11 University of Tennessee, Knoxville
i LN IWERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
Masters Theses Graduate School

5-2007

A Novel Power Supply for Generating a One Atmosphere Uniform
Glow Discharge Plasma (OAUGDP®)

Laurent Jose Calvez
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Calvez, Laurent Jose, "A Novel Power Supply for Generating a One Atmosphere Uniform Glow Discharge
Plasma (OAUGDP®). " Master's Thesis, University of Tennessee, 2007.
https://trace.tennessee.edu/utk_gradthes/255

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.


https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a thesis written by Laurent Jose Calvez entitled "A Novel Power Supply
for Generating a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP®)." | have
examined the final electronic copy of this thesis for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Master of Science, with a
major in Electrical Engineering.

J. Reece Roth, Major Professor
We have read this thesis and recommend its acceptance:
Leon Tolbert, Marshall Pace

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council:

I am submitting herewith a thesis written by Laurent Jose (Jo) Calvez entitled
“A Novel Power Supply for Generating a One Atmosphere Uniform Glow Discharge
Plasma (OAUGDPw®).” I have examined the final electronic copy of this thesis for form
and content and recommend that it be accepted in partial fulfillment of the requirements

for the degree of Master of Science, with a major in Electrical Engineering.

Dr. J. Reece Roth

Major Professor

We have read this thesis

and recommend its acceptance:

Dr. Leon Tolbert

Dr. Marshall Pace

Accepted for the Council:
Carolyn Hodges

Vice Provost and
Dean of the Graduate School

(Original signatures are on file with official student records.)



A Novel Power Supply
for Generating a One Atmosphere
Uniform Glow Discharge Plasma

(OAUGDP®).

A Thesis Presented for the
Master of Science Degree

University of Tennessee, Knoxville

Laurent Jose (Jo) Calvez
May 2007



Copyright© 2007 by Laurent Jose (Jo) Calvez
All rights reserved.

il



Acknowledgements

I dedicate this work to my wife Tami and our son Alexander. I want to thank my
father who built the capacitor support structure that I designed. I also want to thank Mrs.
Friederike Fritzges, Sales Manager at KOPAFILM Elektrofolien GmbH, for authorizing a
generous sample of premium biaxially-oriented polypropylene dielectric film. Thanks to
Dr. Leon Tolbert and his doctoral student Faisal Khan for their assistance. Likewise,
thanks to Dr. Igor Alexeff for his insight and suggestions. Thank you to Sirous
Nourgostar for spending time in the lab so I could gather data, and for his conversation
and suggestions. Also, thanks to Texas Instruments for sending free samples of the
UC3872 controller. Finally, thank you to my committee members, Dr. Marshall Pace and

Dr. Leon Tolbert, and to Dr. Roth for his instruction and guidance.

il



Abstract

A high voltage transformer connected to an atmospheric plasma generator is driven
as a current-fed push-pull parallel resonant system, switched by a resonant lamp
controller integrated circuit from Texas Instruments (UC3872) in such a manner as to be
automatically maintained at resonance. The frequency range of interest is the audio
range, which creates a particularly uniform glow discharge in atmospheric pressure air.
Frequency control is achieved by a specially constructed high voltage variable capacitor
connected parallel to the secondary, in conjunction with a variable parallel primary

inductance. Voltage control is achieved by variation of the input DC current amplitude.
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1. Introduction

Atmospheric plasmas are increasingly applied to advantage in various industrial
processes. Atmospheric plasma discharges always require high voltage (>500V) to
initiate, although operating voltages differ according to the type of discharge, which can
occur at very low currents as a corona discharge or at very high currents as an arc
discharge. Glow discharges occur between these extreme current regimes, at moderate
current values, providing energetic plasma without excess heating. The glow discharge
plasma can be used to generate reactive species, including ozone, and is particularly
suited for increasing the surface energy of delicate materials, such as thin films.
However, in the latter case it is important that plasma filamentation be avoided, a
phenomenon in which localized electron avalanching results in non-uniformity of energy
distribution and treatment effect. Dr. J. R. Roth at the University of Tennessee has
demonstrated that a uniform glow discharge plasma can be formed in air at ambient
pressures using frequencies in the audio range. This uniform discharge, referred to as the
One Atmosphere Uniform Glow Discharge Plasma (OAUGDP®), generates ion/electron
pairs at highest efficiency, resulting in electron kinetic temperatures greater than 10,000
K while ion and ambient neutral gas temperatures remain near room temperature.

The goal of this project was to explore a new manner of generating high voltages at
frequencies in the audio range in order to generate the One Atmosphere Uniform Glow
Discharge Plasma (OAUGDP®). Specifically, the goal was to produce output voltages
varying from 1 kV to 20 kV over a frequency range from 1 kHz to 20 kHz. It was

decided that a current-fed push-pull parallel resonant circuit would be employed,



switched by a commercial integrated circuit resonant lamp controller in such a manner as
to be automatically maintained at resonance. A high voltage variable capacitor was
designed and constructed to act in parallel in the secondary circuit as a manually variable
frequency modulator, and a variable inductor was constructed to act in parallel with the
transformer primary to provide further frequency control. This power supply is intended
to act as a bench-top prototype development system, with which the performance of any
transformer and plasma reactor combination can be studied over a range of frequencies
and voltages to determine optimum operating parameters, which can later be
implemented with off-the-shelf discrete components.

Chapter 2 provides a review of the literature describing the use of resonant switching
power supplies to generate atmospheric plasma, and their application in industry. The
last section focuses specifically on the current-sourced push-pull parallel resonant
inverter circuit upon which the power supply developed for this thesis is based.

Chapter 3 details the resonant system employed for this project, based upon a specific
transformer and plasma actuator, and particularly describing the design and construction
of the variable capacitor and variable inductor. The switching and control circuits are
also discussed.

Chapter 4 provides a summary and discussion of data gathered during preliminary
testing and then during plasma generation.

Chapter 5 presents conclusions arrived at during the course of this project, including
possible explanations for problems encountered and suggestions for further improvement

of the power supply.



2. Literature Review

2.1 Atmospheric Plasma

Atmospheric plasma discharges are used in a variety of industrial applications,
including increasing the surface energy of materials [1], generating ozone [2], and
generating reactive species [3]. Figure 2.1 illustrates the regimes of a plasma discharge,
from corona at very low currents, to the normal glow discharge, to the arc regime at high
currents [4]. The dielectric barrier discharge (DBD) is a widely applied method of
generating atmospheric plasma, using one or two dielectric barriers placed between high
voltage discharge electrodes. The dielectric material suppresses arcing and forces the
plasma to remain in the Townsend avalanche regime. A DBD produces a plasma that
consists of many short-lived micrometer-scale filaments of relatively high electron
density and energy, resulting in an overall non-uniformity of effect on workpieces located

in the dielectric barrier discharge. The One Atmosphere Uniform Glow Discharge Plasma
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(OAUGDP®) [5][6] produces a uniform glow plasma in small discharge gaps (<3mm in
air) with driving frequencies in the audio midrange that promote ion trapping between
the electrodes. The OAUGDP® is well suited for many industrial applications due to its
uniformity of effect. The goal of this thesis is to build a small and inexpensive high
voltage power supply that can function in the audio range in order to produce an

OAUGDP® discharge.

2.2 Resonant Switching Power Supplies

2.2.1 General

Switching power supplies are usually operated at high frequencies to minimize size
and cost, but this in turn makes them susceptible to parasitic reactive circuit elements and
thus more likely to generate electromagnetic ‘noise,” or radio frequency interference
(RFI). A resonant circuit can be used to automatically compensate for parasitic elements
and can greatly reduce noise generation and switching transients. Resonant mode
converters generally input a square pulse of voltage or current to an L-C circuit in a
manner timed to match its natural frequency, causing energy to be stored in the resonant
circuit. This energy can then be drawn off by the load. A major advantage of a resonant
mode topology is ‘soft’ switching, which can be made to occur at zero voltage or zero
current, so that switches experience much lower transients, create less radio frequency
interference, and operate more efficiently. High peak currents and increased control
complexity are the major drawbacks associated with resonant converters.

There are many system and control approaches to resonant power supplies. The
resonant LC circuit can be series or parallel, or a combination of both [7][8]. Switching
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control can be accomplished by phase-shifted pulse width modulation (PWM) [9][10], a
combination of pulse density and pulse frequency modulation [2], and other
methodologies [11][12]. Resonant power supplies have been adapted to drive many
kinds of loads, including welders [13], induction heating loads [14], and high voltage
loads. High voltage applications include medical X-Ray power supplies [10], plasma jets
and general-application discharges [7][12][15], dielectric barrier discharges for degrading
toxic organic compounds [3], and ozone generators [2][11][16][17][18].

In most instances a transformer is used to provide high voltage, although there exist a
few higher-order resonant circuit designs that do not require them [7][19][20]. A high
voltage transformer has inherent parasitic reactances (illustrated in Figure 2.2) due to the
manner of its construction. Because of imperfect magnetic coupling of the primary and
secondary coils, there arises a leakage inductance, generally identified as a lumped series
primary inductance. When the current through the transformer primary is reversed each
switching cycle, the leakage inductance causes high voltage spikes which can damage the
semiconductor switches. In the secondary coil there is a significant distributed

capacitance  between the various windings and layers of  windings,

L Leak 1
Y N .

C Winding
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Figure 2.2. Parasitic reactances of a high voltage transformer.
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which can result in current spikes and slow voltage rise-times in the secondary. The most
efficient high voltage resonant inverters incorporate either or both of these parasitic

transformer components into the resonant circuit design [8][10][21][22].

2.2.2 Current-Fed Parallel Topology

Many high voltage resonant circuits described in the literature employ a voltage-
sourced series resonant topology, often using frequency variation above resonance for
output voltage control [3][9][12][16]. By its nature, a plasma reactor/generator is highly
capacitive, adding to the large secondary winding capacitance of the high voltage
transformer required to power it. A parallel tank circuit with significant capacitance
initially appears as a short circuit to a voltage source, so it is better driven with a current
source. The current-fed push-pull parallel resonant inverter is well suited to serve as a
power supply for an atmospheric plasma discharge because it assimilates any capacitance
in the transformer secondary as part of the resonant circuit. This secondary capacitance
is ‘reflected’ to the primary by a factor of the square of the turns ratio, and it will tend to
resonate at some frequency as part of a parallel circuit with the transformer magnetizing
inductance.

The main disadvantage of a current-sourced parallel-resonant inverter is that the
output voltage gain is lowest at resonance [23]. For this reason, a high voltage
transformer with sufficient turns ratio must be selected if operation occurs at resonance.
A major advantage of the current-fed parallel resonant inverter is that both (push-pull)
transistors are driven with respect to ground, resulting in a simple gate drive circuit [24].

