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Abstract 

In this thesis, a semi-analytical formulation is provided for the rotational, steady, inviscid, 

compressible motion in a solid rocket motor that is modeled as a slender porous chamber. 

The analysis overcomes some of the deficiencies encountered in previous work on the 

subject. The method that we employ consists of reducing the problem’s mass, 

momentum, energy, ideal gas, and isentropic relations into a single integral equation that 

can be solved numerically. Furthermore, Saint-Robert’s power law is used to link the 

pressure to the sidewall mass injection rate. At the outset, results are presented for the 

axisymmetric and planar porous chambers and compared to two closed-form analytical 

solutions developed under one-dimensional and two-dimensional, isentropic flow 

conditions, in addition to experimental data. The comparison is carried out assuming 

either uniformly distributed mass flux or constant injection speed along the porous wall. 

Our amended formulation is shown to agree with the one-dimensional solution obtained 

for the case of uniform wall mass flux and with the asymptotic approximation for the 

constant wall injection speed.  
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Nomenclature 

p
c  = constant pressure specific heat 

0
L  = length of chamber 

s
L  = sonic length (critical distance)  

M  = Mach number 

m  = injection mass flux 

P  = nondimensional pressure 

p  = dimensional pressure 

r  = coordinate normal to the propellant surface 

T  = temperature 

w
U  = wall injection velocity 

u  = axial velocity 

v  = radial velocity 

X  = nondimensional axial coordinate 

x  = dimensional axial coordinate 



x 
 

y  = coordinate normal to the propellant surface 

Greek 

  = stream function 

  =  axial coordinate referenced to the sonic length, /
s

x L  

  = ratio of specific heats 

  = density 

  = distance from the headwall to the tip of the streamline at the sidewall 
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Chapter 1   

 

Introduction 

 Rocket propulsion has been the sole means of transportation for spaceflights due 

to their independence of the surrounding environment. Like other forms of propulsion, 

rockets expend energy to produce thrust via an exchange of momentum with some 

reaction mass. While airplanes use the air to provide the reaction mass, rockets are self-

supportive.  

 In chemical rockets, the propellant is ignited to transfer energy and accelerate the 

gaseous products to produce the desired thrust. Three families of engines are available; 

solid, liquid, and hybrid rocket engines. In solid rocket motors (SRMs), the fuel and 

oxidizer are premixed to form the propellant. Although they cannot be throttled and are 

relatively inefficient fuel burners, SRMs are simple to build and operate. Liquid rockets 

utilize liquid fuel and oxidizer stored in tanks and then pumped into a chamber for 

mixing and ignition. These engines provide high thrust capabilities and can be throttled. 

On the downside, liquid rockets are expensive and difficult to build. As for hybrid 
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rockets, a liquid oxidizer is injected into a chamber with a solid fuel grain covering the 

walls. Hybrids seem to combine the simplicity feature of solids and thrust capabilities of 

liquids. In addition to their throttling capabilities, they are less hazardous to work with. 

Among their drawbacks, hybrids exhibit lower combustion efficiencies due to incomplete 

mixing in the combustion zone.  

 The work in this thesis investigates the steady, inviscid, compressible mean flow 

field in solid rocket motors. These are often idealized as porous channels and ducts in 

which the effects of compressibility can be either retained or dismissed, depending on the 

gas injection speed and chamber length.  

1.1 Incompressible Studies 

 Among the first investigations which modeled the fluid motion in porous 

chambers is a study furnished by Berman [1]. Using a stream function approach, Berman 

solves for the steady, viscous, incompressible flow field. In his work, the normal velocity 

is considered independent of the axial position such that, using a stream function 

approach, Berman derives a similarity reduced equation. Assuming a small injection 

velocity at the wall, his expansion uses a Reynolds number as a perturbation parameter. 

 In modeling internal flows fields, Taylor investigates the flow in wedges, cones 

and chambers with permeable walls [2]. Using an integral form of the continuity 

equation, he derives an incompressible, inviscid, steady state solution to the problem. 

Taylor presents the axial velocity profiles as cosine functions, for both the planar and 

cylindrical geometries.  
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 In a study more applicable to rocketry, Culick [3] uses a differential stream 

function approach to solve for the incompressible flow field. In his attempt to understand 

the influence of mass injection on the mean and unsteady components of motion, he 

derives a simple yet highly useful model. In fact, Culick's profile may be considered one 

of the most fundamental in solid rocket motor theory. 

 While the incompressible motion is relatively well understood, [3, 4] recent 

advances have enabled us to account for the presence of arbitrary headwall injection [5, 

6], wall regression [7, 8], grain taper [9, 10], and variable cross-section [11]. 

Furthermore, flow approximations exhibiting smoother or steeper profiles than the cold 

flow equilibrium state have been studied in connection with their energy content [12, 13]. 

1.2 Compressible Studies 

 As for compressible flow effects, these have been first investigated by Dunlap, 

Willoughby and Hermsen [14], and Traineau, Hervat and Kuentzmann [15] in the context 

of two-dimensional porous tubes and channels with sidewall injection. Using either 

Nitrogen or air as the working substance, these investigators have reported rich 

characteristics of the spatially developing motion including appreciable steepening 

beyond the Taylor-Culick baseline [3, 4]. In the downstream sections of the domain, 

compressibility intensified to the extent of producing noticeably flattened mean flow 

profiles. These observations were further supported by numerical simulations attributed 

to Beddini [16], Baum, Levine and Lovine [17], Liou and Lien [18], and Apte and Yang 

[19, 20]. They were also studied by Gany and Aharon [21] and King [22] in the context 

of nozzleless rocket motors. While the former group explored the merits of a one-
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dimensional theoretical model, the latter employed a pseudo two-dimensional numerical 

approach. Given the relevance of an accurate mean flow description to the study of 

hydrodynamic instability in simulated rocket motors, the problem was revisited by 

Venugopal, Najjar and Moser [23] and, in complementary work, by Wasistho, 

Balachandar, and Moser [24]. As a windfall, the compressible solutions engendered in 

these studies proved to be valuable resources for verifying numerical results obtained 

from full-scale Navier-Stokes solvers [25, 26]. This was partly caused by the obstacles 

placed against the acquisition of specific experimental data and, partly, because of the 

intrusion-resistant environment in rocket chambers. 

1.3 Analytical Models 

 Among the analytical techniques that have been applied to this problem, the first 

may be the Prandtl-Glauert expansion [27]. In fact, a variant of this technique was used 

by Traineau, Hervat and Kuentzmann [15] who introduced, in a precursor to the present 

study, an inviscid, rotational, and compressible integral equation that can be solved in a 

planar, two dimensional setting. In addition to their elegant analytical and numerical 

work, they produced a collection of experimental data based on cold flow measurements 

that utilized air as the sidewall injectant. In their analytical effort, these investigators 

dismissed the transverse static pressure gradient and reduced the velocity in the mass 

balance to its axial component. In this manner, the remaining momentum, mass, energy, 

ideal gas, and isentropic state relations are reduced to a single integral expression that can 

be numerically solved for the pressure distribution. Their Abel integral equation could be 
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shown to be soluble analytically in the case for which   2(2 )/( 1) took on an 

integer value. 

 In a similar work, Balakrishnan, Liñan and Williams [28] sought to reconstruct an 

inviscid, rotational, and compressible integral formulation for the porous channel 

problem. They utilized judicious scaling arguments to justify the dismissal of the radial 

momentum equation. In their study, the pressure and wall mass flux were related through 

the Saint-Robert power law. 

