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ABSTRACT 

There is an increasing interest in the use of inorganic membranes as a means of 

separating gas mixtures at high temperatures and pressures. The most important 

membrane properties are high permeability and selectivity, and good mechanical, thermal 

and chemical stability. Dense Pd-based composite membranes are suitable for hydrogen 

separation and use in catalytic membrane reactors because of their high permeability, 

good surface properties and high selectivity for hydrogen transport. At UTSI, Pd/Al O2 3 

membranes were prepared by a special method of laser based thermal deposition of the 

thin film Pd on a ceramic substrate by Nd-YAG laser irradiation of PdCl2 coating on a γ-

alumina substrate. This work reports a mechanistic model for the hydrogen permeation 

process in the Pd/Al2O3 composite membrane developed at UTSI.  The model takes into 

account the well known kinetics of hydrogen adsorption/desorption in the palladium 

surface and hydrogen permeation in the porous alumina layer.  Reasonable values for all 

mass transfer rate parameters were estimated based on the available surface science and 

membrane permeation literature. One set of experimental data (at 11000F) was used to 

determine the best values of the necessary rate parameters.  These values of rate 

parameters were then used to predict and compare the experimental hydrogen flux data at 

two other temperatures (9000 0F and 1300 F).  The results demonstrated that the atomic 

hydrogen diffusion through the palladium layer and pore diffusion in the porous alumina 

support both played important roles in the permeation of hydrogen through the composite 

Pd/Al2O3 membrane. A simplified resistance model was also employed to analyze the 

permeation behavior of hydrogen through the Pd/Al2O membrane to identify the major 3 
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resistances to the mass transfer.  The results indicated that the mass transfer in the Pd 

layer contributed about 90% of the total mass transfer resistance. Our model calculations 

also indicated that by reducing the thickness of the Pd layer to about 18 μm, the DOE 

goal of > 60 scfh/ft2 for hydrogen gas flux can be achieved. This can also be achieved by 

reducing the thickness of the Pd layer to about 20 μm and reducing the thickness of the 

alumina support layer to about 2 mm or by increasing it’s porosity to about 50%. 
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1. INTRODUCTION 

1.1 Background 

The extensive use of hydrogen in many industrial sectors such as petroleum refining, 

petrochemical, semi-conductor, industrial material processing and in power producing 

devices such as fuel cells, is expected to rise in the coming years. More so, the depletion 

of crude oil, natural gas and fossil fuel has led the US chemical industry to seriously 

consider hydrogen as one of the alternative clean energy carriers.  Hydrogen is the most 

common element in the universe but is mostly found bonded in chemical compounds like 

water, biomass and fossil fuels. Chemical reactions are needed to break hydrogen bonds 

from these compounds and release hydrogen which has to be then recovered from the 

multi-component gas stream.  Recovery of high purity hydrogen can be achieved by 

employing the membrane separation technology. The DOE goal is to research and 

develop low cost, highly efficient hydrogen technologies from diverse domestic and 

renewable sources. Substantial advantages can be gained from fossil-fuel gasification 

technology for the production of hydrogen and other useful gases by using membrane 

separation processes.  The reactions involved in gasification are favored at high 

temperature and pressure and are also limited by thermodynamic equilibrium. The use of 

a membrane for separation provides the basis for improved methods of hydrogen 

recovery and also reduces cost associated with hydrogen production at elevated 

temperatures and pressures. Also, combining the chemical reaction and separation steps 

in a single process will eliminate limitations imposed by the process thermodynamics on 
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the yield of hydrogen.  The US chemical industry is also faced with the significant 

technical challenge of developing hydrogen separation membranes that can withstand 

severe operating conditions of high temperature, high pressure, and dusty environments. 

 

Dense palladium-based membranes have been used in recent years in the separation of 

hydrogen, and in catalytic membrane reactors and have been studied extensively due to 

their high permeability, good surface properties and high selectivity for hydrogen 

transport.  Palladium was first identified as a highly hydrogen-permeable material in the 

19th century and it is used for high-performance hydrogen-separation applications today 

(1).  It is necessary to reduce the thickness of the Pd film in order to improve permeation 

flux and to retain the high selectivity of palladium-based membranes. However, very thin 

membranes have low mechanical strength. To achieve good mechanical strength and also 

to enhance the permeation rate of hydrogen, the Pd-based surface film is usually 

deposited on a mechanically strong porous support. Palladium-based composite 

membranes have high hydrogen permeability, very high hydrogen selectivity, and good 

mechanical and thermal stabilities at high temperature. Shu et al and many other 

investigators have prepared Pd-based composite membranes by the electro-less plating 

technique on micro-porous glass, porous stainless steel, and anodic alumina support (2). 

Sputter-deposition (3), spray pyrolysis (4), and chemical vapor deposition (5) have also 

been used to deposit Pd-based films on the suitable porous support. 
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The Pd/Al O2 3 membranes discussed and researched in the present work consist of a very 

thin, dense Pd skin layer on a porous Al2O3 support. The permeation of hydrogen through 

the dense palladium is a complex multi-step process, which involves reversible 

dissociative chemisorption of hydrogen on the membrane surface, reversible dissolution 

of surface atomic hydrogen in the bulk layers of the metal and the diffusion of hydrogen 

in the membrane (6). This type of solution-diffusion mechanism was first proposed by 

Thomas Graham in 1888. The overall rate of permeation may be limited by one particular 

step if it is the slowest step or a combination of several steps. For bulk diffusion of 

hydrogen as the rate limiting step, the permeation rate of hydrogen through the dense Pd-

based film was found to be inversely proportional to the membrane thickness and was 

also proportional to the square root of the pressure difference.  This behavior is called 

Sievert’s law behavior (1). Deviations from Sievert’s law behavior have been attributed 

to various factors including the surface processes, surface poisoning, and grain size and 

grain boundaries (7). Membrane materials with larger grain size and fewer grain 

boundaries have lower permeability (5) and hence affect Sievert’s law behavior. In the 

past few years many investigators have reported flux values for thick Pd membranes that 

are consistent with the calculation for diffusion limited permeation. Significant 

discrepancies exist for membranes less than 10μm thick.  Desorption limited fluxes have 

also been reported at very low temperature. Additionally, the permeation through the 

porous Al O2 3 support can be described by a phenomenological equation (Darcy’s Law) in 

which the hydrogen flux is proportional to the pressure gradient across the Al2O3 support 

(2). 
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( )P h lJ F P P= −                                                                                                    (1.1) 

Where 

 FP = permeability  

 P  and Ph l = partial pressures of gas in the high pressure and low pressure sides 

respectively.  

Hydrogen gas transport through the porous support in terms of Knudsen diffusion and 

viscous flow has also been analyzed by Huang and Chen (8) using the dust-gas model.   

 

At UTSI, Pd/Al2O3 membranes were prepared by a special method of laser based thermal 

deposition of the thin film Pd on a ceramic substrate by Nd-YAG laser irradiation of 

PdCl2 coating on γ-alumina substrate (9). In this UTSI study, the parameters of the laser 

beam were optimized, and a new procedure to synthesize metal-ceramic composite 

membranes was developed.   The Pd-ceramic composite membrane showed good 

mechanical and thermal stability with a hydrogen permeability flux of 0.061 (mol/m2s) 

and activation energy of about 5.39 (kJ/mol) in a temperature range of 900-1300°F (9). 

 

1.2 Scope of Present Work 

In this study, a mechanistic model of the hydrogen permeation process in the Pd/Al O2 3 

composite membrane is reported.  This model takes into account the well known kinetics 

of H2   adsorption/desorption at the palladium surface and H permeation in the porous 2 
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alumina layer. It also takes into account the mass transfer resistance associated with the 

viscous flow (Hagen-Poisuielle type) and Knudsen diffusion through the porous support.  

This mechanistic model was used to simulate the earlier hydrogen permeation 

experimental results obtained from the Pd/Al O2 3 composite membrane at UTSI (9). 

Based on the results obtained from our model calculations, the optimal material and 

structure of a composite membrane for hydrogen separation can be effectively designed 

to achieve the fluxes in excess of 60 scfh/ft2.  This limit has been considered by DOE to 

be necessary for the commercial applications in hydrogen fueled fuel cells.  

 

In comparison between the rigorous theory and direct experimentation for hydrogen 

permeation membranes, the mathematical model developed based on theoretical approach 

can offer a quick and less expensive route to acquire information necessary for membrane 

development and design. It can be used to determine the trade-offs in conflicting design 

requirements, to choose optimum operating conditions, and to see the effect of various 

parameters on membrane performance. Such a model could also provide a basis to 

extrapolate results from small scale units to a prototype or to demonstration scale plant. 

Also information derived from such a study could also provide the ability to tailor-make 

membrane properties for desired applications.  
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2. LITERATURE REVIEW 

There are excellent reviews on the fundamental mechanisms of gas transport through 

palladium membranes and on modeling of gas separation in palladium membranes. 

Huang et al. (2) studied the hydrogen permeation behaviors through palladium composite 

membranes, to understand the influence of the mass transfer resistance of the Al O2 3 

support.  The importance of the Pd film microstructure on the hydrogen permeation rates 

has been stressed by Ward and Dao (7).   A model was developed by Henis and Tripodi 

(1981), whereby the transport properties of each membrane layer in the composite hollow 

fiber membrane can be isolated and their transport resistances studied (10). Shu et al. 

reviewed hydrogen permeation in pure palladium membranes, as well as the basic 

physico-chemical knowledge which would allow for future development (6).  The 

energetic, kinetic and structural properties of hydrogen chemisorbed on a Pd (100) 

surface were studied by Behm et al. using thermal desorption, work function and LEED 

(Leadership in Energy and Environmental Design) measurements (11).  More work on 

the fundamental surface science of hydrogen on palladium has also been reported by 

Conrad et al. in his work on the adsorption of hydrogen on palladium single crystal 

surfaces (12). 

 

Membranes are permeable or semi-permeable barriers that permit selective mass 

transport between two phases and can be broadly classified into organic and inorganic 

membranes. Transport processes across the membrane take place as a result of a driving 

force, which is typically associated with a gradient of concentration, pressure, 
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temperature, electric potential, etc. Organic membranes are typically made from 

polymers and inorganic membranes are comprised of membranes that are made from 

metals, glass and ceramics.  Inorganic membranes are chemically and thermally more 

stable than organic membranes at temperatures over 473K.  They also have better 

mechanical strength and freedom from aging.  The permeation and separation efficiency 

of inorganic membrane systems depend, to a large extent, on the microstructural features 

of the membrane and the architecture of membranes and membrane support combinations 

(13). The microstructural features include, pore shape and morphology, pore size 

(distribution) and tortuosity. The architecture of membranes and membrane support 

combinations describes the way the different parts of the membrane system or module are 

shaped and combined. Membranes are manufactured in a diverse range of geometries; 

they include flat, tubular, multi-tubular, hollow-fiber and spiral-wound membranes.  

According to their structure, inorganic membranes can be divided into porous inorganic 

membranes and dense inorganic membrane. Porous membrane with average pore 

diameters larger than 50 nm are classified as macro porous, those with average pore 

diameters in the intermediate range between 2 and 50 nm as mesoporous  and those with 

average pore diameters smaller than 2 nm as microporous membranes (14). 

