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Abstract 

 

 

 

The goal to this research was to develop a scheme to optimize a digital filter design 

using an optimization engine and hardware-accelerated simulation using a Field 

Programmable Gate Array (FPGA).  A parameterizable generic digital filter, which 

was fully implemented on a prototyping board with a Xilinx Virtex-II Pro 

xc2vp30-7-ff896 FPGA, was developed using Xilinx System Generator for DSP.  

The optimization engine, which actually is a random candidate generator that will 

eventually be replaced by a differential evolution engine, was implemented using 

MATLAB along with a candidate evaluator and other supporting programs.  

Automatic hardware co-simulations of 100 candidate filters were performed 

successfully to demonstrate that this approach is feasible, reliable and efficient for 

complex systems. 
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I. Introduction 

 

1. Overview 

 

Nowadays, digital systems are becoming faster, more powerful, more complicated and 

more capable, so designing circuits for these systems is becoming more and more 

difficult.  Firstly, increasing system complexity and functionality means more goals 

and constraints have to be considered at the same time. These goals sometimes 

conflict with each other.  Take system complexity and power consumption for 

example. As circuit complexity increases the ability to minimize area and reduce 

power becomes increasingly difficult [1].  Secondly, due to the limitation of design 

tools, solutions are only optimized for certain objectives out of all the objectives that 

the designer wants to achieve.  In another words, the tools only provide locally 

optimized solutions instead of globally optimized ones.  Thirdly, complex systems 

always have more design parameters which are tightly interacting with each other, 

making it even harder for designers to ignore the negative effects on others when 

changing one or some of the parameters. 

 

Though electronic design automation (EDA) tools are becoming more and more 

popular in the hardware industry and have benefited from the availability of high 

performance computing, there are some innate weaknesses that deteriorate the 

performance when simulating a hardware design with a software simulator. First of all, 

the software simulation cannot reflect the actual transistor behavior which occurs in 

the hardware. Secondly, low-level simulation using software executes very slowly, 

which is totally unacceptable to most digital system designers.  That is because 

shortening the time-to-market is one of the most efficient ways to produce more 

profit. 
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2. Goals and Contributions 

 

The major goal for this work was to establish an efficient framework for the 

optimization of digital filter design using an optimization engine and 

hardware-accelerated simulation using a Field Programmable Gate Array (FPGA). 

This framework can be divided into two parts: the hardware and the software.  

 

For the hardware, a parameterizable generic digital infinite impulse response (IIR) 

filter was developed using Xilinx System Generator (Sysgen). The Sysgen model for 

this generic filter was designed to be reconfigurable, which means that the filter can 

be reconfigured anytime by data that are input to this model. The filter design was 

verified by comparing the results produced from this model to the theoretical results. 

After it was validated to be fully functioning, the filter design was then implemented 

in a Xilinx Virtex-II Pro FPGA on the prototyping board. 

 

In the software domain, all programs were developed using MATLAB. Mainly three 

major functions were created, including the random candidate generator that will 

eventually be replaced by a real differential evolution optimization engine when it is 

ready, the filter evaluator and a program that coordinates the data exchanging between 

the software and the hardware.  

 

As soon as the hardware and the software were verified to be working appropriately, 

hardware co-simulation was performed.   
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II. Background 

 

In this chapter, background information about different simulation approaches, digital 

filters and the algorithm of Differential Evolution will be covered before detailed 

discussion of the design. 

 

1. Simulation Approaches for Hardware Design 

 

Software simulation is widely used by designers when they are developing hardware 

systems. Software simulation refers to using a high performance computer to simulate 

the activities which occur inside of a hardware design. Software simulation is very 

helpful for verification and debug purposes. The most widely used tool for software 

simulation of FPGA designs is ModelSim by Mentor Graphics, which provides a 

comprehensive simulation and debug environment. ModelSim offers simulation 

support for multiple languages, including VHDL, Verilog and SystemC. Besides 

behavior level simulation, there are simulations on other levels. For example, 

transaction level simulation utilizes abstracting communications to minimize the 

number of simulation events. By doing so, simulation time can be reduced 

significantly, which makes it possible for simulation of a complex system on the 

system level. 

 

Hardware co-simulation has been used primarily for the verification of 

hardware/software systems, such as an embedded system [2].  Co-simulation can be 

also defined as manipulation of simulated hardware with software. With hardware 

co-simulation, the verification can benefit from both high-speed executions by the 

hardware part and the flexibility of computation from the software part. Thus, 

hardware co-simulation is highly recommended nowadays for the simulations of 

complicated systems or embedded systems. 



2. Digital Filters 

 

Based on the existence of feedback loop, digital filters can be divided into two 

categories: convolution filters and recursive filters. The following sections will 

discuss them in detail. 

 

a. Convolution Filters - FIR 

Convolution filters can be also called finite impulse response (FIR) filters because 

their response to an impulse signal ultimately becomes zero.  Figure 2.1 illustrates 

the structure of a 2nd order FIR filter.  From the diagram, it is evident that the 

structure of an FIR is very straightforward so that it is really easy to be implemented 

in both software and hardware.  Since there is no feedback loop for an FIR filter, 

direct realization of it requires many resources.  But at the same time, due to the lack 

of internal feedback, a FIR filter is inherently stable.  In the frequency domain, the 

phase response for a FIR filter is a linear function of the frequency.  Thus, no phase 

distortion exists. 

 

 

  
Figure 2.1 – Structure of a 2nd Order FIR Filter 
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There are two forms of representation that can be used to describe a specified FIR 

filter.  One is called a difference equation, which defines how the input signal is 

related to the output signal.  From the equation, the output of current time interval is 

the sum of the products of current input and some delayed inputs. 

0 1 1( ) ( ) ( 1) ... ( 1)Ny n b x n b x n b x n N−= ⋅ + ⋅ − + + ⋅ − +  

And the other is called a transfer function, which is used to describe the filter in Z 

domain. 

0 1 1
0 1 1( ) ... nN

N nH z b z b z b z b z−− −
−= ⋅ + ⋅ + + ⋅ = ⋅∑  

 

b. Recursive Filters - IIR 

 

Recursive filters can be also called infinite impulse response (IIR) filters.  Figure 2.2 

shows the structure of an IIR filter in Direct Form I. Compared to the FIR filters, IIR 

filters are more complicated concerning the structure since IIR filters require internal 

feedback and use one or more output signals as inputs.  Due to the nature of 

recursion, the output will never become zero and that is why it is called infinite.  

Since the structure is more complex than that of a FIR filter, it will be harder for a 

designer to design and implement one. Unlike FIR, IIR has a non-linear phase 

response, which means there will be phase distortion. Because of the feedback loop, 

the response becomes unstable. But with careful design, it can be designed to be 

stable.  Rounding errors are not compounded by summed iterations. IIR filters are 

much closer to the analog models and better for non-standard filter realization.  A 

high-order FIR filter can be represented by a low-order IIR filter. 
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Figure 2.2 – Structure of a Second order IIR Filter in Direct Form I 

 

Just like the FIR filter, there are two forms of representation that can be used to 

describe an IIR filter. One is called a difference equation, from where we can see that 

some of the previous outputs are used to calculate the current output. 

0 1

1 2

( ) ( ) ( 1) ... ( )
( 1) ( 2)... ( )

M

N

y n b x n b x n b x n M
a y n a y n a y n N

= ⋅ + ⋅ − + + ⋅ −
− ⋅ − − ⋅ − − ⋅ −

 

And the other is called a transfer function, which is used to describe the filter in Z 

domain. 

0 1
0 1

1
1

...( )
1 ... 1

mM
mM

N n
N n

b zb z b z b zH z
a z a z a z

−− −

− −

⋅⋅ + ⋅ + + ⋅
= =

+ ⋅ + + ⋅ + ⋅ −
∑
∑

 

 

Actually, the structure of an IIR can be used to describe a FIR filter.  When all the 

coefficients to multiply with outputs are set to be zero, then this is a FIR filter.  This 

is obvious when we look at the picture.  If all the coefficients are set to be zero, then 

only the left part remains and it is the FIR filter. 
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c. General Filter Structure 

A filter of any order can be described as a cascade of biquad filters. This equation 

shows there are two structures that can be used to construct a high-order filter. The 

left part of this equation is called direct form and the right part is called SOS form, 

which is short for second-order section.  
1 20 1

0 ,1 ,20 1
1 111 ,

...( )
1 ... 1

n K
k kn

n Kn k

b b z b zb z b z b zH z g
a z a z a z a z 2

1 ,2k

− −− −

− − −= −

+ ⋅ + ⋅⋅ + ⋅ + + ⋅
= = ⋅ ∏

+ ⋅ + + ⋅ + ⋅ + ⋅
 

 

Compared to the direct form, SOS form has a lot of advantages. First of all, one 

simple design of a second-order filter can be used to handle all kinds of filters. That 

will be great for the optimization of hardware implementations. Because only one 

instantiation of a second-order filter with some support circuits for loop control are 

required to implement a filter design of any order.  More importantly, filters in this 

structure are less sensitive to quantization and overflow. However, there is a 

not-so-important disadvantage. In order to implement a specified order, using the SOS 

form requires more coefficients than using the other one. 

 

d. Target Filter 

The target filter used in this work was a graphics codec for sample rate reduction. 

This filter is promulgated by Radio Communication Sector of International 

Telecommunication Union (ITU-R) in 1985. Figure 2.3 depicts the tolerance schemes 

for magnitude and group delay for the target filter.  
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Figure 2.3 - Tolerance Schemes for Magnitude and Group Delay [9] 

 

3. Differential Evolution 

 

Differential Evolution is a very simple population-based, direct-search evolution 

algorithm for global optimization. Basic steps involved in this algorithm can be 

described as below, which is also illustrated in Figure 2.4. 

