
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2007

Optimization of Digital Filter Design Using Hardware Accelerated Optimization of Digital Filter Design Using Hardware Accelerated

Simulation Simulation

Getao Liang
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Liang, Getao, "Optimization of Digital Filter Design Using Hardware Accelerated Simulation. " Master's
Thesis, University of Tennessee, 2007.
https://trace.tennessee.edu/utk_gradthes/301

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=trace.tennessee.edu%2Futk_gradthes%2F301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Getao Liang entitled "Optimization of Digital Filter

Design Using Hardware Accelerated Simulation." I have examined the final electronic copy of

this thesis for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Master of Science, with a major in Computer Engineering.

Donald W. Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Hamar Elhanany, Gregory D. Peterson, Mark A. Buckner

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Getao Liang entitled “Optimization of

Digital Filter Design Using Hardware Accelerated Simulation.” I have examined the

final electronic copy of this thesis for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Master of Science,

with a major in Computer Engineering.

 Donald W. Bouldin

 Major Professor

We have read this thesis

and recommend its acceptance:

 H a m a r E l h a n a n y

 G r e g o r y D . P e t e r s o n

 M a r k A . B u c k n e r

 Accepted for the Council:

 Carolyn R. Hodges

 Vice Provost and Dean of the

 Graduate School

(Original signatures are on file with official student records.)

Optimization of Digital Filter Design

Using Hardware Accelerated Simulation

A Thesis

Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Getao Liang

May 2007

 ii

Acknowledgments

I would love to express my thanks to every one who has helped me obtain my Master

of Science degree in Computer Engineering.

First, I would like to thank my major advisor, Dr. Donald W. Bouldin, for his

inspirational teaching, encouraging guidance and warmhearted support. Second, I

would like to thank Dr. Mark Buckner for introducing me the great concept of DE

Optimization with hardware accelerated simulation. Third, I would like to thank Dr.

Itamar Elhanany for his instructive tutoring in the class of packet switching. And I

also want to thank Dr. Gregory D. Peterson for his great lecture on hardware

verification two years ago.

Special thanks to my friends and coworkers, who has been around me when I was

striving on this work. Without anyone of them, this work can not be done. Especially,

I want to thank Harriette Spiegel for her patience and enthusiasm in reviewing my

work.

Heartfelt thanks to my family and my beloved.

 iii

Abstract

The goal to this research was to develop a scheme to optimize a digital filter design

using an optimization engine and hardware-accelerated simulation using a Field

Programmable Gate Array (FPGA). A parameterizable generic digital filter, which

was fully implemented on a prototyping board with a Xilinx Virtex-II Pro

xc2vp30-7-ff896 FPGA, was developed using Xilinx System Generator for DSP.

The optimization engine, which actually is a random candidate generator that will

eventually be replaced by a differential evolution engine, was implemented using

MATLAB along with a candidate evaluator and other supporting programs.

Automatic hardware co-simulations of 100 candidate filters were performed

successfully to demonstrate that this approach is feasible, reliable and efficient for

complex systems.

 iv

Table of Contents

Chapter I: Introduction

 1. Overview ………………………………………………………………. . 1

 2. Goals and Contributions ……………………………………………….. . 2

Chapter II: Background

 1. Simulation Approaches for Hardware Design ………………………….. 3

 2. Digital Filter …………………………………………………………….. 4

 a. Convolution Filters – FIR ………………………………………….. 4

 b. Recursive Filters – IIR ……………………………………………... 5

 c. General Filter Structure …………………………………………….. 7

 d. Target Filter ………………………………………………………… 7

 3. Differential Evolution …………………………………………………… 8

Chapter III: System Overview

 1. System Requirements Analysis …………………………………………. 10

 2. System Level Design ……………………………………………………. 12

 a. HW/SW Interface …………………………………………………… 12

 b. Hardware Sub-system Design ……………………………………… 14

 c. Software Sub-system Design ………………………………………. 18

 3. Platforms for System Design …………………………………………… 20

 a. The MathWorks MATLAB® and Simulink® ……………………… 20

 b. Xilinx System Generator™ for DSP ……………………………….. 21

Chapter IV: Designs of Hardware and Software Modules

 1. Designs of Hardware Modules ………………………………………… 23

 a. Initialization Module ……………………………………………… 27

 b. Data Generator and Output Handler ……………………………… 32

 c. Address Creator ……………………………………………………. 37

 d. Biquad I/O Controller …………………………………………….. 41

 e. Bypass Module ……………………………………………………. 43

 v

 f. Biquad Module ……………………………………………………... 44

 2. Designs of Software Module …………………………………………… 48

 a. iir_main.m …………………………………………………………. 48

 b. iir_coef_gen_fcn.m ……………………………………………….... 50

 c. iir_coef_frame_fcn.m ……………………………………………… 51

 d. iir_eva_fcn.m ……………………………………………………… 51

Chapter V: Hardware Implementation

 1. Introduction to XUP Development Board ……………………………… 53

 2. Implementation of Hardware Model in a FPGA ……………………….. 54

 a. HDL Net-list and Pre-synthesis Simulation ……………………….. 55

 b. Synthesizing the HDL Net-list ……………………………………. 56

 c. Building Xilinx Native Generic Database ………………………… 57

 d. Mapping the logic design to a Xilinx FPGA ……………………… 58

 e. Placement, Routing and TRCE …………………………………… 59

 f. Generating BIT file ………………………………………………… 60

Chapter VI: Simulations and Results

 1. Software Simulation …………………………………………………… 61

 a. Verification of Sysgen Model ……………………………………… 61

 b. Simulation and Result ……………………………………………… 63

 2. Hardware Simulation with FPGA-in-the-Loop ………………………… 65

 a. Basic introduction to HW Co-Simulation ………………………… 65

 b. HW Co-simulation Clocking ……………………………………… 65

Chapter VII: Conclusions

 1. Summary ………………………………………………………………... 67

 2. Future Work …………………………………………………………….. 69

List of References ……………………………………………………………. 70

Vita …………………………………………………………………………….. 73

 vi

List of Figures

Figure 2.1 - Structure of a 2nd Order FIR Filter ………………………………… 4

Figure 2.2 - Structure of a Second order IIR Filter in Direct Form I …………… 6

Figure 2.3 - Tolerance Schemes for Magnitude and Group Delay [9] ………….. 8

Figure 2.4 - Illustration of Differential Evolution Algorithm [10] ……………… 9

Figure 3.1 - System Block Diagram ……………………………………………. 10

Figure 3.2 - Signal Types and Directions ………………………………………. 13

Figure 3.3 - Structure of Signal Coef_IN ……………………………………..... 14

Figure 3.4 - Flow Chart of HW Design ………………………………………… 15

Figure 3.5 - Data Flow of HW Modules ……………………………………….. 16

Figure 3.6 - Flow Chart of SW Design ………………………………………… 19

Figure 4.1 - Simulink/Sysgen Model …………………………………………... 25

Figure 4.2 - Properties of Sysgen Token ……………………………………….. 26

Figure 4.3 - Structure of the Initialization Module …………………………….. 29

Figure 4.4 - State Diagram of Input Examining Circuit ………………………... 30

Figure 4.5 - Waveforms of Two Counters ………………………………………. 31

Figure 4.6 - Structure of the DataGen Module …………………………………. 34

Figure 4.7 - Result of Down-Sampling …………………………………………. 35

Figure 4.8 - Feedback of a 32-bit LFSR ………………………………………... 36

Figure 4.9 - Structure of the AddGen Modul …………………………………… 38

Figure 4.10 - Relationship between Stage and Step ……………………………. 39

Figure 4.11 - Waveforms for 4 address signals ………………………………… 40

Figure 4.12 - Structure of IO Controller Module ………………………………. 42

Figure 4.13 - Structure of Bypass Module ……………………………………… 43

Figure 4.14 - Structure of Biquad Module ……………………………………… 45

Figure 4.15 - Operations of One Biquad Filter within 8 Sample Periods ………. 46

 vii

Figure 4.16 - Adder Tree ………………………………………………………… 47

Figure 5.1 - Block Diagram of XUP Development System …………………….. 54

Figure 5.2 - Pre-synthesis Simulation with ModelSim ………………………… 56

Figure 5.3 - Placement of Design on a Virtex-II Pro FPGA ……………………. 60

Figure 6.1 - Simulink Environment for Verification ……………………………. 62

Figure 6.2 - Spectrum of Simulations Results from Theoretical & Sysgen Models 63

Figure 6.3 - Magnitude Response and Group Delay of a Filter Candidate …….. 64

Figure 6.4 - Hardware Co-Simulation Block …………………………………… 65

 1

I. Introduction

1. Overview

Nowadays, digital systems are becoming faster, more powerful, more complicated and

more capable, so designing circuits for these systems is becoming more and more

difficult. Firstly, increasing system complexity and functionality means more goals

and constraints have to be considered at the same time. These goals sometimes

conflict with each other. Take system complexity and power consumption for

example. As circuit complexity increases the ability to minimize area and reduce

power becomes increasingly difficult [1]. Secondly, due to the limitation of design

tools, solutions are only optimized for certain objectives out of all the objectives that

the designer wants to achieve. In another words, the tools only provide locally

optimized solutions instead of globally optimized ones. Thirdly, complex systems

always have more design parameters which are tightly interacting with each other,

making it even harder for designers to ignore the negative effects on others when

changing one or some of the parameters.

Though electronic design automation (EDA) tools are becoming more and more

popular in the hardware industry and have benefited from the availability of high

performance computing, there are some innate weaknesses that deteriorate the

performance when simulating a hardware design with a software simulator. First of all,

the software simulation cannot reflect the actual transistor behavior which occurs in

the hardware. Secondly, low-level simulation using software executes very slowly,

which is totally unacceptable to most digital system designers. That is because

shortening the time-to-market is one of the most efficient ways to produce more

profit.

 2

2. Goals and Contributions

The major goal for this work was to establish an efficient framework for the

optimization of digital filter design using an optimization engine and

hardware-accelerated simulation using a Field Programmable Gate Array (FPGA).

This framework can be divided into two parts: the hardware and the software.

For the hardware, a parameterizable generic digital infinite impulse response (IIR)

filter was developed using Xilinx System Generator (Sysgen). The Sysgen model for

this generic filter was designed to be reconfigurable, which means that the filter can

be reconfigured anytime by data that are input to this model. The filter design was

verified by comparing the results produced from this model to the theoretical results.

After it was validated to be fully functioning, the filter design was then implemented

in a Xilinx Virtex-II Pro FPGA on the prototyping board.

In the software domain, all programs were developed using MATLAB. Mainly three

major functions were created, including the random candidate generator that will

eventually be replaced by a real differential evolution optimization engine when it is

ready, the filter evaluator and a program that coordinates the data exchanging between

the software and the hardware.

