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ABSTRACT 

Stroke is one of the leading causes of long–term disability. Approximately two-

thirds of stroke survivors require long-term rehabilitation, which suggests the 

importance of understanding the post-stroke recovery process during his activities 

of daily living. This problem is formulated as quantifying and estimating the post-

stroke movement quality in real world settings. To address this need, we have 

developed an approach that quantifies physical activities and can evaluate the 

performance quality. Wearable accelerometer and gyroscope are used to measure 

the upper extremity motions and to develop a mathematical framework to 

objectively relates sensors’ data to clinical performance indices. In this article we 

employ two machine learning classification methods, Bootstrap Aggregating 

(Bagging) Forest and Decision Tree (DT), to relate the post-stroke kinematic data 

to quality of the corresponding motion. We then compare the accuracy of the 

resulted two prediction models using cross-validation approaches. Our findings 

indicate that Bagging forest approach is superior to the computationally simpler 

DTs for unstable data sets including those derived from stroke survivors in this 

project. 
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CHAPTER ONE:  

INTRODUCTION AND MOTIVATION  

Introduction  

Stroke outcomes adversely affect almost every aspect of an individual’s life, 

particularly the ability to work and earn a living. Unemployment combined with 

extensive medical bills can pose additional financial difficulty. According to the 

World Health Organization, 15 million people suffer stroke worldwide each year. 

Of these, five million die and another five million are permanently disabled. In 

developed countries, although the incidence of stroke is decreasing due to efforts 

to lower blood pressure and reduce smoking, the overall rate of stroke remains 

high due to the aging of the population [1].  

Stroke is the fourth leading cause of death and one of the top causes of 

preventable disability in the United States. Stroke is a leading cause of death and 

one of the top causes of preventable long-term disabilities in the United States. 

Stroke kills almost 130,000 of 800,000 Americans who die from cardiovascular 

diseases each year. That means brain stroke is responsible for 1 among every 19 

deaths from all causes in America [2]. It is the fifth leading causes of deaths in the 

America. On average, one American dies from stroke every 4 minutes. Stroke 

costs the United States an estimation of $71 billion each year. This total includes 

the cost of health care services, medications to treat stroke and missed days of 

work [3, 4]. The stroke treatment expenses are projected to become more than 

double in 2030 since the number of people having strokes is increasing and is 

expected to increase by 20 percent by 2030 according to the American Heart 

Association/American Stroke Association [4].  

Currently about 4% of adult Americans experience stroke. The increasing number 

of stroke occurrence can lead to 3.4 billion stroke incidences in 2030 and $183,13 

billion treatment cost [4]. The high caring cost of post stroke treatment is mainly 

because of post-stroke long-term disabilities. 
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About half of Americans (49%) have at least one of the main stroke risk factors: 

daily smoking, physical inactivity and being overweight, self-reported high blood 

pressure, or diabetes. Several other medical conditions and unhealthy lifestyle 

choices can increase the risk of stroke [5]. 

The Effect of Stroke on Brain and Body 

Stroke is a brain attack. Strokes were previously called cerebral vascular 

accidents, which meant there was damage to brain cells due to a problem with a 

blood vessel in head or neck. Stroke occurs when a blood flow that carries oxygen 

and nutrients to an area of the brain is either blocked by clots, bursts or ruptures. 

About 80 percent of strokes are caused by the blockage of an artery in the neck or 

brain. A hemorrhagic stroke is caused by a burst blood vessel in the brain that 

causes bleeding into or around the brain. When the blood flow to the brain is cut 

off, part of the brain cannot get the oxygen it needs, so the brain cells that are 

deprived from oxygen begin to die. When brain cells die during a stroke, abilities 

controlled by that area of the brain such as memory, cognitive abilities and the 

power to control muscles are lost. How a person is affected by stroke depends on 

the region of the brain where stroke occurs and how much the brain cortex is 

damaged. A stroke survivor may experience temporary or permanent physical, 

emotional or cognition deficits. That includes sudden weakness, loss of sensation, 

or difficulty with speaking, seeing, or walking [6]. Lost of physical abilities, which is 

the primary concern of this project, can be experienced in different parts of the 

body with various symptoms. The most common symptoms are: a) inability to 

move one side of the body (paralysis), b) weakness on one side of the body 

(hemiparesis), c) deficient and limited coordination (ataxia), d) difficulty in 

swallowing (dysphagia), e) fatigue, f) numbness or strange sensations, g) pain in 

the hands and feet that worsens with movement and temperature changes, h) lack 

of ability in picking up the front part of the foot (foot drop), i) difficulty to control the 
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bladder (incontinence), j) seizure and epilepsy, k) sleep disorder and l) deficient 

vision [6-8]. 

In this project, the effect of most common post-stroke physical disabilities on the 

stroke survivor upper extremity motion are under study. These categories are: 

paralysis, hemiparesis, and spasticity which are explained in more details in the 

following paragraphs. 

Paralysis and hemiparesis are one of the most common disabilities that people 

experience after the stroke. Paralysis usually happens on the side of the body 

opposite to the side of the brain that is damaged by stroke. Hemiparesis is a one-

sided weakness that affects 8 out of 10 stroke survivors. Hemiplegia is the most 

severe form of hemiparesis, which is the complete paralysis of half of the body. 

Paralysis and hemiparesis may affect the face, an arm, a leg, or the entire side of 

the body. This One-sided paralysis is called hemiplegia. Stroke patients with 

hemiplegia may have difficulties with their Activities of Daily Living (ADL). 

Depended on the severity of the stroke and how much of the body is involved in, 

the physical impairment can affect the ability to walk, to rise from a chair, to feed 

oneself, to write, to grasp different objects, and many other activities. Physical 

therapy can help stroke survivors suffering from paralysis regain strength, 

coordination, balance and control of movement.  

As it was discussed earlier, stroke damages brain cells. In some cases, this 

damage blocks sending and receiving messages from muscles to the brain and 

vice versa. Dysfunction of parts of the nervous system that coordinate movement 

following stroke is called Ataxia. Ataxia caused by stroke usually limits to one side 

of the body, which is referred to as Hemiataxia [9]. Ataxia puts limitations on the 

coordination of muscles. This symptom usually appears when a group of muscles 

should work together. It can cause motion patterns to be awkward and jerky. Ataxia 

potentially can cause spasticity during time which leads to spasm and muscle 

cramps [10]. 

https://en.wikipedia.org/wiki/Nervous_system
http://medical-dictionary.thefreedictionary.com/hemiataxia
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Stroke Recovery and Rehabilitation 

Rehabilitation helps stroke survivors regain all or part of their lost abilities due to 

brain damage. It also helps the survivors to learn new ways of performing tasks to 

circumvent their permanent disabilities. Approximately two-third of stroke survivors 

require some kind of long-term rehabilitation. Recovery from a stroke may take 

months or years. Many people who have experienced stroke may never fully 

recover. Stroke recovery process has three phases: 1) emergency treatment, 2) 

preventing another stroke and 3) rehabilitation.  The first two items are applied to 

the patient at the very first hours after stroke occurrence. Many stroke survivors 

recover functional independence after a stroke, but 25% are left with a minor 

disability and 40% experience moderate-to-severe impairments [7, 8]. 

Rehabilitation therapy begins after the patient’s overall condition has been 

stabilized, which is usually within 24-48 hours after the stroke [11].  

The goal of rehabilitation is to help the survivors become as independent as 

possible and to regain the best possible quality of life. The first rehabilitation 

practices after stroke are improving independent motions since many survivors are 

severely weakened if not paralyzed. They are asked to change their positions 

frequently even when they are lying in bed. They are also encouraged to get 

involved in passive or active range of exercises to improve their paretic limb [11]. 