 The second analytical approach used in this context consists of a variant of the 

Rayleigh-Janzen expansion. This asymptotic technique is based on small parameter 

perturbations in the square of the wall injection Mach number. The approach requires the 

characteristic wall Mach number to be small, which makes it suitable for rocket motor 

applications. The Rayleigh-Janzen expansion was first applied by Majdalani [29] in the 

treatment of the axisymmetric porous cylinder and by Maicke and Majdalani [30] in the 

planar flow analog. The axisymmetric analysis led to two closed-form solutions, one 

exact, satisfying all first principles, and one approximate, essentially equivalent 

alternative. The planar effort gave rise to a single compact expression satisfying all 

physical requirements. In consequence, both streamwise and wall-normal velocity 

profiles could be readily calculated in addition to the critical length needed to achieve 

sonic conditions. Moreover, the effort led to the identification of the sonic distance as the 

appropriate lengthscale which, when inserted into the solution, would promote a self-

similar, parameter-independent behavior for all wall Mach numbers. It also disclosed a 

simple criterion that could help to determine the relative effects of compressibility and 
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the centerline amplification during flow development. By circumventing the need to 

compute the mean flow over the fluid domain, the resulting expressions opened up new 

avenues for carrying out parametric trade analyses.  

 With the advent of a closed-form analytical solution for the internal burning 

porous cylinder in two dimensions, it is the purpose of this study to reconstruct the 

integral formulation developed initially by Traineau, Hervat and Kuentzmann [15] and 

later extended by Balakrishnan, Liñan and Williams [31]. Our objective is to obtain a 

clear and verifiable pseudo-two-dimensional approximation that could be compared to 

the one- and two-dimensional closed-form representations. To this end, both 

axisymmetric and planar configurations will be considered in the context of compressible 

inviscid flow through a rigid-cylindrical or rectangular chamber with porous sidewalls. 

 In this thesis, an integral formulation is used to solve for the compressible flow 

field in a solid rocket motor. In Chapter 2, the governing equations for the flow field are 

derived, in addition to the description of the boundary conditions. The procedure 

employed to reach the solution is described in Chapter 3, for both topographical 

configurations. Chapter 4 presents the results with comparisons to previous analytical and 

experimental verifications. Finally, results are summarized in Chapter 5 which includes a 

discussion of possible extensions to this work. 
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Chapter 2  

 

Problem Definition 

2.1 Geometry 

 A solid rocket motor is often idealized as a slender, elongated chamber with 

sidewall injection [28, 31]. Figure 2.1 portrays the chamber in both 2D and axisymmetric 

geometries, showing the origin of the coordinate system at the vertical center of the 

headwall. The chamber has a length L0  and half height a  that define its slenderness. In 

this work, we assume that a L 
0

/ 1 . As shown by Zhou and Majdalani [7], the effects 

of propellant regression are sufficiently small in the operational range of most motors, 

that they can be ignored. The burning propellant is modeled as a non-regressing porous 

wall injecting normally into the flow. 
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a

L0

x

y

a)  

L0

a

x

r

b)  

Figure 2.1. Slender chamber with sidewall injection for a) planar and b) 

axisymmetic geometries. 
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2.2 Governing Equations 

 The purpose of this work is to solve for the internal, compressible flow field of a 

solid rocket motor chamber in both planar and cylindrical geometries. The assumptions 

used to idealize and simplify the problem include steady-state conditions, inviscid flow of 

an ideal gas and isentropic motion. At the centerline, the viscous boundary layer that may 

arise is not considered. 

2.2.1 Conservation of Mass 

 For steady motions, the continuity equation reduces to 

    V

0  (2.1) 

The velocity vector V  is composed of the axial and normal components denoted by u  

and v  respectively. The gradient of the velocity results in 

 
     

 
 

ur vr

x r
0  (cylindrical coordinates) (2.2) 

 
     

 
 

u v

x y
0  (cartesian coordinates) (2.3) 

2.2.2 Conservation of Momentum 

 The conservation of momentum equations may be reduced according to the 

assumptions listed above. At the outset, we get 

    
  

  
u u p

u v
x r x

 (axial momentum) (2.4) 

    
  

  
v v p

u v
x r r

 (radial momentum) (2.5) 
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 By means of scaling analysis, we can simplify the equations significantly. The 

physical examination of the problem reveals that the radial velocity has the same order of 

magnitude as the injection velocity. The domain of the problem states that x  scales like 

L
0  and r  like a , and from the continuity equation, one can work out the order of 

magnitude of the axial velocity.  

 
 
 

 
 

 w
O u O U

O L O a
0

0  (2.6) 

Therefore, u  is of order w
U L a

0
/ , and since a L 

0
/ 1 , then u v . From Eqs. (2.4) 

and (2.5), the two pressure gradients can be deduced by recognizing a balance between 

pressure forces and inertia, namely 

 
 
 

w w
U L Up p

x a a r a

2 2
0~ ~  (2.7) 

At any point in the fluid, the pressure, in general, is a function of both x  and y  and 

consequently, the total derivative is represented as 

 d d d
 

 
 
p p

p x r
x r

 (2.8) 

The ratio of the second term divided by the first term scales as 

 
d

d


      



p
r ar

p L
x

x


2

0

~ 1  (2.9) 

In conclusion, the total derivative can be written as 

 
d

d





p p

x x
 (2.10) 
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This means that the pressure in the chamber, due its slenderness, varies mainly in the 

axial direction. This scaling analysis results in a significant simplification of the radial 

momentum equation by virtue of 

 




p

r
0  (cylindrical coordinates) (2.11) 

 




p

y
0  (cartesian coordinates) (2.12) 

The axial momentum equation becomes 

 
d

d
  

  
 
u u p

u v
x r x

 (cylindrical coordinates) (2.13) 

 
d

d
  

  
 
u u p

u v
x y x

 (cartesian coordinates) (2.14) 

2.2.3 Conservation of Energy 

 For a steady, adiabatic flow, without volume forces, the energy equation reduces 

to  

 
 

   
 
h VV 21 0
2

 (2.15) 

Assuming for this problem that the gas is calorically perfect, the specific heat at constant 

pressure becomes invariable over the domain defined. In this case, the enthalpy can be 

written in terms of the temperature. In reference to the solution of the order-of-magnitude 

analysis, v2  could be safely neglected when added to the much larger u2  and 

consequently, V 2  could be approximated and replaced by u2 . As a result, Eq. (2.15) 

reduces to  
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  
    

             
p p

u u
u c T v c T
x r

2 2

0
2 2

 (cylindrical coordinates) (2.16) 

  
    

             
p p

u u
u c T v c T
x y

2 2

0
2 2

 (cartesian coordinates) (2.17) 

The right hand side of Eqs. (2.16) and (2.17) are by definition the material derivative of 

the term  
p
c T u21

2
, which, for a fluid particle, gives 

 constant 
p

u
c T

2

2
 (2.18) 

However, in a steady flow, particle paths coincide with streamlines, which makes Eq. 

(2.18) valid for each streamline. The constant may be different for distinct streamlines 

albeit dependent on the originating point at the wall.  

2.3 Boundary Conditions 

 The physical requirements of the problem are used to define a consistent set of 

boundary conditions. We begin at the sidewall which can be viewed as a porous plate 

injecting fluid into the chamber with a velocity normal to the injection plane. This 

condition requires the axial velocity along the porous plate to vanish. Concerning the 

injection velocity, it is allowed to vary with the longitudinal distance from the headwall 

and is later linked to the chamber pressure through Saint-Robert's law. The temperature 

of the wall is also taken as a function of the distance from the headwall. Since the 

geometry is symmetrical with respect to the centerline, our solution will consider half of 

the chamber, and set the axis as a boundary with conditions of symmetry. Accordingly, 

no cross-flow will be permitted along the centerline. At the inert headwall, injection is 
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suppressed and the pressure is set to p0 . In cylindrical coordinates, these boundary 

conditions translate into:  

 

 
 
   
 
   
 

        (no slip at sidewall)

             (no headwall injection)

 (radial sidewall injection)

             (no cross-flow at the centerline)

 (sidewall temperature) 





 





w

w

u x a

u r

v x a U x

v x

T x a T x

p

, 0

0, 0

,

,0 0

,

0              (headwall pressure) 











 p
0

 (2.19) 

In cartesian coordinates, the boundary conditions remain the same except for the r  

coordinate being replaced by y . 