 

1) Treat parameters as a vector of n elements; 

2) Randomly construct initial vector population; 

3) Use vector differences for perturbing the vector population; 

4) Compare the results of another random vector and the relocated one, and keep 

the better one; 

5) Repeat and make all the vectors converge to a global optimized position. 
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Figure 2.4 – Illustration of Differential Evolution Algorithm [10] 
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III. System Overview 

 

1. System Requirements Analysis 

 

As discussed in previous chapters, the goal for this project was to decrease the 

simulation time for a large-scale design of a digital system. Furthermore, it was also 

important to examine the actual performance of the design when it was implemented 

as working hardware. Thus in order to achieve both objectives, the whole system 

design required consideration of two domains: software and hardware. Figure 3.1 

illustrates the main system blocks, as well as their respective responsibilities. 

Obviously, the functions of the software modules are to pass test candidates to and 

collect feedback from the device-under-test (DUT), while the hardware takes the 

responsibility of performing the filter functions described in the design specifications. 

 

For the hardware part, the major task was to implement a specified digital circuit 

design, which is controlled by the parameters fed from the software program. The 

target digital design, used in this project to evaluate the performance of the 

accelerating scheme, is basically a digital filter.  Thus, the hardware design should be 

 

Software Hardware

Optimization
Engine

Frame
Constructor

Evaluator

I/O

Generic
Filter

Controller

 

Figure 3.1 – System Block Diagram 
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a parameterized generic filter, and can be configured as any IIR, FIR or IIR+FIR 

mixed filter.  For the purpose of giving more flexibility to the optimization engine, 

the filter design should accept various candidates of different numbers of taps, as well 

as bit-width setting of these input data.  Also, the design should allow for acceptance 

of new filter candidates at any moment.  To test the filter’s responses, only one 

single set of data should be used as the test string for all the candidates, such that the 

outputs of all filters under the test are analogous and comparable.  While the set of 

test data is the same in any case of simulation, any single test number should reveal 

independence or randomness to others of the test sequence. That is because the 

arbitrary property of test vectors is crucial to the comprehensive evaluation of a 

digital filter.  Otherwise, the results gained from those data might not be universal to 

all possible cases. Of course, there should be an I/O interface for the hardware to 

communicate with the software program.  

 

Compared to the requirements of the hardware, those of the software design are much 

more straightforward.  There are two essential functionalities that the programs 

should handle. One is an optimization engine to achieve the optimized design of the 

filter by iterations of generating, perturbing and re-calculating operations. The 

selection processes of better candidates, completed within the optimization engine, are 

mainly based on the results from the performance evaluator, the other key component. 

The job of the evaluator is to calculate the frequency response and group delay from 

the simulation outputs, compare the results to the target specifications, and finally to 

generate a cost value for each candidate, which indicates the quality of the design.  

In order to feed coefficients into the hardware implementation, a communication 

protocol was made and a program to construct the input sequences was necessary. 
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2. System Level Design 

 

According to the analysis of requirements, both the hardware and software portions 

can be divided into several subsystems, each of which is accountable for performing 

certain parts of the tasks. The partition of the system into modules can help to 

simplify the design process, as well as the debugging. For the purpose of 

communication between the software program and the FPGA, there must be data 

exchange existing between them during system operations. Before considering detail 

designs of each domain, it is necessary to make up a protocol that describes what and 

how the exchange works.  

 

a. HW/SW Interface 

Concerning the hardware part, the data swap means transferring in and from the 

FPGA.  Two kinds of signals needed to be exchanged: coefficients and filter 

responses.  The former is what the hardware needed in order to be configured it as 

the designated candidate, and the latter is the result after the operation of the filter. 

Because the output timing is not predictable due to unforeseen input signals, an 

additional control signal was required to facilitate informing the software with the 

status of the FPGA operations.  

 

So there are totally three I/O ports needed for the FPGA to cooperate successfully 

with the software program.  Figure 3.2 illustrates the types and directions of these 

signals within the system. Since all of the calculations of the filter coefficients are 

performed using floating-point, the data must be converted to fixed-point before they 

can be recognized by the digital design. After numerous experiments, it was 

discovered that, for better accuracy, it is best to convert the floating-point coefficients 

to signed 24-bit fixed-point with 20 bits for the fraction. Since the width of signal is 

also one of the aspects that this project should optimize, a wider dynamic range of 

data width should be implemented. Considering both FPGA utilization and 



performance, the signal types were set to be fix_32_29 for coefficients and fix_34_29 

for data output. The extra two bits for Data_OUT were for the possible carryout bits 

added after arithmetic operations within the filter.  Obviously, a Boolean type of 

signal is enough for the control signal, which is used to indicate the completion of the 

simulation.  

 

In order to configure a filter, three parameters are needed including gain, number of 

SOS sections, and coefficients in SOS form. Concerning the arbitrariness of the data 

of signal Coef_IN in both incoming time and data value and their exclusive properties, 

there must be some strategy to indicate the start of a new set of candidate coefficients.  

Figure 3.3 shows the structure of the framed coefficients of one filter candidate. The 

first element, start-flag, indicates the start of a set of input sequences, which can be 

used to reset and initialize the system, while the UID (unique identifier) is a 

timestamp for the particular candidate.  Since the UID is a unique value assigned to 

each candidate when created, it helps the filter controller to determine whether or not 

to refresh the memories with the incoming coefficients. The other components are the 

parameters to describe each individual candidate, and will be discussed more in the 

following sections. 

 

 

SW HW

Coef_IN (Fix_32_29)

Out_CTRL (Bool)

Data_OUT (Fix_34_29)

 

Figure 3.2 – Signal Types and Directions 
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Figure 3.3 – Structure of Signal Coef_IN 

 

b. Hardware Sub-system Design 

As mentioned in Chapter II, any digital filter design can be presented as a cascade of 

second-order sections (SOS) of IIR. So as to implement a generic digital filter, which 

can perform as any filter with maximum order of 20, a cascade of 10 biquad filters 

was required. There are two ways to design such a structure in hardware. One is to 

instantiate 10 biquad modules and then connects the output port of one to the input of 

another. This scheme is so straightforward that very little consideration has to be 

made for the peripherals circuits for control and support purpose. However, the cost 

for this simplicity is huge FPGA utilization, which means a waste of FPGA space and 

power consumption. So a better plan was to use sophisticated control circuits to 

manipulate a loop of 10 biquad operations by using only one single instantiation.  It 

causes more delay, but costs 1/10 the space of the first scheme.  

 

To give a better visual demonstration of this scheme, a flow chart of the hardware 

design is given as Figure 3.4 which details the process of reusing one instantiation of 

a biquad filter to form a cascaded filter.  From the chart, the hardware sub-system 

can be roughly divided in to six modules, which are listed below.  Figure 3.5 

illustrates the relationship and data flow between these modules. 
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Figure 3.4 – Flow Chart of HW Design 
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Figure 3.5 – Data Flow of HW Modules 

 

 Initialization 

 Data Generator and Output Handler 

 Address Creator 

 Biquad I/O controller 

 Bypass 

 Biquad 

 

As indicated by the name, the Initialization module is in charge of resetting the 

system into its original status and preparing it for the following operations. Besides, it 

also has two important responsibilities associated with input signals. One is to 

examine the incoming data, recognize the data head, and generate the necessary 

control signals which are used to enable, reset or trigger other circuit components. 

The other task is to preload coefficient data into memory once only for each new 

 16
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candidate.  Thus the module consumes less power consumption but provides more 

driving ability for the downstream circuits.  

 

Data Generator Module is responsible for generating a pseudo-random vector 

sequence fed into the filter as the signal to be filtered.  This module also functions as 

an output cache and generates an enable signal that handles the coordination of data 

exchanging with software. Bypass Module actually is a group of circuits used to 

discard input signals into the Biquad when the coefficients for that SOS section are 

undefined. The direct result of this module is saving unwanted power consumption by 

reducing as much electronic switching within the Biquad as possible. 

 

The presence of numerous calculations, states transitions, and memory accesses 

within a generic filter requires the system to have an effective control scheme which 

handles all the complex exchanging and transiting procedures. Module Address 

Creator is one of the important parts of this control scheme.  Its duty is to arrange 

and generate different address signals used for corresponding purposes, such as 

maintaining correct status of all the memory components for each individual round of 

the Biquad.  In this project, the only the instantiation of the Biquad is shared by all 

the SOS sections so different input sources or output destinations might be used for 

different sections. Another controlling module, Biquad I/O Controller, is utilized to 

handle this situation. Instructed by the address signals, it selects the correct input 

signal to the Biquad and routes its output to the exact destination. The key module of 

this system is the Biquad. The only objective of this module is to implement a 

second-order IIR filter that can be configured by parameters input from the outside. 
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c. Software Sub-system Design 

Figure 3.6 depicts the flow chart of the software design. From the chart, two main 

loops are compulsory in order to find the most optimized filter candidate. Within the 

loops, apparently there major operations are performed repeatedly. According to this 

attribute, the software system is partitioned into four parts, one main program and 

three functions, which are listed as  

- Main Function 

- Optimization Engine 

- Candidates Framer  

- Result Evaluator 

 

The main function takes care of most of the setting, control and communication tasks 

shown on the flow chart. First of all, it has to set the constants and initialize 

parameters. Then, Main Function starts two loops and calls corresponding functions 

at appropriate moments. In order to perform co-simulation with the hardware, Main 

Function is also responsible for invoking the hardware model and controlling the 

simulation.  