In passive range of motion exercises, the therapist assesses the patient to move 

his paretic limb repeatedly. In active range of the movement exercises, the patient 

performs the activity receiving no physical help from the therapist [11]. Different 

patients may show progress differently due to various factors such as the severity 

of the initial brain injury. As the patient’s physical conditions improve, the therapist 

asks the patient to perform more demanding and complex tasks, such as using a 

toilet or bathing. The therapist encourages the patient to employ his paretic limb 

while conducting different tasks. As the patient starts to regain the ability to carry 

out these basic tasks, he steps into the first stage of returning to an independent 

life. 
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 Even though rehabilitation does not completely cure the effects of stroke, since it 

can not reverse brain damage, it is shown that rehabilitation can substantially help 

people achieve the best possible long-term outcomes [10]. Rehabilitation experts 

believe that carefully directed, well-focused and repetitive practice are the most 

important elements of any rehabilitation program. Several types of therapies can 

help a stroke survivor regain some or all of his functionalities damaged by the 

stroke. The primary post-stroke therapies include: a) physical therapy, b) 

occupational therapy and c) speech therapy [7, 8, 12]. 

The first step in physical therapy is promoting independent movement. Many 

individuals are paralyzed or severely weakened after stroke. Rehabilitation begins 

in the hospital after the person’s overall condition has been stabilized. Patients are 

engaged in passive or active range of motion exercises to strengthen their stroke-

impaired limbs. Rehabilitation therapists help patients to perform more complex 

and demanding tasks progressively. The implicit goal of rehabilitation exercises is 

engaging the stroke-impaired limb in performing tasks.  Regaining the ability to 

carry out basic activities of daily living represents the first stage in a stroke 

survivor’s returning to independence. For many stroke survivors, rehabilitation will 

be an ongoing process to maintain and refine skills. It usually involves working with 

specialists for months or years after the stroke which costs a massive amount of 

time and money. 

Monitoring and evaluating the quality of performance of the patient after stroke in 

his activities of daily living and his use of his paretic limb are critical since they yield 

significant information about the recovery progress and the occurrence of the non-

use phenomenon. The non-use phenomenon is a learning phenomenon in which 

the role of paretic limb motion is suppressed due to an adverse reaction or inability 

of conducting the task. If the stroke survivor continues surpassing the impaired 

limb, he may never learn that his former paretic limb has become potentially useful 

[12]. Additionally, by monitoring the patient’s during his activities of daily living, 

significant information about neuroplasticity can be obtained. After a stroke, 
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functions compromised when a particular part of the brain is damaged by stroke. 

Functions can sometimes be taken over by other regions of the brain. This ability 

to adapt and change is known as neuroplasticity. 

 Currently, therapists get insight into individuals’ activities of daily living mostly 

through self-reported log sheets and questionnaires. However, it has been shown 

that patients overestimate their physical activities and abilities [13]. Hence, the 

researchers and clinicians cannot obtain accurate information of the post-stroke 

recovery process. This issue makes questionnaire an unreliable substitute for 

physical examination and does not let the physicians plan the appropriate 

therapies optimally [9].   Moreover, false or not accurate self-report questionnaires 

deprive the specialist of getting any information if the patient is learning non-use 

of the paretic limb [14]. The use of a sensor-based system to monitor post-stroke 

activities of daily living is a promising approach to improve the clinical management 

of patients after leaving the clinics and getting back to normal life environment. 

Among all body worn sensors, accelerometers have been used as an effective, 

non-invasive motion measurement systems. Accelerometers are portable, 

affordable and can be accurate enough for the purpose of recording body 

movements [15]. These body worn sensors provide information about the subject’s 

physical activities pattern. The accelerometers’ ability to automatically and 

continuously recording physical activities, gives the therapist an insight into the 

activities that the subject has carried out throughout the day. This feature can be 

used for monitoring movements’ disorders as well [16].  

To address the clinical needs of an autonomous system for monitoring physical 

activities of people who had stroke during their activities of daily living and in real 

world setting, a system should be developed which not only tracks the subjects’ 

amount of physical activities but also gives an evaluation of the quality of the 

patient improvement.  

The remainder of this article is structured as follows: In Section two we take a brief 

look at the studies that have been done in the post-stroke activity classification 
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research area. Chapter three describes our project motivations. Chapter four 

explains the problem in hand and the proposed methods. In chapter five we go 

through the obtained results for our problem, using methods introduced in chapter 

four. Chapter six summarizes the project and its outcome as the conclusion. Finally 

in chapter seven, we point out some of our study’s limitations. 
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CHAPTER TWO:  

BACKGROUND 

As it was described in the previous chapter, stroke is one of the leading causes of 

serious long-term disabilities in the United States. Due to the commonness of 

stroke and the large population affected by stroke, stroke has drawn the attention 

of many researchers to itself during history [6, 13]. A significant number of people 

experience motor activity limitation after stroke [2, 3]. Post-stroke observations 

contain valuable information about the patient’s recovery process and motor 

function [13]. It has been shown that the adverse reaction of impaired limb makes 

patient surpass his paretic arm and consequently learn the non-use [13, 14, 17-

19]. The non-use phenomenon is a learning process in which the motion is 

surpassed by the paretic limb due to adverse reactions or failure in conducting the 

task. Continuing surpassing the impaired limb may not let the user know that his 

former paretic limb has become potentially useful [20, 21]. To track patients’ use 

of his paretic limb and his post-stroke recovery process during his activities of daily 

living, questionnaires and diaries are commonly used [22, 23]. There are several 

problems with these self-reported schedules; People usually overestimate their 

activities and recovery process, and sometimes they forget what they have done 

[13]. Also, the subject should be able to read and write which is not the case in 

many of stroke survivors. Therefore, the reliability of these questionnaires is highly 

depended on the subjects’ functioning, honesty, and recall. However, the patient’s 

ability to perform specific tasks, defined in different questionnaires and functional 

assessments, not only help the patients to improve their ability of being more 

physically independent, but also give the therapists and researchers a standard 

framework for describing the patients’ post-stroke condition severity and 

improvement [13, 24, 25]. Although these clinical tests are helpful in describing the 

ability of the patient in performing specific tasks, they do not give any information 

about the amount of physical activities the patient was involved in his activities of 
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daily living out of laboratory and clinic and his use of paretic limb. They also do not 

yield any information about learning the non-use phenomenon. 

Optical and visual systems such as VICON (Vicon Industries, Inc., NY, USA), 

figure 1, or CODAmotion (Charnwood Dynamics Ltd., Leicestershire, UK),figure 2, 

are widely used in research and clinical setting. Typical optical systems use 

markers to track the motion. Different markers are placed on different part of the 

subject’s body. Oftentimes, the software coming with the optical system can 

recognize the markers and simulate the subject’s body movements accordingly. 

Some motion trackers such as OptiTrack (NaturalPoint, Inc., OR, US) have the 

capability of simulating the subject’s movement in virtual space with such a low 

latency that is close to real time. Also, increasing the complexity or length of the 

performance does not add any cumbersome tasks to the procedure. Moreover, if 

something goes wrong during the experiment, the examiner can reshoot the scene; 

it is much easier than manipulating the data. However, this is likely to happen in 

systems which have real-time analysis, where the examiner is able to see the data 

as the experiment goes on [26-28]. 

Despite the optical motion trackers’ accurate movement capturing result, they are 

not a proper choice for at home setting usages. Specific hardware and setup are 

needed for the operation. The relatively complicated setting up procedure of the 

optical motion trackers requires personnel which makes prohibitive for small 

businesses. Depended on the camera field of view of magnetic distortion the 

capturing system may need specific definition of the space that it can operate in. 

Also, the experiment should be only done in camera range. Since these systems 

use their own software for simulation, not all the motions can be captured [27, 28]. 