 Now that the governing equations and boundary conditions have been fully 

defined, the problem is ready to be tackled.  
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Chapter 3  

 

Solution Formulation 

3.1 Axisymmetric Configuration  

 We consider the steady, inviscid flow of an ideal gas in a cylinder of length L0  

and radius a . A schematic diagram of the problem is presented in Figure 3.1. The origin 

of the coordinate system is located at the center of the headwall. Due to axisymmetry, 

a r
x

Uw(x)

constant y

L0

x

 

Figure 3.1. Schematic diagram of a slender porous cylinder. 
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only half of the chamber will be investigated. Note that   represents a streamline and   

denotes the axial distance from the headwall to the point where a streamline is born at the 

sidewall, thus marking the tip of a streamline. 

3.1.1 Formulation 

 In Section 2.2, the governing equations were derived for the problem at hand. 

With the assumption of a low chamber aspect ratio, a L 
0

/ 1 , the system’s 

conservation laws may be conveniently reduced to the following set: 

 
     

 
 

ur vr

x r
0  (compressible continuity) (3.1) 

    
  

  
u u p

u v
x r x

 (axial momentum) (3.2) 

 




p

r
0  (radial momentum) (3.3) 

and 

  
    

             
p p

u u
u c T v c T
x r

2 2

0
2 2

 (energy) (3.4) 

Note that pressure variations have been discounted in the radial direction due to the 

chamber’s low aspect ratio. Furthermore, the gas may be taken to be ideal and calorically 

perfect, thus resulting in a constant 
p
c . At the outset, one may write 

 
 




p

p c T
1

 
(ideal gas) (3.5) 

At this point, Eq. (3.4) may be expanded and rearranged into 
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    
    

        
p p

T T u u
uc vc u u v

x r x r
0  (3.6) 

Both Eqs. (3.2) and (3.5) may be substituted into Eq. (3.6) to produce 

 
 


    
      

T T p T
u v
x p x r

1
0  (3.7) 

Finally, inserting the isentropic state relation expression, 
  


  T p
1 /

/ , into Eq. (3.7), 

one obtains 

 
D

or
D

       
    

 
u v
x y t

u0, 0, 0  (3.8) 

Since the material derivative vanishes in Eq. (3.8), it is clear that   remains constant 

along a streamline.  

3.1.2 Stream Function Transformation 

 For compressible axisymmetric motions, the stream function may be written as 

 
   

  
 

ur vr
r x

,  (3.9) 

Given that the total energy,  
p
c T u2 / 2 , remains invariant along a streamline, one can 

put 

         
p w

T x u x c T2, , / (2 )  (3.10) 

where  
w
T  is the temperature at the wall. Likewise for  , the isentropic pressure-

temperature relation may be expressed as 
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               
  

 
      w w

T x p x T p
1 / 1 /

, / /  (3.11) 

Given that all streamlines are initiated through surface injection at r a , Eq. (3.9) may 

be evaluated at the sidewall. This is performed while using the ideal gas expression for 

the density. Subsequent integration in the axial direction yields 

         d





     w w

p

a
U x p x T x x

c 0
/

1
 (3.12) 

As depicted in Figure 3.1,   denotes the distance from the headwall to the point where 

the streamline originates at the sidewall. Since a unique value of   associates itself with 

a given ,  one may transform the independent variables from  x,  to  x, . In this 

new coordinate system, Eqs. (3.10) and (3.11) may be written as 

           
p w

T x u x c T2, , / 2  (3.13) 

               
  

 
      w

T x p x T p
1 / 1 /

, / /  (3.14) 

Next, the expression for the stream function given by Eq. (3.12) may be substituted into 

Eq. (3.9) and integrated in the radial direction. This enables us to deduce the coordinate 

r  corresponding to a given axial position x  and streamline emanating from  : 

 
 

   
   

 
d

   


 

     
    

       
 w

w

T x U p
r a

p x u x T
2

0

,
2

,
 (3.15) 

One can also replace the variables u  and T  using Eqs. (3.13) and (3.14) to produce an 

expression solely in terms of the pressure. This operation yields 
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 
 

 
 

   
 

d

  
  


 


                     

 w

p w

p p x U
r a

p x p c T

1 2
1 1

2

0
2 1

2
 (3.16) 

At this point, we are ready to evaluate Eq. (3.16) knowing that   x  at r a ; we get 

 
 
 

 
 

   
 

d

  
 


 


                  


x w

p w

p p x U
a

p x p c T

1 2
1 1

0
2 1

2
 (3.17) 

3.1.3 Integral Formulation with No Pressure Dependence 

 The dimensionless variables P X( ), X  and   may be introduced to simplify the 

analysis. These are defined according to 

    

p x

P X
p
0

 (3.18) 

 
 
 

 d d
 




   

 
 
x xw

w

p w

U x
X x M x x

a ac T x0 0

1 1

1 22
 (3.19) 

 
 
 

 d d
  




    

 
 w

w

p w

U x
x M x x

a ac T x0 0

1 1

1 22
 (3.20) 

While the normalization of P  is straightforward, that of X  and   is based on their 

upper integral bounds. Then, dimensionless expressions are inserted into Eqs. (3.16) and 

(3.17) to obtain 

 
 
 

 
 

 

d

  








                         


P P Xr

a P X P

1 2
1 12

0

1
2 1  (3.21) 
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 
 

 
 

 

d

  





                   


X P P X

P X P

1 2
1 1

0
2 1

1
 (3.22) 

Equations (3.21) and (3.22) differ from the result obtained by Balakrishnan, Liñan and 

Williams [28] who include an extra   X/  term as part of their integrand. 

3.1.4 Integral Formulation with Pressure Dependence 

 In reality, the mass flux generated by the propellant at the wall is not uniform 

along the length of the chamber but rather depends on flow conditions. A good model 

that links  w
m  to  p  is Saint-Robert’s law with constant K  and n , 

   n
w w w
m U Kp  (3.23) 

where w
m  represents the mass flux at the wall. Then using the ideal gas law to eliminate 

the density, the injection velocity may be expressed as 

 
 
    

 
 

  
 

w

w p w

T
U c m

p

1
 (3.24) 

Examining Eq. (3.23), we notice that for n 0 , the injection mass flow rate becomes 

constant along the wall. Whereas for n 1, we notice from Eq. (3.24) that a uniform 

injection velocity becomes established along the length of the grain. After substituting the 

above into Eq. (3.21), the dimensionless forms of P X( ),X  and   may be written as 

    

p x

P X
p
0

 (3.25) 
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  d


   
n

x

p w

Kp
X c T x x

a

1
0

0

1
2

2
 (3.26) 

  d


    
n

p w

Kp
c T x x

a

1
0

0

1
2

2
 (3.27) 

At length, Eqs. (3.16) and (3.17) become 

    
 

 
 

 

d

  








                              


n P P Xr

P
a P X P

1 2
1 12

1

0

1
2 1  (3.28) 

    
 

 
 

 

d

  








                        


nX P P X

P
P X P

1 2
1 1

1

0
2 1

1
 (3.29) 

The procedure for solving this problem consists of integrating Eq. (3.29) to the extent of 

determining the pressure as a function of x.  Equation (3.28) can then be evaluated to 

deduce the radial coordinate in terms of x  and .  With the pressure distribution at hand, 

the temperature can be obtained using the isentropic relation of Eq. (3.14). The velocity 

may then be extracted from the total temperature relation given by Eq. (3.13). 

