figure 2.11: Throughput Data for Uniform vs. Ordered Hopping Schemes

intelligent systems. Higher level mechanisms require processing power as well as time

for users to make decisions and execute them.

Though either user may know the hopping pattern of the opponent, the emergence

of a zero-sum game allows users to pick one technique to achieve the best results. In

this investigation the best choice for the secondary user was to randomly hop from

channel to channel following a uniform distribution. The jammer performed best with

a ordered set (1,2,3...n). The key to the zero-sum game is that the benefits of either

action is mutually exclusive of the choices of the other. This provides a good baseline

for passive avoidance.

2.6 Future Works

This investigation has quite a few assumptions. One such assumption was that the

network was a single stage case. When more users are presented new discoveries could

be made. It becomes more difficult when multiple users, possibly outside of the range

23



of a primary user, must remain on the same channel without being able to transmit

to each other to say which channel they will reside.

In addition, secondary users avoided primary user transmissions by hopping to a

different channel. In a multistage case the possibility of maintaining the same channel

but transmitting around the primary user’s reach is a possibility. This would add an

additional level of complexity to the network since users would have to decide between

re-routing or avoiding the users.
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Chapter 3

Blind Learning with Partial

Information - An Intelligent Game

of Cat and Mouse

3.1 Introduction

Passive avoidance techniques may be beneficial in circumstances where all users are

operating with limited computing power but most applications apply more intelligent

algorithms. In radios that includes deciding how much power to transmit with, which

channels are more likely to suit the user’s needs, and determining if threats exist on

each channel. In the jamming or anti-jamming case a user would most likely want to

find a way to seek or avoid other users to satisfy it’s purpose.

Intelligent selection of channels is very useful for jamming and anti-jamming as it

allows users to pursue or avoid others by rewarding channels properly then evaluating

the rewards every time a choice must be made. In addition, the target may not

always be operating on the same bandwidth as the intelligent user. If both users

are not operating on the same bandwidth then power would be wasted for a jammer
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operating outside of the bandwidth used by the target. A secondary user could easily

avoid a malicious user by moving to a channel where a jammer does not operate.

Work has been done in intelligent learning for cognitive radio networks. In Rieser

et al. (2004) genetic algorithms are discussed. Mhnen et al. (2006) investigates

a proposed cognitive radio resource manager which allows optimization of the

communication stacks. Hedge algorithm based mirror descent schemes are discussed

in Baes and Buergisser (2010). An early application of machine learning is discussed

in Clancy et al. (2007). A balance of reasoning and learning is applied to provide

beneficial results. In Li and Han (2010a), a multi-armed bandit was applied and forms

a ”dogfight in spectrum”. The second part of this paper, Li and Han (2011), proposes

a hedge algorithm based learning that follows three schemes, uniformly random,

selectively random, and a maximum interception attack. Each of these is a different

intensity of learning with uniform being no learning and maximum interception

being purely learning. In this investigation this algorithm will be modified and is

experimentally tested.

Figure 3.1: Reward Weight for Secondary Users Over Time

26



Figure 3.2: Reward Weight for Jammer Over Time

In this part of this paper a Hedge Algorithm is applied to the channel selection

algorithm from Chapter 1. The initial impacts of this algorithm are tested with the

understanding that long term execution will result in a steady-state sort of outcome

where further learning will become more difficult, though not impossible, as the user

becomes set in its ways. This effect can be seen in Figure 3.2 and Figure 3.1.

3.2 Theory

In Hedge based learning, expert feedback is given to a user every time an action is

about to be performed. If the action is performed correctly it receives a positive

reward and all the incorrect suggestions receive a negative reward. A simple

explanation would be asking a number of students when the next pop quiz will be in

a course. Every student gives their expert advice. The students who correctly guess

the date earn trust while the others lose trust on their expertise regarding when pop

quizzes occur. Each time this is performed students will receive or lose a reward value,
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trust in this case, and will help define the which students are better at predicting the

next quiz.

This basic concept is to be applied to cognitive radio. Every time a secondary

user or jammer experiences a favorable reaction on a channel the user will reward

this channel. Since the users can only detect what occurs on one channel at a time,

they cannot give or remove rewards from other channels so no negative rewards can

be given. This difference causes the algorithm applied in this investigation to differ

from the Hedge Algorithm.