As soon as the hardware and the software were verified to be working appropriately,

hardware co-simulation was performed.

 3

II. Background

In this chapter, background information about different simulation approaches, digital

filters and the algorithm of Differential Evolution will be covered before detailed

discussion of the design.

1. Simulation Approaches for Hardware Design

Software simulation is widely used by designers when they are developing hardware

systems. Software simulation refers to using a high performance computer to simulate

the activities which occur inside of a hardware design. Software simulation is very

helpful for verification and debug purposes. The most widely used tool for software

simulation of FPGA designs is ModelSim by Mentor Graphics, which provides a

comprehensive simulation and debug environment. ModelSim offers simulation

support for multiple languages, including VHDL, Verilog and SystemC. Besides

behavior level simulation, there are simulations on other levels. For example,

transaction level simulation utilizes abstracting communications to minimize the

number of simulation events. By doing so, simulation time can be reduced

significantly, which makes it possible for simulation of a complex system on the

system level.

Hardware co-simulation has been used primarily for the verification of

hardware/software systems, such as an embedded system [2]. Co-simulation can be

also defined as manipulation of simulated hardware with software. With hardware

co-simulation, the verification can benefit from both high-speed executions by the

hardware part and the flexibility of computation from the software part. Thus,

hardware co-simulation is highly recommended nowadays for the simulations of

complicated systems or embedded systems.

2. Digital Filters

Based on the existence of feedback loop, digital filters can be divided into two

categories: convolution filters and recursive filters. The following sections will

discuss them in detail.

a. Convolution Filters - FIR

Convolution filters can be also called finite impulse response (FIR) filters because

their response to an impulse signal ultimately becomes zero. Figure 2.1 illustrates

the structure of a 2nd order FIR filter. From the diagram, it is evident that the

structure of an FIR is very straightforward so that it is really easy to be implemented

in both software and hardware. Since there is no feedback loop for an FIR filter,

direct realization of it requires many resources. But at the same time, due to the lack

of internal feedback, a FIR filter is inherently stable. In the frequency domain, the

phase response for a FIR filter is a linear function of the frequency. Thus, no phase

distortion exists.

Figure 2.1 – Structure of a 2nd Order FIR Filter

 4

There are two forms of representation that can be used to describe a specified FIR

filter. One is called a difference equation, which defines how the input signal is

related to the output signal. From the equation, the output of current time interval is

the sum of the products of current input and some delayed inputs.

0 1 1() () (1) ... (1)Ny n b x n b x n b x n N−= ⋅ + ⋅ − + + ⋅ − +

And the other is called a transfer function, which is used to describe the filter in Z

domain.

0 1 1
0 1 1() ... nN

N nH z b z b z b z b z−− −
−= ⋅ + ⋅ + + ⋅ = ⋅∑

b. Recursive Filters - IIR

Recursive filters can be also called infinite impulse response (IIR) filters. Figure 2.2

shows the structure of an IIR filter in Direct Form I. Compared to the FIR filters, IIR

filters are more complicated concerning the structure since IIR filters require internal

feedback and use one or more output signals as inputs. Due to the nature of

recursion, the output will never become zero and that is why it is called infinite.

Since the structure is more complex than that of a FIR filter, it will be harder for a

designer to design and implement one. Unlike FIR, IIR has a non-linear phase

response, which means there will be phase distortion. Because of the feedback loop,

the response becomes unstable. But with careful design, it can be designed to be

stable. Rounding errors are not compounded by summed iterations. IIR filters are

much closer to the analog models and better for non-standard filter realization. A

high-order FIR filter can be represented by a low-order IIR filter.

 5

Figure 2.2 – Structure of a Second order IIR Filter in Direct Form I

Just like the FIR filter, there are two forms of representation that can be used to

describe an IIR filter. One is called a difference equation, from where we can see that

some of the previous outputs are used to calculate the current output.

0 1

1 2

() () (1) ... ()
(1) (2)... ()

M

N

y n b x n b x n b x n M
a y n a y n a y n N

= ⋅ + ⋅ − + + ⋅ −
− ⋅ − − ⋅ − − ⋅ −

And the other is called a transfer function, which is used to describe the filter in Z

domain.

0 1
0 1

1
1

...()
1 ... 1

mM
mM

N n
N n

b zb z b z b zH z
a z a z a z

−− −

− −

⋅⋅ + ⋅ + + ⋅
= =

+ ⋅ + + ⋅ + ⋅ −
∑
∑

Actually, the structure of an IIR can be used to describe a FIR filter. When all the

coefficients to multiply with outputs are set to be zero, then this is a FIR filter. This

is obvious when we look at the picture. If all the coefficients are set to be zero, then

only the left part remains and it is the FIR filter.

 6

c. General Filter Structure

A filter of any order can be described as a cascade of biquad filters. This equation

shows there are two structures that can be used to construct a high-order filter. The

left part of this equation is called direct form and the right part is called SOS form,

which is short for second-order section.
1 20 1

0 ,1 ,20 1
1 111 ,

...()
1 ... 1

n K
k kn

n Kn k

b b z b zb z b z b zH z g
a z a z a z a z 2

1 ,2k

− −− −

− − −= −

+ ⋅ + ⋅⋅ + ⋅ + + ⋅
= = ⋅ ∏

+ ⋅ + + ⋅ + ⋅ + ⋅

Compared to the direct form, SOS form has a lot of advantages. First of all, one

simple design of a second-order filter can be used to handle all kinds of filters. That

will be great for the optimization of hardware implementations. Because only one

instantiation of a second-order filter with some support circuits for loop control are

required to implement a filter design of any order. More importantly, filters in this

structure are less sensitive to quantization and overflow. However, there is a

not-so-important disadvantage. In order to implement a specified order, using the SOS

form requires more coefficients than using the other one.

d. Target Filter

The target filter used in this work was a graphics codec for sample rate reduction.

This filter is promulgated by Radio Communication Sector of International

Telecommunication Union (ITU-R) in 1985. Figure 2.3 depicts the tolerance schemes

for magnitude and group delay for the target filter.

 7

Figure 2.3 - Tolerance Schemes for Magnitude and Group Delay [9]

3. Differential Evolution

Differential Evolution is a very simple population-based, direct-search evolution

algorithm for global optimization. Basic steps involved in this algorithm can be

described as below, which is also illustrated in Figure 2.4.

1) Treat parameters as a vector of n elements;

2) Randomly construct initial vector population;

3) Use vector differences for perturbing the vector population;

4) Compare the results of another random vector and the relocated one, and keep

the better one;

5) Repeat and make all the vectors converge to a global optimized position.

 8

Figure 2.4 – Illustration of Differential Evolution Algorithm [10]

 9

III. System Overview

1. System Requirements Analysis

As discussed in previous chapters, the goal for this project was to decrease the

simulation time for a large-scale design of a digital system. Furthermore, it was also

important to examine the actual performance of the design when it was implemented

as working hardware. Thus in order to achieve both objectives, the whole system

design required consideration of two domains: software and hardware. Figure 3.1

illustrates the main system blocks, as well as their respective responsibilities.

Obviously, the functions of the software modules are to pass test candidates to and

collect feedback from the device-under-test (DUT), while the hardware takes the

responsibility of performing the filter functions described in the design specifications.

For the hardware part, the major task was to implement a specified digital circuit

design, which is controlled by the parameters fed from the software program. The

target digital design, used in this project to evaluate the performance of the

accelerating scheme, is basically a digital filter. Thus, the hardware design should be

Software Hardware

Optimization
Engine

Frame
Constructor

Evaluator

I/O

Generic
Filter

Controller

Figure 3.1 – System Block Diagram
 10

 11

a parameterized generic filter, and can be configured as any IIR, FIR or IIR+FIR

mixed filter. For the purpose of giving more flexibility to the optimization engine,

the filter design should accept various candidates of different numbers of taps, as well

as bit-width setting of these input data. Also, the design should allow for acceptance

of new filter candidates at any moment. To test the filter’s responses, only one

single set of data should be used as the test string for all the candidates, such that the

outputs of all filters under the test are analogous and comparable. While the set of

test data is the same in any case of simulation, any single test number should reveal

independence or randomness to others of the test sequence. That is because the

arbitrary property of test vectors is crucial to the comprehensive evaluation of a

digital filter. Otherwise, the results gained from those data might not be universal to

all possible cases. Of course, there should be an I/O interface for the hardware to

communicate with the software program.

Compared to the requirements of the hardware, those of the software design are much

more straightforward. There are two essential functionalities that the programs

should handle. One is an optimization engine to achieve the optimized design of the

filter by iterations of generating, perturbing and re-calculating operations. The

selection processes of better candidates, completed within the optimization engine, are

mainly based on the results from the performance evaluator, the other key component.

The job of the evaluator is to calculate the frequency response and group delay from

the simulation outputs, compare the results to the target specifications, and finally to

generate a cost value for each candidate, which indicates the quality of the design.

In order to feed coefficients into the hardware implementation, a communication

protocol was made and a program to construct the input sequences was necessary.

 12

2. System Level Design

According to the analysis of requirements, both the hardware and software portions

can be divided into several subsystems, each of which is accountable for performing

certain parts of the tasks. The partition of the system into modules can help to

simplify the design process, as well as the debugging. For the purpose of

communication between the software program and the FPGA, there must be data

exchange existing between them during system operations. Before considering detail

designs of each domain, it is necessary to make up a protocol that describes what and

how the exchange works.

a. HW/SW Interface

Concerning the hardware part, the data swap means transferring in and from the

FPGA. Two kinds of signals needed to be exchanged: coefficients and filter

responses. The former is what the hardware needed in order to be configured it as

the designated candidate, and the latter is the result after the operation of the filter.

Because the output timing is not predictable due to unforeseen input signals, an

additional control signal was required to facilitate informing the software with the

status of the FPGA operations.

So there are totally three I/O ports needed for the FPGA to cooperate successfully

with the software program. Figure 3.2 illustrates the types and directions of these

signals within the system. Since all of the calculations of the filter coefficients are

performed using floating-point, the data must be converted to fixed-point before they

can be recognized by the digital design. After numerous experiments, it was

discovered that, for better accuracy, it is best to convert the floating-point coefficients

to signed 24-bit fixed-point with 20 bits for the fraction. Since the width of signal is

also one of the aspects that this project should optimize, a wider dynamic range of

data width should be implemented. Considering both FPGA utilization and

performance, the signal types were set to be fix_32_29 for coefficients and fix_34_29

for data output. The extra two bits for Data_OUT were for the possible carryout bits

added after arithmetic operations within the filter. Obviously, a Boolean type of

signal is enough for the control signal, which is used to indicate the completion of the

simulation.

