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Abstract 

Beauveria bassiana (Balsamo) Vuillemin is an entomopathogenic deuteromycete 

that has been used in biological control of insect pests. Recent studies have revealed that 

B. bassiana is an endophyte of com plants, and that plants colonized by the fungus had a 

reduction in tunneling from the European com borer, Ostrinia nubilalis (Hubner) 

(Lepidoptera: Crambidae ). I n  addition to com, B. bassi ana has been observed to grow 

endophytically in potato plants. Beauveria bassiana may also have the ability to colonize 

closely related plants and potentially reduce insect feeding on them. 

This study had three objectives. The first was to evaluate the effect of mycelia 

from the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae, when 

incorporated at different rates into a synthetic diet and fed to neonate com earworm, 

Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) larvae. Larvae fed the highest rates 

( 1 and 5%) of fungal diet experienced delayed development and suffered high mortality. 

These insects also had lower larval and pupal weights than larvae fed the lower 

concentrations of mycelia. I nsects fed low rates (0.1 and 0.5%) of fungus suffered low 

mortality and developed at an accelerated rate, compared to fungus free controls, 

indicating increased nutrition in low rate fungal diets. I nsects fed diets containing B. 

bassiana isolate 1 1 -98 suffered the highest mortality indicating that 1 1-98 may be more 

toxic than the other isolates. 

I n  the second study, the effect of Beauveria bassiana was evaluated when 

metabolites were incorporated at different rates into a synthetic diet and fed to neonate 

com earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) larvae. All larvae fed 
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diets containing metabolites of B. bassiana experienced low mortality, but had delayed 

development. Those insects fed the highest rate (0. 5%) of metabolite-amended diet had 

significantly lower percent pupation and developed at a slower rate than those insects fed 

the 0. 1% rate. 

A third study was designed to establish a technique to detect the presence of 

endophytic Beauveria bassiana in tomato plants. After seed-treating tomato plants with 

B. bassiana conidia and allowing them to grow for two weeks in test tubes under 

gnotobiotic conditions, PCR techniques were used to amplify ITS regions of the plant and 

fungus from the plant shoot. The presence of B. bassiana in treated plants was confirmed 

by the PCR amplification of a 550-bp ribosomal RNA gene segment. The amplified 

product was sequenced using ITS 1 and ITS4 primers. The resulting sequence data had 

100% homology with a previously published sequence for B. bassiana. 
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Chapter 1 

Literature Review 

Beauveria bassiana 

Beauveria bassi ana (Balsamo) Vuillemin is a ubiquitous soil-inhabiting 

entomopathogenic fungus in the phylum Deuteromycota, and is characterized by white 

mycelia and hyaline conidia that are globose to oval in shape. Conidia are formed from 

zigzag-shaped extensions on conidiophores, which are located singly or in whorls 

(Boucias and Pendland 1998). In addition to being an entomopathogen, B. bassiana 

commonly occurs as a saprophyte in soil (McCoy 1985). In its typical form, B. bassiana 

will grow initially as a white mycelial mat, which later produces conidiophores and then 

conidia. Conidia serve to spread the fungus and are the infective unit on susceptible 

insect hosts. 

In Japan, around 900 A.D., a white muscardine fungus was first recognized as a 

disease of the silkworm, Bombyx mori (Linnaeus) (Lepidoptera: Bombycidae) (Boucias 

and Pendland 1998). Silkworm cadavers infected with B. bassiana were used as 

antiseptics and antitoxins in oriental medicine. In 1834, Antonio Bassi and Giuseppe 

Balsamo Crivelli determined that silkworms were infected by B. bassiana, giving rise to 

the germ theory of disease. The causative organism was first named Botrytis paradoxa in 

183 5 by Balsamo and later renamed Botrytis bassiana. In 1912, Vuillemin renamed the 

genus Beauveria (Steinhaus 1975). 

The infection cycle of B. bassiana in an insect begins with the contact of a 

conidium with the cuticle of a susceptible host. The conidium germinates and the fungus 



produces an array of enzymes that help degrade the outer integument. The fungus 

produces a germ tube that grows through the integument and toward the hemocoel. Once 

the hemocoel is entered, blastospore formation and toxin production begin (Boucias and 

Pendland 1988). As the fungus proliferates, the host dies and becomes mummified by 

hyphal growth that will later extrude from the cadaver through intersegmental 

membranes (Pekrul and Grula 1979). Death usually occurs in three to seven days and is 

attributed to nutrient deficiency, water loss, or the action of toxins (Boucias and Pendland 

1988). Production of conidiophores and conidia occurs outside the host, and infective 

propagules disseminate to new hosts. 

A variety of insects, at all stages of development are susceptible hosts of B. 

bassiana (McCoy et al. 1985). Due to its wide host range, B. bassiana has been tested as 

a microbial control agent against most ofthe important insect pests. Pests that have been 

effectively controlled by B. bassiana include: the lesser stalk borer, Elasmopalpus 

lignosel/us (Zeller) (Lepidoptera: Pyralidae) (McDowell et al. 1990), European corn 

borer, Ostrinia nubila/is (Hubner) (Lepidoptera: Crambidae) (Bing and Lewis 1991;  Feng 

et al. 1988), hop aphid, Phorodon humuli (Schrank) (Homoptera: Aphididae) (Dorschner 

et al. 1 991  ), greenhouse whitefly, Tria/eurodes vaporariorum (Westwood) (Homoptera: 

Aleyrodidae) (Poprawski et al. 2000), and Colorado potato beetle, Leptinotarsa 

decemlineata (Say) (Coleoptera: Chrysomelidae) (Jaros-Su et al. 1999). Interest in the 

use of B. bassiana as a biological control agent has spurred several large-scale research 

programs. In France, it has been used in attempts to control the codling moth, Cydia 

pomonel/a (Linnaeus) (Lepidoptera: Tortricidae). In the People's Republic of China, B. 

bassiana was used to control 0. nubilalis; and, in 1977, the former U.S .S .R. produced 22 
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metric tons of a B. bassi ana product for control of Colorado potato beetle (McCoy et al. 

1985). 

Beauveria bassiana is commercially available in the United States under the trade 

names Mycotrol and Naturalis. Suggested target pests for these products include beetles, 

whiteflies, aphids, leaf and planthoppers, and stem-boring lepidopterans. These 

bioinsecticides are produced as conidial suspensions and applied as a foliar spray. The 

conidial suspensions serve as a source of inoculum for the natural disease cycle. 

However, foliar applications of B. bassiana may be challenged by reduced viability of the 

conidia due to effects of the environment. These conditions include unfavorable 

temperatures, low rainfall (Bing and Lewis 1991 ), and high levels of ultraviolet light 

(Copping and Menn 2000). 

Endophyte Plant Mutualism 

Endophytes are non-pathogenic fungi that live inside healthy plants (Alexopoulos 

et al. 1996). The mutualistic association provides nutrients and moisture for the fungus, 

and imparts stress tolerances to the plant (Bacon 1993 ). The majority of work with 

fungal endophytes involves tall fescue (Festuca arundinacea) (Schreber) (Cyperales: 

Poaceae), and Neotyphodium coenophialum [(Morgan-Jones and W. Gams) Glenn, Bacon 

and Hanlin comb. nov. ] (Clavicipitales), an endophyte responsible for fescue toxicosis, 

which affects grazing horses and cattle. Work involving B. bassiana as an endophyte of 

com (Zea mays) has focused on colonization and suppression of 0. nubi/alis (Lewis and 

Bing 1991, Bing and Lewis 1992a, 1992b). The aforementioned authors have not studied 

the physiological interactions between plants and B. bassiana, but work with other 
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endophytes (Arachevaleta et al. 1989) has revealed that a variety of factors may influence 

the development of plants and their endophytes. 

Nitrogen availability has multiple effects on endophyte-infected plants. In a study 

that examined soil nitrogen levels, endophyte-infected (N coenophialum) tall fescue 

plants, with low nitrogen availability, had 25% thicker leafblades at 160 days than 

endophyte-free fescue. At high levels of soil nitrogen, endophyte-infected fescue had 

67% greater herbage yields. In the same study, drought stress was evaluated at different 

nitrogen levels. At the highest levels of nitrogen and a soil matric potential of -0.50 MPa, 

endophyte-free plants had 75% mortality and infected plants had no mortality 

(Arachevaleta et al. 1989). 

Endophytic infection with N coenophialum has promoted growth and 

germination in some plants. Infected tall fescue had twice the number offilled seeds, and 

seeds of infected fescue and perennial rye grass had 10% greater germination rate (Clay 

1987). When compared against endophyte-free plants, fescue regrowth height 14 days 

after harvest increased by 38% in endophyte-infected plants grown at a soil matric 

potential of -0.03 MPa and 111% at -0.50 MPa (Arachevaleta et al. 1989). In a study 

exploring the effects of the removal of endophytes by fungicidal treatment from tall 

fescue, dry root matter decreased 25% in plants where the endophyte was not present. 

Herbage growth and tiller number also decreased, 1 8% and 12% respectively, when the 

endophyte was removed (De Battista et al. 1990). 

Drought stress tolerance also is increased in plants colonized by N coenophialum. 

In addition to the study by Arachevaleta and coworkers (1 989), a study involving 

pastures with differing percentages of infected fescue (Read and Camp 1986) had two of 
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three stands with low levels of endophyte infection lost due to drought, while no stands 

were lost in fields with high levels of endophytic infection. This observed drought stress 

tolerance may be attributed to the increased production of free polyols, common fungal 

metabolites, which are osmotic regulators in vascular plants (Bacon 1993). 

Endophytic infection may also provide increased protection from insect herbivory 

in many plant species. In a feeding test involving endophyte-infected tall fescue and the 

oat bird cherry aphid, Rhopa/osiphum padi (Linnaeus) (Homoptera: Aphididae), aphid 

mortality after 66 hours was 20% among aphids feeding on non-infected segments and 

100% in those feeding on infected plants (Johnson et al. 1985). House crickets, Acheta 

domesticus (Linnaeus) (Orthoptera: Gryllidae) introduced to perennial ryegrass, Lolium 

perenne (L.) (Cyperales: Poaceae), infected with the endophyte Neotyphodium /o/iae 

[(Latch, Christensen and Samuels) Glenn, Bacon & Hanlin comb. nov.], formerly 

Acremonium /oliae, were shown to have 100% mortality in 84 hours. Insect death was 

attributed to failure ofthe alimentary tract (Ahmad et al. 1985). Fall armyworm, 

Spodopterafrugiperda (J.E. Smith) (Lepidoptera: Noctuidae), survival, when reared on 

Cyperus pseudovegetus (Steud.) (Cyperaceae) infected with the endophyte Balansia 

cyperi (Clavicipitales), exhibited a significantly higher mortality (89%) when compared 

with those fed endophyte-free C. pseudovegetus (76%) (Clay et al. 1985). Among fal l  

armyworms feeding on leaves oftall fescue, 70.8% ofthe insects preferred feeding on 

non-infected leaves (Hardy et al. 1986). 

Reductions of insect herbivory may be due to accumulation of fungal metabolites, 

which serve as insect toxins. Peramine hydrobromide, a toxic metabolite of N /olii, has 

been implicated as an insect toxin (Rowan et al. 1990). Feeding by the Argentine stem 
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weevil, Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae), was significantly 

deterred by as little as 0 . 1 ,ug/g of peramine hydrobromide in an agar diet. 

Beauveria bassiana as an Endophyte 

Research on B. bassiana has demonstrated that this fungus may grow 

endophytically in com (Poaceae) (Lewis and Bing 199 1  ), which is in the same plant 

taxonomic family as fescue. Beauveria bassiana also has been reported as an endophyte 

of potatoes (Solanaceae) (Jones 1994) and therefore may be expected to grow 

endophytically in other plants in the family Solanaceae, such as tomatoes. After foliar 

application to com plants at the V8 stage, B. bassiana was recovered from the pith of 

plants. Percentage of plants with recovered B. bassiana was negatively correlated (r = -

0.376) with insect damage per plant. Over the two-year study, plants treated with B. 

bassiana exhibited suppression of tunneling by larval European com borer (0. nubilalis) 

ranging from 37.0% to 50.6% (Lewis and Bing 1991). In a later study, granular 

formulations of B. bassiana conidia, applied to the foliage of com at the whorl-stage, 

grew into and colonized up to 98.3% of plants (Bing and Lewis 199 1) .  Once established 

in the plant, the fungus again decreased tunneling of 0. nubi/a/is. Foliar applications of 

B. bassiana were also effective in establishing this fungus as an endophyte in potato 

plants. Endophytic B. bassi ana was recovered from 10% of potato plants receiving foliar 

applications of conidial suspensions (Jones 1994). 