 

The function Optimization Engine generates an initial population of filter candidates 

the first time it is called. When called again, it performs a re-calculation and provides 

a population for the next generation based on evaluation of the candidates’ 

performance. When a set of coefficients of a candidate is ready, the function Framer 

is called to generate a data stream that complies with the protocol discussed in the last 

section, by adding a header in front of the coefficients and inserting some zeros for 

synchronization purposes. When the simulation of one candidate is finished, function 

Evaluator analyzes the outcome from the filter.  By comparing the frequency 

response and group delay of filter candidates and the ITU-CCIR standards, a 

corresponding score is given to each candidate to indicate the degree of its match with 

the target filter.  
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Figure 3.6 – Flow Chart of SW Design 
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3. Platforms for System Design 

 

When choosing design platforms for this project, a few important facts must be taken 

into consideration. First, the optimization engine requires many complex matrix 

operations and intricate array rotations. Second, the process of filter analysis involves 

frequency transformation for digital data and other related advanced algebra functions. 

In addition, the system is constructed by different sub-systems located on two 

separate domains. Last but not least, the software program runs co-simulations with a 

physical version of the hardware design implemented on an FPGA chip. So in reality, 

this system demands a feasible and efficient development environment in which the 

hardware and software modules can be co-designed, co-debugged, and co-verified. 

The design platforms used for this project were MATLAB 7.0.1 R14 with Simulink 

from MathWorks, and System Generator 8.1 for DSP from Xilinx. 

 

a. The MathWorks MATLAB® and Simulink® 

MATLAB, short for Matrix Laboratory, is an innovative highly-integrated numerical 

computing and programming environment provided by The MathWorks. With the 

exceptional ability of matrix manipulation, data analysis and algorithm development, 

MATLAB has been a valuable scientific application tool for researchers, especially in 

the fields of digital signal processing, communications and engineering computation. 

Featuring a vast collection of array functions and the ability of flexible-but-simple 

matrix operations, MATLAB provides a well-integrated platform for developing and 

implementing a high-performance optimization engine for designing digital systems. 

Besides benefiting from the extensive frequency analysis and domain transfer 

functions, as well as other built-in or add-on data processing toolboxes, analysis of the 

performance of each design candidate can be easily created and evaluated. 

 

As an advanced supplement to MATLAB, Simulink is a powerful platform for 

multi-domain modeling, simulating, and analyzing for dynamic systems.  Unlike the 
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script-based design within MATLAB, Simulink utilizes comprehensive block libraries 

customizable for specialized applications.  Moreover, Simulink uses an interactive 

graphical interface environment for building system models as block diagrams. The 

hierarchical models give users the advantages of developing, prototyping and 

exploring a complicated system design using different approaches. Through the 

support of more than 300 third-party solutions, designs across applications and 

industries can be easily conducted at a low cost of both time and resources. With the 

above benefits and the tight integration with MATLAB, Simulink was the first choice 

for the development platform for this project. 

 

b. Xilinx System Generator™ for DSP 

Xilinx System Generator (Sysgen) for DSP (digital signal processing) is a 

MATLAB/Simulink-based signal processing modeling and designing tool for 

high-performance digital systems. Sysgen provides Xilinx blocksets that contain 

functions for different purposes in the DSP area, allowing engineers to design, 

simulate and implement complicated DSP systems optimized for Xilinx FPGAs. 

Given the environment of high integration with MATLAB and Simulink, designers 

can easily develop complicated digital circuits, which may be difficult to be described 

using a hardware description language (HDL), such as control circuits, by combining 

the imported MATLAB functions.  Besides, HDL modules can also be imported into 

a Sysgen model. Designers gain the facility or ability to create individual modules 

using a desirable developing tool. But the debugging and verification of the entire 

system can be performed in an integrated environment, saving design time and 

resources. 

 

System level modeling is only one aspect of Sysgen’s capability. The others, which 

are relevant in this project, include automatic generation of HDL code mapped to the 

Xilinx FPGA and hardware co-simulation.  All of the code generated by Sysgen 

from the system level model can be synthesized and implemented in a Xilinx FPGA. 
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The hardware implementation can be brought back to the original system design for 

verification purpose. This kind of simulation is called a “FPGA-in-the-loop” hardware 

co-simulation, which utilizes the fast processing capability from a hardware core to 

accelerate the simulation process.  It can also be used to verify and analyze the actual 

hardware implementation of the Sysgen model. Thus, Sysgen provides engineers a 

sophisticated platform for developing, simulating and implementing bit-true or 

cycle-true models for DSP systems.  
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IV. Designs of Hardware and Software Modules 

 

In this chapter, information on how each module was developed from conception to 

implementation will be discussed in detail. Within the discussion of designing the 

individual modules, introduction to some important concepts which are necessary to 

fully understand the mechanism of the component will also be covered.  

 

1. Designs of Hardware Modules 

 

As described in Chapter III, hardware modules for this project were developed under 

the integrated environment of Simulink and Sysgen. Instead of text-based coding, 

Sysgen/Simulink provides to the designers a graphic interface for programming, 

which allows users to design systems by the method of arranging and interconnecting 

components or sub-systems built with provided basic blocks or advanced intellectual 

property (IP) blocks from a third party.  Throughout the whole design process, the 

creator does not have to understand the mechanism working inside any of the blocks, 

because these blocks are black-boxes to the designer. What the designer needs to 

consider, when using a block, is the inputs, outputs and, most importantly, the 

parameters that determine how the specific block performs its tasks.  

 

The hardware part of system can be divided into six modules. During the discussion 

of system level design, the system model and its data flow have already been 

described in Figure 3.5 in Chapter III.  Now, to demonstrate how a system model is 

constructed within Simulink/Sysgen environment, the actual Sysgen model for this 

project is given in Figure 4.1.  Considering the different purposes the system needs 

to serve, a Sysgen design can be dissected into three sections: the Simulink section, 

the input/output gateways, and the hardware synthesizable section. 
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The major task of the Simulink section, which is colorless in Figure 4.1, is handling 

all the input and output communications between the Simulink/Sysgen model and the 

MATLAB workspace. The Simulink source on the left is used to fetch candidate data 

from the MATLAB workspace to drive the whole system, while the Output block on 

the right is responsible for returning results from the model back to the workspace 

such that they are accessible to the software counterpart. Besides, controlling the 

simulation and data exchange is also an important job of this section. This gives the 

users more flexibility in designing a simulation and cooperating Simulink model with 

MATLAB scripts. For this system, the hardware portion is configured to send an 

enable signal to the Simulink to identify the end of a successful processing of the set 

of test data, thereby enabling output of the results and pausing of the simulation. 

 

Digital systems are operated on fixed-point numbers only, while the 

MATLAB/Simulink models operate on double floating-point values. So there must be 

an intermediary between the Simulink and synthesizable hardware sections to convert 

data into the target format. The In/Out gateways, colored in light yellow on the picture, 

play the role of this kind of intermediary. In Sysgen the method describing a fixed- 

point number is defined as a 3-portion notation, first the type of the fixed point 

number (FIX/UFIX, for signed/unsigned), then the width of the number and then the 

position from the LSB (least significant bit) of the decimal point. For example, 

Gateway_in_coef converts the candidate’s coefficients from the format of double into 

that of fix_32_29, which means a 32 bits signed fixed-point number with 29 bits for 

fraction. As shown next to the input and output ports of the gateway blockset, 

Gateway_out_data turns the processed data form fix_34_29 back to double, and 

Gateway_out_EN changes a Boolean type of enable signal into double for further 

operations by MATLAB programs. Besides, the gateways also represent the input and 

output of the generated HDL top-level entity and the pins of the device.  

 



 
Figure 4.1 – Simulink/Sysgen Model 
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Figure 4.2 – Properties of Sysgen Token 

 

The rest of the colored blocks in the picture together are called the hardware 

synthesizable section, which can be compiled, synthesized and implemented in a 

Xilinx FPGA.  Each color block represents one module, which can be viewed in 

detail by double-clicking it.  The solid arrowed lines between the subsystems stand 

for inner communications between modules and their directions. Any Sysgen model 

must have at least one System Generator token presented which is used to configure 

the important properties of the Simulink/Sysgen model, including Simulink system 

period, target part and FPGA clock period, as shown in Figure 4.2. The Simulink 

system period represents the smallest sample period of the system and all other 

sample rates must be integer multiples of the system period. In its hardware 

counterpart, this parameter also defines the system clock that drives the design. 

Combined with the FPGA, the CLK period also reflects the timing constraints that are 

used to gain desired timing performance when implementing a design. Detailed 
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information on implementation of the design will be covered in Chapter IV. The 

following section of this paper will talk about the design process of each of the 

following six hardware modules: 

 Initialization  

 Data Generator and Output Handler  

 Address Creator  

 Biquad I/O Controller  

 Bypass  

 Biquad 

 

a. Initialization Module 

The structure of the initialization module is illustrated in Figure 4.3. The main 

purpose of this circuit is to initialize the system and to prepare incoming data for 

further processing. Before exploring the actual design, brief explanations of the I/O 

ports will be given to help better understanding of this subsystem. 

 DATA_IN – This is the pseudo-random test data from DataGen, which are 

used to evaluate the candidate. 

 COEF_IN – This is the incoming data from MATLAB/Simulink, including 

the coefficients of the filter candidate and controlling header, all of which are 

grouped as a frame obeying the established protocol. 