In order to configure a filter, three parameters are needed including gain, number of

SOS sections, and coefficients in SOS form. Concerning the arbitrariness of the data

of signal Coef_IN in both incoming time and data value and their exclusive properties,

there must be some strategy to indicate the start of a new set of candidate coefficients.

Figure 3.3 shows the structure of the framed coefficients of one filter candidate. The

first element, start-flag, indicates the start of a set of input sequences, which can be

used to reset and initialize the system, while the UID (unique identifier) is a

timestamp for the particular candidate. Since the UID is a unique value assigned to

each candidate when created, it helps the filter controller to determine whether or not

to refresh the memories with the incoming coefficients. The other components are the

parameters to describe each individual candidate, and will be discussed more in the

following sections.

SW HW

Coef_IN (Fix_32_29)

Out_CTRL (Bool)

Data_OUT (Fix_34_29)

Figure 3.2 – Signal Types and Directions

 13

Start
Flag

UID # of
SOS

Gain
g

Coef
b0

Coef
b1

Coef
b2

Coef
a1

Coef
a2

SOS
#2

SOS
#1

……

Header Coefficients Data

Figure 3.3 – Structure of Signal Coef_IN

b. Hardware Sub-system Design

As mentioned in Chapter II, any digital filter design can be presented as a cascade of

second-order sections (SOS) of IIR. So as to implement a generic digital filter, which

can perform as any filter with maximum order of 20, a cascade of 10 biquad filters

was required. There are two ways to design such a structure in hardware. One is to

instantiate 10 biquad modules and then connects the output port of one to the input of

another. This scheme is so straightforward that very little consideration has to be

made for the peripherals circuits for control and support purpose. However, the cost

for this simplicity is huge FPGA utilization, which means a waste of FPGA space and

power consumption. So a better plan was to use sophisticated control circuits to

manipulate a loop of 10 biquad operations by using only one single instantiation. It

causes more delay, but costs 1/10 the space of the first scheme.

To give a better visual demonstration of this scheme, a flow chart of the hardware

design is given as Figure 3.4 which details the process of reusing one instantiation of

a biquad filter to form a cascaded filter. From the chart, the hardware sub-system

can be roughly divided in to six modules, which are listed below. Figure 3.5

illustrates the relationship and data flow between these modules.

 14

Start

Initialization
Reset

Read in

Start Flag ?

N
O

New UID ?

N
O

Coef_IN

Store # of SOS, g,
and coefficients RAM

Configure and Invoke
Biquad Module

Exceed # of
SOS?

Exceed loop
limit 10?

Test data
Generator

Data Output

END

NO

N
O

YES

Figure 3.4 – Flow Chart of HW Design

 15

Initialization

Data Generator
OUT Handler

Biquad
I/O Controller

BiquadBypass

Address
Creator

I/O Interface

Figure 3.5 – Data Flow of HW Modules

 Initialization

 Data Generator and Output Handler

 Address Creator

 Biquad I/O controller

 Bypass

 Biquad

As indicated by the name, the Initialization module is in charge of resetting the

system into its original status and preparing it for the following operations. Besides, it

also has two important responsibilities associated with input signals. One is to

examine the incoming data, recognize the data head, and generate the necessary

control signals which are used to enable, reset or trigger other circuit components.

The other task is to preload coefficient data into memory once only for each new

 16

 17

candidate. Thus the module consumes less power consumption but provides more

driving ability for the downstream circuits.

Data Generator Module is responsible for generating a pseudo-random vector

sequence fed into the filter as the signal to be filtered. This module also functions as

an output cache and generates an enable signal that handles the coordination of data

exchanging with software. Bypass Module actually is a group of circuits used to

discard input signals into the Biquad when the coefficients for that SOS section are

undefined. The direct result of this module is saving unwanted power consumption by

reducing as much electronic switching within the Biquad as possible.

The presence of numerous calculations, states transitions, and memory accesses

within a generic filter requires the system to have an effective control scheme which

handles all the complex exchanging and transiting procedures. Module Address

Creator is one of the important parts of this control scheme. Its duty is to arrange

and generate different address signals used for corresponding purposes, such as

maintaining correct status of all the memory components for each individual round of

the Biquad. In this project, the only the instantiation of the Biquad is shared by all

the SOS sections so different input sources or output destinations might be used for

different sections. Another controlling module, Biquad I/O Controller, is utilized to

handle this situation. Instructed by the address signals, it selects the correct input

signal to the Biquad and routes its output to the exact destination. The key module of

this system is the Biquad. The only objective of this module is to implement a

second-order IIR filter that can be configured by parameters input from the outside.

 18

c. Software Sub-system Design

Figure 3.6 depicts the flow chart of the software design. From the chart, two main

loops are compulsory in order to find the most optimized filter candidate. Within the

loops, apparently there major operations are performed repeatedly. According to this

attribute, the software system is partitioned into four parts, one main program and

three functions, which are listed as

- Main Function

- Optimization Engine

- Candidates Framer

- Result Evaluator

The main function takes care of most of the setting, control and communication tasks

shown on the flow chart. First of all, it has to set the constants and initialize

parameters. Then, Main Function starts two loops and calls corresponding functions

at appropriate moments. In order to perform co-simulation with the hardware, Main

Function is also responsible for invoking the hardware model and controlling the

simulation.

The function Optimization Engine generates an initial population of filter candidates

the first time it is called. When called again, it performs a re-calculation and provides

a population for the next generation based on evaluation of the candidates’

performance. When a set of coefficients of a candidate is ready, the function Framer

is called to generate a data stream that complies with the protocol discussed in the last

section, by adding a header in front of the coefficients and inserting some zeros for

synchronization purposes. When the simulation of one candidate is finished, function

Evaluator analyzes the outcome from the filter. By comparing the frequency

response and group delay of filter candidates and the ITU-CCIR standards, a

corresponding score is given to each candidate to indicate the degree of its match with

the target filter.

START

Initialization

Generate initial
filter candidates

Wrap cadidates
into protocol

packets

Send X-th
cadidate

Simulation
finished?

Read in
feedback from HW

Evaluate
feedback

X < Candidate
population

X +1

Y
ES

N
O

Stop ?

Compare results

NO

Find the most
optimized result

Generate
candidates of

next generation

END

N
O

Y
ES

Output

Figure 3.6 – Flow Chart of SW Design

 19

 20

3. Platforms for System Design

When choosing design platforms for this project, a few important facts must be taken

into consideration. First, the optimization engine requires many complex matrix

operations and intricate array rotations. Second, the process of filter analysis involves

frequency transformation for digital data and other related advanced algebra functions.

In addition, the system is constructed by different sub-systems located on two

separate domains. Last but not least, the software program runs co-simulations with a

physical version of the hardware design implemented on an FPGA chip. So in reality,

this system demands a feasible and efficient development environment in which the

hardware and software modules can be co-designed, co-debugged, and co-verified.

The design platforms used for this project were MATLAB 7.0.1 R14 with Simulink

from MathWorks, and System Generator 8.1 for DSP from Xilinx.

a. The MathWorks MATLAB® and Simulink®

MATLAB, short for Matrix Laboratory, is an innovative highly-integrated numerical

computing and programming environment provided by The MathWorks. With the

exceptional ability of matrix manipulation, data analysis and algorithm development,

MATLAB has been a valuable scientific application tool for researchers, especially in

the fields of digital signal processing, communications and engineering computation.

Featuring a vast collection of array functions and the ability of flexible-but-simple

matrix operations, MATLAB provides a well-integrated platform for developing and

implementing a high-performance optimization engine for designing digital systems.

Besides benefiting from the extensive frequency analysis and domain transfer

functions, as well as other built-in or add-on data processing toolboxes, analysis of the

performance of each design candidate can be easily created and evaluated.

As an advanced supplement to MATLAB, Simulink is a powerful platform for

multi-domain modeling, simulating, and analyzing for dynamic systems. Unlike the

 21

script-based design within MATLAB, Simulink utilizes comprehensive block libraries

customizable for specialized applications. Moreover, Simulink uses an interactive

graphical interface environment for building system models as block diagrams. The

hierarchical models give users the advantages of developing, prototyping and

exploring a complicated system design using different approaches. Through the

support of more than 300 third-party solutions, designs across applications and

industries can be easily conducted at a low cost of both time and resources. With the

above benefits and the tight integration with MATLAB, Simulink was the first choice

for the development platform for this project.

b. Xilinx System Generator™ for DSP

Xilinx System Generator (Sysgen) for DSP (digital signal processing) is a

MATLAB/Simulink-based signal processing modeling and designing tool for

high-performance digital systems. Sysgen provides Xilinx blocksets that contain

functions for different purposes in the DSP area, allowing engineers to design,

simulate and implement complicated DSP systems optimized for Xilinx FPGAs.

Given the environment of high integration with MATLAB and Simulink, designers

can easily develop complicated digital circuits, which may be difficult to be described

using a hardware description language (HDL), such as control circuits, by combining

the imported MATLAB functions. Besides, HDL modules can also be imported into

a Sysgen model. Designers gain the facility or ability to create individual modules

using a desirable developing tool. But the debugging and verification of the entire

system can be performed in an integrated environment, saving design time and

resources.

System level modeling is only one aspect of Sysgen’s capability. The others, which

are relevant in this project, include automatic generation of HDL code mapped to the

Xilinx FPGA and hardware co-simulation. All of the code generated by Sysgen

from the system level model can be synthesized and implemented in a Xilinx FPGA.

 22

The hardware implementation can be brought back to the original system design for

verification purpose. This kind of simulation is called a “FPGA-in-the-loop” hardware

co-simulation, which utilizes the fast processing capability from a hardware core to

accelerate the simulation process. It can also be used to verify and analyze the actual

hardware implementation of the Sysgen model. Thus, Sysgen provides engineers a

sophisticated platform for developing, simulating and implementing bit-true or

cycle-true models for DSP systems.

 23

IV. Designs of Hardware and Software Modules

In this chapter, information on how each module was developed from conception to

implementation will be discussed in detail. Within the discussion of designing the

individual modules, introduction to some important concepts which are necessary to

fully understand the mechanism of the component will also be covered.

1. Designs of Hardware Modules

As described in Chapter III, hardware modules for this project were developed under

the integrated environment of Simulink and Sysgen. Instead of text-based coding,

Sysgen/Simulink provides to the designers a graphic interface for programming,

which allows users to design systems by the method of arranging and interconnecting

components or sub-systems built with provided basic blocks or advanced intellectual

property (IP) blocks from a third party. Throughout the whole design process, the

creator does not have to understand the mechanism working inside any of the blocks,

because these blocks are black-boxes to the designer. What the designer needs to

consider, when using a block, is the inputs, outputs and, most importantly, the

parameters that determine how the specific block performs its tasks.