Injection of conidial suspensions was also an effective means for inoculation of 

com plants. After injecting plants with a conidial suspension in mid-June, all plant 

segments tested at harvest contained B. bassiana. Beauveria bassiana was recovered 
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from internal areas of 65% of the plants receiving foliar applications, but not from the 

outer surfaces, indicating that the fungus persisted inside the plant. The fungus was 

recovered from the outside of 1 .  9% of injected plants, but this may be due to naturally 

occurring inoculum from the soil (Bing and Lewis 1991  ). Beauveria bassiana has been 

recovered from the bark of elm (Doberski and Tribe 1980) and ironwood trees, Carpinus 

caroliniana (Walter) (Betulaceae) (Bills and Polishook 1990), but these isolations were 

attributed to either conidia found in the bark or to the presence of B. bassiana as a 

facultative saprophyte. 

Timing of B. bassiana application may be important in establishment of the 

fungus as an endophyte and its effect on insect control. Applications of B. bassiana to the 

pretassel stage of corn resulted in significantly less tunneling by 0. nubilalis (0.93 em 

tunneling/plant), than did applications to the whorl ( 1 .42 em tunneling/plant) or late­

whorl stages ( 1 .23 em tunneling/plant). However, the same study revealed no significant 

difference in percent colonization by B. bassiana (Bing and Lewis, 1992a). Beauveria 

bassi ana recovered from the pith of colonized plants maintained virulence to larvae of 0. 

nubilalis (Bing and Lewis, 1993). 

In a study by Wagner and Lewis (2000), light and electron microscopy were used 

to observe the mode of B. bassiana colonization into and throughout corn plants. The 

conidia, once applied by foliar application to the surface of the corn plant, germinated 

and the germ tube penetrated the plant. Entry was achieved by growth through natural 

openings such as stomates, or by direct penetration through small holes. Direct 

penetration was facilitated by enzymatic activity and mechanical pressure produced by 

the fungus. Once inside the plant, the mycelium branched and grew throughout the 

7 



epidermal regions and into the palisade parenchyma. Mycelial growth was observed also 

in the xylem of the plant, which may indicate a means of passive movement throughout 

the plant. Injection of com plants with conidial suspensions, below the node of the 

primary ear, revealed that B. bassiana moves into the pith and then upward throughout 

the plant. Beauveria bassiana was most often isolated at the internode below the primary 

ear (Bing and Lewis 1992b ). Beauveria bassi ana appeared to have no adverse effects on 

the com plants. 

Toxins Produced by Beauveria bassiana 

As in other endophyte-infected plants that show a reduction of insect herbivory, 

B. bassiana toxins produced as metabolites may build up in the plant and deter feeding. 

Beauveria bassiana produces beauvericin, bassianolide, and the red pigmented toxin 

oosporein. Cyclosporin is also produced as a secondary metabolite and is a known 

immunosuppressant produced by other fungi (Boucias and Penland 1998). 

Beauvericin (5 J..Lg/fly) injected into adult blowflies, Calliphora erythrocephala (Meig.), 

resulted in 15% mortality by day 2. When injected into larval yellow fever mosquitoes, 

Aedes aegypti (Linnaeus) (Diptera: Culicidae), at a rate of 10 J..Lg/ml, mortality reached 

39% at 48 hours (Grove and Pople 1980). Suspensions ofbeauvericin (0. 1 mg/ml) added 

to water containing larval northern house mosquitoes, Culex pipiens autogenicus 

(Linnaeus) (Diptera: Culicidae), killed 44% of the larvae by 48 hours (Zizka and Weiser 

1993). Fermentation broth obtained from the production of B. bassiana and containing 

the red pigment oosporein caused 49.8% mortality of insects in three days, when applied 

topically to leaves infested with mealy bugs (Eyal et al. 1994). 
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Oral toxicities of some B. bassiana metabolites have been evaluated. Beauvericin, 

when applied to leaf disks and fed to Colorado potato beetles, had an LCso of 633 ppm 

and an LC9o of 1 1 96 ppm (Gupta et al. 199 1  ). Conversely, beauvericin was shown to 

have no oral toxicity to silkworms at levels as high as 1 000 ppm (Kanaoka et al. 1978). In 

this same study, bassianolide was also administered orally to silkworms and was lethal at 

8 ppm. 

Fungivory by Insects 

Feeding tests involving insects consuming fungi have produced various results. 

Orehesella cincta (Linnaeus) (Collembola: Entomobryidae) fed Cladosporium 

cladosporioides (Fres.) de Vries mycelia that was produced on different levels of 

nitrogen, exhibited a significantly greater rate of growth when fed on high nitrogen 

mycelia (Lavy and Verhoef. 1996). Insects fed high nitrogen (4%) mycelia had a mean 

dry weight of 0.448 mg, while those fed low nitrogen (2.2%) mycelia resulted in a mean 

dry weight of0.384 mg. Proisotoma minuta (Tullburg) (Collembola: Isotomidae) and 

Onychiurus encarpatus (Denis) (Collembola: Onychiuridae) both suffered 1 00% 

mortality when fed on Gliocladium virens (Miller et al.) and Trichoderma harzianum 

(Rifai) (Lartey et al. 1 989). The mortality of these collembolans was attributed to direct 

infection by the fungi or to ingestion of toxic metabolites. Folsomia candida (Willem) 

(Collembola: Isotomidae) were fed conidia and mycelium of B. bassiana (Broza et al . 

2001) .  Feeding on the entomopathogen resulted in no mortality, however, the conidia-fed 

collembolans were smaller (3 8 ± 3 J..Lg) than those fed mycelium ( 149 ± 12J..Lg), and conidia 

fed insects laid fewer eggs. In a study involving the entomopathogenic fungus, 
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Metarhizium anisopliae (Metsch.) Sorokin, orally administered conidia were shown to 

cause up to 20% mortality in 1 st instar larvae of the root weevil, Diaprepes abbreviatus 

(Linnaeus) (Quintela and McCoy 1997). 

Detection of Beauveria bassiana 

The traditional detection method used to determine the presence of B. bassiana in 

plant tissue is plating samples on a selective medium (Doberski and Tribe 1980; Bing and 

Lewis 1991 ;  1992a; 1992b; 1993). Plating of samples relies on the absence of other 

organisms that may outcompete the fungus targeted for isolation. Detection of fungal 

endophytes in grasses has been done using tissue print-immunoblot (Gwinn et al. 199 1), a 

technique that could be used to detect endophytes associated with other plants. 

lmmunoblot detections may be subject to interference due to variable specificity in 

antibodies. Techniques utilizing polymerase chain reaction (PCR) and gel electrophoresis 

have been used to detect B. bassiana in the cadavers ofthe migratory grasshopper 

(Melanoplus sanguinipes) (Hegedus and Khachatourians 1996). More recent PCR work, 

using primers specific to the internally transcribed spacer regions (ITS) of ribosomal 

RNA genes, allow for the detection of fungal DNA. This technique also produces a 

single-band product enabling species identification. Species confirmation is possible due 

to the highly variable regions of genetic code located between the conserved ribosomal 

RNA genes (White et al. 1990). 
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Development of Helicoverpa zea 

The normal developmental cycle of Helicoverpa zea begins with a gravid adult 

female laying eggs singly on a suitable host plant. The egg hatches in a few days and the 

larval corn earworm starts feeding on the plant. Larvae develop for two to four weeks and 

then pupate in the soil (Hunt and Baker 1982). In a study of larval H. zea fed synthetic 

diet, larvae had a mean days to pupation of 14.6 days and experienced 7% larval 

mortality (Guerra et al. 1990). In a similar study where larval H. zea were fed cotton 

flower buds, larval growth rate was in the range of8.2  to 3 3 . 5  mg!day (Halcomb et al. 

1996). The pupating insects then emerge into adults and mate, starting the life-cycle 

again. 

Objectives 

The objectives of this research were: 

1. To determine the effects of Beauveria bassiana mycelia incorporated into an 

artificial diet on corn earworms, Helicovcrpa zea (Boddie) (Lepidoptera: Noctuidae). 

2. To determine the effects of B. bassiana metabolites incorporated into an 

artificial diet on corn earworms (H. zea). 

3 .  To develop a PCR-based technique to confirm colonization oftomato plants by 

the entomopathogenic fungus B. bassiana. 
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Chapter 2 

Effects of Beauveria bassiana mycelia incorporated into synthetic diet and fed to 

larval Helicoverpa zea. 

Introduction 

The ubiquitous fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin 

has been used as a biological control agent against many major insect pests (Jaros-Su et 

al. 1999, Me Dowell et al. 1990, Poprawski et al. 2000). The focus of those studies was 

insect infection by direct application of conidia. However, it has been reported that B. 

bassiana is an endophyte of com plants (Bing and Lewis 1991)  and this observation 

opened new possibilities for use of this fungus. Bing and Lewis ( 1 991)  reported that B. 

bassiana persisted in the plant following successful endophytic colonization and provided 

protection against tunneling of the European com borer Ostrinia nubilalis (Hubner) 

(Lepidoptera: Crambidae ). Suppression of tunneling was attributed to direct infection by 

the fungus or to fungal metabolites produced in plant tissues. 

Besides direct infection of susceptible insect hosts, the presence of B. bassiana in 

plant tissue may affect insects that ingest the fungus. Endophytic fungal growth provides 

protection from insect herbivory in some plant species (Ahmad et al. 1985, Clay et al. 

1985, Hardy et al. 1 986, Johnson et al. 1 985). In these studies, reductions in insect 

herbivory have been credited to the build-up of fungal metabolites, but based on research 

involving feeding fungi to insects, a fungal diet may affect insect development and 

survivorship (Broza et al. 200 1 ,  Lartey et al. 1989, Lavy and Verhoef 1996). Tests 

involving another entomopathogenic fungus, Metarhizium anisopliae (Metsch.) Sorokin, 
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have shown that orally-administered conidia can cause up to 20% mortality in the root 

weevil Diaprepes abbreviatus (Linnaeus) (Quintela and McCoy 1 997). 

The aim of the present study was to investigate the effects of ingested B. bassi ana 

andM anisopliae on com earworms (also commonly known as tomato fiuitworms), 

Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) by feeding the insects a synthetic diet 

into which mycelia ofthese fungi had been incorporated. The specific objective was: 

1)  to determine the effects of four rates of diet-incorporated mycelia from two B. 

bassiana isolates and one isolate of M anisopliae on mortality, growth, and pupation of 

corn earworms. 

Materials and Methods 

Propagation and Collection of Entomopathogenic Fungi 

The entomopathogenic fungi included in this study were Beauveria bassiana (Bb) 

isolate 1 1 -98, which was obtained in Scott County, TN, from an infected click beetle 

(Coleoptera: Elateridae), B. bassiana isolate 3-00, and Metarhizium anisopliae (Ma) 

isolate 2-00, the latter isolates were cultured from Japanese beetle cadavers [Popillia 

japonica (Newman)(Coleoptera: Scarabiidae)] collected in Warren County, TN. Fungi 

were grown on Sabouraud dextrose agar (Difco, Sparks, MD)+ 0.5% yeast extract 

(SDA Y), incubated at 25°C for approximately 3 weeks. Conidia were harvested by 

brushing the surface of the plates with a stenciling brush and passing the conidia through 

a # 100-mesh sieve ( 1 50-f.lm opening). 
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Mycelial Production 

Inocula were prepared by adding 2.5 g yeast extract and 2.5 g dextrose to 250 ml 

de-ionized water in a 500-ml Erlenmeyer flask. Flasks with medium were autoclaved and 

cooled before inoculation with conidia. Inoculated flasks were incubated in a shaker 

( 1 50-200 RPM) for 4-5 days at room temperature. 

Mycelia were produced in a BIOFLO 2000 fermenter (New Bruswick Scientific, 

Edison, NJ). The fermenter vessel contained 7-8 L of de-ionized water with 1% dextrose 

and 1% yeast extract. After autoclaving the vessel with medium, the fermenter was 

incubated at 24°C, with 200-RPM agitation, and 4 L compressed air/min aeration. The 

medium was agitated and aerated for one day to confirm sterility. After this period, 

approximately 1 00 ml of fungal inoculum was injected into the fermenter vessel and the 

fungus was incubated for seven days. Total dry weight ofBb 1 1 -98 mycelia produced 

was 66 g in 7 L of media. Dry weight ofBb 3-00 was 74 g from 8 L of media and isolate 

Ma 2-00 produced 68 g in 8 L. 

The mycelia were harvested by vacuum filtration through a # 18-mesh sieve 

covered with #4 Whatman filter paper. After removal of liquid, the filter paper with the 

mycelial mat was removed from the sieve and placed on a rack in a vertical flow hood to 

air-dry. The filter paper was carefully removed and the mycelia were allowed to dry 

overnight. Dried mycelia were blended to a fine powder and passed through a #60-mesh 

sieve (250-f.lm opening). 
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Insects 

Eggs of the Com earworm, Helicoverpa zea (Boddie), were obtained from 

Agripest (Zebulon, NC). Approximately 75-100 eggs were placed in each of several Petri 

dishes on filter paper moistened with de-ionized water. Petri dishes were placed in an 

incubator at 25°C for two days or until larvae hatched. Neonate larvae were collected for 

use in experiments. 