Body-worn sensors are introduced as a reliable alternative for measuring physical 

activities. Wearable sensors have opened an avenue for non-invasive and 

accurate observation of patients’ body movement during research and clinical 

rehabilitation process and in real world setting [29, 30]. Among all body worn 

sensors, accelerometers have been used as an effective, non-invasive motion 
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measurement system [30]. In comparison with other motion monitor devices, 

accelerometers have many advantages; Accelerometer based motion tracking 

systems are typically affordable, portable and easy to use [31]. They usually do 

not need manipulation when they are in use [29] and their small size and light 

weight have made it possible for any human subject to wear it during the day while 

having real world activities outside the laboratories and in real world setting. 

Additionally, accelerometers are sensitive enough to detect even small motions 

[13, 29]. Comparing to other motion recognition systems such as commonly used 

VICON cameras, accelerometers offers a non-privacy-invasion system of motion 

recognition which makes them a more suitable choice for home monitoring [16]. 

Nowadays researchers widely use wearable accelerometers to get insight into the 

post-stroke patients’ activities of daily living [16]. However, there are still some 

drawbacks in using accelerometers as body motion detectors. It is challenging to 

separate the gravitational component from the inertial data without having 

additional data describing the accelerometer data. There are also some difficulties 

related to representing all the information at a single global frame since typically 

each accelerometer has its own moving frame, and the data are recorded on that 

frame of reference. Moreover, the location and orientation of the accelerometer on 

the subject’s body can influence the collected data. This issue usually arises when 

the examiner has no or limited experience in using accelerometers, or different 

examiners conduct the experiment. Yet, these drawbacks have the potential to 

compromise the quality of the recorded data [13, 15, 16, 32]. 

In several studies, participants were asked to keep a diary describing their 

everyday activities in addition to putting on wearable accelerometers during their 

activities of daily living. The first problem with this approach is using self-reported 

log sheets, which has many disadvantages as were mentioned in the previous 

section. Moreover, the subject should be able to read and write, which is not the 

case in many stroke survivors. Additionally, the extra effort and time that 
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researchers and participants should put into keeping the diary in addition to the 

accelerometers, put some limits on recruitment procedure [33]. 

Evaluation of physical functioning has become increasingly important in stroke 

clinical research and rehabilitation therapy planning. Several performance 

assessments have been developed that correlate with other measures of health 

status and predict need for long-term care. There is evidence showing self-

evaluation of ability and recovery improvement have low validity and high variability 

when are compared with measures of performance [34].  

Stroke assessment scales can be categorized into five groups: (1) Prehospital 

stroke assessment, (2) Acute assessment, (3) Functional assessment (4) 

Outcome assessment and, (5) Other diagnostic and screening tests [35, 36]. The 

Fugl-Meyer Assessment was developed as the first quantitative evaluative 

instrument for measuring sensorimotor stroke recovery, based on sequential 

stages of motor return in the stroke patient. The Fugl-Meyer is a well-designed, 

feasible and efficient clinical examination method that has been tested widely in 

the stroke population [37]. Its primary value is the 100-point motor domain, which 

has received the most extensive evaluation. Based on available literature, the 

Fugl-Meyer Assessment is highly recommended as a clinical and research tool for 

evaluating changes in motor impairment following stroke [25, 37, 38].  

Standardizing clinical motor assessments can be done using data based 

experiments; Quantitative data could be obtained by simultaneously recording 

data from accelerometers mounted on different parts of the body. The validation 

of the accelerometry data has been tested through various approaches and in 

different test conditions [16, 31, 32, 39]. Analyzing the recorded data can lead the 

researchers to identify some pre-defined activities. These pre-defined motions can 

later be decomposed into motion components to determine the movement patterns 

related to motor impairments and limitations [40]. Many researchers have focused 

on accurate post-stroke observation and data quantification. The development of 

miniature body-worn sensors, more specifically accelerometers, have opened 
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countless possibilities of post-stroke monitoring in the field over extended periods 

of time [13, 41]. The ultimate goal of rehabilitation is sending back the patient to 

his real life environment. Wearable sensors allow clinicians and researchers to get 

insight into the patient’s recovery process where it matters the most, in the home 

and community settings. 

The possibility of studying different clinometric variables and their properties using 

accelerometers have been investigated through literature [13]. In order to explore 

the collected data, different properties have been measured [13, 31]. Many studies 

have been conducted regarding classifying post-stroke activities using body worn 

accelerometers. The focus of the majority of these works is on lower extremity [24]. 

Due to the complexity and higher degrees of freedom of upper extremity, fewer 

studies have been done in this area. Studies have shown that accelerometry data 

can be used for measuring overall upper extremity activities [15].  Wearable 

accelerometers have been widely used for recording the amount of activity or 

inactivity of the upper extremity impaired limb over a time period [42]. The 

information obtained from the accelerometer is limited to speed and direction. 

However, a significant number of patients benefit if this data can be interpreted 

with clinical features in the hospital and home setting [43]. It has been shown that 

accelerometry data can be properly correlated with most clinical assessments such 

as Fugl-Meyer Assessment subscale for upper extremity [15, 42].  In 2012, Rand 

et al. [44] claimed that the gap between the expected recovery that is estimated by 

clinical measurements and the real performance improvement in the daily use of 

the impaired limb according to accelerometer data, suggests that present clinical 

measurement systems are not sufficient. Interpreting the accelerometry data with 

clinical assessments allows researchers and clinicians to get a deeper insight into 

the patients’ recovery improvement in their daily functioning [33, 45]. 

In this document, we propose an approach for estimating not only the amount of 

activity and inactivity of the impaired upper extremity limb but also the quality of 

the impaired limb physical functioning. This approach suggests that by analyzing 
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accelerometry data, we can automatically obtain an evaluation of the patient’s 

recovery process.  

The National Institute of Neurological Disorders and Stroke (NINDS) is a 

component of the U.S. National Institute of Health (NIH) [46]. The NINDS is the 

main research sponsor of disorders of the brain and nervous system [11]. These 

studies include the acute phase of stroke and recovering the brain abilities after 

the stroke damage. The Eunice Kennedy ShriverNational Institute of Child Health 

and Human Development is a part of the NIH, which through its National Center 

for Medical Rehabilitation Research, invests in studies related to the mechanisms 

of post-stroke recovery and repair, as well as introducing and development of new 

approaches to rehabilitation and evaluation of results.  The NIH’s National Institute 

on Deafness and Other Communication Disorders is interested and financially 

helps studies on diagnosis and treatment of dysphagia [46]. From the Biomedical 

aspect, the National Institute of Biomedical Imaging and Bioengineering 

collaborates with NINDS and NICHD to develop new instrumentation for post-

stroke treatment and rehabilitation.  Also, the National Eye Institute financially 

assists work related to post-stroke vision recovery and rehabilitation for individuals 

with impaired or low vision [11]. 

The NINDS funds work on approaches to enhance repair and recovery of the 

central nervous system (CNS). Scientists funded by the NINDS usually study the 

brain responds to experience or its adaption to stroke injury by reorganizing its 

functions (plasticity). Other NINDS-funded researchers study brain’s post-stroke 

reorganization. They also look into the brain’s response to specific rehabilitative 

techniques, such as constraint-induced movement therapy (CIMT). They are 

interested in determining if methods such as CIMT and transcranial magnetic 

stimulation, can stimulate brain plasticity. By simulating the plasticity, the motor 

function will be improved, and consequently, the post-stroke disability will be 

decreased. Other researched are dedicated to determination of the effect of 
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experimenting with implantation of neural stem cells, on the probability of replacing 

the post-stroke damaged or died brain cells [11], [5]. 
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CHAPTER THREE:  

MOTIVATION 

Automating the post-stroke physical monitoring opens an avenue to post-stroke 

home monitoring. By virtualizing the patient’s therapist, the patient has his/her 

therapist by his side all the time during his activities of daily living, where 

rehabilitation matters most. Health Centers and hospitals will benefit from this 

research as well the patient. Using the proposed system, they will have access to 

accurate information about the patient’s physical improvement during his activities 

of daily living. For health centers and hospitals, the system functions as if they 

have the patient tested all the time, without the physical presence of the patient. 