The hardware part of system can be divided into six modules. During the discussion

of system level design, the system model and its data flow have already been

described in Figure 3.5 in Chapter III. Now, to demonstrate how a system model is

constructed within Simulink/Sysgen environment, the actual Sysgen model for this

project is given in Figure 4.1. Considering the different purposes the system needs

to serve, a Sysgen design can be dissected into three sections: the Simulink section,

the input/output gateways, and the hardware synthesizable section.

 24

The major task of the Simulink section, which is colorless in Figure 4.1, is handling

all the input and output communications between the Simulink/Sysgen model and the

MATLAB workspace. The Simulink source on the left is used to fetch candidate data

from the MATLAB workspace to drive the whole system, while the Output block on

the right is responsible for returning results from the model back to the workspace

such that they are accessible to the software counterpart. Besides, controlling the

simulation and data exchange is also an important job of this section. This gives the

users more flexibility in designing a simulation and cooperating Simulink model with

MATLAB scripts. For this system, the hardware portion is configured to send an

enable signal to the Simulink to identify the end of a successful processing of the set

of test data, thereby enabling output of the results and pausing of the simulation.

Digital systems are operated on fixed-point numbers only, while the

MATLAB/Simulink models operate on double floating-point values. So there must be

an intermediary between the Simulink and synthesizable hardware sections to convert

data into the target format. The In/Out gateways, colored in light yellow on the picture,

play the role of this kind of intermediary. In Sysgen the method describing a fixed-

point number is defined as a 3-portion notation, first the type of the fixed point

number (FIX/UFIX, for signed/unsigned), then the width of the number and then the

position from the LSB (least significant bit) of the decimal point. For example,

Gateway_in_coef converts the candidate’s coefficients from the format of double into

that of fix_32_29, which means a 32 bits signed fixed-point number with 29 bits for

fraction. As shown next to the input and output ports of the gateway blockset,

Gateway_out_data turns the processed data form fix_34_29 back to double, and

Gateway_out_EN changes a Boolean type of enable signal into double for further

operations by MATLAB programs. Besides, the gateways also represent the input and

output of the generated HDL top-level entity and the pins of the device.

Figure 4.1 – Simulink/Sysgen Model

25

Figure 4.2 – Properties of Sysgen Token

The rest of the colored blocks in the picture together are called the hardware

synthesizable section, which can be compiled, synthesized and implemented in a

Xilinx FPGA. Each color block represents one module, which can be viewed in

detail by double-clicking it. The solid arrowed lines between the subsystems stand

for inner communications between modules and their directions. Any Sysgen model

must have at least one System Generator token presented which is used to configure

the important properties of the Simulink/Sysgen model, including Simulink system

period, target part and FPGA clock period, as shown in Figure 4.2. The Simulink

system period represents the smallest sample period of the system and all other

sample rates must be integer multiples of the system period. In its hardware

counterpart, this parameter also defines the system clock that drives the design.

Combined with the FPGA, the CLK period also reflects the timing constraints that are

used to gain desired timing performance when implementing a design. Detailed

 26

 27

information on implementation of the design will be covered in Chapter IV. The

following section of this paper will talk about the design process of each of the

following six hardware modules:

 Initialization

 Data Generator and Output Handler

 Address Creator

 Biquad I/O Controller

 Bypass

 Biquad

a. Initialization Module

The structure of the initialization module is illustrated in Figure 4.3. The main

purpose of this circuit is to initialize the system and to prepare incoming data for

further processing. Before exploring the actual design, brief explanations of the I/O

ports will be given to help better understanding of this subsystem.

 DATA_IN – This is the pseudo-random test data from DataGen, which are

used to evaluate the candidate.

 COEF_IN – This is the incoming data from MATLAB/Simulink, including

the coefficients of the filter candidate and controlling header, all of which are

grouped as a frame obeying the established protocol.

 END – This is a signal from the DataGen module identifying the end of one

successful run when it is active.

 COEF_OUT – This is the set of cached coefficients that are sent to the

memory block in the Biquad module.

 DATA_OUT – The test data which are multiplied by normalization factor g.

 MOD_NUM – This is the total number of SOS sections for the candidate.

 COEF_FEED_EN – The enable signal for feeding coefficients into the

Biquad when the data is prepared and ready.

 COEF_INI – An initialization signal for all modules to reset their RAMs.

 28

Defined by their different purposes, three parts can be identified from the structure

diagram. The upper portion of the diagram describes the circuits to examine the

incoming data frame. According to Figure 3.3, a complete packet should contain a

start flag, followed by a UID, the number of SOS sections and coefficients of each

SOS. With the help of a pre-set special value, which serves as the start flag, the

initialization module determines the start of an incoming data packet. Following

recognition of the flag, the system will enable a register to store the next value, the

UID of this data packet. Then the same value will be compared to the one registered

from the last frame. If the two are equal, it means the latter one actually is a redundant

version of the previous one. This mechanism prevents the hardware implementation

from wasting power to refresh the cache memory for an identical set of coefficients. It

significantly reduces the power consumption, which is one of the crucial criteria for

evaluating the performance of an FPGA design. Once a new UID is received, the

module will refresh the UID register, store the values for g and the number of SOS

sections required to describe the candidate filter, and send a trigger signal to activate

the caching of the coefficients into a RAM. There is a converter right before the

output port MOD_NUM. Since the value of MOD_NUM is used to control the

number of Biquad module loops, it has to be converted to an unsigned integer from a

signed number with fractions. All the delays in the circuit are necessary for the

synchronization between different components in the circuit. They are also helpful to

increase the driving ability and to reduce the probability of having timing issues after

realization. Because it is difficult to understand the state transfers by examining the

graphic interface within Simulink/Sysgen, a state diagram is given in Figure 4.4, to

explain how these procedures are conducted.

Figure 4.3 – Structure of the Initialization Module

29

S0 S1
S2

g, # and
trigger.

Start Flag

Old UID

New UID

Caching Completed

Figure 4.4 – State Diagram of Input Examining Circuit

The middle part in the diagram describes the circuits to separate the coefficients data

from the complex incoming packet and to cache them into a RAM. Recalling from

Figure 3.3, the incoming data is constructed of control signals and coefficients. In

order to be compatible with the Biquad module timing, three dummy values are

stuffed right after the five coefficients of each SOS section. This is because a

successful run of the Biquad module takes eight clock cycles. Actually, during the

early developing period, two methods were proposed to solve this problem. One was

the “value-stuffing” described below, and the other was adding an extra and

complicated control circuit to handle the synchronization between modules. For an

FPGA design, extra circuits mean higher costs of area, power and delay. After

comparing the costs, complexities and performances from simulations of the

prototypes using the two proposed methods, the later one was selected.

 30

Figure 4.5 – Waveforms of Two Counters

To facilitate deleting the dummy values when storing coefficients into a single port

RAM, a control circuit consisting of two counters and some associated logical

components was needed. The graphic in Figure 4.5 shows how the two counters

cooperate together to select the desired data from the packet. First of all, counter#2

counts from 0 to 7 repeatedly. An enable signal for counter#1, repeatedly counting

from 0 to 49, is driven high whenever the value of counter#2 is less than 5. Only

when the enable signal is active does counter#1 advance its value. The output from

counter#1 is used as the address signal when accessing the RAM. Then with this

scheme, coefficient data for at most ten SOS sections can be stored in the RAM of

size 50x32 bits. In order to save as much power as possible, several small circuits

were added to make sure the writing to and reading from the RAM occurs only once

 31

 32

for each new case, such as when several logic expressions are applied to drive the EN,

WE and RST ports of the RAM blockset. An important lesson was learned when

developing the model. If the contents in the RAM are not cleared before the arrival of

a new candidate, the calculations of the new run will be disturbed greatly by the

remainders, even though the value of them is very small. So for insurance purposes, a

MUX was added to make sure no remainder was sent out just in case the RAM was

not reset correctly. At the same time of caching the coefficients, a feed enable signal

was set active to inform the Biquad module to load the coefficients. This is a pipeline

process, which greatly helps to improve the design’s performance.

The circuit in the lower part of the diagram performs a simple task, multiplying the

test data with g, the normalization factor or gain from the transfer function. Attention

had to be paid to the property of latency when using the MULT cores. If the latency is

set to be too low, the timing constraint for this circuit might be impossible to be

reached when implementing the design. As the bit-width of the number waiting to be

processed grows, the value of the latency should increase accordingly. In this case,

the MULT latency is six clock periods for a full precision multiplication of two

fix_32_29 numbers.

b. Data Generator and Output Handler

Figure 4.5 illustrates the architecture of the module of data generator and output

handler. The major tasks that this module can perform include up-sampling the

reset/initialization signal to make it multi-rate compatible, generating pseudo random

vectors as the test data for filter candidate, and caching processed data for output

purpose. There are 2 input ports and 4 output ports.

 DOUT_RAMIN – This is the input port for the result data that are ready for

output caching.

 INI_RST – The initialization/reset signal.

 DOUT – Data output port, through which data will be send back to the

 33

software part for further evaluations.

 OUT_EN – This is the signal informing Simulink to save the output data as a

matrix in MATLAB workspace.

 PSEUDO_DATA – This is the test vector for the evaluations of the filter

candidates.

 OUTEND – The active of this signal means the end of an evaluation.

In order to fully understand the design of this module, one key initial concept must be

explained clearly. This design is a multi-rate system, which means there is more than

one sample rate or clock source in action. For this particular system, two sample rates

are applied, one of which is the rate for the test vectors, and the other for the imported

data from MATLAB. As discussed above, an IIR filter with any transfer function can

be represented as a cascade of SOS sections. For one successful filter operation, one

single datum must be processed by all the SOS sections one by one. Thus all the

calculations required must be finished in one input sample period. This demands that

the sample rate for the data that are used for theses calculations be integer times faster

than that of the input data. For example, in this system the incoming data rate is

max_mod_num*mod_delay (10*8) times faster than the rate of the test vectors. On the

other hand, if a signal is input into a circuit which is running under a different sample

rate, it has to be up-sampled or down-sampled to the same rate as the target.

Figure 4.6 – Structure of the DataGen Module

 34

To start the generation of test vectors, an active initialization signal must be received

from the initialization module. Before this INI_RST signal, whose sample period is

sT can be used to stimulate the generator, a down sample blockset is utilized to

change its period in . Though a down-sample block can be configured to

sample either the first or the last value of the frame, the later one is most efficient

when it is implemented on an FPGA. Its implemented representative in the hardware

domain is a D flip-flop, which samples the input data at the end of the frame, and

outputs the value for the duration of next frame. Since the ini/rst signal will occur in

any interval within one frame, a circuit was developed to make sure that, once an

ini/rst signal is received, it will be registered and occurs at the end of that particular

frame. This circuit is represented in the lower part of the module diagram, and its

effect is illustrated in the waveforms in Figure 4.7.