 END – This is a signal from the DataGen module identifying the end of one 

successful run when it is active. 

 COEF_OUT – This is the set of cached coefficients that are sent to the 

memory block in the Biquad module. 

 DATA_OUT – The test data which are multiplied by normalization factor g. 

 MOD_NUM – This is the total number of SOS sections for the candidate. 

 COEF_FEED_EN – The enable signal for feeding coefficients into the 

Biquad when the data is prepared and ready. 

 COEF_INI – An initialization signal for all modules to reset their RAMs. 
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Defined by their different purposes, three parts can be identified from the structure 

diagram. The upper portion of the diagram describes the circuits to examine the 

incoming data frame. According to Figure 3.3, a complete packet should contain a 

start flag, followed by a UID, the number of SOS sections and coefficients of each 

SOS. With the help of a pre-set special value, which serves as the start flag, the 

initialization module determines the start of an incoming data packet. Following 

recognition of the flag, the system will enable a register to store the next value, the 

UID of this data packet. Then the same value will be compared to the one registered 

from the last frame. If the two are equal, it means the latter one actually is a redundant 

version of the previous one. This mechanism prevents the hardware implementation 

from wasting power to refresh the cache memory for an identical set of coefficients. It 

significantly reduces the power consumption, which is one of the crucial criteria for 

evaluating the performance of an FPGA design. Once a new UID is received, the 

module will refresh the UID register, store the values for g and the number of SOS 

sections required to describe the candidate filter, and send a trigger signal to activate 

the caching of the coefficients into a RAM. There is a converter right before the 

output port MOD_NUM. Since the value of MOD_NUM is used to control the 

number of Biquad module loops, it has to be converted to an unsigned integer from a 

signed number with fractions. All the delays in the circuit are necessary for the 

synchronization between different components in the circuit. They are also helpful to 

increase the driving ability and to reduce the probability of having timing issues after 

realization. Because it is difficult to understand the state transfers by examining the 

graphic interface within Simulink/Sysgen, a state diagram is given in Figure 4.4, to 

explain how these procedures are conducted. 

 



 
Figure 4.3 – Structure of the Initialization Module 
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Figure 4.4 – State Diagram of Input Examining Circuit  

 

The middle part in the diagram describes the circuits to separate the coefficients data 

from the complex incoming packet and to cache them into a RAM. Recalling from 

Figure 3.3, the incoming data is constructed of control signals and coefficients. In 

order to be compatible with the Biquad module timing, three dummy values are 

stuffed right after the five coefficients of each SOS section. This is because a 

successful run of the Biquad module takes eight clock cycles. Actually, during the 

early developing period, two methods were proposed to solve this problem. One was 

the “value-stuffing” described below, and the other was adding an extra and 

complicated control circuit to handle the synchronization between modules. For an 

FPGA design, extra circuits mean higher costs of area, power and delay. After 

comparing the costs, complexities and performances from simulations of the 

prototypes using the two proposed methods, the later one was selected.  
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Figure 4.5 – Waveforms of Two Counters 

 

To facilitate deleting the dummy values when storing coefficients into a single port 

RAM, a control circuit consisting of two counters and some associated logical 

components was needed. The graphic in Figure 4.5 shows how the two counters 

cooperate together to select the desired data from the packet. First of all, counter#2 

counts from 0 to 7 repeatedly. An enable signal for counter#1, repeatedly counting 

from 0 to 49, is driven high whenever the value of counter#2 is less than 5. Only 

when the enable signal is active does counter#1 advance its value. The output from 

counter#1 is used as the address signal when accessing the RAM. Then with this 

scheme, coefficient data for at most ten SOS sections can be stored in the RAM of 

size 50x32 bits. In order to save as much power as possible, several small circuits 

were added to make sure the writing to and reading from the RAM occurs only once 

 31



 32

for each new case, such as when several logic expressions are applied to drive the EN, 

WE and RST ports of the RAM blockset. An important lesson was learned when 

developing the model. If the contents in the RAM are not cleared before the arrival of 

a new candidate, the calculations of the new run will be disturbed greatly by the 

remainders, even though the value of them is very small. So for insurance purposes, a 

MUX was added to make sure no remainder was sent out just in case the RAM was 

not reset correctly. At the same time of caching the coefficients, a feed enable signal 

was set active to inform the Biquad module to load the coefficients. This is a pipeline 

process, which greatly helps to improve the design’s performance. 

 

The circuit in the lower part of the diagram performs a simple task, multiplying the 

test data with g, the normalization factor or gain from the transfer function. Attention 

had to be paid to the property of latency when using the MULT cores. If the latency is 

set to be too low, the timing constraint for this circuit might be impossible to be 

reached when implementing the design. As the bit-width of the number waiting to be 

processed grows, the value of the latency should increase accordingly.  In this case, 

the MULT latency is six clock periods for a full precision multiplication of two 

fix_32_29 numbers.  

 

b. Data Generator and Output Handler 

Figure 4.5 illustrates the architecture of the module of data generator and output 

handler. The major tasks that this module can perform include up-sampling the 

reset/initialization signal to make it multi-rate compatible, generating pseudo random 

vectors as the test data for filter candidate, and caching processed data for output 

purpose. There are 2 input ports and 4 output ports. 

 DOUT_RAMIN – This is the input port for the result data that are ready for 

output caching. 

 INI_RST – The initialization/reset signal.  

 DOUT – Data output port, through which data will be send back to the 
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software part for further evaluations. 

 OUT_EN – This is the signal informing Simulink to save the output data as a 

matrix in MATLAB workspace. 

 PSEUDO_DATA – This is the test vector for the evaluations of the filter 

candidates. 

 OUTEND – The active of this signal means the end of an evaluation. 

 

In order to fully understand the design of this module, one key initial concept must be 

explained clearly. This design is a multi-rate system, which means there is more than 

one sample rate or clock source in action. For this particular system, two sample rates 

are applied, one of which is the rate for the test vectors, and the other for the imported 

data from MATLAB. As discussed above, an IIR filter with any transfer function can 

be represented as a cascade of SOS sections. For one successful filter operation, one 

single datum must be processed by all the SOS sections one by one. Thus all the 

calculations required must be finished in one input sample period. This demands that 

the sample rate for the data that are used for theses calculations be integer times faster 

than that of the input data. For example, in this system the incoming data rate is 

max_mod_num*mod_delay (10*8) times faster than the rate of the test vectors. On the 

other hand, if a signal is input into a circuit which is running under a different sample 

rate, it has to be up-sampled or down-sampled to the same rate as the target. 

 

 



 

 

 

 

Figure 4.6 – Structure of the DataGen Module 
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To start the generation of test vectors, an active initialization signal must be received 

from the initialization module. Before this INI_RST signal, whose sample period is 

sT  can be used to stimulate the generator, a down sample blockset is utilized to 

change its period in . Though a down-sample block can be configured to 

sample either the first or the last value of the frame, the later one is most efficient 

when it is implemented on an FPGA. Its implemented representative in the hardware 

domain is a D flip-flop, which samples the input data at the end of the frame, and 

outputs the value for the duration of next frame. Since the ini/rst signal will occur in 

any interval within one frame, a circuit was developed to make sure that, once an 

ini/rst signal is received, it will be registered and occurs at the end of that particular 

frame. This circuit is represented in the lower part of the module diagram, and its 

effect is illustrated in the waveforms in Figure 4.7. 

/ 80sT

 

For an efficient data generator, the test vectors that are used to evaluate all possible 

candidate designs must meet the following requirements. First, the vectors must be 

exactly identical in both values and sequence every time they are processed by 

different candidates. It is important because the evaluation results are not comparable 

or consistent if variant test vectors are used to estimate the performances of different 

 

 

Figure 4.7 – Result of Down-Sampling 
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designs. Second, there cannot be any statistical pattern existing within the generated 

sequences. Random numbers are widely used by engineers and scientists to test their 

applications. However, there is no any way to produce true randomness with current 

technologies, because the deterministic algorithms that are used to generate the data 

imply the outcome is not truly random. Pseudo-random numbers, which appear to be 

statistically random for most practical purposes, were acceptable for this project. 

Third, the sequence generation must be at a really high speed, but the generator circuit 

should be easily implemented on the hardware.  
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In the digital system industry, a linear feedback shift register, LFSR, is generally 

applied for fast generation of test vectors with both deterministic and random 

properties. The format of test numbers used in this project is fix_32_29, so a 32-bit 

LFSR (linear feedback shift register) device is employed to act as a pseudo-random 

number generator. The LFSR must be a maximal one, in order to ensure the test 

vectors do not repeat during one simulation. The appropriate taps for a 

maximum-length LFSR counter in XNOR form is 1, 2, 22 and 32. A graphic 

illustrating the feedback structure of this maximal LFSR is presented in Figure 4.8. 

With this configuration, the LFSR blockset can generate at most  test vectors 

before repeating itself. After many trial simulations, the number of test vectors for a 

candidate was set to be 2048. The upper part of the diagram shows the data generating 

322 −
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... 0 0 0...
Parallel
Output

 

Figure 4.8 – Feedback of a 32-bit LFSR  
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circuit. Keep in mind that this part of the circuit is running at the lower rate, so the 

output pseudo-random data should be up-sampled before being used by others. 

The remaining item shown in the diagram is the circuit to caching output data, where 

a 2048x34 single port RAM is used. It will be very helpful when the system is 

configured as a “Free Running”. More information will be covered later.  