 

Dense membranes are made from solid layers of metals like platinum, silver, niobium, 

zirconium, palladium and their alloys.  Transport across dense membranes is described by 

the solution/diffusion mechanism. In this mechanism, the molecular specie is adsorbed on 

the surface and then dissolved in the bulk of the membrane, where transport occurs by 

atomic diffusion through the bulk. It then desorbs from the surface of the permeate side 
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of the membrane. Dense membranes can either be self-supporting (symmetric) or 

composed of a thin selective layer deposited on a porous support (asymmetric). Self-

supporting dense membranes are relatively thick with high selectivity and high 

mechanical strength, but low fluxes. The flux is inversely dependent on the thickness of 

the membrane. Besides the low flux, thick Pd membranes are too expensive for economic 

use.  Thin selective membrane layers deposited on porous supports improve permeation 

rates and have great impact on the cost of membranes. Recently, research efforts have 

been carried out on fabricating thinner membrane layers on porous supports.  Chemical 

vapor deposition has been used to deposit palladium thin films on a ceramic support (5, 

15, and 16). The chemical plating method has been successfully used by researchers to 

coat membrane films of thickness 4 – 6 µm (3, 17).  Li et al. (4) have successfully coated 

2 µm thin Pd/Ag alloy membranes using spray pyrolysis technique. Shu et al. have 

studied the physical properties of simultaneously deposited films of palladium and silver 

by Electroless plating (18).  Sputter-deposition techniques have also been used to deposit 

thin films on porous support.  At UTSI, a special method of laser-based deposition of the 

thin Pd film on a ceramic substrate by Nd-YAG laser irradiation of PdCl2 coating on γ-

alumina substrate has been successfully carried out (9). 

 

The first observation of the permeability of hydrogen through transition metals was made 

by Deville and Troost (19), whose experiments were first carried out on iron and 

platinum (Deville and Troost, 1863; Deville, 1864).  Thomas Graham carried out related 

measurement afterwards and observed that not only did palladium permit high 

throughputs of hydrogen, but that large volumes of hydrogen were absorbed in the 
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palladium metal. The hydrogen permeability of palladium increases with the temperature 

because the endothermic activation energy for diffusion dominates the exothermic 

adsorption of hydrogen on palladium (20). Palladium exhibits a high solubility of 

hydrogen when compared with other transition elements over a very wide range of 

temperatures and pressures of hydrogen.  Palladium experiences an α ―> β transition at 

temperatures below the critical temperature (568K) and pressures below 20 atm (1, 6, 

19), depending on the hydrogen concentration in the metal.  This phase transition leads to 

lattice expansion of about 10% which leads to lattice strain and physical distortion after a 

few cycles. This can be remedied by exposing palladium to hydrogen only at high 

temperatures above the critical temperature. The surface of pure palladium metal is 

poisoned when exposed to sulfur and chlorine and the presence of carbon monoxide may 

affect its chemical stability. It has been reported that a CO concentration of only 0.2% 

gives a gives a significant reduction in the hydrogen flux (48, 49). Removal of hydrogen 

sulfide up front from the multi-component gas stream will reduce poisoning of the Pd 

surface. In addition, alloying palladium with other elements improves its chemical 

stability. Examples of such alloys of Pd are Pd-Ag, Pd-Cu and Pd-Ru. Pd-Cu membrane 

is resistant to sulfur.  Pd-Ag is the most commonly used alloy for hydrogen extraction, 

the hydrogen permeability increases with silver content (17). Alloying Palladium with 

other elements increases the mechanical strength of palladium membrane and the lattice 

is less influenced by hydrogen unlike pure palladium membrane that undergoes lattice 

expansion after certain cycles of α ―> β transformation.  In, for example, palladium–

silver alloys, the lattice has already been expanded by the silver atoms, and the Pd-Ag 

lattice is less influenced by hydrogen and thus less brittle than the pure Pd lattice (56). 
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Palladium is characterized by face-centered cubic (FCC) structure, which has two 

interstitial, octahedral and tetrahedral sites, corresponding to the minima in the potential 

energy (21).  Diffusion of hydrogen through the palladium is attributed to the “jumping” 

of hydrogen atoms through the octahedral interstitial sites of the face-centered cubic 

palladium lattice (22).  The lattice-diffusional mode of mass transfer for hydrogen has 

given palladium metal an unmatched potential for use as hydrogen selective membranes 

for separation and purification. The diffusion coefficient of hydrogen in palladium has 

been determined by several investigators with remarkable consistency.  The diffusion 

coefficient is given by following equation: 

D = D  exp (-E0 diff / RT)                                                                      (2.1) 

Where 

D0 = Pre-exponential factor (cm2/s), 

Ediff = activation energy for H atom diffusion (kcal/mol H), 

T = temperature (K), and  

R = gas constant (kcal/mole K).  

In some selected literature permeation data, reported values of the pre-exponential factor 

range from 2.3× 10-3 - 4.5 × 10-3cm2/s and activation energy of H atom diffusion varying 

between 21.7 – 24.1 kcal/mol H in the temperature range of -40 to 10000C (23 – 27). 

 

There has been growing interest in the industrial application of Pd-based membranes for 

hydrogen production. This is because the catalytic ability of the membrane surface 

combined with the high hydrogen selective permeation would make it possible to 

separate hydrogen from a reversible reaction and thereby shift the reaction towards the 
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product side. Pd-based membranes have been used as hydrogen purifiers to supply high 

purity hydrogen for industrial applications. A commercial hydrogen purification 

equipment utilizing tubes of 23% silver-palladium alloy was developed by Johnson 

Matthey in the early 1960’s (6).  Dehydrogenation and hydrogenation reactions on Pd 

membranes have been reviewed by Shu et al. (6).  Gryaznov et al. studied the 

dehydrogenation of light alkane using Pd or Pd-alloy dense membranes (28) and Itoh (29) 

studied the dehydrogenation of cyclohexane in reactors using palladium tubes. Uemiya et 

al. (30) studied the water gas shift reaction using a palladium membrane reactor in which 

the product hydrogen permeated the membrane to provide CO conversions in excess of 

those associated with the normal equilibrium conversion. 

 

Gas transport through palladium based membranes is usually rate limited by the bulk 

atomic diffusion and that the flux has been found to be inversely proportional to the 

membrane thickness with an approximate square root dependence on the hydrogen partial 

pressure (1, 2, 6 – 9).  This behavior is called Sievert’s law behavior with the value of the 

exponent, n, is equal to 0.5 (23). The exponent of 0.5 reflects the dissociation of the 

gaseous hydrogen molecule into two hydrogen atoms that diffuse into the metal, where an 

ideal solution of hydrogen atoms in palladium is formed: 

2

0.5
H S HC K P=                                                                                           (2.2) 

Where  

CH = hydrogen atom concentration in palladium (mol/cm3),  

K  = Sievert’s constant (atm0.5) and  S
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2HP = hydrogen partial pressure (atm).  

The flux of hydrogen (JH2) through a palladium which is twice the flux of hydrogen 

atoms (JH) is expressed as: 

z
C

DJJ H
HH Δ

Δ
−==

2
2                                                                               (2.3) 

Where  

D = diffusion coefficient of hydrogen atom in the membrane (cm2) and  

Δz = membrane thickness (μm). 

Combining the two equations above yields; 

z
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 ,                                                                 (2.4) 

Alternatively, Equation (2.4) can be generalized as; 
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J
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H Δ
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−=

)(
2

,, 22

2
                                                                   (2.5) 

Collins and Way found that the value of n was significantly dependent on temperature 

and the n value of a palladium layer with 17 µm thickness decreased from 0.622 to 0.552 

when the permeating temperatures increased from 723K to 873K (31).  Hulbert and 

Konecny (32) showed that the bulk diffusion of hydrogen was the rate limiting step when 

the thickness of the palladium layer was greater than 20 µm. Uemiya et al. (33) reported 

that diffusion-limited permeations extended to thicknesses less than 10 µm. There has not 

been agreement among experimental observations for very thin Pd films due to the 

complexity of the overall transport mechanism and also with difficulty in quantifying 

factors such as poisoning and surface contamination. Ward and Dao (7) reported that 
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diffusion was likely to be the rate-dominating step at moderately high temperatures 

( 573K), even for membrane thicknesses approaching 1 µm. Ward and Dao (7) also 

concluded that desorption was the rate-limiting step at low temperatures and adsorption 

was only likely to be important at very low hydrogen partial pressure or in the presence 

of substantial surface contamination.  The deviation from the Sievert’s law has been 

reported in the literature and has been attributed to a variety of reasons such as: 

≥

 

1. Non-steady state operation (6) 

2. Poisoning of the palladium surface (7, 32, and 34) 

3. Grain boundaries (5) 

4. Accumulation of non-diffusing gases on the upstream side of the 

membrane (32) 

5. Different rate limiting step (6), and 

6. Transport resistance of the support layer (35) 

 

The transport resistance of the support is considered to be negligible in most permeability 

studies, but Huang et al (35) in their studies showed that considerable transport resistance 

can exist in the support layer also.  Burggraaf (36) in his work reported that the mass 

transfer resistance associated with the Knudsen diffusion or viscous flow through the 

porous support could be very significant in a composite membrane. 

 

The purpose of the present thesis is to develop a mechanistic model of hydrogen 

permeation in the Pd/ alumina composite membrane fabricated at UTSI.  The concepts 
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and model description of each step involved in the hydrogen permeation are next 

reviewed in detail. 
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3. PERMEATION THEORY AND MODEL FORMULATION  

A schematic of the hydrogen permeation measurement system used in prior permeation 

measurements at UTSI is shown in Figure 1 (9). A magnified schematic of the 

Pd/alumina composite membrane holder is also shown in Figure 2. In Figure 2, the 

reactants containing a mixture of gases were introduced in the high partial pressure side 

and only hydrogen permeates the membrane to the low partial pressure side of the 

membrane where it was carried away by the flowing nitrogen as carrier gas.  

 

The following assumptions were taken into account to develop the mechanistic model: 

1. Membrane is isothermal. 

2. Flow through the membrane is laminar. 

3. Steady state operation. 

4. Thermodynamic equilibrium between atomic and molecular hydrogen in the 

dissolution transition.  

 

The permeation of hydrogen through the Pd/ alumina composite membrane consists of 

the permeation through the dense palladium layer followed by the permeation through the 

porous alumina layer.  A detailed description of the permeation process in each layer is 

discussed below. 
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Figure 1 Schematic of experimental setup to measure permeability of H2 (9) 
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Figure 2 Schematic of gas flow for Pd/ alumina composite membrane holder (9) 

 

3.1  Hydrogen Permeation in Palladium  

The mechanisms of hydrogen permeation through a palladium membrane have been 

studied extensively (6, 7, 19, and 20). These are listed below in order from the high 

partial pressure side to the low partial pressure side (see Figure 3): 

1. molecular transport from the bulk gas to the gas layer adjacent to the Pd surface, 

2. dissociative adsorption onto the Pd surface, 

3. transition of atomic H from the Pd surface into the bulk Pd metal, 

4. atomic diffusion through the bulk Pd metal, 

5. transition from the bulk Pd metal to the Pd surface on the low partial pressure 

side, 

6. associative desorption from the low pressure side Pd surface, and 

7. gas transport away from the low pressure side surface to the bulk gas. 

N2 

N2 + H2 

 

N2 + H2 

 

H2 H  + Other gases 2

Ceramic adhesive layer 
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Figure 3 Mechanism of H2 transport through Pd layer 
 

Steps 2, 3, 5 and 6 are reversible and take place on both faces of the membrane.  The 

overall observed rate of permeation may be limited by one step if it is the slowest step or 

may be governed by a combination of steps. Appropriate rate expressions and parameters 

for each step will be examined below (7).  All rate quantities are expressed in terms of 

atomic hydrogen flux, except where noted, and thus flux quantities have units of mol H/ 

(area× time).  Equilibrium between molecular and atomic hydrogen is given by: 

2 2H H                                                                                                 (3.1) 

Hence, the flux of hydrogen atom (JH) is estimated to be twice that of hydrogen 

molecules. 