Every time a reward is given all future rewards have their value reduced. The

impact of this is expected to allow future learning to perform smaller changes. This

rough versus fine balance allows users on a cognitive radio network to adapt their

own PDF to the target’s PDF.

The general procedure for the learning algorithm is as follows:

Algorithm 1 Procedure of Learning Algorithm Applied by Users

1: Initialize all strings for selected probability.
2: Apply resistivity factor by appending probability string N times.
3: for each time slot t do do
4: RandomlyChooseChannel
5: if Secondary User then
6: while channel is idle do
7: Communicate
8: ReceiveReward
9: end while
10: end if
11: if PUE Jammer then
12: while channel is occupied by secondary user do
13: Communicate
14: ReceiveReward
15: end while
16: end if
17: end for

As seen above, rewards are only given to jammers if a collision between a jammer

and secondary user occurs. They are give to a secondary user if a transmission is
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completed on a channel without primary user interruption. Each of these choices

promotes the core purpose of the user. This mimics a Hedge Algorithm as each

channel serves a provider of expert advice, the probability assigned to the channel.

Channels that provide better rewards, collisions or a lack of, have their probability

increased which decreases the probability of the other channels since they lie within

the same PDF.

The rewards must also be attenuated so an operator can adjust the speed at which

the algorithm learns and how quickly it moves from coarse to fine adjustments. This

value has been coined the resistivity value as an increasing resistivity value increases

the original PDF’s resistance to the learning algorithm. Higher resistivity values will

allow less learning than lower values.

Each reward is defined as r(t) = 1 where the sum of all rewards is
∑∞

τ=0 r(τ) =∞.

The probability of a reward given is outlined by Prj = P (S∩J) and Prs = P (S∩J ′).

Prs > Prj is true while n ≥ 2. If n = 2 then Prs = Prj and if n = 1 Prs = 0.

As discussed above, the weight of the reward changes based on the time elapsed.

This weight is modeled by the following equation:

Wr(t) =
1

RvN +
∑t

τ=0 r(t)

where Rv is the resistivity value and N is the number of channels. Consequently the

probability of a user appearing on a channel is given by the following equation:

Pn(t) =
Rv +

∑t
τ=0 rn(τ)

RvN +
∑t

τ=0 r(τ)

.
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3.3 Network Design and Implementation

The channel model is very similar to the one used in Chapter I but with some

major differences. The test bed previously developed was modified to satisfy the

requirements of this test so the underlaying assumptions still exist.

3.3.1 General Network

It is assumed that there are N channels where each channel is modeled by a two-

state Markov Chain. On each channel two states exist, idle (I) and occupied (O). A

occupied state exists when a primary user or a PUE jammer is currently operating on

that channel and the secondary user is not allowed to transmit. In an idle state the

secondary user is allowed to transmit as no primary user or PUE jammer is currently

transmitting on the channel. The transition probability can once again be determined

from the probability matrix :

Qn =

 1− P n
IO P n

OI

P n
IO 1− P n

IO


where P n

IO (P n
OI) means the transition probability from idle to occupied (occupied to

idle). pnI and pn0 are the initial probabilities of channel n being idle.

Each channel is assumed to operate with the same physical characteristics to

simplify calculations, though it is understood that this cannot be controlled in a

physical application so actions were taken to get as close as possible.

As before the radios are not able to transmit and receive simultaneously so each

user was programmed to transmit multiple times in quick succession to allow near

perfect detection of each user. Though this is not always so in physical applications,

the design of a perfect transmitter and receiver was outside the scope of this

investigation so alternative methods were implemented.
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Figure 3.3: Initial Probability Density Functions

Each data set was instructed to run for 3000 secondary user transmissions to ensure

that a proper curve developed so through conclusions could be made. Since different

levels of learning resistivity were used it was necessary to run tests for extended

periods of time to let each settle. The length of the test also allows the final results

to represent the impact learning can make as time increases.