/ 80sT

For an efficient data generator, the test vectors that are used to evaluate all possible

candidate designs must meet the following requirements. First, the vectors must be

exactly identical in both values and sequence every time they are processed by

different candidates. It is important because the evaluation results are not comparable

or consistent if variant test vectors are used to estimate the performances of different

Figure 4.7 – Result of Down-Sampling

 35

designs. Second, there cannot be any statistical pattern existing within the generated

sequences. Random numbers are widely used by engineers and scientists to test their

applications. However, there is no any way to produce true randomness with current

technologies, because the deterministic algorithms that are used to generate the data

imply the outcome is not truly random. Pseudo-random numbers, which appear to be

statistically random for most practical purposes, were acceptable for this project.

Third, the sequence generation must be at a really high speed, but the generator circuit

should be easily implemented on the hardware.

 36

1

In the digital system industry, a linear feedback shift register, LFSR, is generally

applied for fast generation of test vectors with both deterministic and random

properties. The format of test numbers used in this project is fix_32_29, so a 32-bit

LFSR (linear feedback shift register) device is employed to act as a pseudo-random

number generator. The LFSR must be a maximal one, in order to ensure the test

vectors do not repeat during one simulation. The appropriate taps for a

maximum-length LFSR counter in XNOR form is 1, 2, 22 and 32. A graphic

illustrating the feedback structure of this maximal LFSR is presented in Figure 4.8.

With this configuration, the LFSR blockset can generate at most test vectors

before repeating itself. After many trial simulations, the number of test vectors for a

candidate was set to be 2048. The upper part of the diagram shows the data generating

322 −

1 1 1 1 0 1

Taps # 1 2 3 4 21 22 30 31 32

... 0 0 0...
Parallel
Output

Figure 4.8 – Feedback of a 32-bit LFSR

 37

circuit. Keep in mind that this part of the circuit is running at the lower rate, so the

output pseudo-random data should be up-sampled before being used by others.

The remaining item shown in the diagram is the circuit to caching output data, where

a 2048x34 single port RAM is used. It will be very helpful when the system is

configured as a “Free Running”. More information will be covered later.

c. Address Creator

Address Creator Module is designed to produce all kinds of address signals that are

used for the RAM accesses within Biquad Module and for the selections of

corresponding I/O data for different SOS stage. From the structure diagram shown in

Figure 4.9, 2 inputs and 4 outputs can be identified.

 MOD_NUM – This is the total number SOS sections the candidate has

 COEF_INI – A signal indicating the start of a new round.

 IN_ADDRESS – This is used to choose the data source for the Biquad

Module of different stage.

 OUT_ADDRESS – This is the signal to determine whether an output from

the Biquad Module should be sent to the output memory or not.

 MOD_ADDRESS – This is the address signal for RAM operations within

Biquad Module

 STEP_CTRL – this is the signal directing the Biquad Module to transfer data

from the one tap to the next tap. Detailed information will be discussed in the

section for Biquad Module.

Figure 4.9 – Structure of the AddGen Module

The following section will discuss the algorithms that are used to generate all the

addresses mentioned above, as well as the considerations when designing those

algorithms. The address signals are all instructed by the variables from two counters.

One counts from 0 to max_mod_num-1(9), indicating which stage the Biquad Module

is operation on. The other one counts from 0 to mod_delay-1(7), suggesting the

current step of the running Biquad Module. Thus the output from the first counter

after one unit delay is sent to output port MOD_ADDRESS, and the output from the

second one is used as the step control signal for the Biquad Module. Figure 4.10 is

given to illustrate the connection between these two key concepts.

 38

Data

Biquad#2

Biquad#1

S1 S2 S3 S4 S5 S6 S7 S8

Biquad#3

....
Biquad#10 Output

Stage 1 -10

Figure 4.10 – Relationship between Stage and Step

In this design, Biquad Module is designed to play the role of a second order filter. Any

high order IIR filter can be represented by a cascade of several second order filters. In

order to simulate the operations of a high order filter, the Biquad Module must be

executed serially for several times for processing one test datum. For example, 7

cascaded biquad filters is equivalent to a 14th order filter. The term cascade means that

the executions of the 7 biquad filters are not simultaneous but sequential. Excepting

the first one, the input for each biquad is the output from previous one. The signal

input into the first Biquad is the pseudo random test numbers, and the output from the

last Biquad should be routed to the system output port. So the algorithm in the form of

pseudocode for generating the signals of IN_ADDRESS and OUT_ADDRESS is

given below. A figure of waveforms for these signals is also given in Figure 4.11.

Limited by the scheme, the system can only simulate a filter of up to 20th order, which

means the design will not perform correctly if the mod_num is large than 10. From the

diagram, a circuit is applied to prevent any further operations for candidates beyond

scale.

 39

IF new candidate THEN
 INI stage_counter, step_counter
 INI in_address == FALSE, out_address == FALSE
 READ mod_num
 IF step_counter == mod_delay-1 THEN
 Stage_counter = stage-counter + 1
 END IF
 IF stage_counter == 0 THEN
 in_address = TRUE
 ELSE

IF stage-counter == mod_num THEN
 IF step-counter == 0 THEN
 out_address = TRUE
 END IF
 END IF
 END IF

Figure 4.11 – Waveforms for 4 address signals

 40

 41

d. Biquad I/O Controller

The Biquad I/O Controller Module is in charge of the selection of the correct input

source for the Biquad Module executed in a different stage. Furthermore, after a test

datum is processed, registering the final result output from the biquad filter of the last

stage is also an important task of this module, the architecture of which is indicated in

Figure 4.12. In total, four inputs and two outputs are depicted in the diagram.

 BIQUAD_FB – This is one of the two input sources for the biquad filter of

the next stage. It is actually the results fed back from the currently executing

biquad filter.

 DATA_IN – This is another input source, which is the pseudo random

number generated by DataGen Module.

 IN_SEL – This is used to select the correct input.

 OUT_SEL – This is used to control the outputting of the final result.

 BIQUAD_IN – Signal that is fed into the Biquad Module.

 DATA_OUT – Final results that are ready for system output.

Two data sources are to be selected as the input for the Biquad Module, depending on

the current stage on which the simulated filter is working on. One is the test data

from the generator and the other is the feedback result from the biquad filter on the

last stage. A MUX device with two input ports is applied to do the job, whose select

signal is from the AddGen module. From the diagram, a converter, which converts the

test vectors from fix_64_58 to fix_64_56, is posited before the input port of the MUX

for test numbers. The reason for this arrangement is to ensure that the format of the

two sources is the same. Details on how the formats for these signals are determined

will be presented in later sections. As described before, the data generator is running

on a different sample rate than the other circuits, so the data must be up-sampled

before they can be used by the Biquad module. Within Sysgen, the sample period of a

device with multiple input ports can be derived from the input signal with the shortest

period. For this reason, there is no up-sample blockset occurring in the circuit.

Figure 4.12 – Structure of IO Controller Module

Besides serving as one of the inputs, the result signal from the Biquad module is also

the final result of the filter candidates. An enable signal from AddGen module is used

for the register to cache the final result at the correct moment. An 80x down-sample

block is employed to ensure that the sample rate of the final results is the same as that

of the test data. As discussed in Chapter III, the format of the final output from the

hardware is designed to be fix_34_29, to which the feedback data are converted by

the converter before the register in the diagram. The circuit in between the register

and the down-sample component is specially developed to ensure that the output

timing for each candidate is identical. During continuous simulations, this scheme is

very helpful, since the incoming data packet for a new candidate can be received at

any moment within the down-sampling frame. For example, if the ini/rst signal,

indicating a new candidate, occurs in the last interval, the result after the

down-sample device would be output in the following frame, which might cause a

problem when evaluating the performance of the filter.

 42

e. Bypass Module

There are two input ports and two output ports for the Bypass module. The

descriptions for those ports can be found in the discussions for the other modules.

Before an efficient scheme was developed to reset or to clear the memories and

registers within this design, this module was very powerful and important for the

same purpose. In the final version of the design, this module has been further

simplified, as illustrated in Figure 4.13. The mod_sel signal is compared to mod_num

first. If the former is smaller than the latter, the current stage, at which the filter is

running, is needless. Then a bypass signal is presented to the Biquad module to

suppress the needless operation. Thus the power consumption for this design can be

decreased significantly for filter candidates with lower order.

Figure 4.13 – Structure of Bypass Module

 43

 44

f. Biquad Module

The Biquad module is the most important subsystem of the entire project. In fact, all

the filtering processes of a high-order IIR filter are actually realized by the combined

operations of this key module and other supporting modules. The core mission of it is

to perform as a second-order IIR filter. From the design plan, each execution of the

module costs exactly eight sample periods. For each incoming test datum, the Biquad

module will be executed ten times consecutively for the simulation of a filter with

taps of up to 20. Figure 4.14 indicates the structure diagram of the Biquad module,

which has seven inputs but only one output.

 RAM_RST – This is the signal to reset the memory elements when a new set

of coefficients is coming. But keep in mind that, for a RAM the reset only

applies to where the address is pointing to when the reset signal is high.

 COEF_IN – This is the signal that contains the coefficients of a candidate.

 DIN – This is test data signal.

 COEF_FEED_EN – Active of this signal informs the RAMs to refresh their

current contents to reflect a new incoming candidate.

 MOD_BYPASS – This is the signal to notify the module to suppress

operations of RAMs, Mults and Adders. It is set to be negative-active.

 MOD_SEL – This is the address signal indicating the current stage that the

biquad is working on

 STEP_CTRL – This is the signal denoting the current step/status of the

Biquad.

 DOUT – This is the signal for outputting the result from a 2nd order filter.

Figure 4.14 – Structure of Biquad Module

As discussed in the introductory chapter, an IIR filter can be represented by two

equivalent forms: Direct Form I (DFI) and Direct Form II (DFII). In this project, the

biquad filter is implemented in DFI. Though the structure of the former seems

slightly more complex than that of the later, it is the most straightforward method.

Another consideration of the selection is the delay cost, an essential one that affects

the performance of the implemented hardware. In the early developing period,
 45

implementations using both forms were developed. All blocksets using the same

configurations of device delay, the module delay of processing one number for the

DFI implementation is one sample period smaller than that of the DFII form. In other

words, in this case, that is 12.5% faster. Figure 4.15 illustrates the how the biquad

filter processes one datum within eight sample periods. Take the b0 tap as an example.