Thus, health centers and hospitals can spend more time, space and personnel to 

take care of other patients who cannot leave the hospital. 

The increasing rate of daily smoking, physical inactivity, being overweight, having 

high blood pressure, and diabetes suggests an increasing rate of stroke 

occurrence probability in near future. A large share of the average $100,000 post-

stroke treatment costs goes to the hospitals.  This massive cost can be reduced 

by discharging the patient for the hospital and still have him/her under the 

virtualized therapist’s monitor. This study opens an avenue to evaluating the post-

stroke physical improvement in real world setting. Using accelerometry-based 

sensors for human motion monitoring, suggest an accurate post-stroke motion 

tracking without interrupting the patients during his/her activities of daily living or 

invasion of his/her privacy. In the big picture, our system helps the patient to return 

to his activities of daily living and still be under the monitor and receives feedbacks 

for the best rehabilitation results. This project contributes to virtualize the physical 

and occupational therapists while allowing the patient to have their support and 

feedback all the time at a significantly lower cost. 

The methodology used in this research can be developed to be used in other 

clinical studies. In future explorations, the accurate kinematic data quality predictor 

formulated in this project can be resorted to estimate patients’ scale of pain, 
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strength, soreness, muscle contraction, etc. The developed method along with task 

recognition frameworks will be a complete at home post-stroke monitoring system.  
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CHAPTER FOUR: 

POST-STROKE QUALITY OF UPPER EXTREMITY MOTION 

ESTIMATION 

Project Description 

This project aims at estimating the post-stroke physical improvement in real world 

setting. In order to do so, the performance of the non-paretic limb was set as our 

reference as an un-faulty performance. Then, we investigated the patient’s overall 

post-stroke physical capabilities by asking them to perform some tasks according 

to the well-known Fugl-Meyer clinical assessment. The motion of both impaired 

and non-impaired limbs was recorded using tri-axial motion monitors. In order to 

have an estimation of the paretic limb quality of movement, the kinematic data of 

the non-impaired limb was compared to the one of the paretic limb’s. In order to 

relate the kinematic data to the Fugl-Meyer score, which is our initial criteria for 

quality of motion, mathematical features representing the kinematic attributes of 

human limbs’ motion such as speed, smoothness and coordination should be 

extracted and examined in contrast.  

In this thesis, the quality of the post-stroke kinematic motion is formulated as a 

classification problem. In the designed classification model, we classify different 

performed tasks according to their Fugl-Meyer score which in turn, is a scale of the 

performed motion quality. This score is estimated visually by the examiner 

therapist and will be explained in more details in the following the sections. 

In order to collect the kinematic data required for our analysis, and the data 

presenting the quality of the performed motion task, an experiment was designed 

and held at the UT Medical Center. During the test, the subjects with post-stroke 

physical impairment were asked to wear motion monitors. Then the examiner 

therapist asked the patients to perform tasks according to the Fugl-Meyer 

Assessment subscale for the upper extremity. The patient’s quality of motion 

estimation is expressed as the Fugl- Meyer score and was recorded by the 
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examiner therapist. During the experiment, the patient’s motions kinematic data 

were collected and recorded by the installed motion monitors. 

 After collecting the kinematic data, data segmentation is applied. In data 

segmentation, each segment of the kinematic data corresponding to performing 

each of the Fugl-Meyer tasks is isolated for further analysis. 

 In favor of interpreting the kinematic data collected from the motion monitors with 

the Fugl-Meyer scores that were recorded by the examiner therapist, one or more 

measurement features should be explored in kinematic data that are sensitive to 

the quality of motion’s characteristics. In this research, we care about motion 

features such as accuracy, speed, coordination, and smoothness.  

Machine learning supervised classification methods were used in this thesis to 

classify our kinematic data according to their obtained Fugl-Meyer score. As it was 

mentioned earlier, these scores give an estimation of the patient’s capabilities of 

performing the required tasks. 

A prediction framework can be developed using the classification results. This 

prediction framework categorizes the new set of kinematic data set according to 

its estimated Fugl-Mayer score. In other words, our classification model classifies 

different tasks according to their obtained Fugl-Meyer score and the prediction 

model, uses the classification model results to classify the new set of data and 

label it with the most probable Fugl-Meyer score that the new kinematic data would 

gain. Figure31 shows a flowchart of the proposed algorithm. 

In what follows, each of the steps shown in figure. 3 is explained in more depth 

and details.  

Data Collection 

Experimental Procedure 

Participants 

The subject recruitment was done at the UT Medical Center, and the experiment 

procedure is approved by the University of Tennessee Institutional Review Board.  
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Figure 1. Flowchart of the employed algorithm to analyze accelerometer 

data and derive estimates of the FMA score 
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All participants are provided with informed consent before the experiment. Eight 

participants were recruited. In order to satisfy the inclusion criteria, each participant 

should: (1) have a positive stroke on their head CT or MRI; (2)  exhibit resulting 

unilateral weakness of the upper extremity; (3) have cognition sufficient to follow 

simple commands; (4) have fair vision, and (5) have sufficient activity tolerance to 

sit upright and participate in the experiment. 

 

People with the following conditions were excluded from testing: (1) completely 

flaccid upper extremity; (2) poor cognition (leading to inability to follow commands); 

(3) severe vision deficits and blindness; and (4) residual weakness from a previous 

stroke. Pregnant women, prisoners and people less than 18 years old were 

excluded as well. 

Apparatus and Measures 

Each participant wears five APDM Opal motion monitoring sensors (APDM Inc., 

OR, USA).  

These motion sensors contain a tri–axial accelerometer, rate gyroscope, and 

magnetometer (the latter was not used in our analysis). They can record 12-16 

hours of data, depended on their different recording modes. Table 1 shows this 

sensors specification. 

Four of these motion monitors were placed on the participants’ wrists and bilateral 

upper arms near the elbow for capturing motion data resulting from upper extremity 

movement. The fifth sensor was put on the subject’s chest in order to record trunk 

kinematic data. Sensors were attached to the subject’s limbs using latex–free 

bandages for sanitary purposes and to minimize noise due to soft tissue motion. 

Figure 5.a shows the sensors’ position and orientation on the subject’s body. 

Figure 5.b depicts a participant during the experiment in a clinical setting. 

Data from the two wrist–worn sensors are used for this research objective. The 

examiner therapist instructs each participant to perform a subset of tasks 
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according to the upper extremity motor function Fugl-Meyer Assessment and 

kinematic signals resulted from the patient’s movement are recorded using motion 

monitors. Fugl-Meyer Assessment is a stroke-specific, performance-based 

impairment index with a three-point (0-2) scale. A score of 0 indicates the patient’s 

disability to conduct the task where a score of 2 means that the patient was able 

to carry out the task flawlessly. This well-known stroke clinical index is designed 

to assess motor functioning, balance, sensation and joint functioning in patients 

with post-stroke hemiplegia. Fugl-Meyer is specifically intended to assess the 

functional mobility of stroke survivors during their activities of daily living. 

Depended on the stroke survivor’s severity of brain damage it may take about 6-

30 minutes for the subject to perform the assessment tasks. The Fugl-Meyer 

Assessment is designed for the hemiplegic patients of all ages. It is also known as 

one of the most reliable assessments in test-retest scenarios [35-37]. 

The performed subscale of Fugl-Meyer upper extremity motor function tasks in this 

project includes synergy, out of synergy, combination of synergies, wrist/hand 

function, and fine motor coordination. According to the Fugl-Meyer procedure, the 

clinician scored the participant according to the three point (0–2) scale [8], [9]. A 

sample form of FMA used for the experiment is attached to this document. 

