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ABSTRACT 

 This research examines international air transport served by Chinese airlines from 1990 to 

2004. Specifically, this research examines how the spatial patterns of air transport networks 

changed during this period. Particular attention was given to the competition among the three 

major hubs designated by the Civil Aviation Administration of China: Beijing, Shanghai, and 

Guangzhou. This paper also measured regional differences denoted by air transport as well as the 

impacts of several significant incidents on China’s international air transport.  

 Data were obtained from a series of China Transportation and Communication Yearbooks 

(1990-2004). Each yearbook compiles airline statistics of routes, number of scheduled flights, and 

passenger and freight volumes. These figures were imported into ArcGIS for relevant analyses. 

Two different types of analyses were carried out in this study: network analysis and descriptive 

statistical analysis. Network analysis was performed to measure structural development of the 

network as well as individual growth of the three major hubs. Descriptive statistical analysis was 

conducted to assess regional disparities and to evaluate the impacts of economic, social, and 

political events and circumstances on the airline industry. 

 Major changes in network connectivity were observed, which were largely due to the 

presence/absence of provincial capitals, tourist cities and/or secondary cities in the network. All 

three major hubs experienced low to moderate increase in accessibility from 1990 to 2004. 

Shanghai was most likely to develop into the most accessible hub in the network. Air traffic 

displayed a great disparity among different world regions. The largest air traffic flows resided in 

Asia. Europe placed second followed by North America and Oceania. Links between China and 

Africa were suspended after 1994 and connections with Latin America were absent during the 

entire study period. Several major declines in air traffic were associated with the 1997 Asian 
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Currency Crisis, the terrorist attacks on September 11, 2001, and the outbreak of Severe Acute 

Respiratory Syndrome (SARS) in 2003.  

 The study concludes that China’s international airline network is moving towards a system 

with a high level of connectivity and great coverage. 
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Chapter 1: Introduction 

1.1 Research Background 

 Airports are among the most important elements of the infrastructure of modern cities. 

Their importance arises from the role they play in the globalization of production. In particular 

they play a critical role in the evolution of a knowledge-based economy as it relies so much upon 

face-to-face contact between its key participants (O’Connor, 1995). New or expanded airports are 

considered as critical to a region’s sustained growth, in line with the view that an “airport is 

perhaps the most important single piece of infrastructure in the battle between cities and nations 

for influence in, and the benefits of, growth and development” (O’Connor and Scott, 1992, p.241) 

 China’s transport sector is one of the largest sectors of the Chinese economy while aviation 

has been the fastest growing mode since the airline industry reforms in the early 1980s. China’s 

civil air transport has grown by an average of 20% a year since 1980, which is 4.3 times the world 

average (Zhang, 1997). It is reported that China is the world’s fastest growing aviation market with 

an increase of passengers from 69.6 million in 1999 to an estimated 214.7 million by 2014 

(Granitsas, 2002). The International Air Transport Association (IATA) forecasts that China will 

become the largest Asia-Pacific market for scheduled passenger traffic by 2010 (Li, 1998). In a 

report presented by Boeing in 2003, China’s civil aviation is predicted to be second only to the 

United States by 2020 (Lu et al., 2005). A rapid growth of air services to Chinese cities is observed, 

especially to Shanghai, Beijing and Guangzhou (O’Connor, 2003). China’s aviation industry is 

undergoing a rapid expansion. This research is conducted in the context of socio-economic and 

political dynamics that shape the development of China’s aviation industry.  
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1.2 Brief Introduction to China’s Airline Industry 

 The airline industry in China has experienced significant development since the first 

airplane in China, a Farman biplane, was purchased by the Qing government from France and 

operated in a playground in the suburbs of Beijing in 1910 (Civil Aviation Resource Net of China, 

2005). Almost a century later there were 754 planes (foreign carriers excluded) operating in 

China’s airspace, 133 airports provided regular service for civil air transportation, and 132 cities 

received air transport service in 2004. By 2005, the air transport system had evolved into a network 

connecting 127 domestic cities with 80 foreign cities in 38 countries (Civil Aviation 

Administration of China, 2005). The general layout of the airport distribution is characterized by 

three major hub cities, namely, Beijing, Shanghai and Guangzhou, with other provincial capitals, 

tourist cities and secondary cities across the country (Lu et al., 2005) There are three eras 

representative of the development of China’s airline industry: Pre-PRC (People’s Republic of 

China) Era (1910-1949), Pre-Reform Era (1949-1978), and Post-Reform Era (1978-Present) (Jin 

et al., 2004). 

 

Pre-PRC (People’s Republic of China) Era (1910-1949) 

 The first 40 years of aviation in China saw the rapid rise of an industry for commercial and 

military purposes. Soon after 1910 when the first plane was introduced, airplanes were used for 

military purpose in China. It was in 1920 when the first commercial flight was operated between 

Beijing and Tianjin. Commercial airlines did not make any significant development until the end 

of the First Civil War in 1927, and thereafter the central government became aware of the 

importance of commercial airlines (Jin et al., 2004). Shanghai-Chengdu Aviation Administration 

Bureau was established in 1929 and much emphasis was put on the civil airline industry. By 1933, 
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three major domestic airlines in China were founded: China Airlines (a joint venture with a U.S. 

company), Eurasian Airlines (with a German company), and Southwest Airlines (with local 

business organizations in southwest China). By 1936, the air transport network had spread out 

nationwide, covering major cities except for northeast China. Afterward civil aviation was 

suspended during the War of Resistance Against Japan (1937-1945) and the Second Civil War 

(1945-1949) (Jin et al., 2004). It was not until 1936 that Southwest Airlines was able to operate its 

first international commercial flight from Guangzhou through Wuzhou, Nanning, and Longzhou 

to Hanoi (Guangzhou Chronicle, 2005). That flight was also the first international route in China.  

 

Pre-Reform Era (1949-1978):  

 Civil aviation went through a gradual transition during this period. The Civil Aviation 

Administration of China (CAAC) was founded in 1949, soon after the founding of People’s 

Republic of China. By 1954, the CAAC bureau was under absolute supervision of the Central 

Military Commission (Jin et al., 2004). Only 36 airports existed across the country at that time 

(Efendioglu and Murray, 2003). The air transport network was built primarily to connect Beijing 

and other cities for governmental and military purposes. As a result, demand for air services for the 

public was severely suppressed. The industry also suffered persistent financial losses primarily 

due to unsatisfactory performances of the traditional centrally-planned scheme (Zhang, 1997). The 

system suffered further from the Cultural Revolution (1966-1976) with only minimum passenger 

and freight traffic (Jin et al., 2004). Development in the airline industry stagnated during this 

period and increasing demand for reforms of the airline industry were building.  
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Post-Reform Era (1978 – Present):  

 The airline industry has experienced remarkable developments since China launched its 

economic reforms in 1978. Commercial airlines were greatly transformed by virtue of the reforms. 