Preparation of Diet 

Artificial beet armyworm diet mix (Product #F9219) was obtained from Bio-Serv 

Inc. (Frenchtown, NJ). To prepare the diet, a 250-ml beaker with 82 ml of de-ionized 

water was placed on a hot plate and the water was boiled. Agar (2 g) was added to the 

boiling water and the solution was heated until it cleared. The agar solution was then 

placed into a blender with 1 6. 12 g of dry diet mix. The mixture was blended thoroughly 

and cooled for about 1 min before addition of mycelial powder. Dry mycelial powder was 

added to the diet at 0. 1 ,  0.5, 1 ,  and 5% weight by volume. Diets with mycelia were mixed 

vigorously, poured into Petri dishes, and stored in a refrigerator (4.5°C) until used. 

Control diet containing only synthetic diet was prepared also. 

Diet Feeding Tests 

The three entomopathogenic isolates were evaluated separately in repeated tests. 

Five rates (0, 0. 1 ,  0 .5 , LO, and 5 .0) of mycelia incorporated into diet were tested for each 

isolate. Treatments were arranged in a randomized complete block design. Neonate com 

earworm larvae were exposed to the entomopathogenic mycelia incorporated into the 
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artificial diet. Each neonate corn earworm was placed into a 29.6 cm3 plastic cup. Plugs 

of the diet were prepared with a cork borer ( 1 -cm inside diameter). One plug of diet was 

added to each cup. Each treatment had 20 replicates; each replicate consisted of a single 

insect in a cup. Cups were placed in an incubator and held at 24°C. Additional diet was 

added to the cups when needed, to provide an excess of diet and maintain freshness. 

Larvae were observed daily and mortality, pupation and pupal weight were recorded. 

Larval weights were recorded for all treatments in all tests on day 1 5 .  The experiment 

was terminated after the surviving insects in the control treatment reached 100% 

pupation. Feeding test 1 ended on day 19 and feeding test 2 was terminated on day 20. 

Larval mortality, pupal weight, and percent pupation of surviving larvae were 

compared among treatments using the PC-SAS GLM procedure (SAS Institute Inc., Cary, 

NC). The response to the quantitative factor "rate of mycelia" was evaluated with single­

degree-of freedom orthogonal polynomials. 

Results 

Larval Mortality 

With one exception, as the percentage of B. bassiana and M. anisopliae mycelia 

incorporated into synthetic diets increased, mortality of Helicoverpa zea increased 

significantly (Figures 2- 1 ,  2-2, 2-3) The exception came for those insects fed Ma 2-00 in 

the second test, where higher rates of mycelia had significantly less mortality (Figure 2-

3). 

In both the studies involving isolate Bb 1 1 -98, insects fed the 5% rate had 

significantly higher mortalities than all other rates on every day tested (Table 2- 1) .  Bb 

1 7  



1 00  

90 
8o 
70 

A so 

50 
40 

30 

� 20 
0 
- 1 0  

� 0 (ij t:: 

Day S 

0 

� 1 00 DayS 

90 
80 
70 

B. so 
50 
40 
30 
20 
1 0  

Day10 
**** 

0 0 0 0 0 

**** Day10 

0 ................ .-...,....._......,.._.,... 

**** Day 1 S  *** * Day 1 9  **** 

0 0 0 0 0 0 � 0 0 0 

**** Day 1 S  ****Day 20 **** 

-· 

0 0. 1 o.s 1 s 0 0.1 O.S 1 s 0 0.1 O.S 1 s 0 0. 1 o.s 1 s 

Rate 

Figure 2- 1 .  Percent larval mortality by day of Helicoverpa zea fed synthetic diets 
containing 0, 0. 1 ,  0.5, 1 ,  or 5% (weight/volume) mycelia ofthe entomopathogenic fungus 
Beauveria bassiana isolate 1 1 -98 (A=1st test; B=2nd test). Error bars = standard error of 
the mean. In both tests, on each evaluation day, the effect of rate was significant. Using 
single-degree-of-freedom orthogonal contrasts, rates of mycelia were compared with the 
"0" rate control for the effects on larval mortality; *, * *, * * *, * * * * = significant 
differences at P � 0.05, 0.0 1 ,  0.00 1 ,  and 0.0001 ,  respectively. 
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Figure 2-2. Percent larval mortality by day of Helicoverpa zea fed synthetic diets 
containing 0, 0. 1 ,  0 .5, 1 ,  or 5% (weight/volume) mycelia ofthe entomopathogenic fungus 
Beauveria bassiana isolate 3-00 (A=1 st test; B=2nd test) . Error bars = standard error of the 
mean. The effect of rate was significant on Day 10, 1 5, and 19  in test 1 ,  and on day 1 5  
and 20 in test 2 .  Using single-degree-of-freedom orthogonal contrasts, rates of mycelia 
were compared with the "0" rate control for the effects on larval mortality; *, * *, * * *, 
**** = significant differences at P � 0.05, 0.0 1 ,  0.001 ,  and 0.000 1 ,  respectively. 
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Figure 2-3 . Percent larval mortality by day of Helicoverpa zea fed synthetic diets 
containing 0, 0. 1 ,  0 .5 ,  1 ,  or 5% (weight/volume) mycelia ofthe entomopathogenic fungus 
Metarhizium anisopliae isolate 2-00 (A=1st test; B=2nd test). Error bars = standard error 
ofthe mean. The effect of rate was significant on all days oftest 1 but not in test 2. Using 
single-degree-of-freedom orthogonal contrasts, rates of mycelia were compared with the 
"0" rate control for the effects on larval mortality; *, * *, * * *, * * * * = significant 
differences at P � 0.05, 0 .01 ,  0.001 ,  and 0.0001 ,  respectively. 
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Table 2- 1 .  Rate contrast of percent larval mortality by day of Helicoverpa zea fed 
synthetic diets containing 0, 0. 1 ,  0.5, 1, or 5% (weight/volume) mycelia ofthe 

th . fu B 
. 

b 
. . 1 t 1 1  98 entomopa og erne ngus eauvena ass1ana tso a e -

Rate 
Study 1 

Contrast 
Day Day Day Day Day 

5 10 1 5  19  5 
0 vs. 0. 1 NS - - NS NS 
0 vs. 0 .5 NS - - NS NS 
0 vs. 1 NS - - NS NS 
0 vs. 5 **** **** **** **** **** 

0. 1 vs. 0 .5 NS - - NS NS 
0. 1 vs. 1 NS - - NS NS 
0. 1 vs. 5 **** **** **** **** **** 
0.5 vs. 1 NS - - NS NS 
0.5 vs. 5 **** **** **** **** **** 
1 vs. 5 **** **** **** **** **** 

NS = not significantly different. 

Study2 
Day Day 
10 15 

NS NS 
NS NS 
NS *** 

**** **** 
NS NS 
* **** 

**** **** 
* **** 

**** **** 
**** **** 

*, **, ***, **** = significant differences at P � 0.05, 0.0 1 ,  0.001 ,  and 0.000 1 ,  
respectively, based on single-degree-of-freedom orthogonal contrasts. 
- = values were 0 and contrasts could not be calculated. 

Day 
20 
NS 
NS 
*** 
**** 
NS 

**** 
**** 
**** 
**** 
**** 
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1 1 -98 at the 5% rate resulted in insects reaching 100% mortality by days 5 and 10, 

in the second and first tests, respectively (Figure 2-1) .  Insects fed lower rates ofBb 1 1 -98 

suffered no mortality in the first test and had low mortality in the second study, except for 

those insects fed the 1% rate, which reached 50% mortality by day 20 (Figure 2- 1 ). 

Insects fed diets containing Bb 3-00 at the 5% rate had significantly higher 

mortalities than Bb 3-00 diets at lower rates by day 10 and day 1 5, in the first and second 

tests, respectively (Table 2-2). Although insects fed the 5% rate ofBb 3-00 had high 

mortality, these insects suffered lower mortality than insects fed Bb 1 1 -98 at 5%. Insects 

fed Bb 3-00 diets with low rates of mycelia exhibited low mortality (Figure 2-2). 

Insects fed the M anisopliae diets had low mortality, except in the first test 

where, by day 19, the 1% and 5% treatments had mortalities of47% and 100%, 

respectively (Figure 2-3). Both the 1% and 5% rates had significantly higher mortality 

than all other rates of diet, in the first study (Table 2-3). The second study resulted in the 

1% and 5% rates with mortalities significantly lower by day 20 than those insects fed the 

control diet (Table 2-3, Figure 2-3). 

Larval Weights 

In general, adjusted larval weight ratios of H. zea fed mycelia of B. bassiana and 

M anisopliae were greatly reduced as concentrations of mycelia in diets increased 

(Tables 2-4, 2-5, 2-6). Larvae fed mycelia ofBb 1 1 -98 followed this trend, but due to the 

loss of all larvae with the highest concentration of mycelia, growth rates could not be 

calculated (Table 2-4). Larvae fed the 1% rate were significantly smaller than insects fed 
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Table 2-2. Rate contrast of percent larval mortality by day of Helicoverpa zea fed 
synthetic diets containing 0, 0. 1 ,  0. 5, 1 ,  or 5% (weight/volume) mycelia ofthe 
e th · ru  B 

.
b " l t 3 00 ntomopa og erne ngus eauvena asswna tso a e -

Rate 
Study 1 

Contrast 
Day Day Day Day Day 

5 10  1 5  19  5 
O vs. 0. 1 - NS NS NS NS 
0 vs. 0.5 - NS NS NS NS 
0 vs. 1 - NS NS NS NS 
0 vs. 5 - ** **** **** NS 

0. 1 vs. 0 .5  - NS NS NS * 
0. 1 vs. 1 - NS NS NS * 
0. 1 vs. 5 - ** ** **** NS 
0 .5  vs. 1 - NS NS NS NS 
0.5 vs. 5 - * ** **** NS 
1 vs. 5 - ** **** **** NS 

NS = not significantly different. 

Study 2 
Day Day 
10 15 

NS NS 
NS NS 
NS NS 
NS ** 
NS NS 
NS NS 
NS * 
NS NS 
* **** 
* **** 

*, **, ***, **** = significant differences at P � 0.05, 0.0 1 ,  0 .00 1 ,  and 0.000 1 ,  
respectively, based on single-degree-of-freedom orthogonal contrasts. 
- = values were 0 and contrasts could not be calculated. 

Day 
20 
NS 
NS 
NS 
** 
NS 
NS 
** 
NS 

**** 
**** 
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Table 2-3 . Rate contrast of percent larval mortality by day of Helicoverpa zea fed 
synthetic diets containing 0, 0. 1 ,  0.5, 1 ,  or 5% (weight/volume) mycelia ofthe 
e h 

. 
fu M t h .  . . f . 1 2 00 ntomopat ogemc ngus e ar lZlum amsop. we tso ate -

Study 1 Study 2 
Rate 

Contrast Day Day Day Day Day Day Day 
5 10 1 5  19  5 10 1 5  

0 vs. 0. 1 NS NS NS NS NS NS NS 
0 vs. 0 .5 NS NS NS NS NS NS NS 
0 vs. 1 NS **** *** **** NS NS NS 
0 vs. 5 **** **** **** **** NS NS NS 

0. 1 vs. 0. 5 NS NS NS NS NS NS NS 
0. 1 vs. 1 NS *** ** **** NS NS NS 
O. l vs. 5 **** **** **** **** NS NS NS 
0.5 vs. 1 NS **** **** **** NS NS NS 
0.5 vs. 5 **** **** **** **** NS NS NS 
1 VS. 5 **** **** **** **** NS NS NS 

NS = not significantly different. 
*, **, ***, **** = significant differences at P � 0.05, 0 .01 ,  0.00 1 ,  and 0.0001 ,  
respectively, based on single-degree-of-freedom orthogonal contrasts. 
- = values were 0 and contrasts could not be calculated. 
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Table 2-4. Development of larval Helicoverpa zea fed synthetic diets containing 0, 0. 1 ,  0.5, 1 ,  or 5% (weight/volume) mycelia of the 
_ ... .... ...., ... ..... ....,,.,-..... ... -o-... ....... - ... _ ... ... e- .... ......, ...... _... ... .. _.. ·- ---..... ·-··- --,� ........ _ ... _.,_ ... ... - - · 

Larval Number At conclusion of study 
Adjusted growth oflarvae Adjusted 

Mean days Number Number Isolate Rate a larval weight remaining pupal weight 
ratiob rate 

on Day ratiod to pupation of larvae oflarvae 
(mg/day) 

1 5c pupated dead 

Stud_y_ 1 
Control 0 1 .00 ± 0.0540 23 ± 1 . 2  7 1 .00 ± 0.0359 14.8 ± 0.308 1 9  

Bb  1 1 -98 0. 1 e 0 1 .08 ± 0.0267 13 . 5  ± 0. 177 1 9  - -

Bb 1 1 -98 0.5 
0.898 ± 

20 ± 2. 1 1 2  0.896 ± 
1 5 .7  ± 0.323 1 6  

0.0937 0.0387 

Bb 1 1 -98 1 
0.280 ± 6.3 ± 1 .2 20 0 
0.05 17  

- -

Bb 1 1 -98 5 - - 0 - - 0 
Study 2 

Control 0 1 .00 ± 0.0655 18 ± 1 .2 7 1 .00 ± 0.03 1 8  1 5 . 5  ± 0.322 17  

Bb 1 1 -98 0. 1 
0.950 ± 

1 8  ± 1 .3 1 0  1 .09 ± 0.0405 1 5 .5  ± 0 .355 17 0.0687 
Bb 1 1 -98 0 .5 1 . 02 ± 0.0807 19  ± 1 . 5  1 9  1 . 12 ± 0.0882 1 8 .6 ± 0.245 5 

Bb 1 1 -98 1 
0.0484 ± 0.90 ± 

9 0 0.0 184 0.34 
- -

Bb 1 1 -98 __ 5 ___ - - 0 - - 0 L_ _______ ------- - -a Rate = Percent weight by volume of Beauveria bassiana isolate 3-00 mycelia incorporated into a synthetic diet. 
b Adjusted larval weight ratio = mean weight of treatment larvae on day 1 5/ mean weight of larvae in the control. 
c Number of larvae on Day 1 5  = n for calculations of adjusted larval weight and growth rate. 
d Adjusted pupal weight ratio = mean weight of treatment pupae I mean weight of pupae in the control .  
e Not determined. 