Participants repeat each task three times according to the instructor therapist, and 

the best attempt is scored. Scores are then totaled to give a resulted score of 66 

possible points with lower scores representing greater impairment. In addition to 

collecting kinematic data and the Fugl-Meyer scores, the whole experiment is 

video recorded. Table 1 shows the participants demographic.  

Data Preparation 

After data collection, the kinematic data and patients’ IDs should be matched. To 

do so, first, we match the recorded videos to the subjects’ IDs. The order of the 

recorded videos is consistent with the order of the performed tests. Hence, the 

order of recorded videos is compatible with the order of different patients’ IDs. 

http://www.strokengine.ca/glossary/stroke/
http://www.strokengine.ca/glossary/stroke/
http://www.strokengine.ca/glossary/hemiplegia/
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(a): Schematic representation of 

the motion monitor sensors 

location on the subject’s body 

during the experiment 

(b): APDM motion monitors positioned on the 

participant during 

administration of the FMA 

Figure 2. Motion Monitors on the Subject's Body 

Figures are adopted from [47] 

 

 

Table 1. Demographics of Study Participants 

Participant Sex Age Lesion Side Dominant 

Side 

FMA Score 

1 F 32 R L 17 

2 F 68 R R 48 

3 F 69 L L 53 

4 M 87 R R 36 

5 F 44 L R 45 

6 F 78 L R 4 

7 F 87 R R 30 

8 M 65 R R 27 

 

 

x-axis 
 
y-axis 
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Using the videos, the length of each participant’s experiment is extractable. The 

paper documents from the hospital show the date that the test was conducted for 

each participant. Having the date and length of each experiment, the dataset 

related to each trial can be matched. Having all of this information, the kinematic 

datasets, videos and paper documents, which also contain each patient’s Fugl-

Meyer score, can be matched.  

Kinematic Data Segmentation 

Since each task is scored separately during the experiment, the raw kinematic data 

associated with each task should be isolated. Data segmentation is performed 

using synchronized video and the information that were extracted from the video. 

In this project, data segmentation is done manually. The start time and finish time 

of each task for each subject are extractable using the corresponding recorded 

video. The difference between the start time and finish time of each task shows 

the time duration of each task. Table 2 shows a sample of the extracted information 

from the experiment recorded video. 

 

Table 2. Information extracted from the experiment’s recorded video 

  Left Wrist Right Wrist 

Motor Function 
Start Finish Start Finish 

Time Frame Time Frame Time Frame Time Frame 

Sensor Tapping 0:16 464 0:17 494         

Reflexes biceps 5:27 9483 5:30 9571 6:09 10705 6:13 10817 

Reflexes triceps 5:53 10237 5:59 10411 6:25 11165 6:35 11455 

 

Having the time duration for each task, the segmentation windows can be 

produced. The isolated data for each task is demonstrated by the green and black 

lines in Fig. 6.b., respectively representing the start and stop times. In other words, 

segmentation converts Fig. 3.a to 3.b. In Fig 3.c, the flexor synergy task’s 

kinematic data is isolated to show more details. This flexor synergy is the task that 
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shows itself as fluctuations in figure 6.a happening between time 777 and 786 that 

is magnified in figure 6.c. 

 

 

Figure 3. a) Raw kinematic data, b) Kinematic data after segmentation, c) 

An isolated task 

Kinematic Data Measurement Feature Extraction  

In order to interpret the kinematic data with meaningful clinical qualities, specific 

measurement features of the data should be extracted which are sensitive to 

mechanisms of human movement such as smoothness, speed, and coordination. 

In this study, we use four measurement features that are the most commonly used 

features in studies investigating the relation between the clinical assessments 

evaluating the quality of motion and kinematic data. These measured features are 

derived for each single task and for three time series data: acceleration, gyro, and 

jerk. Acceleration and rate of gyro values can be read directly from the sensors. 

Jerk, which gives a sense of smoothness of motion, is driven by getting the first 
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derivation of acceleration. It is calculated for the whole acceleration signal and 

separately for each axis.  

𝑗(𝑡) =
𝑑𝑎⃗(𝑡)

𝑑𝑡
= 𝑎̇⃗(𝑡) (1) 

Then we calculate the measurement attributes for each axis separately. 

Participants performed a total of 23 scored tasks. For task number  𝑛, we computed 

the gesture matrix 𝐷𝑗 as follow: 

𝐷𝑗 = [[𝐹11×3
] [𝐹21×3

] [… ] [𝐹𝑛1×3
]] (2) 

Where 𝐹𝑖1×3
 shows the derived measured feature and 𝑛 is the number of extracted 

features for each research objective. The subscript 1 × 3 indicates that each 

component of the matrix 𝐷𝑗 in Eq. (2) is computed separately for each axis of data 

(𝑥̂, 𝑦̂, and 𝑧̂). Matrices 𝐷𝑗 are calculated for acceleration (𝑥̈), angular rate of change 

(𝑞̇), and jerk 𝑥(3). In this study we used four post-stroke kinematic measurements 

that are the most commonly used features in the related literature: Root Mean 

Square (RMS), mean value, entropy and dominant frequency. The root mean 

square also known as quadratic mean, is defined as the square root of mean of 

squares of a set of number.  The root mean square or RMS of a set of n values as 

{𝑥1, 𝑥2, ⋯ , 𝑥𝑛} is defined as:  

𝑥𝑟𝑚𝑠 = √
1

𝑛
(𝑥1

2 + 𝑥2
2 + ⋯+ 𝑥𝑛

2) (3) 

The mean value has a similar definition to the RMS. In problems with discrete 

values, the mean value is defined as the sum of the variables over every possible 

value weighted by the probability of that value. In simple cases, where the 

probability weight of all variables is the same, the mean value will be defined as: 

𝑥̅ =
𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛

𝑛
 (4) 

In this project, by entropy, we are referring to the Shannon entropy [48]. Shannon 

entropy is a measure of random variables in a continuous probability distribution. 
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In this project, we used Matlab (MathWorks, Inc., MA, USA) function wentropy() to 

calculate our signal’s entropy using following equation: 

𝐸(𝑠) = ∑𝐸(𝑠𝑖)

𝑖

 (5) 

Where 𝑠 is the signal and (𝑠𝑖)𝑖 is the coefficient of 𝑠 in an orthonormal basis [49]. 

Entropy and dominant frequency are frequency domain features. In order to 

calculate them, the signal should be transferred from time the domain to frequency 

domain using Fourier transform function. To transform the discrete time series of 

𝑥0, 𝑥1, ⋯ , 𝑥𝑛 to an N-periodic sequence of complex numbers we use equation (6). 

𝑋𝑘 = ∑ 𝑥𝑛. 𝑒−2𝜋𝑖𝑘𝑛/𝑁

𝑁−1

𝑛=0

 (6) 

Equation above can be interpreted to the discrete-time Fourier transform (DTFT) 

as follow: 

𝑋(𝜔) = ∑ 𝑥[𝑛]𝑒−𝑖𝜔𝑛

∞

𝑛=−∞

 (7) 

Dominant frequency is the frequency that occurs most often in a signal. In this 

project, we obtained the dominant frequency correlated with the isolated signal of 

each task.  

After calculating all attributes, the gesture matrices 𝐷𝑛s are developed according 

to Eq. 1: 

𝐷𝑛 = [[𝑅𝑀𝑆1×3] [𝑀𝑒𝑎𝑛1×3] [𝐸𝑛𝑟𝑡𝑜𝑝𝑦1×3] [𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐1×3]] (8) 

Where 𝑛 is the number of the task. For each task, four measurement features are 

calculated for three axis of three time series: acceleration, gyro and jerk. Hence, 

the number of attributes for each task will be 4 × 3 × 3 = 36. Each person performs 

a total number of 23 tasks according to the Fugl-Meyer upper extremity subscale. 