 

Figure 4 shows a schematic of energy level diagram for Pd-H system, adapted from the 

work of Ward and Dao (7) and similar to those postulated by Picks (37).  

5

   Δz 

4

H 

H H 
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Figure 4 Energy level diagram used to model H permeation through Pd (7). 
 

Figure 4 displays activation energies defining the surface barrier model for hydrogen 

adsorption/desorption in palladium metal.  Ed is the activation energy for H atom 

desorption (kcal/mol H) and is half the value of the heat of adsorption, ΔEad (kcal/mol 

H ). EA is the activation energy for surface-to-bulk Pd metal transition (kcal/mol H).  E2 B 

is the activation energy for H atom bulk Pd metal-to-surface transition (kcal/mol H). E

B

diff 

is the activation energy for H atom diffusion in Pd (kcal/mol H) and is essentially the 

same as the bulk Pd metal-to-surface activation barrier. These activation energies will be 

used in our work for calculations in the different mass transfer steps. 

   

3.1.1 Film Transfer 

This is the external mass transfer resistance associated with the molecular transport from 

the bulk gas to the gas layer adjacent to the Pd surface.  In this case the resistance to mass 

transfer is assumed to reside in a gas film in the fluid next to the surface. The flux from 
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the bulk gas phase to the surface of the Pd membrane using a mass transfer coefficient 

can be expressed as: 

2 ( )H sJ h C C= −                                                                                                 (3.2) 

and 

2HD
h

δ
=

                                                                                                           (3.3) 

Where 

JH = atomic hydrogen flux (mol/cm2 s), 

h = mass transfer coefficient (cm/s), 

C = gas phase molecular hydrogen concentration in the bulk (mol/cm3),  

C  = gas phase molecular hydrogen concentration adjacent to the surface (mol/cm3),  s

D  = diffusion coefficient of hydrogen gas in the bulk (cm2/s), and H2

δ = thickness of the film (cm).  

 

The diffusion coefficient of hydrogen in a mixture of gases, DH2m, can be gotten from the 

equation (38): 

2 2 2 2

2
2 2

2

2

2

n

H H H H i
i

H m n
H i i H

H ii

J x J x J
D

x J x J
D

=

=

− −

= −
−

∑

∑
                                              (3.4a) 

Where 

J  = molecular hydrogen flux (mol/cm2 s), H2
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2Hx = mole fraction of hydrogen in the gas mixture, 

i = all other components in the gas mixture, 

n = number of components in the gas mixture, 

J  = molecular flux of the other gas components (mol/cm2 s), i

ix = mole fraction of the other gas components in the gas mixture, and 

2H iD = diffusion coefficient of hydrogen in each of the other gas components present in 

the mixture of gases. For gasification reaction, multi-component stream consist of H2, 

CH , CO and CO . 4 2

An approximation to equation (3.4a) can be obtained by assuming H2 to be diffusing 

through a stagnant mixture. Expansion of Equation (3.4a) for diffusion of hydrogen 

through a stagnant mixture of CH , CO and CO  becomes: 4 2

2

2
4 2 4 2 2 2

1
/ / /

H
H

CH H CH CO H CO CO H CO

x
D

x D x D x D− −

−
=

+ +
2−

           (3.4b) 

 

The external resistance to mass transfer has been neglected in our work because of the 

inability to accurately predict the gas film thickness adjacent to the surface (38) and also 

to allow the effects of surface versus bulk processes in Pd to be observed without the 

complication of external film mass transfer resistance (7). The gas phase hydrogen 

concentration is related to partial pressure by the ideal gas law: 

PC
RT

=                                                                                                             
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C and Cs were taken to be equal in this model as a result of neglecting the gas phase film 

mass transfer. 

 

3.1.2 Dissociative Adsorption at the Surface 

The reaction scheme for the hydrogen was formulated by C. Wagner about 40 years ago 

as follows (8): 

1

'
1

2, ,2* 2
k

gas ad
k

H + H                                                                                             (3.5) 

2

'
2

*.
k

ad Me
k

H H +                                                                                                 (3.6) 

H  denotes a hydrogen atom in the bulk metal, HMe ad in the (atomic) chemisorbed site and 

* a free adsorption site. The atomic adsorption rate of hydrogen on the Pd surface is 

represented by the following expression (7): 

Adsorption rate (mol H/cm2 2 ( )S θ Γ s) =                                                              (3.7) 

Where  

θ = fractional surface coverage (surface H/Pd atomic ratio),  

S(θ) = coverage-dependent sticking coefficient, and  

 /cm2Γ = molecular bombardment rate (mol H2  s) and is given by the kinetic theory of 

gases as: 

2

0.5( 2 )s HC RT MπΓ=                                                                                        (3.8) 

Where  

M  = molecular weight of hydrogen (g/mol), H2
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Cs = molecular hydrogen concentration (mol/cm3),  

T = temperature (K), and  

R = gas constant (g.cm2/s2.mol.K).   

The existence of structural order in the adsorbed layer is quantitatively introduced into 

the kinetic model through a parameter θ00, which is the probability of two empty sites 

being next to each other (7, 40). An expression for θ00 based on the quasi-chemical 

equilibrium approximation has been given as (7, 40): 

00 0.5
2 (1 )1

[1 4 (1 )(1 exp( / ))] 1kT
θ θθ θ

θ θ ω
−

= − −
− − − − +

                                          (3.9) 

Where 

 ω = pairwise interaction energy. 

k = Boltzmann’s constant. 

The pairwise interaction energy, ω, is the energy change taking place in the process 

indicated schematically as 

2OA→ OO + AA, 

where O, A, OO, AA and OA represent unoccupied site, occupied site, adjacent 

unoccupied site pair, occupied pair and unoccupied/occupied pair, respectively (40).  The 

“equilibrium constant” for the process is equal to ¼exp (-ω/kT), where the factor 4 arises 

from the fact that the symmetry numbers of OO and AA are 2. Hence the equilibrium 

distribution of adsorbate in the chemisorbed layer can be described by the equation (40): 

2 1/ exp( /
4oo AA OAN N N kTω= − )                                                                          (3.10) 

Where 

 23



N00 = number of unoccupied pairs per unit area, 

NAA = number of occupied pairs per unit area, and 

N0A = number of unoccupied/occupied pairs per unit area. 

In equation (3.9), 1-exp (-ω/kT) is defined as B, and this B possesses the limit of 0 ≤ B ≤ 

1, where B = 0 corresponds to -ω/T = 0 and hence complete disorder while B = 1 

corresponds to ω/T = ∞ and represents a perfect order (40). Since the probability of 

existence of two empty sites is the ratio of the coverage-dependent sticking co-efficient to 

the initial sticking coefficient (at zero coverage), we have 

0 0( ) /S S 0θ θ=                                                                                                  (3.11) 

If there is no short range order in the chemisorbed layer, B = 0, and from equations (3.9) 

and (3.11) we get 

2
0( ) / (1 )S Sθ θ= −                                                                                                (3.12) 

This is the Langmuir expression for dissociative adsorption (40). But, if there is a large 

repulsive interaction energy such that B = 1, then from equation (3.9) and (3.11) we get 

S(θ)/S  = (1 – 2θ)  for   θ  ≤ 0.5, and 0

S(θ) =0                  for   θ  ≥  0.5,                                                                     (3.13) 

For our work, the Langmuir isotherm (equation 3.12) was used because hydrogen 

undergoes chemisorption as atomic hydrogen and gives localized mono-layers, which at 

equilibrium, seems to follow Langmuir’s isotherm, leading to the sticking expression 

given by equation (3.12) (39) . The term (1-θ)2 implies that  every single hydrogen 

molecule which impinges on the surface will dissociate and be chemisorbed provided it 

finds two empty sites at the surface. This form has been used in prior modeling of 
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hydrogen absorption and permeation in palladium (6, 34, 37, 39). The constant S0 which 

is the sticking coefficient at zero coverage is generally regarded to be near unity for clean 

Pd surface (6, 7, 11, 37, 44), and the same was assumed in our model also.  

 

3.1.3 Surface-to-Bulk Transition in Palladium Metal 

The flux from the adsorbed surface state on the high pressure gas side into the bulk Pd 

metal is given by (7): 

Surface-to-bulk Pd metal rate (mol H/cm2s) = NsN υ θ (1 – Xb d 1s)                  (3.14) 

Where 

Nb = bulk Pd atomic concentration (mol Pd/cm3), 

X1s = H/Pd atomic ratio in the bulk metal adjacent to the upstream surface, and  

Ns = Pd atom surface concentration (mol Pd atoms/cm2), which can be expressed as 

2/3Ns = Nb  / Nav
1/3   (3.15)                                                                                                                                            

Where Nav is the Avogadro’s number,   

υd is the activated rate constant for the surface-to-bulk transition, and is given by (7); 

υd = υ0 exp (-EA/RT)                                                                                       (3.16) 

 Here, υ  is the pre-exponential factor for υ0 d, and its impact will be discussed later.  

The flux is dependent on the surface coverage and on the surface concentration of 

hydrogen atoms. The fact that this flux is proportional to the surface coverage, θ, 

indicates that the species entering the bulk Pd-metal are individual hydrogen atoms and 

not hydrogen molecules.  EA is the activation energy for surface-to-bulk metal transition 

and was estimated based on the relationship (7) 
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EA – EB = (ΔEB ad – ΔEab)/2                                                                            (3.17) 

Here EB is the activation energy for the bulk metal-to-surface transition (kcal/mol H) and 

it is taken to be equal to the activation energy for diffusion (5.45 kcal/mol H, as discussed 

below), ΔE

B

 and ΔEad ab are the heats of adsorption and absorption, respectively, in 

kcal/mol H2.  Values of these parameters were estimated from the literature, (11, 12, 41), 

and were ΔE , ΔE  and E= 20.0 kcal/mol Had ab = 4.0 kcal/mol H B2 2 B = 5.45 kcal/mol H, 

which yielded a value of EA = 13.45 kcal/mol H.  The standard values of Nb = 0.113 mol 

Pd/cm3 and  mol Pd/cm92.8 10sN −= × 2 were used for the model and were also taken from 

the literature values (7). 

 

3.1.4 Solid State Atomic Hydrogen Diffusion 

Within the bulk palladium metal, there is an atomic hydrogen diffusion flux per unit area 

through the membrane. The atomic diffusion flux through the bulk palladium was 

modeled using the linear one-dimensional Fickian expression (7): 

Diffusion flux (mol H/cm2s) = DN (X  – X )/Δz                                           (3.18) b 1 2

Where 

Δz = membrane thickness (cm), and 

 X  and X1 2 = the bulk H/Pd atomic ratios adjacent to the upstream and downstream 

surfaces, respectively.  

Equation (3.18) is only valid for thin membrane or where the internal diffusion 

coefficient is constant. 
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Mass transfer resistance between the surface and the bulk of palladium metal film was 

neglected thereby assuming that sXX 11 ≈ sXX 22 ≈and .  

The hydrogen-in-palladium diffusion coefficient, D is expressed as (7): 

D = D  exp (- E0 diff / RT)                                                                                 (3.19)         

Where Ediff = the activation energy of H atom diffusion in Pd.   

There are some variations in the values for hydrogen diffusion in palladium reported by a 

number of researchers (3, 22 – 26). A linear regression of the different values reported in 

the literature was carried out using equation (3.19), and based on that, the values of D0 = 

3.3 x 10-3 cm2/s and Ediff = 5.45 kcal/mol H were obtained and used in the model. The 

impact of these parameters on the predicted hydrogen transport will be discussed later. 