The CAAC obtained its independence from the military in 1980, and decided its priorities in 

developing civil aviation in China. The CAAC implemented various reform measures in the 1980s 

in accordance with Deng Xiaoping’s speech addressed to the commercialization of Chinese civil 

airlines on February 14, 1980 (Civil Aviation Administration of China, 2005). The reform 

measures included separating management of airlines and airports from the CAAC central office, 

transforming airlines to profit-seeking business entities, allowing local governments to operate 

their own airlines, encouraging competition, and relaxing the regulatory control over market entry, 

route entry, frequency, infrastructure construction and aircraft purchase (Wang, 1989; Zhang, 

1997; Jin et al., 2004). These innovative measures gave great impetus to the rapid development of 

commercial air transport. By 2001, there were 34 airline companies in China. However, the 

majority of them were small companies among which there was wasteful competition and absence 

of economies of scale. Eventually, the most progressive measure was implemented in 2002. The 

CAAC announced airline consolidation on October 11, 2002. The original 34 airlines were 

reduced to 23 either by merger or by acquisition. The top nine stated-owned carriers among the 23 

airlines formed three groups (Air China, China Eastern, and China Southern), known as the “Big 

Three”. The “Big Three” located their bases of operations in three major hubs: Beijing, Shanghai, 

and Guangzhou respectively. The rest of the airlines were regional carriers. They formed two other 

groups: Hainan Airlines and Zhongtian Airlines (Lu et al., 2005). The consolidation prompted a 

complete separation of airlines from the CAAC. Airlines became profit-driven enterprise entities, 

a fair playing field was created without state subsidies, merger and acquisition and bankruptcy 
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protection were permitted and legalized, the government’s control over pricing, route entry and 

flight scheduling was loosened. In general, the consolidation not only expanded the scale of major 

airline companies, but also greatly enhanced the competitiveness of airlines by introducing the 

market mechanism and modern management systems (Jin et al., 2004; Jin et al., 2005). 

 

1.3 Research Justification  

 Geography is frequently defined as the study of spatial phenomena and provides an ideal 

framework in which to address transportation issues. Focused on the development of air transport 

networks that interlace over the Earth’s surface, this thesis addresses an inherently spatial 

phenomenon. The sub-discipline of transportation geography provides powerful tools by which 

growth can be examined.  

 Over the past fifteen years Asia’s growing air transport market has attracted increased 

interest from air transport geographers. Regionally focused research on Southeast Asia (Bowen 

and Leinbach, 1995; Bowen, 2000; Bowen, Leinbach, and Mabazza, 2002) has looked at many 

different aspects of the industry, including the role it plays in the political economy of the region. 

O’Connor and others studied the airline industry in the Australasian region (O’Connor and Scott, 

1992; O’Connor, 1995; Hooper, 1998; O’Connor, 2003). Studies on China’s civil aviation 

industry have mainly focused on its domestic sector. Zhang (1997) studied the regulatory and 

enterprise reform in China’s airline industry and its impact on air transport development. It was 

found that air traffic volume and the number of routes significantly increased since the 2002 

reforms. The study argued that the rapid growth of China’s airline industry can be attributed to the 

increased disposable income, more leisure time, developing trade and tourism, and the airline 

industry reform. Hui et al. (2004) analyzed China’s air cargo flows and its network from 1980 to 
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2000. The study found that the domestic freight network was like a tripod with Beijing, Shanghai, 

and Guangzhou being the major pillars. The international air freight network had a similar 

structure except that Hong Kong replaced Guangzhou as the third pillar. In the passenger sector, 

Jin (2001) studied the network of domestic air passenger flow in China. The study revealed that the 

majority of the flow had always concentrated on Beijing, Shanghai and Guangzhou since 1980 and 

a similar conclusion could be drawn about international passenger flow: more than 90% originated 

from these three cities. Jin et al. (2004) examined spatial patterns of domestic air passenger 

transport in China from 1980 to 1998. It was found that Beijing and Guangzhou spread their 

networks across the East, Middle, and West regions, and were clearly national hubs. Shanghai’s 

centrality remained limited in terms of spatial ranges, and its dominance resided in the surrounding 

eastern coastal regions. However, Shanghai gained the fastest growth in air traffic among the three 

because of the economic prosperity of the area. The study also found that the domestic air transport 

center migrated toward Southeast China and that the migration of international air transport center 

was consistent with the trend of the domestic system. Lu et al. (2005) analyzed spatial 

characteristics of domestic air passenger transport in China and competition among airlines by 

applying statistical and visual approaches. The study revealed that Beijing, Shanghai and 

Guangzhou functioned as key hub cities on the network. However, a systematic hub-and-spoke 

network had not been formed yet. Efendioglu and Murray (2003) studied changes and challenges 

in China’s airline industry due to the consolidation. The study revealed that until recently, factors 

such as geography, distance, and economic inequality among regions limited the ability of Chinese 

carriers to establish efficient hub-and-spoke systems based on essential scope and scale 

efficiencies, which have been very effective in the U.S. and in Europe. Jin et al. (2005) 

investigated airline consolidation and its effect on network structure. The study once again 
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confirmed the predominant position of Beijing, Shanghai and Guangzhou as major hubs. Nodal 

accessibility of each hub was significantly higher than any other node on the network. The 

networks of the “Big Three” were shifting from single hub to multi-hub and the adoption of 

hub-and-spoke structure became more obvious. The study concluded that the consolidation not 

only extended the geographical coverage of major airlines, but also improved their aggregate 

network connectivity. 

 China’s international air transportation has, however, not been explicitly studied. Driven 

by the increasing domestic demand and international trade, China has experienced remarkable 

economic growth since its economic reforms in 1978 (National Bureau of Statistics of China, 

2005). International trade has grown rapidly since 1978 with an average growth rate of 15.2% 

(Jiang et al., 2003). China has experienced fast economic growth as its role within the global 

economy has been reshaped by export-based industrialization. This increased export-based 

activity provides a significant boost to air traffic as many exports involve links between American 

and European corporate headquarters and local production facilities or subcontractors (O’Connor, 

1995). No matter whether it is for foreign market or domestic need, a mature air transportation 

system is a prerequisite for a healthy and secure economy. As globalization proceeds, integration 

into the international airline industry is an important prerequisite for developing countries to 

access global flows of capital, goods, people, and information (Bowen, 2000). China’s economy 

has grown rapidly over the last twenty years and its status in international economic and trading 

system is also steadily advancing. Together with the enormous size of China’s population and the 

geopolitical importance of its location in Asia, all suggest that China will likely play a key role in 

shaping the pattern of airline networks in Asia and in linkages with other continents. Thus, a study 

of China’s international air transport is warranted.  
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1.4 Research Objectives 

 The focus of this research is international air transport served by Chinese airlines from 

1990 to 2004. This research studies how the spatial patterns of the air transport network changed 

during this period. Particular attention is given to the competition among the three major hubs 

designated by the CAAC: Beijing, Shanghai, and Guangzhou. This research also measures 

regional differences among world regions by examining the distribution of air traffic in different 

regions. 

 Economic, social, and political events and circumstances have great impacts on the airline 

industry. On one hand, the expansion of air transport has been driven by two principal factors: 

growing affluence and government policies such as deregulation, liberalization, privatization, and 

encouragement of competition, all of which are intended to improve services and drive prices 

down. On the other hand, economic slumps, overcapacity, mismanagement, and events that 

discourage air travel are notable deterrents in terms of air transportation growth (Pirie, 2006). The 

airline industry has experienced losses of profitability as a result of overcapacity, war, terrorism, 

and epidemics (Horan, 2002). Several important incidents happened in the late 1990s and early 

2000s and have had far-reaching impacts on China and the rest of the world. The return of Hong 

Kong in 1997, the 1997 Asian Currency Crisis, the return of Macau in 1999, the terrorist attacks on 

the World Trade Center in New York and the Pentagon in Washington in 2001, China’s entry into 

the WTO in 2001, China’s airline consolidation in 2002, and the outbreak of Severe Acute 

Respiratory Syndrome (SARS) in 2003 are all significant events that pertain to this research. This 

study evaluates the impacts of these events on network structure and traffic flows over the 

network.  
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1.5 Thesis Organization 