We recruited eight subjects. Therefore, the total number of attributes for our study 

will be: 8 × 23 × (4 × 3 × 3) = 6624 . 

https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
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In order to normalize the Fugl-Meyer score between all participants, we calculated 

the measured features, RMS, mean value, entropy and dominant frequency, for 

the impaired limb and divided each attribute to its corresponding of the non- 

impaired limb’s, and create a matrix of the ratio of our measurements. The resulting 

feature matrix for participant 𝑖 was then obtainable as shown in equation (9). 

𝑃𝑖 =

[
 
 
 
 

𝐷𝑇1
(𝑥̈)

𝐷𝑇2
(𝑥̈) 

𝐷𝑇1
(𝜃̇)

𝐷𝑇2
(𝜃̇)

𝐷𝑇1
(𝑥(3))

𝐷𝑇2
(𝑥(3))

⋮
𝐷𝑇23

(𝑥̈) 𝐷𝑇23
(𝜃̇) 𝐷𝑇23

(𝑥(3))]
 
 
 
 

 (9) 

Fugl-Meyer scores need to be normalized as well. It should be noted that instead 

of using the FMA scores in our analysis, we used a normalized or summarized 

value derived from the Fugl-Meyer scores. The reason for this normalization is the 

scoring criteria variety over different tasks. For example, movement synergy tasks 

are scored three times between 0-2 (for hand, shoulder flexion, and forearm 

pronation) while wrist rotation was scored once. So the maximum obtainable score 

for movement synergy is 6 (3(𝑠𝑐𝑜𝑟𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎) ×

2(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑐𝑜𝑟𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎)) while the maximum achievable 

wrist rotation score will be 2. In order to normalize our scores, we used a 

summarized scores which were calculated as the sum of all obtained scores 

Table 3. Fugl-Meyer Scoring form for two different tasks 

Task Criteria score  
E

x
te

n
s
o
r 

S
y
n
e
rg

y
 Shoulder add./int rot  0-Cannot be performed 

1-Performed partly 

2-Performed faultlessly 

Elbow Extension  

Forearm pronation  

W
ri

s
t 

Circumduction  0-Cannot be performed 

1-performed partly 

2-Performed faultlessly 
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divided by the maximum obtainable value. Table 3 shows an example of two 

performed tasks with different number of scoring criteria. 

 

Classification and Prediction  

The estimation of the quality of the impaired limb motion is formulated as a 

classification problem. Our classification model will classify our tasks according to 

their obtained Fugl-Meyer score. Therefore, all tasks receiving the same Fugl-

Meyer score are categorized in one class. 

Then, we use a supervised machine learning method to find the most important 

attributes in our classification. In machine learning supervised learning is referred 

to inferring a function from labeled training data [50]. In this kind of learning, each 

input object has an output. Supervised Leaning methods try to find an interfering 

function which can map the training data to the desired labels. In an optimal case, 

the function will be able to assign the new set of data to its potential label flawlessly. 

In order to use supervised learning algorithm, first, we need to define our training 

set. In this project, all the extracted attributes for each task were passed to out 

machine learning classification model as the training set. Then the summarized 

Fugl-Meyer scores were passed to the supervised learning model as the labels. In 

designing our classification model, all attributes corresponding to one task are fed 

to the model with the obtained Fugl-Meyer score which is the classification labels. 

Equations (10-11) show the input training set and label matrices. 

𝑖𝑛𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 = (10) 

[
 
 
 
 
 
 
 
𝑅𝑀𝑆(𝑃1, 𝑇1) 𝑀𝑒𝑎𝑛(𝑃1, 𝑇1) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃1, 𝑇1) 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑃1, 𝑇1)
𝑅𝑀𝑆(𝑃1, 𝑇2) 𝑀𝑒𝑎𝑛(𝑃1, 𝑇2) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃1, 𝑇2) 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑃1, 𝑇2)

⋮ ⋮ ⋮ ⋮
𝑅𝑀𝑆(𝑃1, 𝑇23) 𝑀𝑒𝑎𝑛(𝑃1, 𝑇23) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃1, 𝑇23) 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑃1, 𝑇23)
𝑅𝑀𝑆(𝑃2, 𝑇1) 𝑀𝑒𝑎𝑛(𝑃2, 𝑇1) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃2, 𝑇1) 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑃2, 𝑇1)
𝑅𝑀𝑆(𝑃2, 𝑇2) 𝑀𝑒𝑎𝑛(𝑃2, 𝑇2) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃2, 𝑇2) 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑃2, 𝑇2)

⋮ ⋮ ⋮ ⋮
𝑅𝑀𝑆(𝑃8, 𝑇23) 𝑀𝑒𝑎𝑛(𝑃8, 𝑇23) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃8, 𝑇23) 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑃8, 𝑇23)]
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𝐿𝑎𝑏𝑒𝑙𝑠 =

[
 
 
 
 
 
 
 
𝐹𝑀𝑆(𝑃1, 𝑇1)
𝐹𝑀𝑆(𝑃1, 𝑇2)

⋮
𝐹𝑀𝑆(𝑃1, 𝑇23)
𝐹𝑀𝑆(𝑃2, 𝑇1)
𝐹𝑀𝑆(𝑃2, 𝑇2)

⋮
𝐹𝑀𝑆(𝑃8, 𝑇23)]

 
 
 
 
 
 
 

 (11) 

In equations (10, 11), 𝑄(𝑃𝑚, 𝑇𝑛) shows that value 𝑄 is calculated for the task 𝑛 that 

patient number 𝑚 did. In equation (11), 𝐹𝑀𝑆 stands for the Fugl-Meyer score; 

𝐹𝑀𝑆(𝑃𝑚, 𝑇𝑛) shows the summarized score that the patient number 𝑚 obtained for 

performing task number 𝑛. Calculating the summarized score is described in the 

previous section. 

Two supervised machine learning methods are used in this paper and their results 

are presented and compared. These two algorithms are: 1) Decision tree and, 2) 

Bootstrap Aggregating Forest  

 Decision Tree  

The Decision Tree (DT) algorithm is one of the commonly used supervised learning 

classification methods in post-stroke kinematic data analysis. They are widely used 

in operations research especially in decision analysis. They are commonly used to 

find the strategy that is the most probable path to reach a goal. Moreover, they are 

also a well-known tool in machine learning classification problems. 

Decision tree is a flowchart-like structure in which each internal node represents a 

test on an attribute, each branch represents the outcome of the test, and each leaf 

accounts for a class label (decision taken after computing all attributes). The paths 

from the root to a leaf represents classification rules. DT does an excellent job in 

depicting an algorithm. One of the advantages of DT is its visual representation of 

data which allows observing all possible classes, as well as the likelihood of each 

label. Each node of a DT shows features automatically selected by the 

classification algorithm. Consequently, one of the strength points of DTs over other 

https://en.wikipedia.org/wiki/Flowchart
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classification algorithms is its ability to automatically prioritize the significance of 

the measured features. When decision trees are used for classifying a set of data, 

the top few nodes are the most important variables within the data set and the 

lowest nodes are less significant. Other attributes that are not presented in the 

decision tree are unlikely to have important role in classifying the dataset in hand.  

Finally, DTs require relatively little effort from users for data preparation when 

compared to other machine learning approaches. For these reasons, we chose 

DTs as a classification approach. Figure 7 shows the grown DT for participant 

number 4 resulted from attributes measured for the first research objective of the 

project. Table 5 describes parameters represented in Figure 7. If the test on an 

attribute in each node is true, the algorithm moves along red lines and if the test 

turn out to be false, the algorithm moves on a blue line. This procedure continues 

until it reaches to a label. 