A diode in series with each switch disables the MOSFET intrinsic body diode, resulting



in unidirectional current flow and preventing energy reflection back to the source; an
alternating square wave current results, with amplitude equivalent to half the input DC
current. When the circuit operates near the resonant frequency, the source can be
approximated as a sine wave of the square wave’s fundamental frequency with amplitude
(IncV2)/n amperes [15]. A parallel resonant circuit is more efficient when operated at or
below resonance [23], when the resonating tank circuit behaves as an inductive load to
the source in terms of the load resistance voltage and the fundamental component of the
input current. This allows the series diode to turn off with zero dI/dt and low dV/dt and
the MOSFET to turn on with zero current, resulting in higher circuit efficiency [24]. The
converse will be true if the circuit is driven above the resonant frequency. Operating a
resonant power supply at the circuit resonant frequency results in true zero voltage
switching and highest efficiency, but it precludes output voltage control by frequency
variation.

The current-fed push-pull parallel resonant inverter circuit described by Alonso et al.
[11] uses the resonant lamp ballast controller UC3872 from Unitrode (Texas Instruments)
to maintain the system at resonance. This integrated circuit detects zero crossings of the
resonant voltage waveform to control switching, so that any system combination of a
high voltage transformer and plasma reactor will be driven at its own intrinsic resonant
frequency so long as it coincides with a synchronization range determined by timing
capacitors associated with the integrated circuit. Figure 2.3 provides a conceptual
illustration of the total system, and Figure 2.4 is a comprehensive circuit schematic used

to gather the data presented in this document.
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3. Design and Construction

3.1 Resonant System

The basic resonant system consists of any reasonable combination of high voltage
transformer and plasma generator, where “reasonable” refers to proper matching of
plasma current draw and transformer volt-ampere capability. Such a combination will
tend to oscillate at two frequencies, in a parallel and then series fashion. The lower
frequency is normally associated with the larger magnetizing inductance, which oscillates
in parallel with the secondary capacitance. The higher frequency is normally associated
with the smaller leakage inductance oscillating in series with the secondary capacitance.
The difference between these frequencies is a function of the amount of leakage
inductance in relation to magnetizing inductance.

The UC3872 resonant controller can be expected to maintain the system at the lower
resonant frequency so long as the proper value of timing capacitance is employed to limit
the synchronization range [25]. The UC3872 uses voltage feedback to detect zero-
crossings of the resonant tank, switching the push-pull MOSFET pair accordingly. A
parallel variable capacitor in the secondary will increase total capacitance and thus
decrease the system’s natural frequency, providing manual frequency control. Past
experience demonstrates that a high voltage capacitor on the order of 5 nanofarads can be
easily constructed; simulations indicate that such a value would be sufficient to achieve
the desired frequency control. However, simulations also reveal that in order to sweep
across the entire frequency range desired, in addition to varying the capacitance, a
variation of the resonating inductance may also be required. This can be accomplished

9



by connecting an inductor across the transformer primary, which will have the effect of
reducing the total resonating inductance and increasing the oscillation frequency.
Spreadsheets were developed to assist in the design of the capacitor and the inductor.
For the capacitor, an effort was made to minimize the required plate area, and to
approximate the effect of multiple and varied dielectric separator media, including air
gaps. For the inductor, an effort was made to minimize turns and to achieve the desired
range of variation by inserting a high permeability core to facilitate varying from a

minimum to a maximum inductance value.

3.1.1 Transformer and Plasma Actuators

The transformer used for this project was model SP216 from Plasma Technics, Inc. in
Racine, Wisconsin (see Figure 3.1). The SP216 is presented by the manufacturer as a

component designed to operate in resonant systems with a frequency range of 5 to 25kHz

Figure 3.1. SP216 transformer from Plasma Technics, Inc.
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and output voltages up to 15 kV [26]. The SP216 is rated for up to 240 VAC inverter
input and 1000 VA output. Measurements in the lab indicated that the turns ratio of the
SP216 is approximately 1:100.

A small quartz dielectric plasma actuator having a measured capacitance of 15 pF
was used as the primary load (see Figure 3.2). The actuator consists of two adhesive
copper strips, approximately 5 mm x 80 mm, fixed on opposite sides of the 1 mm thick,
50 mm x 125 mm quartz plate with no gap or overlap between their closest edges.
Connecting wires are soldered to the end of each copper strip and routed in opposite
directions to prevent high voltage arcing.

A panel plasma actuator with aluminum oxide as the dielectric, having a measured
capacitance of 540 pF was used as an intermediate load. The panel is approximately 1
mm thick and 100 mm x 140 mm, with a 90 mm x 125 mm metallic ground plane on one
side and a series of end-connected metal strips on the other (see Figures 3.3 and 3.4).
The 25 metal strips are approximately 1 mm wide and 80 mm long and spaced apart

approximately 4 mm. The panel represents a significantly larger capacitive load than the

Figure 3.2. Quartz plasma actuator.
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Figure 3.3. Panel plasma actuator, aluminum oxide, metal strips.

Figure 3.4. Panel plasma actuator, aluminum oxide, ground plane.
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smaller quartz actuator, and it consistently operated at lower frequency and output
voltage than the smaller actuator during testing. Again, wires are soldered to the

electrodes on each side and routed in opposite directions.

3.1.2 Variable Capacitor

The fundamental concept of the variable capacitor is illustrated in Figure 3.5.
Preliminary PSpice simulations indicated that a maximum variable capacitance on the
order of three nanofarads would provide the desired range of frequency control. Although
various dielectrics were considered, it was initially decided to use a commercially
available polyethylene or polypropylene film, since these materials are widely available,
easy to work with, and in particular have a low loss factor. A preliminary computer
program designed to calculate capacitance values indicated that using the standard 6-mil
sheets available at the local builders’ supply store would require up to twenty 8-inch

(.2032 m) by 14-inch (.3556 m) electrodes for a capacitance in the desired range. Further

—

—

PLATES DIELECTRIC

Figure 3.5. Fundamental variable capacitor design.
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research led to the identification of a specially manufactured form of polypropylene with
much higher dielectric strength than normal polypropylene, allowing for much thinner
(and fewer) dielectric sheets, which in turn increases total capacitance. Biaxially oriented
polypropylene (BOPP) is manufactured by stretching the film in two directions (machine
and transverse directions) as it is formed, which orients the molecules parallel with the
plane of the film, enhancing its mechanical and electrical properties. Samples of BOPP
were obtained directly from two manufacturers: 6013(RRP) from Jiangmen Enrichment
Industrial LTD in Guangdong, China, and Kopafilm MET from Kopafilm Elektrofolien
GMBH, of Nidda/Ober-Schmitten, Germany. Also available was a roll of Hostaphan
(PET) high voltage dielectric film from Hoechst-Celanese, circa 1993. These films are
very thin and require considerable care in their handling, but they allow for
improvements in the capacitor size and value. The spreadsheet capacitance calculations
indicated that a capacitor of 3 nanofarads could be constructed with the BOPP dielectric
film by using as few as 8 electrodes, 4 inches (10.16 cm) wide and with 6 inches (15.24
cm) of overlap, a drastic improvement in comparison to the original design. Only the
Kopafilm BOPP was used in the variable capacitors used in data collection.

The capacitors were designed to withstand more than twice the expected maximum
voltage. The original intention was to forego the use of any additional liquid dielectric
barrier, although such is often recommended for high voltage capacitors. In constructing
the capacitor, each individual aluminum foil (heavy gauge) electrode was fixed between
two sets of multiple dielectric films, and all was then sandwiched between two sheets of
Bristol paper. A group of these electrode sets were mechanically connected at one end,

with equivalent spacers between, using vinyl bolts (see Figure 3.6). The same-set plates
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Figure 3.6. Side view of variable capacitor.

were interconnected with one-inch (2.54 cm) wide aluminum foil tabs. A brass tab with
soldered wire connection was used to provide electrical connection to the exterior circuit.
The capacitor consisted of the interleaving of two oppositely connected groups of these
electrodes, sliding from a position of minimal overlap to full overlap of 6 inches (15.24
cm). See Figures 3.7 and 3.8 for illustration of minimum and maximum electrode
overlap. A larger electrode width allows for greater maximum capacitance, while a
thinner electrode provides a smaller variation of capacitance. An effort was made to
minimize the risk of breakdown by rounding all corners of the electrodes and
connecting tabs in an effort to reduce electric field intensity, and Kapton tape was used to
minimize corona formation at exposed edges.

A capacitor support system was designed consisting of two rectangular wooden
plates: a lower plate, fixed to a supporting frame, and a moving plate to slide on top of
the fixed plate. At the far ends of each are holes through which vinyl bolts secure the

entire assemblage of wooden spacers, paper, dielectric films, and electrodes. The fixed
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and moving plates, each securing a set of opposing electrodes, were elevated and secured
on a wooden frame. Three stackable capacitor support frames were constructed, identical
except for the width of electrode supported, with one frame supporting a large capacitor,
another frame a medium capacitor, and another frame supporting two small capacitors
with the thinnest electrodes (see Figure 3.9). A wooden board with a brass weight was

placed on top of the electrodes to minimize the possibility of electrode vibration.

3.1.3 Variable Inductor

A spreadsheet was developed to aid in the design of a variable inductor to operate in
parallel with the transformer primary. Different inductance equations from two sources
[27][28] were verified to be equivalent; one was used repeatedly to isolate length,

diameter, and turns, and the effect of their variation on total inductance, while the other

I

-

Figure 3.9. Stacked variable capacitor frames.
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provided inductance value confirmation and allowed direct calculation in inches instead
of meters. Both of these equations operate on the assumption of a value of unity for
relative permeability, which is to say air is the transformer core material. A third equation
[29] was employed to allow for the variation of relative permeability. The intent was to
wind a coil on a standard PVC pipe form, limiting the layers to three, and then to insert a
material such as steel within the coil diameter to increase the inductance (see Figure
3.10). A formulation considering the alternating series of inductances due to partial core
insertion was developed using an estimation of effective permeability based upon the
fraction of cross-sectional area occupied by the core material in comparison with the coil,
assuming the core was of significantly smaller diameter. For example, it was determined
that a minimal inductance on the order of 0.5 mH could be wound in three layers or less
of 14AWG wire on a standard PVC pipe form of 2 inches (5.08 cm) diameter and length
less than a foot (30.5 cm), and that the inductance value could then be increased to tens of

millihenries by inserting a steel bolt into the coil. Professor Igor Alexeff advised that a

B A
I 1 I 1
L - L {}{}-.-.-.53
(?;{}{}{}{}{}{}{}{}{}-.'-l 2
L - L 2 2 i 1

g{}{}{}{}{}{}{}{}
o 0 D D D 2 D

o 0 D D D 2 D

OoG
R
&%
R
rS

Figure 3.10. Illustration of variable inductor.
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ferrite core be used in lieu of steel.