 The remainder of this thesis is organized into four chapters of literature review, 

methodology, results and discussion, and conclusions respectively. Chapter Two provides a 

literature review first discussing the broad concepts of transport geography and air transportation, 

and then focusing more specifically on state intervention, bilateral agreements and “Open Skies”, 

and hub-and-spoke networks. Chapter Three explains the methodology of this study, detailing data 

acquisition, processing, and analyses. Chapter Four discusses the results of spatial and descriptive 

statistical analyses of China’s international air transport network. Chapter Five synthesizes the 

findings from this study and suggests future research directions. 
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Chapter 2: Literature Review 

2.1 Transport Geography and Air Transportation 

 “Transportation is central to the study of geography, just as geography is central to the 

study of transportation” (Goetz, 2006, p. 230-231). Transportation industries, facilities, 

infrastructures and networks occupy substantial areas of geographical space and constitute 

complex spatial systems. On the other hand, geography is concerned with interrelationships 

among phenomena in a spatial setting and transport is frequently one of the most potent 

explanatory factors. Transport geography is thus concerned with the explanation, from a spatial 

perspective, of the socioeconomic, industrial and settlement frameworks within which transport 

networks develop and transport systems operate (Hoyle and Knowles, 1998). It is recognized that 

transportation is a system that considers the complex relationships among its core elements. These 

core elements are networks, nodes and demand. Transport geography must be systematic as one 

element of the transport system is linked with numerous others (Haggett, 2001). “Transportation 

geography is concerned with spatial interaction – describing, explaining, optimizing and 

predicting the movements of goods and people between disparate locations in space connected via 

transport networks” (Scott, 2006, p. 389-392). As a sub-discipline of geography, it centers on both 

the location and geographic pattern of transport systems and the magnitude of the movement or 

spatial interaction over the elements of such systems (Black, 2003). 

 Based on the medium by which the movements are supported, transportation modes may 

be grouped into three categories: land, water, and air. Within the field of transportation geography 

and the larger discipline of geography, an understanding of air transportation is essential to 

describing geographical concepts of connectivity and linkages, development patterns at various 

scales, and the global economy.  
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 This research is concerned with commercial air transport, focusing on international airline 

industry. Ever since the first tentative 12-second flight of the Wright Flyer at Kitty Hawk, North 

Carolina, in December 1903, aircraft technology has advanced substantially. The B747 or A340 

nowadays are capable of flying full loads, non-stop, half-way around the world. These significant 

technological advances have made air transport the paramount mode of long-distance passenger 

travel, both between and within countries. By dodging maritime, mountain and desert barriers, the 

development of air transportation industry has radically altered patterns of global accessibility 

(Graham, 1995).  

 From its onset, the development of air transportation system has resided in a context of 

national interests, a factor that remains a potent influence upon the contemporary patterns of the 

industry. An interlocking nexus of mail, empire and administration characterized the early 

attempts at developing intercontinental air transport during the 1920s, which were the pioneering 

years of commercial air transportation. During the 1930s, passenger services developed upon the 

initial framework of mail routes. The rapid evolution of this first phase of intercontinental air 

transport was interrupted by World War II. However, paradoxically, this provided a significant 

impetus to the development of all aspects of aircraft technology. On the other hand, the rapid 

post-war development of air transport has been associated with a complex of interrelated political 

and economic processes, representative of widespread and revolutionary changes in global social 

structures (Graham, 1995).  

 Admittedly, air transport has always been a global industry. The intercontinental routes, 

pioneered during the late 1920s and 1930s, were concerned with linking world-embracing empires 

and political spheres of influence (Graham, 1995). Later on, the industry was controlled by 

pan-global institutions, namely, the International Civil Aviation Organization (ICAO) and the 
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International Air Transport Association (IATA), and was subject to multilateral international 

conventions. In November 1944, representatives from 51 nations gathered in Chicago to discuss 

and establish a legal framework that would serve to guide and regulate the conduct of international 

civil aviation in the postwar era. As a result of the 1944 Chicago Convention and the subsequent 

1946 Bermuda I Agreement, an international aviation regime was established based on a system of 

bilateral air transport agreements. Over the last 50 years, the Chicago Convention agreements and 

bilateral system have promoted an orderly development of international civil aviation. But in more 

recent years, this system has come under increasing reform pressure as a result of government 

deregulation, “open skies” and free trade policies, and airline globalization strategies, all of which 

indicate the increased importance of the international dimension in the geography of air transport 

(Goetz, 1995, p. 229-230).  

 

2.2 State Intervention Impacting Air Transportation 

 In theory, air transport enjoys greater freedom of route choice than other modes because 

airplanes elude physical obstacles such as maritime, mountain and desert barriers which are 

commonly found on the Earth’s surface. However, barriers created by strategic and political 

concerns have a significant influence on air transport (Rodrigue et al., 2006). Researchers argue 

that the mechanism of international air transport networks cannot be understood fully without 

examining issues of international trade, governmental policy and competitive strategy (O’Sullivan, 

1980; Pustay, 1993; Debbage, 1994). Underlying processes governing the geography of 

international air transport networks are closely related to international trade patterns and strategic 

industrial policies among nations because international air passenger flows involve the sovereign 

air space of at least two different nation-states (Debbage, 1994). The air transportation industry 

 12



worldwide has gone through dramatic changes over the past 25 years. It is believed that the most 

sweeping changes have occurred in the institutional environment, where entrenched regulatory 

controls have been modified, eased, and in some cases removed, due to policies of liberalization or 

deregulation in the airline industry (Graham, 1995, 1998; Goetz, 2002). The decision to deregulate 

the airline industry can be seen as an integral part of a much broader policy agenda that has 

transformed the global economy (Goetz, 2002). Accompanied by technological advancement and 

economic dynamics across all industries, these forces have boosted the process of globalization, 

which is fundamentally changing the volumes, patterns, directions, ownership, and control of air 

transport passenger flows around the world (Goetz and Graham, 2004).  

 The airline industry is probably “one of the most highly regulated and nationally controlled 

industries throughout the world” (Wheatcroft, 1990, p.353). One of the most noteworthy examples 

of state intervention in the airline industry is probably the United States. The airline industry was 

governed by economic regulations in the U.S. before 1978 because the airline industry, as well as 

telephone, banking, and electric power, possessed characteristics of public utilities and were 

important “public interest” industries. Airline companies operated most efficiently at a very large 

scale because the prevailing technologies in the airline industry required large fixed costs. This 

inexorable economic law, known as economies of scale, resulted in either a classical monopoly or 

an oligopoly, where the monopolist or a few firms had the absolute control of output and prices. 

Therefore, the need for government regulation emerged to ensure that pricing would approximate 

actual costs, and that consumers would not be gouged through extraction of monopoly or oligopoly 

profits. However, the imposition of government regulation in the airline industry caused a loss of 

market efficiency, which became a major concern by the 1970s when the desirability of continued 

government regulation in the airline industry was questioned in a substantial body of economic 
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studies. Increasing maturity and balanced competition was seen in the airline industry. It was 

suggested that by discontinuing regulatory control from the Civil Aeronautics Board (CAB), 

markets would operate more efficiently and consumers could have a wider range of price/service 

options offered by carriers, and that competition would thrive and contribute to enhanced 

economic productivity (Goetz, 2002).  

  The Airline Deregulation Act (ADA) of 1978 in the United States was legislated in 

response to the criticism of the continuance of regulatory control over the airline industry and to 

the cost saving and marketing advantage that would incur as a result of deregulation. The ADA 

grants certificates to all airlines which are deemed “fit, willing, and able to properly perform air 

transportation” for a route and allows a carrier to terminate serving a route as long as the 

termination will not threaten the essential air service (US Government Printing Office, 1980). In 

general, deregulation involves the exposure of air transport to free market forces, achieved through 

the removal of most regulatory controls over pricing while permitting carriers to enter and leave 

markets at will (Goetz and Graham, 2004).  