In the first step, the input signal is written to the Status_RAM_b0, whose latency is

set to 1. So at the beginning of the 2nd step, the signal is presented on the output port

of the RAM, and at the same time, coefficient b0 is also ready. The multiplication

takes four sample periods, which means the result will be ready at the beginning of

the 6th step. Then the result is input to the adder tree, whose operations cost two

periods. By the end of the last step, the final result is written to Status_RAM_a1.

Basically, a second-order IIR filter contains three feedforward coefficients and two

feedback coefficients, so it can be implemented by a circuit constructed by four delays,

ten registers, five multipliers and one adder tree with five input ports. The design of

the adder tree, a diagram of which is shown in Figure 4.16, was developed to require

less power, delay and area of the FPGA. In this system the Biquad modules are

supposed to be used for multiple successive times for one test datum. Each SOS

section on different stages has its own coefficients and the current values on different

taps. These status values must be fully recovered when the filter is working on the

same stages during processing of the subsequent test vector. Thus instead of registers,

ten RAMs are applied to maintain the status for all SOS sections of the different

stages. The signal mod_sel is used as the address for accessing RAMs to retrieve the

correct values for the current stage.

W/R
DataRAMs,
CoefRAMs

Write
DataRAM

1st Step

Multiplications of
coefficients and shifted input Accumulations

2nd Step 3rd Step 4th Step 5th Step 6th Step 7th Step 8th Step

Figure 4.15 – Operations of One Biquad Filter within 8 Sample Periods
 46

Figure 4.16 – Adder Tree

An IIR filter is very sensitive to quantization, due to the existence of feedback. For

the purpose of achieving calculation results as accurately as possible, all the adders

and multipliers are configured to full precision. Again, because of the feedback loop, a

plan was established to ensure the consistency in terms of formats for the input signal

and the feedback. After multiplication with the g, the format of the test signal changes

to fix_64_58, which is also capable of handling the outcome from the multiplication

with a coefficient. However, after the adder tree, at least two bits are needed to be

added considering the carry. Considering the trade-off between precision and

performance, two LSBs are truncated and the binary point is moved two bits to the

right, resulting in the format of both input test signal and feedback signal being

fix_64_56.

The control circuits located on the lower part in the diagram are used to control the

write-enable ports of all the RAMs. Directed by the signal of step_ctrl, the circuit on

the bottom-left controls the data exchanging between taps. Three key steps are

utilized to handle the transfers of data between the Status_RAMs, which are 1st step,

3rd step, and 8th step (Value of 0 in step_ctrl denotes 1st step). During the first period,

an active signal is sent to the write-enable port of Status_RAM_b0, allowing it to

store the incoming datum. During the last step, a signal enables Status_RAM_a1 to

cache the final result after one successful biquad filtering. Except for the two

Status_RAMs mentioned above, all other three Status_RAMs refresh their contents

 47

 48

with the data from their nearest up-river counterpart during the third period.

Consequently, after eight sample periods, or one biquad filter operation, all the data

on different taps are shifted by one unit delay, and they are ready for the next round of

calculation. By sending write-enable signals, the circuit on the bottom is in charge of

instructing the Coef_RAMs to grab their corresponding coefficients from the input

stream at the correct moment.

2. Designs of Software Modules

First, while the hardware portion mainly performs the simulations of filter candidates

themselves, the software is responsible for generating, evaluating and optimizing the

candidates. Second, the communications between hardware and software are also

handled by the software scripts. Finally, the software is also in charge of controlling

of the simulation activities, such as starting, pausing and stopping. Four software

modules will be discussed in the following section, including one main MATLAB

script and three functions.

a. iir_main.m

The operations of this project are started by running this main script. Pseudo-code for

this program is list below.

 49

INI global parameters
FOR iteration = 1 to iter_num
 CALL iir_DE_fcn.m RETURNING candidates
 FOR population = 1 to popu_num
 CALL iir_coef_frame_fcn.m RETURNING data frame
 IF model unopened THEN
 OPEN module
 END IF
 START simulation
 WHILE simulation running
 WAIT
 END WHILE
 READ results
 CALL iir_eva_fcn.m RETURNING evaluation result
 END FOR
END FOR
OUTPUT result
CLOSE model

First, the main script defines the global parameters for the whole system, which can

be divided into two categories based on their native properties. The parameters

belonging to category one can be varied any time during the simulation, even after the

system is implemented on an FPGA. For example, the variables in this category

include the number of iterations, the number of population and the initialization

parameters that define the optimizer. Parameters in the other category can only be

varied for the Sysgen model before the hardware realization, which means the model

has to be realized on a hardware core once their values have been changed. The

parameters to define the Sysgen model are belong to this category, such as signal

formats for test data and coefficients, system sample rate, number of test vector. A

special binary sequence, which is 0xAAAAAAAA in hex form, is constructed by this

script to serve as the start flag used for synchronization with the hardware model. Due

to its significantly artificial pattern, the possibility of a coefficient having the identical

value is extremely small, making it a good start indicator.

 50

Once the global variables are determined, the program enters its first level loop,

which is controlled by the number of iterations of simulations. Then the function of

the optimizer will be called to generate the first generation of candidates. Since the

differential evolution engine was not yet available for embedding into this project, a

low-pass IIR filter generator, iir_coef_gen_fcn.m, was used as a substitute. Next, the

program enters its second level loop, within which the simulation for each candidate

of this generation is executed. The function of the data frame constructor is then

called upon to generate a data packet, which contains the filter’s coefficients, based on

the protocol designed for the communication between hardware and software. The

following step is to invoke the simulation for this particular candidate and start

clocking. The program will keep tracking the status of the simulation. Once the

simulation is paused indicating the completion of a simulation, the program will grab

the results from the hardware part and evaluate them by calling the function of

iir_eva_fcn.m. The loops continue until the preset conditions are met. After all the

designated operations are finished, the program will output the cost value of the most

optimized result and the time cost for each simulation.

b. iir_coef_gen_fcn.m

This is a substitute for the DE optimizer before it is ready for embedding into the

system. This program is pretty simple and straightforward. The nature of this module

actually is a filter generator that can generate an IIR filter with arbitrary cut-off

frequency and taps. Of course, a few constraints must be applied to these parameters

to match some limitations of the hardware design. The MATLAB source of the

function is listed below. From the code, it is clear that the normalized cut-off

frequencies for the generated candidates are bounded between 0.2 and 0.8 and the

numbers of taps for the candidates are limited from 2 to 19. A MATLAB built-in

function, butter(), is used to generate a Butterworth digital IIR filter from the

parameters.

function [b, a] = iir_coef_gen_fcn();

%%% Generate random parameters
filter_freq = rand*0.6+0.2 % Low-pass cutoff freq.
filter_order = floor(rand*17)+2 % Number of filter number

%% Calculation of Coef.
[b,a] = butter(filter_order,filter_freq); % Generate coef

c. iir_coef_frame_fcn.m

Frame constructor is a MATLAB function developed to construct data packets which

are used to configure the hardware model form simulating the candidate filters. The

protocol used to build the packets has already been discussed in previous sections, so

this one will discuss more on how MATLAB functions are used to complete the task.

The start indicator created by the main program will be included in the frame as the

first element, followed by a UID, which is unique for each generated candidate. In

order to reflect the moment when the data packet for a candidate is generated, a

timestamp is used as the seed when generating a random number. MATLAB function

clock() is used to obtain the current timestamp, and rand() is called to generate

the UIDs for the candidates using their own timestamp as the seed.

Since the filter candidates generated by iir_coef_gen_fcn.m are represented by

its transfer function, the coefficient data have to be converted to an equivalent second

order section representation before they can be recognized by the hardware model.

The conversion between these two forms is completed by MATLAB function

ft2sos(). After these preparations are accomplished, all that left is to place the

variables into their designed positions within the frame.

d. iir_eva_fcn.m

There are two major missions for this software module. One is to analyze the result

data back from the hardware model in frequency domain. Another one is to evaluate

 51

 52

the performance of the filter candidate by comparing the analysis results to that of the

target filter, which in this project is the ITU-CCIR graphics codec.

In order to analyze the frequency response of the filter candidate, the output signal

must be transformed from the time domain to the frequency domain. In digital

signal processing, the transformation is performed by the Discrete Fourier Transform

(DFT). MATLAB provides many built-in functions that can be used to compute the

Fourier transform on discrete signals. In this design, the algorithm of Fast Fourier

Transform (FFT) is employed. Before performing the transform, the data are divided

into sections, each of which contains 512 elements. For achieving a higher accuracy,

each section has an overlap of 256 elements with both its previous and next sections.

It is not practical to perform the FFT on the data of a section directly because the

signal is finite and is not continuous on its boundaries. Direct operations of the FFT

on them will introduce unwanted frequencies, so before the FFT operation, a window

function should be applied on the data. The MATLAB built-in function blackman()

is used in this module to generate a 512-point symmetric Blackman window. This

window function will then be applied to all the sections before performing 512-point

FFT on them. After changing the data in frequency domain, the magnitude response

and the group delay of the filter candidate can be easily obtained.

The criterion of evaluating a filter candidate is the value of its cost function, which

reflects the degree that the candidate meets the requirements constrained by the

specifications of the target filter. The cost function is constructed following the

tolerance schemes for the magnitude and group delay of the graphic codec described

in the background chapter. The magnitude response and the group delay of the filter

candidate are used to calculate the cost value for this particular candidate by the

established cost function. A candidate with a lower cost value is a better design. Once

the cost values for the candidates are computed, the results are sent to the optimizer as

a guideline for generating a new generation of candidates.

 53

V. Hardware Implementation

In this chapter, detailed information of the implementation of the hardware design on

a Xiilinx FPGA prototyping board will be covered. Before the discussion of

implementation, a basic introduction to XUP (Xilinx University Program) board,

which is the hardware platform for this project, will also be given for a better

understanding of the concept of hardware co-simulation.

1. Introduction to XUP Development Board

In this project, the hardware platform, which is used for the final implementation of

the hardware design, is the Xilinx University Program Virtex-II Pro Development

System, or the XUP board for short. The XUP board is a powerful, multipurpose and

low-cost system, which consists of a high performance Virtex-II Pro FPGA with

PowerPC cores and a comprehensive collection of supporting components, such as

on-board Ethernet device, serial ports and AC-97 audio codec. Figure 5.1 presents a

block diagram of the XUP board.

External Power

Internal Poer Supplies

3.3v
2.5v
1.5v

CPU Debug Port

100 MHz system Clock

75 MHz SAT A Clock

User Clock

Platform Flash Comfiguration

Compact Flash Comfiguration

USB2 High Speed Comfigurat ion

AC97 Audio Codec and Stereo Amp.