Another inductor was constructed using available materials. A coil eight inches
(20.32 cm) long was wound in two and a half layers with approximately forty feet (12 m)
of 1I8AWG stranded wire on a plastic tube with diameter 13/16™* of an inch (2.06 cm),
resulting in 182 total turns. A series of ferrite beads of similar outside diameter were
strung together to provide a core that could be easily adjusted by pulling the string
connecting them. The ferrite beads occupy approximately half the core volume, so with
an estimate of 1000 for the ferrite permeability value, an effective permeability of 500
was applied in the spreadsheet calculations, which then indicated an approximate
maximum inductance value of 22 millihenries. This inductor (shown in Figure 3.11) did
have the intended effect on the resonant system when applied across the primary,

allowing for operation at and beyond the highest frequencies desired, but the actual
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inductance was later found to be smaller by an order of magnitude, probably due to a

poor estimate of relative permeability for the beads, the composition of which was

unknown.

3.2 Control and Switching Circuits, Power Supplies

The control circuit consisted of the UC3872 resonant lamp ballast controller
integrated circuit and associated discrete components, including 100 Q resistors from the
gate drive signal pins, 10 kQ resistors to limit current flow into the zero-detect pin, and
various filter capacitors as recommended by the manufacturer. The most important
component associated with the UC 3872 was the timing capacitor, the size of which sets
the frequency range. The synchronization frequency range is approximately 1.5:1, which
means that if the capacitor in the timing circuit sets a minimum frequency of 4 kHz, then
the maximum frequency for which the UC3872 will provide synchronization will be
approximately 6 kHz. For this reason, several dip switches were used to add a variety of
capacitor values to the timing circuit. As the resonant circuit capacitance was varied,
causing the system resonant frequency to change, it was often necessary to change the
value of the timing capacitance so the controller IC could synchronize with the new
frequency. Initially the controller circuit was constructed on a breadboard in order to
allow for changes and troubleshooting. Later, the entire control circuit was soldered onto
a modular circuit board (see Figure 3.12).

The switching circuit was soldered directly onto a modular circuit board with secured
connection leads (see Figure 3.13). Early PSpice simulations indicated that an input

current on the order of 3 A would be required to attain the maximum desired output
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Figure 3.13. Switching Module.
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20 kV, so components were selected with this value as a benchmark. However, in some
cases components that exceeded the necessary ratings were used, since these were
available at no cost. A P600G diode, rated for 6 A of average forward current and 400 V
recurrent peak reverse voltage, was connected in series with each of two IRF640
MOSFET switches, mounted on heat sinks and rated to deliver a continuous drain current
of 18 A and to withstand a drain-source voltage of 200 V. Together, the P600G diode
and the IRF640 formed the unidirectional switch.

In order to protect the MOSFETs from voltage spikes generated at each switching
event by the leakage inductance of the transformer, a voltage-clamping snubber was
included. The snubber consisted of two FR304 fast-recovery diodes, rated to conduct 3 A
average current and to withstand 400 V of peak repetitive reverse voltage, a 0.1 uF
Sprague capacitor, rated for 1000 VDC, and a 1/4 W, 100 kQ resistor. The main concern
in selecting the snubber components is that the time constant of the RC combination be
significantly larger than the switching period, so voltage rise in the snubber capacitor is
very slow during the period when the MOSFET is not conducting. The modular control
circuit, associated timing capacitor bank, and the switching module are pictured in Figure
3.14.

Initially, two toroidal cores wrapped with approximately 70 turns of # 18AWG served
as choke inductors to ensure a uniform DC current to the switching circuit. It became
evident during testing that these choke coils were insufficient (they were later measured
to be 0.75 mH each), and so they were replaced with two large choke inductors of
nominal 40mH each.

Three separate power sources were required to operate the system: a 9 VDC battery
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Figure 3.14. Switching module, control module, and timing capacitors.

powered the electronic circuitry of the UC3872 controller IC, a separate power source of
approximately 10 VDC supplied the gate drive circuitry within the UC3872, and a current
supply was required to power the resonant circuit. A Hewlett Packard Harrison 6102A
DC power supply rated for 50 V and 500 mA was employed for initial testing. This
power supply was capable of operating in the current mode, so it was able to provide a
steady voltage for the gate drive circuit while simultaneously delivering a steady current
for the switched tank circuit. Data gathered during initial testing, using the HP Harrison
6102A, are labeled with specific input current values. Later, two other power supplies
were used to replace the damaged HP Harrison 6102A. The Kepco CK40-0.8M DC
power supply, rated for 40 VDC and 0.8 A, was used to power the gate drive circuit, and
a Sorenson Q Nobatron QRC40-8, rated for 40 VDC and 8 A, provided the main current

to the tank circuit. Both of these supplies operated only in the voltage mode.
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4. Results

4.1 Low frequency network analyzer data

Three high voltage transformers were immediately available: an old flyback
transformer from a black and white television, an automotive High Energy Ignition coil
with the laminated core removed, and the 1000VA SP216 high voltage transformer from
Plasma Technics, Inc. of Racine, Wisconsin. The Hewlett-Packard 3577A network
analyzer was used to measure the frequency signatures of each of these transformers due
to their internal inductance and capacitance values. The flyback transformer was found
to oscillate at a low frequency of approximately 16 kHz and an upper frequency of 50
kHz (see Figure 4.1). The core-less automotive induction coil, an autotransformer,

resonated at 10 kHz only (see Figure 4.2). The PTI SP216 transformer demonstrated
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Figure 4.1. Flyback transformer frequency signature.

(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).)
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Figure 4.2. No-core automotive transformer frequency signature.

(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).)

resonance at a low frequency of 7.7 kHz and a high frequency of 14.5 kHz (see Figure
4.3). Since it is advertised as being capable of operating over a range from 5 to 25 kHz,
and up to 15 kV, the PTI SP216 was selected to be the system transformer upon which
the power supply would be based. Two different loads were connected to the SP216
secondary and the resulting frequency response characterized using the network analyzer:
the medium-sized aluminum oxide panel (see Figure 4.4), and the Mod IV reactor, a
fairly large parallel plate reactor in the plasma lab (see Figure 4.5). Adding these plasma
actuators in the secondary of the transformer represented an increase in capacitance, and
a corresponding reduction in resonant frequency response was noted in the network

analyzer data.
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Figure 4.3. PTI SP216 transformer frequency signature.

(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).)

/

Figure 4.4. PTI SP216 + panel frequency signature.

(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).)
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Figure 4.5. PTI SP216 + Mod 1V parallel-plate reactor frequency signature.

(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).)

4.2 Component Measurements

Three different sizes of variable capacitor were designed and built to provide different
increments of variation while together summing to the desired total value of at least 3 nF.
A variable inductor was constructed to allow for additional adjustment of the system
resonant frequency. Tables 4.1 through 4.5 list the parameters for these components,
along with their calculated and measured values. All measurements of capacitance and
inductance were made using a Hewlett Packard 4332A LCR meter (s/n 1544J01297).
The values provided for the KOPAFILM MET dielectric are from the product
specification document published by KOPAFILM Elektrofolien [30]. The thickness of
Bristol paper was found in a paper thickness chart published by Case Paper Company,
Inc. [31], and the paper dielectric values were found in a dielectric list at RFCafe.com on

the internet [32].
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Table 4.1: Large Variable Capacitor Calculations and Measurements

Parameter Data
Electrode Width 1016 m
Maximum Electrode Overlap 1524 m
Number of Electrodes 8
Primary Dielectric Material KOPAFILM MET
Primary Dielectric Thickness 20 um
Primary Dielectric Breakdown 650 kV/mm
Primary Relative Permittivity 2.2
Sheets of Primary Dielectric 8
Secondary Dielectric Material Bristol Paper (67#)
Secondary Dielectric Thickness 2.3e-4 m
Secondary Dielectric Breakdown 7.8 kV/mm
Secondary Relative Permittivity 3
Sheets of Secondary Dielectric 2
Estimated Total Air Gap 2.54 e-4 m
Estimated Total Breakdown Voltage 107 kV
Calculated Maximum Capacitance 2.57 nF

Maximum Measured Capacitance

With no additional weight 3.05nF

With Board + added weight (.592 kg total) 3.75 nF
Minimum Measured Capacitance

With no additional weight 58.0 pF

With board only (.103 kg) 60.0 pF

With Board + added weight (.592 kg total) 62.5 pF
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Table 4.2: Medium Variable Capacitor Calculations and Measurements

Parameter Data
Electrode Width .0508 m
Maximum Electrode Overlap 1524 m
Number of Electrodes 4
Primary Dielectric Material KOPAFILM MET
Primary Dielectric Thickness 20 um
Primary Dielectric Breakdown 650 kV/mm
Primary Relative Permittivity 2.2
Sheets of Primary Dielectric 8
Secondary Dielectric Material Bristol Paper (67#)
Secondary Dielectric Thickness 2.3e-4 m
Secondary Dielectric Breakdown 7.8 kV/mm
Secondary Relative Permittivity 3
Sheets of Secondary Dielectric 2
Estimated Total Air Gap 2.54e4m
Estimated Total Breakdown Voltage 107 kV
Calculated Maximum Capacitance 550 pF

Maximum Measured Capacitance

With no additional weight 570 pF

With Board + added weight (.525 kg total) 665 pF
Minimum Measured Capacitance

With no additional weight 26.5 pF

With board only (.064 kg) 28.0 pF

With Board + added weight (.525 kg total) 28.5 pF
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Table 4.3: Small Variable Capacitor Calculations and Measurements

Parameter Data
Electrode Width 0254 m
Maximum Electrode Overlap 1524 m
Number of Electrodes 2
Primary Dielectric Material KOPAFILM MET
Primary Dielectric Thickness 20 um
Primary Dielectric Breakdown 650 kV/mm
Primary Relative Permittivity 2.2
Sheets of Primary Dielectric 4
Secondary Dielectric Material Bristol Paper (67#)
Secondary Dielectric Thickness 2.3e-4 m
Secondary Dielectric Breakdown 7.8 kV/mm
Secondary Relative Permittivity 3
Sheets of Secondary Dielectric 2
Estimated Total Air Gap 2.54 e-4 m
Estimated Total Breakdown Voltage 55 kV
Calculated Maximum Capacitance 102 pF

Maximum Measured Capacitance

With no additional weight 125 pF

With Board + added weight (.301 kg total) 155 pF
Minimum Measured Capacitance

With no additional weight 25.0 pF

With board only (.051 kg) 26.0 pF

With Board + added weight (.301 kg total) 26.5 pF

30




Table 4.4: Variable Inductor Calculations and Measurements

Parameter Data

Coil Diameter .0206 m
Coil Length 2032 m
Number of Turns 182
Number of Layers 2.5
Removable Core Material ferrite beads
Length of Core Material .0254 m x 8 beads
Estimated Relative Permeability 500