N VI 
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0 
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1 9  
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1 0  

20 
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20 
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Table 2-5 . Development oflarval Helicoverpa zea fed synthetic diets containing 0, 0. 1 ,  0.5, 1 ,  or 5% (weight/volume) mycelia ofthe 
e .. . ..... ....... . .. ..._ .. " . . - - -

Adjusted Larval Number 
Adjusted 

At conclusion of study 
growth of larvae Mean days Number Number Isolate Rate a larval weight pupal weight 

• b rate remammg 0 d to pupation of larvae of larvae ratio (mg/day) on day 1 5c ratio 
pupated dead 

Study 1 
Control 0 1 .00 ± 0.0540 23 ± 1 .2 7 1 .00 ± 0.0359 14.8 ± 0.308 1 9  1 
Bb 3-00 0. 1 1 . 19 ± 0.368 27 ± 8 .3  2 1 .00 ± 0.0325 1 3 .4 ± 0.380 1 8  2 

Bb 3-00 0 .5  0.843 ± 
19  ± 1 .4 1 2  

0.758 ± 
14.9 ± 0.379 1 0  2 0.06 14 0.0363 

Bb 3-00 1 0.932 ± 0. 1 33 21  ± 3 .0 10  
0.880 ± 

1 5 .0 ± 0.469 14  0 0.04 16  

Bb  3-00 5 0.00763 ± 0. 17 ± 
1 1  e 0 14  0.0025 1 0.057 

- -

Study 2 
Control 0 1 .00 ± 0.0655 18  ± 1 .2 7 1 .00 ± 0.03 1 8  1 5 .6 ± 0.322 1 7  3 
Bb 3-00 0. 1 1 .00 19 1 1 .3 5  ± 0.0698 14.4 ± 0. 1 99 14  3 
Bb 3-00 0 .5  1 .08 ± 0. 1 10 20 ± 2.0 8 1 .20 ± 0.0807 1 5 . 1 ± 0.373 20 0 
Bb 3-00 1 1 . 1 8 ± 0. 108 22 ± 2.0 5 1 .48 ± 0.0682 1 5 .0 ± 0.254 1 9  0 

Bb 3-00 5 0.0419  ± 0.78 ± 
1 1  0 9 0.00612 0. 1 1  

- -
--a Rate = Percent weight by volume of Beauveria bassiana isolate 3-00 mycelia incorporated into a synthetic diet. 

b Adjusted larval weight ratio = mean weight of treatment larvae on day 1 5/ mean weight of larvae in the control. 
c Number of larvae on Day 1 5  = n for calculations of adjusted larval weight and growth rate. 
d Adjusted pupal weight ratio = mean weight of treatment pupae I mean weight of pupae in the control. 
e Not determined. 

Number 
of larvae 
remaining 

0 
0 

8 

6 

5 

0 
0 
0 
1 

1 1  



Table 2-6. Development oflarval Helicoverpa zea fed synthetic diets containing 0, 0. 1 ,  0 .5 ,  1 ,  or 5% (weight/volume) mycelia of the 
e . .  . 

--------r-----o----- - ----o-- ---- - ---- - ' 
Larval Number 

Adjusted 
At conclusion of study 

N -.....l 

Adjusted larval growth oflarvae Mean days Number Number 
Isolate Rate a 

weight ratiob rate remaining 
pupal weight to pupation of larvae of larvae ratiod 

(mg/day) on day 1 5c pupated dead 
Study 1 

Control 0 1 .00 ± 0.0540 23 ± 1 .2 7 1 .00 ± 0.0359 14.8 ± 0.308 1 9  1 

Ma 2-00 0. 1 0.833 ± 0.0523 1 9  ± 1 .2 7 
0.797 ± 

1 5 . 1 ± 0.347 1 8  2 0.0403 
Ma 2-00 0 .5  0.802 ± 0. 107 1 8  ± 2.4 20 0 .713 1 9.0  1 0 
Ma 2-00 1 0.07 16  ± 0.0309 1 .6 ± 0.70 1 2  - - 0 9 
Ma 2-00 5 e 0 0 1 9  - - - -

Study 2 
Control 0 1 .00 ± 0.0655 18 ± 1 .2 7 1 .00 ± 0.03 1 8  15 .6  ± 0.322 17  3 
Ma 2-00 0. 1 0.608 1 1  1 1 .66 ± 0.0413  1 2.9 ± 0.235 1 8  1 
Ma 2-00 0 .5  1 .06 20 1 1 .6 1  ± 0.0539 12.7 ± 0.297 19  1 
Ma 2-00 1 1 .58 ± 0.000539 29 ± 0.0 10  2 1 .64 ± 0.0391  13 .3  ± 0.3 1 5  20 0 
Ma 2-00 5 1 .25 ± 0. 1 52 23 ± 2 .8 7 1 .62 ± 0.0656 1 4.9 ± 0.228 19  0 

a Rate = Percent weight by volume of Metarhizium anisopliae isolate 2-00 mycelia incorporated into a synthetic diet. 
b Adjusted larval weight ratio = mean weight of treatment larvae on day 1 5/ mean weight of larvae in the control. 
c Number of larvae on Day 15  = n for calculations of adjusted larval weight and growth rate. 
d Adjusted pupal weight ratio = mean weight of treatment pupae I mean weight of pupae in the control. 
e Not determined. 

Number 
of larvae 
remaining 

0 

0 

1 9  
9 
0 

0 
1 
0 
0 
1 

I 



lower rates. In the first test, the lowest rate ofBb 1 1 -98 had no larvae on day 1 5, due to 

pupation, and a larval growth rate could not be calculated (Table 2-4). 

For insects fed Bb 3-00 there was a significant decrease in the adjusted larval 

weight ratios in the 5% treatments (Table 2-5). In the first test, larvae fed the 5% rate had 

the lowest recorded adjusted larval weight ratio (0.00763 ± 0.0025 1)  and larval growth 

rate (0. 1 7  ± 0.057 mg/day). The second study had a similar result; insects fed the 5% rate 

had an adjusted larval weight ratio of0.04 19  ± 0.006 12. In the first study, larvae fed the 

0. 1% rate had the highest adjusted larval weight ratio ( 1 . 19 ± 0.368) of all treatments 

containing Bb 3-00. 

In the first study, treatments containing M anisopliae had the same general trend, 

with the 1% rate having a significantly lower adjusted larval weight ratio (0.07 1 6  ± 

0.0309) than insects fed the lower rates (Table 2-6). The 5% treatment, in the first study, 

had no larvae remaining by day 1 5  and a growth rate could not be calculated. The trend 

was reversed in the second study, where insects fed increased percent mycelia had the 

larger adjusted larval weight ratios. The 1% rate produced the largest larvae, which had 

an adjusted larval weight ratio of 1 . 58 ± 0.000539. The lowest adjusted larval weight 

ratio (0.608) in the second study came from the 0. 1% group, which had only one 

remaining larva on day 1 5 .  

Pupation of Surviving Larvae 

In the first study, insects fed Bb 1 1 -98 at the three highest rates (0.5 ,  1 ,  and 5%) 

had significantly lower pupation rates than the control diet-fed insects by day 1 5  (Figure 

2-4). The lowest rate of diet (0. 1 %) had a significantly higher percent pupation than 
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Figure 2-4. Percent pupation by day of Helicoverpa zea fed synthetic diets containing 0, 
0. 1 ,  0 .5 ,  1 ,  or 5% (weight/volume) mycelia of the entomopathogenic fungus Beauveria 
bassiana isolate 1 1 -98 (A= 1st test; B=2nd test). Error bars = standard error of the mean. In 
test 1 ,  the effect of rate was significant (P < 0.0001)  on all days. In test 2, rate was 
significant on day 1 5, 1 7, and 20 at P < 0. 000 1 .  Using single-degree-of-freedom 
contrasts, treatments were compared with the "0" rate control. *, **, * * *, **  * *  = 
significant at P .:5 0.05, 0 .0 1 ,  0.00 1 ,  and 0.0001 ,  respectively. nd = not determined due to 
death of all larvae. t = only one surviving larvae. 
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insects fed control diet by day 1 3  (50%), but by day 17  the control group had reached 

95% and the 0. 1% rate was no longer significantly higher (Figure 2-4, Table 2-7). The 

second test had insects in the 0.5% and 1% treatments with significantly lower percent 

pupation by day 1 5  and the 5% rate had no larvae pupate, therefore no comparisons could 

be made. 

Insects fed Bb 3-00, in the first study, had significantly less larvae pupating than 

the control fed insects in all treatments by day 17, except the lowest rate (0 . 1% ), which 

had 1 00% pupation by day 17  (Figure 2-5) (Table 2-8). The second study had only one 

treatment (5%) with significantly less larvae pupating than the control. All other rates had 

high percent pupation ranging from 82 to 1 00%. 

In the first test involving Ma 2-00, all rates except the 0. 1% treatment had 

significantly lower percent pupation than the control by day 1 5  (Figure 2-6) (Table 2-9). 

The 0. 1% rate resulted in 1 00% of the larvae pupating. All Ma 2-00 fed insects in the 

second study had the highest combined percent pupation of all treatments in all studies. 

All treatments had at least 95% pupation by day 1 7, resulting in no significant differences 

at the end ofthe study. 

Pupal Development 

Pupal weights of insects fed Bb 1 1 -98 were lowest in the first test, where the 

0.5% treatment had an adjusted pupal weight ratio of0.896 ± 0.0387 (Table 2-4). In the 

second study, the 0.5% rate had the largest adjusted pupal weight ratio ( 1 . 1 2 ± 0.0882). In 

both tests, the two highest rates had no pupae to weigh and the 0.5% rate had the longest 

days to pupation (Table 2-4). 
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Table 2-7. Rate contrast ofpercent pupation by day ofHe/icoverpa zea fed synthetic diets 
containing 0, 0. 1 ,  0 .5, 1 ,  or 5% (weight/volume) mycelia ofthe entomopathogenic fungus 
Beauveria bassiana isolate 1 1 -98. 

Rate 
Study 1 Study 2 

Contrast Day Day Day Day Day Day Day 
1 3  1 5  1 7  1 9  1 3  1 5  1 7  

0 vs. 0. 1 * * **  * NS NS NS NS NS 
0 vs. 0 .5 NS * * * NS * * * *  * ***  
0 vs. 1 NS ****  ****  ****  NS ***  * ***  
0 vs. 5 NS * **  ***  - - -

0. 1 vs. 0 .5  * * **  * ***  * NS NS ***  * ***  
0. 1 vs. 1 * * **  * ***  * ***  * * * *  NS * *  * * * *  
0. 1 vs. 5 NS ** * *  * * *  - - -
0 .5 vs. 1 NS ** ****  * ***  NS NS NS 
0.5 vs. 5 NS NS * **  - - -

1 vs. 5 NS NS NS NS - - -

NS = not significantly different. 
*, ** , *** , * * * * = significant differences at P S 0.05, 0.0 1 ,  0.00 1 ,  and 0.000 1 ,  
respectively, based on single-degree-of-freedom orthogonal contrasts. 
- = values were 0 and contrasts could not be calculated. 

