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Abstract: 

Natural resource managers in the Great Smoky Mountains National Park 

requested the assistance of the University of Tennessee Department of Civil and 

Environmental Engineering to assess Abrams Creek for potential stream restoration 

needs.  A presumed, unstable study reach and a stable reference reach were identified on 

Abrams Creek in Cades Cove.  Chemical, biological and physical assessments were 

completed on Abrams Creek in order to evaluate ecological health and channel stability 

of the stream.  Water quality and ecological (fish and habitat surveys) data acquired by 

National Park Service, Tennessee Valley Authority and the University of Tennessee were 

assessed.  The physical assessment included two approaches; they were: 1) empirical or 

reference reach approach; and 2) analytical or non-reference reach approach.  The current 

empirical technique used was the analog Natural Channel Design.  The current analytical 

techniques were the hydraulic, sediment transport and erosion models (HEC-RAS, 

CONCEPTS).  These physical assessment techniques were used to determine bankfull or 

effective flows, sedimentation, stream stability, and ecohydraulics.  In addition to using 

these techniques for the Park’s management objectives, they were applied to both reaches 

for comparison in order to clarify areas where professional judgment may introduce 

uncertainty.  From comprehensive physical assessments no system wide instabilities were 

observed but some riparian area differences and localized erosion were noted.  

Recommendations for potential restoration needs on Abrams Creek include localized 

stabilization of stream banks and vegetating the riparian corridor along the study reach.  
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Chapter 1: Introduction 

Abrams Creek, a stream in Cades Cove in the Great Smoky Mountains National 

Park (GRSM), has been historically disturbed by agricultural practices and channel 

alterations from the 1820s, when the first pioneers settled, until 1999, when all cattle 

were removed.  Observations of local bank failures by GRSM natural resource managers 

have led to the question of whether the channel is currently stable and if intervention by 

restoration measures is needed.  GRSM resource managers requested researchers at the 

University of Tennessee (UT) to assess the channel stability and restoration needs of 

Abrams Creek.  

In general, the need to address stream channel problems caused by land-use 

disturbances, such as agricultural practices, forest harvesting and urbanization has made 

stream restoration a widely applied practice today.  Disturbances by land-use changes 

have led to channels responding systematically, including down-cutting and widening, 

resulting in bank failures, followed by slow recovery with bed aggradation (Simon 1999).  

Practitioners assessing a stream spend much effort addressing these channel responses.   

Two general physical assessment approaches are used; they are the empirical and 

analytical approaches.  The empirical approach is more commonly applied and requires a 

presumed stable reference reach.  Geomorphic metrics are compared between the 

reference reach and the disturbed channel.  The analytical approach does not require a 

reference reach but does use technical field data collection and computer models.  Both 

approaches require similar input including channel geometry, hydrological and sediment 

data.  However, in many restoration projects, including Abrams Creek, hydrological and 
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sediment transport data are commonly unavailable, which creates uncertainties when 

applying techniques.  This point and the fact that Abrams Creek is no longer disturbed 

make it an excellent location to conduct and compare physical assessment approaches for 

stream restoration assessments. 

Physical disturbances have not only affected the physical aspect of a stream but in 

turn also affect the ecological health.  Lack of water quality (chemical) and biological 

assessments can lead to restoration designs that cause environmental harm.  Fortunately, 

reasonable levels of these data were available on Abrams Creek for general assessments 

to be made.  A stream is a very complex system, due to chemical, biological and physical 

elements.  All of these elements are inter-related and necessary to consider, which 

requires involving many fields and interests (Figure 1), for a comprehensive stream 

assessment (Thompson 1996, Schwartz et al. 2001, Slate et al. 2007).   

 The objectives of the Abrams Creek study were to: 1) use empirical and 

analytical approaches for physical assessment to determine the channel stability condition 

in Cades Cove, 2) compare commonalities and differences between the two physical 

assessment techniques, and 3) assess the overall condition of Abrams Creek by 

integrating available chemical and biological assessments with the physical assessment, 

in order to support GRSM management needs. 
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Figure 1: Flowchart of Stream Restoration Assessment Approaches 
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Chapter 2: Cades Cove Land Use History 

Abrams Creek is located in Cades Cove, in the northwest region of the GRSM 

(Figure 2). The Cades Cove area was the site for pioneer farms and houses in the 19th and 

20th centuries, agricultural practices (livestock and plant), and several population booms 

(GRSM 1998). Abrams Creek has been disturbed by deforestation, channelization, 

agriculture practices, and channel alterations (GRSM 1998).   

Settlement in Cades Cove began in the 1820’s.  The first settlers cleared the forest 

for mostly subsistence farming and very little livestock.  From the middle of the 19th 

century through the turn of the 20th century, Cades Cove experienced a couple of 

population booms, land divisions, and an increase in agriculture and livestock.  By the 

1930’s the population had decreased to only 300 and disturbances due to agricultural 

practices and livestock were noted in GRSM documents.   

From the 1930’s to the 1960’s, channel alteration and wetland destruction was 

prevalent.  Channel alterations included channelization of streams, as well as dredging 

and clearing of debris, vegetation and sediment to manipulate flows (GRSM 1998).  

Channelization of the tributaries of Abrams Creek such as McCaulley and Maples 

Branches occurred until the 1970’s (GRSM 1998).  However, channelization was not 

performed in the Abrams Creek channel. Channelization led to the straightening and 

relocation of streams for irrigation and draining purposes and property boundaries. 

During this time, cattle activities such as overgrazing and free access to the streams were 

common.  Incision, erosion and sedimentation resulted from these practices (GRSM 

1998).  During the 1970’s studies were performed that showed that high siltation,  
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Figure 2: Site Location Map 

(http://www.nps.gov/grsm/planyourvisit/maps.htm) 
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turbidity and bacteria levels present in the streams were detrimental to aquatic life (Kelly 

1974, Silsbee 1976).  Fencing was added due to these findings but improper maintenance 

of the fences occurred into the 1990’s (GRSM 1998).  However, these were not the first 

efforts at managing the streams in Cades Cove. 

The first stream restoration measures in Cades Cove, under the CCC, came along 

when work on the GRSM began in 1933.  These early measures included bank alterations 

and mulching.  The dredging and channelization was part of a 1946 land use management 

plan.  These channel management activities, along with bank stabilization, including rip 

rap and hay, were noted until 1970.  During the 1970’s fences were built and grasses and 

trees were planted to help prevent erosion.  These activities continued through the 1990’s 

until in 1999 all cattle were removed from Cades Cove. 

Today, the Cades Cove area, encompassing approximately 4869 ha (18.8 mi2), is 

one of the most visited areas in the GRSM and preserves elements of pioneer life, with 

cabins, barns and meadows.  It is home to a variety of wildlife, including bear, wild 

turkey, fox, deer, birds and, at one time, wolves.  Within the Cades Cove watershed, 

Abrams Creek has a total change in elevation of 15 m (49 ft) over a total stream length of 

9.7 km (6 mi) stream.  Abrams Creek and its tributaries support an abundance of aquatic 

life such as macroinvertebrates and fish including endangered species such as the smoky 

madtom, yellowfin madtom, and spotfin chub (GRSM 1998).  
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Chapter 3: Methods 

3.1 Study Design 

The GRSM was approached to use Abrams Creek as a possible location for 

stream restoration/mitigation efforts (pers. comm. with GRSM staff 2005).  Mitigation 

can involve restoration, enhancement or preservation of streams (Tweedy et al. 2006).  

First, though, the need for stream restoration must be based on a full examination of 

potential impacts and ecological stressors on a stream.  Thus, a comprehensive approach 

to stream restoration assessment must include three key elements: chemical, biological 

and physical (Figure 1).  Figure 1 illustrates the need for and inter-relationships of the 

chemical, biological and physical aspects of stream assessments, which was developed to 

guide the overall assessment for Abrams Creek.   

 An initial watershed assessment was performed on a section of Abrams Creek 

(Figure 3) to identify all possible channel instabilities in the three areas identified in 

Figure 1. The segment of the creek under inspection for this study is between Sparks 

Lane (upstream) and Hyatt Lane (downstream) (Figure 3).  These are two “cut-through” 

roads along the Cades Cove Loop Road (GRSM 1998).  Also, a section of creek located 

near the lower end of the Cades Cove Loop Road served as a reference reach.   

Information on Abrams Creek and Cades Cove was gathered from the GRSM for 

this research.  Information included reports on previous disturbances and restoration 

efforts, studies on aquatic life and water quality, and historic aerial photographs.  The 

water quality data were used for the chemical assessment.  The biological assessment was 

based on fish and habitat surveys.  The historic aerial photographs provided an evaluation  
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Figure 3: Location of Reference and Study Reaches in Cades Cove 
(USGS Cades Cove Quad 1997) 

 

of physical channel changes over time.  The chemical and biological data can help 

provide an assessment of the natural system and guide further physical assessments and 

designs.  However, in many current stream restoration projects these assessment elements 

are not taken into account and the focus is based on the physical assessment.  The main 

focus of the stream assessment for this study was also on the physical stability assessment 

of the stream, utilizing both empirical and analytical geomorphic approaches. 

 

3.2 Chemical Assessment 

 For this study, water quality data were compiled and compared, qualitatively, to 

Tennessee Department of Environment and Conservation (TDEC) standards for potential 

chemical stressors to the stream ecosystem.  Tennessee Valley Authority (TVA) 

Approximate location of 
Reference Reach Original study stream reach 

between Hyatt and Sparks 
Lane 

Approximate location of 
shortened study reach 
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conducted a water quality assessment on Abrams Creek and surrounding streams in 1993 

and 1994.  These data were compared to current TDEC water quality standards.  

Sediment loads were also analyzed using CONCEPTS as part of the water quality 

analysis. 

 

3.3 Biological Assessment 

 Biological assessments included the evaluation of existing fish data from the 

GRSM staff and physical habitat surveys conducted by UT.  Fish surveys were conducted 

by the GRSM staff from 1993 to 2002 in locations upstream and downstream of the 

section of Abrams Creek being assessed in this study (Figure 4).  The occurrences of 

species at these sites were compared throughout the years to observe biota quality. 

Physical habitat surveys were conducted along the study and reference reaches in the fall 

of 2006 by UT.  Mesohabitat units, including riffle, pool, run, and glide, were defined 

along the reaches according to Arend (1999).  Boundaries of the units were determined 

using visual estimates and a 30-m tape and plotted on the longitudinal profile.  Metrics of 

the habitat survey include bed substrate, large woody debris and vegetation (Kaufmann 

1999).  Physical dimensions such as average and maximum depth, width and length were 

collected as well (Schwartz 2002, Schwartz and Herricks 2007).  The habitat metrics 

were compared in reference and study reaches.  From these two surveys a qualitative 

evaluation of ecological health can be made. 
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Figure 4: Fish Sampling and RGA Locations 
 

 

Upstream fish 
survey site 

Downstream fish 
survey site 

Approximate 
Location of Study 
Reach 
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3.4 Physical Assessment 

 The physical assessment included analysis of aerial photographs, field data 

collection (longitudinal profiles, cross-section geometries, bed and bank sediment particle 

characterization and bank stability surveys) and empirical and analytical stability 

assessments.  One bank stability survey is the Bank Erosion Hazard Index (BEHI), which 

is a component of Natural Channel Design (NCD) and was used in this context for this 

study (Section 4.4).  However, the BEHI could be used independently as a qualitative  

bank stability survey (Figure 1).  The rapid geomorphic assessment (RGA) is another 

bank stability survey conducted in this study.  The longitudinal profiles and RGA’s were 

collected between Hyatt and Sparks lanes and in the reference reach near the Cades Cove 

Loop Road (Figure 4).  All other field data was only taken from a shorter section, 

between Hyatt and Sparks lanes, and in the reference reach (Figure 3).  The field data was 

required for both the empirical and analytical stability assessment approaches.  The 

empirical physical assessment approach followed NCD protocol for a level III 

assessment.  This technique required a reference reach, which was located downstream of 

the study reach (Figure 4).  The analytical physical assessment approach used the field 

data as input for hydrologic, sediment transport and bed and bank erosion computer 

models. 

 

3.4.1 Aerial Photograph Analysis 

Aerial photographs, provided by GRSM staff, were used to conduct a watershed 

scale analysis of Cades Cove.  Historical aerial photographs from the years 1953, 1963, 
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1979 and 1997 were digitized and entered into ArcGIS to analyze physical changes in 

Abrams Creek over time.  The aerial photographs also aided in performing level I of the 

NCD (Section 4.4).     

 

3.4.2 Channel Survey Data  

Channel survey data included longitudinal profiles and cross-section geometries. 

Survey data were collected using a Nikon level, stadia rod, 30-m tape and survey 

compass.  The longitudinal profile determined slope and sinuosity, and assisted in a 

knickpoint analysis. A knickpoint is a location in a channel where bed characteristics 

change, indicating instability (Hey 2006). The point of beginning was established at a 

bridge on Hyatt Lane and continued along the thalweg of the creek to the crossing of 

Sparks Lane.  The tape was stretched straight in varying lengths in order to include the 

meanders of the creek.  Elevation measurements were taken at horizontal increments in 

order to adequately represent bed topography.  As each tape was stretched out, a bearing 

was taken using a survey compass.  Station and tape numbers and tape length were 

recorded and marked with survey tape to later reference for other data collections.  The 

survey covered approximately 3.5 km and a change in elevation of 11.5 m.  This same 

procedure was conducted on the reference reach site at the lower end of Abrams Creek 

near the Cades Cove Loop road.  The point of beginning was a bridge, along the loop 

road, crossing Abrams Creek and followed the thalweg of the stream approximately 267 

m and an elevation change of 0.4 m to a beaver dam upstream.  
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Cross-sections were surveyed using the same tools as the longitudinal profiles.  

Locations and plots of the cross-sections can be found in Appendix A.  Cross-sections 

were located at a spacing and distribution of habitat units to give a proper representation 

of the stream.  A total of 16 cross-sections were surveyed on the study reach and six 

cross- sections along the reference reach.  Three cross-sections were surveyed near 

Sparks Lane in order to classify the entire study reach.   

 

3.4.3 Bed and Bank Sediment Data 

 Sediment data were required for both physical stability assessments. Sediment 

data were collected in two distinct populations (channel bed and banks) of the study and 

reference reaches of Abrams Creek to characterize the particle distribution in each 

distinct population.  The two techniques used were the Wolman pebble count for the bed 

and sieve and hydrometer particle size distribution tests for the banks and some of the 

bed, such as pools and bars (Wolman 1954, ASTM D421 and D422).  The bank samples 

were taken within the bankfull channel.  A pebble count was performed with all habitat 

units.  Particle size distributions were developed from these data. 

 The Wolman pebble count was conducted following standard procedures in the 

riffle physical habitat units.  However, due to extreme weather conditions, a modified 

version of the Wolman pebble count method was used to determine a particle size 

distribution on the bed of the stream.  The channel bed of areas with greater depths, such 

as in pools, were more difficult to reach and the temperature of the water required gloves 

in order for prolonged contact.  This modified version consisted of stretching a 30-m tape 
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across riffles and collecting 100 particle samples at random.  Samples were taken at 

approximately 0.2-m increments in a zigzag pattern across the riffle habitat unit until all 

samples were collected.  At each 0.2-m increment, a handful of bed material was taken 

and a representative particle size taken from this grab sample.  If the majority of the grab 

sample appeared to be less than 2 mm, the sample was considered fines.  If the majority 

of the grab sample was greater than 2 mm, with eyes averted, a random particle was 

selected and measured.  If greater than 40% of the samples were labeled fines, a grab 

sample of the bed was taken to perform a sieve and hydrometer lab test for proper particle 

size distribution.  This grab sample lab test was also used for particle size distribution in 

pools.  Grab samples from the banks were gathered and tested using the same sieve and 

hydrometer technique.   

 

3.4.4 Rapid Geomorphic Assessment 

The RGA assessment was applied to Abrams Creek in the section of stream 

between Hyatt and Sparks lanes and in the reference reach at the lower end of the creek, 

near the Cades Cove Loop Road (Figure 4).  This assessment allowed a rapid means of 

selecting a locally disturbed section of stream for purposes of this study.  RGA’s and 

visual assessment, also, determined a section of Abrams Creek, located near the southern 

end of Cades Cove, to be used as a reference reach. The protocol for the RGA survey can 

be found in Appendix B. 

RGA is a process-based classification system that determines geomorphic 

mechanisms acting upon a channel at a particular site, at a particular point in time (Simon 
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and Darby 1999).  Among other channel geomorphic characteristics, RGA’s use the 

channel evolution system (Simon and Hupp 1989).  Determining the evolutionary stage 

of a stream is critical for assessing the current stability, future potential, and need for and 

means of restoration (Hey 2003, Rosgen 2006, Shields et al. 2003, Simon 2007).  The 

evolutionary classification scheme used in the RGA was developed primarily for and 

limited to channelized, degrading (incised) streams that have adequate time and space to 

adjust through all stages of evolution (Niezgoda and Johnson 2005). The channel 

evolution of a stream has six stages according to Simon and Hupp (1989) (Figure 5).  

Following the RGA data form, stream reaches are scored (0-36).  Scores less than 10 are, 

considered, stable and those greater than 20 are unstable (Simon et al. 2004).  

 

 

Figure 5: Stages of Channel Evolution 
(Simon et al.  2004) 
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3.4.5 Empirical Physical Stability Assessment 

The empirical physical assessment used the channel survey and sediment data to 

perform the NCD Level III stability assessment.  NCD uses the form-based Rosgen 

classification system as a basis for predicting stream stability.  Because of its widespread 

usage, NCD will be the focus of the empirical physical assessment analysis.  The data 

sheets can be found in Appendix B. 

NCD is a method applied to assess streams and create channel designs for 

restoration purposes.  NCD consists of four levels; however, for this study only a Level 

III assessment was applied (Figure 6).  This empirically-based assessment requires a 

reference reach.  This approach is the basis for NCD, as found in the book “Applied 

River Morphology” and papers by David Rosgen (Rosgen 1996).  Level I of NCD uses 

historical documents, aerial photographs and maps to generally classify a stream based on 

geomorphic properties (Rosgen 1996).  The benefit of Level I classification is to provide 

a rapid assessment of the types of streams, landforms, soils, and morphologies that can 

exist in an area.  Level II uses the channel survey and sediment data to further classify the 

stream into certain stream types.  Bankfull measurements play a critical role in this level 

of classification (Rosgen 1996).  Bankfull level was determined visually, from regional 

curves, and checked using the HEC-RAS model (Section 4.5.1).  Average values, 

throughout each reach, were used for classification.  After classifying the study stream, a 

reference reach of the same stream type but in a stable condition was chosen to perform 

Level III assessment (Figure 3).   
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Figure 6: Levels of NCD 
(Rosgen 1996) 
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Level III of NCD incorporates hydrologic, biological, ecological and human 

factors into the classified morphology.  This level of assessment uses a departure 

analysis, comparing the study reach to a stable reference reach, in order to further 

describe a stream’s existing condition, stability, and maximum potential.  Data such as 

the Pfankuck channel stability evaluation and reference reach geometry are used to 

determine departure from the stable, reference reach.  The BEHI and Near Bank Stress 

(NBS) assessments are part of this level of assessment.  The BEHI uses bankfull channel 

geometry and bank characteristics to qualitatively assess bank erosion potential.  Method 

5 of NBS was used for the near bank stress evaluation.  NBS is another technique in the 

Level III NCD that qualitatively assesses erosion potential due to stresses near the bank.  

Method 5 uses a ratio of the near-bank maximum bankfull depth divided by the average 

bankfull depth to get a stress rating (Rosgen 1996).  A modified Pfankuch evaluation was 

developed by Dr. Ray Albright at UT (Albright, pers. comm.).  Originally the Pfankuch 

evaluation was developed for streams in the Northwest United States.  The modified 

evaluation regionalizes the form for the Southeast United States.  The field sheets for 

each assessment can be found in Appendix B.   

 STREAMS, a robust suite of spreadsheet tools designed by the Ohio Department 

of Natural Resources and Ohio State University, aided in calculating reach parameters 

such as slope and bankfull measurements needed for the empirical-based assessment.  

Modules included in STREAMS include: reference reach spreadsheet, regime equations, 

cross section and profile, sediment equations and contrasting channels.  Only the cross-
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section and profile module was used in this study.  Cross-section and longitudinal profile 

plots can be see in Appendix A. 

 

3.4.6 Analytical Physical Assessment 

 Two computer models, HEC-RAS and CONCEPTS, were used in this study to 

determine hydrologic and sediment transport and bank erosion properties, respectively, 

for stability analysis.  Analytical physical assessment techniques do not require a 

reference reach.  This approach used field data collection (Sections 3.4.2 and 3.4.3) as 

input for hydrologic and sediment computer models.   

 

3.4.6a HEC-RAS 

HEC-RAS river analysis system is a modeling program developed by the Army 

Corp of Engineers to assist in hydraulic analysis of open channel systems.  Steady flow 

was simulated in Abrams Creek using HEC-RAS.  This model is also capable of 

simulating unsteady flow and the effects of in-stream structures and tributaries.  

However, these factors were not relevant for this study.  The steady gradually varied flow 

component of HEC-RAS uses a one-dimensional energy equation for computation.  

Manning’s equation and expansion/contraction equations are used to evaluate friction 

(USACE 2006).   

Input for the model included channel geometry (longitudinal and cross-sectional), 

boundary roughness conditions (Manning’s n) and flow information.  The channel 

geometry was collected through field surveys.  Typical Manning’s n values from 
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hydraulic texts were used for roughness boundaries.   HEC-RAS was applied to Abrams 

Creek in order to determine an effective discharge and verify bankfull measurements 

used in the empirical physical assessment approach.  The use of a check is recommended 

in the NCD approach (Rosgen 1996).  The output includes cross-sectional and 

longitudinal water surface profiles (Appendix C). 

A synthetic flow data set was required for the CONCEPTS model (Section 

3.4.6b).  No gauges and very limited historical flow data were available on Abrams 

Creek.  Using the effective discharge, determined by HEC-RAS, and storm data from a 

nearby United States Geological Survey (USGS) gauge (Little River near Maryville, TN), 

a synthetic flow data set was created.  A couple of assumptions were made to create this 

flow data set.  First, the bankfull flow was assumed to be the effective flow.  Second, the 

recurrence interval for this flow was assumed to two years, so two years’ worth of data 

from the nearby gauge was used.  Third, the USGS gauge was on a much larger stream, 

so the hydrograph was normalized using the bankfull flow for Abrams Creek.  A ratio of 

the two-year peak gauge reading and modeled effective flow was developed and the rest 

of the flow data were multiplied by the ratio to get a flow data set following the same 

storm pattern. To represent the intermittent subsurface flow during June through August, 

a value of zero was used for the synthetic flow data.   

 

3.4.6b CONCEPTS 

The CONservational Channel Evolution and Pollutant Transport System 

(CONCEPTS) model is a one-dimensional sediment transport model (Langendoen 2000).  
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CONCEPTS is composed of three physical-process components, including: 1) 

hydrodynamics for unsteady flow hydraulics, 2) mobile bed dynamics accounting for 

sediment transport and bed adjustment, and 3) bank erosion and channel widening from 

fluvial and geotechnical processes.  CONCEPTS utilizes distributed flow routing for the 

hydrodynamic model through the application of the conservation of mass and 

momentum.  The continuity and momentum equations are shown are as follow, 

respectively: 
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where,  B = top width 
Q = discharge 
t = time 
x = distance in stream wise direction 
qL = lateral flow into channel per unit length of channel 
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where, Q = discharge 

t = time 
x = distance in stream wise direction 
A = cross-sectional area 
g = gravitational acceleration 
y = flow depth 

2 2
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n = Manning’s roughness coefficient 
R = hydraulic radius 

 
Momentum and mass conservation laws are applied as either dynamic and diffusion wave 

model, depending on whether inertia terms are neglected and the expression can be 
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simplified for subcritical flow conditions (Sturm 2001).  CONCEPTS uses the 

generalized Preissmann method (Cunge et al. 1980) of discretization to solve for the 

dynamic and diffusion wave hydrodynamic models.  This method is compatible to a 

spatially varying grid, and it is implicit in time (Langendeon 2000).  The Preissmann 

method is a forward time finite difference numerical method.   

Sediment transport is directly related to flow hydraulics, bed-material 

composition, and upstream sediment contribution (Langendoen 2000).  CONCEPTS 

represents the total sediment load, the sum of the bed and suspended load, utilizing 

different empirical transport functions for a range of sediment size classes.  CONCEPTS 

uses a modification of the SEDTRA sediment transport capacity predictor developed by 

Garbrecht et al. (1996) to predict the sediment transport of the 14 individual size classes 

(Table 1).  Conservation of mass for each size class is achieved using the following 

advection equation: 
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where, t = time 
x = stream wise distance 
u = flow velocity 
Ek = entrainment rate of particles, per k size class 
Dk = deposition rate of particles, per k size class 

ksq  = rate of sediment inflow from banks and fields adjacent to channel 

k = kth size class 
C = sediment mass 
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Table 1: Sediment size classes used in CONCEPTS and the empirical transport 
equations used per size class 

Size 
Class 

Upper 
Bound    
(mm) 

Representative 
diameter       

(mm) Description Transport Equation 
1 0.010 --- clay-very fine silt Washload 
2 0.025 0.016 fine-medium silt Laursen 
3 0.065 0.040 medium-coarse silt Laursen 
4 0.250 0.127 fine sand Laursen 
5 0.841 0.458 medium-coarse sand Yang 
6 2.000 1.297 very coarse sand Yang 
7 3.364 2.594 very fine gravel Meyer-Peter and Mueller 
8 5.656 4.362 fine gravel Meyer-Peter and Mueller 
9 9.514 7.336 fine gravel Meyer-Peter and Mueller 
10 16.000 12.338 medium gravel Meyer-Peter and Mueller 
11 26.909 20.749 coarse gravel Meyer-Peter and Mueller 
12 38.055 32.000 coarse gravel Meyer-Peter and Mueller 
13 64.000 49.351 very coarse gravel Meyer-Peter and Mueller 
14 128.000 90.510 small cobbles Meyer-Peter and Mueller 

 
 
 
Temporal variations of the bed material, expressed as an Exner formulation is given as: 
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where,  Ab = cross-sectional area of the mixing layer 

 λ = bed sediment porosity 
 
Entrainment and deposition rates differ for cohesiveless and cohesive bed material, and 

they are computed by different methods, and explained by Langendoen (2000).  For 

cohesiveless bed material, key physical parameters include particle fall velocity (w), flow 

depth, (h), and shear velocity (u*).  For cohesive bed material, key physical parameters 

for erosion include the bed shear stream (τb), shear strength of the bed material (τe), and 

erosion-rate constant (e). Bank shear strength and erosion-rate constant were determined 
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in-situ using the submerged jet tester developed by the USDA National Sedimentation 

Laboratory (Clark and Wynn 2006).  Entrainment and sediment transport occurs when 

bed shear stress (τb) is greater than some critical shear (τc) for Shields incipient motion, 

and is the fundamental basis for the Laursen, Yang, and Meyer-Peter and Mueller 

equations.  Critical shear for Shields incipient motion is based on uniform sand transport, 

and therefore needs to be corrected by mixed size compositions of bed sediment.  This is 

done in CONCEPTS by a hiding coefficient (χ), which ranges from 0 to 1, and adjusted 

per particle size class as follow: 
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where, d = mean size of the bed material 

 dk = representative diameter of k size class 
 dc,k = adjusted representative diameter of k size class 
 χ = hiding coefficient 
 

Computation of fraction bed concentration from discretized spatial nodes (upstream 

to downstream) for bed sediment transport is accomplished by numerical solution using 

the method of characterization.  Numerical stability is achieved by selecting the 

appropriate discretization scheme based on the Countant number.  CONCEPTS compute 

variations in streambed elevations over time accounting for changes in bed material area 

(ΔAbk) based on the difference between intermediate sediment concentrations (Ck), 

expressed as: 

 

 [ ]11 )()(
1

1)()( ++ −
−

=−=Δ n
jk

n
jk

n
jb

n
jbb CCAAA

kkk λ
 



 32

CONCEPTS vertically divides the bed into a surface layer (area) and several subsurface 

layers, and keeps track of the different bed sediment compositions of surface and 

subsurface sediment layers.  Initial boundary conditions for the bed sediment layer are 

entered from field collection of bed sediment at channel cross-sections (model nodes).  

An external boundary condition requires information at the upstream most on sediment 

discharge over time by particle size class.  An external boundary condition at the 

downstream end is not required, whereby the model processes determine the bed 

elevation and sediment composition at the model outlet location.  Bed elevation at the 

model outlet can be controlled by adjusting the change in bed area material, as expressed 

as follows:   

 
 

kb bb AmA Δ−=Δ )1(  
 

where, m = adjustment factor (0 = no control, 1 = full control) 
 

Sediment delivery (or inputs) at model nodes determine using Wolman pebble counts and 

sieve and hydrometer lab testing on channel banks and bed.  Data input at designated 

model nodes (cross-sections) are organized in appropriate particle size classes (k) as 

classified in CONCEPTS.  Sediment contributions by particle size are then routed 

through the channel. 

The final physical component of CONCEPTS is modeling bank erosion and channel 

widening.  This component provides the user with the ability to model channel width 

adjustment by incorporating the fundamental physical processes for bank retreat; they 

are:    
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1.) fluvial erosion or entrainment of bank material particles by flow, and  

2.) mass bank failure (wasting), typically occurring as channel incise. 

 

CONCEPTS accounts for cohesiveless and cohesive bank material, and uses a multi-

layer modeling approach for vertical differences in soil properties.  Lateral bank erosion 

by fluvial processes is based on the relationship: 
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 where, τe is the critical shear stress for soil entrainment.   
 

The rate of soil erosion is assumed to be approximately linear with increases in boundary 

shear stress (τ); thus the actual erosion rate for a given time step is given as: 
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Fluvial erosion at the bank toe eventually causes bank instability resulting in mass 

wasting of the bank material.  Bank instability depends on the balance between 

gravitational forces that tend to drive the soil mass downwards and the forces of friction 

and cohesion that resist mass movement.  Vegetation on the bank affects the rate of width 

adjustment and mass failures, where its influence can be both stabilizing or destabilizing.  

Bank stability analysis is accomplished by limit equilibrium methods, based on static 

equilibriums of forces and and/or moments of a failure block.  The forces acting on a 

failure block include (Figure 7): 
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1.) the weight of the failure block, WS 

2.) the weight of surface water on the failure block, WW 

3.) the hydrostatic force exerted by the surface water on the vertical slip face, FW 

4.) the hydrostatic force exerted by water in the tension crack, Ft 

5.) the seepage force, FS 

6.) the shear force at the base of the failure block, S 

7.) the total normal force at the base of the failure block, N 

The total stress normal to the base of the failure block can be expressed as follows: 

 

 [ ]b
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 where, L = length of the inclined slip surface 
  c’ = effective cohesion 
  (σn – ua) = normal stress state variable 
  φ’ =effective angle of internal friction 
  (ua – uw) = matric suction 
  φb = angle for shear strength due to matric suction 
 
 
The seepage force is dependent on pore-water pressure, which can be hydrostatic or non-

hydrostatic dependent on a hydraulic gradient and assuming Darcian flow.  Pore-water 

pressure ratio (ru) is used rather than pore-water pressure (uw), expressed as:  
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u
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γ ,  where d is the depth below the soil surface. 
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Figure 7: Summary of forces on a failure block used in CONCEPTS bank stability 

analysis (from Langendoen 2000) 
 
 
 
The effective force normal to the failure plane is given as:  
 
 0cos)sec1( 2 <−= ββ Su WrN  
 
Langendoen (2000) summarized the geotechnical development of a Factor of Safety (F) 

used to identify the threshold for bank failure based on the major forces, as shown in 

Figure 7.    

Once the threshold for bank failure is surpassed, the bank block fails and the soil 

mass enters the channel.  It is assumed that the soil mass from the block failure 

completely enters the channel as a lateral flux of sediment.  The lateral flux of sediment 
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is partitioned by size class, and added to the sediment mass governed by conservation 

laws.   
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Chapter 4: Results and Discussion 

4.1 Chemical Assessment 

According to the 1995 TVA report and comparison with TDEC standards the 

water quality in Abrams Creek is good.  Table 1 is a summary of water quality values 

from the TVA water quality studies (1993 and 1994) and current TDEC water quality 

standards.  As shown in Table 1 below and stated in the TVA report (1995), all water 

quality parameters were within TDEC standards.  A few pH readings below the allowable 

6.5 were detected at some of the sites.  The report states that the methods used to measure 

pH could have introduced a discrepancy of 0.3 to 1.0 pH units.  So on average the pH 

was within EPA limits.  Phosphorus was the only nutrient that was suspected of creating 

water quality concerns, but the readings were well within the limits. High dissolved 

oxygen and low biological oxygen demand (BOD) levels indicated good water quality 

(TVA 1995).  During the period of sampling, cattle were still present in Cades Cove.  

However, all of the cattle were removed in 1999.   

 

 

Table 2: Summary of Water Quality Data 

Station 
Average 

pH 
Turbidity 

(NTU) 

Ammonia 
Loadings  

(ug/L) 

N0x 
Loadings  

(ug/L) 

Phosphorous 
Loadings 

(ug/L) 
4 6.2 0.92 0.05843 0.19791 0.02114 
5 6.6 2.2    
6 7.6 2.04    
7 7.4 1.65 0.06293 0.30721 0.04853 

TDEC 
Standard 6.5 - 9 1.0 - 5.2 0.21-0.58 5.63 - 10.47 

*Ammonium and N0x loadings standards are for total nitrogen 
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4.2 Biological Assessment 

4.2.1 Fish Survey 

The majority of fish species located in the sampling sites were found both 

upstream and downstream of the study reach, indicating a good level of biota in Abrams 

Creek.  However, this biological assessment of fish was only a qualitative examination of 

data to evaluate whether an obvious problem exists.  Table 3 summarizes the year 

different fish species were found in sites upstream of the study reach and downstream of 

the reference reach (Figure 4).  The fish surveys were conducted once a year by the 

GRSM, except in 2003.  The white sucker, warpaint shiner, fantail darter and longnose 

dace are the only species that were never found in both locations.  The first two were only 

in the downstream sampling site and the latter two were only found in the upstream site.  

Most species were highly tolerant of stressors and siltation and high turbidity were the 

only intolerances of the fish species found in Abrams Creek.  There was no evident 

explanation as to why some species disappeared from yearly surveys.  However, cattle 

were still present during most of these years which could have affected the fish 

populations.   

 

4.2.2 Habitat Survey  

The habitat characteristics of the reference and study reaches were similar, thus a 

good level of habitat availability in the study reach.  Table 4 is a summary of the habitat 

metrics surveyed in the study and reference reaches of Abrams Creek in the fall 2006.  

The reference and study reaches both have similar physical habitat attributes, as seen in  



 39

Table 3: Summary of Fish Surveys (GRSM) 

Species Species Name 
Year Present Upstream of 

Study 
Year Present downstream of 

study 
BND Blacknose Dace 93,94,95,96,97,98,99,00,02 93,94,95,96,97,98,99,00,02 
CKC Creek Chub 93,94,95,96,97,98,99,00,02 93,94,95,96,97,98,99,00,02 
NHS Northern Hogsucker 93,94,95,97,98 93,94,95,96,97 
RBT Rainbow Trout 93,94,95,96,97,98,99,00,02 93,94,95,96,97,98,99,00,02 
RIC River Chub 93 93,95,97,98,99,00 
RSD Rosyside Dace 93,94,95,96,97,98,99,00,02 93,94,95,96,97,98,99,00,02 
STR Stone Roller 93,94,95,96,97,98,99,00,02 93,94,95,96,97,98,99,00,02 
TSD TN Snubnose Darter 93,94,95,96,97,98,99,00,02 93,94,95,96,97,98,99,00,02 
WHS White Sucker  93,94,95,96,97,98,99,00,02 
WPS Warpaint Shiner  93,94,95,96,97,98,99,00,02 
FTD Fantail Darter 93,95,96,97,98,99,00,02  
LND Longnose Dace 93,94,95,96,97,98,99,00,02  
TNS Tennessee Shiner 93  

 

Table 3.  They both also contain many of the same species of fish (Table 3).  The 

dominant bed material in both reaches was sand and gravel.  The bank vegetation along 

both banks of the reference reach was much more abundant with large woody vegetation 

and had a greater density overall than the study site.  This correlates with the ratio of total 

and volume of large woody debris (LWD) by reach length in the channel.  The ratio of 

volume LWD in the reference reach is twice that of the study and the number is pieces is 

1.5 times greater in the reference than the study reach.  The pool-riffle spacing in both 

reaches is 3 to 4 channel widths.  This is less than the proposed stable spacing of 5 to 7 

channels widths by Rosgen (1996). 