Calculated Inductances
No Core Material 0.07 mH
One Bead 3.39 mH
Two Beads 6.74 mH
Three Beads 10.1 mH
Four Beads 13.4 mH
Five Beads 14.8 mH
Six Beads 15.7 mH
Seven Beads 16.8 mH
Eight Beads 24.3 mH

Measured Inductances
No Core Material 90 uH
One Bead, Centered 120 uH
Two Beads, Centered 240 uH
Three Beads, Centered 420 uH
Four Beads, Centered 710 uH
Five Beads, Centered 1.05 mH
Six Beads, Centered 1.50 mH
Seven Beads, Centered 1.85 mH
Eight Beads, Centered 2.15 mH
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Table 4.5: Other Measurements

Parameter Data

Hand-Wound Toroidal Choke Inductances

Choke | 0.75 mH
Choke 11 0.75 mH
Chokes | & Il in series 1.50 mH

Commercial Toroidal Choke Inductances

AMVECO I (40 mH nominal) 44 mH
AMVECO Il (40 mH nominal) 44 mH
AMVECO | & Il in series 87 mH

PTI SP216 Transformer

Primary Coil Inductance 6.1 mH

Secondary Winding Capacitance 40 pF

Quartz Actuator

Capacitance (no plasma) 15 pF

Panel Actuator

Capacitance (no plasma) 540 pF

Large Orange Polypropylene Variable HV Capacitor

2 electrodes 470 pF
4 electrodes 1.3 nF
6 electrodes 2.2 nF
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A permeability value for the ferrite beads was estimated to be approximately 1000,
based on manufacturer FerroxCube’s Soft Ferrites and Accessories Application and
Information Document [33], and this value was halved since the bead only occupied
about half of the volume of the core when inserted. This estimation was obviously
erroneous, since the measured inductor values were less than the predicted values by an
order of magnitude. There are many different types of ferrite materials, and the ones in
hand have no identifying marks, so a very rough estimation could not be avoided.
Another factor leading to error was the calculating assumption that the core is one
continuous piece of material, whereas in reality there are air gaps between the eight
beads, which decrease the inductance. Note, however, that the inductance calculated for
the winding with no core inserted was reasonably accurate, with a twenty percent error
attributable to a failure to account for an average winding radius based on multiple layers

of wire.

4.3 Initial Testing: 140 mA Input Current, No Plasma

Once construction and assembly of the various components was completed, a series of
low power tests were run to measure the overall performance of the system. A Tektronix
P6015A 1000x high voltage probe was used to measure the output voltage, a Pearson
Current Monitor Model 2100 was used to measure current (ignored in low power
testing), and data were collected using a Tektronix TDS3014B oscilloscope. The lowest
current setting at which the control circuit could synchronize was 140 mA. It is
important to note that 140 mA was what the Hewlett Packard Harrison 6102A DC power

supply delivered to the entire circuit, and that only half of that current passed through the
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transformer primary at any given instant, or even less than half if the auxiliary inductor
was included in the circuit. Data were collected separately for the quartz actuator and the
aluminum oxide panel actuator, each tested with and without the variable inductor at its
maximum value of 2.15 mH connected in parallel with the transformer primary. This
variable inductor is referred to in the data as the Auxiliary Inductor, with its inductance
specified according to whether the full ferrite core was inserted (2.15 mH), only half the
ferrite core was inserted (0.71 mH), or there was no ferrite core at all (0.09 mH). The
data for each configuration are presented in Appendices A through D. Figures 4.6 and
4.7 summarize the resonant frequency and output voltage data for the two different
actuators with 140 mA total input current. No plasma was formed at the resulting output
voltages, all of which are reported as root-mean-square (RMS) values. The highest

frequencies were attained when the variable secondary capacitor was set to its minimum

Quartz Actuator, 140 mA Input Current
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Figure 4.6. Quartz actuator data summary, 140 mA input current.
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Panel Actuator, 140 mA Input Current
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Figure 4.7. Panel actuator data summary, 140 mA input current.

value, and the lowest frequencies (and lowest output voltages) occurred when the
secondary capacitance was set to maximum. It is evident that, in every case, as
capacitance is added in the secondary to reduce system frequency, the output voltage
declines. Addition of parallel inductance in the primary did not produce the expected
frequency increase in the initial quartz actuator testing, but the undesired side-effect of
output voltage reduction was observed, due to shunting of current away from the
transformer primary. The panel actuator, because it has considerably more capacitance to
begin with, developed lower output voltages and also operated over a much more limited
frequency range. However, the addition of the auxiliary parallel inductor did improve the
panel’s frequency range to a slight extent.

Figures 4.8 and 4.9 illustrate the voltage waveform (Ch 4, green) measured across the
entire switch, which is comprised of the MOSFET and the series diode together. The
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Figure 4.8. Switch waveform, optimum.
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Figure 4.9. Switch waveform, non-optimum.

Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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switching event is indicated by the sharp voltage spike, associated with the leakage
inductance as it releases the energy stored in its magnetic field in response to the change
in current. The switch waveform in Figure 4.8 is near-optimum, showing the symmetry
associated with ideal timing as the voltage in the tank circuit is placed across the non-
conducting switch, whereas in Figure 4.9 the switching event is slightly early, illustrating
that the control circuit does not always drive the circuit exactly at resonant frequency. In
fact, it is occasionally necessary to incrementally vary the timing capacitance associated
with the control circuit in order to achieve operation at an optimum frequency as the
secondary capacitance is varied. The UC3872 datasheet indicates that the switching
event is actually triggered when the zero-detect feedback circuitry senses a value of 0.5
V, instead of exactly at 0 V, a feature which is incorporated into the integrated circuit

design to allow for propagation delay associated with electronic circuitry.

4.4 Further Testing: 400 mA Input Current, No Plasma

Figures 4.10 and 4.11 summarize the resonant frequency and output voltage data for
the two actuators operating with a total circuit input current of 400 mA, with no plasma
generated. Once again, it is important to note that 400 mA is the total current supplied by
the source, and that only half (or less) of that value passes through the transformer
primary at any given instant. The data for each configuration are listed in Appendices E
through H. Once again the same trends are evident: adding capacitance reduces the
system frequency at the cost of decreased output voltage, and placing the auxiliary
inductor in the circuit also reduces the output voltage. The quartz actuator, by virtue of

its minimal starting capacitance, can operate over a wider frequency range, and in this
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Quartz Actuator, 400 mA Input Current
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Figure 4.10. Quartz actuator data summary, 400 mA input current, no plasma generated.

Panel Actuator, 400 mA Input Current
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Figure 4.11. Panel actuator data summary, 400 mA input current, no plasma generated.
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case reached a maximum frequency of 19 kHz with the addition of the auxiliary parallel
inductor in the primary. The seemingly anomalous panel data can be explained by the
fact that the data for each trial, with and without the auxiliary inductor, were collected on
different dates, with slight differences in input current.

A recurring problem throughout testing was that of instability: the circuit operated
normally for low power settings, but as input current was increased, the system became
unstable and it was impossible to synchronize at any resonant frequency. Factors that
may have caused this instability, and for which fixes were attempted, include faulty
connections within the breadboard, vibration of the capacitor plates within the variable
capacitor, poor impedance matching between secondary load and primary current source,
and faulty switching components.

During unstable operation there was initially an audible noise emanating from the
variable capacitors. Visual inspection and proper operation at lower currents indicated
that there had not been a dielectric breakdown, and thus the noise was not due to arcing.
It was suspected that the electrode plates might be vibrating, and so a few design
adjustments were made to each capacitor. The bottom support plate was removed from
the moving plate assembly, since it had the effect of holding the fixed plates suspended in
air, allowing them to sag near their base connection. Additionally, a thin board was cut
to fit over the plates and a brass weight was placed on top of this board, in an effort to
press the plates down and prevent their vibration. These changes eliminated the noise
coming from the capacitors and improved circuit operation somewhat. However, there
remained a tendency towards instability as input current was increased. Figure 4.12

illustrates the waveforms of the circuit during unstable operation. The performance of the
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Figure 4.12. Unstable operation, a recurring problem.

Chl: output voltage (500 V/div), Ch2: voltage across switch (50 V/div).

variable capacitors seemed to degrade over time, particularly the medium and large sizes
with multiple electrodes, which suggested that the problem might be due to poor

electrical contact between oxidizing aluminum surfaces.

4.5 Further Testing: 600 mA Input Current, First Plasma

It was suggested by Sirous Nourgostar, a fellow student in the Plasma Lab, that the
instability preventing normal operation of the circuit might be due to poor impedance
matching between the highly reactive load and the source. A method of impedance
matching for plasma loads had been developed and described by Chen [27], a former
student of Dr. Roth’s, and the inductors he built were still available. One of these
inductors, indicated as having a maximum value of 76 mH and a minimum value 3.2 mH
(see Figure 4.13), was applied to the secondary circuit in parallel and resulted in no
output oscillation whatsoever. However, when the impedance matching inductor was
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Figure 4.13. Impedance matching inductor, built by Chen [27].

connected into the secondary circuit in series, the problem of instability was reduced and
performance was significantly improved.

Although rated for 500 mA output, the Hewlett Packard Harrison 6102A DC power
supply delivered 600 mA to the quartz actuator in combination with the series secondary
impedance matching inductor and the auxiliary primary inductor for long enough to allow
a complete survey of the frequency range attainable from maximum to minimum variable
secondary capacitance. However, after only two measurements without the auxiliary
inductor, the power supply was permanently damaged, along with the control IC and one
of the MOSFETs. These tests were the first instances in which the output voltage
reached values sufficient to generate a plasma discharge across the actuator. Plasma

generation was first detected by the odor of ozone and then confirmed by turning out the
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light in the laboratory to make the plasma visible. The collected data are listed in
Appendices I and J, and is summarized in Figure 4.14. Once again, the data indicates that
as capacitance increases in the secondary circuit, the frequency is decreased along with
the output voltage, and the auxiliary inductor in the primary serves to increase the
frequency range, as expected, but it also diverts energy from the transformer and thus the
actuator load. While these tests represented a success, in that plasma was being
generated, it was recognized that the circuit was not functioning correctly because the
input current to the transformer primary was not in the form of a square wave, which was

demonstrated as a characteristic of proper operation by Alonso [11].

4.6 Further Testing: Plasma Generation

As previously indicated, the Hewlett Packard Harrison 6102A DC power supply was

the only available supply that operated in current mode. After its failure, two separate

Quartz Actuator, with 76mH Series Secondary Impedance
Matching Inductor, 600 mA Input Current
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Figure 4.14. Quartz Actuator data summary, 600 mA input current.
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supplies were required to provide a steady voltage for the gate drive circuitry and an
adjustable current for the main tank circuit. As previously indicated, the Kepco CK40-
0.8M and the Sorenson Q Nobatron QRC40-8 were used for these two functions,
respectively. Although the Sorenson supply, rated for 8 A, was able to provide the current
required by the oscillating circuit for full plasma generation, the output voltages attained
during testing were limited due to its functioning in the voltage mode. The data
presented represents circuit operation at the highest achievable power setting, at 40 VDC.
The current drawn by the load in varied according to the total impedance presented to the
Sorenson supply.