3.3.2 Primary User Model

The primary user operates exactly as it did in Chapter I. The primary user infinitely

loops through two states, transmit and change channel. In the transmit state, the

primary user wait a random amount of time (t) for the constraint 0 < t < 5 seconds

and then transmits. It listens to channel activity however it does not react to activity

on the channel as primary users have full rights to channels and are allowed to

interrupt other transmissions. Once the primary user reaches the change channel state

it picks a random channel fitting the selected probability density function (PDF).
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Figure 3.4: State Diagram for Primary User

The primary user operates on two PDFs in this chapter as opposed to the four in

Chapter I. It uses two beta distributions which are roughly opposite of each other to

show that the investigation into using Hedge Algorithm based learning is not heavily

influenced by the behavior of the primary user. These distribution functions can be

seen in Figure 3.3.

3.3.3 Secondary User Model

The secondary user must avoid the primary user and PUE jammer so it has a strong

detection mechanism to keep it away from these users. It starts off in a sensing state

where it determines if the channel is idle. If it is occupied it switches channels to the

next channel as determined by its operating probability density function. Following

the sensing state it will transmit packets and determine if the packets were transmitted

successfully. If the packets are successfully transmitted, then a reward is applied. If

some error occurs then the user returns to the sensing state.

The learning algorithm works by rewarding each successful transmission so that

the user learns which channels hold a higher rate of success. It does not discriminate

between n continuous transmissions and n single case transmissions as time on the

channel does increase throughput by reducing recovery time. The overall ratio of

successful time on a channel versus total time demonstrates the health of the channel.

A learning resistivity value is applied to the algorithm to differentiate exploitation
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Figure 3.5: Transmitter State Diagram

of channels to random hopping. This will be discussed with more detain in Section

3.3.5.

The secondary user operates on a few different PDFs depending on what it is

doing. During tests where it is performing the learning algorithm, it is initialized

with a uniform distribution which evolves as the algorithm progresses. If the user is

being followed by a learning jammer and it is not learning it follows a enhanced beta

distribution as shown in Figure 3.3.

3.3.4 Attacker Model

The attacker operates as primary user emulator where it mimics the transmission

signature of a primary user to take advantage of a secondary user’s ability to avoid

primary users. The secondary user is not allowed to transmit when a transmission

with the signature of a primary user appears. The jammer takes advantage of this and

launches a primary user emulation attack since the secondary user cannot determine

if it is experiencing a true primary user or a malicious user.

The attacker operates on four states similarly to secondary users. It starts out

on a sensing state to detect primary users to prevent two primary user signatures

to appear on one channel. Transmissions during a primary user’s transmission can
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cause the jammer to be detected. Operating without detection is ideal for a jammer.

A secondary user will react to either a PU or a jammer so two transmissions is

unnecessary. If a primary user exists the jammer changes channels, following its

assigned PDF shown in Figure 3.3, and starts the sensing process over. If the channel

appears free of primary users the jammer will commence transmissions for a set period

of time. If it detects a secondary user on the channel during this time it will place an

award in that channel’s coffers to increase the probability that it will return to this

channel. If no user is detected it will still transmit. It will then return to the sensing

state on a new channel but no reward will be given. A full cycle of all of the user’s

states takes about one second. A rapid rate was chosen since prolonged contact with

a secondary user is not beneficial. If the jammer is detected then it may continue on

to the next channel because the secondary user acts purely on the appearance of a

primary user signature so prolonged channel activity is unnecessary.

Figure 3.6: Jammer State Diagram

The jammer operates on two different probability density functions. If it is learning

it starts with a uniform distribution as it offers a clean slate for changes to take

place. If it is not learning and the secondary user is, it operates on an enhanced beta

distribution which is shown in Figure 3.3. This function was modified to give more

extreme peaks to increase the impact of the learning algorithm. If a shallower curve
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is used it may be too close to a uniform distribution and may cause the change to be

hard to differentiate.

The learning algorithm works for the jammer by rewarding each successful

detection of a secondary user by increasing the probability that the jammer will

return to this channel. A learning resistivity value is applied to the algorithm to

determine how quickly the jammer will adjust its own PDF to mimic that of its

target. This will be discussed further in Section 3.3.5.

3.3.5 Learning Resistivity

Since the jammer and secondary user applied the same base learning algorithm it

was necessary to create a scaling factor to determine the resistivity of the algorithm.