 

c. Address Creator 

Address Creator Module is designed to produce all kinds of address signals that are 

used for the RAM accesses within Biquad Module and for the selections of 

corresponding I/O data for different SOS stage. From the structure diagram shown in 

Figure 4.9, 2 inputs and 4 outputs can be identified. 

 MOD_NUM – This is the total number SOS sections the candidate has 

 COEF_INI – A signal indicating the start of a new round. 

 IN_ADDRESS – This is used to choose the data source for the Biquad 

Module of different stage.  

 OUT_ADDRESS – This is the signal to determine whether an output from 

the Biquad Module should be sent to the output memory or not. 

 MOD_ADDRESS – This is the address signal for RAM operations within 

Biquad Module 

 STEP_CTRL – this is the signal directing the Biquad Module to transfer data 

from the one tap to the next tap. Detailed information will be discussed in the 

section for Biquad Module. 



 

Figure 4.9 – Structure of the AddGen Module 

 

The following section will discuss the algorithms that are used to generate all the 

addresses mentioned above, as well as the considerations when designing those 

algorithms. The address signals are all instructed by the variables from two counters. 

One counts from 0 to max_mod_num-1(9), indicating which stage the Biquad Module 

is operation on. The other one counts from 0 to mod_delay-1(7), suggesting the 

current step of the running Biquad Module. Thus the output from the first counter 

after one unit delay is sent to output port MOD_ADDRESS, and the output from the 

second one is used as the step control signal for the Biquad Module. Figure 4.10 is 

given to illustrate the connection between these two key concepts.  
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Figure 4.10 – Relationship between Stage and Step 

 

In this design, Biquad Module is designed to play the role of a second order filter. Any 

high order IIR filter can be represented by a cascade of several second order filters. In 

order to simulate the operations of a high order filter, the Biquad Module must be 

executed serially for several times for processing one test datum. For example, 7 

cascaded biquad filters is equivalent to a 14th order filter. The term cascade means that 

the executions of the 7 biquad filters are not simultaneous but sequential. Excepting 

the first one, the input for each biquad is the output from previous one. The signal 

input into the first Biquad is the pseudo random test numbers, and the output from the 

last Biquad should be routed to the system output port. So the algorithm in the form of 

pseudocode for generating the signals of IN_ADDRESS and OUT_ADDRESS is 

given below. A figure of waveforms for these signals is also given in Figure 4.11.  

 

Limited by the scheme, the system can only simulate a filter of up to 20th order, which 

means the design will not perform correctly if the mod_num is large than 10. From the 

diagram, a circuit is applied to prevent any further operations for candidates beyond 

scale.  
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IF new candidate THEN 
 INI stage_counter, step_counter 
 INI in_address == FALSE, out_address == FALSE 
 READ mod_num 
 IF step_counter == mod_delay-1 THEN 
  Stage_counter = stage-counter + 1 
 END IF 
 IF stage_counter == 0 THEN 
  in_address = TRUE 
 ELSE  

IF stage-counter == mod_num THEN 
   IF step-counter == 0 THEN 
    out_address = TRUE 
   END IF 
  END IF 
 END IF 

 

 
Figure 4.11 – Waveforms for 4 address signals 
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d. Biquad I/O Controller 

The Biquad I/O Controller Module is in charge of the selection of the correct input 

source for the Biquad Module executed in a different stage. Furthermore, after a test 

datum is processed, registering the final result output from the biquad filter of the last 

stage is also an important task of this module, the architecture of which is indicated in 

Figure 4.12.  In total, four inputs and two outputs are depicted in the diagram. 

 BIQUAD_FB – This is one of the two input sources for the biquad filter of 

the next stage. It is actually the results fed back from the currently executing 

biquad filter. 

 DATA_IN – This is another input source, which is the pseudo random 

number generated by DataGen Module. 

 IN_SEL – This is used to select the correct input. 

 OUT_SEL – This is used to control the outputting of the final result. 

 BIQUAD_IN – Signal that is fed into the Biquad Module. 

 DATA_OUT – Final results that are ready for system output. 

 

Two data sources are to be selected as the input for the Biquad Module, depending on 

the current stage on which the simulated filter is working on.  One is the test data 

from the generator and the other is the feedback result from the biquad filter on the 

last stage. A MUX device with two input ports is applied to do the job, whose select 

signal is from the AddGen module. From the diagram, a converter, which converts the 

test vectors from fix_64_58 to fix_64_56, is posited before the input port of the MUX 

for test numbers. The reason for this arrangement is to ensure that the format of the 

two sources is the same. Details on how the formats for these signals are determined 

will be presented in later sections. As described before, the data generator is running 

on a different sample rate than the other circuits, so the data must be up-sampled 

before they can be used by the Biquad module. Within Sysgen, the sample period of a 

device with multiple input ports can be derived from the input signal with the shortest 

period.  For this reason, there is no up-sample blockset occurring in the circuit. 



 

 
Figure 4.12 – Structure of IO Controller Module 

 

Besides serving as one of the inputs, the result signal from the Biquad module is also 

the final result of the filter candidates. An enable signal from AddGen module is used 

for the register to cache the final result at the correct moment. An 80x down-sample 

block is employed to ensure that the sample rate of the final results is the same as that 

of the test data. As discussed in Chapter III, the format of the final output from the 

hardware is designed to be fix_34_29, to which the feedback data are converted by 

the converter before the register in the diagram. The circuit in between the register 

and the down-sample component is specially developed to ensure that the output 

timing for each candidate is identical. During continuous simulations, this scheme is 

very helpful, since the incoming data packet for a new candidate can be received at 

any moment within the down-sampling frame. For example, if the ini/rst signal, 

indicating a new candidate, occurs in the last interval, the result after the 

down-sample device would be output in the following frame, which might cause a 

problem when evaluating the performance of the filter.  
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e. Bypass Module 

There are two input ports and two output ports for the Bypass module. The 

descriptions for those ports can be found in the discussions for the other modules. 

Before an efficient scheme was developed to reset or to clear the memories and 

registers within this design, this module was very powerful and important for the 

same purpose. In the final version of the design, this module has been further 

simplified, as illustrated in Figure 4.13. The mod_sel signal is compared to mod_num 

first. If the former is smaller than the latter, the current stage, at which the filter is 

running, is needless. Then a bypass signal is presented to the Biquad module to 

suppress the needless operation. Thus the power consumption for this design can be 

decreased significantly for filter candidates with lower order.   

 

 

 
Figure 4.13 – Structure of Bypass Module 
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f. Biquad Module 

The Biquad module is the most important subsystem of the entire project. In fact, all 

the filtering processes of a high-order IIR filter are actually realized by the combined 

operations of this key module and other supporting modules. The core mission of it is 

to perform as a second-order IIR filter. From the design plan, each execution of the 

module costs exactly eight sample periods. For each incoming test datum, the Biquad 

module will be executed ten times consecutively for the simulation of a filter with 

taps of up to 20. Figure 4.14 indicates the structure diagram of the Biquad module, 

which has seven inputs but only one output. 

 RAM_RST – This is the signal to reset the memory elements when a new set 

of coefficients is coming. But keep in mind that, for a RAM the reset only 

applies to where the address is pointing to when the reset signal is high. 

 COEF_IN – This is the signal that contains the coefficients of a candidate. 

 DIN – This is test data signal. 

 COEF_FEED_EN – Active of this signal informs the RAMs to refresh their 

current contents to reflect a new incoming candidate. 

 MOD_BYPASS – This is the signal to notify the module to suppress 

operations of RAMs, Mults and Adders. It is set to be negative-active. 

 MOD_SEL – This is the address signal indicating the current stage that the 

biquad is working on 

 STEP_CTRL – This is the signal denoting the current step/status of the 

Biquad. 

 DOUT – This is the signal for outputting the result from a 2nd order filter. 

 



 
Figure 4.14 – Structure of Biquad Module 

 

As discussed in the introductory chapter, an IIR filter can be represented by two 

equivalent forms: Direct Form I (DFI) and Direct Form II (DFII). In this project, the 

biquad filter is implemented in DFI.  Though the structure of the former seems 

slightly more complex than that of the later, it is the most straightforward method. 

Another consideration of the selection is the delay cost, an essential one that affects 

the performance of the implemented hardware. In the early developing period, 
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implementations using both forms were developed. All blocksets using the same 

configurations of device delay, the module delay of processing one number for the 

DFI implementation is one sample period smaller than that of the DFII form. In other 

words, in this case, that is 12.5% faster. Figure 4.15 illustrates the how the biquad 

filter processes one datum within eight sample periods. Take the b0 tap as an example. 

In the first step, the input signal is written to the Status_RAM_b0, whose latency is 

set to 1. So at the beginning of the 2nd step, the signal is presented on the output port 

of the RAM, and at the same time, coefficient b0 is also ready. The multiplication 

takes four sample periods, which means the result will be ready at the beginning of 

the 6th step. Then the result is input to the adder tree, whose operations cost two 

periods. By the end of the last step, the final result is written to Status_RAM_a1.  

 

Basically, a second-order IIR filter contains three feedforward coefficients and two 

feedback coefficients, so it can be implemented by a circuit constructed by four delays, 

ten registers, five multipliers and one adder tree with five input ports. The design of 

the adder tree, a diagram of which is shown in Figure 4.16, was developed to require 

less power, delay and area of the FPGA. In this system the Biquad modules are 

supposed to be used for multiple successive times for one test datum. Each SOS 

section on different stages has its own coefficients and the current values on different 

taps. These status values must be fully recovered when the filter is working on the 

same stages during processing of the subsequent test vector. Thus instead of registers, 

ten RAMs are applied to maintain the status for all SOS sections of the different 

stages. The signal mod_sel is used as the address for accessing RAMs to retrieve the 

correct values for the current stage.  