In addition to the power supplies, a MOSFET and the controller IC had to be replaced
after the first tests during which plasma was generated. Inspection of the waveform data
gathered during that test run led to the conclusion that the choke inductors were
insufficient since the current was not a square wave as expected, so two 40 mH choke
inductors were borrowed from Dr. Leon Tolbert. These changes greatly improved circuit
operation, but an asymmetry was still present in the transformer primary current
waveform. It was discovered that only one of the gate drive signals from the controller
IC was functioning properly. The IC was replaced, but the same problem recurred. The
circuit connections were verified, the order of power supply energization was modified,
and new sample UC3872 IC’s were acquired and tested, with no improvement. Since one
of the gate signals from the defective IC was still operational it was split and passed
through an inverter to provide the opposite switch gate signal, and thus proper operation
of the system was restored.

The data gathered during plasma generation using the quartz actuator is presented in
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Appendices K through N and summarized in Figures 4.15 and 4.16. Figure 4.15
illustrates the wide range of frequencies of operation attained by varying secondary
capacitance and using various values of parallel auxiliary inductance in the primary
circuit. Figure 4.16 illustrates that as secondary capacitance increases more current is
required to charge it and maintain the output voltage levels needed for plasma generation.

During the quartz actuator tests both of the smallest variable capacitors, which had
been constructed with only 4 sheets of BOPP dielectric, shorted and became unusable.
The medium variable capacitor was used to finish gathering data, but that capacitor, like
the large variable capacitor, tended toward unstable circuit operation. This unstable
behavior was characterized by a sound emanating from within the capacitors at the
secured ends where electrical connection was established, along with difficulty in
achieving oscillation. Although it sounded like arcing due to dielectric breakdown, this
seems unlikely since the sound originated at opposite ends of the capacitor, where there
was no electrode overlap, and there was no evidence of any damage or arcing between
opposite electrodes upon visual inspection.

The two smallest variable capacitors were not as susceptible to instability and never
generated any such noise. The smallest capacitors consisted of only two electrodes, and
connection to the exterior circuit was made directly using single brass tabs, whereas the
medium and large capacitors had multiple electrode plates at each end, all requiring
interconnection, which was made with aluminum tabs. It is suspected that the
interconnecting tabs of aluminum did not provide sufficient contact and electrical
connection, a condition that might have worsened over time due to oxidation of the

aluminum surfaces. In such a case, as voltage in the secondary increased, the electric
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Quartz Actuator Plasma Generation
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Figure 4.15. Quartz Actuator plasma generation, output voltage summary.
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Figure 4.16. Quartz Actuator plasma generation, transformer primary current summary.
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fields at the connecting strip edges might have intensified to such a degree that slight
arcing may have occurred from the connecting strip edge to the main electrode plate face,
which could produce audible as well as electrical noise. Figure 4.17 illustrates a design
flaw in the multi-electrode capacitors that may be partially responsible for inadequate
electrical connectivity. At the end of the moving electrode set for all of the variable
capacitors, it was necessary to leave the connecting bolts slightly loosened to allow the
plates to slide back and forth. This loose mechanical connection could serve to
exacerbate the problem of electrical connection between electrodes.

Figure 4.18 is a picture of the quartz actuator during plasma generation. Figure 4.19
illustrates the waveform associated with plasma onset using the quartz actuator, which

occurred in all cases when the output voltage reached approximately 1 kV. The voltage

Figure 4.17.Loose mechanical connection, possible source of faulty electrical connection.
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Figure 4.18.Quartz actuator plasma generation.
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Figure 4.19.Quartz actuator plasma onset waveforms, 1.01 kV.
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spikes normally associated with plasma generation waveforms can be seen on the current
(Ch 2) and switch voltage (Ch 3) waveforms. The waveforms associated with full plasma
generation using the quartz actuator are illustrated in Figure 4.20. Once again, the
current waveforms and the voltage across the switches bear typical noise/voltage spikes
associated with plasma generation.

Due to the breakdown and degradation of the variable capacitors, a previously
constructed high voltage capacitor made with plain polypropylene sheets was used for the
panel actuator data series (see Figure 4.21). This capacitor has multiple electrodes that
can be accessed individually, allowing variation of capacitance, but power must be turned
off and the capacitor discharged for any change to be made. Testing of the panel made
use of 2, 4, and then 6 electrodes of this capacitor, measured to have capacitance of 470

pF, 1.3 nF, and 2.2 nF respectively for each combination.
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Figure 4.20.Quartz actuator full plasma waveforms, 1.30 kV.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (200 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure 4.21.Alternate high voltage variable capacitor.

The data gathered during plasma generation using the panel actuator is listed in
Appendices O through V and is summarized in Figures 4.22 through 4.25. Tests were
conducted in an attempt to identify any trends associated with the inclusion of various
series secondary impedance matching inductances, as had been used to stabilize circuit
operation when plasma was generated for the first time. As previously noted, adding the
matching inductor parallel in the secondary prevented any oscillation whatsoever. The
transformer shrinks the apparent inductance value from secondary to primary by a factor
of the turns ratio squared, which in parallel with the transformer primary results in a very
small effective total resonating inductance, preventing oscillation at useful frequencies.
However, adding the impedance matching inductor to the secondary in series did seem to
have a slight stabilizing effect, possibly due to a balancing of total secondary reactance.

It is difficult to draw any conclusions from the data gathered during the panel actuator
plasma generation tests, other than to confirm the trend of output voltage reduction as

secondary capacitance is increased. The data sets in Figures 4.22 through 4.25 appear in
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Panel Actuator Plasma Generation:
Output VVoltage Without Auxiliary Inductor
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Figure 4.22.Panel Actuator plasma generation without Auxiliary Inductor, output voltage

summary.

Panel Actuator Plasma Generation:
Output VVoltage with Auxiliary Inductor (2.15mH)
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Figure 4.23.Panel Actuator plasma generation with Auxiliary Inductor, output voltage

summary.
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Panel Actuator Plasma Generation:
Transformer Input Current Without Auxiliary Inductor
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Figure 4.24.Panel Actuator plasma generation without Auxiliary Inductor, transformer
primary current summary.

Panel Actuator Plasma Generation: Transformer Input
Current with Auxiliary Inductor (2.15mH)
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Figure 4.25.Panel Actuator plasma generation with Auxiliary Inductor, transformer
primary current summary.
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clusters at similar frequency values, with the highest frequency data points being
associated with the 2 electrode secondary capacitor (470 pF) configuration and the lowest
frequency data points associated with the 6 electrode secondary capacitor (2.2nF). The
data presented in each case represent full plasma generation across the entire panel at the
highest possible output from the Sorenson power supply, 40 VDC. Onset of plasma
generation (see Figure 4.26) was accompanied by an audible hissing noise from the
panel, a noticeable smell of ozone, and instability of operation attributable to fluctuations
of capacitance associated with the plasma itself. The most notable feature of plasma
onset with the panel actuator was the output voltage at which it occurred, between 700 V
and 750 V in every instance.

Plasma onset was accompanied by significant instability of operation, likely due to

capacitance fluctuations associated with the plasma. Attempts to operate the system with

Tek Run___ | E 1 Trig'd

Ch1 RMS
740 v

Ch1 Freq
4. 003kHz

Ch2 RMS
139ma

Chi| 1.00kv  |Ch2 500ma M| 100ps| A Chi o+ 820 V|
100 V 9 Apr 2007

—400.000nNs 09:59:07

Figure 4.26.Panel actuator plasma onset waveforms, 740 V.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch4: voltage across switch (100 V/div).
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no capacitor in the secondary were unsuccessful, likely due to these same capacitance
fluctuations at plasma onset. Performance was improved when there was an additional
capacitor added in the secondary. Increasing power beyond the point of onset resulted in
some cases in re-stabilization as the plasma became uniform across the panel, due to a
stabilization of the capacitance associated with the plasma. In other cases operation
remained unstable, although plasma generation continued. Plasma coverage of the panel
became uniform when the output voltage reached the 800 V to 850 V range. Figure 4.27
represents one of the most stable waveforms associated with full plasma generation
across the panel actuator, and Figure 4.28 is a picture of the panel actuator when fully

energized.

Telk Fun

T
-

Trig'd

Ch1l RMS
1.26kV

Ch1 Freq
32.590kHz

Ch2 RMS
S73Ima

Ch3 Max
246 %

Gkl 1.00kv  [Ch2[ 500ma M 100ps| A Ch1 & 40,0V
Ch3 100V 9 Apr 2007

[—400.000nNs]| 17:23:06
Figure 4.27.Panel actuator full plasma waveforms, 1.26 kV.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure 4.28.Panel actuator plasma generation.
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5. Conclusions

Atmospheric plasmas are increasingly applied in industrial processes, and the uniform
effect associated with the One Atmosphere Uniform Glow Discharge Plasma
(OAUGDP®) is particularly useful in that it can provide energetic plasma and reactive
species with minimal heating of workpieces. Additionally, the One Atmosphere Uniform
Glow Discharge Plasma (OAUGDP®) can be generated efficiently at moderate voltages
using audio frequencies and optimized actuators.

The goals of this thesis were achieved with respect to the range of frequency used to
generate an atmospheric pressure plasma. The methods proposed to achieve this
frequency variation were successfully demonstrated to be effective, although each had its
particular drawbacks. The variable inductor was simple to construct and allowed
operation at frequencies higher than that at which the transformer/plasma actuator system
alone would oscillate. The greatest drawback associated with the variable inductor was
that it diverted some power from the transformer primary and thus from the plasma load
in the secondary. The variable capacitor, on the other hand, was very difficult and time-
consuming to construct. It performed successfully in early testing, allowing operation at
frequencies below that at which the transformer/plasma actuator system alone would
oscillate. A significant drawback associated with the variable capacitor is that it requires
increased system power input to maintain a given output voltage as the capacitance is
increased. = The greatest drawback of the variable capacitor was its faulty internal
electrical connections, which resulted in unstable circuit operation. Some combination of

the following might provide a solution to the problem of electrode interconnection: a
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commercial paste to prevent oxidation of aluminum interconnections might be applied, or
a conductive paste to provide good contact between surfaces might be applied, or brass
interconnecting tabs might provide good electrical conduction without the problem of
oxidation. Additionally, it is imperative that the means of mechanically securing the
electrodes together as a set be separated from the means of moving the electrode set to
and fro in relation to the fixed electrodes. This might be accomplished simply by
applying an epoxy cement to secure the electrodes tightly together as a set.