The thickness of the palladium layer in the composite Pd/Al O2 3 membrane used for this 

study was taken to be equal to 77μm (9) and was incorporated in the model. 

 

In the material science literature, it has been reported that both bulk diffusion and grain 

boundary diffusion takes place within a material.  Grain boundary diffusion has been 

found to be faster than bulk diffusion in most of the materials and therefore, grain 

boundary diffusion is dominant/faster at the beginning of diffusion and at high 

temperature which saturates in very short time and then followed by the bulk diffusion.  

The initial grain size (grain boundary area) has a great influence on the diffusion rate.  

Finer size grain structure will have very rapid diffusion due to a large grain boundary 

area available for the purpose where as for a large grain structure; grain boundary 

diffusion will be insignificant (5). Grain boundary diffusion was not taken into account in 

this model. 
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3.1.5 Bulk Pd Metal-to-Surface Transition at the Low Pressure Side 

The flux of hydrogen atoms from the bulk of Pd metal to the surface at the low pressure 

side is given by an expression similar to equation (3.14) (7): 

Bulk-to-surface rate (mol H/cm2s) = NsN β Xb d 2s (1 – θ)                                   (3.20) 

Where  

X2s = H/Pd atomic ratio in the bulk metal adjacent to the downstream surface,  

βd is a rate constant similar to υ , and it is given by d

βd = β0 exp (-E /RT)                                                                                        (3.21) B 

β0 is the pre-exponential factor similar to  υ  and will also be discussed later. 0

The factor (1 – θ) implies that there must be a vacant site at the surface for the diffusing 

hydrogen atoms to reach the surface.  The rate is also dependent on the bulk palladium 

metal atom concentration. In the energy level diagram shown in Figure 4, the activation 

energy for diffusion, Ediff was shown to be approximately equal to the activation energy 

for bulk Pd metal-to-surface transition, EB, taken from (7).  Based on this, the value of EBB  

= 5.45 kcal/mol H was used in the model.  This assumption was supported by the fact that 

in the literature on desorption studies, there has been no evidence supporting kinetic 

limitation in the bulk-to-surface transition (7, 41). 

 

 and υThe pre-exponential factors β0 0 can be viewed as being related to jump attempt 

frequencies for the surface-bulk transitions (7).  Analogy to simple solid state diffusion 

suggested that a reasonable value for β0 can be estimated based on the jump frequency 

being related to the diffusion coefficient by (42, 43): 
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2
jD aα= Γ (3.22)                                                                                                                                                           

Where 

D = diffusion coefficient, 

 Гj = jump frequency, 

 a = lattice parameter, and  

α = coefficient determined by the geometric relationship between the interstitial sites.  

 

To estimate a reasonable value of β0, the following was considered. Palladium has an 

FCC (face centered cubic) structure with a lattice parameter of 0.3890 nm (43, 44), and 

α value of 1/12 for the octahedral sites in the FCC lattice.  The temperature dependence 

of Г  can be represented by an Arrhenius expression (7): j

Г j= Гj0 exp (-E /RT)                                                                                        (3.23)    

By analogy to equation (3.22), an expression relating the pre-exponential factors of D and 

Г  is then  j

Гj0 = 12D0 / a2                                                                                                 (3.24)    

This gives a jump attempt frequency (Гj0) of 2.3 × 1013 s-1. It is reasonable to assume that 

the jump attempt frequency for the bulk-to-surface transition will be approximately equal 

to that for diffusion in the bulk palladium because the H atom is jumping from a bulk 

interstitial site in both cases. One third of the interstitial jumps will be into the next (0 0 

1) plane, for diffusion between (0 0 1) planes of the FCC lattice.  Thus, assuming one 

third of the jumps from the bulk layer immediately adjacent to the surface, the diffusive 

jump rate is equal to ⅓NsXsГj, where the product NsX2s is the area concentration of H 
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atoms in the bulk adjacent to the surface.  The diffusive jump rate can be equated to 

equation (3.20) to give (7) 

⅓Г = N β  (1 – θ)                                                                                        (3.25)b 0j0      

  For θ << 1, when surface coverage does not inhibit the bulk-to-surface transition, 

equation (3.25) gives β0 = 6.8 × 1013 cm3/mol H s.  This value was used in the model. 

 

3.1.6 Associative Desorption of Hydrogen at the Low Pressure Surface 

With regard to desorption kinetics, the rate of associative desorption at the low pressure 

Pd surface may be expressed as (11): 

Desorption rate (mol H/cm2 2 d AAk N′′ s) =                                                       (3.26) 

where 

dk′′  = desorption rate constant in s-1, 

 NAA = concentration of nearest neighbor occupied site pairs at the surface (11).  Within 

the quasi-chemical approximation, NAA it is expressed as 

0.5
1 2 21
2 [1 4 (1 )(1 exp( / ))] 1AA sN zN

kT
θθ

θ θ ω

⎛ ⎞−
= −⎜⎜ − − − − +⎝ ⎠

⎟⎟                                         (3.27)     

where Z is the number of nearest neighbors on the surface, and it was taken to be 4.   

In prior modeling (6, 34, 37, 39) associative desorption from the surface has also been 

described by (6, 37, 39):  

Desorption rate (mol H/cm2 s) = 2 22 d sk N θ                                                      (3.28) 

Where kd is the desorption rate constant in cm2/mol-s and was given by 
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0 exp( 2 / )d dk k E RT= −                                                                                     (3.29) 

A value for the pre-exponential factor for the second order desorption in equation (3.29) 

is  cm21
0 4.8 10k = × 2/mol H s, which was obtained from an estimate made by Behm et al. 

(11) based on thermal desorption data at low surface coverages.  

 

In equation (3.29), Ed is the activation energy for atomic H desorption as shown in the 

Energy level diagram in Figure 4. It has been found to be approximately half the value of 

the heat of adsorption.  Reported values of the heat of adsorption for hydrogen on 

palladium lie in the range 20 – 27 kcal/mol H  (11, 12, 41).  A value of Ed2  = 10 kcal/mol 

(ΔEad/2) has been reported by Ward and Dao (7) to give results that were more consistent 

with the literature permeation data, and was also used in the model for most of our 

calculations. The factor of 2 in the exponential accounts for the fact that two H atoms 

must be simultaneously desorbed to form one molecule of hydrogen, and the θ2 factor 

arises because two sites must be adjacent to each other for desorption to occur. A 

relationship between  and dk′′dk  is obtained by requiring equation (3.26) to reduce to 

equation (3.28) as θ approaches zero or ω = 0 (7). This gives: 

/ 2d d sk k N′′ =                                                                                                   (3.30) 

In equation (3.27), the factor [1-exp (-ω/kT)] or B was mentioned earlier. B = 0 

represented the Langmuir isotherm, and was used in our model. Equations (3.26), (3.27), 

(3.29) and (3.30) were used for the model. 
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3.1.7 Relationship between Kinetic Parameters and Thermodynamic 

Equilibrium 

There is no well defined relationship between the bulk diffusional jump frequency and 

the surface-to-bulk transition frequency because the vibrational state of H atom in the 

surface state is presumably different from that in the bulk metal (7). However, the value 

of β /υ0 0 ratio has been estimated by Ward and Dao (7) using the comparison of the 

equilibrium H/Pd solubility data from literature and theoretical equilibrium relationship. 

 

At equilibrium the rate of adsorption, equation (3.7) and the rate of desorption, equations 

(3.26) are equal. Similarly, the surface-to-bulk rate and the bulk-to-surface rate, equations 

(3.14) and (3.20), are equal.  Equating and combining these expressions, and using the 

ideal gas law, leads to the following relationship (7): 

2

2

0.5 0.25
0 00.5

0.5
0 0

(2 )1 exps H A B d
H

k N M RT E E EX P
X RS

β π

ν
− −− ⎛ ⎞

= ⎜
⎝

  T ⎟
⎠

                          (3.31) 

This can be then compared with the thermodynamic relationships derived for equilibrium 

in the dissolution transition.  The following elementary steps are assumed to occur for 

absorption of hydrogen from the gas phase: 

1

1

*
2,

1
2

k

gas
k

H
−

H                                                                                                 (3.32) 

2

2

* [ ]
k

k
H H

−

                                                                                                       (3.33) 
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H* and [H] refer to adsorbed states and absorbed states of hydrogen, respectively (41). k-1 

=  
2

0.5
HP / (H*) and k  = (H*) / [H], and therefore, k k  = K  which is Sievert’s constant if 

the atomic concentration of hydrogen in the absorbed state, [H] is expressed as X = H/Pd. 

Sievert’s law constant for the reaction above is expressed as: 

-2 -2 -1 s

2

0.5
H

s
P

K
X

=                                                                                                         (3.34) 

Here is the hydrogen partial pressure (atm.). Sievert’s constant is also sometimes 

defined as the inverse of equation (3.34), in which case k

2HP

k  = K2 1 s.  Next, it is necessary to 

express K  s a function of temperature. s

 

For a single phase region, the equilibrium pressure, varies with temperature (6) and 

is given by: 

2HP

RT
GP H

H
Δ

=5.0
2

ln                                                                                                   (3.35) 

HGΔ  is the relative partial molar Gibbs free energy of dissolution of atomic H: 

2 2

0 00.5 ( 0.5 ) ( 0.5 )H H H H H H HG G G H H T S SΔ = − = − − −
2

0                                (3.36) 

In the low hydrogen concentration region where the Sievert’s law applies, the solution is 

considered to be ideal, and therefore,  

)( )(00 idealc
HHHH SSTHG +Δ−Δ=Δ                                                                        (3.37) 

0
HHΔ 0

HSΔ and are the relative partial molar enthalpy and entropy of dissolution at infinite 

dissolution respectively, and (c ideal
HS ) is the configurational entropy and given by: 
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( ) ln
1

c ideal
H

XS R
X

= −
−

                                                                                         (3.38) 

Substituting equation (3.38) into equation (3.37), we have 

0 0 ln
1H H H

XG H T S RT
X

Δ = Δ − Δ +
−

                                                                (3.39) 

Equations (3.35) and (3.39) can be equated to give 

2

0.5 0 01ln H H
X

HRT P H T S
X
−⎛ ⎞ = Δ − Δ⎜ ⎟

⎝ ⎠
                                                                   (3.40) 

For X<<1, which has been shown (7) to be a reasonable approximation under typical 

membrane permeation conditions, 1 – X ≈ 1 and the left hand side becomes RT ln(P0.5/X). 

Substituting equation (3.40) in equation (3.34) for X<<1, an expression for Ks may then 

be obtained as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

Δ
=

R
S

RT
HK HH

s

00

exp                                                                                (3.41) 

0
HHΔ 0

HSΔThe data of Holleck (23), give (  = 2000 cal/mol and = 11.65 cal/mol K) which 

were reported for α-Pd with X<<1 at moderately elevated temperatures. With these data, 

equation (3.41) becomes: 

2000 11.65expsK
RT R

−⎛ ⎞= +⎜ ⎟
⎝ ⎠

    

1007352.75 exp
T

−⎛ ⎞= ⎜
⎝

⎟
⎠

                                                                            (3.42) 

Here, T is temperature in Kelvin and the units of Ks are atm0.5.  With X<<1, equation 

(3.31) becomes; 
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2 2

0.5 0.5 0.25
0 0

0.5
0 0

(2 )
expH s H A B D

s
P k N M RT E E E

K
X RS

β π

ν
− −⎛ ⎞= = ⎜ ⎟

⎝ ⎠T            (3.43) 

Equating the right hand side of equations (3.42) and (3.43), and assuming that the 

exponential terms are equal based on the fact that the activation energy of equation (3.42) 

is equal to that in equation (3.43), we get: 

5.0
00

25.05.0
00 )2(

6.351 2

S
RTMNk Hs

ν
πβ

=                                                                       (3.44) 

Substituting parameter values that have already been defined in equation (3.44) leads to 

the following expression for the ratio of β /υ  (7): 0 0

0
0.25

0

10.154
T

β
ν

=                                                                                                     (3.45) 

Using the previously derived value for β , the value of υ0 0 was determined using equation 

(3.45) as a function of temperature.             