XSGA Video Output

User LEDs

User Switches

User Push-Button Switches

10/100 Ethernet PHY

RS-232& PS2 Ports

Serial AT A Ports

Multi-Gigabit T ransceiver Port

2GB DDR SDRAM DIMM Moudule

5v T olerant Expansion Headers

High Speed Expansion Port

Virtex-II
Pro

FPGA

Figure 5.1 – Block Diagram of XUP Development System

The Virtex-II Pro FPGA chip included in the XUP board is xc2vp30, which provides

13969 slices, 428KB distributed RAM, 2448KB Block RAM, 136 Mults and 2

PowerPC RISC cores. The 100MHz system clock provided by the XUP board can

facilitate the performance of the hardware implementation of a complicated system.

Another important feature the XUP board provided is that the system offers several

methods for the configuration of the FPGA. The FPGA can be configured by the data

from either the internal flash memory or external ports, such as the embedded USB2

high speed interface. With the help of the USB interface, the Sysgen can perform the

hardware-in-the-loop co-simulation.

2. Implementation of Hardware Model in a FPGA

The hardware realization from a Sysgen model to a hardware core can be divided into

two phases. During phase 1, the net-list files for the model are automatically

generated by Sysgen. In phase 2, all the downstream processes, including building

 54

 55

NGD files, mapping, PARing and generating bitstream files for FPGA configuration,

will be performed on the net-list generated in phase 1. As discussed in the beginning

of Chapter IV and shown in Figure 4.1, System Generator Block is the key component

that controls how the compilation and simulation should be handled. The block

specifies all the important parameters necessary for the implementation, such as

compilation type, target device and synthesis tools. For this project, the target part is

xc2vp30-7ff896, and Xilinx XST is used as the synthesis tool. In order to achieve the

highest performance, the Simulink system period is set to be 100 MHz.

a. HDL Net-list and Pre-synthesis Simulation

Sysgen offers automatic generation of two types of net-lists: HDL and NGC. The

difference between these two types is the resulting files. Details on NGC will be

covered in next section. The result of the HDL net-list generation is a collection of

VHDL and EDIF files. The HDL net-list is used most often in designing a system.

The automatic HDL net-list generation for this design takes about 20.2 seconds. Three

VHDL files are generated: one for the design, one for the test-bench and one for the

clock wrapper, which drives the clocks and clock enables. A project file for the design

is also generated, allowing the design to be imported into Xilinx ISE environment for

further development.

To ensure the automatically generated HDL net-list to be the exact HDL counterpart

of the original Sysgen model, verification must be performed before synthesizing the

VHDL design or any further actions are taken. The test-bench entity can be used as a

wrapper that input the stimuli to the HDL design from the data files generated by

Sysgen, and the results compared from the HDL design with those obtained in the

Sysgen simulation. Figure 5.2 illustrates pre-synthesis simulation of the HDL within

ModelSim and the corresponding waveforms for the system I/O ports. By comparing

the results from the two models, the generated net-list was proved to be working

100% accurately as its Sysgen model does with no error. Once the verification

Figure 5.2 – Pre-synthesis Simulation with ModelSim

procedure was passed with a positive result, the implementation can be advanced to

phase 2.

b. Synthesizing the HDL Net-list

After the HDL code has been verified to be valid, the subsequent process is the

synthesis of the HDL files to the Register Transfer Level (RTL) net-list. One of the

two types of RTL net-lists, NGC or EDIF, can be produced depending on which

synthesis tool is involved, XST or EDIF. Since XST was selected for this project, the

RTL net-list is in the form of NGC. The NGC net-list is a standalone binary net-list

file that contains both the logical and constraint information for the design, such that

the net-list can be used as a complete system or as a module of a larger system.

Though Sysgen can invoke XST to synthesize the HDL files automatically, the XST

command line that is actually executed behind the scene is listed below.

 56

 57

run -ifn xst_IIRThesis.prj -ifmt mixed -ofn

IIRThesis_cw.ngc -ofmt NGC -p xc2vp30-7ff896 -ent

IIRThesis_cw -keep_hierarchy NO -iobuf YES -bus_delimiter

() -top IIRThesis_cw -hierarchy_separator / -

report_timing_constraint_problems warning -

register_balancing no -iob Auto -uc ./IIRThesis_cw.xcf -

write_timing_constraints yes

It took 142 seconds for the XST to synthesize the hardware design. Useful estimates can

be obtained from the synthesis report, such as the minimum slack time, which is 7.845 ns

in this case. Table 5.1 shows the device utilization estimation after synthesis.

c. Building Xilinx Native Generic Database

The next process in the implementation flow is using NGDBuild to combine the synthesis

result, core net-lists, black-box net-lists and constraint files together, and then to reduce

all the components to NGD primitives. Before the NGD file is output, a logic Design

Rule Check (DRC) will be performed to verify the converted design. The command used

to build the NGD file is listed below.

Table 5.1 – Estimation of Device Utilization Summary after Synthesis

Device: xc2vp30ff896-7 Used Total Percentage

Slices 6799 13696 49%

Slice Flip Flops 12765 27392 46%

4-input LUTs 12813 27392 46%

 as logic 12788 - -

 as shift registers 25 - -

Bonded IOBs 68 556 12%

BRAMs 15 136 11%

GCLKs 1 16 6%

 58

ngdbuild -p xc2vp30-7ff896 -nt timestamp -intstyle xflow

IIRThesis_cw.ngc IIRThesis_cw.ngd

d. Mapping the logical design to a Xilinx FPGA

After a NGD file is created, which contains the logical description of the design, it is

input to MAP. Based on the information contained in the NGD file, MAP maps the logic

into Xilinx components, such as IOBs and CLBs, in the target device. During the

mapping, MAP removes all unused components and nets existing in the logic design.

MAP runs a physical DRC on the mapped design before outputting the final result in the

form of a Native Circuit Description (NCD) file, which is a physical representation of the

design. The command executed to map a logic design to a physical design is listed below.

map -o IIRThesis_cw_map.ncd -intstyle xflow -timing -ol

high IIRThesis_cw.ngd IIRThesis_cw.pcf

Table 5.2 indicates the actual device utilization summary after the design is mapped to a

Xilinx Virtex-II Pro xc2vp20 FPGA. Comparing Table 5.1 and Table 5.2, it is clear that

both the total numbers of occupied slices and flip-flops have decreased slightly, due to

the removal by MAP of useless components.

e. Placement, Routing and TRCE

Mapped NCD and PCF (Physical Constraints File) can be used as inputs for PAR to place

and route the physical design on the target device. There are two considerations when

performing the placement and routing: cost and timing. Cost-based PAR is performed

based on the final cost calculated from several factors, which are assigned weighted

values. Timing-driven PAR pays more attention to the timing constraints of the design.

The most important resulting files after PAR include a placed and routed NCD file and a

PAD file, which contains the final assignments of I/O pins on the FPGA. The PAR for the

design of this project took a little more than 16 minutes. From the PAR report, the

minimum absolute time slack is only 0.009ns. And Figure 5.3 illustrates the actual

placement of this design on a Virtex-II pro FPGA. The command used to complete the

tasks of placement and routing is listed below.

Figure 5.3 – Placement of Design on a Virtex-II Pro FPGA

Table 5.2 – Device Utilization Summary after Mapping

Device: xc2vp30ff896-7 Used Total Percentage

Occupied Slices 6646 13696 48%

Slice Flip Flops 12316 27392 44%

4-input LUTs 12436 27392 45%

 as logic 12353 - -

 as a route-thru 58 - -

 as shift registers 25 - -

Bonded IOBs 68 556 12%
Device: xc2vp30ff896-7 Used Total Percentage

Block RAMs 15 136 11%

GLKs 1 16 6%

PPC405s 0 2 0%

RPM macros 6 - -

Total Gates for Design 1239553 - -

Additional JTAG Gates 3264 - -

 59

 60

par -w -ol std -intstyle xflow IIRThesis_cw_map.ncd

IIRThesis_cw.ncd IIRThesis_cw.pcf

Post-PAR Trace is also performed to analyze the routed NCD file. Its main purpose is to

find out the paths with the worst slack time. A TRCE report was generated and revealed

that the minimum time slack is 9.991ns and the maximum path delay is 6.076 ns for the

actual layout of the design on an FPGA.

f. Generating BIT file

The last step for implementing a hardware design on an FPGA is generation of the

bitstream file, which is used to configure a FPGA. Using the information provided by the

fully elaborated NCD file, BitGen is called to create the binary file for FPGA

configuration. The command used is as below.

bitgen -l -w -m -intstyle xflow iirthesis_cw.ncd

After the bit file is generated, the Sysgen model is ready to be deployed on the XUP

board with a Xilinx Virtex-II Pro FPGA.

 61

VI. Simulations and Results

In this chapter, both software simulation and hardware co-simulation with FPGA in

the loop will be presented, and their results will also be discussed. Verification of

appropriate operations is conducted before starting the simulation for the Sysgen

model.

1. Software Simulation

In this section, “software simulation” means that the Sysgen model of a hardware

design is simulated by a software simulator, which in this case is Simulink/Sysgen.

a. Verification of Sysgen Model

Before the Sysgen model can be recognized as a generic filter that can be configured

to be an IIR or a FIR filter with taps less than 20, elaborated verification must be

conducted.

The most practical approach to verify a user-created Sysgen model is comparing it to

a well-established model that is already proven to be correct. Here for this project, the

Simulink block Transfer_Fcn_Direct_Form_II was chosen to be the reference model.

This block can implement a Direct Form II realization of a transfer function specified

by the coefficients, which is pretty much the intention of this developed Sysgen model.

By comparing the results from a model against those processed by the reference

model in a simulation with identical conditions, verification for a Sysgen model can

be accomplished. For this purpose, a test environment was constructed within

Simulink, whose structure is illustrated in Figure 6.1. From the graphic, it is clear that

the output signals from both systems are comparable in both time domain and

frequency domain.

Figure 6.1 – Simulink Environment for Verification

In order to gain more general result, four classic filter designs were used to verify the

Sysgen model, a 14th-order Butterworth high-pass filter with cutoff frequency of 0.5, an

18th-order Butterworth low-pass filter with cutoff frequency of 0.6, a 6th-order Chebyshev

Band-pass filter with frequency range from 0.4 to 0.6 and a 10th-order elliptical band-stop

filter with frequency range from 0.3 to 0.5. Table 6.1 shows the max difference and the

mean of differences between the results from the theoretical model and the Hardware

Model. The small differences between the theoretical result and the simulation result for

all the four test filters indicate the Sysgen model can perform as a re-configurable IIR

filter correctly. Figure 6.2 illustrated the spectrums of the output data from both model

simulating four test filters. From the figures, two curves are almost overlapped, which

means these two models produce almost identical frequency response to the test data.

a. Simulation and Result

Once the Sysgen model is verified, software simulation of the Sysgen model can be

started by executing the MATLAB script iir_main.m. The detailed processing flow

has already been discussed before. In this section, more attention will be put on the cost

value for each candidate and the time it cost to simulate one candidate in

 62

Table 6.1 – Max Difference and Mean of Differences

between Theoretical and Simulation Results.