Whereas the frequency goals of this thesis were successfully attained, the voltage
goals were not. This was largely due the difficulty of operating available DC power
supplies in current mode. Either a current mode power supply or a higher range of DC
voltage supply might allow for further gains in output voltage. Another avenue for
further exploration might be the use of an automotive battery as a power supply for the
system. This would require additional components including an on/off switch, a current
limiting fuse, and a variable ballast resistance in order to provide some control over the
current supply. Although the output voltages attained with this system were low in
comparison with the original goals, significant and useful plasma discharges were
generated nonetheless.

The system examined herein, originally presented by Alonso, et al, [11], represents a
significant reduction in the size and cost of power supplies for generating atmospheric
plasma. The variable inductor and capacitor developed provide new tools for engineering
and optimizing plasma generation systems based on the current-fed push-pull parallel

resonant circuit topology.
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Appendix A: Low Power (140mA) Data:
Quartz Actuator, without Auxiliary Inductor
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Figure A.1. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 15 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure A.2. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 14 kHz.
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Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Figure A.3. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 13.2 kHz.

Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Figure A.4. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 11.8 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure A.5. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 10.6 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure A.6. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 8.6 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure A.7. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 8.1 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure A.8. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 7.2 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),

Ch4: voltage across switch (20 V/div).
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Figure A.9. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 6.3 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure A.10. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 5.3 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),

Ch4: voltage across switch (20 V/div).
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Figure A.11. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 4.3 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),

Ch4: voltage across switch (20 V/div).
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Figure A.12. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 3.2 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure A.13. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 2.6 kHz.
Ch1: output voltage (200 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Appendix B: Low Power (140mA) Data:
Quartz Actuator, with 2.15mH parallel primary
Auxiliary Inductor
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Figure B.1. Quartz Actuator, 140 mA input current, with Aux. Inductor, 15.2 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure B.2. Quartz Actuator, 140 mA input current, with Aux. Inductor, 13.1 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure B.3. Quartz Actuator, 140 mA input current, with Aux. Inductor, 11 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),

Ch4: voltage across switch (100 V/div).

71



Te_

3
{3
{€
{3

=
1

Skl 1.00kV » |Ch2| 1.00mA

M[20.0ps] A Ch1 -+ 160 V|

Ch< 100 % "

i+~ [10.00004s

Ch1 Pk—Pk
1.44kV

Ch4 Freq
9.222KkHz

7 Mar 2007
21:02:45

Figure B.4. Quartz Actuator, 140 mA input current, with Aux. Inductor, 9.2 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure B.5. Quartz Actuator, 140 mA input current, with Aux. Inductor, 7 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure B.6. Quartz Actuator, 140 mA input current, with Aux. Inductor, 6 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure B.7. Quartz Actuator, 140 mA input current, with Aux. Inductor, 5.1 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure B.8. Quartz Actuator, 140 mA input current, with Aux. Inductor, 4.2 kHz.
Ch1: output voltage (200 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (100 V/div).
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Figure B.9. Quartz Actuator, 140 mA input current, with Aux. Inductor, 3.8 kHz.
Ch1: output voltage (200 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (100 V/div).
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Appendix C: Low Power (140mA) Data: Panel
Actuator, without Auxiliary Inductor
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22:30:23

Figure C.1. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 6.7 kHz.

Chl: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure C.2. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 6 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),

Ch4: voltage across switch (20 V/div).
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Figure C.3. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 5.1 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),

Ch4: voltage across switch (20 V/div).
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Figure C.4. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 4.3 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure C.5. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 3 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure C.6. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 2.5 kHz.

Ch1: output voltage (100 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Appendix D: Low Power (140mA) Data: Panel
Actuator, with 2.15mH parallel primary Auxiliary
Inductor
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Figure D.1. Panel Actuator, 140 mA input current, with Aux. Inductor, 8.3 kHz.

Chl: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure D.2. Panel Actuator, 140 mA input current, with Aux. Inductor, 6.9 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure D.3. Panel Actuator, 140 mA input current, with Aux. Inductor, 5.9 kHz.
Ch1: output voltage (200 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure D.4. Panel Actuator, 140 mA input current, with Aux. Inductor, 5.1 kHz.
Ch1: output voltage (200 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure D.5. Panel Actuator, 140 mA input current, with Aux. Inductor, 4.2 kHz.
Ch1: output voltage (200 V/div), Ch2: transformer secondary current (1 mA/div),

Ch4: voltage across switch (20 V/div).
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Figure D.6. Panel Actuator, 140 mA input current, with Aux. Inductor, 3.6 kHz.
Ch1: output voltage (200 V/div), Ch2: transformer secondary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Appendix E: Low Power (400mA) Data:
Quartz Actuator, without Auxiliary Inductor
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Figure E.1. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 14.5 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure E.2. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 13 kHz.
Ch1l: output voltage (1 kV/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure E.3. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 10.5 kHz.
Ch1l: output voltage (1 kV/div), Ch2: transformer primary current (1 mA/div),

Ch4: voltage across switch (20 V/div).
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Figure E.4. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 8.7 kHz.
Ch1l: output voltage (1 kV/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure E.5. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 7.1 kHz.
Ch1l: output voltage (1 kV/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure E.6. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 6.1 kHz.
Ch1l: output voltage (1 kV/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure E.7. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 4.9 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure E.8. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 3 kHz.

Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure E.9. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 2.6 kHz.

Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Appendix F: Low Power (400mA) Data:
Quartz Actuator, with 2.15mH parallel primary
Auxiliary Inductor
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Figure F.1. Quartz Actuator, 400 mA input current, with Aux. Inductor, 19.4 kHz.

Chl: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure F.2. Quartz Actuator, 400 mA input current, with Aux. Inductor, 13 kHz.

Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure F.3. Quartz Actuator, 400 mA input current, with Aux. Inductor, 10.9 kHz.

Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (20 V/div).
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Figure F.4. Quartz Actuator, 400 mA input current, with Aux. Inductor, 9 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).

Tek Run | E i ] Trig'd

Chi| S00V ~ |Ch2 '

M40.0ps] A Ch1 -+ 160 V|

i+~ [10.00004s

Ch1 Freq
8.253KkHz

Ch1 Pk—Pk
1.23kV

Ch4 Freq
B8.285KkHz

Ch2 RMS
3I83pA

8 Mar 2007
12:44:44

Figure F.5. Quartz Actuator, 400 mA input current, with Aux. Inductor, 8.3 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Figure F.6. Quartz Actuator, 400 mA input current, with Aux. Inductor, 7.3 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Figure F.7. Quartz Actuator, 400 mA input current, with Aux. Inductor, 6.2 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Figure F.8. Quartz Actuator, 400 mA input current, with Aux. Inductor, 5.2 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Figure F.9. Quartz Actuator, 400 mA input current, with Aux. Inductor, 4.2 kHz.
Ch1: output voltage (200 V/div), Ch2: transformer primary current (1 mA/div),

Ch4: voltage across switch (50 V/div).
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Appendix G: Low Power (400mA) Data: Panel
Actuator, without Auxiliary Inductor
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Figure G.1. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 6.4 kHz.

Chl: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Figure G.2. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 5.8 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Figure G.3. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 5.1 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Figure G.4. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 3.8 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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i+~ [10.0000us | 18:08:57

Figure G.5. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 2.7 kHz.
Ch1: output voltage (500 V/div), Ch2: transformer primary current (1 mA/div),
Ch4: voltage across switch (50 V/div).
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Appendix H: Low Power (400mA) Data: Panel
Actuator, with 2.15mH parallel primary Auxiliary
Inductor

Telkk Run | E ] Trig'd

Ch1 Freq
4. 422KH2

Chl1 Pk—Pk
1.92kv

20 Mar 2007

10.0000us 17:15:41
Figure H.1. Panel Actuator, 400 mA input current, with Aux. Inductor, 4.4 kHz.

Chl: output voltage (500 V/div), Ch2: voltage across switch (50 V/div).
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Skl 500 V ~ |Ch2| 50.0V

M 100ps| A Chi -+

i+~ [10.00004s

160 V|

Ch1 Freq
3.361kHz

Ch1 Pk—Pk
1.54kV

20 Mar 2007
17:05:538

Figure H.2. Panel Actuator, 400 mA input current, with Aux. Inductor, 3.4 kHz.

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div).
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M 100ps| A Chi -+

i+~ [10.00004s

160 V|

Ch1 Freq
3.010kHz

Ch1 Pk—Pk
1.47kV

20 Mar 2007
17:08:33

Figure H.3. Panel Actuator, 400 mA input current, with Aux. Inductor, 3 kHz.

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div).
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160 V|

Ch1 Freq
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Ch1 Pk—Pk
1.31kV
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20 Mar 2007
17:04:33

Figure H.4. Panel Actuator, 400 mA input current, with Aux. Inductor, 2.9 kHz.

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div).
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Ch1 Freq
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20 Mar 2007
17:02:45

Figure H.5. Panel Actuator, 400 mA input current, with Aux. Inductor, 2.6 kHz.

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div).

98



L[ R ———————

Ig
-3
ksl
a

Ch1 Pk—Pk
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i+~ [10.0000s 17:23:14
Figure H.6. Panel Actuator, 400 mA input current, with Aux. Inductor, unstable.

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div).
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Appendix I: Medium Power (600mA) Data:
Quartz Actuator, without Auxiliary Inductor,
with 76mH series secondary Impedance Matching
Inductor

Tek Run___ | E 1 Trig'd
Ch1 RMS
2.21kv
Ch1 Freq
12.23kHz
Ch2 RMS
421maA
3 ﬂﬂ\/\ﬂw mm
m.m . Y A . . LHE W Ve W - . C243 gnﬂs
Chi| 2.00KV " |Ch2 500ma . |M|20.0Ms| A Chl 4  40.0 V|
Ch3[ 100V @EE] 100V 23 Mar 2007
10.0000us 01:04:31

Figure I.1. Quartz Actuator, 600 mA input current, w/out Aux. Inductor, with Impedance-
Matching Inductor in series in secondary, 12.2 kHz.
Ch1: output voltage (2 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3 and Ch4: voltage across each switch (100 V/div).
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L

Trig'd

Ci‘l-1-

2.00kV ~ |Ch2| S00mA

M[20.0ps] A Ch1 - 40.0 V|

Ch3 100 ¥V 100 ¥

Ch4|

i+~ [10.00004s

Ch1 RMS
2.08kV

Ch1 Freq
11.92kHz

Ch2 RMS
463ma

Ch32 RMS
47.9V

23 Mar 2007
01:09:23

Figure 1.2. Quartz Actuator, 600 mA input current, w/out Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 11.9 kHz.
Ch1: output voltage (2 kV/div), Ch2: transformer primary current (500 mA/div),

Ch3 and Ch4: voltage across each

switch (100 V/div).
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Appendix J: Medium Power (600mA) Data:

Quartz Actuator, with 2.15mH parallel primary
Auxiliary Inductor, with 76mH series secondary
Impedance Matching Inductor

Tel Run E ] Trig'd
! : Ch1l RMS
: : 1.99kv
Ch1 Freq
. . 16.71kHz
: : Ch2 RMS
: _ 200maA
[ Poin iy, MM"'w\, afl s P if, o P et
(13 AR AV NP WL L RV AV . ., C'5113§"{}5
Chil 2700kV ~ JCh2[ 500ma e M| 20.018] A Chi &  40.0 V|
Cch3 100 W 100 v 22 Mar 2007
10.0000s 00:59:05

Figure J.1. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-
Matching Inductor in series in secondary, 16.7 kHz.
Chl: output voltage (2 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3 and Ch4: voltage across each switch (100 V/div).
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i

Trig'd

J ................ PRI A 11 EEEEE EE R Yy
"d iy &
& W 5 ) B
Chi| 2.00kV " JCh2| 500ma . M 20.0Ms] A Chi - 40.0 V|
ch3[ 100V 100 v

i+~ [10.0000us

23 Mar 2007
01:02:21

Figure J.2. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Te

Matching Inductor in series in secondary, 15.5 kHz.
Ch1: output voltage (2 kV/div), Ch2: transformer primary current (500 mA/div),

Ch3 and Ch4: voltage across each

switch (100 V/div).

—
b=

.

lc Run

Trig'd

Chil Zl00kv i~ TEiB 5.00 A . |M[20.0ps] Al Ch1 & 40.0 V|
Cch3 S50.0% Ch4| 50.0 V

i+~ [10.0000us

23 Mar 2007
00:56:22

Figure J.3. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 15.2 kHz.

Ch1: output voltage (2 kV/div), Ch2: transformer primary current (5 A/div),
Ch3 and Ch4: voltage across each switch (50 V/div).
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lc Run

-
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i

Trig'd

Chil Z2i00kv ~ [Ch2| 5.00 v M[20.0us] A Chi1 o  40.0 V|
Ch3] S0.0V S0.0 WV

i+~ [10.0000us

23 Mhar 2007
00:54:12

Figure J.4. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Te

Matching Inductor in series in secondary, 13.7 kHz.

Ch1: output voltage (2 kV/div), Ch2: transformer primary current (5 A/div),

Ch3 and Ch4: voltage across each

switch (50 V/div).
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Trig'd

““*v*“n Mg f“““q Vo fﬁ“

T

-—-; “'\'I - rs— -"'-“\"-\"- --I-------urj r’f.'
Chi| 2.00kvV " [Ch2| 5.00V 7w |M40.0pms| A Ch1 &  40.0 V|
Ch3 50.0V 50.0 V

i+~ [10.0000us

23 Mar 2007
00:52:34

Figure J.5. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 12.8 kHz.

Ch1: output voltage (2 kV/div), Ch2: transformer primary current (5 A/div),

Ch3 and Ch4: voltage across each

switch (50 V/div).
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T
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L

Trig'd

Chz2

Ch-'l-

ZT00KV ~ JCh2| 5.0

S Tmlao ops] A Chi o a0 0 v

S0.0 WV S0.0 WV

i+~ [10.0000us

Ch1 EMS
1.69kV

Ch1l Freq
11.57kHz

Ch2 RMS
297my

Ch2 RMS
51.3 ¥V

23 Mar 2007
00:50:56

Figure J.6. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 11.6 kHz.

Ch1: output voltage (2 kV/div), Ch2: transformer primary current (5 A/div),
Ch3 and Ch4: voltage across each switch (50 V/div).

Chz2

Ch-'l-

ZT00KV ~ JCh2| 5.0

S Tmlao ops] A Chi o a0 0 v

S0.0 WV S0.0 WV

i+~ [10.0000us

23 Mar 2007
00:48:14

Figure J.7. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 10.5 kHz.

Ch1: output voltage (2 kV/div), Ch2: transformer primary current (5 A/div),
Ch3 and Ch4: voltage across each switch (50 V/div).
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Ch1 EMS
1.72kv

Ch1l Freq
9. 964kHz

Ch2 RMS
394my

Ch2 RMS
53.1 ¥

Chi| 2.00kvV " JCh2| 5.00 % " |M30.04s] A Chil - 40.0 V|
Ch3[ 50.0V 50.0 V 23 Mar 2007

i+~ [10.0000ps | 00:46:36
Figure J.8. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 10 kHz.
Ch1: output voltage (2 kV/div), Ch2: transformer primary current (5 A/div),
Ch3 and Ch4: voltage across each switch (50 V/div).

Ch1l RMS
1.43KV
[E\ Ch1l Freq
. . . . . L . . . [ . 7.94F7kHz
VAN e b MR, My - ¥
! : ity : Wi " : [ i
"""-\.’h AN ¥ "s"'#k""ﬁ'*‘-.*-. AAAN W ,,'1‘-“I.-.P‘,‘IW f : ",!.'uh-m""i- 'KZA‘IQZ1 ﬁ‘ln'?fs
- L . 1 L L b, il g . L L)
a 806 & o r-lu"i——-—» e m-'!—--lﬁ-l— ---------- wlr&g—-—p--- L e
. LW . . . w T . . w . .
............................................................ Ch3 RMS
49,3V
Chi[ 2J00kv "~ |Ch2[ 5.00 v " |M[40.0Ms| A Ch1 & 40.0 V|
Cch3 S50.0% S0.0V 23 Mar 2007
A+ (10.0000Js 00:43:20

Figure J.9. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-
Matching Inductor in series in secondary, 7.9 kHz.
Ch1: output voltage (2 kV/div), Ch2: transformer primary current (5 A/div),
Ch3 and Ch4: voltage across each switch (50 V/div).
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Telk Run
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a

Ch1l RMS
1.39kKV

[ i O i Ch1 Freq
. . . . . . . . . . 6.475kHz

: ; R : L : _ Y ch2 RMS
™ : PR A A Y e "'%W i : : 48IMV
@ 5 " — L R, - s o Lito o T e————

Ch3 RMS
43.1 V

Chi 2700kv~ [Ch2| 5.00 V v Ma0.0us| A Ch1 -  40.0 V|
Ch3[ 50.0V 50.0V 23 pMar 2007

W+ |[10.0000ps 00:41:05
Figure J.10. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 6.5 kHz.
Chl: output voltage (2 kV/div), Ch2: transformer primary current (5 A/div),
Ch3 and Ch4: voltage across each switch (50 V/div).
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Appendix K:  Further Testing:  Quartz
Actuator Plasma Generation, without Auxiliary
Inductor

I

Tek Run

-

Trig'd

P-4
<
v

Ch1 RMS
1.17kVv

Ch1 Freq
3.459KkHz

1 Ch2 RMS
i 177mv

--------

Ch3 Max
126 v

Chi| 1.00kvV  [®iB 200mv M 100ps| A Chi1 o+ 200V
Chz2 100V 4 Apr 2007

@+~ (0.00000 s 15:50:23
Figure K.1. Quartz Actuator Plasma Generation, w/out Aux. Inductor, 3.5 kHz.

Chl: output voltage (1 kV/div), Ch2: transformer primary current (200 mA/div),
Ch3: voltage across switch (100 V/div).
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1.00kV  |SLE] 200mv
100 V

Ci‘l-1-

Ch3

M Toops| A Ch1 & 200 V|

@+~ |0.00000 §

Ch1 RMS
1.30kV

Ch1 Freq
4.250kHz

Ch2 RMS
191 my

Ch3 Max
142 v

4 Apr 2007
15:37:30

Figure K.2. Quartz Actuator Plasma Generation, w/out Aux. Inductor, 4.3 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (200 mA/div),

Ch3: voltage across switch (100 V

/div).

. Run |
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o} :]:(:34

|__|

Trig'd

Ch3 100 ¥V
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L A | AR 1 L ™, L. W
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\ : \ _ \i \[: \i !
L S——— . 1'iﬁ-u.-u--lm-u----u. . Nowsmpisiiion || . . . . N L . .. \m
Chi| 1.00kv  [@iB 200mv M| 100ps| A Chi o+ 200 V|

@+~ |0.00000 §

Ch1 RMS
1.33kV

Ch1 Freq
5.176kHz

Ch2 RMS
145my

Ch3 Max
126 v

4 Apr 2007

15:40:31
Figure K.3. Quartz Actuator Plasma Generation, w/out Aux. Inductor, 5.2 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (200 mA/div),
Ch3: voltage across switch (100 V/div).
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Chil 1 ookv  JEiE 200mv M 100pMs| A Chi & 200 V|
Ch3[ 100V

i+~ [0.00000 s
Figure K.4. Quartz Actuator Plasma Onset, w/out Aux. Inductor, 4.5 kHz.

Ch1 Freq
4.472kHz

Ch2 RMS
103my

Ch3 Max
100 %

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (200 mA/div),

Ch3: voltage across switch (100 V/div).
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Appendix L:  Further Testing:  Quartz
Actuator Plasma Generation, with parallel

primary Auxiliary Inductor, Full Core Inserted
(2.15 mH)

Tek Run___ | E 1 Trig'd
: : Ch1 RMS
' : 1.03kV
[E\ Ch1 Freq
: ; ; : ; ie : ; : : i 7.854kHz
: : Ch2 RMS
: : . 174myv
: ; m,
i | ES— SE——— || L jh, W—— Ch3 Max
(3 : : 144 v
Mkl 2.50kv  |Ch2 200mv  |M|40.0Ms| A Chi o 200 V|
Ch3[ 100V 4 Apr 2007
0.00000 s 20:56:27

Figure L.1. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 7.9 kHz.
Ch1l: output voltage (2.5 kV/div), Ch2: transformer primary current (200 mA/div),
Ch3: voltage across switch (100 V/div).
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Mkl 2.50kv  |Ch2 200mv  |M|40.0Ms| A Chi o 200 V|
Ch3[ 100V

@+~ |0.00000 §

Ch1 RMS
1.27kV

Ch1 Freq
R.919kHz

Ch2 RMS
184my

Ch3 Max
144 v

4 Apr 2007

20:54:36

Figure L.2. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 8.9 kHz.

Ch1l: output voltage (2.5 kV/div), Ch2: transformer primary current (200 mA/div),
Ch3: voltage across switch (100 V/div).

) thiy  E it (3 ‘._1 :
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\ % | %1

[§\ -_“--‘ . . . : - Tf:“m "lﬁlm ..... v_lm .I r. . . . :Il.'!-

Mkl 2.50kv  |Ch2 200mv  |M|40.0Ms| A Chi o 200 V|
Ch3[ 100V

@+~ |0.00000 §

Ch1 RMS
1.39kV

Ch1 Freq
10.06kHz

Ch2 RMS
187my

Ch3 Max
154 v

4 Apr 2007

20:49:22

Figure L.3. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 10 kHz.

Ch1: output voltage (2.5 kV/div), Ch2: transformer primary current (200 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure L.4. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 11.5 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (200 mA/div),
Ch3: voltage across switch (100 V/div).

(23
: am | I T . M TP
SR '} WA e
: g \" [ \".:' A AR \
> \ " K : A ! N
@ikl 2.50kv  |Cha| 200mv  IM40.0Ms| A Chi 4 200 V|
Ch3[ 100V

@+~ |0.00000 §

Ch1 RMS
1.34kV

Ch1 Freq
11.54kHz

Ch2 RMS
143my

Ch3 Max
128 v

4 Apr 2007

20:45:18

Ch1 RMS
1.32kV

Ch1 Freq
15.34kHz

Ch2 RMS
124my

Ch3 Max
128

4 Apr 2007

20:40:50

Figure L.5. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 15.3 kHz.
Ch1: output voltage (2.5 kV/div), Ch2: transformer primary current (200 mA/div),
Ch3: voltage across switch (100 V/div).
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Ch1 RMS
1.36kV

[?\-::::é::::é::::i::::i::::”::::E::::i::::i::::é::::- Ch1 Freq
i . . : . e f . L : 16.80kHz

Ch2 RMS
48.3my

Ch3 Max
114 v

Mkl 2.50kv  |Ch2 200mv  |M|40.0Ms| A Chi o 200 V|
Ch3[ 100V

4 Apr 2007
@+~ |0.00000 § 16:23:28

Figure L.6. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 16.8 kHz.

Ch1l: output voltage (2.5 kV/div), Ch2: transformer primary current (200 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix M:  Further Testing: Quartz
Actuator Plasma Generation, with parallel

primary Auxiliary Inductor, Half Core Inserted
(0.71 mH)

Tek Run___ | E 1 Trig'd

Ch1 RMS
993 ¥

Ch1 Freq
13.53kHz

Ch2 RMS
2053my

TRLAYY : LA™ st (]| 1 YN s]  €h3 Max
3 R : : | SR 154 v

@ikl 1.00kv  |Ch2 s00mv  |M|20.0Ms| A Chi & 200 V|

Ch3] 100V 4 Apr 2007
0.00000 s 21:52:29

Figure M.1. Quartz Actuator Plasma Generation, with Aux. Inductor (0.71mH), 13.5kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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ST50RY
100 v

Ch
Ch3

cha[ 500mv

@+~ |0.00000 §

M[20.0ps] A Ch1 -+ 200 V|

Ch1 RMS
1.13kV

Ch1 Freq
15.62kHz

Ch2 RMS
207my

Ch3 Max
156

4 Apr 2007
21:50:20

Figure M.2. Quartz Actuator Plasma Generation, with Aux. Inductor (0.71mH), 15.6kHz.

Ch1: output voltage (2.5 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).

: H S e !
SRS KNIy ff f v IR | i e
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Gkl 2.50kv  |Ch2 s500mv  |M|20.0Ms| A Chi o 200 V|
Ch3[ 100V

@+~ |0.00000 §

Ch1 RMS
1.26kV

Ch1 Freq
18.37kHz

Ch2 RMS
190my

Ch3 Max
158 v

4 Apr 2007
21:40:59

Figure M.3. Quartz Actuator Plasma Generation, with Aux. Inductor (0.71mH), 18.4kHz.

Ch1l: output voltage (2.5 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Ch1 RMS
1.32kV

Ch1 Freq
23.8B8kHz

Ch2 RMS
144 my

Ch3 Max
120 %

Gkl 2.50kv  |Ch2 s500mv  |M|20.0Ms| A Chi o 200 V|
Ch3[ 100 V

4 Apr 2007
@+~ |0.00000 § 21:36:32

Figure M.4. Quartz Actuator Plasma Generation, with Aux. Inductor (0.71mH), 23.9kHz.

Ch1: output voltage (2.5 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix N:  Further Testing:  Quartz
Actuator Plasma Generation, with parallel

primary Auxiliary Inductor, No Core Inserted
(0.09 mH)

Tek Run___ | E 1 Trig'd
Ch1l RMS
1.01kV
[E\ Ch1 Freq
[ . . . I E ) . . I I 35.34kHz
Ch2 RMS
221Tmv
el et el Pt ) o 1t ] s T, 178 i 4 e Ch3 Max
E¥ 140 %
Ch 13 Sokv ch2| 300 my M|40 IVES A| Shi 200 V|
Ch3 100 W 4 Apr 2007
0.00000 s 21:09:31

Figure N.1. Quartz Actuator Plasma Generation, with Aux. Inductor (0.09mH), 35.3kHz.
Ch1l: output voltage (2.5 kV/div), Ch2: transformer primary current (200 mA/div),
Ch3: voltage across switch (100 V/div).
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Ch1 Freq
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Ch2 RMS
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4 Apr 2007

21:20:31

Figure N.2. Quartz Actuator Plasma Generation, with Aux. Inductor (0.09mH), 35.6kHz.

Ch1: output voltage (2.5 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix O: Further Testing: Panel Actuator
Plasma Generation, without Auxiliary Inductor,
without Impedance Matching Inductor

Te

Ch1 RMS
1.34kV

Ch1 Freq
1.897kHz

Ch2 RMS
222mMma

Ch3 Max
236 W

1.00KV Ch2] 500ma M[200us| Al Chl + 40.0V

Ch3] 100V 9 Apr 2007
—400.000NS 17:37:38

Figure O.1. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, w/out

Impedance Matching Inductor, 1.9 kHz.
Chl: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Ch1l Freq
1.484kHz

[ : - : g I : i : ; : Ch2 RMS
i : : : ; H : | : : : 280ma

: Ch32 Max
: -t : : i : : 224 v

—

ikl 1.00Kv  |Ch2[ S00ma M| 200s| A Chi & 40.0 V|
Cch3 100 v

9 Apr 2007
i+~ [—400.000nNs 17:02:40

Figure O.2. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, w/out
Impedance Matching Inductor, 1.48 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure O.3. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, w/out
Impedance Matching Inductor, 1.26 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix P: Further Testing: Panel Actuator
Plasma Generation, without Auxiliary Inductor,
with 3.2mH series secondary Impedance Matching
Inductor

Te

Ch1 RMS
1.32kV

Ch1 Freq
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Ch2 RMS
ST1ma

Ch3 Max
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E3 e

iRl 1.00kV Ch2[ 500maA
Ch3[ 100V 9 Apr 2007

—400.000nNs 17:36:01

Figure P.1. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 3.2mH

series secondary Impedance Matching Inductor, 1.71 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Ch1 EMS
1.34kv

Ch1l Freq
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Ch2 RMS
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Figure P.2. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 3.2mH
series secondary Impedance Matching Inductor, 1.46 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).

ikl 1.00kv  |Ch2[ S00ma M| 200s| A Chi & 40.0 V|
Cch3 100 v

9 Apr 2007
i+~ [—400.000nNs 16:43:52

Figure P.3. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 3.2mH
series secondary Impedance Matching Inductor, 1.25 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix Q: Further Testing: Panel Actuator
Plasma Generation, without Auxiliary Inductor,

with 41mH series secondary Impedance Matching
Inductor

Tek Run
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—400.000ns 17:34:25
Figure Q.1. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 41mH

series secondary Impedance Matching Inductor, 1.72 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure Q.2. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 41mH

series secondary Impedance Matching Inductor, 1.45 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).

lc Run

Ch1 EMS
1.30kV

Ch1l Freq
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Ch2 RMS
286maA
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Figure Q.3. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 41mH

series secondary Impedance Matching Inductor, 1.25 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix R: Further Testing: Panel Actuator

Plasma Generation, without Auxiliary Inductor,
with 76mH series secondary Impedance Matching

Inductor

e

@ikl 1.00Kv

ch2[ 500maA

Ch3 100 ¥V

M[200ps| A Chi1 -+  40.0 V|

—400.000nNs

Ch1 RMS
1.34kV

Ch1 Freq
1.803kHz

Ch2 RMS
332maA

Ch3 Max
242 W

9 Apr 2007
17:32:47

Figure R.1. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 76mH

series secondary Impedance Matching Inductor, 1.80 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure R.2. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 76mH
series secondary Impedance Matching Inductor, 1.46 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure R.3. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 76mH
series secondary Impedance Matching Inductor, 1.27 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix S: Further Testing: Panel Actuator
Plasma Generation, with 2.15mH parallel primary
Auxiliary Inductor, without Impedance Matching
Inductor

Tek Run___ | E 1 Trig'd

Ch1 RMS
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Ch1 Freq
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Figure S.1. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, w/out Impedance Matching Inductor, 3.59 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure S.2. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, w/out Impedance Matching Inductor, 2.81 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure S.3. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, w/out Impedance Matching Inductor, 2.35 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Ch1 RMS
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139ma
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Figure S.4. Panel Actuator Plasma Onset, with 2.15mH parallel primary Auxiliary
Inductor, w/out Impedance Matching Inductor, 4 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix T: Further Testing: Panel Actuator

Plasma Generation, with 2.15mH parallel primary
Auxiliary Inductor, with 3.2mH series secondary
Impedance Matching Inductor
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17:25:15

Figure T.1. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, with 3.2mH series secondary Impedance Matching Inductor, 3.49 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure T.2. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, with 3.2mH series secondary Impedance Matching Inductor, 2.79kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure T.3. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, with 3.2mH series secondary Impedance Matching Inductor, 2.38 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix U: Further Testing: Panel Actuator
Plasma Generation, with 2.15mH parallel primary
Auxiliary Inductor, with 41mH series secondary
Impedance Matching Inductor

Ch1 RMS
1.29kV

Ch1 Freq
3.453KkHz

Ch2 RMS
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Figure U.1. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, with 41mH series secondary Impedance Matching Inductor, 3.45 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure U.2. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, with 41mH series secondary Impedance Matching Inductor, 2.76 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure U.3. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, with 41mH series secondary Impedance Matching Inductor, 2.3kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Appendix V: Further Testing: Panel Actuator
Plasma Generation, with 2.15mH parallel primary
Auxiliary Inductor, with 76mH series secondary
Impedance Matching Inductor

Tek Run___ | E 1 Trig'd

Ch1 RMS
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Figure V.1. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary

Inductor, with 76mH series secondary Impedance Matching Inductor, 3.4 kHz.
Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure V.2. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary
Inductor, with 76mH series secondary Impedance Matching Inductor, 2.71 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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Figure V.3. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary
Inductor, with 76mH series secondary Impedance Matching Inductor, 2.34 kHz.

Ch1: output voltage (1 kV/div), Ch2: transformer primary current (500 mA/div),
Ch3: voltage across switch (100 V/div).
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