0.25
0

0 10.154
Tβ

ν
×

=                                                                                                (3.46)      

 

3.2 Hydrogen Gas Permeation in the Porous Alumina Support 

In the composite Pd/Al2O3 membrane, 20 mm diameter porous alumina disk of 38% 

porosity and with 0.5 μm average pore diameter, about 4 mm thick, were used as the 

porous support (9). The permeation of gases through a porous media consists of Knudsen 

diffusion and Poiseuille flow.  The properties of gas flow in the porous media depend on 

the ratio of the number of molecule-to-molecule collisions to that of the molecule-to-wall 
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collisions. The Knudsen number, Kn, is a characteristic parameter used to determine the 

relative contribution of Knudsen diffusion to the Poiseuille flow on the overall transport 

rate. Kn is defined as the ratio of the mean free path of the gas molecules, λ, to the pore 

radius of the medium, r, which is (2): 

nK
r
λ

=                                                                                                     (3.46) 

where 

2

16
5 2m H

RT
P M
μ πλ

π

⎛ ⎞⎛ ⎞
⎜= ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

⎟
⎟  ,                                                                           (3.47) 

Pm = average pressure across the medium,  

μ = gas viscosity,  

T = absolute temperature,  

2HM = gas molecular mass, and  

R = universal gas constant. 

 

If the Knudsen number is much larger than unity, that is Kn >> 1, the gas molecules 

collide with the pore walls much more frequently than with each other and Knudsen flow 

results.  If the Knudsen number is much smaller than unity, that is, Kn << 1, then 

Poiseuille flow is the dominant transport mechanism.  However, the transition region 

between Knudsen and Poiseuille transport occurs mainly in the range 0.01 < Kn <10 and 

the Knudsen number for porous alumina support has been reported to fall in the transition 

region. The Knudsen number for our model was about 0.39 which is within the range 

reported in the literature for porous alumina support. 
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The rate of gas permeation per unit area or gas flux, J, is expressed by Darcy’s law as: 

( )P h lJ F P P= −                                                                                        (3.48) 

This flux is the molecular hydrogen gas flux since hydrogen diffuses as molecules 

through the porous alumina media.  FP is the permeability and P  and Ph l are the partial 

pressures of H2 gas in the high pressure and low pressure sides respectively (2). In the 

work of Huang et al (35), it has been reported that the permeation of gases through 

porous media was mainly combined Poiseuille and Knudsen flow.  

 

3.2.1 Poiseuille Flow 

When the number of intermolecular collisions is strongly dominant (Kn << 1), the flux 

can be described by a Hagen-Poiseuille type flow equation (36): 

dZ
dP

RT
PrJV μ8

2

−=                                                                                     (3.49) 

In real porous media, equation (3.49) must be modified to account for the porosity, ε, and 

the complexities of the pore structure (tortuosity, τ). This gives: 

dZ
dP

RT
PrJV μτ

ε
8

2

−=                                                                                (3.50) 

At steady state, the fluxes into and out of any cross section of a pore are equal. Therefore 

(dP/dZ) is constant and the integration of equation (3.50) over the thickness L, of the 

porous medium gives the Poiseuille flow equation for permeability: 

m
V

PV P
RTL
r

P
J

F
2

8μτ
ε

=
Δ

−=                                                                        (3.51) 
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).(5.0 hlm PPP +=Where the average pressure,   

Equation (3.51) gives the permeation as proportional to the square of the pore radius and 

the mean pressure. 

 

3.2.2 Knudsen Diffusion 

When the number of molecule to wall collisions is strongly dominant (Kn >> 1), the flux 

can be defined by the Knudsen equation as: 

1
K K

dPJ D
RT dZ

=−                                                                                             (3.52) 

DK is the Knudsen diffusion coefficient and it has been derived using the long capillary 

tube flow model to give (47): 

2
3K
urD =                                                                                                  (3.53) 

u is the mean molecular velocity, given by: Where 

0.58RTu
Mπ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                                                              (3.54) 

Consequently, 

5.02
3

4
⎟
⎠
⎞

⎜
⎝
⎛=

M
RTrD K π

                                                                                   (3.55) 

In real porous media geometrical effects of pores play an important role, as discussed 

earlier in the viscous flow, and therefore, the Knudsen diffusion coefficient has been 

modified to give the effective Knudsen diffusion coefficient De,,  as follows (47); 
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e KD Dε
τ

=                                                                                                       (3.56) 

Substituting equation (3.56) into equation (3.52) and integrating equation (3.52) over the 

membrane thickness, L, at steady state, the Knudsen flow permeability can be expressed 

as: 

LRT
D

P
JF eK

PK =
Δ

−=                                                                                       (3.57) 

 Inspection of equation (3.55) shows that the Knudsen flow is dependent on the pore 

diameter and inversely dependent on the molecular weight of the gas. 

 

 The total permeability in the porous media can be expressed as a sum of Poiseuille flow, 

FPV and Knudsen flow, F : PK

PKPVP FFF +=                                                                                              (3.58) 

Equations (3.48 – 3.58) were used in the model. Experimental tortuosity, τ, values 

generally fall in the region 2 < τ < 5 (36)), and a tortuosity value of 2.5 was used for the 

model calculations. This was chosen based on the fact that it gave the best results needed 

to simulate the experimental data from our preliminary experiments. 
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4. MODEL DEVELOPMENT 

4.1 Model Description 

The system of equations developed in chapter 3 form a model for the permeation of 

hydrogen gas through composite palladium/Al O2 3 membranes. The model accounts for 

forward and reverse rate equations for the complete series of steps required for the 

transport of hydrogen from the high partial pressure side to the low partial pressure side 

of a composite palladium/Al O2 3 membrane.  In each step of the permeation transport 

process in the composite palladium membrane, the equations were set up such that the 

difference between the forward and reverse rate equaled the net steady state H flux.  The 

subscript 1 and 2 signifies the high pressure side and low pressure sides respectively. 

 

The equations used for the model are shown below in terms of atomic hydrogen flux; 

1. Net adsorption rate 

The net adsorption rate at the high pressure side of the membrane equaled the 

difference between the rate of adsorption and rate of desorption and can be written as:  

2

0.5 2 2
1 1 1

1(2 ( ) ( / 2 ) ) ( )
2H HJ S C RT M k N zd sθ π= − θ                         (4.1) 

 is calculated from PC1 1 (hydrogen partial pressure in the feed side) using the ideal 

gas law and R is the ideal gas constant. 
2HM  is the molecular weight of hydrogen 

with a value of 2.016.  

2
1 0 1( ) (1 )S Sθ θ= −                                                                                (4.1a) 
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S0 is the sticking coefficient at zero coverage and the value of 0.95 was used for our 

calculations based on the fact that the constant, S0 is generally regarded to be near 

unity for clean Pd (6, 7, 11, 37, 44). The value of kd was obtained from the relation; 

                                                                                (4.1b) 0 exp( 2 / )d dk k E RT= −

k0 = 4.8 × 1021 cm2/mol H s, was obtained from the estimate of Behm et al. based on 

thermal desorption data at low surface coverages (11). A value of Ed = 10 kcal/mol 

gave results that were consistent with most literature permeation data (7), and was 

used for our model calculations.      

 

2. Net surface-to-bulk Pd metal transportation  rate 

The flux in this step equaled the difference between the rate of surface-to-bulk Pd 

metal transport and the rate of bulk Pd metal-to-surface transport on the high partial 

pressure side of the membrane. Therefore the atomic hydrogen flux is expressed as: 

))1(())1(( 1111 θβθν −−−= XNNXNNJ dbsdbsH                                       (4.2) 

βd = β0 exp (-E /RT)                                                                            (4.2a) B 

υd = υ0 exp(-EA/RT)                                                                              (4.2b) 

     
0.25

0
0 10.154

Tβ
ν

×
=                                                                                  (4.2c) 

The values of Nb =0.113 mol Pd/cm3, Ns = 2.8 × 10-9 mol Pd/cm2, β  =2.8 × 10-9
0  

cm3/mol H s, E = 15.45 kcal/mol and EA B = 5.45 kcal/mol were used for our 

calculations and were consistent with the literature permeation data. 
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3. Solid-state atomic hydrogen diffusion rate 

1 2( ) /H bJ DN X X= − zΔ

))

                                                                         (4.3) 

 exp (- ED = D0 diff / RT)                                                                        (4.3a) 

Δz is the membrane thickness with a value equal to 77 μm. The values of Ediff = 5.45 

kcal/mol and D0 =3.3 × 10-3 cm2/s were used for our calculations. 

 

4. Net bulk Pd metal-to-surface transportation rate 

The flux in this step equaled the difference between the rate of bulk Pd metal-to-

surface transport and the rate of surface-to-bulk Pd metal transport on the low partial 

pressure side of the membrane. Therefore the atomic hydrogen flux is expressed as: 

2 2 2 2( (1 )) ( (1H s b d s b dJ N N X N N Xβ θ ν θ= − − −                                (4.4) 

 

5. Net associative desorption rate 

The net desorption rate at the low pressure side of the membrane equaled the 

difference between rate of desorption and the rate of adsorption and can be written as: 

2

2 2 0.5
2 2 2

1( ) (2 ( ) ( / 2
2H d s i HJ k N z S C RT Mθ θ π= − ) )                        (4.5) 

C2i is the molecular hydrogen concentration at the Pd layer and porous alumina 

support interface. 
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6. Atomic hydrogen permeation rate in the porous alumina support 

The flux in the porous alumina support was multiplied by 2 to reflect atomic 

hydrogen flux as molecular hydrogen diffusion at equilibrium takes place in this 

layer. 

)(2 22 PPFJ iPH −=                                                                               (4.6) 

2 2i iP C RT=                                                                                       (4.6a) 

P  is the molecular hydrogen partial pressure on the permeate side. 2

PKPVP FFF +=                                                                                     (4.6b) 

2

2 20.5( )
8PV i

rF
RTL

ε
μτ

= P P+                                                                 (4.6c) 

e
PK

D
F

LRT
=                                                                                       (4.6d) 

2

0.5
4 2
3e

H

r RTD
M

ε
τ π

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

                                                                          (4.6e) 

The model calculations were done by numerically solving the six set of non-linear 

implicit equations (Equations 4.1 – 4.6) for six unknowns, θ , X , X , θ , C1 1 2 2 2i, and JH, 

simultaneously, using Mathematica. The “FindRoot” function, which is a built-in 

function used for numerical computation in Mathematica was used to search for 

numerical solutions to the set of non-linear simultaneous equations.   
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4.2 Logic Diagram/Information Flow 

Figure 5 is a logic diagram/information flow chart explaining the sequential steps used in 

the modeling solution scheme. The input parameters are, P P k , E , EB, E1, 2, 0 d A,, R, T, L, β0B , 

Ns, M , z, D , EH2 0 diff, Δz,  r, ε, and  μ. In the first step (Dissociative adsorption equation), an 

initial guess of H flux, J , is put into the equation to determine the value of θ1.  θ1 H0

becomes an input in the second step (surface-to-bulk Pd metal rate equation) to determine 

the value of X .  X1 1 goes into the third step (Atomic diffusion rate equation) to determine 

the value of X .  X2 2 goes into the fourth step (Bulk Pd metal-to-surface rate equation) to 

determine the value of θ . θ2 2 goes into the fifth step (Associative desorption rate 

equation) to determine the value of C2i. P is calculated from C2i 2i and then goes into the 

sixth step (Rate of diffusion in porous alumina support) to determine the flux, JHcal. If the 

value of the calculated flux, JHcal is not equal to the value of the initial guess for the flux, 

J , the iteration process continues until it converges within an acceptable tolerance. H0
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1 1 /C P RT=  

2

0.5 2 2
1 1 1(2 ( ) ( / 2 ) ) (0.5 )H H d s
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J S C RT M k N zθ π θ

−

= −

0 exp( 2 / )d dk k E RT= −

Input parameters; P1, P2, k0, Ed, EB, EA,, R, T, L, β0, Ns, MH2, z, D0, Ediff, Δz,  r, ε, μ 

θ1

1 1 1 1( (1 )) ( (1 ))H s b d s b d
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1 2( ) /H b
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ν
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υd = υ0 exp(-EA/RT)
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JH0 = JHcal. 