These values control the ability of each user to be balanced between exploitation and

exploration. The secondary user applies a reward every time a packet is successfully

transmitted but the jammer only applies rewards when a collision occurs. The

secondary user rewards can quite quickly exceed the total rewards given by a jammer

in a test. It was also of interest to test the impact of different resistivity values to

the performance of both users apart from purely a calibration factor.

Each value increased the stubbornness of the initialized PDF by some factor. A

resistivity factor of 2x would cause the initialized PDF to out weigh the learned value

by 2:1 on each channel and 14:1 across all seven channels. Each user had a different

set of resistivity values depending on the behavior of the user. All values given for

resistivity settings are given for initial values. As the test runs the learning ratio

changes as shown in 3.1 and 3.2.

The secondary user has to use higher resistivity values because of the high number

of rewards given over a test. It uses 10x, 50x, 100x, 200x, and 400x. Tests conducted

below 10x caused the user to heavily exploit initial channels and caused skewed results

as it was rare for the user to leave the first few channels it experienced. The ratio of

70:1, 10:1 on each channel, gave the first decent results so it was used. The values
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spanned up to 400x because 400x produced results which approach values given by

no learning.

Since the jammer gives fewer rewards it can use a lower resistivity value. It uses

2x, 6x, 20x, 50x, and 100x. As mentioned in the secondary user case, a spread of

resistivity values from just above exploitation to close to no learning were chosen.

The range of 14:1 to 350:1, 2:1 and 50:1 on each channel respectively, were used.

Each of these resistivity values allow the algorithm to run for longer before reward’s

values significantly reduce their total weight. This algorithm was intended to serve as

a point of reference for future investigations into methods for mid run PDF changes

and for algorithms to dynamically change parameters to increase performance.

3.4 Data and Analysis

A series of tests were performed using the learning algorithm on the cognitive radio

test bed to show the performance and limitations of a Hedge based learning algorithm.

The first series is to prove that the actions of the primary user impacts the results

but does not alter the general trend of the algorithm. After this test is performed,

the learning algorithm is applied to the secondary user and jammer independently to

show its performance over a period of 3000 transmissions.

3.4.1 Primary User Testing

In order to come to a general understanding that the primary user’s performance does

impact the final results of the test but does not impact the general trend of the learning

algorithm, a series of tests were performed using two Beta distributions. These can

be seen in Figure 3.7. The primary user was tested with both of these distributions

against the fastest acting of each of the resistivity settings and no learning for both the

jammer and secondary user. The jammer will use the 2x settings and the secondary
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Figure 3.7: Primary User Probability Density Functions

user will use the 10x setting. This test operates on the same parameters as other

tests in this section but with varying primary user PDFs.

The first set shows the primary user with the jammer learning turned off. In

Figure 3.8 and Figure 3.9 it can be seen that the general outcome is quite similar.

There is some deviation but this was formed by various outliers in the data as well as a

smaller number of tests being averaged. A constant difference of collisions is expected

but the general trend should remain the same throughout the tests. Since each PU

PDF is so different from each other, it is expected that one will cause more collisions

than the other. One distribution causes more collisions at the central channels but

the other will help later in the test when the jammer visits the outlying channels less

often since will visit central channels regularly.

Figure 3.10 and Figure 3.11 show the results from the secondary users. Similar

slopes across the different PU PDFs are observed in these figures. The values were
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Figure 3.8: Non-learning Jammer with Various Primary User PDFs

consistent from test to test in Figure 3.8. Consistent values are not necessary and are

unexpected since the primary user distributions are so different from each other.

The results from this section of the data show that the original hypothesis was

true and that the primary user influences the data but does not impact the general

performance trend caused by the algorithm. This successfully determines that the

primary user can be removed as a heavy influence on the trends displayed in the

coming sections.

3.4.2 Secondary User Analysis

The next phase of testing involves examining the impact of the learning algorithm at

different points along a transmission 3000 packets in length. The data is expected to

show how the algorithm changes the performance of the user with different resistivity

values.
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Figure 3.9: Learning Jammer with Various Primary User PDFs

While one user learns the other user does not so the performance of each user could

be assessed separately. The algorithm is expected to improve results by lowering the

number of collisions that occur.