Although the study reach has intermittent seasonal flows, it serves as a corridor 

for the fish species found in both locations.  The habitat structure used by these fish 

provides a corridor so that they can move throughout the stream when flow is present, 

providing longitudinal connectivity. 
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Table 4: Summary of Habitat Survey 

  Length (m) 
Reach 
slope 

Avg. 
Pool-
Riffle 

Spacing 
(m) 

Total 
LWD 

Ratio 
of 

LWD/ 
Length  

Volume 
of 

LWD 
(m^3) 

Ratio 
of 

Volum
e of 

LWD/ 
Length 

Study Reach 466.5 0.0027 18 47 10 38.2 8.2 
                
                
                
                
Reference Reach 267 0.0015 25 48 16 42.6 16 
                
                
                

 
Habitat 

Unit 

Total 
Habitat
Units 

% by 
Length Avg. Depth (m) 

Avg. 
Width 

(m) Total Root Wads 
Study Reach Pool 16 53.5 0.65 4.39 17 

 Riffle 12 30.8 0.23 4.87   
 Glide 1 1.1 0.32 5.49   
 Run 5 14.6 0.33 4.29   
             

Reference Reach Pool 6 62.6 0.67 6.94 14 
 Riffle 5 29.7 0.39 7.73   
 Glide 1 7.7 0.58 8.64   
 Run 0 0 0 0   
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4.3 Physical Assessment 

4.3.1 Aerial Photograph Interpretation 

After comparing historical aerial photographs over a 40 year period (Figure 8), 

very little stream lateral migration was observed.  Throughout all of these years, except 

1973 and 1997, Abrams Creek was still being affected by dredging and channelization of 

its tributaries (GRSM 1998).  Some reforestation, reseeding and fencing were done in the 

early 1970’s and mid 1990’s.  However, comparing aerial photographs, dating back to 

1925, shows very little increase in riparian vegetation.  Some loss of large woody 

vegetation in the riparian corridor has occurred, based on observation of fallen trees 

within the time of the current study. 

The tributaries McCaulley, Oliver and Maples Branches were all noted in reports 

to have been channelized (GRSM 1998).  However, these do not appear to be migrating 

laterally either.  Unlike Abrams Creek, visual observations of these tributaries exhibit 

down-cutting due to an increase in bed shear stress.  This could be preventative of lateral 

migration, which could aid in reconnecting the flood plain and decreasing the down-

cutting. 

 

4.3.2 Channel Survey Data – Longitudinal Profile 

The longitudinal profile between Hyatt and Sparks lanes identified a small 

knickpoint downstream of the karst sinks and Maples Branch (Figure 9).  From 

observation, the section downstream of the knickpoint was determined to be less stable.   
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Figure 8: Comparison of Historical Aerial Photographs of Cades Cove 
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Figure 9: Longitudinal Profile of Abrams Creek between Hyatt and Sparks Lanes 
 

 

Visual observations of the channel indicated increased incision and decreased riparian 

vegetation downstream of the knickpoint.  A change in slope, from approximately 0.007 

to 0.0025, can be seen from this plot.  Also, a change in bed material from cobbles and 

gravel to small gravel and sand occurred at this point. Further assessments were 

conducted on a section downstream of this knickpoint.  The shorter longitudinal profiles 

of the reference and study reaches can be found in Appendix A.  The karst sinks carry the 

flow underground during part of the year and create a geological barrier for any upstream 

channel influences to carry on downstream past the sinks.  The karst sinks and 
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channelized tributaries could have led to the development of the knickpoint and lessened 

stability in Abrams Creek. 

 

4.3.3 Bed and Bank Survey Data 

The D50 particle size for the most upstream section (between the sinks and Sparks 

Lane) was in the cobble range (64-256 mm); the study and reference reaches were in the 

small gravel class (2-22 mm).  The D50 is the particle size that 50% of the sediment 

samples are equal to or smaller than.  Table 5 summarizes average D50 values for 

individual channel features.  As shown in this table, the particle sizes for the channel bed 

and banks are not necessarily the same or even within the same sediment particle 

classification.  The banks are in the fine sand and silt category, whereas the riffle channel 

bed is gravel.  The particle size distributions can be seen in the appendix. 

 

 

Table 5: Summary of Particle Sizes in Bed and Banks 
 Bank, Avg. 

D50 (mm) 

Pool, Avg. 

D50 (mm) 

Riffle, Avg. 

D50 (mm) 

Study Reach 0.5 0.5 10 

Reference Reach 0.15 3.0 7 
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4.3.4 Rapid Geomorphic Assessment 

The RGA scored the study reach as less stable on average than the reference 

reach.  Table 6 is a summary of the total RGA scores and channel evolution stages for 

Abrams Creek.  Figure 4 shows the locations of the RGA’s.  The RGA also shows a  

change in channel stability below the knickpoint.  The study reach scored some RGA 

indices above 20, indicating instability, and the evolution stage was also a less stable 

stage than the pre-disturbed reference reach.  The stages evolution in the study reach 

involves degradation, aggradation, and widening.  A channel evolution stage of V or VI 

is required for stability (Table 2 in Shields et al. 2003).  However, these scores and 

evolution stages indicate that the stream is in dynamic equilibrium.  According to the 

RGA and aerial photograph analysis, the stream is slowly adjusting naturally to a stable 

state. 

 

 
Table 6: Summary of RGA 

Section of 
Stream 

Avg. and range 
of RGA scores  

Avg. and range of 
Channel Evolution 
Stages  

Hyatt to Sparks 
Lanes 

17; 11.25-21.5 III - VI 

Between Hyatt 
Lane and Sinks 

18; 12.75-21.5 III - V 

Between Sinks 
and Sparks 
Lane 

16; 12.5-21.5 III -VI 

Study Reach 19; 18-21.5 IV-V 
Reference 
Reach 

9.5; 8-11 I 
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4.3.5 Empirical Physical Assessment - Natural Channel Design 

Abrams Creek is valley type VI and type C stream, according to the Rosgen 

classification system.  The form-based, Rosgen Classification system is a key element of 

the NCD empirical assessment.   Type VI valley is termed a fault-line valley according to 

Rosgen (1996).  Type “B”, “C”, and “F” streams and “G”, when in disequilibrium, are 

found in this valley type (Rosgen 1996).  Also, according to Rosgen (1996), this valley 

type exhibits a slope less than 4 percent and a low sediment supply.  Type “C” streams 

usually feature sinuous, low relief channels, well developed floodplains, point bars and 

pool-riffle sequences (Rosgen 1996).   

 The Level II assessment used dimensionless ratios, determined from bankfull 

level, to further classify Abrams Creek into a specific stream type.  Figure 10 shows 

several visual field indicators of bankfull flow.  Initially vegetation and flow lines were 

identified and applied for bankfull determination.  However, after further inspection these 

indicators did not produce a level near the top of bank (bankfull) channel capacity.  

Therefore, the top of bank was used as the bankfull level for classification.  Regional 

curves are also commonly applied to determine bankfull parameters such as depth, width 

and discharge.  Abrams Creek is in the Blue Ridge physiographic region.  Field 

measurements were compared to the regional curve values as a check (Table 7).  The 

percent differences between the regional curve predictions and field values were great for 

all measurements except bankfull depth in the reference reach.  This indicates that for 

Abrams Creek, the regional curve method is not reliable. 
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Figure 10: Visual Observation of Bankfull 
 

 

Table 7: Comparison of Regional Curve and Study Bankfull Values 
 Drainage 

Area (mi2)  
Bankfull Flow 
(cms) 

Cross 
Sectional 
Area (m^2) 

Bankfull 
Width (m) 

Average 
bankfull 
depth (m) 

Study 
Reach 

14.6 21.9 16.1 12.5 0.76 Value 
From 
Regional 
Curve Reference 

Reach 
19.7 27.5 15.3 18.0 0.84 

Study 
Reach 

14.6 10; 120% 5; 222% 7.4; 69% 0.64; 19% Avg. Value 
from 
Study and 
Percent 
differences 
b/t 
methods 

Reference 
Reach 

19.7 10; 175% 8; 91% 9.6; 88% 0.84; 0% 

* Regional curve and equations for above parameters can be found in the Appendix 

Top of Mid-Channel Bar 

Vegetation/Flow line 

Vegetation/Flow line 

Top of Bank 
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Following the Level II protocol, the study and reference reaches were both 

classified as C4 stream types, according to Level II classification or morphological 

description.  The reference reach was suitable because it possessed stable conditions and 

was of the same stream type and in the physiographic region as the study reach.  The C4 

stream is classified as having a slope less than 2%, have a high width/depth ratio, contain 

predominantly gravel with some cobbles, sand and silt/clay beds.  The upper section, 

above the sinks, near Sparks Lane was classified as a type C3 stream.  A “C3” stream 

contains the same features as the “C4” except the bed is predominantly composed of 

cobble with some gravel and sand.  It is usually less sinuous than the “C4” stream type 

(Rosgen 1996).  Table 8 shows a summary of the classification values on Abrams Creek. 

The criteria, forms and cross sections indicating bankfull level can be found in the 

appendix.        

The whole NCD Level II classification hinges on the correct determination of 

bankfull level (Rosgen 1996).  Three methods were utilized to determine bankfull; visual 

field indicators, regional curves, and HEC-RAS computer model (section 4.3.6a).  

Uncertainties using field bankfull indicators were recognized on the Abrams Creek study.  

Flow and vegetation lines on individual banks could show two different bankfull levels, 

sometimes well below the top of bank.  The regional curve offered one form of a check 

but produced differing values from the analytically determined bankfull flow modeled in 

HEC-RAS.  The regional curve prediction of bankfull flow was much greater than that 

observed in the field and modeled with HEC-RAS. Also, regional curves and NCD do not 
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account for karst geology.  This unique feature to Abrams Creek inhibits use of 

classification systems developed for streams without karst.     

According to the Level III NCD assessment the study reach is in a stable 

condition.  This is indicated by very little departure from the reference reach and stable 

BEHI, NBS and Pfancuck analyses.  Table 9 summarizes Level III assessment parameters 

according to Rosgen 1996. The Pfankuch score for the study reach ranged from a 59 to a 

78.  For a C4 stream type, this score range is considered good (Rosgen 1996).  At the 

study reach, the NBS rating, according to method 5 (Level III prediction) in Rosgen 

1996, is very low to low.  The BEHI rating for the study reach was an average of 20.7, a 

minimum value of 8.8 and a maximum value of 35.4.  This is a rating of low to high.  The 

average BEHI value for the reference reach was 12.7 with a minimum of 6.4 and a 

maximum value of 21.4.  The BEHI rating for this reach was very low to moderate. The 

BEHI is useful, apart from the rest of NCD, as an initial bank stability survey, 

comparable to the RGA.  