 For the calculation of the Mach number, one can employ the compressible flow 

relation   
p

M u c T/ 1 . In fact, the substitution of Eq. (3.13) into the Mach 

number relation yields 

 
 

 


 

  
        

w
T

M
T x

2
1

1 ,

 
 

  



                

P

P X

1 /

2
1

1
 (3.30) 



21 
 

where the right-hand-side expression may be obtained using the isentropic identity given 

by Eq. (3.14). 

3.1.5 Numerical Procedure 

 For the numerical integration of Eq. (3.29), an inverse procedure may be pursued. 

This is accomplished by switching to P  as the independent variable and calculating X  

in increments of P  The scheme begins at the headwall boundary, where 0X   at 

1P  . Choking conditions occur when d d/P X    Transforming the independent 

variable in Eq. (3.29) results in 

 
     

d
d d

d

  







                             

 
n

P P

X PP P
P P f P P

P P P

1 2
1 1

11 11
2 1 1  (3.31) 

In order to overcome the singularities at the boundaries, we split the integral into three 

parts: 

  d  P f P P
1      d d d






         i

i i

P P

P P P
f P P f P P f P P

 
1

1

1 1

1

31 2

1  (3.32) 

In the region near 
i

P P , we approximate the first integrand and retrieve an expression 

that can be readily evaluated for an arbitrary pressure exponent n , 

     d
d d

d
 


     

           
 i i

i i

nP P
i

P P
i

P P X
f P P P P

P P
1 1

1/2
1

2  (3.33) 
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   

   

For 

d

For 

d










     
   
  
 


              
   

  





i

i

i

i

P i ii

P
i

P i ii
i iP

i

n

X XP P P
f P P

PP

n

X XP P P
f P P P P P P

PP

1

1

1

1

0

4 ln

1

2 ln

 (3.34) 

The second integral may be computed, for example, using the trapezoidal rule. This 

involves finite step discretization, 

  d







 
      

 


i

iP
i

kP
k

f f
f P P P f

1

21
1 1

22
 (3.35) 

where 

 
 

d

d

  







                         

n
k i

k k
i k k

P P X
f P

P P P

1 2
1 1

11
2 1  (3.36) 

In the third integral, where X  is small,  P X  may be expanded using a polynomial of 

the form 

     P x X 21  (3.37) 

By inserting Eq. (3.37) into the integral and assuming   2 1 , we are left with  

       
d

  
 


 



        i iP

P
f P P P P

1 2
1 11

1

1
2 1  (3.38) 

To evaluate Eq. (3.38),   must be known beforehand. This is achieved by substituting 

Eq. (3.37) into Eq. (3.29) and returning 
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 d


 
 


X

X0 2 2

2 1
1  (3.39) 

This enables us to deduce that   2.  

Equation (3.31) is now linear in i
X . Starting with X 0  at P 1 , one may solve for 

i
X  at every step until choking conditions are reached. Choking occurs at a point where 

P  approaches its limiting value c
P  at an infinitely steep slope and where the average 

Mach number reaches unity. With the pressure distribution fully determined, it may be 

inserted into Eq. (3.28) and integrated numerically. This returns r  which is needed for 

the complete description of the streamlines. Equations (3.13) and (3.14) may then be 

utilized to extract the temperature and velocity. This process is illustrated in the flowchart 

diagram posted as Figure 3.2. Since the procedure requires solving for the axial and radial 

coordinates, the meshing takes place automatically, where every point is defined in a 

streamline coordinate system,  x, , as illustrated in Figure 3.3. 

 

 

Figure 3.2. Flowchart depicting the main steps of the numerical procedure needed to 

extract the velocity from the integral formulation of the pressure. 
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3.2 Planar Configuration 

 Section 3.1 presents a quasi-two-dimensional integral approach to solve for the 

compressible mean flow in a cylindrical rocket motor. A similar analysis may be 

followed in constructing the solution in a rectangular chamber. A schematic diagram of 

the geometry is illustrated in Figure 3.4 

3.2.1 Formulation 

 The domain under investigation extends horizontally from x 0  to x L
0 , and 

vertically from the center axis to the wall, where the top and bottom plates may be 

viewed as symmetrical porous sidewalls across which flow is injected at a velocity 

 w
U x . A schematic diagram of the planar problem is given in Figure 3.4. We start with 

the governing equations derived in Section 2.2 for the corresponding case. 

xi xi+1

xi+1xir

x  

Figure 3.3. Illustration of the mesh generated. 
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     

 
 

u v

x y
0  (compressible continuity) (3.40) 

    
  

  
u u p

u v
x y x

 (x -momentum) (3.41) 

 




p

y
0  (y -momentum) (3.42) 

and 

  
    

             
p p

u u
u c T v c T
x y

2 2

0
2 2

 (energy) (3.43) 

The gas is assumed to be ideal with a constant 
p
c  such that 

 
 




p

p c T
1

 (ideal gas) (3.44) 

For energy conservation, Eq. (3.43), may be rearranged into 

    
    

        
p p

T T u u
uc vc u u v

x y x y
0  (3.45) 

a y
x

Uw(x)

constant y

L0

x

 

Figure 3.4. Schematic diagram of a slender porous chamber. 
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The term that appears between parentheses is essentially the left-hand-side of the 

momentum equation. One can substitute Eqs. (3.41) and (3.44) into Eq. (3.45) to produce 

 
 


    
      

T T p T
u v
x p x y

1
0  (3.46) 

Then, inserting 
  


  T p
1 /

/  into Eq. (3.46), one obtains 

 
D

or
D

       
    

 
u v
x y t

u0, 0, 0  (3.47) 

Equation (3.47) reminds us that   remains constant along a streamline. 

3.2.2 Stream Function Transformation 

 For planar flows, the stream function may be written as 

 
   

  
 

u v
y x

,  (3.48) 

With a constant  
p
c T u2 / 2  along a streamline, one can say 

         
p w

T x u x c T2, , / (2 )  (3.49) 

Similarly for  , the isentropic pressure-temperature relation, at any point on of the 

streamline, is equal to its value at the wall and may be expressed as 

               
  

 
      w w

T x p x T p
1 / 1 /

, / /  (3.50) 

Using the ideal gas expression for the density, subsequent integration in the x -direction 

yields 
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         d





     w w

p

a
U x p x T x x

c 0
/

1
 (3.51) 

We now transform the independent variables from  x,  to  x,  and rewrite Eqs. 

(3.49) and (3.50) as 

           
p w

T x u x c T2, , / 2  (3.52) 

               
  

 
      w

T x p x T p
1 / 1 /

, / /  (3.53) 

Next, the expression for the stream function given by Eq. (3.51) may be substituted into 

Eq. (3.48) and integrated in the normal direction. This enables us to extract the coordinate 

y  associated with a given position x  and the streamline emanating from an arbitrary 

position   at the sidewall: 

 
 

   
   

 
d

   


 

     
    

       
 w

w

T x U p
y

p x u x T0

,

,
 (3.54) 

To express y  in terms of the pressure only, one can use Eqs. (3.52) and (3.53) to 

substitute for the velocity and temperature. This operation yields 

 
 
 

 
 

   
 

d

  
  


 


                     

 w

p w

p p x U
y

p x p c T

1 2
1 1

0
1

2
 (3.55) 

Recalling that y a  at   x , Eq. (3.55) may be recast in the form: 

 
 
 

 
 

   
 

d

  
 


 


                  


x w

p w

p p x U
a

p x p c T

1 2
1 1

0
1

2
 (3.56) 
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3.2.3 Integral Formulation with No Pressure Dependence 

 We now introduce the dimensionless variables P X( ), X  and   to simplify the 

analysis. These are defined as 

    

p x

P X
p
0

 (3.57) 

 
 
 

 d d
 




   

 
 
x xw

w

p w

U x
X x M x x

a ac T x0 0

1 1

1 22
 (3.58) 

 
 
 

 d d
  




    

 
 w

w

p w

U x
x M x x

a ac T x0 0

1 1

1 22
 (3.59) 

These dimensionless expressions may be inserted into Eqs. (3.55) and (3.56) to obtain 

 
 
 

 
 

 

d

  








                   


P P Xy

a P X P

1 2
1 1

0

1
1  (3.60) 

 
 
 

 
 

 

d

  





                   


X P P X

P X P

1 2
1 1

0
1

1
 (3.61) 

3.2.4 Integral Formulation with Pressure Dependence 

 One can link  w
m  to  p  by assuming a dependence on the burning-rate that 

follows Saint-Robert’s law with constant K  and n , 

   n
w w w
m U Kp  (3.62) 
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Then using the ideal gas law to eliminate the density, the injection velocity may be 

expressed as 

 
 
    

 
 

  
 

w

w p w

T
U c m

p

1
 (3.63) 

After substituting the above into Eq. (3.56), the dimensionless forms of P X( ),  X  and   

may be retrieved. These are 

    

p x

P X
p
0

 (3.64) 

  d


   
n

x

p w

Kp
X c T x x

a

1
0

0

1
2

2
 (3.65) 

  d


    
n

p w

Kp
c T x x

a

1
0

0

1
2

2
 (3.66) 

At length, Eqs. (3.55) and (3.56) become 

    
 

 
 

 

d

  








                        


n P P Xy

P
a P X P

1 2
1 1

1

0

1
1  (3.67) 

and 

    
 

 
 

 

d

  








                        


nX P P X

P
P X P

1 2
1 1

1

0
1

1
 (3.68) 

Following the same procedure described in Section 3.1.4, we are now able to solve for 

the pressure, temperature and velocity profiles.  
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 To calculate the Mach number, one can employ the compressible flow relation 

  
p

M u c T/ 1 .  In fact, the substitution of Eq. (3.52) into the Mach number 

relation gives 

 
 

 


 

  
        

w
T

M
T x

2
1

1 ,

 
 

  



                

P

P X

1 /

2
1

1
 (3.69) 

where the right-hand-side expression may be obtained using the isentropic identity given 

by Eq. (3.53). 

3.2.5 Numerical Procedure 

 The numerical procedure follows the same guidelines described in Section 3.1.5. 

Transforming the independent variable in Eq. (3.68) from X  to P  results in 

 
     

d
d d

d

  







                             

 
n

P P

X PP P
P P f P P

P P P

1 2
1 1

11 11
1 1  (3.70) 

The integral is split into three parts: 

  d  P f P P
1      d d d






         i
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P P

P P P
f P P f P P f P P

 
1

1

1 1

1

31 2

1  (3.71) 

In the region near 
i

P P , the first integrand is approximated by 

     d
d d

d
 


     

           
 i i

i i

nP P
i

P P
i

P P X
f P P P P

P P
1 1

1/2
1

 (3.72) 
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 (3.73) 

To compute the second integral, we can use the trapezoidal rule, which involves finite 

step discretization, 

  d







 
      

 


i
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f f
f P P P f
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 (3.74) 

where 
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P P X
f P

P P P

1 2
1 1

11
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In the third integral, X  is small, and  P X  may be expanded using a polynomial of the 

form 

     P X X 21  (3.76) 

Inserting Eq. (3.76) into the integral and assuming   2 1 , we get  

       
d

  
 


 



        i iP

P
f P P P P

1 2
1 11

1

1
1  (3.77) 

To evaluate Eq. (3.77),   must be known beforehand. This is achieved by substituting 

Eq. (3.76) into Eq. (3.68) and extracting 
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 d


 
 


X

X0 2 2

1 1
1  (3.78) 

This enables us to deduce that 

 

  
 

2

.
2
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Chapter 4  

 

Results and Discussion 

 To characterize the effects of compressibility on the flow field in a rocket motor 

chamber, it is essential to verify our results. For this purpose, the solution is presented 

and compared to two closed-form analytical solutions developed under one-dimensional 

and two-dimensional, isentropic conditions. 

4.1 Axisymmetric Configuration  

 In the treatment of the axisymmetric porous cylinder, Majdalani [29] uncovered a 

fully two-dimensional, closed-form analytical solution, validated with a numerical 

program. In his study, he closely examined the effects of compressibility and two 

dimensionality in a right-cylindrical chamber. With a uniform sidewall injection velocity 

driving the flow, his closed form mean flow solution was derived under isentropic 

conditions. In the interest of clarity, the solution obtained by Majdalani [29] is 

reproduced as: 
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           w w
M r M2 2 2 21 1 1

0 4 3 2
1 1 cos( )  (stream function) (4.1) 

where   x r 21
0 2

sin( )  and  
s

x L/  

 



 

  
 
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w

c

M
M

2 2 21
3

2 2

2
;

4 2( 1)
 (centerline Mach number) (4.2) 

         
c w
p M2 2 2 4 41 1

2 24
1 (1 )  (centerline pressure) (4.3) 

           
c w
T M2 2 2 4 41 1

2 6
1 ( 1) (1 ) ( 1)  (centerline temperature) (4.4) 

where the sonic length, also known as the critical distance, is related to the   function 

through 

             
w s
M L 22 2 2(2 1)/  (4.5) 

where 

                 
1/3

2 3 2 3 428 12 6 8 6 22 18 6 14 3  (4.6) 

or, in expanded form, 

          2 30.884622 0.177299( 1) 0.0539119( 1) 0.0180615( 1)  (4.7) 

Another analytical solution found in the literature is a one-dimensional model used 

recently by Gany and Aharon [21]. Their relation is developed for an isentropic flow with 

the underlying assumption that the instantaneous burning rate [21] is uniform along the 

grain, thus leading to a constant mass flux at the simulated propellant surface. In 

summary, the one-dimensional model may be written as 
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D



 

 

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M

2

1 2

1 1

1 1
 (4.8) 

  D
     P 1 2

1
(1 ) 1 1  (4.9) 

  D


  


   T

1 1/
1/ 1 2

1
(1 ) 1 1  (4.10) 

4.1.1 Critical Length 

 Concerning the calculation of the critical length, our computation of s
L  leads to a 

sonic distance that matches the value predicted by Eq. (4.5), within 7%. On this note, it 

should be borne in mind that, according to Majdalani [29], the critical length denotes in 

the classic sense the distance from the headwall to the point at which the centerline 

velocity first reaches the speed of sound. At that station, the area-averaged Mach number 

would not have reached unity yet. However, in order to reconcile with one-dimensional 

predictions in which values are essentially area-averaged at a given axial station, a new 

definition is warranted, namely that of an area-averaged critical length, s
L . Accordingly, 

a cross-section will be fully choked when the local average Mach number reaches unity. 

This condition always occurs at 
s s
L L . 

4.1.2 Pressure and Temperature 

 After solving Eq. (3.31) in decrements of P , the pressure may be reproduced as 

a function of the axial distance. The resulting solutions for the centerline P  and T  are 

showcased  in  Figure 4.1  for  n 0   and  n 1.   Also  shown  on  the  graphs  are  the  
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Figure 4.1. Comparison between the present semi-analytical formulation and both 

1D and 2D solutions by Gany and Aharon [21] and Majdalani [29]. Results are 

shown for γ = 1.4 and Mw = 0.05. 
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analytical predictions based on the one-dimensional theory of Gany and Aharon [21] and 

the two-dimensional analysis of Majdalani [29].  

 Based on Figure 4.1, a qualitative agreement may be seen to be established 

between the present semi-analytical formulation, and Majdalani’s closed form solution 

[29]. The same may be said of the one-dimensional solution of Gany and Aharon [21] 

despite its entirely dissimilar form. The small differences separating these estimates may 

be attributed to their underlying assumptions. The instantaneous burning rate of the one-

dimensional solution [21] remains uniform along the grain, thus leading to a constant 

mass flux at the simulated propellant surface. A corresponding relation may be 

reproduced in the present solution by setting n 0,  as reflected in the improved 

agreement with one-dimensional theory that may be inferred from Figures 4.1a-b. On the 

other hand, the uniform sidewall injection velocity of the two-dimensional axisymmetric 

solution of Majdalani [29] corresponds to the n 1 case presented here. This may also 

explain the improved agreement with two-dimensional theory in Figures 4.1c-d. 

 In Figures 4.1a-b, the reason for the slight discrepancy at n 0  may be attributed 

to the dismissal of radial pressure variations in the pseudo-two-dimensional formulation. 

As for the n 1 case, the present model appears to be in excellent agreement with 

Majdalani’s solution everywhere except in the vicinity of the choke point. Specifically, 

the tailing ends of the numerical curves in Figures 4.1c-d suddenly undergo an abrupt 

steepening process as the choke point is approached. This behavior causes a slight 

discrepancy to occur with respect to Majdalani’s two-dimensional formulation [29]. Two 

possible explanations may be offered in this regard. The first attributes the attendant 
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divergence to the dismissal of radial pressure variations in the semi-analytical 

formulation, and to the linear approximation affecting pressure integration in Eq. (3.33). 

These approximations are likely to deteriorate near the choke point. The second source of 

disparity may be connected to the accuracy of Majdalani’s Rayleigh-Janzen expansion in 

the vicinity of 
s

x L . However, according to Tollmien [32] and Kaplan [33], the 

Rayleigh-Janzen paradigm is formally shown to hold past sonic conditions. The first 

explanation is hence more plausible. On a separate subject, we remind the reader that the 

four parts of Figure 4.1 are obtained with an injection wall Mach number of 0.05. 

Nonetheless, these plots remain rather universal and therefore characteristic of the 

solution at other wall Mach numbers. This may be attributed to the results being 

displayed as function of the geometric similarity coordinate,  
s

x L/ . 

4.1.3 Mach Number  

 A comparison of the centerline Mach numbers is provided in Figures 4.2a-b for 

n 0  and n 1, respectively. In both parts of this graph, the 2D analytical model is 

seen to outperform the 1D solution, although better agreement with the integral 

representation is realized in Figure 4.2b. This behavior may be naturally expected 

because the 2D model is derived under the n 1 assumption. Another point of disparity 

may be associated with the centerline Mach numbers exceeding unity at 
s

x L . 

Conversely, the 1D Mach number, in which area-averaging is intrinsic, is seen to reach 

sonic conditions at 
s

x L .  As shown in Figure 4.3, the analytical area-averaged Mach
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Figure 4.2. Evolution of centerline Mach numbers along with available 1D and 2D 

solutions. Here γ = 1.4 and Mw = 0.05. 
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Figure 4.3. Comparison of the area-averaged Mach number of the present solution 

are the available 1D and 2D solutions. 
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number and the numerically area-averaged solution of the present formulation display 

steep curvatures that closely follow the dotted, 1D line.  

 It may be instructive to add that, based on Eq. (3.30), the Mach number may be 

calculated over the entire chamber. However, owing to the variables being expressed in 

terms of the axial location and the stream function leading tip  , a transformation is 

required to convert   back to the radial coordinate by way of Eq. (3.28). The results lead 

to a non-uniform mesh that requires careful treatment and “reverse engineering.” After 

some effort, the contour plots of the numerically extracted local Mach numbers are 

displayed in Figure 4.4a, where the shape of the M 1 curve is clearly delineated. The 

two-dimensional analytical predictions of the iso-Mach number lines are presented side-

by-side in Figure 4.4b. Despite the dissimilarity in the contour curvature near choking 

(upper rightmost corner), the two models appear to display fairly good agreement in their 

predictions. Note that the traditional choking point is transformed, rather, into a curved 
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Figure 4.4. Local Mach number contours according to a) numerical integration and 

b) analytical solution by Majdalani [29]. Here γ = 1.4 and Mw = 0.01. 
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line and, in reality, to a surface due to axisymmetry; the latter can be captured either 

numerically, or analytically for M 1. Note that Figures 4.2 and 4.3 are essentially 

universal and, being plotted versus s
x L/ , will not change if a different wall Mach 

number is used at their basis. This again is due to the geometric self-similarity with 

respect to  . 

4.1.4 Streamlines 

 Having completed our description of the Mach number variation, characteristic 

streamlines are displayed in Figure 4.5 based on the numerical integration of Eq. (3.28). 

This is carried out by first specifying a value of  , and then integrating at discrete 

locations of x  until the centerline Mach number has reached unity. This marks the 

critical distance to the sonic point and enables us to calculate s
L  for each of the test cases 

at hand. The procedure also enables us to collect the family of coordinates at a fixed 

value of  , thus leading to an assortment of points that constitute a streamline. By 

comparing the results in Figure 4.5 at two wall Mach numbers of a) 0.01 and b) 0.005, it 

is clear that compressibility becomes more pronounced when the mean flow velocity is 

increased (here   1.4 ). This is reflected in the faster flow turning that occurs at higher 

injection Mach numbers, specifically faster in Figure 4.5a where 
s
L 26.145 , than in 

Figure 4.5b where 
s
L 52.287 . However, by replotting these two cases versus s

x L/  in 

Figures 4.5c-d, the ensuing graphs become identical! This is caused by the strong 

similarity with respect to  . 
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Figure 4.5. Numerical streamlines for a,c) Mw = 0.01 and b,d) Mw = 0.005 compared 

to the incompressible solution by Culick [3]. In c-d) the axial coordinate is rescaled 

by the critical length, thus leading to self-similarity. 
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4.1.5 Velocity Profiles 

 As one may infer from Figure 3.2, the last procedural step consists of extracting 

the axial velocity from Eq. (3.13). Forthwith, results are shown in Figure 4.6 at evenly 

spaced intervals of 
s

x L / 0.2,0.4, ,1.  Also featured on the graph is Majdalani’s 2D 

analytical solution [29]. By comparison to Taylor-Culick’s incompressible mean flow 

solution [3], we note that the streamwise velocity develops into a much fuller, top-hat 

profile as choking is approached. The evolution into a blunter, turbulent-like, or pseudo-

one-dimensional plug flow is conformant to both theory and experiment. It faithfully 

captures the increased gradients at the sidewall and these can have important implications 

in mean-flow related analyses. 

 Figure 4.7 presents the radial component of the velocity at multiple locations of 
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Figure 4.6. Spatial evolution of the axial velocity for a) Mw = 0.005 and b) Mw = 0.01 

at x / Ls = 0.2, 0.4, 0.6, 0.8, and 1. Results are compared to the 2D axisymmetric 

solution by Majdalani [29]. Here γ = 1.4. 
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the chamber, showing the evolution of the profile as the flow advances downstream. 

Alongside, Figure 4.7b demonstrates the results by Majdalani [29], exhibiting a good 

agreement between the two models.  

4.2 Planar Configuration 

 When the same flow motion is considered in planar porous chambers, one may 

turn attention to Maicke and Majdalani [30] who were the first to construct a closed-form 

solution for the two-dimensional problem. Using techniques similar to the ones applied to 

the cylindrical case by Majdalani [29], they uncover compact expressions that describe 

the mean flow field in its entirety. For the reader's convenience, the Maicke-Majdalani 

model is summarized and reproduced as: 

                           w
x y M x y x y y2 2 21 1 1

2 48 2
sin sin 3 cos 3 7 cos  (4.11) 
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Figure 4.7. Spatial evolution of the radial velocity for Mw = 0.01 at x / Ls = 0.2, 0.4, 

0.6 according to a) numerical integration and b) analytical solution by Majdalani 

[29]. 
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            
c w w
P M x M x x2 4

2 2 4 4 2 21 1 3 1
8 384 32 8

1  (4.12) 

                     c w w
T M x M x x2 2 2 4 4 4 2 21 1 1

2 4 192
1 1 1 2 18 24  (4.13) 

 
       

 

    
 a a

s
w

L
M

2/3 1/3 2

1/3

8 1 32 2 11
 (4.14) 

where 

                       a
3 2 4 3 2128 4 3 6 14 3 3 14 6 18 22  (4.15) 

Our integral formulation will also be compared to the curvature independent solution by 

Gany and Aharon [21], whose one-dimensional results have already been discussed in 

Section 4.1 in the context of axisymmetric motor. 

4.2.1 Critical Length 

 The critical length calculated using the integral formulation matches the value 

predicted by Eq. (4.14) within 7%. It may be instructive to note that for a fixed wall 

Mach number, the sonic length for the planar motion is twice the value of its 

axisymmetric counterpart.  

4.2.2 Pressure and Temperature 

 Equation (3.70) reports the principle integral expression linking the pressure to 

the axial distance. It is readily solved using the numerical approach described in Section 

3.2.5. For constant mass flux ( 0n  ), results for the centerline pressure and temperature 

are illustrated in Figures Figure 4.8a and b respectively. The improved agreement 
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Figure 4.8. Comparison between the present semi-analytical formulation and both 

1D and 2D solutions by Gany and Aharon [21] and Maicke and Majdalani [30], in 

addition to experimental results by Traineau et al. [15]. Results are shown for γ=1.4 

and Mw = 0.05 
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between the one-dimensional expression and our model is justified by the virtue of their 

similar boundary conditions including the specification of uniform mass injection at the 

sidewall. Also shown on the figure are experimental data points acquired by Traineau et 

al. [15]. These researchers have also focused on the planar chamber with uniformly 

distributed mass addition. At first glance, it may be surprising to note the improved 

agreement that stands between experimental measurements and the one-dimensional 

model. This may be attributed to the dismissal of viscous effects which reduce the 

conversion of thermal energy to kinetic, thus building up the pressure in the chamber. 

Unlike the two dimensional model in which friction leads to additional increments in 

irreversibilities, the one dimensional model is less susceptible to these discrepancies due 

to its mass injection being fundamentally axial. 

 Figures 4.8c-d display the results for the n 1 case. The present solution is in 

excellent agreement with the analytical relations by Maicke and Majdalani [30]. The 

slight disparity around the choking region may be connected to the linear approximations 

used in the numerical procedure. These approximations may deteriorate around the 

critical length. 

4.2.3 Velocity Profiles 

 The evolution of the axial velocity profile throughout the chamber is illustrated in 

Figure 4.9 along with the 2D analytical solution by Maicke and Majdalani [30]. As 

expected, the results demonstrate similar behaviors as the flow travels downstream. 

Compared to the incompressible Taylor solution, the compressible profiles display a 
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steepening effect that is accompanied by higher velocity gradients near the wall. This 

steepening is also reflected in the experimental data collected by Traineau et al. [15]. 

 Shown in Figure 4.10, a favorable agreement is seen to be established between the 

present solution and the experimental data, specifically at locations where the flow 

remains nearly incompressible, (i.e. before the flow reaches 40% of the chamber). 

Advancing further downstream, steepening occurs and appears to be more pronounced in 

the experimental data. The disparity is justified by the dismissal of viscous and 

turbulence effects which may become more pronounced as the flow approaches the 

critical length. 

4.2.4 Streamlines 

 By specifying a value of   and integrating along x , one can extract the 

streamlines. These are displayed in Figure 4.11 side by side with the incompressible 
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Figure 4.9. Spatial evolution of the axial velocity for a) Mw = 0.005 and b) Mw = 0.01 

at x / Ls = 0.2, 0.4, 0.6, 0.8, and 1. Results are compared to the 2D axisymmetric 

solution by Maicke and Majdalani [30]. Here γ = 1.4. 
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streamlines from Taylor [2]. Note that the effects of compressibility translate into faster 

turning of the flow. In Figure 4.11b, the axial distance is rescaled by the sonic length.  
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Figure 4.10. Axial velocity profiles obtained using the present formulation, the 

analytical solution by Maicke and Majdalani [30], and experimental data taken 

from Traineau et al. [15]. 
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Figure 4.11. Numerical streamlines for Mw = 0.01, depicted in solid lines, compared 

to the incompressible solution by Taylor [2], represented in dotted lines. In b) the 

axial coordinate is rescaled by the critical length, thus leading to self-similarity. 
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Chapter 5  

Conclusions 

In this study, the integral formulation of the porous chamber initiated originally by 

Traineau, Hervat and Kuentzmann [15], and later extended by Balakrishnan, Liñan and 

Williams [28], is reconstructed and compared to one- and two-dimensional analytical 

approximations obtained under isentropic flow conditions. Unsurprisingly, the level of 

agreement with the integral representation is found to be commensurate with the sidewall 

boundary conditions associated with each of these models. Being derived for a uniform 

mass flux at the sidewall, the one-dimensional model seems to provide closer predictions 

to the inverted integral solution with a pressure exponent of n 0.  Such a condition 

suppresses the velocity dependence on the pressure and ensures a constant mass flux at 

the sidewall. Conversely, the n 1 case leads to a constant wall-normal velocity that 

coincides with one of the boundary conditions used in deriving the two-dimensional 

analytical models [29]. Consequently, numerical predictions for this case fall in closer 

agreement with the two-dimensional solution. In all cases, the main discrepancies occur 
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near the sonic point and may be attributed to the various forms of approximations and 

linearizations befalling the integral approach. Furthermore, when comparing the level of 

difficulty needed to reproduce these solutions, the closed-form analytical approximations 

seem to substantially outperform the semi-analytical treatment. The latter requires 

piecewise numerical integrations, sequential inversions, and backward transformations to 

retrieve the original variables of interest. As if these multiple operations are not enough, 

the problem is further exacerbated by the variable extraction process occurring over a 

highly non-uniform mesh. This can render simple steps extraordinarily challenging, 

especially when attempting to extrapolate other related variables and derivatives that are 

needed over a uniform grid. Such effort can be quite laborious when compared to the ease 

with which the fully analytical models are implemented and resolved. Nonetheless, the 

numerical formulation helps to confirm several useful characteristics associated with the 

two-dimensional theory introduced previously by Majdalani [29], and Maicke and 

Majdalani [30]. Among them is the strong, albeit non-exact, self-similarity with respect 

to the critical length. This can be seen by rescaling the axial coordinate with respect to 

s
L ;  numerically obtained streamline, pressure, and temperature plots taken at two 

different Mach numbers become visually identical. The observed behavior confirms two-

dimensional theory which, in turn, projects deviations from self-similarity to be of the 

order of the wall Mach number squared, a practically small quantity that leads to relative 

differences of less than 1%.  

While this study captures the compressibility effects on the mean flow field in rocket 

motors, the model can be improved for a better prediction of the parameters involved. 
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The comparison of our model with experimental data showed some discrepancy as the 

flow gets closer to the sonic length. For future considerations, it is imperative to study the 

influence of viscous and turbulence effects on the flow.  

  



55 
 

References 



56 
 

References 

[1] Berman, A. S., 1953, “Laminar Flow in Channels with Porous Walls,” J. Appl. 

Phys., 24, No. 9, pp. 1232-1235. 

[2] Taylor, G. I., 1956, “Fluid Flow in Regions Bounded by Porous Surfaces,” 

Proc. R. Soc. Lond., 234, No. 1199, pp. 456-475. 

[3] Culick, F. E. C., 1966, “Rotational Axisymmetric Mean Flow and Damping of 

Acoustic Waves in a Solid Propellant Rocket,” AIAA J., 4, No. 8, pp. 1462-

1464. 

[4] Dunlap, R., Blackner, A. M., Waugh, R. C., Brown, R. S., and Willoughby, P. 

G., 1990, “Internal Flow Field Studies in a Simulated Cylindrical Port Rocket 

Chamber,” J. Propul. Power, 6, No. 6, pp. 690-704. 

[5] Saad, T., and Majdalani, J., 2009, “Rotational Flowfields in Porous Channels 

with Arbitrary Headwall Injection,” J. Propul. Power, 25, No. 4, pp. 921-929. 

[6] Majdalani, J., and Saad, T., 2007, “The Taylor-Culick Profile with Arbitrary 

Headwall Injection,” Phys. Fluids, 19, No. 9, pp. 093601-10. 



57 
 

[7] Zhou, C., and Majdalani, J., 2002, “Improved Mean Flow Solution for Slab 

Rocket Motors with Regressing Walls,” J. Propul. Power, 18, No. 3, pp. 703-

711. 

[8] Majdalani, J., Vyas, A. B., and Flandro, G. A., 2002, “Higher Mean-Flow 

Approximation for a Solid Rocket Motor with Radially Regressing Walls,” 

AIAA J., 40, No. 9, pp. 1780-1788. 

[9] Sams, O. C., Majdalani, J., and Saad, T., 2007, “Mean Flow Approximations 

for Solid Rocket Motors with Tapered Walls,” J. Propul. Power, 23, No. 2, 

pp. 445-456. 

[10] Saad, T., Sams, O. C., and Majdalani, J., 2006, “Rotational Flow in Tapered 

Slab Rocket Motors,” Phys. Fluids, 18, No. 1, pp. 103601-13. 

[11] Kurdyumov, V. N., 2006, “Steady Flows in the Slender, Noncircular, 

Combustion Chambers of Solid Propellants Rockets,” AIAA J., 44, No. 12, 

pp. 2979-2986. 

[12] Majdalani, J., and Saad, T., 2007, “Energy Steepened States of the Taylor-

Culick Profile,” AIAA 2007-5797, Cincinnati, OH. 

[13] Saad, T., and Majdalani, J., 2008, “Energy Based Mean Flow Solutions for 

Slab Hybrid Rocket Chambers,” AIAA 2008-5021, Hartford, CT. 

[14] Dunlap, R., Willoughby, P. G., and Hermsen, R. W., 1974, “Flowfield in the 

Combustion Chamber of a Solid Propellant Rocket Motor,” AIAA J., 12, No. 

10, pp. 1440-1445. 



58 
 

[15] Traineau, J. C., Hervat, P., and Kuentzmann, P., 1986, “Cold-Flow Simulation 

of a Two-Dimensional Nozzleless Solid-Rocket Motor,” AIAA 86-1447. 

[16] Beddini, R. A., 1986, “Injection-Induced Flows in Porous-Walled Ducts,” 

AIAA J., 24, No. 11, pp. 1766-1773. 

[17] Baum, J. D., Levine, J. N., and Lovine, R. L., 1988, “Pulsed Instabilities in 

Rocket Motors: A Comparison between Predictions and Experiments,” J. 

Propul. Power, 4, No. 4, pp. 308-316. 

[18] Liou, T.-M., and Lien, W.-Y., 1995, “Numerical Simulations of Injection-

Driven Flows in a Two-Dimensional Nozzleless Solid-Rocket Motor,” J. 

Propul. Power, 11, No. 4, pp. 600-606. 

[19] Apte, S., and Yang, V., Effect of Acoustic Oscillation on Flow Development 

in a Simulated Nozzleless Rocket Motor, Solid Propellant Chemistry, 

Combustion, and Motor Interior Ballistics, Yang, V., T. B. Brill, and W.-Z. 

Ren eds., AIAA Progress in Astronautics and Aeronautics, Washington, DC, 

2000, Vol. 185, 791-822. 

[20] Apte, S., and Yang, V., 2001, “Unsteady Flow Evolution in a Porous 

Chamber with Surface Mass Injection.  Part I: Free Oscillation,” AIAA J., 39, 

No. 8, pp. 1577-1586. 

[21] Gany, A., and Aharon, I., 1999, “Internal Ballistics Considerations of 

Nozzleless Rocket Motors,” J. Propul. Power, 15, No. 6, pp. 866-873. 



59 
 

[22] King, M. K., 1987, “Consideration of Two-Dimensional Flow Effects on 

Nozzleless Rocket Performance,” J. Propul. Power, 3, No. 3, pp. 194-195. 

[23] Venugopal, P., Najjar, F. M., and Moser, R. D., 2001, “Numerical 

Simulations of Model Solid Rocket Motor Flows,” AIAA 2001-3950, Salt 

Lake City, Utah. 

[24] Wasistho, B., Balachandar, S., and Moser, R. D., 2004, “Compressible Wall-

Injection Flows in Laminar, Transitional, and Turbulent Regimes: Numerical 

Prediction,” J. Spacecraft Rockets, 41, No. 6, pp. 915-924. 

[25] Najjar, F. M., Haselbacher, A., Ferry, J. P., Wasistho, B., Balachandar, S., 

and Moser, R., 2003, “Large-Scale Multiphase Large-Eddy Simulation of 

Flows in Solid-Rocket Motors,” AIAA 2003-3700, Orlando, FL. 

[26] Wasistho, B., Haselbacher, A., Najjar, F. M., Tafti, D., Balachandar, S., and 

Moser, R. D., 2002, “Direct and Large Eddy Simulations of Compressible 

Wall-Injection Flows in Laminar, Transitional, and Turbulent Regimes,” 

AIAA 2002-4344. 

[27] Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid 

Flow, The Ronald Press Company, 1953, Chap. 1. 

[28] Balakrishnan, G., Liñan, A., and Williams, F. A., 1991, “Compressible 

Effects in Thin Channels with Injection,” AIAA J., 29, No. 12, pp. 2149-

2154. 



60 
 

[29] Majdalani, J., 2007, “On Steady Rotational High Speed Flows: The 

Compressible Taylor-Culick Profile,” Proc. R. Soc. Lond., 463, No. 2077, pp. 

131-162. 

[30] Maicke, B. A., and Majdalani, J., 2008, “On the Rotational Compressible 

Taylor Flow in Injection-Driven Porous Chambers,” J. Fluid Mech., 603, No. 

1, pp. 391-411. 

[31] Balakrishnan, G., Liñan, A., and Williams, F. A., 1992, “Rotational Inviscid 

Flow in Laterally Burning Solid Propellant Rocket Motors,” J. Propul. Power, 

8, No. 6, pp. 1167-1176. 

[32] Tollmien, W., 1941, “Grenzlinien Adiabatischer Potentialströmungen.,” J. 

Appl. Math. Mech. (ZAMM), 21, No. 3, pp. 140-152. 

[33] Kaplan, C., 1946, “Effect of Compressibility at High Subsonic Velocities on 

the Lifting Force Acting on an Elliptic Cylinder,” Langley Memorial 

Aeronautical Laboratory, National Advisory Committee for Aeronautics 

NACA No. 834, pp. 49-57. 

 



61 
 

Vita 

Michel Akiki was born in Jounieh, Lebanon on October 29, 1984. In the spring of 2007, 

he received his Bachelor's of Engineering in Mechanical Engineering from Notre Dame 

University. During his undergraduate studies, Michel continued taking piano lessons to 

build up his 12 years of practice in classical music. Michel studied Fluid Mechanics 

under the direction of Dr. Majdalani at the University of Tennessee Space Institute and 

will be graduating with a Master of Science degree in Aerospace Engineering in 

December of 2009. Michel plans to continue his studies at the University of Tennessee 

Space Institute to pursue his doctoral degree. 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2009

	Integral Formulation of the Compressible Flowfield in Solid Rocket Motors
	Michel Henry Akiki
	Recommended Citation


	Microsoft Word - Thesis _final_.docx