The data shown in Figure 3.12 shows that the secondary user did indeed benefit

from the algorithm. The top trend line represents the trend of no learning while

the bottom line represents 10x resistivity to learning which is the producer of the

least number of collisions. This shows that at the lowest value the user did indeed

avoid collisions as desired. The different resistivity settings all lie between those two

settings. It is strange that the 50x, 100x, and 200x resistivity settings fell so closely

together since they differed by such a large factor. The 400x value did lie closer to

the none value as expected.

In order to show the effectiveness of the learning algorithm the most extreme case

was investigated further and the slopes were calculated. As seen in the figure, learning

caused collisions over time to decrease by -3.895 collisions per 200 transmissions at
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Figure 3.10: Non-learning Transmitter with Various Primary User PDFs

the 10x setting. This may not seem like much but over a long transmission this could

make a large difference since each collision can cause significant packet loss if the

jammer is effective in its disruption technique.

A closer look at the piecewise slope reveals that the difference isn’t consistent

but does have a general downward trend for all resistivity settings other than none,

which remains fairly constant. It is also shown that as the resistivity values increase

that the performance benefit decreases. In general the slope increases from 10x up to

400x in each set of 200 collisions. This shows that the resistivity values are properly

adjusting the potency of the algorithm. Compared to the piecewise results for the

jammer the secondary user results appear more orderly because of the larger number

of rewards given over the same period of time.

Another key to knowing if the user is properly learning lies in the active

adjustments to the PDF at each setting. As shown in Figure 3.14 each setting

produced a different final PDF, each getting closer to the target PDF. The users
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Figure 3.11: Learning Transmitter with Various Primary User PDFs

could only learn up to the PDF of the target since once a close match is achieved it

would just spend the rest of the transmission fortifying what it had already learned by

adding weight to channels then readjusting to this misapplied reward. A easy version

to visualize would be trying to target a uniform distribution when starting with a

uniform distribution. Every reward given would cause the user to behave differently

than the target so the rest of the transmission would be spent adjusting to this change

and trying to reach uniform once again.

The final PDFs also show why resistivity settings below 10x could not be applied.

As the values are increased the PDF’s curve becomes smoother and symmetric. At

very low values, below 10x, the algorithm performed by purely exploiting and would

learn on very few channels. This can be seen where the secondary user’s final PDF

is very uneven at lower resistivity values and the large probabilities that develop

on a select few channels. The 5x value is partially exploiting but not enough to

produce poor results. Lower setting values actually hurt their own performance

41



Figure 3.12: Learning Secondary User - Collisions Per Interval

because they would not change their frequency and would just stay on their current

channel regardless of jammer behavior. This is beneficial if it occurs at less probable

channels but if it fell within the center channels it would greatly increase collisions.

When the learning was turned off, the user operated on a uniform PDF throughout

the test. As the resistivity was lowered it is shown that the curve diverges from this

uniform PDF. It should be noted that the border channels, 2.4 Ghz and 2.47 Ghz,

greatly increase in probability as the user applies heavier learning. This exposes an

aspect to this algorithm that tends to benefit secondary users over jammers. This

will be discussed further in the jammer section of results.

The data shows that a Hedge based learning algorithm is beneficial for use with a

secondary user as it allows for a simple detection approach with longer transmissions

as well as fewer collisions. Fewer collisions allows the user to spend less time

recovering from channel hops and from resynchronization with other secondary users.

Longer transmissions without interruption enable the secondary users to efficiently
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Figure 3.13: Learning Secondary User - Piecewise Rate of Collisions

communicate. Every time a collision occurs transmissions may be damaged and must

be restarted. Though short transmissions are still beneficial in this application, longer

transmissions may be preferred.

3.4.3 Jammer Analysis

The jammer was also set to learn and produced similar results but with smaller

differences. This was to be expected since a secondary user could apply many more

rewards over a period of time than the jammer since rewards were given after every

successful transmission versus at every collision.

The data from the jammer fully spans the difference between none and optimal.

The best setting was found to be 2x, a ratio of 1:14 or 1:2 on each channel. The

6x setting lies very close to the 2x setting but it was slightly worse in performance.

The 20x and 50x values are very close to the same throughout the whole test and the

100x lies very close to having no learning whatsoever. The 2x setting produces 2.779
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Figure 3.14: PDF After Test for Intelligent Secondary User

more collisions per 200 packets sent. Though this isn’t a large difference it gives the

jammer an edge and over prolonged transmissions could make a large difference if the

disruption techniques were well applied.

The piecewise slope data for the jammer was not as revealing as the secondary

user because of the reduced number of reward opportunities. The general trend

almost appears even but an increasing trend can be seen across some of the different

resistivity values. This can be expected since a smaller amount of data was evaluated

due to the nature of the jammer and extended periods of uninterrupted transmissions

from a secondary user can cause skewed data when it is viewed on a small scale.

It is shown that lower resistivity values allow the algorithm to shape the user’s

PDF to the target’s own PDF. This resulted in higher collision rates. Initially it was

puzzling why the algorithm only provided linear improvements to the performance

of the users but after further investigation it was found that though it did increase,
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Figure 3.15: Learning Jammer - Collisions Per Interval

decrease for secondary users, the number of collisions it also caused certain frequencies

to be neglected.

The success of a secondary user depends on the number of packets it can get

through without interruption. Since the secondary user developed in this investigation

was simple in nature and transmitted very concise packets the jammer will be

investigated.

In Figure 3.18 a resistivity value of 100x was applied to the jammer which provided

a fairly even average value across all channels. At this resistivity value the algorithm

was not applying the learning very heavily so results will mimic no learning. The

maximum and minimum values are almost random at this setting.

After heavy learning was applied it is apparent that the users do what may seem

obvious, appear more often at more probable channels. This can be seen as the

delay value starts to appear as the inverse of the PDF. In Figure 3.19 the minimum,

maximum, and average delay values mimic exactly this. Since the shortest time spent
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Figure 3.16: Learning Jammer - Piecewise Rate of Collisions

on a channel would occur when an immediate collision after a move occurred the

minimum values all appear very similar. The average and maximum values however

demonstrate the inverse PDF quite well. The amount of time spent on the exterior

channels allows for longer uninterrupted transmissions. The max on 2.47 Ghz nears

a whole minute. This is a long time when the jammer is transmitting and hopping

channels close to once a second.

The increased time for continuous transmissions allows the secondary user to

escape for increased amounts of time without being seen. This causes some suspicious

data to appear in the initial tests. Collision data would remain constant for a entire

slot of 200 packets since the user was essentially hiding in these exterior channels.

Though the jammer was adjusting its PDF to the secondary user, it started to neglect

the channels rarely used and gave the secondary user a sanctum for transmitting.

Though increased collisions may appear beneficial, continuous and frequent collisions

are more beneficial to a jammer as each of these collisions may cause the secondary
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Figure 3.17: PDF After Test for Intelligent Jammer

users a period of downtime depending on the design of the network. Rapid and closely

spaced interruptions followed by long uninterrupted transmissions can prove overall

beneficial to secondary users. A secondary user could detect the presence of a jammer

or primary user before it has time to recalibrate. Ideally interruptions would occur

as soon as users regain control of the channel to cause maximum interruptions. This

shows that this algorithm may be applicable for a jammer using higher resistivity

settings but nevertheless it will reach the same steady state PDF at some point in

time. If the target user operates on a similar PDF it will cause the same issue.

The jammer did benefit from using the Hedge based learning algorithm but at a

cost, frequency of collisions. Since learning allows the jammer to target higher traffic

channels it causes more frequent collisions but possibly so frequent as not to allow

users to recover. If users hop prior to recovery it may not cause as much harm as

if users were caught right after time was spent recovering from a channel hop. In

addition the frequent appearance of the jammer in higher traffic channels opens less

47



Figure 3.18: Idle Channel Statistics - Intelligent Secondary User at 100x Resistivity

frequented channels for secondary user exploitation. It was shown that the opening

of these holes can allow transmissions of a minute or more without interruption.

3.5 Conclusions

Hedge based learning does alter collisions in a cognitive radio network but it is linearly

dependent on the resistivity to learning algorithm contrary to exponential as initially

expected. This is caused by the shaping of the PDF so channels less likely to be

chosen by the other user become less probable for that user to choose. This causes

extended periods without collisions causing the learning benefits to be dulled. This

makes this learning algorithm beneficial for a jammer if target probability density

functions tend to be shallow or higher resistivity settings are used.

Since this learning algorithm allows users to define the behavior of another user

across multiple channels, it proves beneficial to a secondary user attempting to avoid

a PUE jammer. It allows for avoidance without discrimination between jammer and

primary user. The design helps the user find channels where longer transmission may

occur and avoid channels where heavy primary user / jammer behavior exists.
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Figure 3.19: Idle Channel Statistics - Intelligent Secondary User at 2x Resistivity

This chapter of the investigation demonstrates the effectiveness of Hedge based

learning algorithms in the application of cognitive radio for PUE jammers and

secondary users alike.

3.6 Future Works

This investigation revealed some important traits with Hedge based learning in a

cognitive radio network but further investigation is always beneficial.

A comparison was made with each user independently but no comparison was

made with both users learning simultaneously. This could possess some interesting

results. An application where two users are applying machine learning is a more

realistic application unless users are applying simple cognitive radio networks.

Data was collected for 3000 packet transmissions but almost all resistivity values

reach steady state at the end of the test. Further investigation could be made into

a forgetting factor or a point of reset for the learning algorithm that would allow for

targeting new users in a network. Major constraints in this investigation included

the vast number of testing possibilities. A through examination would need to be
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conducted where various restarting points were tested with numerous distributions.

This could prove to be cumbersome but informative.
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Chapter 4

General Conclusions

The investigation into cognitive radio primary user emulation attacks produced some

interesting findings. In cognitive radio networks it is imperative for secondary users to

avoid primary users and jammers to the best of their ability and to keep interruptions

down as the only way for malicious users to influence transmissions is for them to end

up on the same channel. Since a primary user emulation attack prevents secondary

users from differentiating primary users and jammers, the only way to avoid one is to

avoid both. A secondary user may not even understand that they are under attack if

a jammer behaves appropriately.

Chapter I revealed that a jammer performing a sweeping motion over all channels

within the spectrum strongly benefits a jammer. This sweeping motion ensures a

regular and systematic check of all channels. Since continued and timely interruptions

are key to keeping secondary user transmissions short and causing the most recovery

time, the ordered (1,2,3...n) approach works well. In a theoretical environment, an

ordered approach and a uniform distribution should provide similar results but since

a second factor is added with the probability of the other user. The existence of two

PDFs decreases the probability of both users being on the same channel at the same

time. The secondary user benefits in this case since it has a (n-1)/n chances to avoid

the jammer while the jammer only has a 1/n chance to find it.
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Chapter II revealed that Hedge algorithm reward based learning does improve the

rate at which collisions occur but with a side effect, longer allowed transmission times

for secondary users on less probable channels. This may be beneficial for jammers

depending on the design of the network they are operating on but if continuous and

periodic interruptions are the goal then the learning algorithm must be applied lightly

with a higher resistivity factor.

The investigation shows that a secondary user is naturally better off in either case.

As long as it picks one channel the jammer does not occupy, it wins for that time slot.

The uniform distribution worked best for the secondary user in Chapter I because of

this. Once on a channel, the user transmits until interrupted so a sweeping pattern

shouldn’t impact the user greatly. The data showed a slight benefit to using uniform

distributions but with much less of a difference than for the jammer.

If a jammer is operating on a set spectrum at a specific PDF it is very beneficial

to secondary users to be able to identify those channels and avoid them. The learning

algorithm applied in Chapter II greatly helped the secondary user since it identified

the least occupied channels and causes the radio to frequently hop to these channels.

This causes longer periods of uninterrupted transmissions and overall less collisions

with jammer and primary user alike. Though this algorithm does reach steady

state it would be beneficial for a secondary user to use it in an environment free

of jammer activity. It would allow the secondary user to quickly identify the behavior

of a primary user in the area and avoid it without ruling out channels occasionally

occupied.

Overall the investigation was a success. A through assessment of a primary

user emulation attack was evaluated from both the perspective of a jammer and

a secondary user. Suggestions were made for both user types and the presented data

will be helpful for further investigations.
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