 Similarly, governments in other parts of the world play an influential role in shaping their 

airline industry. Air service within Europe was largely regulated by a series of restrictive and 

anti-competitive bilateral agreements between European countries until the mid 1980s. In 1986, 

European nation states initiated discussion about establishing a more competitive, internal air 

transport market within Europe to complement reform in other economic sectors regarding trade 

and tariff. A three-aviation package decision was arrived at and, according to the decision, air 

transport liberalization within Europe was gradually achieved through three phases, which were 

implemented in 1987, 1990 and 1993, respectively (Debbage, 1994). Since then, the European 

Union (EU) has been actively deregulating its domestic air transport market through the adoption 
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of the three packages for liberalization (Tretheway, 1991; Marín, 1995). The first package 

implemented in December 1987 started to relax the established rules in the aviation industry. It 

limited the right of governments to disapprove the introduction of new fares for intra-EU traffic 

and gave some flexibility to airlines concerning seat capacity sharing. The second package in 1990, 

opened up the market further, allowing greater flexibility over pricing and capacity-sharing. It also 

gave all EU carriers the right to carry an unlimited number of passengers or cargo between their 

home country and another EU member state. The third package was introduced in January 1993; it 

granted all EU carriers with an operating licence freedom to provide services within the EU. It also 

granted airlines full freedom with regard to fares and rates (European Commission, 2005). The 

aviation industry of EU has grown tremendously since the adoption of the first package in 1987. 

Air transport development within the European Union goes hand-in-hand with the gradual 

liberalization and deregulation of European air traffic, which, in time, will eliminate national 

priorities of its member states and remove traffic barriers (Matthiessen, 2004).  

 In the ASEAN (Association of South-East Asia Nations) context, deregulation was 

considered probably “the only mechanism available to achieve a quantum leap in the development 

of the air transport industry” (Li, 1998, p.140). Bowen (2000) studied the development of the 

airline industry in Southeast Asia, where liberalization was one of the most important means 

through which regional governments sought to influence the development of airline networks. The 

airline industry was carefully integrated into development policy and was subject to a host of 

state-led efforts to guide its development. Governments regulated airline competition and 

determined the size and quality of airport infrastructure provided at hub cities. The emergence of 

new entrant airlines as a major component of liberalization could be seen in almost every country 

in Southeast Asia. The state plays an essential role in the development of air transport geography. 
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In Southeast Asia, governments in countries with rapidly developing economies administer 

development priorities by determining the extent of privatization, the scope of competition among 

foreign and domestic airlines, and the size and location of new airport infrastructure (Goetz and 

Graham, 2004).  

 The tide of deregulation (liberalization) is sweeping across the globe. China has also been 

taking substantial, albeit cautious, measures to deregulate its airline industry. From the foundation 

of the Civil Aviation Administration of China in 1949 to the consolidation in 2002 that separated 

airlines from the CAAC, the central government played a crucial role in the development of 

China’s airline industry and aviation network structure. The government continues to exert 

influence on air transport by regulating price, market entry and route entry. Undeniably, state 

intervention has always been an essential part of the dynamics that shape the development of air 

transport and further deregulation may benefit the aviation industry as a whole.   

 

2.3 Other Factors Impacting Air Transportation  

 The regime of regulatory control over airline industry can, for the most part, be traced back 

to the Paris Convention in 1919. The convention concluded that nation-states have absolute 

sovereign rights to the air space above their territory. The resolution elevated airline traffic to the 

level of a national resource that government should protect for the sake of national welfare. 

Consequently, the regulation of international air transport developed under a series of bilateral 

agreements between countries (Debbage, 1994). A typical bilateral agreement regulates carrier 

and route designations, specifies capacity and frequency of services, modulates prices, and 

oversees other commercial aspects of business operations. A bilateral agreement is based upon the 

principle of reciprocity, an equal and fair exchange of rights between countries that are different in 
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size and have airlines of varied strength (Oum, 1998). However, bilaterals are considered as 

increasingly redundant because they frequently cannot accommodate a fair and equal exchange of 

aviation rights, especially between countries with significantly different domestic markets 

(Debbage, 1994). Formation of alliances, strategic alliances with comprehensive code-sharing in 

particular, is in part stimulated to get around the restrictive bilateral air service agreements (Li, 

1998; Vowles, 2000). It is possible that a level playing field could be created between two 

countries on the bilateral agreements through strategic alliance, code-sharing, and other 

concessions by the stronger side even if the flag carriers of the two countries are not equally 

competitive (Oum, 1998).  

 Research into international alliances has shown that airlines enter into alliances for reasons 

such as improved feeder access to a historically limited area and to reduce the threat of an outside 

carrier entering certain markets (Youssef and Hansen, 1994). The fundamental justification for 

entering into these agreements is the objective of obtaining greater market access (French, 1997). 

During the early 1990s, strategic alliance was characteristic of the consolidation of airlines in the 

United States (Debbage, 1994). Southeast Asia airlines entered global alliance as a survival 

strategy during the Asia Currency Crisis in that membership or code-sharing agreements offered 

the prospect of mitigating their financial problems by consolidating traffic and rationalizing 

services (Rimmer, 2000). According to a survey by Airline Business, five groups of airlines 

accounted for almost 60% of world air traffic (Pinkham, 2001). Pearson’s study of the North 

Atlantic region suggested “alliances do shift market share significantly and are often critical to the 

growth of airports and individual markets particularly when alliance members allow strong hubs to 

be connected to each other” (Pearson, 1997, p.51). Essentially, the alliance has a critical role in 

shaping air traffic patterns around the world (O’Connor, 2003). 
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 Another notable regulatory force that has shaped the airline industry is the “Open Skies” 

bilateral/multilateral agreement. An “Open Skies” agreement grants foreign airlines access to, 

from, and beyond the countries who adopt “Open Skies” in exchange for reciprocal traffic rights in 

their own home markets (Bowen, 2000). A so-called “Open Skies” bilateral/multilateral 

agreement, allows unrestricted market entry and code-sharing alliances, permitting any airline 

virtually unlimited access to any market within their boundaries (Goetz and Graham, 2004). 

 The idea of “Open Skies” was initiated by the United States. The United States initiated a 

pro-competitive, pro-consumer agenda in the late 1970s in response to the protectionist 

governmental policies and restrictive bilateral agreements. In 1978, the United States Civil 

Aeronautics Board (CAB) issued an order requiring the IATA to demonstrate why the CAB should 

not withdraw IATA-based tariff agreements. The order resulted in the erosion of IATA’s power 

and a multilateral compromise of European nations, which were deemed the origin of the US 

“Open Skies” initiative. The United States continued to propagate its “Open Skies” initiative by 

successfully concluding a series of liberal bilateral agreements with over 20 nations between 1978 

and 1982 (Dresner and Tretheway, 1992).  

 In March 1992, the United States initiated the negotiation of transborder “Open Skies” 

agreements with all European countries. The first US “Open Skies” agreement was signed in 

September 1992 between the US and the Netherlands. In the following four years, 11 European 

countries as well as Canada, signed “Open Skies” agreements with the US. The United States 

announced its “Open Skies” initiative in Asia in summer 1996, and Singapore was the first Asian 

country that signed an agreement with the US in 1997, followed by Brunei, Malaysia, Taiwan and 

New Zealand (Oum, 1998).    

 The United States “Open Skies” initiatives in Asia posed a marked threat to Asian carriers. 
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The US intended to negotiate for unlimited freedom in establishing hubs in Asian countries, and 

thus US carriers could provide high-frequency services using smaller aircraft within Asian 

markets, while enjoying economies of larger airplanes in the trans-Pacific markets (Oum, 1998). 