 

W/R
DataRAMs,
CoefRAMs

Write
DataRAM

1st Step

Multiplications of
coefficients and shifted input Accumulations

2nd Step 3rd Step 4th Step 5th Step 6th Step 7th Step 8th Step

 

Figure 4.15 – Operations of One Biquad Filter within 8 Sample Periods 
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Figure 4.16 – Adder Tree 

 

An IIR filter is very sensitive to quantization, due to the existence of feedback. For 

the purpose of achieving calculation results as accurately as possible, all the adders 

and multipliers are configured to full precision. Again, because of the feedback loop, a 

plan was established to ensure the consistency in terms of formats for the input signal 

and the feedback. After multiplication with the g, the format of the test signal changes 

to fix_64_58, which is also capable of handling the outcome from the multiplication 

with a coefficient.  However, after the adder tree, at least two bits are needed to be 

added considering the carry. Considering the trade-off between precision and 

performance, two LSBs are truncated and the binary point is moved two bits to the 

right, resulting in the format of both input test signal and feedback signal being 

fix_64_56. 

 

The control circuits located on the lower part in the diagram are used to control the 

write-enable ports of all the RAMs. Directed by the signal of step_ctrl, the circuit on 

the bottom-left controls the data exchanging between taps. Three key steps are 

utilized to handle the transfers of data between the Status_RAMs, which are 1st step, 

3rd step, and 8th step (Value of 0 in step_ctrl denotes 1st step). During the first period, 

an active signal is sent to the write-enable port of Status_RAM_b0, allowing it to 

store the incoming datum. During the last step, a signal enables Status_RAM_a1 to 

cache the final result after one successful biquad filtering. Except for the two 

Status_RAMs mentioned above, all other three Status_RAMs refresh their contents 
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with the data from their nearest up-river counterpart during the third period. 

Consequently, after eight sample periods, or one biquad filter operation, all the data 

on different taps are shifted by one unit delay, and they are ready for the next round of 

calculation. By sending write-enable signals, the circuit on the bottom is in charge of 

instructing the Coef_RAMs to grab their corresponding coefficients from the input 

stream at the correct moment.  

 

2. Designs of Software Modules 

 

First, while the hardware portion mainly performs the simulations of filter candidates 

themselves, the software is responsible for generating, evaluating and optimizing the 

candidates. Second, the communications between hardware and software are also 

handled by the software scripts. Finally, the software is also in charge of controlling 

of the simulation activities, such as starting, pausing and stopping. Four software 

modules will be discussed in the following section, including one main MATLAB 

script and three functions.  

 

a. iir_main.m 

The operations of this project are started by running this main script. Pseudo-code for 

this program is list below. 
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INI global parameters 
FOR iteration = 1 to iter_num 
 CALL iir_DE_fcn.m RETURNING candidates 
 FOR population = 1 to popu_num 
  CALL iir_coef_frame_fcn.m RETURNING data frame 
  IF model unopened THEN 
   OPEN module 
  END IF 
  START simulation 
  WHILE simulation running 
   WAIT 
  END WHILE 
  READ results 
  CALL iir_eva_fcn.m RETURNING evaluation result 
 END FOR 
END FOR 
OUTPUT result 
CLOSE model 

 

First, the main script defines the global parameters for the whole system, which can 

be divided into two categories based on their native properties. The parameters 

belonging to category one can be varied any time during the simulation, even after the 

system is implemented on an FPGA. For example, the variables in this category 

include the number of iterations, the number of population and the initialization 

parameters that define the optimizer. Parameters in the other category can only be 

varied for the Sysgen model before the hardware realization, which means the model 

has to be realized on a hardware core once their values have been changed. The 

parameters to define the Sysgen model are belong to this category, such as signal 

formats for test data and coefficients, system sample rate, number of test vector.  A 

special binary sequence, which is 0xAAAAAAAA in hex form, is constructed by this 

script to serve as the start flag used for synchronization with the hardware model. Due 

to its significantly artificial pattern, the possibility of a coefficient having the identical 

value is extremely small, making it a good start indicator.  
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Once the global variables are determined, the program enters its first level loop, 

which is controlled by the number of iterations of simulations. Then the function of 

the optimizer will be called to generate the first generation of candidates. Since the 

differential evolution engine was not yet available for embedding into this project, a 

low-pass IIR filter generator, iir_coef_gen_fcn.m, was used as a substitute. Next, the 

program enters its second level loop, within which the simulation for each candidate 

of this generation is executed. The function of the data frame constructor is then 

called upon to generate a data packet, which contains the filter’s coefficients, based on 

the protocol designed for the communication between hardware and software. The 

following step is to invoke the simulation for this particular candidate and start 

clocking. The program will keep tracking the status of the simulation. Once the 

simulation is paused indicating the completion of a simulation, the program will grab 

the results from the hardware part and evaluate them by calling the function of 

iir_eva_fcn.m. The loops continue until the preset conditions are met. After all the 

designated operations are finished, the program will output the cost value of the most 

optimized result and the time cost for each simulation.  

 

b. iir_coef_gen_fcn.m 

This is a substitute for the DE optimizer before it is ready for embedding into the 

system. This program is pretty simple and straightforward. The nature of this module 

actually is a filter generator that can generate an IIR filter with arbitrary cut-off 

frequency and taps. Of course, a few constraints must be applied to these parameters 

to match some limitations of the hardware design. The MATLAB source of the 

function is listed below. From the code, it is clear that the normalized cut-off 

frequencies for the generated candidates are bounded between 0.2 and 0.8 and the 

numbers of taps for the candidates are limited from 2 to 19. A MATLAB built-in 

function, butter(), is used to generate a Butterworth digital IIR filter from the 

parameters. 

 



 

function [b, a] = iir_coef_gen_fcn(); 
 
%%% Generate random parameters 
filter_freq = rand*0.6+0.2       % Low-pass cutoff freq. 
filter_order = floor(rand*17)+2  % Number of filter number
 
%% Calculation of Coef. 
[b,a] = butter(filter_order,filter_freq); % Generate coef

 

c. iir_coef_frame_fcn.m 

Frame constructor is a MATLAB function developed to construct data packets which 

are used to configure the hardware model form simulating the candidate filters. The 

protocol used to build the packets has already been discussed in previous sections, so 

this one will discuss more on how MATLAB functions are used to complete the task. 

The start indicator created by the main program will be included in the frame as the 

first element, followed by a UID, which is unique for each generated candidate. In 

order to reflect the moment when the data packet for a candidate is generated, a 

timestamp is used as the seed when generating a random number. MATLAB function 

clock() is used to obtain the current timestamp, and rand() is called to generate 

the UIDs for the candidates using their own timestamp as the seed. 

 

Since the filter candidates generated by iir_coef_gen_fcn.m are represented by 

its transfer function, the coefficient data have to be converted to an equivalent second 

order section representation before they can be recognized by the hardware model. 

The conversion between these two forms is completed by MATLAB function 

ft2sos(). After these preparations are accomplished, all that left is to place the 

variables into their designed positions within the frame.  

 

d. iir_eva_fcn.m 

There are two major missions for this software module. One is to analyze the result 

data back from the hardware model in frequency domain. Another one is to evaluate 

 51



 52

the performance of the filter candidate by comparing the analysis results to that of the 

target filter, which in this project is the ITU-CCIR graphics codec. 

 

In order to analyze the frequency response of the filter candidate, the output signal 

must be transformed from the time domain to the frequency domain.  In digital 

signal processing, the transformation is performed by the Discrete Fourier Transform 

(DFT).  MATLAB provides many built-in functions that can be used to compute the 

Fourier transform on discrete signals. In this design, the algorithm of Fast Fourier 

Transform (FFT) is employed. Before performing the transform, the data are divided 

into sections, each of which contains 512 elements. For achieving a higher accuracy, 

each section has an overlap of 256 elements with both its previous and next sections. 

It is not practical to perform the FFT on the data of a section directly because the 

signal is finite and is not continuous on its boundaries. Direct operations of the FFT 

on them will introduce unwanted frequencies, so before the FFT operation, a window 

function should be applied on the data. The MATLAB built-in function blackman() 

is used in this module to generate a 512-point symmetric Blackman window. This 

window function will then be applied to all the sections before performing 512-point 

FFT on them. After changing the data in frequency domain, the magnitude response 

and the group delay of the filter candidate can be easily obtained. 

 

The criterion of evaluating a filter candidate is the value of its cost function, which 

reflects the degree that the candidate meets the requirements constrained by the 

specifications of the target filter. The cost function is constructed following the 

tolerance schemes for the magnitude and group delay of the graphic codec described 

in the background chapter. The magnitude response and the group delay of the filter 

candidate are used to calculate the cost value for this particular candidate by the 

established cost function. A candidate with a lower cost value is a better design. Once 

the cost values for the candidates are computed, the results are sent to the optimizer as 

a guideline for generating a new generation of candidates. 
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V. Hardware Implementation 

 

In this chapter, detailed information of the implementation of the hardware design on 

a Xiilinx FPGA prototyping board will be covered. Before the discussion of 

implementation, a basic introduction to XUP (Xilinx University Program) board, 

which is the hardware platform for this project, will also be given for a better 

understanding of the concept of hardware co-simulation. 