Day 
20 
NS 

****  
****  

-

****  
* ***  

-

* 
-

-
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Figure 2-5 . Percent pupation by day of Helicoverpa zea fed synthetic diets containing 0, 
0. 1 ,  0.5, 1 ,  or 5% (weight/volume) mycelia ofthe entomopathogenic fungus Beauveria 
bassiana isolate 3-00 (A=1 st test; B=2nd test). Error bars = standard error of the mean. In 
test 1 ,  the effect of rate was significant on day 13 ,  1 7, and 19 at P � 0. 000 1 and on day 1 5  
at P = 0.0006. In  test 2 ,  rate was significant on day 1 5  (P = 0.01 5), 1 7  and 20 (P � 
0.0001 ). Using single-degree-of-freedom contrasts, the effect of treatment on percent 
pupation was compared with the "0" rate control. *, ** ,  *** ,  **** = significant at P � 
0.05, 0 .01 ,  0.001 ,  and 0.000 1 ,  respectively. 
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Table 2-8 . Rate contrast of percent pupation by day ofHelicoverpa zea fed synthetic diets 
containing 0, 0. 1 ,  0 .5 ,  1 ,  or 5% (weight/volume) mycelia ofthe entomopathogenic fungus 
Beauveria bassiana isolate 3-00. 

Rate 
Study 1 Study 2 

Contrast Day Day Day Day Day Day Day 
13  15  17  1 9  1 3  1 5  1 7  

O vs. 0. 1 ****  NS NS NS NS NS NS 
0 vs. 0 .5  NS * **  ***  NS NS NS 
0 vs. 1 NS NS **  **  NS NS NS 
0 vs. 5 NS * ****  * ***  NS * *  * ***  

0. 1 vs. 0 .5 * * * *  * * *  * * *  ***  NS NS NS 
0. 1 vs. 1 * * **  * *  * *  **  NS NS NS 
0. 1 vs. 5 **  ***  ****  * ***  NS ****  ****  
0 . 5  vs. 1 NS NS NS NS NS NS NS 
0.5 vs. 5 NS NS * *  * * *  NS * *  * ***  
1 vs. 5 NS NS **  ****  NS * * * *  * * * *  

NS  = not significantly different. 
*, **,  *** , **** = significant differences at P � 0.05, 0.0 1 ,  0.00 1 ,  and 0.000 1 ,  
respectively, based on single-degree-of-freedom orthogonal contrasts. 
- = values were 0 and contrasts could not be calculated. 

Day 
20 
NS 
NS 
NS 

****  
* 

NS 
****  
NS 

****  
****  
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Figure 2-6. Percent pupation by day of Helicoverpa zea fed synthetic diets containing 0, 
0. 1 ,  0 .5,  1 ,  or 5% (weight/volume) mycelia ofthe entomopathogenic fungus Metarhizium 
anisop/iae isolate 2-00 (A=1 st test; B=2"d test). Error bars = standard error of the mean. In 
test 1 ,  the effect of rate was significant on day 1 5, 17, and 1 9  at P � 0. 000 1 .  In test 2, the 
effect of rate was significant on Day 13  (P � 0.000 1)  and 1 5  (P = 0.0095). Using single­
degree-of-freedom contrasts, the effect of treatment on percent pupation was compared 
with the "0" rate control . *, * *, * **, * * ** = significant at P � 0.05, 0.0 1 ,  0.00 1 ,  and 
0.0001 ,  respectively. t = only one surviving larvae. 
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Table 2-9. Rate contrast of percent pupation by day of Helicoverpa zea fed synthetic diets 
containing 0, 0. 1 ,  0 .5,  1 ,  or 5% (weight/volume) mycelia ofthe entomopathogenic fungus 
M h . . f . l 2 00 etar, rzrum amsopj rae rso ate -

Rate 
Study 1 

Contrast Day Day Day 
13  1 5  1 7  

0 vs. 0 . 1 NS NS NS 
0 vs. 0 .5  NS ****  ****  
0 vs. 1 NS ****  * ***  
0 vs. 5 NS NS ****  

0. 1 vs. 0.5 NS * ***  ****  
0. 1 vs. 1 NS ***  ****  
0. 1 vs. 5 NS NS ****  
0 .5  vs. 1 NS NS NS 
0.5 vs. 5 NS NS NS 

1 vs. 5 NS NS NS 

NS = not significantly different. 

Study 2 
Day Day Day Day 
1 9  13  1 5  1 7  

NS ****  **  NS 
****  ****  **  NS 
* * * *  * ***  * NS 
****  NS NS NS 
****  NS NS NS 
****  NS NS NS 
****  ****  * NS 
NS NS NS NS 
NS ****  * NS 
NS ****  * NS 

*, ** ,  * * *, * * * * = significant differences at P � 0.05, 0.0 1 ,  0 .00 1 ,  and 0.0001 ,  
respectively, based on single-degree-of-freedom orthogonal contrast. 
- = values were 0 and contrasts could not be calculated. 

Day 
20 
NS 
NS 
NS 
NS 
NS 
NS 
NS 
NS 
NS 
NS 
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When percent mycelia in the diet was increased, insects fed Bb 3-00 in the first 

study, had decreased pupal weight and an increase in days to pupation (Table 2-5). In the 

second study all treatments had larger adjusted pupal weight ratios than the control group. 

The largest adjusted pupal weight ratio ( 1 .48 ± 0.0682) occurred in the 1% treatment, in 

which 1 9  insects pupated (Table 2-5). 

Insects fed Ma 2-00 had differing results in the two tests. The first test had lower 

adjusted pupal weight ratios in all treatments when compared to the control group (Table 

2-6). In the second test, all treatments had considerably larger pupae than the control . The 

largest adjusted pupal weight ratio occurred in the 0. 1% treatment ( 1 .66 ± 0.04 1 3). In 

both tests, mean days to pupation tended to increase with more mycelia in the diets. 

Discussion 

Although negative effects produced by the ingestion of entomopathogenic fungi 

are expected, insects feeding on diets with mycelia may actually gain nutritional 

resources from the fungus. When compared to insects fed fungus-free diets, some insects 

fed diets containing the entomopathogens B. bassiana and M anisopliae experienced 

increases in weights of pupae and larvae. Insects that had larger pupal and larval weights 

occurred mainly in those fed diets containing low concentrations of fungal mycelia. 

Developmental time to pupation was also shorter in insects fed diets that resulted in 

additional weight gain. Weight gains and shorter developmental times may indicate that 

the diets were supplemented by the presence of the fungus, or by metabolites remaining 

inside or on the fungal mycelia. These findings remain consistent with those of Lavy and 

Verhoef ( 1 996), where collembola feeding on hyphae of Cladosporium cladosporioides, 
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which contained varying levels of nitrogen, grew faster and had increased body weight, 

when feeding on the higher nitregen diets. 

The anticipated deleterious effects were observed in insects fed diets that 

contained high concentrations ofthe isolates ofentomopathogenic fungi . Deleterious 

effects, which included high mortality and delayed development of com earworms, may 

be attributed to the toxicity of the fungal mycelia or metabolites produced by the fungus. 

Similar results were found by Lartey et al. (I 989), where the toxic effects of fungal 

metabolites or direct parasitism by the fungus caused high mortality of collembola 

feeding on plant pathogens. Delayed development of some larvae may also be attributed 

to starvation of some insects that avoided diets containing high concentrations of fungal 

mycelia, such as the high number of insects fed Bb 1 1 -98 at 1% remaining in the larval 

stage. Some insects that died, were observed to be stuck to the plastic cups by a 

translucent fluid, which emanated from the anus of the insect. These observations may be 

similar to those noted by Ahmad et al. ( 1 985), where house crickets, Acheta domesticus 

(Linnaeus), suffered from complete failure ofthe alimentary process due to feeding on 

perennial ryegrass infected with Neotyphodium loliae [(Latch, Christensen and Samuels) 

Glenn, Bacon & Hanlin comb. nov.], previously known as Acremonium loliae. 

When pupae were allowed to develop in a rearing cage, the emerging adults were 

observed to suffer from reproductive abnormalities. While normal Helicoverpa zea would 

lay eggs singly on a suitable surface, some individuals were observed to lay masses of 

eggs, surrounded by several adults. These adults were adhered to the mass of eggs, 

probably from the glue-like substance secreted by the adult to attach eggs to plant 
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surfaces. Although this behavior may be the result of the inability to regulate egg laying, 

it may also be due to the lack of a suitable surface of a host plant. 

Based on this study, it is probable that insects feeding on entomopathogenic fungi 

may be subjected to both the toxic effects of metabolites and the increased nutrition 

provided by the fungus. Insects fed diets with low concentrations of mycelia tend to 

benefit from the increased nutrition and low toxicity of the diet. As concentrations of 

entomopathogenic mycelia increased in diets fed to com earworms, the insects had 

delayed development. Insects fed diets with the highest concentrations of fungi suffered 

detrimental effects due to increases in toxicity, which outweighed the added nutrition and 

usually resulted in the death of the com earworm larvae. 

In the present study, toxicity of fungal diets may be dependent on the isolates that 

are evaluated. Insects fed diets containing Bb 1 1 -98 suffered higher mortality, and 

developed more slowly than those fed diets containing isolate Bb 3-00. Differences in the 

effects of different isolates may be attributed to the relative amounts of toxins produced 

by each isolate. Variations in production of toxic metabolites have been documented for a 

variety of entomopathogenic fungi and are not unusual (Strasser et al. 2000). 

Variation in mortality and pupation results observed in insects fed diets 

containing Ma 2-00 indicate that, by the time of the second test, toxicity of these diets 

were greatly reduced. This reduction in toxicity may be attributed to the breakdown of 

fungal metabolites during storage and may indicate that the use of older preparations of 

entomopathogenic fungi for control of insects by oral toxicity may not be effective and 

may even enhance the development of insects feeding on the fungus. This reduction in 

toxicity was observed only in the Ma 2-00 diet and may indicate that M anisopliae toxins 
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are less stable than those of B. bassiana. If M anisopliae toxins breakdown quickly, this 

fungus may not be well suited for this mechanism of control . 

Based on this study, it is likely that in order for entomopathogenic fungi to be 

used for insect control where the pests are killed by feeding or deterrence from feeding 

on diets containing entomopathogenic fungi, the amounts of fungus needed would be too 

large to be practical. Other isolates of entomopathogenic fungi may be selected for this 

type of application, if they produce higher concentrations of toxins or other deleterious 

metabolites. On the other hand, although not directly addressed in this study, control of 

insect herbivory on plants may be attained by endophytic colonization of 

entomopathogenic fungi, as observed by Lewis and Bing ( 1 99 1). 

In summary, the major findings of this experiment were that Helicoverpa zea 

feeding on mycelia of entomopathogenic fungi may receive extra nutrition or be 

subjected to deleterious effects from the fungal diet. The effects ofthe mycelial diet are 

isolate dependent, and different concentrations of mycelia in diet influence the growth 

and development of larvae. Further testing with isolates may be necessary to select more 

toxic ones which are better suited for this type of insect control. 
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Chapter 3 

Effects of Beauveria bassiana metabolites incorporated into synthetic diets on larval 

Helicoverpa zea. 

Introduction 

Beauveria bassi ana has been the focus of many studies to evaluate its potential as 

a biological control agent (Jaros-Su et al. 1 999, Me Dowell et al. 1 990, Poprawski et al. 

2000). A new method of applying B. bassiana provides protection from herbivory 

through endophytic colonization. In studies involving endophytic B. bassiana, protection 

against insect pests has been attributed to direct infection of the fungus or to insect 

ingestion of metabolites produced in the plant tissues by B. bassi ana (Bing and Lewis 

1 99 1) .  

Feeding of insects on fungal mycelia has been shown to alter development and 

lower survivorship (Broza et al. 200 1 ,  Lartey et al. 1 989, Lavy and Verhoef 1 996). In 

addition, toxins produced by B. bassiana, such as beauvericin and bassianolide, have 

been shown to cause deleterious effects when ingested by insects (Gupta et al. 1 99 1 ,  

Kanaoka et al. 1 978,). The objective of this study was to evaluate the effects of ingested 

B. bassiana metabolites produced during liquid culture fermentation, on com earworms, 

Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae}, fed a synthetic diet into which 

fungus-free culture broths of B. bassiana isolates had been incorporated. 
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Materials and Methods 

Propagation and Collection of Entomopathogenic Fungi 

The entomopathogenic fungi included in this study were Beauveria bassiana (Bb) 

isolate 1 1 -98 obtained from an infected click beetle (Coleoptera: Elateridae) collected in 

Scott County, TN. Beauveria bassiana isolate 8-99 obtained from a cadaver of Lymantria 

dispar (L.) (Lepidoptera: Lymantriidae) collected from an unknown locality, B. bassiana 

isolate 1 -00, and B. bassiana isolate 3-00. The latter isolates were cultured from Japanese 

beetle cadavers [Popilliajaponica (Coleoptera: Scarabiidae)] collected in Warren 

County, TN. Fungi were grown on Sabouraud dextrose agar + 0.5% yeast extract 

(SDA Y), incubated at 25°C for approximately 3 weeks. Conidia were harvested by 

brushing the surface of the plates with a stenciling brush and passing the conidia through 

a #100-mesh sieve ( 1 50-Jlm opening). 

Fermentation Culture of Entomopathogens 

Fermentation broth was prepared by adding 2.5 g yeast extract and 2.5 g dextrose 

to 250 ml de-ionized water in a 500-ml Erlenmeyer flask. Flasks with medium were 

autoclaved and cooled before inoculation with conidia. Inoculated flasks were incubated 

in a shaker ( 1 50-200 RPM) for 4-5 days at room temperature. 