Competing with mega-carriers from developed countries with much larger domestic traffic bases 

is generally disadvantageous to relatively small carriers in developing countries. Thus ASEAN 

Transport Ministers faced a challenge to develop an innovative “Open Skies” regime which would 

accommodate its member carriers to the changed situation without seriously undermining the 

overall competitiveness and efficiency of the airline industry in its member countries (Li, 1998). 

Governments in Southeast Asia countries have been increasingly open-minded to international 

services provided by foreign airlines. Traffic rights were secured for Singapore Airline under its 

“Open Skies” policy and were integral to its emergence as one of the world’s largest airlines 

(Bowen, 2000). Actually, most governments in Southeast Asia have endorsed the “Open Skies” 

initiative. The results were, however, mixed. Philippine adopted “Open Skies” in the 1970s to 

promote tourism (Tasker, 1977), and PAL (Philippine Airlines) collapsed in 1998 for which the 

officials blamed liberalization and asked the government to withdraw from “Open Skies” in order 

to facilitate PAL’s proposed revival in 1999 (Shipping Times, 1999). Debbage (1994) argued that 

successful transition from the restrictive bilateral system to “open skies” multilateralism was vital 

to the competitiveness of airlines.  

 There are several external forces that have impacts on the development of air transportation, 

besides governmental and institutional policies that shape the development of airline industry. 

Economic slumps, overcapacity, mismanagement, and events that discourage air travel are notable 

deterrents in terms of air transportation growth (Pirie, 2006). Airline industry had experienced 

losses of profitability as a result of overcapacity, war, terrorism, and epidemics (Horan, 2002). Air 
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transportation growth was compounded by a sharp decrease in air traffic due to a succession of 

events external to the airline industry. The 9/11 attacks on New York and Washington in 2001, 

followed by the invasion of Afghanistan in 2002-2003, the Iraq war, the Severe Acute Respiratory 

Syndrome (SARS) epidemic in China, and the continuing disruption of international air traffic 

caused by enhanced security measures in airports (Goetz and Graham, 2004).  

 British Airways, the largest carrier in Europe, cut 7,000 jobs in October 2001, Air Canada 

slashed 9,000 jobs and curtailed its capacity by 20%, and Swissair filed bankruptcy and grounded 

all its worldwide flights (Efendioglu and Murray, 2003). International Air Transport Association 

statistics showed a global 4.4% decline in international scheduled passenger traffic in 2001 (IATA, 

2002). According to the International Civil Aviation Organization, the combination of war and 

SARS led to further traffic decrease in the first part of 2003, which was expected to be a year of 

zero growth until a full recovery in traffic took place in 2004 and 2005 (ICAO, 2003). In general, 

major international carriers had been most severely affected by the succession of crises, suffering 

in particular from a fall in high-yield international business traffic. Carriers in North America, as 

well as in Europe, were hardest hit by the post 9/11 fall in demand, whereas it was airline 

companies in Asia and Australasia that went through the worst effects of the SARS crisis (Goetz 

and Graham, 2004). 

 Rimmer (2000) and Bowen (2000) studied the impacts of the Asian Currency Crisis on 

airlines in Southeast Asia. In 1998, the broadening economic crisis precipitated the collapse of 

several airlines in Southeast Asia and emergency restructuring at others. PAL (Philippine Airlines) 

was forced to suspend operations altogether by the Asian traffic collapse in mid-1998. Thai 

International and Garuda Indonesia stopped some of their pre-crisis international networks in 

mid-1998. Total international airline capacity fell in the Southeast Asia region. Southeast Asian 
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airlines redeployed aircraft to other markets, expanded or cut routes to mitigate the crisis. Airlines 

also entered global alliance as a survival strategy during the crisis in that membership or 

code-sharing agreements offered the prospect of mitigating their financial problems by 

consolidating traffic and rationalizing services. 

 Rimmer (2000) also suggested that there was a recession in global airline industry in early 

1990s, associated with the Gulf War. Hong Kong air routes in general and Cathay Pacific’s 

performance in particular had been impacted by the former British colony’s reversion to China 

prior to the Asian Crisis, which adversely affected its tourism trade sector, especially from Japan. 

  

2.4 Hub and Spoke Network and Network Analysis 

 Flows of people, commodities, information and capital all require a complex network of 

interconnection between origins and destinations. A special type of network, namely, the 

hub-and-spoke network is designed for servicing passenger, commodity or information flows 

between multiple origins and destinations (O’Kelly and Miller, 1994).  

 In many transportation or telecommunication networks, the cost of carrying a unit of traffic 

(passengers, cargo, or information) between two points decreases as the volume of traffic going 

through the link joining the two points increases. Consequently, it is often convenient to design 

networks in which traffic is concentrated on high traffic links, even if longer travel distances 

and/or longer travel time are incurred. In order to concentrate traffic, each point that offers traffic 

is connected to one or more transshipment or switching points through a link. The transshipment 

points, known as hubs, are in turn interconnected by high traffic links. Airline networks are 

examples of networks utilizing hubs (Marianov et al., 1999).  

 In the airline industry, hubbing is motivated by the economic advantages of increased 
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flight frequencies and by the economies of operating larger aircraft. High frequencies of service 

and larger aircraft would not normally be feasible if all city pairs in a system were served by 

non-stop flights. By consolidating passengers through a few selected airport hubs, an airline takes 

advantage of the resulting higher volumes by using large relatively efficient aircraft and can raise 

the frequency of service it offers passengers to compensate for the increased travel time incurred 

by the need to transfer (Kanafani and Ghobrial, 1985).  

 The deregulatory policies in airline industry opened the way for hubbing. Airline 

companies adjusted to the deregulated environment, and their network geography (node-linkage 

association) changed accordingly (Ivy, 1993). It became increasingly clear that concentrating 

flights at one or more hub cities in their networks could raise seat-occupancy level, and thus 

achieve scale economies using larger aircraft, and also maximize the number of on-line city-pair 

matchings available to passengers (Lopuszynski, 1986; Goetz and Dempsey, 1989; Ivy, 1993). 

The position of a hub was further strengthened as carriers simply added many more flights to many 

more destinations, medium-sized and small cities in particular, at these facilities to build up 

connectivity and create greater overall efficiency and market control at the hub (Bailey et al, 1985; 

Ivy, 1993) Significant amount of arrivals and departures are handled within a short time to allow 

the connections. This intense type of system has become known as a “hub-and-spoke” network. It 

is found that implementing hub-and-spoke networks is generally attractive to airline companies 

because they enjoy cost savings derived from concentrating flow density on network links between 

hub locations (Horner and O’Kelly, 2001). 

 In terms of network analysis, graph theory, an area of mathematics which examines the 

relationships or connections among members of a set, is the underlying mathematical foundation 

of measurement of networks. Graph theory defines a system of routes and places with flows as a 
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network. Points are referred to as nodes in a network, and links are termed as arcs in a network 

(Berge, 1962; Busacker and Saaty, 1965). In other words, a network is a graph that accommodates 

interaction or movement behavior explicitly. Nodes are locations where flows originate, terminate 

or transit while arcs are the conduits for flows between nodes (Miller and Shaw, 2001).  

 In general, four major characteristics of transportation systems can be employed as criteria 

in the network evaluation: (1) connectivity, (2) costs and distances, (3) accessibility, and (4) flows 

(Black, 2003). A series of indicators are developed to describe these various aspects of networks. 