 

1. Introduction to XUP Development Board 

 

In this project, the hardware platform, which is used for the final implementation of 

the hardware design, is the Xilinx University Program Virtex-II Pro Development 

System, or the XUP board for short. The XUP board is a powerful, multipurpose and 

low-cost system, which consists of a high performance Virtex-II Pro FPGA with 

PowerPC cores and a comprehensive collection of supporting components, such as 

on-board Ethernet device, serial ports and AC-97 audio codec. Figure 5.1 presents a 

block diagram of the XUP board. 
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Figure 5.1 – Block Diagram of XUP Development System 

 

The Virtex-II Pro FPGA chip included in the XUP board is xc2vp30, which provides 

13969 slices, 428KB distributed RAM, 2448KB Block RAM, 136 Mults and 2 

PowerPC RISC cores. The 100MHz system clock provided by the XUP board can 

facilitate the performance of the hardware implementation of a complicated system. 

Another important feature the XUP board provided is that the system offers several 

methods for the configuration of the FPGA. The FPGA can be configured by the data 

from either the internal flash memory or external ports, such as the embedded USB2 

high speed interface. With the help of the USB interface, the Sysgen can perform the 

hardware-in-the-loop co-simulation. 

 

2. Implementation of Hardware Model in a FPGA 

 

The hardware realization from a Sysgen model to a hardware core can be divided into 

two phases. During phase 1, the net-list files for the model are automatically 

generated by Sysgen.  In phase 2, all the downstream processes, including building 
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NGD files, mapping, PARing and generating bitstream files for FPGA configuration, 

will be performed on the net-list generated in phase 1. As discussed in the beginning 

of Chapter IV and shown in Figure 4.1, System Generator Block is the key component 

that controls how the compilation and simulation should be handled. The block 

specifies all the important parameters necessary for the implementation, such as 

compilation type, target device and synthesis tools. For this project, the target part is 

xc2vp30-7ff896, and Xilinx XST is used as the synthesis tool. In order to achieve the 

highest performance, the Simulink system period is set to be 100 MHz. 

 

a. HDL Net-list and Pre-synthesis Simulation 

Sysgen offers automatic generation of two types of net-lists: HDL and NGC. The 

difference between these two types is the resulting files. Details on NGC will be 

covered in next section. The result of the HDL net-list generation is a collection of 

VHDL and EDIF files. The HDL net-list is used most often in designing a system. 

The automatic HDL net-list generation for this design takes about 20.2 seconds. Three 

VHDL files are generated: one for the design, one for the test-bench and one for the 

clock wrapper, which drives the clocks and clock enables. A project file for the design 

is also generated, allowing the design to be imported into Xilinx ISE environment for 

further development.  

 

To ensure the automatically generated HDL net-list to be the exact HDL counterpart 

of the original Sysgen model, verification must be performed before synthesizing the 

VHDL design or any further actions are taken. The test-bench entity can be used as a 

wrapper that input the stimuli to the HDL design from the data files generated by 

Sysgen, and the results compared from the HDL design with those obtained in the 

Sysgen simulation. Figure 5.2 illustrates pre-synthesis simulation of the HDL within 

ModelSim and the corresponding waveforms for the system I/O ports. By comparing 

the results from the two models, the generated net-list was proved to be working 

100% accurately as its Sysgen model does with no error. Once the verification  



 

Figure 5.2 – Pre-synthesis Simulation with ModelSim  

 

procedure was passed with a positive result, the implementation can be advanced to 

phase 2. 

 

b. Synthesizing the HDL Net-list 

After the HDL code has been verified to be valid, the subsequent process is the 

synthesis of the HDL files to the Register Transfer Level (RTL) net-list. One of the 

two types of RTL net-lists, NGC or EDIF, can be produced depending on which 

synthesis tool is involved, XST or EDIF. Since XST was selected for this project, the 

RTL net-list is in the form of NGC. The NGC net-list is a standalone binary net-list 

file that contains both the logical and constraint information for the design, such that 

the net-list can be used as a complete system or as a module of a larger system. 

Though Sysgen can invoke XST to synthesize the HDL files automatically, the XST 

command line that is actually executed behind the scene is listed below. 
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run -ifn xst_IIRThesis.prj -ifmt mixed -ofn 

IIRThesis_cw.ngc -ofmt NGC -p xc2vp30-7ff896 -ent 

IIRThesis_cw -keep_hierarchy NO -iobuf YES -bus_delimiter 

() -top IIRThesis_cw -hierarchy_separator / -

report_timing_constraint_problems warning -

register_balancing no -iob Auto -uc ./IIRThesis_cw.xcf -

write_timing_constraints yes 

 

It took 142 seconds for the XST to synthesize the hardware design. Useful estimates can 

be obtained from the synthesis report, such as the minimum slack time, which is 7.845 ns 

in this case. Table 5.1 shows the device utilization estimation after synthesis. 

 

c. Building Xilinx Native Generic Database 

The next process in the implementation flow is using NGDBuild to combine the synthesis 

result, core net-lists, black-box net-lists and constraint files together, and then to reduce 

all the components to NGD primitives. Before the NGD file is output, a logic Design 

Rule Check (DRC) will be performed to verify the converted design. The command used 

to build the NGD file is listed below. 

 

Table 5.1 – Estimation of Device Utilization Summary after Synthesis 

Device: xc2vp30ff896-7 Used Total Percentage

Slices 6799 13696 49% 

Slice Flip Flops 12765 27392 46% 

4-input LUTs 12813 27392 46% 

 as logic 12788 - - 

 as shift registers 25 - - 

Bonded IOBs 68 556 12% 

BRAMs 15 136 11% 

GCLKs 1 16 6% 
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ngdbuild -p xc2vp30-7ff896 -nt timestamp -intstyle xflow 

IIRThesis_cw.ngc IIRThesis_cw.ngd 

 

d. Mapping the logical design to a Xilinx FPGA 

After a NGD file is created, which contains the logical description of the design, it is 

input to MAP.  Based on the information contained in the NGD file, MAP maps the logic 

into Xilinx components, such as IOBs and CLBs, in the target device. During the 

mapping, MAP removes all unused components and nets existing in the logic design. 

MAP runs a physical DRC on the mapped design before outputting the final result in the 

form of a Native Circuit Description (NCD) file, which is a physical representation of the 

design. The command executed to map a logic design to a physical design is listed below. 

map -o IIRThesis_cw_map.ncd -intstyle xflow -timing -ol 

high IIRThesis_cw.ngd IIRThesis_cw.pcf 

 

Table 5.2 indicates the actual device utilization summary after the design is mapped to a 

Xilinx Virtex-II Pro xc2vp20 FPGA. Comparing Table 5.1 and Table 5.2, it is clear that 

both the total numbers of occupied slices and flip-flops have decreased slightly, due to 

the removal by MAP of useless components. 

 

e. Placement, Routing and TRCE  

Mapped NCD and PCF (Physical Constraints File) can be used as inputs for PAR to place 

and route the physical design on the target device. There are two considerations when 

performing the placement and routing: cost and timing. Cost-based PAR is performed 

based on the final cost calculated from several factors, which are assigned weighted 

values. Timing-driven PAR pays more attention to the timing constraints of the design. 

The most important resulting files after PAR include a placed and routed NCD file and a 

PAD file, which contains the final assignments of I/O pins on the FPGA. The PAR for the 

design of this project took a little more than 16 minutes. From the PAR report, the 

minimum absolute time slack is only 0.009ns. And Figure 5.3 illustrates the actual 

placement of this design on a Virtex-II pro FPGA. The command used to complete the 

tasks of placement and routing is listed below. 



 
Figure 5.3 – Placement of Design on a Virtex-II Pro FPGA 

 

 

Table 5.2 – Device Utilization Summary after Mapping 

Device: xc2vp30ff896-7 Used Total Percentage

Occupied Slices 6646 13696 48% 

Slice Flip Flops 12316 27392 44% 

4-input LUTs 12436 27392 45% 

 as logic 12353 - - 

 as a route-thru 58 - - 

 as shift registers 25 - - 

Bonded IOBs 68 556 12% 
Device: xc2vp30ff896-7 Used Total Percentage 

Block RAMs 15 136 11% 

GLKs 1 16 6% 

PPC405s 0 2 0% 

RPM macros 6 - - 

Total Gates for Design 1239553 - - 

Additional JTAG Gates 3264 - - 
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par -w -ol std -intstyle xflow IIRThesis_cw_map.ncd 

IIRThesis_cw.ncd IIRThesis_cw.pcf 

 
 
Post-PAR Trace is also performed to analyze the routed NCD file. Its main purpose is to 

find out the paths with the worst slack time. A TRCE report was generated and revealed 

that the minimum time slack is 9.991ns and the maximum path delay is 6.076 ns for the 

actual layout of the design on an FPGA. 

 

f. Generating BIT file 

The last step for implementing a hardware design on an FPGA is generation of the 

bitstream file, which is used to configure a FPGA. Using the information provided by the 

fully elaborated NCD file, BitGen is called to create the binary file for FPGA 

configuration. The command used is as below. 

 

bitgen -l -w -m -intstyle xflow iirthesis_cw.ncd 

 

After the bit file is generated, the Sysgen model is ready to be deployed on the XUP 

board with a Xilinx Virtex-II Pro FPGA. 
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VI. Simulations and Results 

 

In this chapter, both software simulation and hardware co-simulation with FPGA in 

the loop will be presented, and their results will also be discussed. Verification of 

appropriate operations is conducted before starting the simulation for the Sysgen 

model.  

 

1. Software Simulation 

 

In this section, “software simulation” means that the Sysgen model of a hardware 

design is simulated by a software simulator, which in this case is Simulink/Sysgen.  

 

a. Verification of Sysgen Model 

Before the Sysgen model can be recognized as a generic filter that can be configured 

to be an IIR or a FIR filter with taps less than 20, elaborated verification must be 

conducted.  

 

The most practical approach to verify a user-created Sysgen model is comparing it to 

a well-established model that is already proven to be correct. Here for this project, the 

Simulink block Transfer_Fcn_Direct_Form_II was chosen to be the reference model. 

This block can implement a Direct Form II realization of a transfer function specified 

by the coefficients, which is pretty much the intention of this developed Sysgen model. 

By comparing the results from a model against those processed by the reference 

model in a simulation with identical conditions, verification for a Sysgen model can 

be accomplished.  For this purpose, a test environment was constructed within 

Simulink, whose structure is illustrated in Figure 6.1. From the graphic, it is clear that 

the output signals from both systems are comparable in both time domain and 

frequency domain.  



 
Figure 6.1 – Simulink Environment for Verification 

 

In order to gain more general result, four classic filter designs were used to verify the 

Sysgen model, a 14th-order Butterworth high-pass filter with cutoff frequency of 0.5, an 

18th-order Butterworth low-pass filter with cutoff frequency of 0.6, a 6th-order Chebyshev 

Band-pass filter with frequency range from 0.4 to 0.6 and a 10th-order elliptical band-stop 

filter with frequency range from 0.3 to 0.5. Table 6.1 shows the max difference and the 

mean of differences between the results from the theoretical model and the Hardware 

Model. The small differences between the theoretical result and the simulation result for 

all the four test filters indicate the Sysgen model can perform as a re-configurable IIR 

filter correctly. Figure 6.2 illustrated the spectrums of the output data from both model 

simulating four test filters. From the figures, two curves are almost overlapped, which 

means these two models produce almost identical frequency response to the test data. 

 

a. Simulation and Result 

Once the Sysgen model is verified, software simulation of the Sysgen model can be 

started by executing the MATLAB script iir_main.m. The detailed processing flow 

has already been discussed before. In this section, more attention will be put on the cost 

value  for  each  candidate  and  the  time  it  cost to  simulate one  candidate  in  
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Table 6.1 – Max Difference and Mean of Differences  

between Theoretical and Simulation Results. 

 High-pass Low-pass Band-pass Band-stop 

Max Difference 52.4140 10−×  52.4576 10−×  88.1037 10−×  64.5946 10−×  

Mean of 

Differences 

66.6464 10−×  66.5471 10−×  82.2921 10−×  61.3858 10−×  

 

 

 

 
Figure 6.2 – Spectrum of Simulations Results from Theoretical and Sysgen Models 
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software. Every time a filter designed is simulated and its results are evaluated by the 

iir_eva_fcn.m, a MATLAB figure will be prompted up showing the magnitude 

response and group delay of previously simulated candidate. Figure 6.3 presents one of 

the prompted graphics. The blue line defines the lower boundary, while the line in yellow 

defines the upper one. If only the candidate’s curve falls in between these boundaries, it 

gets no penalty, which means no cost value is accumulated. Any point outside that 

bounded area will cause an increase of the cost value by a weighted value. The final cost 

value will be sent to optimizer engine for generating a better generation of candidates.  

 

The average time cost for a successful software simulation of the candidate is about 

19.4714 seconds.  

 

 

 
Figure 6.3 – Magnitude Response and Group Delay of a Filter Candidate 
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2. Hardware Co-Simulation with FPGA-in-the-Loop 

a. Basic Introduction to HW Co-Simulation 

After the hardware model’s successful implementation in a FPGA, hardware 

co-simulation can be performed to accelerate the simulation process. In order to do so, 

the model must be compiled again using the “Hardware co-simulation” as compilation 

type. At this time, an extra interfacing circuit, which allows Sysgen to communicate 

with the implemented design using a physical interface between the computer and the 

hardware platform, was added to the original design. The new model did not have to 

be verified, because during the implementation, the verification has already been done. 

As soon as the bitstream file is produced, a new hardware co-simulation block is also 

created. By easily replacing the whole Sysgen model with this new block, it’s now 

ready to perform the accelerated co-simulation with FPGA-in-the-loop. Figure 6.4 

shows the how the model looks like after the replacement.  

 

b. HW Co-Simulation Clocking 

There are two modes for the System Generator to obtain synchronization with its 

associated FPGA hardware design, single-step mode and free-running mode. In 

single-step mode, instead of using the fast internal system clock, the hardware 

receives its clock signal from the software simulation. In other words, hardware 

activities inside the FPGA are all controlled by Simulink via the physical interface 

 

 

Figure 6.4 – Hardware Co-Simulation Block 
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between the computer and the hardware platform. Thus the hardware co-simulation 

operating in this mode is bit-true and cycle-true to the original design. On the other 

hand, the limitations from slow software simulating and communication latency 

deteriorate the performance achieved by the hardware. The hardware can still improve 

the simulation significantly as long as the limitations are negligible when compared to 

the great improvement achieved by hardware simulation. In free-running mode, the 

hardware co-simulation is running by internal clock signal, making the simulation no 

longer synchronized with the software simulation, but thousands times faster than that 

in single-step mode. The co-simulation in this mode is widely applied for streaming 

applications  

 

By executing the iir_main.m, the simulations involved in the Sysgen model are 

not running by the software simulator any more. Instead, all the activities that occur in 

the Sysgen model are now performed by real hardware components, which are 

running at a very high speed. When operating in single-step mode, the hardware 

co-simulation took an average time of 25.0509 seconds for a successful run for one 

candidate. But it took only 0.9407 seconds, which is a significant improvement, to 

perform the same mission when the co-simulation block is configured to be clocked 

by internal CLK signal. Though the simulation of the hardware design is accelerated 

considerably, the problem left is that, the Simulink can no longer capture all data that 

is output from the FPGA, due to the asynchronous communications between the 

software simulator and the hardware platform. Unlike the BER (bit error rate) 

measurement system for encoder/decoder [], in which the software only cares for a 

few output data, the integrity of the whole data output from the hardware is vital to 

the evaluating accuracy of the filter candidate. If only the evaluator, which is so far 

implemented as a software program, could be migrated into the hardware design. That 

would be the best solution, because only one number, the cost value, is necessary to 

be fed back to the software for the simulation of one candidate.  



 67

VII. Conclusions 
 

This work was originated from an innovative idea proposed by Dr. Buckner and his 

fellow researchers, who are developing a method for the design and optimization of 

large scale digital circuits using the combined power of an optimizer (Differential 

Evolution) and hardware-accelerated simulation. Following the basic concept, a 

simplified framework was established for optimizing the design of a target digital 

filter within the MATLAB environment. The framework includes two portions: 

software and hardware. The software part was developed quickly and is used to 

generate and optimize generations of candidates for a digital filter.  Exploiting from 

the ability to be reconfigured on-the-fly, the implemented hardware design was 

employed to perform accelerated simulation for the candidate designs. The results 

from the hardware simulation in turn were used by the optimization engine to refine 

the next generation of candidates. Experimental results proved the framework was 

properly constructed and works as predicted. Though a part of its outcome is not 

perfect, this framework can be improved and extended for larger projects. 

 

1. Summary 

 

The first step of this project was developing a parameterizable generic digital IIR 

filter within System Generator. This generic filter has the following capabilities. First, 

it is reconfigurable, which means the model can read in coefficient data from the 

software, and reconfigure itself to the filter that is defined by the incoming 

coefficients. Second, no re-compiling is needed after the model is reconfigured to 

reflect a new candidate design. Last, the hardware implementation of this model can 

be used for hardware co-simulation with FPGA-in-the-loop. 
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Once the Sysgen model for the generic filter was finalized, behavior verification was 

conducted against a theoretical model, which was widely tested and recognized to be 

valid. In this work, a Simulink built-in model was selected as the reference model. By 

analyzing the results for both models from numerous simulations, the created model 

was verified. Supporting circuits were developed right after the verification of the 

filter model. These circuits are used to control the communications between the 

hardware and the software. In order to achieve consistency among simulations, a 

pseudo-random number generator was added to the hardware design. Its purpose is to 

provide identical test data for all the simulations.  

 

After the hardware model was developed, the corresponding software programs were 

created within MATLAB. At the same time, a protocol for data exchanging between 

the hardware model and software programs was also established. Major functions 

include data frame constructor and candidate evaluator. These programs were 

demonstrated to allow auto-regenerating coefficients based on the feedback from the 

hardware without a human in the loop. 

 

Then, the Sysgen model was implemented in a Xilinx Virtex-II pro FPGA. A 

pre-synthesis simulation was performed on the automatically generated HDL net-list 

to make sure the generated code was identical to the original design.  

 

Once every thing was ready, hardware co-simulation with the FPGA-in-the-loop was 

performed. Co-simulation in single-step mode was tested on the XUP development 

system.  
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2. Future Work  

 

Hardware co-simulation is too slow when running in single-step mode so the most 

important and highest priority task for future work is modifying the system to be 

capable of working in the free-running mode.  A possible modification of the 

existing model would be to change the figure of merit for the optimization to a 

combination of power, delay and area consumption for the FPGA. Another possibility 

is adding an extra input port for the hardware model to allow the inputting of test data 

from external sources, such as an analog-to-digital converter. It would also be 

desirable to migrate all of the software modules to the hardware design including the 

evaluator or even the DE optimization engine. The ultimate goal is to create a 

System-on-a-Chip (SoC) that contains everything in this project which can accelerate 

the optimization of a circuit. 
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