Decision tree learning resorts decision trees as a predictive model to map the input 

training data set to the desired labels. This predictive model is commonly used in 

statistics, data mining and machine learning. Decision trees learn by splitting the 

training data into subsets based on an attribute value. Then the same splitting 

process is repeated for each derived subset of data, and new subsets will be 

obtained based on independent attributes. This process is called Recursive 

Partitioning. It is known as a recursive process since the splitting process may 

continue infinitely until a stopping criterion terminates the process. In an ideal case, 

the splitting is completed when all the subset presented at a node have the same 

label. However, due to the danger of overfitting, the splitting process is terminated 

at a certain degree of impurity. Impurity can be defined as the maximum 

percentage of the training data samples in a node that do not have the same target 

label value as the other subset of data at the same node. This process is an 

instance of a greedy algorithm and is the most common algorithm used by learning 

decision trees. Greedy algorithms are algorithms that use the problem-solving 

heuristic model to make the optimal local choice with the hope of finding the best 
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global model. In general, there are two types of decision trees: Classification tree 

and, Regression tree. Classification trees are used when the outcome of the 

analysis is a class of data. On the other hand, regression trees labels are real 

numbers. The main difference in classification tree and regression tree procedure 

is determining where to split the data [51]. 

In a decision tree, assume that the learning data set ℒ is in the form 

of {(𝑦𝑛, 𝑥𝑛), 𝑛 = 1,⋯ ,𝑁}; in which 𝑦𝑖s are the class labels corresponding to data 

set 𝑥𝑖. The developed prediction function is Φ(𝑥, ℒ). If data set 𝑥 is fed to Φ, label 

𝑦 is the predicted label.  We will refer to this parameters in the following section.  

Bootstrap Aggregating Forest 

Bootstrap Aggregating Forest, a.k.a. Bagging Forest is an ensemble machine 

learning approach. Ensemble methods use multiple algorithms or models to build 

a superior predictive model comparing to those that were individually obtained. 

Bagging was first introduced by Breiman [52] in1994. Forests grow a number of 

DTs. To classify a new object, the input vector is fed to each tree within the forest. 

The forest turns the output label with the most votes as the result. The Bagging 

Forest capability of classifying unstable data can be pointed out as one of its most 

significant advantages [52]. 

Continuing the technical math discussion from the decision tree section, assume 

that there is a sequence of learning sub-sets ℒ𝑘 every of which has 𝑁 independent 

observation from the original data set ℒ. We replace Φ(𝑥, ℒ) by Φ(𝑥, ℒ𝑘). Assume 

that Φ(𝑥, ℒ) predicts a class 𝑗 ∈  {1,⋯ , 𝐽}, and 𝑁𝑗 = 𝑛𝑟{𝑘;Φ(𝑥, ℒ𝑘) = 𝑗}    . Then 

Φ𝐴 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗𝑁𝑗 where, subscript 𝐴 shows aggregating. So in the case of the 

classification, and not regression, the algorithm returns the most voted label as the 

predicted label for the fed data set. For more technical details, the reader is 

referred to [52, 53]. 
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Figure 4. Generated Decision Tree for Participant No. 2 
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Table 4. Description of Figure 4 Parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Parameter 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 

Feature RMS RMS RMS RMS Mean Mean Mean Mean Mean 

Time series Gyro Gyro Gyro Jerk Acc. Acc. Acc. Gyro Jerk 

Axis x y z z x y z z Z 

Parameter 𝐴10 𝐴11 𝐴12 𝐴13 

 

Feature Dom. Freq. Entropy Entropy Entropy 

Time series Jerk Acc. Acc. Jerk 

Axis y x z X 
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As the number of trees (ℒ𝑘) in a forest grows, the cost of calculation and the 

probability of over–fitting increases. To the best of the author’s knowledge, there 

no straight forward analytical method of determining and estimating the optimal 

number of trees in a given forest is introduced so far. In general, the number of 

grown trees in a forest is a compromise between data over–fitting and classification 

error. Considering the number of data sets in this study, seven trees were grown 

for each Bagging Forest. Similar to the DTs, we used the summary scores as class 

labels.  

Predictive Model Validation 

Leave-One-Out Cross Validation 

In order to evaluate the classification accuracy of the two resorted approaches, the 

Leave One Out (LOO) cross-validation method is used [54]. LOO is widely 

employed in problems where the goal is prediction. It is also known as Jackknife.  

LOO cross-validation is one of the comprehensive cross-validation methods that 

breaks down the original data set into a learning data set and a test data set; this 

is done by leaving one data set out as the test data to estimate the prediction 

accuracy [54], [55]. LOO cross-validation performs dividing the initial data sets into 

learning and validation 𝐶𝑛
1 = 𝑛 times, where 𝑛 is equal to the number of data sets. 

For this reason, LOO cross validation is recommended for relatively small data 

sets [54].  

Confusion Matrix 

Confusion matrices are utilized to visualize the performance of each classification 

methods. Each row of a confusion matrix shows the instances belonging to an 

actual class while each column shows predicted values [56]. Various metrics may 

be utilized to evaluate the accuracy of the prediction model based on the confusion 

matrix [56]. The Rate of False Discovery (FDR) is used in this project to find the 

relaying error of prediction, which can be expressed as: 
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𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 (12) 

Where 𝐹𝑃 is the number of false positives and 𝑇𝑃 stands for the number of true 

positives. Equation (13) shows an example of confusion matrix calculations for 

participant 8 using methods DT, Eq. 13.a, and Bagging Forest, Eq. 13.b.  

𝐶𝐷𝑇 =

[
 
 
 
 
0 0 0 0 0
1 2 0 0 0
2 0 0 0 0
0 0 0 1 0
0 1 0 0 12]

 
 
 
 

 

 

(13.a) 

𝐶𝐵𝑎𝑔𝑔𝑖𝑛𝑔 = [

3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 13

]   (13.b) 

 

The corresponding FDR errors can then be calculated as: 

𝐹𝐷𝑅𝐷𝑇 = (
(1 + 2 + 1)

(1 + 2 + 1) + (2 + 1 + 12)
) × 100 = 21% (14.a) 

𝐹𝐷𝑅𝐵𝑎𝑔𝑔𝑖𝑛𝑔 = (
0

(3 + 2 + 1 + 13)
) × 100 = 0% (14.b) 

The mean FDR value for all LOO cross-validation attempts trials was calculated.  

𝐹𝐷𝑅𝑚𝑒𝑎𝑛 =
𝐹𝐷𝑅1 + 𝐹𝐷𝑅2 + ⋯+ 𝐹𝐷𝑅8

8
 (15) 

The result value was used to define the total error for each approach. The resulting 

𝐹𝐷𝑅𝑚𝑒𝑎𝑛 for the DT and Bagging Forest approaches (for 𝑛 trials, 𝑛 = 8) were 

compared using the paired t-test at the 5% significance level. Statistical test t-test 

is a commonly used method to determine if two data sets are significantly different. 

It is a test of null hypothesis that indicates if the difference of the mean value of 

two data sets, which were measured with the same units, is zero.  
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CHAPTER FIVE:  

RESULTS AND DISCUSSION 

Data collection and preparation is done according to what was explained in chapter 

three. In order to interpret the post-stroke kinematic data with clinical features, 

some attributes of the data should be extracted which are capable of representing 

the characteristics of the nature of human upper extremity movements such as 

speed, smoothness, and accuracy. 

After data collection and data preparation, gesture matrices were produced 

according to equations (8, 9). These gesture matrices are used along with the 

summarized Fugl-Meyer score obtained for each task in the form of equations (10, 

11) to develop a classification model. The classification model then was used to 

generate our predictive model to estimate the quality of the new set of kinematic 

data according to the Fugl-Meyer standard. We used both DT and Bagging forest 

methods to create our prediction system. LOO cross-validation method was then 

resorted to evaluate the accuracy of our predictive frameworks as described in 

chapter three. Figure 8 depicts a summary of the proposed frameworks outcomes. 

The Bagging Forest approach results show statistically significantly lower FDR 

error than the DT (𝑡(7) = 5.6756, 𝑝 < 0.001, Figure 8). The mean value of error for 

the Bagging Forest approach (2.5 ± 2.5%) was lower than that of the DT method 

(18.2 ± 9.5%). 