The fungal isolates were cultured in a BIOFLO 2000 fermenter. The fermenter 

vessel contained 7- 10  L of de-ionized water with 1% dextrose and 1% yeast extract. 

After autoclaving the vessel with liquid medium, the fermenter was incubated at 24°C, 

with 200-RPM agitation, and 4 L compressed air/min aeration. The medium was agitated 

and aerated for 1 day to confirm sterility. After this period, approximately 1 00 ml of 
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fungal inoculum was injected into the fermenter vessel and the fungus was incubated for 

7 days. 

The mycelia were removed by vacuum filtration through a #18-mesh sieve (100-

J..Lm opening) covered with #4 Whatman filter paper. The filtered broth was collected in 1 -

L bottles and refrigerated (4. 5°C) until used in preparation of diet. 

Preparation of Diet 

Artificial beet armyworm diet mix (Product #F92 19) was obtained from Bio-Serv 

Inc. (Frenchtown, NJ). Agar (2 g) was added to boiling water ( 1 5  mL) and the solution 

was heated until clear. The 82 mL volume of de-ionized water that was required to 

formulate the diet were substituted, in part, with experimentally pre-determined volumes 

of fermentation broth to achieve the total volume. Volumes of water not substituted were 

added to the diets, which were cooled before addition of fermentation broth. The agar 

solution was placed in a blender with 1 6. 1 2  g of dry beet armyworm diet mix. The 

mixture was blended thoroughly and cooled. Diets were prepared for isolates Bb 1 1 -98, 

Bb 8-99, Bb 3-00, and Bb 1-00 at the fermentation broth concentrations corresponding to 

the volumes ofbroth that the 0. 1 and 0.5% mycelial concentrations, used in experiments 

described in Chapter 2, would have produced. In addition a broth control diet (DYE) was 

prepared using uninoculated broth ( 1% dextrose and 1% yeast extract) at 0. 1% and 0.5%. 

Quantities of broth to be incorporated into synthetic diet were calculated by taking 

the total volume of filtered broth and dividing by the total dry weight of mycelia 

harvested from the fermenter, when the respective isolate was produced. The resulting 

volume ofbroth per gram of mycelia was used to calculate the volume ofbroth that 
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would contain metabolites equivalent to the addition of0 . 1% and 0 .5% (w/v) mycelia as 

used in diets described in Chapter 2. Diets corresponding to 1% and 5% would require 

too much fermentation broth incorporated into diet, and could not be prepared without 

significantly changing the diet texture and firmness. For example, isolate Bb 1 1 -98 

produced 66 g of mycelia in 7 L offermentation broth (7000 ml / 66 g = 1 06 m1 broth/g 

mycelium). Because 0.5 g of mycelia were needed to prepare 1 00 m1 ofthe 0 .5% diet 

described in Chapter 2, 53 ml of fermentation broth ( 106 x 0.5 = 53 ml) were used to 

prepare 1 00 rn1 of a fermentation-broth diet corresponding to the 0. 5% mycelia diet. The 

fermentation broth diet corresponding to the 0. 1% mycelia for this same isolate received 

10 .6  m1 ofthe broth. For isolates 8-99, 1 -00, and 3-00; 1 00, 1 08, and 1 08 ml, 

respectively, offermentation broth were needed to produce 1 gram of mycelia. DYE 

control diet contained 1 0  m1 of uninoculated broth per 1 00 ml of diet in the 0. 1% 

treatment and 50  m1 per 1 00 ml of diet for the 0. 5% treatment. Diets with cultured broth 

were mixed vigorously, poured into Petri dishes, and stored in a refrigerator (4. 5°C) until 

used. 

Insects 

Corn earworm, Helicoverpa zea (Boddie), eggs were obtained from Agripest 

(Zebulon, NC). Approximately 75- 100 eggs were placed in each of several Petri dishes 

on filter paper moistened with de-ionized water. Petri dishes were placed in an incubator 

at 25°C for 2 days or until larvae hatched. Neonate larvae were collected for use in 

experiments. 
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Diet Feeding Tests 

Two diet feeding tests were performed. The experiments were designed as 2 x 5 

factorials in a randomized complete block design with two rates of fermentation 

metabolites (0. 1 and 0.5%) and five metabolite treatments: four culture broths from fungi 

(Bb 8-99, Bb 1 1 -98, Bb 3-00, and Bb 1 -00) and a fungal metabolite-free control broth 

(DYE) treatment. Each neonate com earworm was placed into a 29.6 cm3 plastic cup. 

Plugs of the diet were prepared with a cork borer ( 1 -cm inside diameter). One plug of diet 

was added to each cup. Each treatment combination had 20 replicates; each replicate 

consisted of a single insect in a cup. Cups were placed in an incubator at 24°C. Additional 

diet was added to the cups when needed, to provide an excess of diet and maintain 

freshness. Larvae were observed daily and mortality, pupation and pupal weight were 

recorded. When one of the treatments first reached 1 00% pupation among the surviving 

insects, larval weights were recorded across all treatments. This occurred on Day 1 8  in 

both feeding tests. The experiment was terminated after the surviving insects in the 

control treatment reached 1 00% pupation. The first test was terminated on Day 22 and 

the second test on Day 20. 

Larval mortality, weight and growth rate of larvae, days to pupation, pupal 

weight, and percent pupation of surviving larvae were compared among treatments using 

the PC-SAS MIXED procedure (SAS Institute Inc., Cary, NC). Significant effects were 

further analyzed with a Fisher's-protected least significant difference test at P = 0.05.  
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Results 

Larval Mortality 

Insects fed diets containing B. bassiana metabolites had low mortality in both 

tests. Across all isolates, the main effect of rate was significant (F = 8.30, df= 1 ,  1 7 1 ,  P = 

0.0045) for larval mortality in the first test with greater mortality in the 0 .5% than in the 

0. 1% treatments ( 14% versus 3%) (Table 3- 1 ). The broth control (DYE) diets caused no 

mortality (Table 3 - 1  ) . The highest mortalities in treatments with B. bassi ana fermentation 

broths occurred in the 0 .5% treatments ofBb 1 1 -98 and Bb 8-99, both with 25% 

mortality (Table 3-1 ) . 

There were no significant differences in mortality in the second test (Table 3-2). 

The highest mortality (20%) occurred in insects fed the Bb 3-00 treatment at 0 .5%. 

Insects fed Bb 1 -00 broth at 0 .5% had no mortality. All other treatments had between. 5% 

and 1 5% mortality. 

Larval Weights and Growth Rates 

There were no significant differences among treatments for larval weights (data 

not shown) or larval growth rates for either test (Tables 3- 1 and 3-2). 

Days to Pupation 

In the first test the effects of rate (F = 1 3 .58; df= 1 ,  1 39; P = 0.0003), isolate (F = 

10.00, df= 4, 1 39, P < 0.000 1), and the interaction (F = 3 .58, df= 4, 1 39, P = 0.0082) 

were significant for mean days to pupation (Table 3- 1 ) . In the 
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Table 3- 1 .  Development of larval Helicoverpa zea, in the first test, fed synthetic diets containing 0. 1 or 0.5% dextrose yeast extract 
(DYE) or fermentatiQ_n broth!fom the_pr9ductio11 of IJeauveria bqssiana @1:!} isolates 8-99, 1 1-98, 3-00, and 1 -00. 

Isolate 

PYE 

Bb 8-99 

Bb 1 1 -98 

Bb 3-00 

Bb 1 -00 

DYE 
Bb 8-99 

Bb 1 1 -98 
Bb 3-00 
Bb 1 -00 

Rate a 

0. 1 
0 . 5  
0 . 1 
0 .5 
0. 1 
0 . 5  
0. 1 
0 . 5  
0 . 1 
0 .5  
0. 1 
0 .5  

Percent Percent pupation of . 
rt l.t Mean days to . . 1 Larval growth W etght of pupae 

mo a 1 y on . b d sUfVlvmg arvae on b li 
Day 22b,c pupatlon · Day 22b,e rate (mglday) (mg) 

0.0 ± 6.0 b 1 5 . 1  ± 0.379 f 100 ± 6.06 a _r 340 ± 12.3 
0.0 ± 6.0 b 1 5 .7  ± 0.400 ef 90.0 ± 6.06 abc 1 9  ± 3 . 5  323 ± 13 .0  
5 .0  ± 6 .0  b 1 7. 1 ± 0.400 bed 94.7 ± 6.2 1 ab 25 ± 4.2 307 ± 1 3 .4 
25 ± 6.0 a 17.4 ± 0.453 bc 94. 1 ± 6.97 abc 1 8 ± 2.4 3 13 ± 14.7 
0.0 ± 6.0 b 16.3 ± 0.379 cde 100 ± 6.06 a 20 ± 4.2 3 1 3 ± 1 2.3  
25 ± 6.0 a 1 8 .7 ± 0.453 a 93 .8  ± 6.97 abc 20 ± 4.2 305 ± 14.7 
0.0 ± 6.0 b 1 6. 1  ± 0.389 def 95.0 ± 6.06 a 25 ± 4.2 344 ± 1 2.7  
1 0  ± 6 .0  ab 1 7.9 ± 0.453 ab 77.8 ± 6.37 abc 20 ± 2.3 309 ± 14.7 
10  ± 6.0 ab 1 6.0 ± 0.4 1 1 def 94.6  ± 6.37 abc 22 ± 4.2 334 ± 1 3 .4 
1 0  ± 6.0 ab 1 5 .7 ± 0.453 ef 77.6 ± 6.38 c 23 ± 3 .0  333 ± 14.7 
3 .0 ± 2.7 b 16. 1 ± 0. 1 75 b 96.9 ± 3 . 12 ab 
14 ± 2.7 a 17 . 1 ± 0. 1 98 a 86.7 ± 3 .28 b 

1 5 .4 ± 0.275 b 
1 7.2  ± 0.302 a 
1 7. 5  ± 0.295 a 
1 7.0 ± 0.299 a 
1 5 .9 ± 0.306 b 

a Rate = Percent volume of Beauveria bassiana fermentation broth or DYE incorporated into a synthetic diet. 
b Values = mean ± standard error. 
c Significant differences based on the effect of rate (F = 8.30, df= 1 ,  17 1 ,  P = 0.0045). Analysis was performed using the Mixed 
procedure ofPC-SAS (SAS Institute Inc., Cary, NC). Values followed by the same letter are not significantly different based on a 
Fisher' s-protected least significant difference test at P = 0.05. 
d Significant differences based on rate (F = 13 . 58, df= 1 , 139, P = 0.0003), isolate (F = 10.0, df= 4, 139, P < 0.000 1 ), and the rate 
+ isolate interaction (F = 3 .58, df= 4, 139, P = 0.0082). Analysis was performed using the Mixed 

.:;... -....) 



� 00 

Table 3- 1 .  Continued. 

procedure ofPC-SAS (SAS Institute Inc., Cary, NC). Values followed by the same letter are not significantly different based on a 
Fisher's-protected least significant difference test at P = 0.05. 
e Significant differences based on the effect of rate (F = 6.86, df= 1 ,  1 54, P = 0.0097). Analysis was performed using the Mixed 
procedure ofPC-SAS (SAS Institute Inc., Cary, NC). Values followed by the same letter are not significantly different based on a 
Fisher' s-protected least significant difference test at P = 0.05 . 
r N 
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Table 3-2. Development oflarval Helicoverpa zea, in the second test, fed synthetic diets containing 0. 1 or 0.5% dextrose yeast 
extract (DYE) or fermentation broth from the production of Beauveria bassiana (Bb) isolates 8-99, 1 1 -98, 3-00, and 1 -00. 