 High-pass Low-pass Band-pass Band-stop

Max Difference 52.4140 10−× 52.4576 10−× 88.1037 10−× 64.5946 10−×

Mean of

Differences

66.6464 10−× 66.5471 10−× 82.2921 10−× 61.3858 10−×

Figure 6.2 – Spectrum of Simulations Results from Theoretical and Sysgen Models

 63

software. Every time a filter designed is simulated and its results are evaluated by the

iir_eva_fcn.m, a MATLAB figure will be prompted up showing the magnitude

response and group delay of previously simulated candidate. Figure 6.3 presents one of

the prompted graphics. The blue line defines the lower boundary, while the line in yellow

defines the upper one. If only the candidate’s curve falls in between these boundaries, it

gets no penalty, which means no cost value is accumulated. Any point outside that

bounded area will cause an increase of the cost value by a weighted value. The final cost

value will be sent to optimizer engine for generating a better generation of candidates.

The average time cost for a successful software simulation of the candidate is about

19.4714 seconds.

Figure 6.3 – Magnitude Response and Group Delay of a Filter Candidate

 64

2. Hardware Co-Simulation with FPGA-in-the-Loop

a. Basic Introduction to HW Co-Simulation

After the hardware model’s successful implementation in a FPGA, hardware

co-simulation can be performed to accelerate the simulation process. In order to do so,

the model must be compiled again using the “Hardware co-simulation” as compilation

type. At this time, an extra interfacing circuit, which allows Sysgen to communicate

with the implemented design using a physical interface between the computer and the

hardware platform, was added to the original design. The new model did not have to

be verified, because during the implementation, the verification has already been done.

As soon as the bitstream file is produced, a new hardware co-simulation block is also

created. By easily replacing the whole Sysgen model with this new block, it’s now

ready to perform the accelerated co-simulation with FPGA-in-the-loop. Figure 6.4

shows the how the model looks like after the replacement.

b. HW Co-Simulation Clocking

There are two modes for the System Generator to obtain synchronization with its

associated FPGA hardware design, single-step mode and free-running mode. In

single-step mode, instead of using the fast internal system clock, the hardware

receives its clock signal from the software simulation. In other words, hardware

activities inside the FPGA are all controlled by Simulink via the physical interface

Figure 6.4 – Hardware Co-Simulation Block

 65

 66

between the computer and the hardware platform. Thus the hardware co-simulation

operating in this mode is bit-true and cycle-true to the original design. On the other

hand, the limitations from slow software simulating and communication latency

deteriorate the performance achieved by the hardware. The hardware can still improve

the simulation significantly as long as the limitations are negligible when compared to

the great improvement achieved by hardware simulation. In free-running mode, the

hardware co-simulation is running by internal clock signal, making the simulation no

longer synchronized with the software simulation, but thousands times faster than that

in single-step mode. The co-simulation in this mode is widely applied for streaming

applications

By executing the iir_main.m, the simulations involved in the Sysgen model are

not running by the software simulator any more. Instead, all the activities that occur in

the Sysgen model are now performed by real hardware components, which are

running at a very high speed. When operating in single-step mode, the hardware

co-simulation took an average time of 25.0509 seconds for a successful run for one

candidate. But it took only 0.9407 seconds, which is a significant improvement, to

perform the same mission when the co-simulation block is configured to be clocked

by internal CLK signal. Though the simulation of the hardware design is accelerated

considerably, the problem left is that, the Simulink can no longer capture all data that

is output from the FPGA, due to the asynchronous communications between the

software simulator and the hardware platform. Unlike the BER (bit error rate)

measurement system for encoder/decoder [], in which the software only cares for a

few output data, the integrity of the whole data output from the hardware is vital to

the evaluating accuracy of the filter candidate. If only the evaluator, which is so far

implemented as a software program, could be migrated into the hardware design. That

would be the best solution, because only one number, the cost value, is necessary to

be fed back to the software for the simulation of one candidate.

 67

VII. Conclusions

This work was originated from an innovative idea proposed by Dr. Buckner and his

fellow researchers, who are developing a method for the design and optimization of

large scale digital circuits using the combined power of an optimizer (Differential

Evolution) and hardware-accelerated simulation. Following the basic concept, a

simplified framework was established for optimizing the design of a target digital

filter within the MATLAB environment. The framework includes two portions:

software and hardware. The software part was developed quickly and is used to

generate and optimize generations of candidates for a digital filter. Exploiting from

the ability to be reconfigured on-the-fly, the implemented hardware design was

employed to perform accelerated simulation for the candidate designs. The results

from the hardware simulation in turn were used by the optimization engine to refine

the next generation of candidates. Experimental results proved the framework was

properly constructed and works as predicted. Though a part of its outcome is not

perfect, this framework can be improved and extended for larger projects.

1. Summary

The first step of this project was developing a parameterizable generic digital IIR

filter within System Generator. This generic filter has the following capabilities. First,

it is reconfigurable, which means the model can read in coefficient data from the

software, and reconfigure itself to the filter that is defined by the incoming

coefficients. Second, no re-compiling is needed after the model is reconfigured to

reflect a new candidate design. Last, the hardware implementation of this model can

be used for hardware co-simulation with FPGA-in-the-loop.

 68

Once the Sysgen model for the generic filter was finalized, behavior verification was

conducted against a theoretical model, which was widely tested and recognized to be

valid. In this work, a Simulink built-in model was selected as the reference model. By

analyzing the results for both models from numerous simulations, the created model

was verified. Supporting circuits were developed right after the verification of the

filter model. These circuits are used to control the communications between the

hardware and the software. In order to achieve consistency among simulations, a

pseudo-random number generator was added to the hardware design. Its purpose is to

provide identical test data for all the simulations.

After the hardware model was developed, the corresponding software programs were

created within MATLAB. At the same time, a protocol for data exchanging between

the hardware model and software programs was also established. Major functions

include data frame constructor and candidate evaluator. These programs were

demonstrated to allow auto-regenerating coefficients based on the feedback from the

hardware without a human in the loop.

Then, the Sysgen model was implemented in a Xilinx Virtex-II pro FPGA. A

pre-synthesis simulation was performed on the automatically generated HDL net-list

to make sure the generated code was identical to the original design.

Once every thing was ready, hardware co-simulation with the FPGA-in-the-loop was

performed. Co-simulation in single-step mode was tested on the XUP development

system.

 69

2. Future Work

Hardware co-simulation is too slow when running in single-step mode so the most

important and highest priority task for future work is modifying the system to be

capable of working in the free-running mode. A possible modification of the

existing model would be to change the figure of merit for the optimization to a

combination of power, delay and area consumption for the FPGA. Another possibility

is adding an extra input port for the hardware model to allow the inputting of test data

from external sources, such as an analog-to-digital converter. It would also be

desirable to migrate all of the software modules to the hardware design including the

evaluator or even the DE optimization engine. The ultimate goal is to create a

System-on-a-Chip (SoC) that contains everything in this project which can accelerate

the optimization of a circuit.

 70

List of References

 71

[1] M. Buckner, “A Method for the Design and Optimization of Digital Circuits Using

Differential Evolution and Hardware Accelerated Simulation,” 2006.

[2] V. S. Lin, R. J. Speelman, C. I. Daniels, E. Grayver, and P. A. Dafesh, “Hardware

Accelerated Simulation Tool (HAST),” The Aerospace Corporation, 2005.

[3] Mentor Graphics,

http://www.mentor.com/

[4] R. Quinnell, “Designing Digital Filters”, TechOnLine, 2006

[5] K. Nagappa and F. Harris, “On the Most Efficient M-Path Recursive Filter

Structures and User Friendly Algorithms to Computer Their Coefficients,”

Software Defined Radio Technical Conference, 2005

[6] V. Ingle and J. Proakis, Digital Signal Processing Using Matlab, BK&DK, 1997

[7] C. Chen, Digital Signal Processing – Spectral Computation and Filter Design,

Oxford University Press, Inc., 2001

[8] M. Lutovac, D. Tosic and B. Evans, Filter Design for Signal Using MATLAB and

Mathematica, Pearson Education, Inc., 2001

[9] R. Storn, Advanced Topics In Computer Science Series - New ideas in

optimization, McGraw-Hill Ltd., UK, 1999

[10] R. Storn, “Differential Evolution Homepage,”

http://www.icsi.berkeley.edu/~storn/code.html

[11] The MathWorks

http://www.mathworks.com/

[12] The MathWorks, Inc., Getting Started with MATLAB, 2006

[13] The MathWorks, Inc., Using Simulink, 2006

[14] The MathWorks, Inc., Simulink Reference, 2006

[15] Xilinx, Inc., User’s Guide for Xilinx System Generator for DSP, 2006

[16] Xilinx, Inc., “Application Note: Hardware Acceleration of 3GPP Turbo

Encoder/Decoder BER Measurements Using System Generator,” 2006

[17] S. Golomb, Shift Register Sequences, Holden-Day, Inc., 1967

 72

[18] Xilinx, Inc., “Application Note: Efficient Shift Registers, LFSR Counters, and

Long Pseudo-Random Sequence Generators,” 1996

[19] E. Boutillon, J. Danger and A.Ghazel, “Design of High Speed AWGN

Communication Channel Emulator”, Analog Integrated Circuits and Signal

Processing, 34, 133–142, 200

[20]Xilinx, Inc., XUP Virtex-II Pro Development System Hardware Reference Manual,

2005

[21] Xilinx, Inc., Xilinx Software Documentation

[22] Xilinx, Inc., Xilinx ISE 8.1i Manual

[23] B. Dhillon, “Optimization of DSSS Receivers Using Hardware-in-the-Loop

Simulations,” The University of Tennessee, 2005

 73

Vita

Getao Liang was born in Guangdong, China. He obtained his Bachelors of Science

degree in Electrical Engineering from South China University of Technology in 2003.

He started his graduate study in fall of 2004 at The University of Tennessee,

Knoxville. He is expected to obtain his Master of Science Degree in Computer

Engineering in spring of 2007

	Optimization of Digital Filter Design Using Hardware Accelerated Simulation
	Recommended Citation

	To the Graduate Council:

