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Abstract 
 

   A high voltage transformer connected to an atmospheric plasma generator is driven 

as a current-fed push-pull parallel resonant system, switched by a resonant lamp 

controller integrated circuit from Texas Instruments (UC3872) in such a manner as to be 

automatically maintained at resonance.  The frequency range of interest is the audio 

range, which creates a particularly uniform glow discharge in atmospheric pressure air.  

Frequency control is achieved by a specially constructed high voltage variable capacitor 

connected parallel to the secondary, in conjunction with a variable parallel primary 

inductance.  Voltage control is achieved by variation of the input DC current amplitude. 
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1. Introduction 
 

Atmospheric plasmas are increasingly applied to advantage in various industrial 

processes.  Atmospheric plasma discharges always require high voltage (>500V) to 

initiate, although operating voltages differ according to the type of discharge, which can 

occur at very low currents as a corona discharge or at very high currents as an arc 

discharge.  Glow discharges occur between these extreme current regimes, at moderate 

current values, providing energetic plasma without excess heating.  The glow discharge 

plasma can be used to generate reactive species, including ozone, and is particularly 

suited for increasing the surface energy of delicate materials, such as thin films.  

However, in the latter case it is important that plasma filamentation be avoided, a 

phenomenon in which localized electron avalanching results in non-uniformity of energy 

distribution and treatment effect.  Dr. J. R. Roth at the University of Tennessee has 

demonstrated that a uniform glow discharge plasma can be formed in air at ambient 

pressures using frequencies in the audio range.  This uniform discharge, referred to as the 

One Atmosphere Uniform Glow Discharge Plasma (OAUGDP®), generates ion/electron 

pairs at highest efficiency, resulting in electron kinetic temperatures greater than 10,000 

K while ion and ambient neutral gas temperatures remain near room temperature.  

 The goal of this project was to explore a new manner of generating high voltages at 

frequencies in the audio range in order to generate the One Atmosphere Uniform Glow 

Discharge Plasma (OAUGDP®).  Specifically, the goal was to produce output voltages 

varying from 1 kV to 20 kV over a frequency range from 1 kHz to 20 kHz.   It was 

decided that a current-fed push-pull parallel resonant circuit would be employed, 
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switched by a commercial integrated circuit resonant lamp controller in such a manner as 

to be automatically maintained at resonance.  A high voltage variable capacitor was 

designed and constructed to act in parallel in the secondary circuit as a manually variable 

frequency modulator, and a variable inductor was constructed to act in parallel with the 

transformer primary to provide further frequency control.  This power supply is intended 

to act as a bench-top prototype development system, with which the performance of any 

transformer and plasma reactor combination can be studied over a range of frequencies 

and voltages to determine optimum operating parameters, which can later be 

implemented with off-the-shelf discrete components. 

   Chapter 2 provides a review of the literature describing the use of resonant switching 

power supplies to generate atmospheric plasma, and their application in industry.  The 

last section focuses specifically on the current-sourced push-pull parallel resonant 

inverter circuit upon which the power supply developed for this thesis is based. 

Chapter 3 details the resonant system employed for this project, based upon a specific 

transformer and plasma actuator, and particularly describing the design and construction 

of the variable capacitor and variable inductor.  The switching and control circuits are 

also discussed. 

Chapter 4 provides a summary and discussion of data gathered during preliminary 

testing and then during plasma generation.   

Chapter 5 presents conclusions arrived at during the course of this project, including 

possible explanations for problems encountered and suggestions for further improvement 

of the power supply. 
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2. Literature Review 

2.1 Atmospheric Plasma 
 

Atmospheric plasma discharges are used in a variety of industrial applications, 

including increasing the surface energy of materials [1], generating ozone [2], and 

generating reactive species [3].  Figure 2.1 illustrates the regimes of a plasma discharge, 

from corona at very low currents, to the normal glow discharge, to the arc regime at high 

currents [4].  The dielectric barrier discharge (DBD) is a widely applied method of 

generating atmospheric plasma, using one or two dielectric barriers placed between high 

voltage discharge electrodes.  The dielectric material suppresses arcing and forces the 

plasma to remain in the Townsend avalanche regime.  A DBD produces a plasma that 

consists of many short-lived micrometer-scale filaments of relatively high electron 

density and energy, resulting in an overall non-uniformity of effect on workpieces located 

in the dielectric barrier discharge. The One Atmosphere Uniform Glow Discharge Plasma 

 
Figure 2.1. Classical DC discharge regimes, from Roth [4]. 
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(OAUGDP®) [5][6] produces a uniform glow plasma in small discharge gaps (<3mm in 

air)  with driving frequencies in the audio midrange that promote ion trapping between 

the electrodes.  The OAUGDP® is well suited for many industrial applications due to its 

uniformity of effect.   The goal of this thesis is to build a small and inexpensive high 

voltage power supply that can function in the audio range in order to produce an 

OAUGDP® discharge. 

2.2 Resonant Switching Power Supplies 

2.2.1 General 
 

Switching power supplies are usually operated at high frequencies to minimize size 

and cost, but this in turn makes them susceptible to parasitic reactive circuit elements and 

thus more likely to generate electromagnetic ‘noise,’ or radio frequency interference 

(RFI).  A resonant circuit can be used to automatically compensate for parasitic elements 

and can greatly reduce noise generation and switching transients. Resonant mode 

converters generally input a square pulse of voltage or current to an L-C circuit in a 

manner timed to match its natural frequency, causing energy to be stored in the resonant 

circuit.  This energy can then be drawn off by the load. A major advantage of a resonant 

mode topology is ‘soft’ switching, which can be made to occur at zero voltage or zero 

current, so that switches experience much lower transients, create less radio frequency 

interference, and operate more efficiently.  High peak currents and increased control 

complexity are the major drawbacks associated with resonant converters.  

There are many system and control approaches to resonant power supplies.   The 

resonant LC circuit can be series or parallel, or a combination of both [7][8]. Switching 
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control can be accomplished by phase-shifted pulse width modulation (PWM) [9][10], a 

combination of pulse density and pulse frequency modulation [2], and other 

methodologies [11][12].  Resonant power supplies have been adapted to drive many 

kinds of loads, including welders [13], induction heating loads [14], and high voltage 

loads.  High voltage applications include medical X-Ray power supplies [10], plasma jets 

and general-application discharges [7][12][15], dielectric barrier discharges for degrading 

toxic organic compounds [3], and ozone generators [2][11][16][17][18].   

In most instances a transformer is used to provide high voltage, although there exist a 

few higher-order resonant circuit designs that do not require them [7][19][20].  A high 

voltage transformer has inherent parasitic reactances (illustrated in Figure 2.2) due to the 

manner of its construction.   Because of imperfect magnetic coupling of the primary and 

secondary coils, there arises a leakage inductance, generally identified as a lumped series 

primary inductance.  When the current through the transformer primary is reversed each 

switching cycle, the leakage inductance causes high voltage spikes which can damage the 

semiconductor switches.  In the secondary coil there is a significant distributed 

capacitance between the various windings and layers of windings, 

L Magnetizing
C Winding

1:n
L Leak

 

Figure 2.2. Parasitic reactances of a high voltage transformer. 
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which can result in current spikes and slow voltage rise-times in the secondary.  The most 

efficient high voltage resonant inverters incorporate either or both of these parasitic 

transformer components into the resonant circuit design [8][10][21][22]. 

2.2.2 Current-Fed Parallel Topology 
 

Many high voltage resonant circuits described in the literature employ a voltage-

sourced series resonant topology, often using frequency variation above resonance for 

output voltage control [3][9][12][16].  By its nature, a plasma reactor/generator is highly 

capacitive, adding to the large secondary winding capacitance of the high voltage 

transformer required to power it.  A parallel tank circuit with significant capacitance 

initially appears as a short circuit to a voltage source, so it is better driven with a current 

source.  The current-fed push-pull parallel resonant inverter is well suited to serve as a 

power supply for an atmospheric plasma discharge because it assimilates any capacitance 

in the transformer secondary as part of the resonant circuit.  This secondary capacitance 

is ‘reflected’ to the primary by a factor of the square of the turns ratio, and it will tend to 

resonate at some frequency as part of a parallel circuit with the transformer magnetizing 

inductance.   

The main disadvantage of a current-sourced parallel-resonant inverter is that the 

output voltage gain is lowest at resonance [23].  For this reason, a high voltage 

transformer with sufficient turns ratio must be selected if operation occurs at resonance.   

A major advantage of the current-fed parallel resonant inverter is that both (push-pull) 

transistors are driven with respect to ground, resulting in a simple gate drive circuit [24]. 

A diode in series with each switch disables the MOSFET intrinsic body diode, resulting 
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in unidirectional current flow and preventing energy reflection back to the source; an 

alternating square wave current results, with amplitude equivalent to half the input DC 

current.  When the circuit operates near the resonant frequency, the source can be 

approximated as a sine wave of the square wave’s fundamental frequency with amplitude 

(IDC√2)/π amperes [15].  A parallel resonant circuit is more efficient when operated at or 

below resonance [23], when the resonating tank circuit behaves as an inductive load to 

the source in terms of the load resistance voltage and the fundamental component of the 

input current.  This allows the series diode to turn off with zero dI/dt and low dV/dt and 

the MOSFET to turn on with zero current, resulting in higher circuit efficiency [24].  The 

converse will be true if the circuit is driven above the resonant frequency.  Operating a 

resonant power supply at the circuit resonant frequency results in true zero voltage 

switching and highest efficiency, but it precludes output voltage control by frequency 

variation.   

The current-fed push-pull parallel resonant inverter circuit described by Alonso et al. 

[11] uses the resonant lamp ballast controller UC3872 from Unitrode (Texas Instruments) 

to maintain the system at resonance.  This integrated circuit detects zero crossings of the 

resonant voltage waveform to control switching, so that any system combination of a 

high voltage transformer and plasma reactor will be driven at its own intrinsic resonant 

frequency so long as it coincides with a synchronization range determined by timing 

capacitors associated with the integrated circuit.  Figure 2.3 provides a conceptual 

illustration of the total system, and Figure 2.4 is a comprehensive circuit schematic used 

to gather the data presented in this document. 
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Figure 2.3. Conceptual block diagram. 
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Figure 2.4. Complete circuit, based on Alonso [11]. 
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3. Design and Construction 

3.1 Resonant System  
 

The basic resonant system consists of any reasonable combination of high voltage 

transformer and plasma generator, where “reasonable” refers to proper matching of 

plasma current draw and transformer volt-ampere capability.  Such a combination will 

tend to oscillate at two frequencies, in a parallel and then series fashion.  The lower 

frequency is normally associated with the larger magnetizing inductance, which oscillates 

in parallel with the secondary capacitance.  The higher frequency is normally associated 

with the smaller leakage inductance oscillating in series with the secondary capacitance.  

The difference between these frequencies is a function of the amount of leakage 

inductance in relation to magnetizing inductance.   

The UC3872 resonant controller can be expected to maintain the system at the lower 

resonant frequency so long as the proper value of timing capacitance is employed to limit 

the synchronization range [25].  The UC3872 uses voltage feedback to detect zero-

crossings of the resonant tank, switching the push-pull MOSFET pair accordingly.  A 

parallel variable capacitor in the secondary will increase total capacitance and thus 

decrease the system’s natural frequency, providing manual frequency control.  Past 

experience demonstrates that a high voltage capacitor on the order of 5 nanofarads can be 

easily constructed; simulations indicate that such a value would be sufficient to achieve 

the desired frequency control.   However, simulations also reveal that in order to sweep 

across the entire frequency range desired, in addition to varying the capacitance, a 

variation of the resonating inductance may also be required.  This can be accomplished 

9 



by connecting an inductor across the transformer primary, which will have the effect of 

reducing the total resonating inductance and increasing the oscillation frequency. 

Spreadsheets were developed to assist in the design of the capacitor and the inductor.  

For the capacitor, an effort was made to minimize the required plate area, and to 

approximate the effect of multiple and varied dielectric separator media, including air 

gaps.  For the inductor, an effort was made to minimize turns and to achieve the desired 

range of variation by inserting a high permeability core to facilitate varying from a 

minimum to a maximum inductance value.   

3.1.1 Transformer and Plasma Actuators 
 

The transformer used for this project was model SP216 from Plasma Technics, Inc. in 

Racine, Wisconsin (see Figure 3.1).  The SP216 is presented by the manufacturer as a 

component designed to operate in resonant systems with a frequency range of 5 to 25kHz 

 
Figure 3.1. SP216 transformer from Plasma Technics, Inc. 

10 



and output voltages up to 15 kV [26].  The SP216 is rated for up to 240 VAC inverter 

input and 1000 VA output.  Measurements in the lab indicated that the turns ratio of the 

SP216 is approximately 1:100.  

A small quartz dielectric plasma actuator having a measured capacitance of 15 pF 

was used as the primary load (see Figure 3.2).  The actuator consists of two adhesive 

copper strips, approximately 5 mm x 80 mm, fixed on opposite sides of the 1 mm thick, 

50 mm x 125 mm quartz plate with no gap or overlap between their closest edges.  

Connecting wires are soldered to the end of each copper strip and routed in opposite 

directions to prevent high voltage arcing.  

A panel plasma actuator with aluminum oxide as the dielectric, having a measured 

capacitance of 540 pF was used as an intermediate load.   The panel is approximately 1 

mm thick and 100 mm x 140 mm, with a 90 mm x 125 mm metallic ground plane on one 

side and a series of end-connected metal strips on the other (see Figures 3.3 and 3.4).  

The 25 metal strips are approximately 1 mm wide and 80 mm long and spaced apart 

approximately 4 mm.  The panel represents a significantly larger capacitive load than the 

 
Figure 3.2. Quartz plasma actuator. 
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Figure 3.3. Panel plasma actuator, aluminum oxide, metal strips. 
 
 
 

 
Figure 3.4. Panel plasma actuator, aluminum oxide, ground plane. 

12 



smaller quartz actuator, and it consistently operated at lower frequency and output 

voltage than the smaller actuator during testing.  Again, wires are soldered to the 

electrodes on each side and routed in opposite directions. 

3.1.2 Variable Capacitor 
 

The fundamental concept of the variable capacitor is illustrated in Figure 3.5. 

Preliminary PSpice simulations indicated that a maximum variable capacitance on the 

order of three nanofarads would provide the desired range of frequency control. Although 

various dielectrics were considered, it was initially decided to use a commercially 

available polyethylene or polypropylene film, since these materials are widely available, 

easy to work with, and in particular have a low loss factor.   A preliminary computer 

program designed to calculate capacitance values indicated that using the standard 6-mil 

sheets available at the local builders’ supply store would require up to twenty 8-inch 

(.2032 m) by 14-inch (.3556 m) electrodes for a capacitance in the desired range.  Further 

 
Figure 3.5. Fundamental variable capacitor design. 
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research led to the identification of a specially manufactured form of polypropylene with 

much higher dielectric strength than normal polypropylene, allowing for much thinner 

(and fewer) dielectric sheets, which in turn increases total capacitance.  Biaxially oriented 

polypropylene (BOPP) is manufactured by stretching the film in two directions (machine 

and transverse directions) as it is formed, which orients the molecules parallel with the 

plane of the film, enhancing its mechanical and electrical properties.  Samples of BOPP 

were obtained directly from two manufacturers:  6013(RRP) from Jiangmen Enrichment 

Industrial LTD in Guangdong, China, and Kopafilm MET from Kopafilm Elektrofolien 

GMBH, of Nidda/Ober-Schmitten, Germany.  Also available was a roll of Hostaphan 

(PET) high voltage dielectric film from Hoechst-Celanese, circa 1993.  These films are 

very thin and require considerable care in their handling, but they allow for 

improvements in the capacitor size and value.  The spreadsheet capacitance calculations 

indicated that a capacitor of 3 nanofarads could be constructed with the BOPP dielectric 

film by using as few as 8 electrodes, 4 inches (10.16 cm) wide and with 6 inches (15.24 

cm) of overlap, a drastic improvement in comparison to the original design.  Only the 

Kopafilm BOPP was used in the variable capacitors used in data collection. 

The capacitors were designed to withstand more than twice the expected maximum 

voltage.  The original intention was to forego the use of any additional liquid dielectric 

barrier, although such is often recommended for high voltage capacitors. In constructing 

the capacitor, each individual aluminum foil (heavy gauge) electrode was fixed between 

two sets of multiple dielectric films, and all was then sandwiched between two sheets of 

Bristol paper.  A group of these electrode sets were mechanically connected at one end, 

with equivalent spacers between, using vinyl bolts (see Figure 3.6).  The same-set plates  
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Figure 3.6.  Side view of variable capacitor. 
 
were interconnected with one-inch (2.54 cm) wide aluminum foil tabs. A brass tab with 

soldered wire connection was used to provide electrical connection to the exterior circuit.    

The capacitor consisted of the interleaving of two oppositely connected groups of these 

electrodes, sliding from a position of minimal overlap to full overlap of 6 inches (15.24 

cm). See Figures 3.7 and 3.8 for illustration of minimum and maximum electrode 

overlap.  A larger electrode width allows for greater maximum capacitance, while a 

thinner electrode provides a smaller variation of capacitance. An effort  was  made  to  

minimize  the  risk  of  breakdown  by  rounding  all  corners of  the electrodes and 

connecting tabs in an effort to reduce electric field intensity, and Kapton tape was used to 

minimize corona formation at exposed edges.  

A capacitor support system was designed consisting of two rectangular wooden 

plates:  a lower plate, fixed to a supporting frame, and a moving plate to slide on top of 

the fixed plate.  At the far ends of each are holes through which vinyl bolts secure the 

entire assemblage of wooden spacers,  paper,  dielectric films, and electrodes.    The fixed  
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Figure 3.7. Variable capacitor, minimal plate overlap, minimum capacitance. 
 

 

 
Figure 3.8. Variable capacitor, maximum plate overlap, maximum capacitance. 
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and moving plates, each securing a set of opposing electrodes, were elevated and secured 

on a wooden frame.  Three stackable capacitor support frames were constructed, identical 

except for the width of electrode supported, with one frame supporting a large capacitor, 

another frame a medium capacitor, and another frame supporting two small capacitors 

with the thinnest electrodes (see Figure 3.9).  A wooden board with a brass weight was 

placed on top of the electrodes to minimize the possibility of electrode vibration. 

3.1.3 Variable Inductor 
 
A spreadsheet was developed to aid in the design of a variable inductor to operate in 

parallel with the transformer primary.  Different inductance equations from two sources 

[27][28] were verified to be equivalent; one was used repeatedly to isolate length, 

diameter,  and  turns,  and the effect of their variation on total inductance,  while the other 

 
Figure 3.9. Stacked variable capacitor frames. 
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provided inductance value confirmation and allowed direct calculation in inches instead 

of meters.  Both of these equations operate on the assumption of a value of unity for 

relative permeability, which is to say air is the transformer core material. A third equation 

[29] was employed to allow for the variation of relative permeability.  The intent was to 

wind a coil on a standard PVC pipe form, limiting the layers to three, and then to insert a 

material such as steel within the coil diameter to increase the inductance (see Figure 

3.10).  A formulation considering the alternating series of inductances due to partial core 

insertion was developed using an estimation of effective permeability based upon the 

fraction of cross-sectional area occupied by the core material in comparison with the coil, 

assuming the core was of significantly smaller diameter.  For example, it was determined 

that a minimal inductance on the order of 0.5 mH could be wound in three layers or less 

of 14AWG wire on a standard PVC pipe form of 2 inches (5.08 cm) diameter and length 

less than a foot (30.5 cm), and that the inductance value could then be increased to tens of 

millihenries  by  inserting a steel  bolt into the coil.   Professor Igor Alexeff advised that a  

 
Figure 3.10. Illustration of variable inductor. 
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Figure 3.11. Variable inductor, with switch. 

 

ferrite core be used in lieu of steel.   

Another inductor was constructed using available materials.  A coil eight inches 

(20.32 cm) long was wound in two and a half layers with approximately forty feet (12 m) 

of 18AWG stranded wire on a plastic tube with diameter 13/16th’s of an inch (2.06 cm), 

resulting in 182 total turns.  A series of ferrite beads of similar outside diameter were 

strung together to provide a core that could be easily adjusted by pulling the string 

connecting them.  The ferrite beads occupy approximately half the core volume, so with 

an estimate of 1000 for the ferrite permeability value, an effective permeability of 500 

was applied in the spreadsheet calculations, which then indicated an approximate 

maximum inductance value of 22 millihenries.  This inductor (shown in Figure 3.11) did 

have the intended effect on the resonant system when applied across the primary, 

allowing for operation at and beyond the highest frequencies desired, but the actual 
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inductance was later found to be smaller by an order of magnitude, probably due to a 

poor estimate of relative permeability for the beads, the composition of which was 

unknown. 

3.2 Control and Switching Circuits, Power Supplies  
 

The control circuit consisted of the UC3872 resonant lamp ballast controller 

integrated circuit and associated discrete components, including 100 Ω resistors from the 

gate drive signal pins, 10 kΩ resistors to limit current flow into the zero-detect pin, and 

various filter capacitors as recommended by the manufacturer.  The most important 

component associated with the UC 3872 was the timing capacitor, the size of which sets 

the frequency range. The synchronization frequency range is approximately 1.5:1, which 

means that if the capacitor in the timing circuit sets a minimum frequency of 4 kHz, then 

the maximum frequency for which the UC3872 will provide synchronization will be 

approximately 6 kHz.  For this reason, several dip switches were used to add a variety of 

capacitor values to the timing circuit. As the resonant circuit capacitance was varied, 

causing the system resonant frequency to change, it was often necessary to change the 

value of the timing capacitance so the controller IC could synchronize with the new 

frequency.  Initially the controller circuit was constructed on a breadboard in order to 

allow for changes and troubleshooting.  Later, the entire control circuit was soldered onto 

a modular circuit board (see Figure 3.12). 

The switching circuit was soldered directly onto a modular circuit board with secured 

connection leads (see Figure 3.13).  Early PSpice simulations indicated that an input 

current   on  the  order  of  3 A would  be required  to attain  the maximum  desired output 
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Figure 3.12. Control Module. 
 
 
 

 
Figure 3.13. Switching Module. 
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20 kV, so components were selected with this value as a benchmark.  However, in some 

cases components that exceeded the necessary ratings were used, since these were 

available at no cost.  A P600G diode, rated for 6 A of average forward current and 400 V 

recurrent peak reverse voltage, was connected in series with each of two IRF640 

MOSFET switches, mounted on heat sinks and rated to deliver a continuous drain current 

of 18 A and to withstand a drain-source voltage of 200 V.  Together, the P600G diode 

and the IRF640 formed the unidirectional switch.   

In order to protect the MOSFETs from voltage spikes generated at each switching 

event by the leakage inductance of the transformer, a voltage-clamping snubber was 

included.  The snubber consisted of two FR304 fast-recovery diodes, rated to conduct 3 A 

average current and to withstand 400 V of peak repetitive reverse voltage, a 0.1 μF 

Sprague capacitor, rated for 1000 VDC, and a 1/4 W, 100 kΩ resistor.  The main concern 

in selecting the snubber components is that the time constant of the RC combination be 

significantly larger than the switching period, so voltage rise in the snubber capacitor is 

very slow during the period when the MOSFET is not conducting.  The modular control 

circuit, associated timing capacitor bank, and the switching module are pictured in Figure 

3.14.  

Initially, two toroidal cores wrapped with approximately 70 turns of # 18AWG served 

as choke inductors to ensure a uniform DC current to the switching circuit.  It became 

evident during testing that these choke coils were insufficient (they were later measured 

to be 0.75 mH each), and so they were replaced with two large choke inductors of 

nominal 40mH each.   

Three  separate power sources were required to operate the system:  a  9 VDC  battery 
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Figure 3.14.  Switching module, control module, and timing capacitors. 
 
powered the electronic circuitry of the UC3872 controller IC, a separate power source of 

approximately 10 VDC supplied the gate drive circuitry within the UC3872, and a current 

supply was required to power the resonant circuit.  A Hewlett Packard Harrison 6102A 

DC power supply rated for 50 V and 500 mA was employed for initial testing.  This 

power supply was capable of operating in the current mode, so it was able to provide a 

steady voltage for the gate drive circuit while simultaneously delivering a steady current 

for the switched tank circuit.  Data gathered during initial testing, using the HP Harrison 

6102A, are labeled with specific input current values.  Later, two other power supplies 

were used to replace the damaged HP Harrison 6102A. The Kepco CK40-0.8M DC 

power supply, rated for 40 VDC and 0.8 A, was used to power the gate drive circuit, and 

a Sorenson Q Nobatron QRC40-8, rated for 40 VDC and 8 A, provided the main current 

to the tank circuit.  Both of these supplies operated only in the voltage mode.  
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4. Results 

4.1 Low frequency network analyzer data 
 

Three high voltage transformers were immediately available:  an old flyback 

transformer from a black and white television, an automotive High Energy Ignition coil 

with the laminated core removed, and the 1000VA SP216 high voltage transformer from 

Plasma Technics, Inc. of Racine, Wisconsin.  The Hewlett-Packard 3577A network 

analyzer was used to measure the frequency signatures of each of these transformers due 

to their internal inductance and capacitance values.  The flyback transformer was found 

to oscillate at a low frequency of approximately 16 kHz and an upper frequency of 50 

kHz (see Figure 4.1).  The core-less automotive induction coil, an autotransformer, 

resonated at 10 kHz only (see Figure 4.2).  The PTI SP216 transformer demonstrated 

 
Figure 4.1. Flyback transformer frequency signature.   
(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).) 
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Figure 4.2. No-core automotive transformer frequency signature.  
(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).) 
 
resonance at a low frequency of 7.7 kHz and a high frequency of 14.5 kHz (see Figure 

4.3).  Since it is advertised as being capable of operating over a range from 5 to 25 kHz, 

and up to 15 kV, the PTI SP216 was selected to be the system transformer upon which 

the power supply would be based.  Two different loads were connected to the SP216 

secondary and the resulting frequency response characterized using the network analyzer: 

the medium-sized aluminum oxide panel (see Figure 4.4), and the Mod IV reactor, a 

fairly large parallel plate reactor in the plasma lab (see Figure 4.5).  Adding these plasma 

actuators in the secondary of the transformer represented an increase in capacitance, and 

a corresponding reduction in resonant frequency response was noted in the network 

analyzer data. 
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Figure 4.3. PTI SP216 transformer frequency signature.  
(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).) 
 
 

 
Figure 4.4. PTI SP216 + panel frequency signature.  
(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).) 
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Figure 4.5. PTI SP216 + Mod IV parallel-plate reactor frequency signature.  
(Ordinate measures relative impedance (dBm), abscissa measures frequency (Hz).) 

4.2 Component Measurements 
 

Three different sizes of variable capacitor were designed and built to provide different 

increments of variation while together summing to the desired total value of at least 3 nF.   

A variable inductor was constructed to allow for additional adjustment of the system 

resonant frequency.  Tables 4.1 through 4.5 list the parameters for these components, 

along with their calculated and measured values.  All measurements of capacitance and 

inductance were made using a Hewlett Packard 4332A LCR meter (s/n 1544J01297).  

The values provided for the KOPAFILM MET dielectric are from the product 

specification document published by KOPAFILM Elektrofolien [30].  The thickness of 

Bristol paper was found in a paper thickness chart published by Case Paper Company, 

Inc. [31], and the paper dielectric values were found in a dielectric list at RFCafe.com on 

the internet [32]. 
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Table 4.1: Large Variable Capacitor Calculations and Measurements 

Parameter Data 

Electrode Width .1016 m 
Maximum Electrode Overlap .1524 m 
Number of Electrodes 8 

 

Primary Dielectric Material KOPAFILM MET 
Primary Dielectric Thickness 20 μm 
Primary Dielectric Breakdown 650 kV/mm 
Primary Relative Permittivity 2.2 
Sheets of Primary Dielectric  8 

 

Secondary Dielectric Material Bristol Paper (67#) 
Secondary Dielectric Thickness  2.3e-4 m 
Secondary Dielectric Breakdown 7.8 kV/mm 
Secondary Relative Permittivity 3 
Sheets of Secondary Dielectric 2 

 

Estimated Total Air Gap 2.54 e-4 m 
Estimated Total Breakdown Voltage 107 kV 

 

Calculated Maximum Capacitance 2.57 nF 
 

Maximum Measured Capacitance  
With no additional  weight 3.05 nF 
With Board + added weight (.592 kg total) 3.75 nF 

Minimum Measured Capacitance  
With no additional  weight 58.0 pF 
With board only (.103 kg) 60.0 pF 
With Board + added weight (.592 kg total) 62.5 pF 
 

28 



Table 4.2: Medium Variable Capacitor Calculations and Measurements 

Parameter Data 

Electrode Width .0508 m 
Maximum Electrode Overlap .1524 m 
Number of Electrodes 4 

 

Primary Dielectric Material KOPAFILM MET 
Primary Dielectric Thickness 20 μm 
Primary Dielectric Breakdown 650 kV/mm 
Primary Relative Permittivity 2.2 
Sheets of Primary Dielectric  8 

 

Secondary Dielectric Material Bristol Paper (67#) 
Secondary Dielectric Thickness 2.3e-4 m 
Secondary Dielectric Breakdown 7.8 kV/mm 
Secondary Relative Permittivity 3 
Sheets of Secondary Dielectric 2 

 

Estimated Total Air Gap 2.54 e-4 m 
Estimated Total Breakdown Voltage 107 kV 

 

Calculated Maximum Capacitance 550 pF 
 

Maximum Measured Capacitance 
With no additional  weight 570 pF 
With Board + added weight (.525 kg total) 665 pF 

Minimum Measured Capacitance 
With no additional  weight 26.5 pF 
With board only (.064 kg) 28.0 pF 
With Board + added weight (.525 kg total) 28.5 pF 
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Table 4.3:  Small Variable Capacitor Calculations and Measurements 

Parameter Data 

Electrode Width .0254 m 
Maximum Electrode Overlap .1524 m 
Number of Electrodes 2 

 

Primary Dielectric Material KOPAFILM MET 
Primary Dielectric Thickness 20 μm 
Primary Dielectric Breakdown 650 kV/mm 
Primary Relative Permittivity 2.2 
Sheets of Primary Dielectric  4 

 

Secondary Dielectric Material Bristol Paper (67#) 
Secondary Dielectric Thickness 2.3e-4 m 
Secondary Dielectric Breakdown 7.8 kV/mm 
Secondary Relative Permittivity 3 
Sheets of Secondary Dielectric 2 

 

Estimated Total Air Gap 2.54 e-4 m 
Estimated Total Breakdown Voltage 55 kV 

 

Calculated Maximum Capacitance 102 pF 
 

Maximum Measured Capacitance 
With no additional  weight 125 pF 
With Board + added weight (.301 kg total) 155 pF 

Minimum Measured Capacitance 
With no additional  weight 25.0 pF 
With board only (.051 kg) 26.0 pF 
With Board + added weight (.301 kg total) 26.5 pF 
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Table 4.4: Variable Inductor Calculations and Measurements 

Parameter Data 

Coil Diameter .0206 m 
Coil Length .2032 m 
Number of Turns 182 
Number of Layers 2.5 
Removable Core Material ferrite beads 
Length of Core Material .0254 m x 8 beads 
Estimated Relative Permeability 500 

 

Calculated Inductances 
No Core Material 0.07 mH 
One Bead 3.39 mH 
Two Beads 6.74 mH 
Three Beads 10.1 mH 
Four Beads 13.4 mH 
Five Beads 14.8 mH 
Six Beads 15.7 mH 
Seven Beads 16.8 mH 
Eight Beads 24.3 mH 

Measured Inductances  
No Core Material 90 μH 
One Bead, Centered 120 μH 
Two Beads, Centered 240 μH 
Three Beads, Centered 420 μH 
Four Beads, Centered 710 μH 
Five Beads, Centered 1.05 mH 
Six Beads, Centered 1.50 mH 
Seven Beads, Centered 1.85 mH 
Eight Beads, Centered 2.15 mH 
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Table 4.5: Other Measurements 

Parameter Data 

Hand-Wound Toroidal Choke Inductances 
Choke I 0.75 mH 
Choke II 0.75 mH 
Chokes I & II in series 1.50 mH 

 

Commercial Toroidal Choke Inductances 
AMVECO I (40 mH nominal) 44 mH 
AMVECO II (40 mH nominal) 44 mH 
AMVECO I & II in series 87 mH 

 

PTI SP216 Transformer 
Primary Coil Inductance 6.1 mH 
Secondary Winding Capacitance 40 pF 

 

Quartz Actuator 
Capacitance (no plasma) 15 pF 

Panel Actuator 
Capacitance (no plasma) 540 pF 

 

Large Orange Polypropylene Variable  HV Capacitor 
2 electrodes 470 pF 
4 electrodes 1.3 nF 
6 electrodes 2.2 nF 
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A permeability value for the ferrite beads was estimated to be approximately 1000, 

based on manufacturer FerroxCube’s Soft Ferrites and Accessories Application and 

Information Document [33], and this value was halved since the bead only occupied  

about half of the volume of the core when inserted.  This estimation was obviously 

erroneous, since the measured inductor values were less than the predicted values by an 

order of magnitude.  There are many different types of ferrite materials, and the ones in 

hand have no identifying marks, so a very rough estimation could not be avoided.  

Another factor leading to error was the calculating assumption that the core is one 

continuous piece of material, whereas in reality there are air gaps between the eight 

beads, which decrease the inductance.  Note, however, that the inductance calculated for 

the winding with no core inserted was reasonably accurate, with a twenty percent error 

attributable to a failure to account for an average winding radius based on multiple layers 

of wire. 

4.3 Initial Testing:  140 mA Input Current, No Plasma 
 
Once construction and assembly of the various components was completed, a series of 

low power tests were run to measure the overall performance of the system.  A Tektronix 

P6015A 1000x high voltage probe was used to measure the output voltage, a Pearson 

Current Monitor Model 2100 was used to measure current (ignored in low power  

testing), and data were collected using a Tektronix TDS3014B oscilloscope.  The lowest 

current setting at which the control circuit could synchronize was 140 mA.  It is 

important to note that 140 mA was what the Hewlett Packard Harrison 6102A DC power 

supply delivered to the entire circuit, and that only half of that current passed through the 
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transformer primary at any given instant, or even less than half if the auxiliary inductor 

was included in the circuit.  Data were collected separately for the quartz actuator and the 

aluminum oxide panel actuator, each tested with and without the variable inductor at its 

maximum value of 2.15 mH connected in parallel with the transformer primary.  This 

variable inductor is referred to in the data as the Auxiliary Inductor, with its inductance 

specified according to whether the full ferrite core was inserted (2.15 mH),  only half the 

ferrite core was inserted (0.71 mH), or there was no ferrite core at all (0.09 mH).  The 

data for each configuration are presented in Appendices A through D.  Figures 4.6 and 

4.7 summarize the resonant frequency and output voltage data for the two different 

actuators with 140 mA total input current.  No plasma was formed at the resulting output 

voltages, all of which are reported as root-mean-square (RMS) values.  The highest 

frequencies were attained  when the variable secondary  capacitor was set to its minimum  
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Figure 4.6. Quartz actuator data summary, 140 mA input current. 
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Panel Actuator, 140 mA Input Current
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Figure 4.7. Panel actuator data summary, 140 mA input current. 
 
value, and the lowest frequencies (and lowest output voltages) occurred when the 

secondary capacitance was set to maximum. It is evident that, in every case, as 

capacitance is added in the secondary to reduce system frequency, the output voltage 

declines. Addition of parallel inductance in the primary did not produce the expected 

frequency increase in the initial quartz actuator testing, but the undesired side-effect of 

output voltage reduction was observed, due to shunting of current away from the 

transformer primary.  The panel actuator, because it has considerably more capacitance to 

begin with, developed lower output voltages and also operated over a much more limited 

frequency range.  However, the addition of the auxiliary parallel inductor did improve the 

panel’s frequency range to a slight extent.   

Figures 4.8 and 4.9 illustrate the voltage waveform (Ch 4, green) measured across the 

entire  switch,  which is  comprised of the  MOSFET and  the series  diode  together.  The  
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Figure 4.8. Switch waveform, optimum.   

Ch1:  output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4:  voltage across switch (20 V/div). 

 
 

 
Figure 4.9. Switch waveform, non-optimum.  

Ch1:  output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div), 
Ch4:  voltage across switch (20 V/div). 
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switching event is indicated by the sharp voltage spike, associated with the leakage 

inductance as it releases the energy stored in its magnetic field in response to the change 

in current.   The switch waveform in Figure 4.8 is near-optimum, showing the symmetry 

associated with ideal timing as the voltage in the tank circuit is placed across the non-

conducting switch, whereas in Figure 4.9 the switching event is slightly early, illustrating  

that the control circuit does not always drive the circuit exactly at resonant frequency.  In 

fact, it is occasionally necessary to incrementally vary the timing capacitance associated 

with the control circuit in order to achieve operation at an optimum frequency as the 

secondary capacitance is varied.  The UC3872 datasheet indicates that the switching 

event is actually triggered when the zero-detect feedback circuitry senses a value of 0.5 

V, instead of exactly at 0 V, a feature which is incorporated into the integrated circuit 

design to allow for propagation delay associated with electronic circuitry.   

4.4 Further Testing:  400 mA Input Current, No Plasma  
 

Figures 4.10 and 4.11 summarize the resonant frequency and output voltage data for 

the two actuators operating with a total circuit input current of 400 mA, with no plasma 

generated. Once again, it is important to note that 400 mA is the total current supplied by 

the source, and that only half (or less) of that value passes through the transformer 

primary at any given instant.  The data for each configuration are listed in Appendices E 

through H.  Once again the same trends are evident:  adding capacitance reduces the 

system frequency at the cost of decreased output voltage, and placing the auxiliary 

inductor in the circuit also reduces the output voltage.  The quartz actuator, by virtue of 

its minimal  starting  capacitance,  can operate over a  wider  frequency range,  and in this  
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Quartz Actuator, 400 mA Input Current
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Figure 4.10. Quartz actuator data summary, 400 mA input current, no plasma generated. 
 
 
 

Panel Actuator, 400 mA Input Current
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Figure 4.11. Panel actuator data summary, 400 mA input current, no plasma generated. 

38 



case reached a maximum frequency of 19 kHz with the addition of the auxiliary parallel 

inductor in the primary.  The seemingly anomalous panel data can be explained by the 

fact that the data for each trial, with and without the auxiliary inductor, were collected on 

different dates, with slight differences in input current.   

A recurring problem throughout testing was that of instability:  the circuit operated 

normally for low power settings, but as input current was increased, the system became 

unstable and it was impossible to synchronize at any resonant frequency.  Factors that 

may have caused this instability, and for which fixes were attempted, include faulty 

connections within the breadboard, vibration of the capacitor plates within the variable 

capacitor, poor impedance matching between secondary load and primary current source, 

and faulty switching components.   

During unstable operation there was initially an audible noise emanating from the 

variable capacitors.  Visual inspection and proper operation at lower currents indicated 

that there had not been a dielectric breakdown, and thus the noise was not due to arcing.   

It was suspected that the electrode plates might be vibrating, and so a few design 

adjustments were made to each capacitor.  The bottom support plate was removed from 

the moving plate assembly, since it had the effect of holding the fixed plates suspended in 

air, allowing them to sag near their base connection.  Additionally, a thin board was cut 

to fit over the plates and a brass weight was placed on top of this board, in an effort to 

press the plates down and prevent their vibration.  These changes eliminated the noise 

coming from the capacitors and improved circuit operation somewhat.  However, there 

remained a tendency towards instability as input current was increased.   Figure 4.12 

illustrates the waveforms of the circuit during unstable operation. The performance of the 
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Figure 4.12. Unstable operation, a recurring problem.   

Ch1:  output voltage (500 V/div), Ch2: voltage across switch (50 V/div). 
 

variable capacitors seemed to degrade over time, particularly the medium and large sizes 

with multiple electrodes, which suggested that the problem might be due to poor 

electrical contact between oxidizing aluminum surfaces. 

4.5 Further Testing:  600 mA Input Current, First Plasma 
 

It was suggested by Sirous Nourgostar, a fellow student in the Plasma Lab, that the 

instability preventing normal operation of the circuit might be due to poor impedance 

matching between the highly reactive load and the source.   A method of impedance 

matching for plasma loads had been developed and described by Chen [27], a former 

student of Dr. Roth’s, and the inductors he built were still available.  One of these 

inductors, indicated as having a maximum value of 76 mH and a minimum value 3.2 mH 

(see Figure 4.13), was applied to the secondary circuit in parallel and resulted in no 

output oscillation  whatsoever.   However, when  the  impedance  matching  inductor was  
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Figure 4.13. Impedance matching inductor, built by Chen [27]. 
 
connected into the secondary circuit in series, the problem of instability was reduced and 

performance was significantly improved.   

Although rated for 500 mA output, the Hewlett Packard Harrison 6102A DC power 

supply delivered 600 mA to the quartz actuator in combination with the series secondary 

impedance matching inductor and the auxiliary primary inductor for long enough to allow 

a complete survey of the frequency range attainable from maximum to minimum variable 

secondary capacitance.  However, after only two measurements without the auxiliary 

inductor, the power supply was permanently damaged, along with the control IC and one 

of the MOSFETs.  These tests were the first instances in which the output voltage 

reached values sufficient to generate a plasma discharge across the actuator. Plasma 

generation was first detected by the odor of ozone and then confirmed by turning out the 
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light in the laboratory to make the plasma visible.  The collected data are listed in 

Appendices I and J, and is summarized in Figure 4.14.  Once again, the data indicates that 

as capacitance increases in the secondary circuit, the frequency is decreased along with 

the output voltage, and the auxiliary inductor in the primary serves to increase the 

frequency range, as expected, but it also diverts energy from the transformer and thus the 

actuator load.  While these tests represented a success, in that plasma was being 

generated, it was recognized that the circuit was not functioning correctly because the 

input current to the transformer primary was not in the form of a square wave, which was 

demonstrated as a characteristic of proper operation by Alonso [11]. 

4.6 Further Testing:  Plasma Generation 
 

As previously indicated, the Hewlett Packard Harrison 6102A DC power supply was 

the only  available  supply that operated  in current  mode.  After its  failure,  two separate 
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Figure 4.14. Quartz Actuator data summary, 600 mA input current. 
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supplies were required to provide a steady voltage for the gate drive circuitry and an 

adjustable current for the main tank circuit.  As previously indicated, the Kepco CK40-

0.8M and the Sorenson Q Nobatron QRC40-8 were used for these two functions, 

respectively. Although the Sorenson supply, rated for 8 A, was able to provide the current 

required by the oscillating circuit for full plasma generation, the output voltages attained 

during testing were limited due to its functioning in the voltage mode.  The data 

presented represents circuit operation at the highest achievable power setting, at 40 VDC.  

The current drawn by the load in varied according to the total impedance presented to the 

Sorenson supply.  

In addition to the power supplies, a MOSFET and the controller IC had to be replaced 

after the first tests during which plasma was generated.  Inspection of the waveform data 

gathered during that test run led to the conclusion that the choke inductors were 

insufficient since the current was not a square wave as expected, so two 40 mH choke 

inductors were borrowed from Dr. Leon Tolbert.  These changes greatly improved circuit 

operation, but an asymmetry was still present in the transformer primary current 

waveform.  It was discovered that only one of the gate drive signals from the controller 

IC was functioning properly.  The IC was replaced, but the same problem recurred.  The 

circuit connections were verified, the order of power supply energization was modified, 

and new sample UC3872 IC’s were acquired and tested, with no improvement.  Since one 

of the gate signals from the defective IC was still operational it was split and passed 

through an inverter to provide the opposite switch gate signal, and thus proper operation 

of the system was restored.   

The data gathered during plasma generation using the quartz actuator is presented in 
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Appendices K through N and summarized in Figures 4.15 and 4.16.  Figure 4.15 

illustrates the wide range of frequencies of operation attained by varying secondary 

capacitance and using various values of parallel auxiliary inductance in the primary 

circuit.  Figure 4.16 illustrates that as secondary capacitance increases more current is 

required to charge it and maintain the output voltage levels needed for plasma generation.   

During the quartz actuator tests both of the smallest variable capacitors, which had 

been constructed with only 4 sheets of BOPP dielectric, shorted and became unusable.  

The medium variable capacitor was used to finish gathering data, but that capacitor, like 

the large variable capacitor, tended toward unstable circuit operation.  This unstable 

behavior was characterized by a sound emanating from within the capacitors at the 

secured ends where electrical connection was established, along with difficulty in 

achieving oscillation.  Although it sounded like arcing due to dielectric breakdown, this 

seems unlikely since the sound originated at opposite ends of the capacitor, where there 

was no electrode overlap, and there was no evidence of any damage or arcing between 

opposite electrodes upon visual inspection.   

The two smallest variable capacitors were not as susceptible to instability and never 

generated any such noise.  The smallest capacitors consisted of only two electrodes, and 

connection to the exterior circuit was made directly using single brass tabs, whereas the 

medium and large capacitors had multiple electrode plates at each end, all requiring 

interconnection, which was made with aluminum tabs.  It is suspected that the 

interconnecting tabs of aluminum did not provide sufficient contact and electrical 

connection, a condition that might have worsened over time due to oxidation of the 

aluminum  surfaces. In  such  a  case,  as voltage  in  the secondary  increased, the electric 
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Quartz Actuator Plasma Generation 
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Figure 4.15. Quartz Actuator plasma generation, output voltage summary. 
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Figure 4.16. Quartz Actuator plasma generation, transformer primary current summary. 
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fields at  the connecting  strip edges might have  intensified to such a degree that slight 

arcing may have occurred from the connecting strip edge to the main electrode plate face, 

which could produce audible as well as electrical noise.  Figure 4.17 illustrates a design 

flaw in the multi-electrode capacitors that may be partially responsible for inadequate 

electrical connectivity.  At the end of the moving electrode set for all of the variable 

capacitors, it was necessary to leave the connecting bolts slightly loosened to allow the 

plates to slide back and forth.  This loose mechanical connection could serve to 

exacerbate the problem of electrical connection between electrodes.   

Figure 4.18 is a picture of the quartz actuator during plasma generation. Figure 4.19 

illustrates the waveform associated with plasma onset using the quartz actuator, which 

occurred in  all cases when the output  voltage reached  approximately 1 kV.  The voltage 

 

 
Figure 4.17.Loose mechanical connection, possible source of faulty electrical connection. 
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Figure 4.18.Quartz actuator plasma generation. 
 
 

 
Figure 4.19.Quartz actuator plasma onset waveforms, 1.01 kV. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch4: voltage across switch (100 V/div). 
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spikes normally associated with plasma generation waveforms can be seen on the current 

(Ch 2) and switch voltage (Ch 3) waveforms.  The waveforms associated with full plasma 

generation using the quartz actuator are illustrated in Figure 4.20.  Once again, the 

current waveforms and the voltage across the switches bear typical noise/voltage spikes 

associated with plasma generation.   

Due to the breakdown and degradation of the variable capacitors, a previously 

constructed high voltage capacitor made with plain polypropylene sheets was used for the 

panel actuator data series (see Figure 4.21).  This capacitor has multiple electrodes that 

can be accessed individually, allowing variation of capacitance, but power must be turned 

off and the capacitor discharged for any change to be made.  Testing of the panel made 

use of 2, 4, and then 6 electrodes of this capacitor, measured to have capacitance of 470 

pF, 1.3 nF, and 2.2 nF respectively for each combination. 

 
Figure 4.20.Quartz actuator full plasma waveforms, 1.30 kV. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch4: voltage across switch (100 V/div). 
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Figure 4.21.Alternate high voltage variable capacitor. 
 

The data gathered during plasma generation using the panel actuator is listed in 

Appendices O through V and is summarized in Figures 4.22 through 4.25.  Tests were 

conducted in an attempt to identify any trends associated with the inclusion of various 

series secondary impedance matching inductances, as had been used to stabilize circuit 

operation when plasma was generated for the first time.  As previously noted, adding the 

matching inductor parallel in the secondary prevented any oscillation whatsoever.  The 

transformer shrinks the apparent inductance value from secondary to primary by a factor 

of the turns ratio squared, which in parallel with the transformer primary results in a very 

small effective total resonating inductance, preventing oscillation at useful frequencies.  

However, adding the impedance matching inductor to the secondary in series did seem to 

have a slight stabilizing effect, possibly due to a balancing of total secondary reactance.  

It is difficult to draw any conclusions from the data gathered during the panel actuator 

plasma generation tests, other than to confirm the trend of output voltage reduction as 

secondary  capacitance is increased.  The data sets in  Figures 4.22 through 4.25 appear in  
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Panel Actuator Plasma Generation: 
Output Voltage Without Auxiliary Inductor
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Figure 4.22.Panel Actuator plasma generation without Auxiliary Inductor, output voltage 

summary. 
 
 

Panel Actuator Plasma Generation:
Output Voltage with Auxiliary Inductor (2.15mH)
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Figure 4.23.Panel Actuator plasma generation with Auxiliary Inductor, output voltage 

summary. 
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Panel Actuator Plasma Generation: 
Transformer Input Current Without Auxiliary Inductor
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Figure 4.24.Panel Actuator plasma generation without Auxiliary Inductor, transformer 

primary current summary. 
 
 

Panel Actuator Plasma Generation:  Transformer Input 
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Figure 4.25.Panel Actuator plasma generation with Auxiliary Inductor, transformer 

primary current summary. 
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clusters at similar frequency values, with the highest frequency data points being 

associated with the 2 electrode secondary capacitor (470 pF) configuration and the lowest 

frequency data points associated with the 6 electrode secondary capacitor (2.2nF).  The 

data presented in each case represent full plasma generation across the entire panel at the 

highest possible output from the Sorenson power supply, 40 VDC.  Onset of plasma 

generation (see Figure 4.26) was accompanied by an audible hissing noise from the 

panel, a noticeable smell of ozone, and instability of operation attributable to fluctuations 

of capacitance associated with the plasma itself.  The most notable feature of plasma 

onset with the panel actuator was the output voltage at which it occurred, between 700 V 

and 750 V in every instance.   

Plasma onset was accompanied by significant instability of operation, likely due to 

capacitance  fluctuations associated with the plasma.  Attempts to operate the system with  

 
Figure 4.26.Panel actuator plasma onset waveforms, 740 V. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch4: voltage across switch (100 V/div). 
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no capacitor in the secondary were unsuccessful, likely due to these same capacitance 

fluctuations at plasma onset.  Performance was improved when there was an additional 

capacitor added in the secondary.  Increasing power beyond the point of onset resulted in 

some cases in re-stabilization as the plasma became uniform across the panel, due to a 

stabilization of the capacitance associated with the plasma.  In other cases operation 

remained unstable, although plasma generation continued.  Plasma coverage of the panel 

became uniform when the output voltage reached the 800 V to 850 V range.  Figure 4.27 

represents one of the most stable waveforms associated with full plasma generation 

across the panel actuator, and Figure 4.28 is a picture of the panel actuator when fully 

energized. 

 

 

 
Figure 4.27.Panel actuator full plasma waveforms, 1.26 kV. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch4: voltage across switch (100 V/div). 
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Figure 4.28.Panel actuator plasma generation. 
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5. Conclusions 
 

Atmospheric plasmas are increasingly applied in industrial processes, and the uniform 

effect associated with the One Atmosphere Uniform Glow Discharge Plasma 

(OAUGDP®) is particularly useful in that it can provide energetic plasma and reactive 

species with minimal heating of workpieces.  Additionally, the One Atmosphere Uniform 

Glow Discharge Plasma (OAUGDP®) can be generated efficiently at moderate voltages 

using audio frequencies and optimized actuators.  

The goals of this thesis were achieved with respect to the range of frequency used to 

generate an atmospheric pressure plasma.  The methods proposed to achieve this 

frequency variation were successfully demonstrated to be effective, although each had its 

particular drawbacks.  The variable inductor was simple to construct and allowed 

operation at frequencies higher than that at which the transformer/plasma actuator system 

alone would oscillate.  The greatest drawback associated with the variable inductor was 

that it diverted some power from the transformer primary and thus from the plasma load 

in the secondary.  The variable capacitor, on the other hand, was very difficult and time-

consuming to construct.  It performed successfully in early testing, allowing operation at 

frequencies below that at which the transformer/plasma actuator system alone would 

oscillate.  A significant drawback associated with the variable capacitor is that it requires 

increased system power input to maintain a given output voltage as the capacitance is 

increased.   The greatest drawback of the variable capacitor was its faulty internal 

electrical connections, which resulted in unstable circuit operation.  Some combination of 

the following might provide a solution to the problem of electrode interconnection:  a 

55 



commercial paste to prevent oxidation of aluminum interconnections might be applied, or 

a conductive paste to provide good contact between surfaces might be applied, or brass 

interconnecting tabs might provide good electrical conduction without the problem of 

oxidation.  Additionally, it is imperative that the means of mechanically securing the 

electrodes together as a set be separated from the means of moving the electrode set to 

and fro in relation to the fixed electrodes.  This might be accomplished simply by 

applying an epoxy cement to secure the electrodes tightly together as a set. 

Whereas the frequency goals of this thesis were successfully attained, the voltage 

goals were not.  This was largely due the difficulty of operating available DC power 

supplies in current mode.  Either a current mode power supply or a higher range of DC 

voltage supply might allow for further gains in output voltage.  Another avenue for 

further exploration might be the use of an automotive battery as a power supply for the 

system.  This would require additional components including an on/off switch, a current 

limiting fuse, and a variable ballast resistance in order to provide some control over the 

current supply.  Although the output voltages attained with this system were low in 

comparison with the original goals, significant and useful plasma discharges were 

generated nonetheless. 

The system examined herein, originally presented by  Alonso, et al, [11], represents a 

significant reduction in the size and cost of power supplies for generating atmospheric 

plasma. The variable inductor and capacitor developed provide new tools for engineering 

and optimizing plasma generation systems based on the current-fed push-pull parallel 

resonant circuit topology. 
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Appendix A:  Low Power (140mA) Data:  
Quartz Actuator, without Auxiliary Inductor 
 

 
Figure A.1. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 15 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 
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Figure A.2. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 14 kHz.  

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 

 
 

 
Figure A.3. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 13.2 kHz.  

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 
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Figure A.4. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 11.8 kHz.  

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure A.5. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 10.6 kHz.  

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure A.6. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 8.6 kHz.  

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure A.7. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 8.1 kHz.  

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure A.8. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 7.2 kHz.  

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure A.9. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 6.3 kHz.  

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure A.10. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 5.3 kHz.  

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure A.11. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 4.3 kHz.  

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure A.12. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 3.2 kHz.  

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure A.13. Quartz Actuator, 140 mA input current, w/out Aux. Inductor, 2.6 kHz.  

Ch1: output voltage (200 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Appendix B:  Low Power (140mA) Data:  
Quartz Actuator, with 2.15mH parallel primary 
Auxiliary Inductor  
 

 
Figure B.1. Quartz Actuator, 140 mA input current, with Aux. Inductor, 15.2 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 
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Figure B.2. Quartz Actuator, 140 mA input current, with Aux. Inductor, 13.1 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 

 
 

 
Figure B.3. Quartz Actuator, 140 mA input current, with Aux. Inductor, 11 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 

71 



 
Figure B.4. Quartz Actuator, 140 mA input current, with Aux. Inductor, 9.2 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 

 
 

 
Figure B.5. Quartz Actuator, 140 mA input current, with Aux. Inductor, 7 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 
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Figure B.6. Quartz Actuator, 140 mA input current, with Aux. Inductor, 6 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 

 
 

 
Figure B.7. Quartz Actuator, 140 mA input current, with Aux. Inductor, 5.1 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 
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Figure B.8. Quartz Actuator, 140 mA input current, with Aux. Inductor, 4.2 kHz. 

Ch1: output voltage (200 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 

 
 

 
Figure B.9. Quartz Actuator, 140 mA input current, with Aux. Inductor, 3.8 kHz. 

Ch1: output voltage (200 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (100 V/div). 
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Appendix C:  Low Power (140mA) Data:  Panel 
Actuator, without Auxiliary Inductor  
 

 
Figure C.1. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 6.7 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure C.2. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 6 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure C.3. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 5.1 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure C.4. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 4.3 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure C.5. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 3 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure C.6. Panel Actuator, 140 mA input current, w/out Aux. Inductor, 2.5 kHz. 

Ch1: output voltage (100 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Appendix D:  Low Power (140mA) Data:  Panel 
Actuator, with 2.15mH parallel primary Auxiliary 
Inductor  
 

 
Figure D.1. Panel Actuator, 140 mA input current, with Aux. Inductor, 8.3 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure D.2. Panel Actuator, 140 mA input current, with Aux. Inductor, 6.9 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure D.3. Panel Actuator, 140 mA input current, with Aux. Inductor, 5.9 kHz. 

Ch1: output voltage (200 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

80 



 
Figure D.4. Panel Actuator, 140 mA input current, with Aux. Inductor, 5.1 kHz. 

Ch1: output voltage (200 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure D.5. Panel Actuator, 140 mA input current, with Aux. Inductor, 4.2 kHz. 

Ch1: output voltage (200 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure D.6. Panel Actuator, 140 mA input current, with Aux. Inductor, 3.6 kHz. 

Ch1: output voltage (200 V/div), Ch2:  transformer secondary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Appendix E:  Low Power (400mA) Data:  
Quartz Actuator, without Auxiliary Inductor 
 

 
Figure E.1. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 14.5 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure E.2. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 13 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure E.3. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 10.5 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure E.4. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 8.7 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
 
 

 
Figure E.5. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 7.1 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure E.6. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 6.1 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure E.7. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 4.9 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure E.8. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 3 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure E.9. Quartz Actuator, 400 mA input current, w/out Aux. Inductor, 2.6 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Appendix F:  Low Power (400mA) Data:  
Quartz Actuator, with 2.15mH parallel primary 
Auxiliary Inductor  
 

 
Figure F.1. Quartz Actuator, 400 mA input current, with Aux. Inductor, 19.4 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure F.2. Quartz Actuator, 400 mA input current, with Aux. Inductor, 13 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 

 
 

 
Figure F.3. Quartz Actuator, 400 mA input current, with Aux. Inductor, 10.9 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (20 V/div). 
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Figure F.4. Quartz Actuator, 400 mA input current, with Aux. Inductor, 9 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 

 
 

 
Figure F.5. Quartz Actuator, 400 mA input current, with Aux. Inductor, 8.3 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 
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Figure F.6. Quartz Actuator, 400 mA input current, with Aux. Inductor, 7.3 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 

 
 

 
Figure F.7. Quartz Actuator, 400 mA input current, with Aux. Inductor, 6.2 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 
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Figure F.8. Quartz Actuator, 400 mA input current, with Aux. Inductor, 5.2 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 

 
 

 
Figure F.9. Quartz Actuator, 400 mA input current, with Aux. Inductor, 4.2 kHz. 

Ch1: output voltage (200 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 
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Appendix G:  Low Power (400mA) Data:  Panel 
Actuator, without Auxiliary Inductor 

 

 
Figure G.1. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 6.4 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 
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Figure G.2. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 5.8 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 

 
 

 
Figure G.3. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 5.1 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 
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Figure G.4. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 3.8 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 

 
 

 
Figure G.5. Panel Actuator, 400 mA input current, w/out Aux. Inductor, 2.7 kHz. 

Ch1: output voltage (500 V/div), Ch2:  transformer primary current (1 mA/div),  
Ch4: voltage across switch (50 V/div). 
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Appendix H:  Low Power (400mA) Data:  Panel 
Actuator, with 2.15mH parallel primary Auxiliary 
Inductor  

 

 
Figure H.1. Panel Actuator, 400 mA input current, with Aux. Inductor, 4.4 kHz. 

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div). 
 
 

96 



 
Figure H.2. Panel Actuator, 400 mA input current, with Aux. Inductor, 3.4 kHz. 

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div). 
 
 
 
 

 
Figure H.3. Panel Actuator, 400 mA input current, with Aux. Inductor, 3 kHz. 

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div). 

97 



 
Figure H.4. Panel Actuator, 400 mA input current, with Aux. Inductor, 2.9 kHz. 

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div). 
 
 
 
 

 
Figure H.5. Panel Actuator, 400 mA input current, with Aux. Inductor, 2.6 kHz. 

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div). 
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Figure H.6. Panel Actuator, 400 mA input current, with Aux. Inductor, unstable. 

Ch1: output voltage (500 V/div), Ch2: voltage across switch (50 V/div). 
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Appendix I:  Medium Power (600mA) Data:  
Quartz Actuator, without Auxiliary Inductor, 
with 76mH series secondary Impedance Matching 
Inductor  
 

 
Figure I.1. Quartz Actuator, 600 mA input current, w/out Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 12.2 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3 and Ch4: voltage across each switch (100 V/div). 
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Figure I.2. Quartz Actuator, 600 mA input current, w/out Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 11.9 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3 and Ch4: voltage across each switch (100 V/div). 
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Appendix J:  Medium Power (600mA) Data:  
Quartz Actuator, with 2.15mH parallel primary 
Auxiliary Inductor, with 76mH series secondary 
Impedance Matching Inductor 

 

 
Figure J.1. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 16.7 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3 and Ch4: voltage across each switch (100 V/div). 
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Figure J.2. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 15.5 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3 and Ch4: voltage across each switch (100 V/div). 

 
 

 
Figure J.3. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 15.2 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (5 A/div),  
Ch3 and Ch4: voltage across each switch (50 V/div). 
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Figure J.4. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 13.7 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (5 A/div),  
Ch3 and Ch4: voltage across each switch (50 V/div). 

 
 

 
Figure J.5. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 12.8 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (5 A/div),  
Ch3 and Ch4: voltage across each switch (50 V/div). 
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Figure J.6. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 11.6 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (5 A/div),  
Ch3 and Ch4: voltage across each switch (50 V/div). 

 
 

 
Figure J.7. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 10.5 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (5 A/div),  
Ch3 and Ch4: voltage across each switch (50 V/div). 
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Figure J.8. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 10 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (5 A/div),  
Ch3 and Ch4: voltage across each switch (50 V/div). 

 
 

 
Figure J.9. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 7.9 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (5 A/div),  
Ch3 and Ch4: voltage across each switch (50 V/div). 
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Figure J.10. Quartz Actuator, 600 mA input current, with Aux. Inductor, with Impedance-

Matching Inductor in series in secondary, 6.5 kHz. 
Ch1: output voltage (2 kV/div), Ch2:  transformer primary current (5 A/div),  
Ch3 and Ch4: voltage across each switch (50 V/div). 
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Appendix K:  Further Testing:  Quartz 
Actuator Plasma Generation, without Auxiliary 
Inductor 
 

 
Figure K.1. Quartz Actuator Plasma Generation, w/out Aux. Inductor, 3.5 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure K.2. Quartz Actuator Plasma Generation, w/out Aux. Inductor, 4.3 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure K.3. Quartz Actuator Plasma Generation, w/out Aux. Inductor, 5.2 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure K.4. Quartz Actuator Plasma Onset, w/out Aux. Inductor, 4.5 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix L:  Further Testing:  Quartz 
Actuator Plasma Generation, with parallel 
primary Auxiliary Inductor, Full Core Inserted 
(2.15 mH) 
 

 
Figure L.1. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 7.9 kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

111 



 
Figure L.2. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 8.9 kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure L.3. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 10 kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure L.4. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 11.5 kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure L.5. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 15.3 kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure L.6. Quartz Actuator Plasma Generation, with Aux. Inductor (2.15mH), 16.8 kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix M:  Further Testing:  Quartz 
Actuator Plasma Generation, with parallel 
primary Auxiliary Inductor, Half Core Inserted 
(0.71 mH) 
 

 
Figure M.1. Quartz Actuator Plasma Generation, with Aux. Inductor (0.71mH), 13.5kHz. 

Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure M.2. Quartz Actuator Plasma Generation, with Aux. Inductor (0.71mH), 15.6kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure M.3. Quartz Actuator Plasma Generation, with Aux. Inductor (0.71mH), 18.4kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure M.4. Quartz Actuator Plasma Generation, with Aux. Inductor (0.71mH), 23.9kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix N:  Further Testing:  Quartz 
Actuator Plasma Generation, with parallel 
primary Auxiliary Inductor, No Core Inserted 
(0.09 mH) 
 

 
Figure N.1. Quartz Actuator Plasma Generation, with Aux. Inductor (0.09mH), 35.3kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (200 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure N.2. Quartz Actuator Plasma Generation, with Aux. Inductor (0.09mH), 35.6kHz. 

Ch1: output voltage (2.5 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix O:  Further Testing:  Panel Actuator 
Plasma Generation, without Auxiliary Inductor, 
without Impedance Matching Inductor 
 

 
Figure O.1. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, w/out 

Impedance Matching Inductor, 1.9 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure O.2. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, w/out 

Impedance Matching Inductor, 1.48 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure O.3. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, w/out 

Impedance Matching Inductor, 1.26 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix P:  Further Testing:  Panel Actuator 
Plasma Generation, without Auxiliary Inductor, 
with 3.2mH series secondary Impedance Matching 
Inductor 
 

 
Figure P.1. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 3.2mH 

series secondary Impedance Matching Inductor, 1.71 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure P.2. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 3.2mH 

series secondary Impedance Matching Inductor, 1.46 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure P.3. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 3.2mH 

series secondary Impedance Matching Inductor, 1.25 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix Q:  Further Testing:  Panel Actuator 
Plasma Generation, without Auxiliary Inductor, 
with 41mH series secondary Impedance Matching 
Inductor 
 

 
Figure Q.1. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 41mH 

series secondary Impedance Matching Inductor, 1.72 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure Q.2. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 41mH 

series secondary Impedance Matching Inductor, 1.45 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure Q.3. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 41mH 

series secondary Impedance Matching Inductor, 1.25 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix R:  Further Testing:  Panel Actuator 
Plasma Generation, without Auxiliary Inductor, 
with 76mH series secondary Impedance Matching 
Inductor 
 

 
Figure R.1. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 76mH 

series secondary Impedance Matching Inductor, 1.80 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

126 



 
Figure R.2. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 76mH 

series secondary Impedance Matching Inductor, 1.46 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure R.3. Panel Actuator Plasma Generation, w/out Auxiliary Inductor, with 76mH 

series secondary Impedance Matching Inductor, 1.27 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix S:  Further Testing:  Panel Actuator 
Plasma Generation, with 2.15mH parallel primary 
Auxiliary Inductor, without Impedance Matching 
Inductor 
 

 
Figure S.1. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, w/out Impedance Matching Inductor, 3.59 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure S.2. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, w/out Impedance Matching Inductor, 2.81 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure S.3. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, w/out Impedance Matching Inductor, 2.35 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure S.4. Panel Actuator Plasma Onset, with 2.15mH parallel primary Auxiliary 

Inductor, w/out Impedance Matching Inductor, 4 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix T:  Further Testing:  Panel Actuator 
Plasma Generation, with 2.15mH parallel primary 
Auxiliary Inductor, with 3.2mH series secondary 
Impedance Matching Inductor  
 

 
Figure T.1. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, with 3.2mH series secondary Impedance Matching Inductor, 3.49 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure T.2. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, with 3.2mH series secondary Impedance Matching Inductor, 2.79kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure T.3. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, with 3.2mH series secondary Impedance Matching Inductor, 2.38 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix U:  Further Testing:  Panel Actuator 
Plasma Generation, with 2.15mH parallel primary 
Auxiliary Inductor, with 41mH series secondary 
Impedance Matching Inductor  
 

 
Figure U.1. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, with 41mH series secondary Impedance Matching Inductor, 3.45 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure U.2. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, with 41mH series secondary Impedance Matching Inductor, 2.76 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure U.3. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, with 41mH series secondary Impedance Matching Inductor, 2.3kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Appendix V:  Further Testing:  Panel Actuator 
Plasma Generation, with 2.15mH parallel primary 
Auxiliary Inductor, with 76mH series secondary 
Impedance Matching Inductor  
 

 
Figure V.1. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, with 76mH series secondary Impedance Matching Inductor, 3.4 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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Figure V.2. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, with 76mH series secondary Impedance Matching Inductor, 2.71 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 

 
 

 
Figure V.3. Panel Actuator Plasma Generation, with 2.15mH parallel primary Auxiliary 

Inductor, with 76mH series secondary Impedance Matching Inductor, 2.34 kHz. 
Ch1: output voltage (1 kV/div), Ch2:  transformer primary current (500 mA/div),  
Ch3: voltage across switch (100 V/div). 
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