 
 
Table 8: Summary of Stream Classifications on Abrams Creek 
 Entrenchment 

Ratio 
Width/ 
Depth  
Ratio 

Sinuosity Slope Channel 
Materials 

Valley & 
Stream 
Type 

Upper 
Abrams 

7.5 19.9 1.3 0.011 Cobble VI; C3 

Study Reach 2.7 12.4 1.21 0.0025 Gravel/Sand VI; C4,C5 
Reference 
Reach 

6.36 11.44 1.51 0.0015 Gravel/Sand VI; C4,C5 
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Table 9: Summary of Level III Natural Channel Design 

  
Riparian 
Vegetation Flow Regime 

Stream 
Size 

Depositional 
Pattern 

Meander 
Pattern 

Debris and 
Channel 
Blockages 

Pfankuch 
Stream 
Channel 
Stability BEHI 

Study Reach 

Deciduous 
with brush and 
grass 
understory, 
Moderate 
density 

Intermittent/ 
subterranean 

S-4,S-5 
Bankfull 
Width  = 
4.6-15m 

B-2 Point 
Bars with few 
mid channel 
bars 

M1 - 
regular 
meanders 

D4 - 
numerous 
blockages 
with some 
D5, extensive 
blockages Good 

20.7, low 
to high 

Reference Reach 

Deciduous 
with brush and 
grass 
understory, 
High density 
with wetland 
vegetation Perennial 

S-4,S-5 
Bankfull 
Width  = 
4.6-15m 

B-2 Point 
Bars with few 
mid channel 
bars 

M1 - 
regular 
meanders 

D3 – 
moderate 
blockages 
D8 - beaver 
dams 
frequent Good 

12.7, low 
to 
moderate 
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Unlike the previous two levels of NCD, Level III does provide a qualitative stability 

assessment by comparing the study reach to a “stable” reference reach.  If a wrong 

reference reach is selected due to misclassification (from incorrect bankfull flow or 

sediment analysis), then the stability assessment will also be incorrect.  Using the Level 

III assessment, minor departure from the reference reach was determined in the study 

reach. Some notable differences between the study and references reaches according to 

the Level III NCD assessment include: 

 

1. Differing Flow Regimes - The study reach is intermittent due to the karst 

geology and the reference reach is perennial. 

2. Beaver Activity – Beaver activity, including beaver dams, was located 

upstream of the reference reach.  This made location of a reference reach 

difficult, but a short section downstream of the beaver activity was found.  

This activity will probably not locate upstream to the study reach due to its 

intermittent flow.   

3. BEHI Rating - the study reach did have a higher BEHI rating, which could 

indicate some localized bank erosion areas of concern.  Isolated areas of bank 

erosion were also observed in the field at locations where LWD directs flow 

toward the bank.   

4. Riparian Vegetation – The reference reach contains a much wider and dense 

riparian vegetation zone compared to the study reach.  Studies show a change 

in vegetation can affect the stability of a stream (Rosgen 2006). 
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5. Sediment particle size differed between the two reaches as seen in Table 4, in 

which the study reach was less than the reference reach. 

 

4.3.6 Analytical Physical Assessment – Computer Models 

4.3.6a HEC-RAS 

 HEC-RAS was used to determine bankfull flow and check the bankfull estimated 

from visual indicators and the regional curve.  From HEC-RAS, a bankfull flow of 

approximately 10 cms was determined.  Figure 11 is the model output of the bankfull 

flow.  Figure 12 is the output for the bankfull flow predicted by the Blue Ridge 

physiographic province regional curve. The simulated flow level at each cross section can 

be seen Appendix C.   

When the bankfull flow predicted by the regional curve was modeled, the flow 

was much greater than the channel bankfull capacity, as shown in Figures 11 and 12.  The 

use of a hydraulic model such as HEC-RAS allows for a check and correct determination 

of bankfull flow and any other flows that may be critical to sediment transport. 

 

4.3.6b CONCEPTS 

The CONCEPTS model predicted some bank failures in the study reach and 

degradation and aggradation in both reaches. However, the lack of field data makes the 

comparison to natural processes rates very uncertain. Table 10 summarizes the sediment 

loads in Abrams Creek study reach during a bankfull flow event and sediment loads  
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Figure 11: Flow at top of bank (10 cms) modeled in HEC-RAS 
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Figure 12:Regional Curve Bankfull Flow (27.5 cms) modeled in HEC-RAS 
 

 

 

 



 54

during large flow events on other streams monitored by USGS and limited suspended 

sediment values taken by TVA in 1993 and 1994 on Abrams Creek near Hyatt Lane.   

The sediment data obtained for a comparison of the CONCEPTS output and field 

data is also uncertain.  From observation of USGS data, readings of sediment loads varied 

greatly for discharges of similar magnitudes.  However, this could be a result of bank 

failures during the sampling time.  Also, land-use effects on sediment discharge rates are 

neglected due to limited information on the sites.  In order to compare the CONCEPTS 

and TVA data, a conversion from concentration to rate of sediment load was required.  

The assumption that the sediment discharge rate was constant for a period of time was 

made for this conversion.  The two values in Table 10 are for a sediment load with a flow 

duration of 2 hours (1) and for 3 hours (2).  Although very rough estimates, these give 

some means of comparison with real stream data, which is commonly non-existent.  The 

CONCEPTS output during a bankfull event is within the same degree of magnitude as the 

other readings in Table 10.  The sediment loads for the reference and study reaches on 

Abrams Creek differed but from other assessment techniques applied, this difference 

appeared to be acceptable and within a stable level.  The sediment load in the study reach 

decreased from 6 metric tons/km2 to 4 metric tons/km2 and the reference reach had a 

decreased from 0.4 metric tons/km2 to 0.2 metric tons/km2.  This shows a decrease in 

sediment load in the stream from when cattle were still present, indicating an 

improvement in the stream. 

During the two year period, one bank failure was encountered, after a bankfull 

event, in the study reach at cross-section two.  From the CONCEPTS longitudinal plot, 
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this bank failure appears to be a product of down-cutting.  A 10-year simulation was 

performed on the reference reach but could not be completed for the study reach due to 

an instability in the model.  During this time, no bank failures occurred in the reference 

reach. The CONCEPTS output plots are in Appendix C. 

 

 

 

 

 

Table 10: Total Sediment Discharge During Large Flow Events 
Site and Source of Data Drainage 

Area (mi2, 
km2) 

Flow  
(cfs, cms) 

Sediment 
Load (T/y) 
(Metric T/y) 

Sediment 
Load/Area 
(T/y/mi2, 
Metric T/y/ 
km2) 

Abrams Creek Study Reach 
(CONCEPTS) 

14.6, 37.8 353, 10 156, 142 11, 4 

Abrams Creek nr. Hyatt Lane (1) 
(TVA Report 1995) 

14.6, 37.8 160, 4.5 252, 229 17, 6 
 

Abrams Creek nr. Hyatt Lane (2) 
(TVA Report 1995) 

14.6, 37.8 160, 4.5 378, 343 26, 9 

Abrams Creek nr. Lower Loop 
Road (1) (TVA Report 1995) 

19.7, 51.0 5.03, 0.14 22, 20 1.1, 0.4 

Abrams Creek Reference Reach 
(CONCEPTS) 

19.7, 51.0 353, 10 11, 10 0.6, 0.2 

SF Quantico Creek near 
Independent Hill, VA (USGS) 

7.62, 19.7 256, 7.2 254, 230 33, 12 

Hellbranch Run near Harrisburg, 
OH (USGS) 

35.8, 92.7 388, 11 234, 212 7, 2 

Hotopha Creek near Batesville, 
MS (USGS) 

35.1, 90.9 317, 9.0 249, 226 7, 3 

Topashaw Creek Near 
Hohenlinden, MS (USGS) 

42.1, 109.0 312, 8.8 180, 163 4, 2 

Cedar Run at Route 646 near 
Aden, VA (USGS) 

175, 453.3 4310, 122 1400, 1270 8, 3 
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Chapter 5: Comparison of Physical Assessment Techniques 

 Both of the evaluated empirical and analytical physical assessment techniques 

produced comparable stability measures, yet uncertainties were recognized in each 

method.  These uncertainties were due to professional judgment of field data collection 

and interpretation the technique’s output.  Table 11 summarizes the level of uncertainty 

and variables involved for each method. 

 

Table 11: Comparison of Physical Assessment Approaches 
Method Applied Type of 

Assessment 
Level of uncertainty 
and judgment call 

References 

Review of Historical 
Documents,Aerial 
Photographs and 
Maps 

Empirical Low. Rosgen, 1996, Shields et al., 2003 

Channel Survey Data 
and Analysis 

Analytical Low. Hey, 2006 

Bed and Bank 
Sediment Data and 
Analysis 

Analytical Low. 
 

Rosgen, 2006, Simon, 2007 

RGA Empirical Low.   Niezgoda and Johnson, 2005, Simon, 
1999, 2007 

Natural Channel 
Design 

Empirical High. 
Bankfull and reference 
reach determination and 
applicability. Lack of 
quantitative 
measurements 

Rosgen, 1996, 2006; Hey, 2003; 
Niezgoda and Johnson 2005, Shields 
et al. 2005, Smith and Prestegaard 
2005;, Doyle et al. 2007, Nagle 2007, 
Simon 2007, 
Schwartz and Herricks 2007 

HEC-RAS Analytical Low. 
Boundary condition 
variables must be 
chosen 

HEC-RAS Manual 

CONCEPTS Analytical High. 
Model is subjective to 
input and interpretation.  
Soil and sediment 
properties affect output 
greatly. Limited to 
certain site constraints 

Langendoen 2000, 2002; Wells et al. 
2007 
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5.1 Uncertainties in Natural Channel Design 

Determination of bankfull level was the most important, yet uncertain, variable in 

NCD.  Bankfull level, the most important parameter of NCD, can be a difficult and 

uncertain field variable to identify.  Depending on experience and specific site 

restrictions, bankfull determination creates a high level of uncertainty. The Rosgen 

stream classification, the reference reach identification and comparison and BEHI 

stability survey all hinge on the bankfull determination.  

Field experience using NCD and field indicators is one mode of reducing 

uncertainty in this technique (Rosgen 1996, 2006).  Field indicators such as channel 

vegetation, flow lines, and depositional areas, such as bars, can aid in determining 

bankfull level.  However, these indicators can be misleading.  Experience, including 

knowledge of vegetation and channel processes, is critical when using field indicators for 

bankfull determination but often is lacking (Rosgen 1996, 2006, Nagle 2007, Hey 2006). 

Even with proper experience, certain site constraints, such as in urban areas with actively 

incising channels, make identification difficult or irrelevant as the channel forming flow 

(Doyle et al. 2007).  

Regional curves, developed from regional flow gauge data, can also help 

determine bankfull level but still can be uncertain.  Without current, site specific flow 

data to calibrate regional curves, the bankfull values can be incorrect (Sections 4.3.5 and 

4.3.6a).  However, computer models such as HEC-RAS can aid in situations lacking in 

flow data.  Also, regional curves sometimes include inadequate amounts of data or 

combines data from both stable and unstable streams which could lead to incorrect 
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bankfull values (Hey 2006).  One site-specific factor that affects the flow in Abrams 

Creek, but is not accounted for in regional curves, is karst geology.  This variable makes 

regional curves irrelevant to this particular site. 

The reference reach is the key element of the empirical, physical assessment 

approach and another uncertain factor of NCD.  Identifying an appropriate reference 

reach can be problematic.  According to Hey (2006), the reference must be of the same 

stream type and in the same physiographic region as the study reach.  Unique, specific 

site characteristics, such as karst geology in Cades Cove, make any reference reach 

outside Abrams Creek improper.  Such features affect channel processes uniquely and 

would be very difficult, if not impossible, to locate elsewhere.  Like bankfull 

determination, reference reach application is difficult in urban streams due to specific 

environmental constraints.  Studies on urban streams have faced difficulties in the 

locating and applicability of a reference reach (Tweedy et al. 2000, Niezgoda and 

Johnson 2005, Schwartz and Herricks 2006).  Urban streams behave much differently 

than stable references and surrounding infrastructure commonly restricts natural 

adjustments or the recreation of a stable reference form (Tweedy et al. 2000, Thompson 

1996).   

Even with the proper determination of bankfull and location of an applicable 

reference reach, NCD does not specify or quantify a degree of departure for an acceptable 

stability level.  NCD is based on the assumption that streams of the same type will 

behave similarly, however few quantifiable measurements are made to insure this is true 

throughout time.  Only current channel form is assessed to account for future change due 
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to channel processes.  Projects have shown this assumption to be valid in some locations 

but failures have also been noted as a result (Rosgen 2006, Simon et al. 2007, Nagle 

2007).  Without some known threshold of stable departure, be it ecologically or 

physically based, between the reference and study reaches the naturally occurring 

variance channels, such as alluvial, meandering streams, is not known.  At this point in 

the NCD assessment, professional judgment must be made to determine if the departure 

amount is acceptable.  Lack of experience and evaluation channel processes through field 

data (flow and sediment) monitoring can make this judgment call very uncertain.  

However, analytical models, although not flawless, can aid in quantifying channel 

processes over time. 

 

5.2 Uncertainties in CONCEPTS 

Although readily able to quantify rates of channel processes, CONCEPTS, like 

NCD, holds uncertainties due to input and judgments of output.  Soil and sediment 

properties along with channel form can create instabilities in the model, preventing 

successful simulations.  To account for these instabilities, adjustments must be made 

through judgments in order to produce an acceptable, operating model. 

 To account for these instabilities, the adjustment of soil and sediment properties, 

which affect the performance of the model greatly, was required in order to produce a 

successful simulation.  The particle size distribution of the uppermost cross-sections was 

weighted to account for the initial sediment transport capacity of the system, in order for 

the model to run the desired simulation length.  Without this adjustment the first cross-
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section would aggrade with sediment to channel capacity and terminate the simulation.  

However, this was not very realistic and the upstream weighting capacity was simply 

adjusted until a successful simulation was created.  However, actual sediment transport 

capacity of Abrams Creek was not known due to lack of sediment transport data, making 

weighting judgment uncertain.   

Channel form, including meanders, longitudinal distance and in-channel debris is 

not accounted for in CONCEPTS but realistically affects channel stability.  Channel 

hydraulics and erosion (bed and bank) can be affected greatly by all of these factors.  

CONCEPTS was developed to model longer, straight stream corridors with greater 

spacing between cross-sections (pers. comm. with E. Langendoen 2007).  However, the 

reaches on Abrams Creek were short compared to other reach analyses performed using 

CONCEPTS (Simon et al. 2002, Wells et al. 2007).  Adjustments in the model input 

probably could be made to account for these effects but without in-stream measurements 

of suspended sediments and bank erosion, the output of the model is uncertain.  The use 

of reference data to account for existing environmental factors could improve the ability 

to interpret the reality of model results. 

Similar to NCD, assessing whether the difference between reference and study 

reach sediment transport rates is within a naturally occurring level, is an uncertain 

judgment decision.  Data was not available on either reach so a realistic sediment 

transport rate was difficult to judge.  Comparing the two reaches was based on the results 

of other assessments as well to determine if the difference was still in a stable level.     
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 As shown in Figure 1 and Table 11, both empirical and analytical physical 

assessments require similar input and judgment decisions and can lead to the similar 

outcome.  Any amount of field monitoring, although difficult, can reduce the uncertainty 

in both techniques.  Also, as shown in this study the application of both analytical and 

empirical techniques can provide a more thorough and certain assessment with checks on 

one another and produce a hybrid physical assessment approach. 
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Chapter 6: Management Implications for Abrams Creek 

Abrams Creek was determined that to be in a stable, dynamic equilibrium state 

from physical assessments.  From historical photographs and RGA’s, a system-wide 

instability was not identified.  Therefore, large-scale stream relocation or construction is 

not warranted.  However, the study reach contained some local areas of bank erosion, 

mostly where LWD directed high flows into the banks.  The CONCEPTS model also 

simulated some bank failures, indicating a potential for localized channel instabilities.  In 

addition, the study reach lacked some of the riparian vegetation qualities found in the 

reference reach. 

Sediment loads in Abrams Creek appeared to be within a natural geomorphic 

transport range, in which localized aggradation and degradation process bed sediment.  

Some evidence suggests suspended sediment levels have improved since 1994 (Section 

4.3.6b).  Bed sediment quality was found to be adequate for maintenance of stream 

habitat, and fish bio-assessments do not appear to indicate an environmental stress caused 

by excessive fine sediment. 

 Because no system-wide instability of the channel was found through the applied 

physical assessments, immediate recommendations based on this study include: 

1. Stabilize banks with local failures using existing in-stream woody 

debris and adjust the in channel position to hydraulically deflect flows 

away from failing banks. 

2. For long-term management, trees can be planted along the stream 

channel providing a 200-ft wide vegetated riparian corridor.  In the 
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future, trees will aid in stabilizing stream banks and supply the stream 

with debris needed for aquatic habitat. 

Of consequence to note, Abrams Creek did not exhibit any signs of chemical 

impairment as evaluated from the water quality data collected by TVA in 1994 (Table 2).  

In addition, according to the biological assessment, both fish biota and physical habitat 

appear to be adequately present. 

Recommendations in this study are based on physical assessments that required 

some professional judgments when data were limited.  Data limitations in stream 

restoration assessments are common because of availability of resources.  It is possible to 

improve the analytical assessment with the collection of additional data.  Some other 

recommendations are: 

 

1. Using CONCEPTS, further assess sediment transport and bank erosion in 

Abrams Creek by expanding the reach length; also apply similar analysis to 

the tributaries. 

2. Monitor Abrams Creek and tributaries by collecting flow and sediment data in 

reaches to optimize the CONCEPTS model and physically compare actual 

erosion and transport rates with those predicted by the model. 

3. Conduct current fish surveys along with the above sediment and flow data to 

provide a correlation between existing species and sedimentation rates over 

time 
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Study Reach Cross-Sectional Profile with Bankfull Level 
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Cross Sectional Profile -  Xsec.13
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Cross Sectional Profile -  Xsec.12
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Cross Sectional Profile -  Xsec.10
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Cross Sectional Profile -  Xsec.7
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Cross Sectional Profile -  Xsec.6
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Cross Sectional Profile -  Xsec.5
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Cross Sectional Profile -  Xsec.4
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Cross Sectional Profile -  Xsec.3
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Cross Sectional Profile - Xsec.2
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Cross Sectional Profile -  Xsec.1
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Study Reach Cross-Sectional Data for Rosgen Stream Classification 
 

X-Sec. 

Bankfull 
Width 

(m) 
Bankfull Area 

(m^2) 

*Mean 
Depth 

(m) 
Width/Depth 

Ratio 
Maximum 
Depth (m) 

8 6.1 4.5 0.73 8.2 1.0 
10 9.9 8.8 0.88 11.3 1.2 
13 4.5 2.3 0.52 8.9 0.6 
16 6.6 2.0 0.30 21.0 0.4 

Avg. 6.8 4.4 0.61 12.4 0.8 

X-Sec. 

Width 
of Flood 
Prone 
Area 
(m) 

Entrenchment 
Ratio 

Channel 
Materials 
D50 (mm) 

Water 
Surface 
Slope 

Channel Sinuosity 
(k) 

8 30.5 5.0 8 0.0033 1.21 
10 17.1 1.7 6 0.0033 1.21 
13 10.3 2.3 7 0.0033 1.21 
16 9.8 1.5 10 0.0033 1.21 

Avg. 16.9 2.6 7.75 0.0033 1.21 
*Note Data measured only in riffles 
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Reference Reach Cross-Sectional Profile with Bankfull Level 
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Cross Sectional Profile 4 - Abrams  Reference
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Cross Sectional Profile 3 -  Abrams  Reference
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Cross Sectional Profile 2 -  Abrams  Reference
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Reference Reach Cross-Sectional Data for Rosgen Stream Classification 
 

X-Sec. 

Bankfull 
Width 

(m) 
Bankfull Area 

(m^2) 
*Mean 

Depth (m) 
Width/Depth 

Ratio 
Maximum 
Depth (m) 

3 10.0 6.2 0.61 16.2 0.88 
6 9.2 9.9 1.07 8.6 1.23 

Avg. 9.6 8.1 0.84 12.4 1.06 

X-Sec. 

Width of 
Flood 
Prone 

Area (m) 
Entrenchment 

Ratio 

Channel 
Materials 
D50 (mm) 

Water 
Surface Slope 

Channel 
Sinuosity 

(k) 
3 61.0 6.1  0.0015 1.51 

6 61.0 6.6  0.0015 1.51 

Avg. 61.0 6.4  0.0015 1.51 
*Note Data measured only in riffles 
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Reference Reach Longitudinal Profile with Habitat Units
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Study Reach Longitudinal Profile with Habitat Units

98

98.5

99

99.5

100

100.5

101

101.5

102

0 50 100 150 200 250 300 350 400 450 500

Channel Distance (m)

E
le

va
tio

n 
(m

)

bed water srf bankfull x-section riffle crest pool run glide --- --- ---



 84

Particle Size Distributions of Bed and Banks for Study and Reference Reaches 
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Appendix B: Data Forms and Figures 
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(Rosgen 1996) 
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Location: _______________________ 
 
Observer: _________________     Date: ______________ 
 
(Score each indicator to nearest whole number based on condition. Interpolate between 
listed  scores for a condition that includes a mix of two descriptions.) 
  

  Modified Pfankuch Stream Channel Stability Evaluation   
        
  Indicator  Condition Description   
1. Channel Source Area    
A Source Area Unimpaired function. No evidence of adverse impacts (land-use) 1 
  Function  Unimpaired function with some evidence (compaction, ditching) 2 
    Functional, but adverse impacts evident 3 
    Impaired function with obvious adverse impacts 4 
B Protection & Ground surface cover 90%+, deep litter layer, healthy root mat 2 
  Cover  Cover 75-90%, sufficient litter layer, root mat mostly continuous 4 
    Cover 50-75%, little or light litter layer, root mat present but broken up 6 
    Cover <50%, litter layer and root mat largely lacking 8 
C Slippages & No evidence in past or present. Side-slopes stable. 2 
  Slumps Some small, infrequent movement.  Side-slopes vegetated and stable 4 
    Mod. frequency & size, spots eroded by high water 6 
    Active, frequent and larger sizes. High water might trigger more 8 

2.  Channel Form     
A Bed Resistance Predom of stable material (boulders, bedrock) tightly packed and overlapped 6 

   
Bed adequately armored with stable material. Mod tight packing w/ some 
overlapping 12

    
Predom of small sized material (small boulder, cobble, gravel).  Loose packing 
with little overlap 18

    Predom of fines with no to slight armor. No packing, loose arrangement. 24

B 
Bedload 

Movement 
No signs of bedload movement. Platy shape may be dom.  Sharp edges & 
corners 3 

  (Riffle  or  Run) 
Few signs of movement. Mix of shapes but mostly platy, rounded edges and 
corners 6 

    
Seasonal bedload movement common. Mix of shapes, well rounded edges 
and corners 9 

    
Yearlong movement occurring. Elongated shape may be predom.  Well 
rounded on all edges 12

C Bank Cutting Little or none evident 3 
  & Sloughing Some, intermittently with no to low impacts 6 
    Significant and frequent. Mod to high impacts.  Some raw, vertical banks 9 
    Nearly continuous, frequent failures of vertical banks.  High impact. 12

 
Stability Condition: _______________ 
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D Bank Resistance 
Banks well protected by rocks, plants, roots, stable material with no obvious 
flood damage.  High resistance. 4 

  To Wear 
Banks adequately protected.  Some interspaces but stable.  Some flood 
damage 8 

    
Protection present but limited. Interspaces unstable, frequent signs of flood 
damage 12

    Banks not well protected.  Poor resistance to wear. 16
E Aggredation / Longitudinal profile stable and within normal rates of adjustment 3 
  Downcutting  Minor instability to profile, but affect is slight and not widespread 6 
    Instability has occurred to profile but channel recovering well 9 
    Active instability to profile occurring.  Channel redefining itself. 12

3. Channel Function     

A 
Channel 
Capacity 

Ample to contain mean annual flood peak plus more. Over-bank flows 5-yr 
events or greater. Width to depth ratio  <10 4 

   
Adequately transmits mean annual flood.  Over-bank flows at least every 2-3 
years.  W/D is 10-20. 8 

    
Channel cross section barely contains mean annual flood. Over-bank flows 
are annual. W/D ratio is 20-30. 12

    
Mean annual floods are not contained in the cross section. Over-bank flows 
occur many times a year. W/D ratio is > 30. 16

B Bar Deposits 
Bar deposits are fairly stable (vegetated over, old deposits clearly evident). 
Little or no enlargement. Pattern is fixed (bar types not shifting).   1 

    
Bars showing some new changes (growing, shrinking) but not widespread and 
generally stable. Pattern is fairly fixed with no new bars. 2 

    
Bar deposits showing mod changes in age and shape.  New bars may be 
present and bar types may be changing. 3 

    
Significant changes occurring to bar deposits. Instability of bars clearly 
evident. New bars present. The pattern is shifting or is uncertain. 4 

C Sediment Traps 
None to low sediment buildup behind traps (logs, boulders). Next high flow 
should flush the traps. Pools are fairly clean. 2 

   
Some sediment trapped plus visible in some pools. Trapped sediment has not 
noticeably affected channel cross section. 4 

   
Considerable sediment trapped forming small - mod bars. High flows not able 
to flush most traps. Cross section and most pools affected. 6 

    
Sediment traps filled forming mod - large sized bars. High flows not flushing 
traps.  Pool volume filling and mod-high changes in cross section  8 

D 
Sediment 

Deposition 
Not much evidence of historic or recent sediment deposition along the upper 
bank.  No contrib from this zone to the channel sediment budget. 1 

  
On  

Upper Banks 
Some scattered evidence of depositions. None to little contribution to the 
sediment budget. 2 

    
Sediment deposition along upper bank fairly widespread. A low to moderate 
contribution to the sediment budget. 3 

    
Extensive sediment deposits (historic or recent) along the upper banks.  
Contribution from this zone to sediment budget moderate to high. 4 
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E Fast Water 
Coarse channel bottom material (boulders, cobble, gravel) not embedded by 
sediment.  Channel roughness is fully pronounced. 4 

  
 Sediment 
Deposition 

Coarse channel bottom material is slightly embedded. Channel roughness is 
well pronounced. 8 

  (Riffle or Run)  
Coarse channel bottom material is moderately embedded.  Channel 
roughness is visibly reduced and being compromised. 12

    
Coarse channel bottom material almost to completely buried and severely 
embedded.  Channel roughness has been significantly reduced or lost. 16

F 
Large 

Woody 
LWD is so situated or so large that the stream is not normally able to move it.  
Any scouring due to LWD is now stable. 2 

  
Debris 

Component 
Few pieces of LWD can be moved with normal high flows. Fresh scouring is 
infrequent   LWD showing strong benefits to the channel. 4 

    
Several LWD pieces can be floated with normal high flows. Fresh scouring is 
scattered to common.  LWD offers limited benefits 6 

    
Most LWD can be moved by normal high flows.  Fresh scouring is common to 
widespread.  LWD offers none to little benefits to the channel. 8 

  
 
 

 Total Rating __________________ 
  
 

Stability Condition_________________________ 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Rating Stability 
Condition

38 Excellent
39 - 51 High – Good
52 - 64 Good
65 – 76 Low – Good
77 – 89 High – Fair

90 – 102 Fair
103 – 114 Low – Fair
115 – 127 High – Poor
128 – 139 Poor
140 - 152 Low - Poor

Source: 
 
Albright, R.C. 1994 (Revised 2007). A Fluvial Geomorphic Stability Index for Rainfall 
Generated Stream Channels. Unpublished Paper. USDA Forest Service. 12 p. 



 106

 
 



 107

 
 
 
 
 
 
 
 
 

Appendix C: Model Output 
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HEC-RAS simulated bankfull discharges 
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HEC-RAS simulated bankfull discharge (21.9 cms) using regional curve 
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CONCEPTS Longitudinal Change in Bed Elevation 
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Reference Reach 
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