 Decision Tree 

The DT approach has many advantages that make it a suitable choice for 

classification of post-stroke kinematic data. The visual representation of data in 

DTs provides the opportunity to observe all alternatives for a solution and the 

associated possibility of each label’s occurrence. When decision trees are used 

for classifying a set of data, the proximal (primary and secondary) nodes are the 

most sensitive features within the data set measured features while the furthest 

nodes show the least sensitive features. 
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Figure 5. FDR Prediction Error for the DT and Bagging Forest Methods 

Figure is adopted from [47] 

 

Since we had eight subjects in this study, the LOO cross-validation algorithm was 

performed 𝐶8
1 = 8 times. In every LOO attempt, one of the patient’s data set is left 

out as the test data set. The prediction model developed using DT results showed 

that the entropy of acceleration (of all three axes) was the primary node in all trees. 

The entropy of 𝑥 −axis acceleration was the most important variable in our data 

classification, appearing as the primary node for 75% of all DTs that were 

generated by the LOO cross validation approach. In the remaining 25% of DTs, 

the 𝑦 − and 𝑧 − axis of entropy of acceleration were the primary nodes. Figure 6 

shows all the measured features that appeared in the first two nodes of our DTs in 

eight LOO trials. Additionally, about 75% of the secondary nodes of all DTs were 

frequency domain features. The combined 83.3% representation of frequency 

domain features in the primary and secondary nodes of the DTs shows the high 

sensitivity of frequency domain features to post stroke kinematic motion quality 

which is consistent with the literature [57, 58]. Additionally, some Fugl-Meyer tasks 

(such as those requiring motion synergy) may be similar in the frequency domain 

but not the time domain. This conclusion is consistent with the existing literature 

[59]. 
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Furthermore, features extracted from acceleration and jerk appeared in 

approximately 80% of all primary and secondary nodes, and gyro rates showed up 

is approximately 20%. This finding emphasizes on the significance of acceleration 

and acceleration–derived features relative to gyro data in our classification 

method. Acceleration and Jerk are known to be representors of the motion 

smoothness, while gyro can be a useful criterion for coordination. The obtained 

results demonstrate and explain the ability of the DT approach in providing rich 

information from exploratory analyses. 

 

 

Figure 6. Representation of Measured Features in Two Primary Nodes 

Figure is adopted from [47] 

 

Bagging Forest Approach 

Despite the informative results that we obtained using DT method, the mean value 

of FDR error of 18.2% for the DT approach may be unsatisfactory for analyses of 

motion outside of the clinical setting considering unpredicted disturbances that our 
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system will experience in real world. As shown in figure 10, Participants 1 and 6 

have significantly lower FMA scores relative to other subjects. This instability of 

data set resulted in prediction accuracy variability across the different LOO cross-

validation attempts. A data set is considered unstable if small changes in the 

training set results in large changes of the predicted value [60]. 

The instability of data suggested the use of machine learning ensemble methods 

which are known to excel in analyses dealing with unstable data [52],[60, 61]. 

Unlike the more commonly used Random Forest approach which searches 

through a specific number of features to find the best features for growing trees, 

the Bagging Forest algorithm searches at each node of a tree for the attributes that 

best splits the data at that node. We chose a set of features known to be relevant 

to post-stroke kinematic data classification for our analyses. Considering this and 

the capability of Bagging Forest over Random Forest in classifying unstable data, 

Bagging Forest was chosen for our further analysis [13]. 

The thorough search algorithm of the Bagging Forest for growing the best trees for 

classification and its privilege in classifying the unstable data sets resulted in a low 

error rate for our data. The 2.5% FDR error of our Bagging Forest model confirms 

that this approach can be used as a reliable classification algorithm in the presence 

of unstable data. 

Despite the Bagging Forest accurate estimation of the FMA scores, there are 

certain drawbacks in using this classification method. The Bagging Forest is a 

machine learning black box approach, which makes an intuitive interpretation of 

the results almost impossible [53]. Hence, we are unable to hypothesize readily 

why the performance of one forest differed from the others. However, a post hoc 

investigation of our results indicates that that the maximum error of 5% (the highest 

error in Bagging Forest) occurred when Participant number 6’s data (one of the 

two unstable data sets) were left out as the test data set. This finding indicates 

although the Bagging Forest approach is less sensitive to this instability when 
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compared to the DT method, the instability of data still affects the result and 

remains apparent. 

 

 

 

Figure 7. Summarized FM Score for each participant 
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CHAPTER SIX:  

CONCLUSION 

The increasing rate of daily smoking, physical inactivity, being overweight, having 

high blood pressure, and diabetes suggests an increasing rate of stroke 

occurrence probability in near future. A large share of the average $100,000 post-

stroke treatment cost goes to the health-care services.  This massive cost can be 

reduced by discharging the patient from the hospital and still have him/her under 

the virtualized therapist’s monitor. This study opens an avenue to evaluating the 

post-stroke physical improvement in real world setting. Using accelerometry-based 

sensors for human motion monitoring, suggests an accurate post-stroke motion 

tracking without interrupting the patients during his/her activities of daily living or 

invasion of privacy. This project contributes to virtualizing the physical and 

occupational therapists while allowing the patient to have their support and 

feedback all the time and at a lower cost. 

This thesis studies the possibility of estimating post-stroke quality of motion in real-

world setting. To do so, an experiment was designed in which the participants wore 

motion monitors and performed physical tasks according to the Fugl-Meyer 

Assessment subscale for upper-extremity. The examiner therapist evaluated the 

subjects’ performance visually and scored his quality of motion according to the 

Fug-Meyer criteria. Then the collected kinematic data and Fugl-Meyer scores were 

used to develop predictive models to evaluate the quality of motions corresponded 

to the input kinematic data. Four measurement features were extracted from three 

time series of kinematic data: Root mean square, mean value, entropy and 

dominant frequency and they are derived for acceleration, rate of gyro and jerk. 

The extracted measurement features and the obtained Fugl-Meyer scores were 

fed into our classification models to categorize the kinematic data according to the 

obtained Fugl-Meyer score.  Two supervised machine learning methods were 

employed, and their results were used to develop predictive models. These two 

machine learning methods were: Decision Tree and Bootstrap Aggregating Forest.  
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After developing the two predictive models, the Leave-One-Out method was used 

to evaluate the accuracy of the developed models. Confusion matrices were 

resorted to visualize the leave-one-out results.  The validation resulted in 18.2 ±

2.5% of prediction error for the decision tree while this error was 2.5 ± 2.5%  for the 

bagging forest. The instability of data was recognized as the most important reason 

in error reduction between the two resorted methods. Moreover, the presence of 

frequency domain features in all primary nodes, and 75% of the secondary nodes 

can be interpreted as the importance of frequency domain variables in classifying 

human kinematic data. 

The methodology used in this research can be developed to be used in other 

clinical studies. In future explorations, the quality of motion predictor modelled in 

this project can be resorted to estimate patients’ scale of pain, strength, soreness, 

muscle, etc. The developed method along with task recognition frameworks will be 

a complete at home post-stroke monitoring system.  
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CHAPTER SEVEN:  

STUDY LIMITATIONS 

There were certain limitations in the current study that might affect the results. First 

of all, the sample size was limited. Further validation of this method needs applying 

to a larger population of subjects. Also, the Fugl-Meyer tasks were done in an 

active rehabilitation center. Thus, certain environmental distractions might occur 

during the experiment. Moreover, the physical condition of our participants needed 

frequent rests or broken–up sessions in some cases. Finally, using two examiner 

therapists may have increased variance in clinician scoring on the Fugl-Meyer 

tasks. In future work, more participants should be recruited to increase the data 

size and consequently, improve the prediction model through the investigation of 

other clinically meaningful features. 
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APPENDIX  

  



51 

 

The presented Fugl-Meyer form in this chapter is adopted from [62] 
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