Figure 5 Information flow/ logic diagram 
 

 45



5. RESULTS AND DISCUSSION 

5.1 Model Validation 

There are four basic steps in developing a credible math model (50): 

1. Develop the equations that represent the actual system. 

2. Program these equations on a computer to produce a successful simulation. 

3. Make sure that the computer program represents the correct simulation of the 

equations. 

4. Compare the results of the simulation runs to the experimental data from literature 

and/or to ones own experimental data to validate it. 

 

Steps 3 and 4 are commonly termed verification and validation (V & V), respectively (51, 

52).  Verification is the process of determining that a computer program causes the 

computer to operate as intended by the programmer, while validation is the process of 

determining that the computer simulation behaves like the actual system under study in 

all pertinent respects.   Figure 6 below shows the relationships between the actual system,                        

model, the computer simulation and the V & V activity. 

 

Sargent (52) described various validation techniques to be used for model verification 

and validation. Two of such techniques were used in this study, they are:  

1. Comparison to other models, and 

2. Sensitivity analysis. 
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Figure 6 Relationships between system, model, simulation and verification and 
validation. 
 

5.1.1 Comparison to Other Models 

Various results of the simulation model being validated were compared to the results of 

the permeation models reported by Ward and Dao (7). Figure 7 from Ward and Dao’s 

work was compared to Figure 8 from our model calculation and Figure 9 from Ward and 

Dao’s work was also compared to Figure 10 from our model calculation. 

 

 = 1 atm, PIn Figure 7, the solid curves are Ward and Dao’s model calculations for P1 2 = 

0, Ed = 12 kcal/mol and the thickness of palladium layer is indicated in the legend. The 

straight dashed lines indicate the diffusion limited flux predicted under conditions of 

interfacial equilibrium (Equations (3.18), (3.34) and (3.42)). A line representing the 

desorption-limited flux (Equation (3.28) with θ=1) is also shown. 
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Figure 7 Plots of H atom flux versus inverse temperature for Pd membranes with 

external mass transfer neglected using E  = 12 kcal/mol (7).  d
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Figure 8 Our model calculations for P1 = 1 atm, P2 = 0, Ed = 12 kcal/mol for various 

Pd thickness. 
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Figure 9 Plots of H atom flux versus inverse temperature for Pd membranes of 

different thickness using E  = 10 kcal/mol (7). d
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Figure 10 Our model calculations for P1 = 1 atm, P2 = 0, Ed = 10 kcal/mol for various 

Pd thickness. 
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In Figure 8, the solid curves are our model calculations for P  = 1 atm, P  = 0, E1 2 d = 12 

kcal/mol and the thickness indicated in the legend. The straight dashed lines indicate the 

diffusion limited flux predicted under conditions of interfacial equilibrium (Equations 

(3.18), (3.34) and (3.42)). A line representing the desorption-limited flux (Equation 

(3.28) with θ=1) is also shown. 

 

Comparing Figure 7 from the Ward and Dao’s work and Figure 8 from our model 

calculation, it is clear that the solid curves from our model calculation and diffusion-

limited permeation behavior agree well with the data of Ward and Dao (7) at the different 

membrane thicknesses. The result of the desorption-limited flux behavior from our model 

calculation also shows a good match when compared with desorption limited flux data 

reported by Ward and Dao.  

 

In Figure 9, the solid curves are Ward and Dao’s model calculations for P  = 1 atm, P1 2 = 

0, Ed = 10 kcal/mol for the membrane thicknesses indicated in the legend. The straight 

dashed lines indicate the diffusion limited flux predicted under conditions of interfacial 

equilibrium (Equations (3.18), (3.34) and (3.42)). A line representing the desorption-

limited flux (Equation (3.28) with θ=1) is also shown. 

 

In Figure 10, the solid curves are our model calculations for P  = 1 atm, P  = 0, E1 2 d = 10 

kcal/mol for the membrane thicknesses indicated in the legend. The straight dashed lines 

indicate the diffusion limited flux predicted under conditions of interfacial equilibrium 
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(Equations (3.18), (3.34) and (3.42)). A line representing the desorption-limited flux 

(Equation (3.28) with θ=1) is also shown. 

 

Again, comparing Figure 9 from the Ward and Dao’s work and Figure 10 from our model 

calculation, it is clear that the solid curves from our model calculation and diffusion-

limited permeation behavior agree well with the data of Ward and Dao (7) at different 

membrane thicknesses. The result of the desorption-limited flux behavior from our model 

calculation also shows a good match when compared with desorption limited flux data 

reported by Ward and Dao (7).  

 

5.1.2 Sensitivity Analysis 

This technique consists of changing the values of the input and internal parameters of a 

model one at a time to determine their effects on the model’s behavior and its output.  

The same relationships should occur in the model as in a real system. For this study, 

sensitivity analysis was performed for the following parameters; pre-exponential factor 

for hydrogen diffusion coefficient in palladium, D0; sticking coefficient at zero coverage, 

S ; tortuosity, τ and the activation energy for atomic H desorption, E0 d.  These parameters 

were determined to be the important variables because they seemed to have significant 

influence on the calculated permeation fluxes that resulted in the preliminary 

calculations. 

 

 53



The base case parameters that were used for the sensitivity analysis are shown in Table 1. 

The values chosen were consistent with the literature permeation data (7). The range of 

the diffusion coefficient constant, D0, was varied from 2.3 – 4.5 cm2/s based on the values 

reported in the selected literature permeation data.  Table 2 presents the selected literature 

values for the pre-exponential factor and corresponding activation energy for the 

diffusion coefficient.  Figure 11 shows a plot of our model calculation of atomic 

hydrogen flux versus pre-exponential factor for hydrogen diffusion coefficient in 

palladium, D0. Figure 12 shows a plot of our model calculation of atomic hydrogen flux 

versus sticking coefficient at zero coverage, S0.  The range of the sticking coefficient at 

zero coverage, S0, was varied from 0.9 – 1 based on the fact that the constant, S0 is 

generally regarded to be near unity for clean Pd (6, 7, 11, 37, 44). Figure 13, shows a plot 

of our model calculation of atomic hydrogen flux versus the tortuosity factor, τ. 

Tortuosity, τ, values generally fall in the region 2 < τ < 5 (36)) and the range for our 

analysis was chosen based on this. Figure 14, shows a plot of our model calculation of 

atomic hydrogen flux versus the activation energy for atomic H desorption, Ed. The range 

of Ed values, from 8 – 12.5 kcal/mol H, was used based on values reported in the 

literature (7, 11, 12, 41, 53). The hydrogen flux increases as D0 increases as shown in 

Figures 11, which is what happens in a real system where D0 is directly proportional to 

the flux. Also the H flux decreases with increased tortuosity factor as would be expected, 

and that trend can be seen in Figure 13.  
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Table 1 Summary of base case parameter values used for the sensitivity analysis 
Parameter Value 

E 12 kcal/mol H d

E 15.3 kcal/mol H A

E 5.3 kcal/mol H BB

E 5.3 kcal/mol H diff

21K0 4.8 × 10  cm2/mol H s 
13Β0 6.8 × 10  cm3/mol H s 
-3D0 2.9 × 10 cm2/s 

N 0.113 mol Pd/cm3
b

-9Ns 2.8 × 10  mol Pd/cm2

S 1 0

Υ Equation (3.45) 0

τ 2 

P 2.82 atm 
0T 1100 F 

 
 

Table 2 Values of constants in the expression of the diffusion coefficient of hydrogen 
in palladium from the literature 
Hydride 

phase 

D0 x  103 E Temperature diff 
References 

cm2 0/s kcal/mol C 

α 2.9 5.26 260 to 640 22 

250 to 1000 α 4.5 5.76 23 

140 to 310 α 2.3 5.19 24 

60 to 140 α 2.83 + 0.05 5.4 + 0.1 25 

-40 to 600 α 2.9 5.3 26 
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Figure 11 Model calculation of atomic hydrogen flux, JH versus pre-exponential 

factor for diffusion coefficient, D . 0
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Figure 12 Model calculation of atomic hydrogen flux versus sticking coefficient at 

zero surface coverage, S0. 
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  Figure 13 Model calculation of atomic hydrogen flux, JH versus tortuosity. 
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Figure 14 Model calculation of atomic hydrogen flux, JH versus the activation 

energy for atomic H desorption, E . d
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From the sensitivity analyses results, the values of S0 =0.95 was used for the model 

calculation based on the fact that it gave the best fit to the experimental data at 11000F. It 

also gave a maximum error band of about ± 3% in the value of JH, based on the range of 

S0 values.  Similarly, tortuosity factor, τ = 2.5 was used for the model calculation based 

on the fact that it gave the best fit used to simulate experimental data at 11000F. It gave a 

maximum error band of about ± 10% in the value of JH, within the range. From the 

sensitivity analysis, change in Ed values in the range considered did not have a significant 

effect on the flux value and as a result Ed = 10 kcal/mol H was used for our calculations, 

which is consistent with the literature permeation data. These values gave the best results 

needed to simulate the experimental results carried out at UTSI and gave an error band of 

± 30%. This will be discussed later. Also from the sensitivity analysis, it was observed 

that a change in the value for the pre-exponential factor for hydrogen diffusion 

coefficient in palladium, D0, had a significant effect on the H flux value. The value for 

the pre-exponential factor for hydrogen diffusion coefficient in palladium, D0, was 

chosen based on a least square regression of D0 values taken from the data in selected 

literature, given in Table 2. The data in Table 2 was expressed as equation (2.1) above: 

 exp (-E D = D0 diff / RT)                                                                                       

Where 

D0 = Pre-exponential factor for the diffusion coefficient, D (cm2/s), 

Ediff = activation energy for H atom diffusion (kcal/mol H), 

T = temperature (K), and  

3 kcal/mole K).  R = gas constant (1.987×10
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Taking the logarithm of the equation above gives; 

RT
E

DD diff−= 0lnln  

A straight line fit to the data in Table 2 was developed by plotting ln D verses 1/T as 

shown in Figure 15. 

R
Ediff = 2735.6 (slope) and = -5.7292 (intercept), giving E0ln D diff = 5.45 kcal/mol and 

D0= 3.3×10-4 cm2/s. As a result, the error band of ± 30% in the value of JH was estimated 

(see Figure 11).  These values of τ, S , D , and E0 0 d were used for our calculation, giving an 

overall error band of ± 30% in the value of JH. 

 

Table 3 gives a summary of the final parameter values used in our model calculations. 

These values are not unique values because the fitting of the values to simulate 

experimental data was done manually. 

 

5.2 Experimental Flux versus Model Calculated Flux 

The predicted results for permeation of hydrogen in palladium composite membrane 

obtained with the present model were compared to experimental data (9) on permeation 

fluxes.  One set of experimental data (at 1100°F) was used to determine the best values of 

the remaining but necessary parameters not selected from the sensitivity analyses. The 

experimental data at 1100°F was fitted by the least square analysis to minimize the 

square of errors. 
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Figure 15 Plot of ln D versus inverse of temperature, (1/T). 
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Table 3 Summary of final parameter values used in the present model  
Parameter Value 

E 10 kcal/mol H d

E 13.45 kcal/mol H A

E 5.45 kcal/mol H BB

E 5.45 kcal/mol H diff

21k0 4.8 × 10  cm2/mol H s 
13β0 6.8 × 10  cm3/mol H s 
-3D0 3.3 × 10 cm2/s 

N 0.113 mol Pd/cm3
b

-9Ns 2.8 × 10  mol Pd/cm2

S 0.95 0

ν Equation (3.43) 0

τ 2.5 

 

This error was calculated using the equation: 

2

1

( [ ] [ ])
n

e
i

Y i Y iφ
=

= −∑                                                                                (5.1) 

Where 

φ = sum of square of the difference, 

Ye = experimental data point, 

Y = model calculated data point, and 
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n = number of points. 

, and DThe values of what are thought to be the three critical parameters (τ, S0 0) were 

manually changed and by trail-and –error observation, the smallest values forφ , the sum 

of square of the differences were obtained. Using the values of the three parameters that 

reduced theφ , the hydrogen flux values were predicted and compared to data (9) at two 

other temperatures (900°F and 1300°F). The same values of τ, S , and D0 0 were used at all 

three temperatures. The hydrogen flux values were also calculated for a diffusion-limiting 

permeation.  Figure 16 shows the comparison of flux of hydrogen gas versus feed side 

hydrogen partial pressure for Pd/Al2O  composite membrane at temperature of 11000
3 F 

(866.48K).  The dashed line is our model calculation and the solid line indicates the 

diffusion-limited flux predicted under conditions of interfacial equilibrium (Equations 

(3.18), (3.34), and (3.42)). The experimental flux at hydrogen partial pressure below 2 

atm was slightly higher than the model predicted flux and diffusion limited flux but the 

model predicted flux was a fairly good fit for the experimental flux at hydrogen partial 

pressure above 2 atm. Similarly, in Figure 17 the model predicted flux was a fairly good 

fit for the experimental flux at the temperature of 13000F (977.59K).  In Figure 18, the 

model predicted flux was not a good fit for the experimental flux at the temperature of 

9000F (755.37K). This can be attributed to the fact that there can be considerable changes 

taking place in the pore structure of the palladium specimens after several cycles of 

adsorption and desorption of hydrogen.  In literature it is claimed that during 

adsorption/desorption, α → β phase and β → α phase transformations in palladium do 

occur over the time (19).  
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Figure 16 Plots of atomic hydrogen flux, JH, versus feed side hydrogen gas partial 

pressure, P1, for Pd/Al2O3 composite membrane at temperature of 11000F 

(866.48K). 
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Figure 17 Plots of atomic hydrogen flux, JH, versus feed side hydrogen gas partial 

pressure, P1, for Pd/Al2O3 composite membrane at temperature of 13000F 

(977.59K). 
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Figure 18 Plots of atomic hydrogen flux, JH, versus feed side hydrogen gas partial 

pressure, P1, for Pd/Al2O3 composite membrane at temperature of 9000F (755.37K). 

 

There have also been a number of reports of the observation of microscopic changes 

taking place on the surfaces of palladium specimens following the adsorption of 

hydrogen leading to cracks in the Pd film. This may have happened in the experimental 

work at UTSI too (9).  In Figures 16, 17 and 18, the region shown by the cross hatched 

lines show that within ± 30% all the experimental data can be very well simulated by our 

data. Even at 9000F, the match between the predicted data and actual data is acceptable; 

most of the experimental values are within 30% of the model predicted data and have at 

least the same order of magnitude. Further attempts to improve the match with the 

experimental data at 9000 0F and 1300 F were not made, because at this point we were only 

interested in developing a mechanistic model that can reasonably simulate the transport 

steps taking place during hydrogen permeation through Pd/alumina composite membrane. 
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5.3 Rate Limiting Flux 

To determine the rate limiting step, calculations were carried out under the hypothetical 

situation where only one step is the slowest step and the rate limiting step and others are 

much faster. Figures 19, 20 and 21 show plots of predicted atomic hydrogen flux rate 

predicted from our model equations for each forward rate process under such 

hypothetical condition.  In this situation, the mass transfer step with the lowest rate 

limiting flux at any temperature would be the overall rate controlling step at that 

temperature.  From Figures 19, 20 and 21, atomic H diffusion through the palladium 

layer, and the pore diffusion of H through the porous support, was found to be the 

greatest rate limiting fluxes. Table 4 shows a summary of the individual mass transfer 

steps and the equations involved.  The model calculations indicate that the atomic 

diffusion in the palladium layer and the pore diffusion in the porous alumina support 

seem to have the greatest influence on the H permeation rate since both of them provide 

the rate limiting flux. The actual overall rate of permeation can also be limited by a 

combination of the rate of atomic diffusion in the dense Pd layer and the pore diffusion in 

the porous alumina support. Diffusion limited fluxes have been reported in most 

permeation literature data (2, 3, 7, 20, 23, 32, 33). The significance of mass transfer 

resistance associated with the diffusion through the porous support has also been reported 

(2, 35, 36). The mass transfer step with the greatest influence on the hydrogen permeation 

is discussed next by estimating the individual transport resistances. 
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Figure 19 Plots showing the hypothetical flux predicted for conditions when various 

mass transfer steps are the rate limiting step at 9000F (755.37K). 
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Figure 20 Plots showing the hypothetical flux predicted for conditions when various 

mass transfer steps are the rate limiting step at 11000F (866.48K). 
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Figure 21 Plots showing the hypothetical flux predicted for conditions when various 

mass transfer steps are the rate limiting step at 13000F (977.59K). 
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Table 4 Summary of the individual rate limiting mass transfer steps and the 
equations involved. 

Rate limiting mass transfer step Equation 

Equation (3.7) with S(θ)=1 Adsorption rate  

Equation (3.14) with θ =1 and X  =0 Surface-to-bulk Pd metal transport rate  1 1

Equation (3.18) with XAtomic diffusion in Pd rate 1s and X2s given 
by Sievert’s law 

(3.20) with X  =1 and θ =0 Bulk Pd metal-to-surface rate 2 2

Equation (3.28) with θ =1 Desorption rate 2

Pore diffusion rate in the alumina support Equation (3.48) 
 

 

5.4 Estimation of Resistance to Individual Mass Transfer Step 

An electrical analogy based on resistance, for permeation in composite membrane was 

developed by Henis and Tripodi (51). According to this model, the permeation behavior 

of gas through a composite membrane is analogous to the flow of electricity through a 

series-parallel array of resistors. In Figure 22, Rs denotes the transport resistance in the 

alumina support, and RPd is the transport resistance in the dense palladium layer.  At 

steady state, the overall transport resistance, Rtot, equals the sum of the Pd layer and the 

porous alumina support as given by (2): 

P
tot F

R 1
=                                                                                                  (5.1) 
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Figure 22 (a) Simplified schematic structure of the Pd/alumina composite 

membrane, (b) Schematic representation of resistance model for composite 

membrane (taken from ref. 2). 

 

Rtot = R Rs + Pd                                                                                                                                           (5.2) 

Where 

2H

li
s J

PP
R

−
=        

2

)(

H

li

J
CCRT −

=                                                                                    (5.3)        

Similarly, 

2

)(

H

ih
Pd J

CCRT
R

−
=                                                                                     (5.4)         
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The interfacial pressure, Pi, is determined from the model calculation, Rs and RPd can then 

be estimated from Equations (5.3) and (5.4), respectively. In the resulting concentration 

profiles shown in Figures 23, 24, and 25, the layer with the highest concentration gradient 

(slope) provides the greatest mass transfer resistance to the permeation process.   The x-

axis in Figures 23, 24 and 25 were not drawn to scale. At temperatures 9000F (755.37K), 

11000F (866.48K) and 13000F (977.59K), the steepest slope was found to exist in the 

palladium layer, and therefore, the relative mass transfer resistance in the palladium layer 

would influence the permeation process the most.   This is consistent with the literature, 

where atomic (bulk) diffusion in the palladium layer was reported to be the rate limiting 

(slowest) step (3, 7, 20, 23, 32, 33).                                                  
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Figure 23 Concentration profiles in the Pd and alumina layers at different hydrogen 

partial pressures and 9000F. 
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Figure 24 Concentration profiles in the Pd and alumina layers at different hydrogen 

partial pressures and 11000F. 
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Figure 25 Concentration profiles in the Pd and alumina layers at different hydrogen 

partial pressures and 13000F. 
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The relative mass transfer resistances in the two layers, R /RPd tot (palladium layer) and Rs 

/R (porous alumina support layer)tot  may be calculated from equations (5.2), (5.3) and 

(5.4). The results of mass transfer resistances at different temperature are given in Tables 

5, 6 and 7. At 9000F, 93% of the mass transfer resistance seems to be coming from the 

palladium layer and 7% from the porous alumina support. At 11000F, 90.2% of the mass 

transfer resistance is from the palladium layer and 9.8% from the porous alumina support. 

At 13000F, 87.3% of the mass transfer resistance is from the palladium layer and 12.7% 

from the porous alumina support. The mass transfer resistance from the palladium layer 

decreased with temperature, this maybe attributed to the fact that grain boundary 

diffusion was dominant diffusion mechanism at higher temperature when compared to 

the bulk diffusion. It can also been seen in Figures 23, 24 and 25 that the mass transfer 

resistance in the palladium layer increased as the hydrogen feed side partial pressure 

increased. This may be attributed to the fact that the mass transfer resistance is 

proportional to hydrogen partial pressure gradient as shown in equation (5.3).  The 

driving force in the palladium membrane is the gradient of pressure. 