Percent Mean days to 
Percent pupation of Larval growth rate Weight of IJupae 

Isolate Rate a mortality on pupationb,c 
surviving larvae on 

(mg/day)b (
mg

)b;r 
Da}: 20b Da}: 20b,d 

DYE 0. 1 1 5  ± 6.3 14. 1 ± 0.328 d 1 00 ± 7.32 a c 345 ± 12.4 abc -

0.5 10  ± 6.3 14 . 1 ± 0.329 d 1 00 ± 7. 1 1  a e 350 ± 12 .0 abc -
Bb 8-99 0. 1 1 0  ± 6.3 15 .3  ± 0.338 be 94.4 ± 7. 1 1  a 20 ± 4. 1 352 ± 12.4 abc 

0.5  5 .0 ± 6.3 1 5 .2 ± 0.338 be 89.5 ± 6.92 a 27 ± 3.3 350 ± 12.4 abc 
Bb 1 1 -98 0. 1 1 0  ± 6.3 1 5 .4 ± 0.338 be 94.4 ± 7. 1 1  a 22 ± 3 .9  347 ± 12 .4 abc 

0.5 5.0 ± 6.3 1 6.9 ± 0.42 1 a 57.9 ± 6.92 b 2 1  ± 1 .9 353 ± 1 5 .4 abc 
Bb 3-00 0. 1 5 .0 ± 6.3 1 5 . 1  ± 0.329 be 94.7 ± 6.92 a 24 ± 6.0 378 ± 12.0 a 

0 .5  20 ± 6.3 1 6.0 ± 0.44 1 ab 62.5 ± 7.54 b 1 6  ± 2.4 324 ± 1 6. 1 be 
Bb 1 -00 0. 1 5 .0 ± 6.3 14.6 ± 0.329 cd 94.7 ± 6.92 a 23 ± 6.0 360 ± 12.0 ab 

0.5 0.0 ± 6.3 1 5 .6 ± 0.329 b 90.0 ± 6.75 a 19  ± 2.4 3 19 ± 12.0 c 
0. 1 14.9 ± 0. 1 50 b  95.7 ± 3 . 1 7 a 356 ± 5.47 a 
0.5 1 5 .6 ± 0. 1 68 a 80.0 ± 3 . 16 b 339 ± 6. 13  b 

DYE 14 . 1 ± 0.236 c 1 00 ± 5 . 10  a 
Bb 8-99 1 5 .3 ± 0.239 b 92.4 ± 4.83 ab 
Bb 1 1 -98 1 6.2 ± 0.270 a 92.0 ± 4.96 ab 
Bb 3-00 15 .6  ± 0.275 ab 78.6 ± 5. 12 be 
Bb 1-00 1 5 . 1 ± 0.232 b 76.2 ± 4.96 c 

a Rate = Percent volume of Beauveria bassiana fermentation broth or DYE incorporated into a synthetic diet. 
b Values = mean ± standard error. 
c Significant differences based on the effects of rate (F = 9.04, df= 1 ,  132, P = 0.0032) and isolate (F = 8.94, df= 4, 132, P < 
0.0001 ). Analysis was performed using the Mixed procedure ofPC-SAS (SAS Institute Inc., Cary, NC). Values followed by the 
same letter are not significantly different based on a Fisher' s-protected least significant difference test at P = 0.05. 
d Significant differences based on the effects of rate (F = 12 .33,  df= 1 , 1 54, P = 0.0006), isolate (F = 4.00, df= 4, 1 54, P = 
0.0004 1), and the rate + isolate interaction (F = 2.96, df= 4, 1 54, P = 0.02 1 7). Analysis was performed using the 
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Table 3-2. Continued. 

Mixed procedure ofPC-SAS (SAS Institute Inc., Cary, NC). Values followed by the same letter are not significantly different based 
on a Fisher' s-protected least significant difference test at P = 0.05. 
e No remaining larvae. 
r Significant differences based on the effect ofrate (F = 4.48, df= 1 , 1 32, P = 0.0361). Analysis was performed using the Mixed 
procedure ofPC-SAS (SAS Institute Inc., Cary, NC). Values followed by the same letter are not significantly different based on a 
Fisher' s-protected least significant difference test at P = 0.05 . 



second test, both isolate (F = 8.94, df= 4, 1 32, P < 0.000 1 )  and rate (F = 9.04, df= 1 , 132, 

P = 0.0032) were significant, but the interaction was not (Table 3-2). In both tests, insects 

fed 0.5% diets had longer developmental times (Tables 3-1  and 3-2). Across both rates, 

broth from 1 1 -98 resulted in the longest developmental time in both tests (Tables 3-1  and 

3-2). For diets with broth from isolate 1 1 -98 except 3-00, there was a significant 

difference between the 0. 1 and 0.5% rates in both tests (Tables 3-1  and 3-2). 

In the first test, the shortest time to pupation was 1 5 . 1 days observed in the 

treatment with diet containing DYE at 0. 1% (Table 3-1  ). The longest time to pupation 

( 18 .7  days) was observed for insects fed Bb 1 1 -98 broth at 0.5%; this value was 

significantly longer than all treatments except the diet containing isolate 3-00 at 0. 5% 

(Table 3-1  ). At the 0. 1% rate, diets with Bb 8-99 or Bb 1 1 -98 broth had longer days to 

pupation than the DYE diet. At 0.5%, diets containing broth from all fungal isolates 

except Bb 1 -00, had significantly longer days to pupation than those insects fed the DYE 

diet. 

In the second test, developmental times were shorter for all treatments in relation 

. to those observed in the first test. The shortest developmental times occurred in the 

treatments with DYE at 0. 5% and 0. 1% with 14. 1 days to pupation (Table 3-2). The 

insects fed broth from Bb 1 1 -98 at 0 .5% had the longest time to pupation ( 16.9 days) 

(Table 3-2). At 0. 1% broth from isolates 8-99, 1 1 -98, and 3-00 had longer developmental 

times that insects fed the DYE control diet (Table 3-2). At 0.5%, insects on diets with 

broth from all of the fungal isolates had a greater number of days to pupation that insects 

fed the DYE diet (Table 3-2). Across both rates, the DYE diets had significantly fewer 

days to pupation than diets containing broth from Bb isolates. 
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Pupation of Surviving Larvae 

In the first test, the effect of rate was significant (F = 6.86, df= 1 ,  1 54, P = 

0.0097) for percent pupation of surviving larvae on Day 22. Insects fed the 0. 5% diets 

had significantly lower percent pupations than those fed diets at 0. 1% (87 versus 97% ). 

All surviving insects pupated that were fed 0. 1% DYE, and the diets containing isolates 

1 1 -98 at 0. 1% {Table 1 ). The lowest percent pupation occurred in insects fed Bb 1 -00 at 

0.5% {78%). For Bb 3-00, percent pupation was significantly lower for those fed 0 .5% 

diet than for 0. 1% {Table 1). 

In the second test the effects of rate (F = 12.33, df= 1, 1 54, P = 0.0006), isolate {, 

F =  4.00, df= 4, 1 54, P = 0.004 1), and the interaction of rate and isolate (F = 2.96, df= 

4, 1 54, P = 0.02 17) were significant. All insects fed the DYE diets pupated {Table 2-2). 

Two treatments, Bb 1 1-98 at 0.5% and Bb 3-00 at 0.5%, had significantly lower percent 

pupation than all other treatments with 58% and 63%, respectively. All diets, except for 

DYE diets, exhibited the same trend as in the first test, where 0.5% diets resulted in lower 

percent pupations, however the difference was significant for Bb 1 1 -98 and Bb 3 -00 only. 

Pupal Weights 

Statistical analysis of pupal weights revealed no significant differences among all 

treatments in the first test. All weights for both tests were between 305 and 378 mg per 

pupae. In the second test, the effect of rate was significant (F = 4. 48, df = 1 ,  1 3  2, P = 

0. 03 61  ); the diets at the 0. 1% rate resulted in significantly larger pupal weights than the 
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the 0.5% diets (356 versus 339 mg). Isolate Bb 3-00 and Bb 1 -00 had significantly 

smaller pupae for the 0.5% diets than the 0. 1% diets (Table 2). 

Discussion 

Development of most insects fed diets containing B. bassiana metabolites in 

fermentation broths was delayed. Insects fed diets with the highest concentrations of B. 

bassiana metabolites had significantly longer developmental times to pupation, possibly 

due to fungal toxins or waste products in the diet. Percent pupation was also lower for 

insects fed diets with higher rates of fungal broth. Similar studies have demonstrated that 

B. bassiana metabolites may cause mortality at high doses (Gupta et al. 1 99 1 ,  Kanaoka et 

al. 1978); although mortality in the present study was low, the amounts of deleterious 

metabolites in the fermentation broths was unknown and may not have been high enough 

to be effective in killing insects through ingestion. 

In this study, positive effects were observed for insects feeding on diets 

containing uninoculated culture broths. Insects fed the control DYE diets experienced 

shorter times to pupation, which may be attributed to the increased nutrition of the diet. 

Insects may also prefer the DYE diets and consume more food. 

The low mortality among insects fed diets containing B. bassiana metabolites 

indicates that insect control using orally administered toxins may not be practical with 

these isolates. Insects experiencing increased developmental times could compound pest 

problems if larvae continue to feed over a longer time period. Isolates with increased 

toxicity may prove to be effective in this type of insect control, ifthe metabolites 

produced by the isolate caused mortality or deterred feeding. 
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Chapter 4 

Detection of endophytic Beauveria bassiana in tomato plants using PCR and ITS 

primers. 

Introduction 

Traditionally, biological control with the entomopathogen Beauveria bassiana 

(Balsamo) Vuillemin was thought to involve direct infection of the insect by conidia as 

the sole mode of action (Jaros-Su et al. 1 999, McDowell et al. 1990, Poprawski et al. 

2000). However, B. bassiana has been reported to suppress tunneling of the European 

corn borer Ostrinia nubi/alis (Hubner) (Lepidoptera: Crambidae) by growing into and 

throughout the plant as an endophyte (Bing and Lewis 199 1) .  Suppression oftunneling 

was attributed to direct infection by the fungus or to metabolites produced in the plant 

tissues by the fungus. A later investigation confirmed fungal colonization of plants by 

light and electron microscopy (Wagner and Lewis 2000). In general, B. bassiana has 

been detected by plating samples on selective media (Bing and Lewis 199 1 ,  1992a, 

1992b, 1993 ; Doberski and Tribe 1980 ). This technique may be unreliable due to 

contamination of plates and competition from other microorganisms in the samples. More 

recent techniques utilizing polymerase chain reactions, (PCR) and gel electrophoresis 

have been used to detect B. bassiana in the cadavers of the migratory grasshopper, 

Melanop/us sanguinipes (Fabricus) (Hegedus and Khachatourians 1996). Species 

detection and identification in more complex systems containing a variety of organisms 

may be performed using PCR, internally transcribed spacer (ITS) region primers, and gel 

electrophoresis. ITS regions are segments of genetic code that lie between highly 
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conserved ribosomal RNA genes. These internal regions evolve quickly and are therefore 

suitable for taxonomic determination at the species level (White et al. 1990). Using ITS 

primers, a 650-bp PCR product was identified for tomato (Marshall 1999), and a 550-bp 

product was identified for B. bassiana (Shih et al. 1995). Sequence analysis ofthe PCR 

products allows species level identification. 

The objectives of this study were to determine if B. bassi ana could colonize 

tomato endophytically following application to seed, and to determine if the fungus could 

be detected from tomato shoot tissues with gel electrophoresis, and sequence analysis of 

PCR products using ITS primers. 

Materials and Methods 

Preparation of B. bassiana 

Beauveria bassi ana (Bb) isolate 1 1 -98 was isolated from an infected click beetle 

(Coleoptera: Elateridae), collected in Scott County, TN. Isolate 1 1 -98 was plated on 

Sabouraud Dextrose Agar + 0.5% yeast extract (SDAY) and incubated at 25°C for 

approximately 3 weeks. Conidia were harvested by brushing the surface of the plates with 

a stenciling brush and passing the conidia through a #100-mesh sieve ( 1 50-J.I.m opening). 

Seed Treatment 

Tomato seeds (Lycopersicon esculentum Mill.) 'Mountain Spring' (seed lot 

F8895A) were coated with a mixture ofmethylcellulose and B. bassiana conidia. 

Methylcellulose solution was prepared by autoclaving 1 L of de-ionized water for 30 min. 

The hot water was placed on a stirring plate and 20 g ofmethylcellulose (Sigma, St. 
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Louis, MO) was added with stirring until a suspension was formed. The 2% 

methylcellulose suspension was placed in an ice bath until the solution cleared. 

Tomato seed was obtained from Novartis Seeds Inc. (Downers Grove, IL). 

Approximately 40 seeds were placed in a 50-ml beaker. Based on the seed weight (0.096 

g), a 2: 1 w/v aliquot of2% methylcellulose solution (0.048 ml) was added to the beaker 

and mixed with the seeds. Conidia of B. bassiana (0.005 g) were added to the beaker and 

stirred until the coating of seeds was uniform. Seeds were spread on aluminum foil and 

air-dried in a vertical flow hood for approximately 3 hours. 

Growth of Seedlings 

Thirty test tubes (I 9-mm outside diameter and 1 50-mm in length) were filled with 

10 cm3 of vermiculite and 7 ml of de-ionized water. The test tubes were sealed with 

plastic Kim-Kaps (Fisher Scientific. ,  Pittsburgh, PA), and autoclaved for 30 min on 2 

successive days. Test tubes were allowed to cool and transferred to a vertical flow hood. 

Tubes were uncapped and seeds were placed approximately 0. 5 em under the surface of 

the vermiculite. Twenty replicate treated seeds and ten untreated seeds were planted. 

Tubes were recapped and placed in an incubator with a 1 2  hour light/ dark cycle at 24°C, 

and maintained for 14 days under gnotobiotic conditions. Tubes were transferred to a 

vertical flow hood, where tubes were broken at the base, and the root section was cut at 

the soil line and discarded. The shoots were washed with water and immediately 

subjected to the DNA isolation procedure. 
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Isolation of Plant and Fungal DNA 

Individual tomato shoots were placed in a mortar and pestle and covered with 

liquid nitrogen. The shoot tissue was ground, and liquid nitrogen was added to ensure that 

the tissue did not thaw. DNA was isolated using a PureGene kit (Gentra Systems, 

Minneapolis, MN) according to the manufacturer' s  instructions. Briefly, the ground shoot 

material was subjected to a cell lysis solution (600 IJL} and incubated for 1 h at 65°C. 