 
0Table 5 Calculated mass transfer resistances for Pd/Al2O  membrane at 900 F. 3

 Resistance in 
Pd (R

Resistance in 
Al

Total Resist. 
(RP1(atm) 

(feed side) 
Pd) 

(mol/cm
O  (R

2.s.atm)
2 2 s) 

(mol/cm2.s.atm) 
tot) 

(mol/cm2.s.atm)  
Rpd/Rtot 
(%)  

R /Rs tot 
(%) 

1.9060 3.71E+05 3.17E+04 4.03E+05 92.1 7.9
2.4972 4.05E+05 3.16E+04 4.37E+05 92.8 7.2
2.7919 4.20E+05 3.16E+04 4.52E+05 93.0 7.0
3.1533 4.38E+05 3.16E+04 4.70E+05 93.3 6.7
4.0091 4.77E+05 3.15E+04 5.09E+05 93.8 6.2

  Average 93.0 7.0 
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0Table 6 Calculated mass transfer resistances for Pd/Al2O  membrane at 1100 F. 3
Resistance in 
Pd (R

Resistance in 
Al

Total Resist. 
(RP1(atm) 

(feed side) 
pd) 

(mol/cm
O  (R

2.s.atm)
2 2 s) 

(mol/cm2.s.atm)
tot) 

(mol/cm2.s.atm) 
Rpd/Rtot 
(%) 

R /Rs tot 
(%) 

1.8506 2.74E+05 3.41E+04 3.08E+05 88.9 11.1
2.3953 2.98E+05 3.40E+04 3.32E+05 89.8 10.2
2.8211 3.15E+05 3.40E+04 3.49E+05 90.3 9.7
3.3250 3.34E+05 3.39E+04 3.68E+05 90.8 9.2
3.8196 3.51E+05 3.39E+04 3.85E+05 91.2 8.8

  Average 90.2 9.8 

 

0Table 7 Calculated mass transfer resistances for Pd/Al2O  membrane at 1300 F. 3
Resistance in 
Pd (R

Resistance in 
Al

Total Resist. 
(RP1(atm) 

(feed side) 
pd) 

(mol/cm
O  (R

2.s.atm)
2 2 s) 

(mol/cm2.s.atm)
tot) 

(mol/cm2.s.atm) 
Rpd/Rtot 
(%) 

R /Rs tot 
(%) 

1.8734 2.20E+05 3.64E+04 2.56E+05 85.8 14.2
2.6870 2.48E+05 3.62E+04 2.84E+05 87.3 12.7
2.9599 2.57E+05 3.62E+04 2.93E+05 87.6 12.4
3.8039 2.81E+05 3.61E+04 3.17E+05 88.6 11.4

  Average 87.3 12.7 

 

5.5 Application of the Present Model Results to Define Membrane 

Design for DOE Goal 

The DOE commercial target for membrane separation is to achieve hydrogen fluxes in 

excess of 60 scfh/ft2 (~30 cc/cm2-min). Our model was used to come up with the 

necessary conditions to achieve hydrogen flux values that DOE has set as a goal. This is 

illustrated in Figure 26.  Hydrogen flux values were plotted as function of Pd layer 

thickness while also varying the alumina layer thickness and the porosity of the alumina 

layer.  
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Figure 26 Plots of hydrogen flux verses Pd film thickness at 13000F and hydrogen 

feed side partial pressure of 3.8 atm. 

 

Fluxes in excess of 60 scfh/ft2 (~30 cc/cm2-min) can be achieved by reducing the 

thickness of the Pd layer to about 18 μm, while keeping alumina layer specification the 

same. This can also be achieved by reducing the Pd layer to about 20 μm and decreasing 

the thickness of the alumina layer to about 2 mm or increasing it’s porosity to about 0.5.
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

A mechanistic model of hydrogen permeation in palladium/alumina composite membrane 

has been developed taking into account the adsorption/desorption kinetics in thin Pd 

membrane and the permeation flow in the porous alumina support.  The necessary 

parameters used in the kinetics of H2   adsorption/desorption at the palladium surface were 

estimated from the surface science literature and related membrane literature.  Knudsen 

diffusion and viscous flow (Hagen-Poisuielle type) were used to model permeation 

behavior in the porous alumina support. In our study, the model developed was found to 

be in agreement with the literature and was able to satisfactorily predict experimentally 

observed flux values obtained at UTSI on a new type of palladium composite membrane. 

A simplified resistance model was also employed to analyze the permeation behavior of 

hydrogen through the palladium/alumina composite membrane to identify the major 

resistances to the mass transfer. 

 

The model predicted flux values provided a good fit to the experimental flux values at 

11000 0 0F and1300 F, and satisfactory fit at 900 F. This slightly poor fit at 9000F was 

attributed to possible microscopic (pore size and pore size distribution) changes and 

structural changes taking place in the UTSI palladium specimens after several tests 

(heating and cooling cycles of the membrane). Our calculations indicate that bulk 
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diffusion through the Pd layer was probably the rate limiting step and is consistent with 

the literature for membrane thickness greater than 10 μm. Mass transfer resistance in the 

Pd layer was found to have the greatest influence on the permeation process and it 

decreased as the temperature increased from 9000F to 13000F.   A slightly lower but still 

significant mass transfer resistance due to the porous alumina support was also observed 

from the model calculations and it also increased with the temperature. Our model 

calculations also indicated that by reducing the thickness of the Pd layer to about 18 μm, 

the DOE goal of 60 scfh/ft2 hydrogen flux can be achieved. This can also be achieved by 

reducing the thickness of the Pd layer to about 20 μm and reducing the thickness of the 

alumina layer to about 2mm or increasing it’s porosity to about 50%. 

 

6.2 Recommendations 

Our model calculations indicate that atomic diffusion through the Pd layer is most likely 

the rate limiting step in the hydrogen permeation through Pd/Al O2 3 composite membrane. 

Since permeation is inversely proportional to the membrane thickness, reducing the 

thickness of the membrane will increase the permeation flux. Also, since the resistance of 

the support to the hydrogen flux cannot be neglected, increasing the pore size and 

decreasing the thickness of the support would also increase the hydrogen permeation 

flux.  Hence it is recommended that in future study, Pd films of about 20 μm thick should 

be deposited onto a suitable alumina support of about 2 mm thickness and porosity of 

about 50%, to get the fluxes in excess 60 scfh/ft2 (~30 cc/cm2-min) considered to be 

necessary for the commercial applications in hydrogen fuel cells. 
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The substitution of pure palladium with certain palladium alloys which do not seem to 

undergo microscopic changes and changes in shape of the membrane specimen (disc size) 

and can also permit even higher rates of permeation of hydrogen under comparable 

conditions should be considered. Examples of such alloys of Pd are Pd-Ag, Pd-Cu and 

Pd-Ru.  Alloying Pd with Ag will increase hydrogen permeability and the mechanical 

strength of the membrane. Further research in the effects of micro-structural behavior on 

the rate of permeation in Pd or Pd alloy as a function of several cycling should be carried 

out to establish the effect of microscopic changes on the permeation process.  More work 

on the effect of grain boundary on the rate of diffusion should be done. 
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Appendix I-Computer Programs 

I1-Program for Model Calculation 
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I2-Program for Model Validation 
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I3-Program for Diffusion Limited Flux 
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Appendix II-Experimental Data for Palladium Membrane (taken from 
reference 9) 

 
 
Table 8 Permeate side experimental data for Pd membrane 

Time for 20 
cc of gas to 

flow Peak Areas 

 

Run
# 

T PReactor Reactor
(°F) (psi) 

H tN CH CO CO2 2 4 2 1(s) t2(s)
1 2003.94 1519.30 20.06 0.00 8.42 700 40 4.87 4.97
2 5585.96 1050.51 77.00 52.10 92.66 1100 40 4.65 4.6 
3 5644.60 1056.14 75.02 51.22 94.72 1100 60 3.6 3.58
4 7055.79 860.20 111.21 65.91 134.57 1100 80 3.71 3.58
5 6727.69 885.17 133.26 93.93 105.69 900 80 4.72 4.43
6 983.00 1587.80 8.01 0.00 0.00 900 60 3.42 3.51
7 1796.05 1510.69 17.89 2.73 3.79 900 40 4.87 4.91
8 1411.51 1555.90 13.90 0.00 1.32 1300 40 3.31 3.18
9 951.20 1624.71 3.00 0.00 1.26 1300 60 3.52 3.6 
10 2860.80 1468.98 25.55 14.38 7.85 1300 80 4.68 4.59
11 4113.24 1202.54 62.27 46.01 42.55 900 40 4.8 4.2 
12 4105.13 1184.04 81.21 55.77 50.92 900 60 4.13 4.06
13 9180.29 513.11 227.25 200.68 143.24 900 80 3.45 3.41
14 5974.74 1003.42 90.19 96.18 43.03 1300 40 3.74 3.84
15 4747.97 835.02 204.66 186.36 109.27 1300 60 3.65 3.61
16 1402.48 1544.23 8.28 2.53 4.77 1100 40 6.83 7.93
17 1810.87 1442.37 22.27 8.87 14.99 1100 60 4.02 7.82
18 1660.07 1524.33 12.61 6.99 15.20 1100 80 4.41 6.28
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Table 9 Feed side experimental data for Pd membrane 
Peak Areas TRun#  H2 CH4 CO CO2

Reactor(°F) PReactor(psi) 

1 12152.29 156.83 154.97 288.16 700 40 
2 12427.81 197.79 166.13 281.24 1100 40 
3 12359.81 186.87 155.94 263.87 1100 60 
4 12355.65 190.34 156.98 269.41 1100 80 
5 11951.30 233.77 212.74 219.30 900 80 
6 11527.71 180.17 174.63 185.22 900 60 
7 11349.18 164.23 214.03 194.85 900 40 
8 11099.96 168.38 255.99 155.33 1300 40 
9 12034.96 154.35 214.93 133.77 1300 60 
10 12302.24 179.27 230.24 141.94 1300 80 
11 12626.82 228.55 226.83 181.04 900 40 
12 11636.09 273.77 237.21 206.01 900 60 
13 11458.11 308.38 237.56 219.52 900 80 
14 12632.88 211.99 253.45 148.34 1300 40 
15 11870.25 228.48 302.34 179.74 1300 60 
16 12765.14 276.36 195.85 227.72 1100 40 
17 12218.41 289.61 171.89 240.36 1100 60 
18 12542.92 268.91 160.11 230.60 1100 80 
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Table 10 Experimental data for permeate side calibration gases for Pd membrane 
Peak Areas 

 Run# N CH CO COH2 2 4 2
1 17057.17 1759.171 5765.15 1688.526 1590.015
2 17057.17 1759.171 5765.15 1688.526 1590.015
3 17057.17 1759.171 5765.15 1688.526 1590.015
4 17057.17 1759.171 5765.15 1688.526 1590.015
5 17057.17 1759.171 5765.15 1688.526 1590.015
6 17057.17 1759.171 5765.15 1688.526 1590.015
7 17057.17 1759.171 5765.15 1688.526 1590.015
8 17057.17 1759.171 5765.15 1688.526 1590.015
9 17057.17 1759.171 5765.15 1688.526 1590.015
10 17057.17 1759.171 5765.15 1688.526 1590.015
11 16785.72 1670.388 6218.83 1682.023 1562.031
12 16785.72 1670.388 6218.83 1682.023 1562.031
13 16785.72 1670.388 6218.83 1682.023 1562.031
14 16785.72 1670.388 6218.83 1682.023 1562.031
15 16785.72 1670.388 6218.83 1682.023 1562.031
16 17785.78 1577.338 5983.12 1724.646 1506.451
17 17785.78 1577.338 5983.12 1724.646 1506.451
18 17785.78 1577.338 5983.12 1724.646 1506.451
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Table 11 Experimental data for feed side calibration gases for Pd membrane 
Peak Areas 

Run#  N CH CO COH2 2 4 2
1 17057.17 1759 5765.15 1688.526 1590.015
2 17057.17 1759 5765.15 1688.526 1590.015
3 17057.17 1759 5765.15 1688.526 1590.015
4 17057.17 1759 5765.15 1688.526 1590.015
5 17057.17 1759 5765.15 1688.526 1590.015
6 17057.17 1759 5765.15 1688.526 1590.015
7 17057.17 1759 5765.15 1688.526 1590.015
8 17057.17 1759 5765.15 1688.526 1590.015
9 17057.17 1759 5765.15 1688.526 1590.015
10 17057.17 1759 5765.15 1688.526 1590.015
11 16785.72 1670 6218.83 1682.023 1562.031
12 16785.72 1670 6218.83 1682.023 1562.031
13 16785.72 1670 6218.83 1682.023 1562.031
14 16785.72 1670 6218.83 1682.023 1562.031
15 16785.72 1670 6218.83 1682.023 1562.031
16 17785.78 1577 5983.12 1724.646 1506.451
17 17785.78 1577 5983.12 1724.646 1506.451
18 17785.78 1577 5983.12 1724.646 1506.451
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