After centrifugation, a protein precipitation solution (200 IJL) was added. The DNA was 

elutriated with 100% isopropanol and then with 70% ethanol. The alcohol was then 

allowed to evaporate and the DNA was rehydrated with de-ionized water. DNA 

concentrations were determined on a TD 360 Mini-Flourometer (Turner Designs 

Instruments, Sunnyvale, CA) at 360 nm according to manufacturer' s instructions. DNA 

samples were stored in a -80°C ultra-low freezer until needed. 

Polymerase Chain Reaction 

The polymerase chain reaction was performed in a Peltier thermalcycler PTC-200 

(MJ Research, Inc., Watertown, MA). The appropriate PCR primers; ITS I ,  5 '  

TCCGTAGGTGAACCTGCGG 3 ' , and ITS4, 5 '  TCCTCCGCTTATTGATATGC 3 '  

(White et al. 1 990}, were obtained from Dr. Karen Hughes (The University of Tennessee, 

Knoxville). The PCR reaction mixture contained 5 111 of AmpliTaq buffer (PE Applied 

Biosystems, Foster City, CA}, 5 J.11 of a 2 mM mixture of dCTP, dGTP, dTTP, and dATP, 

5 J.11 of 3 J.1.M ITS 1 primer, 5 J.11 of 3 J.1.M ITS4 primer, 3 J.ll of 25 mM MgCh, 25 . 5  J.11 of 

de-ionized H20, 0.5 J.11 AmpliTaq Gold DNA polymerase (PE Applied Biosystems, 

Foster City, CA) and 1 J.11 of sample (10 ng/J.ll}. This mixture was placed in a 500-J.ll 
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eppendorf tube and a drop of mineral oil was added to reduce condensation. The tube was 

placed into the thermalcycler and the amplification procedure was conducted. Reaction 

parameters were as follows; 95°C for 9 min, followed by 3 5  cycles at 94°C for 1 min, 

52°C for 1 min, 72°C for 1 min, and a final 3-min period at 72°C. The reaction mixture 

was held at 4°C until the tube was removed. Products were removed from the tubes and 

electrophoretically separated on a 1 . 5% (w/v) agarose-TBE (0.09 M Tris, 0.09 M boric 

acid, 0.02 M EDTA) gel. 

Ten shoots from treated seeds and eight from untreated seeds were tested for the 

presence of B. bassiana DNA. For comparisons, PCR products from three untreated 

plants and three treated plants were placed on an agarose gel. A negative control with all 

reaction components except the DNA sample was included in each gel to ensure no DNA 

contamination of the PCR constituents. A positive control ofDNA from B. bassiana 

isolate 1 1 -98 was included in each gel. The positive control DNA was sequenced at The 

University of Tennessee Molecular Biology Resource Facility and was confirmed to be 

B. bassiana. A 1Kb+ DNA ladder (Invitrogen Life Technologies, Carlsbad, CA) was 

included to determine the size ofPCR products from treated and untreated plants. Gels 

were electrophoresed at 80 volts until bands had separated properly. The gels were 

stained with ethidium bromide and visualized with a Fisher Biotech 3 12-nm 

transilluminator FBTI 8 16  (Fisher Scientific, Pittsburgh, PA). 

DNA Sequence Analysis 

Bands were excised from the gels, and processed with a QIAquick Gel Extraction 

Kit (Qiagen Inc., Valencia, CA) using the manufacturer' s  instructions. Products were 
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then sent to The University of Tennessee Molecular Biology Resource Facility, and 

sequenced with ITS 1 and ITS4 primers. 

Results 

All plants shoots, with or without B. bassiana seed treatment, produced a single 

PCR product band of approximately 650-bp (Figure 4- 1 ). In addition, shoots from all 

treated plants produced a second band of approximately 5 50-bp (Figure 4- 1). Direct 

sequencing ofthe 550-bp PCR product from the pure B. bassiana 1 1 -98 positive control 

(Figure 4-2) and the 550-bp PCR product from treated plants produced the same 

sequence. This sequence is almost identical to the published ITS region (Shih et al. 95) 

but lacks 4 bps due to 4 single bp deletions and a substitution at 360 bp. The 550-bp PCR 

product was entered into a GenBank Blast search and had 100% homology to the 

sequence of Beauveria bassiana isolate Bb25 15 .  The sequence of the 650-bp PCR 

product was entered also into a GenBank Blast search and was confirmed to be the ITS 

region oftomato (data not shown). 

Discussion 

Based on PCR amplification, gel electrophoresis, and direct sequencing ofDNA 

from treated and untreated plants in this study, the use of ITS primers will be an 

important tool in confirming the presence of Beauveria bassiana within a system 

containing a mixture of tomato plant and fungal DNA. Although this procedure can 

detect the occurrence of the fungal DNA, it cannot determine the specific location of 

fungus. Real-time PCR could be used to determine the exact location of B. bassiana 

within tomato tissue. 
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Figure 4-1 .  Amplification ofDNA from treated and untreated plants using ITS 1  and ITS4 
primers. Samples of products analyzed by electrophoretic separation on a 1 . 5% agarose 
gel. The 1Kb + DNA ladder was co-electrophoresed as a size standard (Marker) . Lane 1 :  
1Kb + DNA ladder (Invitrogen Life Technologies, Carlsbad, CA); Lane 2 :  blank lane; 
Line 3 :  blank control; Line 4: blank lane; Lines 5-7: tissue from untreated plants 
containing one 650-bp product; Lane 8 :  blank lane; Lanes 9-1 1 :  tissue from treated plants 
containing one 650-bp product and one 550-bp product; Lane 12 :  blank lane; and Lane 
1 3 :  B. bassiana isolate 1 1 -98 control containing one 550-bp product. 
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Treated Plant 
Shih et al . 1 9 9 5  

B .  bas s iana 1 1 - 9 8  
Treated Plant 
Shih et al . 1 9 9 5  

B .  bas s iana 1 1 - 9 8  
Treated Plant 
Shih et al . 1 9 9 5  

Bp 
1 -------------------------------- ccctaacccttctgtgaacctacctatc 

-------------------------------- ccctaacccttctgtgaacctacctatc 
cctgcggagggatcattaccgagttttcaactccccaacccttctgtgaacctacctatc 

6 1  gttgcttcggcgga]ctcgccccagcccggacgcggactggaccagcggcccgcc�gggg 
gttgcttcggcggaMctcgccccagcccggacgcggactggaccagcggcccgcc@.gggg 
gttgcttcggcgga�ct cgccccagcccggacgcggactggaccagcggcccgcc�gggg 

1 2 1  

1 8 1  

acctcaaactcttgtattccagcatcttctgaatacgccgcaagg*aaaacaaatgaat 
acctcaaactcttgtattccagcatcttctgaatacgccgcaagg aaacaaatgaat 
acctcaaactcctgtattccagcatcttctgaatacgccgcaagg • aaacaaatgaat 

caaaactttcaacaacggat�tcttggctctggcatcgatgaagaacgcagcgaaatgc 
caaaactttcaacaacggatc�tcttggctctggcatcgatgaagaacgcagcgaaatgc 
caaaactttcaacaacggat�tcttggctctggcatcgatgaagaacgcagcgaaatgc 

2 4 1  gataagtaatgtgaattgcagaatccagtgaatcatcgaatctttgaacgcacattgcgc 
gataagtaatgtgaattgcagaatccagtgaatcatcgaatctttgaacgcacattgcgc 
gataagtaatgtgaattgcagaatccagtgaatcatcgaatctttgaacgcacattgcgc 

3 0 1  ccgccagcattctggcgggcatgcctgttcgagcgtcatttcaaccctcgacctcccctl 
ccgccagcattctggcgggcatgcctgttcgagcgtcatttcaaccctcgacctcccct 
ccgccagcattctggcgggcatgcctgttcgagcgtcatttcaaccctcgacctcccct, . 

3 6 1  ggggaggtcggcgttggggaccggca�cacaccgccggccctgaaatggagtggcggccc 
ggggaggtcggcgttggggaccggca---------------------------------­
ggggaggtcggcgttggggaccggcagcacaccgccggccctgaaatggagtggcggccc 

Figure 4-2. Sequence and comparison of internal regions ofiTS 1 and ITS4 PCR products from B. bassiana isolate 1 1 -98, 
fungal PCR product from tomato treated with B. bassiana (Treated Plant), and published ITS region from B. bassiana 
(Shih et al. 1 995). Differing nucleotides in sequences are shaded. Undetermined nucleotides are represented by n. 



In this study, only the seeds were treated with B. bassiana and great care was 

taken to avoid passive transport of conidia to the upper portions of the shoot. Only 

seedlings that did not have the seed coat adhering to the cotyledons during development 

were selected for analysis. Further, shoots were removed for the assay, which eliminated 

disturbance of the root system. 

Wagner and Lewis (2000) observed both endophytic and epiphytic colonization of 

corn by B. bassiana. It is likely that this fungus similarly colonizes tomato. To ensure that 

only endophytic fungal DNA was collected by this procedure, a control should be added 

to this protocol that includes an isolation of DNA from the surface of the tomato plant. 

This technique does confirm that coating tomato seed with B. bassiana conidia is 

an effective means of introducing this fungal endophyte to the plant. Further work 

utilizing electron microscopy and histological techniques are needed to substantiate the 

ability of B. bassiana to colonize and grow endophytically throughout tomato plants. 
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Chapter 5 

Summary 

In these studies, experiments were conducted to evaluate the ability of Beauveria 

bassiana to endophytically colonize tomato plants and to determine the potential effects 

of the endophyte when fed to insects. Feeding tests using segments of colonized tomato 

plants failed. To try and evaluate the possible effects, varying rates of mycelia and spent 

culture broth were incorporated into synthetic diets and fed to larval com earworms, 

Helicoverpa zea. 

PCR amplification of DNA from the aerial part of seed-treated tomato seedlings 

produced a 650-bp and a 550-bp product. This confirmed the presence ofthe fungus in an 

area of the plant in which to was not introduced. Although it is possible that fungal spores 

were carried passively up the stem during growth of the plant, the seedlings were washed 

to remove potential contaminants. Histological work by Wagner and Lewis (2000), 

demonstrated that the main mode of entry for the fungus in com to grow through stomata 

and other natural opening. If viable spores were to be carried up the stem, it is possible 

that they served as a secondary inoculant. Further work to resolve these questions would 

include histological verification that the spores will germinate and grow into the plant, 

and electron microscopy to verify that the fungus grows throughout the plant. 

The feeding tests indicated that at low levels, the presence of fungal mycelia 

might actually benefit the insect by adding nutrition to the diet. At higher rates of fungus, 

the mycelial diets caused high mortality in larval com earworms, and disrupted larval 

development. The quantity of fungal mycelia in a colonized com plant is unknown and 

the quantities of mycelia found to negatively impact feeding larvae is relatively high. It is 
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unlikely that the rates of mycelia needed to lower insect herbivory would be found in the 

vascular system of tomato plants. This would imply that more than just the presence of 

mycelia is needed for control. This assumption is based on the fact that living mycelia 

would affect the larvae in the same way as dead mycelia. Since this is unlikely, testing is 

needed to evaluate the effects of live mycelia in the diets of insects. 

To test the effects of metabolites of B. bassiana on corn earworms, spent culture 

broth was used to make evaluations. In all rates of metabolite diet, insects suffered low 

mortality, but did experience slower rates of development. The broth contained quantities 

of metabolites, waste products from the growth of the fungus, and unspent medium from 

the original fermentation broth. In a plant-endophyte system, the metabolites and wastes 

of the fungus would be present, but the unspent broth would not. Thus, the addition of 

nutrients may have outweighed the toxic effects of the metabolites and waste products, 

resulting in increased larval survivorship. Further testing involving extracted metabolites 

and waste products is needed to negate the effects ofthe unspent broth. Tests should also 

be conducted to determine the concentrations of these toxins in colonized plants in order 

to correctly design feeding experiments. 

Based on these experiments, there is potential for the use of endophytic B. 

bassiana as a control for insects feeding on tomato plants. Although it is not 

unequivocally confirmed that the fungus will colonize the entire plant, it is likely that the 

fungus will grow into the shoot of the plant from treated seeds. If the production of 

metabolites in corn plants is the basis of the reduction of insect damage reported by 

Lewis and Bing ( 199 1  ), then colonization of tomato shoots may be a sufficient amount of 

fungal growth to produce the metabolites needed to reduce herbivory. Further PCR work 
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involving testing of smaller sections of the aerial parts of colonized tomato plants is 

needed to determine the extent of colonization. To enhance the validity of these tests, a 

surface sterilization of the outside of the plant should be done to ensure no contaminants 

travel up the outside ofthe plant. Additionally, PCR of swab samples ofthe plant surface 

would detect epiphytic B. bassiana. 
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