Garrison and Marble (1962) devised several indices, namely, α, β, and γ, to calculate the 

connectivity of a network. Alpha (α) is a ratio of the existing circuits in a network to the maximum 

number of circuits possible. A circuit is defined as a finite, closed path in which the initial node of 

the linkage sequence coincides with the terminal node that exists in the network (Taaffe et al., 

1996). Beta (β) is a ratio of the observed number of arcs to the number of nodes in a network, and 

gamma (γ) is a quotient of the observed number of arcs to the maximum possible number of arcs in 

a network. Garrison and Marble (1965) also examined the interrelationships among the three 

indices. They noted that α and γ were quite redundant. Actually, all the connectivity indices are so 

interrelated that it is unnecessary to use more than one such index in the study of network 

connectivity (Black, 2003). In this study, γ is applied to measure network connectivity because it is 

easiest to interpret and has obvious limits of near zero (for few arcs relative to the maximum 

possible) to one (for a completely connected network). 

 A major concern of network analysis is to find the dominant node of a network, which is 

generally referred to as the “problem of the leader” (Berge, 1962, p.135). In order to determine 

which node is the major node, as well as the relative ranking of all the other nodes in terms of 

connectivity dominance, a connectivity matrix needs to be constructed first (Black, 2003). 

 23



Matrices are frequently used in the study of network structure. A network can be represented 

numerically in the form of a matrix. Traditionally, we speak of n rows (origins) and m columns 

(destinations) in a network matrix. The n and m values correspond to the number of nodes in the 

network of interest, and the cell value may be used to represent the presence of a linkage, the 

direction of flow over a link, or any characteristic of these. In a connectivity matrix, the presence 

of a linkage in a network is represented by a 1, and the absence of a linkage is represented by a 0. 

The next step is to raise the connection matrix to a certain power and sum each of the derived 

matrices to form a new matrix. Any cell of the new matrix represents the total direct and indirect 

linkages of the respective nodes. Thus the relative dominance of each node in the network can be 

quantified by summing the row and column values. The question is to what degree the connectivity 

matrix should be raised. When the power is equal to the diameter of the network of interest all zero 

cells in the powered matrix disappear. For real-world transportation systems, this diameter value is 

rather difficult to obtain even though algorithms developed to solve this problem need only check 

for the presence of zeros in the final matrix because the result stabilizes when the matrix has 

non-zero entries in all of its cells (Black, 2003). Unfortunately, the current version of ArcGIS does 

not provide such a tool for determination of connectivity dominance. Instead, ArcGIS offers 

another powerful tool, namely, the OD cost matrix network analyst, to measure the relative 

dominance of a node in a network, which is discussed in the following paragraph.  

 Frequently, in the study of a transportation network, it may be necessary to examine the 

shortest paths between the nodes that make up the network. The OD cost matrix network analyst in 

ArcGIS presents a convenient tool to implement the shortest path analysis. An OD cost matrix is a 

table that contains the total impedance from each origin to each destination. Additionally, it ranks 

the destinations that each origin connects to in ascending order of the impedance it takes to travel 
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from that origin to each destination. Thus it provides information on the shortest path between two 

given nodes in a network. 

 Another significant attribute of network is network accessibility. Accessibility takes 

numerous forms in transportation research, most of which attempt to measure the locational 

advantage or disadvantage of a node relative to other elements of the network. A basic measure of 

accessibility, known as the associated number of a vertex, was devised by Shimbel (Shimbel, 

1953). The index is derived from measuring the length of the shortest paths from all vertices of a 

network. Shimbel proposed a procedure involving the computation of a matrix. The cells of the 

matrix indicate the distance of the shortest path between all pairs of nodes in the network. The OD 

cost matrix network analysis is essentially the same as the matrix that Shimbel described. Thus, it 

can be used to calculate the network accessibility. 

 Last, but not least, network analysis often involves the analysis of flows, which is an 

indivisible part of the study of a network. Networks are, after all, built for the purpose of 

transporting people, commodities, information and capital between multiple origins and 

destinations. Many methods and models can be applied to the study of flows across a network. The 

optimal flow system, also known as the transportation problem of linear programming, is applied 

to cases when the distribution of a product is subject to a number of constraints. Common 

constraints are the capacity of a warehouse, the cost of shipping a unit of products, the timeframe 

from pickup to delivery and so forth. A classical example is the Hitchcock problem (Hitchcock, 

1941). The problem may be illustrated as follows: there are five factories each of which has certain 

number of color TV sets that are to be distributed to three vendors. The cost of shipping a 

manufactured unit from each factory to each vendor is fixed. The problem is to distribute the 

products in such a way that the demand at all vendors is met, the supply at each of the factories is 
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not exceeded, and the overall cost of shipping the good is a minimum. In this case, linear 

programming can be applied to generate a set of optimal flows that satisfies all constraints. 

Another frequently mentioned flow analysis method is the gravity model. The gravity model 

predicts movement of people, information, and commodities between cities and even continents 

(Ullman, 1954). The classical gravity model takes into account the population size of two places 

and their distance in that larger places attract people, ideas, and commodities more than smaller 

places and places closer together have a greater attraction. Various versions of gravity models have 

been constructed on the basis of the classical model (see Voorhees, 1955; Wilson, 1967; Wilson, 

1974), but all of them are built upon the principle that interaction between places is directly 

proportional to the product of their masses and inversely proportional to the distance between them 

(Black, 2003). Another important method worthy of mention is network autocorrelation. Network 

autocorrelation exists among random variables associated with the links of a network. It can be 

used in assessing the pattern (cluster, random, or dispersed) of flow-related incidents on a 

transportation network (Black, 1992). A good example would be to assess the distribution of car 

accidents between mileposts 315 and 375 on Interstate 40 in 2007.  

 These methods and models as well as many others enable transport researchers to analyze 

various aspects of transport flows. This paper, however, does not apply any of the methods 

mentioned above to the analysis of flows across China’s international airline network because 

either the method is not relevant to the problem this study attempts to solve (e.g. optimal flow 

system) or the approach involves intensive mathematical and statistical calculations (e.g. the 

gravity model. To implement a gravity model, distance between China and overseas countries 

would need to be measured, populations calculation, and trade data between China and foreign 

countries would be available). One of this study’s objectives is to identify flow distribution among 
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different world regions based on origin-destination flow data. In this case, network autocorrelation 

analysis seems to serve this purpose. Actually, network autocorrelation is primarily applied to the 

analysis of spatial data in which the basic units of observation are points, such as motor vehicle 

accidents on a road system, chemical contaminating agents in water supply systems, disease 

diffusion via transportation and social networks and so forth. Despite the fact that ArcGIS provides 

the spatial autocorrelation tool for spatial statistical analysis, its applications are quite limited if the 

basic unit of observations is the line. The tool identifies the central line among input line dataset. 

This functionality is apparently not really useful for the purpose of this study in that a single line 

does not reveal any information about the distribution pattern of air traffic. This study therefore 

applies descriptive statistical analysis to the measurement of regional differences denoted by air 

transport. Descriptive statistical analysis uses origin-destination flow data to map out flow 

distributions among different world regions. Air traffic flow to and from each region are summed 

up and then compared against other regions to measure differences among world regions. 

Additionally, this study applies descriptive statistical analysis to evaluate various economic, social, 

and political events and circumstances impacts on the airline industry. 
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Chapter 3: Data and Analysis 

3.1 Study Area 

 This research analyzes the geographic patterns of the international air transport network 

served by Chinese airlines from 1990 to 2004 with two foci: network developments and regional 

differences. 1990-2004 was chosen because the earliest year with the data reported in a consistent 

manner was 1990 and the latest year with published data when I compiled the data for this research 

was 2004. All data are from the Yearbook House of China Transportation and Communication 

(Yearbook House of China Transportation and Communication, 2008).  

 As for network developments, this research examines the network connectivity and 

accessibility of China’s three major hub cities within the air transport system. Cities that have 

established international flight routes (direct or indirect) by Chinese airlines from 1990 to 2004 are 

examined in terms of the number of flights, passenger flows, and freight flows. There were 50 

cities in China (excluding Hong Kong and Macau) that established direct or indirect routes with 99 

cities in 47 countries from 1990 to 2004 (see Figure 1). Hong Kong and Macau are classified as 

overseas cities in this research. These two cities had developed their own air transport systems 

before their returns to China in 1997 and in 1999 respectively. After the returns, they are 

designated as Special Administrative Regions (SAR) by the Chinese central government and have 

more freedom in their operations than other Chinese cities. Routes are defined as direct or indirect 

based on the way they are reported in the China Transportation and Communication Yearbook. For 

instance, in a route from Beijing through Shanghai to San Francisco, the path from Beijing to San 

Francisco is recorded as an indirect route, while the segment from Shanghai to San Francisco is 

reported as a direct route. According to the United Nations’ convention (United Nations, 2005), 

this study identifies six world macro regions and components (see Figure 2 and Table 1). 



 
Figure 1. Cities that participated in the network from 1990 to 2004 
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Figure 2. World macro regions 
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Table 1. World macro regions and components served by Chinese airlines during 1990-2004 
Region Africa Asia Europe Northern America Oceania 

 
 
 
 
 
 
 

Component 

Egypt 
Ethiopia 

Bahrain 
Burma 
Cambodia 
China 
India 
Indonesia 
Iraq 
Japan 
Kazakhstan 
Kuwait 
Kyrgyzstan 
Laos 
Malaysia 
Mongolia 
Nepal 
North Korea 

Pakistan 
Philippines 
Singapore 
South Korea
Thailand 
Turkey 
U.A.E. 
Uzbekistan 
Vietnam 

Austria 
Belgium 
Denmark 
France 
Germany 
Hungary 
Italy 
Luxembourg
Netherlands
Romania 
Russia 
Spain 
Sweden 
Switzerland 
U.K. 
Yugoslavia 

Canada 
U.S. 

Australia 
New Zealand 
Northern Mariana Islands 

Total 2 25 16 2 3 
 

 

 

 



Among the 50 domestic cities, three hub cities (Beijing, Shanghai, and Guangzhou) are selected 

and their spatial nodal accessibility levels are calculated in order to examine the competition 

among these three major hubs. 

 This research examines the geographic distribution of passenger and freight traffic among 

different world regions from 1990 to 2004. By comparing passenger and freight volumes in and 

out of each region, we can observe regional disparity with respect to air transport. Traffic flows are 

reported as aggregate numbers per route in the China Transportation and Communication 

Yearbook. For instance, on a route from Beijing through Sharjah to Paris, the total passenger 

volume in 2004 was 65,380. This aggregate statistic did not indicate how many passengers 

embarked or disembarked at the intermediate city (i.e., Sharjah in this example). Such intermediate 

nodes present a problem when there is a need to calculate the traffic volumes by world regions. If 

the intermediate city is located in the same region as the destination city, there is no decrease or 

increase in the traffic volume for the destination region. But, if intermediate cities are located in 

different regions, like the Beijing-Sharjah-Paris route, we cannot say with certainty that 65,380 

passengers traveled between Beijing and Europe (i.e., Paris in this example) in 2004 because some 

passengers might have boarded or disembarked in Asia (i.e., Sharjah in this example). The same 

holds true for freight flows. Nevertheless, only few routes in the dataset have this problem. This 

study therefore assumes that the volume of passengers or freight between the origin and the 

destination of a route is the same as what is reported in the Yearbook. 

 

3.2 Data Acquisition 

 The initial data acquisition was quite smooth. The China Transportation and 

Communication Yearbooks have been published since 1986 by the Yearbook House of China 
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Transportation and Communication as an official record of transportation operation and marketing 

performance. Dr. Shih-Lung Shaw went to Beijing in summer 2006 and collected these data. The 

National Library of China in Beijing holds the entire 20 volumes of the China Transportation and 

Communication Yearbook. Data were obtained directly from the yearbooks. However, due to the 

absence of information on freight flows from 1986 to 1989, this research only covers records from 

1990 to 2004. 

 There are nine attributes recorded for each route. These attributes fall into two categories. 

One category contains spatial attributes, where the latitude and the longitude of cities are recorded 

according to the sequence of traffic flows. The other category holds descriptive attributes, which 

contains descriptive information about the origin, the destination, transit, world region, the number 

of flights, passenger volume, and freight volume (Table 2). Based on this division, two different 

types of analyses are performed. Air transport networks are rendered in ArcMap and relevant 

spatial analyses are performed to study changes in network structure. Descriptive statistical 

analyses are conducted to examine regional differences that resulted from air transport network 

development. 

Table 2 Attributes of a route 
Category Field Description 

Latitude Spatial 
Longitude 

Stores latitude and longitude of cities 

Origin City Stores the origin city's name 
Transit City 1 Stores the transit city's name 
Transit City 2 Stores the transit city's name 
Transit City 3 Stores the transit city's name 
Destination City Stores the destination city's name 
World Region Identifies world region where a city locates 
Flights Records the number of flights 
Passengers Records passenger volume 

Descriptive 

Freight and Mail Records freight and mail volume 
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 Foreign airlines, such as United Airlines, Northwest Airlines, Continental Airlines, 

Lufthansa Airways, and British Airways also have flights serving China. These foreign airlines are 

not reported in the China Transportation and Communication Yearbook, and therefore are not 

discussed in this research. In addition, Hong Kong and Macau were returned to China in 1997 and 

1999 respectively. These two cities are recognized as Special Administrative Regions by the 

Chinese government. Hence, this study classifies Hong Kong and Macau as a separate group that 

did not contribute to international air traffic flows of China. Last, but not the least, Taiwan's 

sovereignty has been a major concern in the international arena. In fact, there have been no 

scheduled direct routes between China and Taiwan. Hong Kong serves as a major transit airport 

for air passengers traveling between China and Taiwan. Taiwan therefore is not included in this 

study. 

 

3.3 Data Analysis 

 Network analysis, which focuses on the structure formed by the linkages and nodes in a 

network, is an important topic in the study of transportation geography. The term structure refers to 

the layout, geometry, or network pattern of transportation system (Garrison and Marble, 1962). It 

implies a set of spatial relations between distinguishable components of transportation networks in 

respect to each other and to the organized whole (Kansky, 1963). By measuring such relations we 

can describe the notion of structure in mathematical terms. Several measures and indices were 

developed and can be used for study of network structure. Some of the measures and indices are 

applied to this research to examine structural development of China’s international air transport 

network. 

Nodes and linkages are the two fundamental elements in a network. When a network is 
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abstracted as a set of edges (linkages) that are related to a set of vertices (nodes), a fundamental 

question is to which degree all the vertices are interconnected with each other. The degree of 

connection between all vertices is defined as the connectivity of the network. It is probably one of 

the most important structural properties of the network (Taaffe et al., 1996). 

Although we may measure the degree of connection between the vertices of a given 

network at a given point in time, the concept of connectivity is most meaningful when a given 

network is either (1) compared with other networks or (2) its growth is viewed through time 

(Taaffe et al., 1996). This study of changing geography of air transport networks over time falls 

nicely into the second category. 

The first step of data analysis is data input. The raw data are in hard copy format and 

contain about 45,000 records over the 15-year study period. The data set consists of 50 domestic 

cities with direct or indirect flight routes to 47 foreign countries from 1990 to 2004. Spreadsheets 

are extensively used in this step to create, manipulate, and store data for the subsequent analyses. 

As mentioned earlier, two different types of analyses are performed in this study. One is 

network analysis and the other is descriptive statistical analysis. As to the former, geographic 

information systems (GIS) provide powerful tools to store, organize, analyze, and visualize spatial 

data. Spatial patterns can be examined and interpreted using various GIS functions. Spreadsheet 

files, which contain data required to construct the network such as the latitude and the longitude of 

cites, the sequence of flows (origin, transit, and destination), are imported into ArcGIS. Air 

transport networks are then generated from the data for each of the fifteen years (i.e., 1990-2004). 

Figures 3 and 4 show snapshots of air transport networks of 1990 and 2002 respectively. 

When first portraying the transportation routes spatially as a series of lines the routes were 

not portrayed correctly. It was found that ArcMap cannot display the routes from China to North  



 
Figure 3. China’s international air transport served by Chinese airlines in 1990 
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Figure 4. China’s international air transport served by Chinese airlines in 2004 
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America properly. In order to correct this error and portray the data accurately I used a custom 

code based on the mathematical principles of the great circle path (Kern and Bland, 1948). 

The routes between China and North America displayed in Figure 3 and Figure 4 fly over 

the continent of Europe. The actual flight routes, however, should fly over the Pacific Ocean. This 

inconsistency is due to the embedded algorithms in ArcMap which connect points represented by 

an X-Y coordinate pair without considering their relative positions on the Earth’s surface. In other 

words, ArcMap simply renders the line as a vector connecting two X-Y coordinate pairs, which are 

typically in a format of latitude/longitude, on a map projection. However, a straight line on a map 

is not necessarily the shortest distance. Ships and aircraft usually follow the shortest path to 

minimize distance and save time and money, which is exactly the case in this research. 

The shortest path between two points on a spherical surface is a segment of a great circle. A 

great circle is a circle on the surface of a sphere that has the same circumference as the sphere 

(Kern and Bland, 1948). A great circle is the path with the smallest curvature, hence it bears the 

shortest path between two points on the surface (Coolidge, 1952). To find the great circle path 

between two points on a sphere, we have to convert Cartesian coordinates (X-Y coordinates) to 

spherical coordinates (Arfken, 1985) using the haversines formula (Sinnott, 1984) in spherical 

geometry. This research, however, focuses on the visualization of airline networks rather than the 

process of finding the great circle path, and therefore does not discuss mathematical calculations 

with respect to the great circle path. 

 The visualization problem can be solved by programming with ArcMap under the Visual 

Basic programming environment. Like many Windows programs, ArcMap supports Microsoft® 

Visual Basic for Applications (VBA). The original codes were written by Dr. Cheng Liu in 

Avenue, a programming language used for customizing and developing applications in ArcView 
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3.x’s. The platform used in this research is ArcGIS 9.2, the programming language is therefore 

changed to Visual Basic for Applications. I developed the new codes (see Appendix) with the 

assistance of Dr. Bruce Ralston, who provided helpful guidance about writing and debugging 

codes.  

 The algorithm of this application is quite simple. Given an X-Y coordinate pair of the 

starting and end points of a path to be drawn, the approach is to calculate the size of the angle 

between the beginning and end points of a path. That is, the angle on the sphere between the origin 

and the destination. Intermediate points are then calculated to build a polyline consisting of arcs 

that are 1/N of the path between the origin and the destination. The key is to obtain the X-Y 

coordinates of the intermediate points. We derive the X-Y coordinates of the intermediate points 

by dividing the angle between the beginning and end points into N small angles and then simply 

draw a line between the intermediate points using ArcMap. The line is the so-called great circle 

path. Figure 5 explains the theory of the application. 

 It should be noted that N can be set to any integer larger than 1. The larger the value of N, 

the more points that are rendered. The resulting line is also more precise. However, a larger N 

means more calculation involved even though it is done by codes running in the background. N is 

set to 100 in this application, which means 99 intermediate points are rendered along the path and 

altogether there are 101 points including the beginning and the end points. It turns out that 100 is 

not a bad parameter since the resulting lines are visually effective and function well. Figure 6 and 

7 show snapshots of modified air transport networks of 1990 and 2002 respectively. 

The visualization of air transportation networks helps us to obtain an overall image of 

network development during the study period. Yet to fully interpret the growth, the following  
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Figure 5: Great circle path 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 6. China’s international air transport served by Chinese airlines in 1990 (modified) 
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Figure 7. China’s international air transport served by Chinese airlines in 2004 (modified) 
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network analyses are performed. 

 The first one to be examined is the network connectivity. There are two basic indices to 

measure network connectivity: α and γ. These two indices were developed by Garrison and Marble 

(1961) and were first introduced in their unpublished report for the U.S. Army Transportation 

Research Command in 1962. Alpha (α) can be interpreted as a ratio between the observed number 

of circuits and the maximum possible number of circuits in a network (Kansky, 1963). A circuit is 

defined as a finite, closed path in which the initial node of the linkage sequence coincides with the 

terminal node (Taaffe et al., 1996). Airline routes are circuits in natural because where there is a 

departure, there is a return. Thus this study chooses γ over α to examine the structural development 

of the network. Gamma (γ) is a quotient of the observed number of linkages to the maximum 

possible number of linkages in a network. It is calculated using Equation (1). 

     2/)1(
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−

=
NN
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                                                    (1) 

where N is the number of nodes in a network and e is the observed number of linkages. The 

numerical range for γ is between 0 and 1, where 0 denotes a set of nodes having no connections and 

1 indicates a network of which every node is connected to all other nodes in the network. γ is a 

useful measure of the progression of a network over time (Rodrigue et al., 2006). 

 While γ is applied to represent the network connectivity, another significant characteristic 

of a network, nodal accessibility, gives us a closer look at how the components of a network (nodes 

and linkages) are interconnected at individual nodes. One measure of the nodal accessibility is to 

calculate the number of linkages required to travel between a given node and all other nodes in a 

network. In this paper, nodal accessibility of Beijing, Shanghai, and Guangzhou is calculated by 

measuring the number of linkages along the shortest path between each of them and all other cities. 

 Certain attributes are used to measure and model cost in a network, such as travel distance 
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or travel time. Network analysis often involves the minimization of cost in the calculation of a path. 

Common examples include finding the fastest route or the shortest route. In this research, I try to 

find the shortest route, in other words, to minimize the topological distance.  

 It should be noted that topological distance, as opposed to a distance using a geographical 

metric such as miles or kilometers, are used in this study. Topological distance treats any direct 

linkage as one regardless of the actual length of the link. A topological distance of two indicates 

that a stop/transfer is required between two given nodes on a network. The reason why topological 

distance is applied is because the focus of this study is the structural development of airline 

networks rather than the cost (i.e., flight time, airfare, and fuel) involved in the airline business, 

where actual geographical distance plays a leading role in determining the cost. 

A practical procedure for finding the shortest path is offered by Shimbel (Shimbel, 1953). 

To determine the shortest path in a network, he suggested a procedure involving the computation 

of a matrix D. The cells of the matrix indicate the distance of the shortest path between all pairs of 

nodes in the network. Furthermore, Shimbel introduced an important measure of the network 

structure which is called the accessibility of a node to the network. This measure can be obtained 

by summing across the rows of matrix D and is defined as:  
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where Dij is the distance along the shortest path from node i to node j. Ai denotes the accessibility 

of node i. The smaller the numerical value of the sum of Dij, the greater the accessibility of node i 

to the network.  

 The OD cost matrix network analyst in ArcGIS presents a convenient tool to implement the 

shortest path analysis. A hypothetical network is provided and its OD cost matrix is calculated 

(Figure 8 and Table 3). Summing over the cell value in any row of the matrix gives the total 
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Figure 8. A hypothetical network 
 

Table 3. OD cost matrix of a hypothetical network 
ID A B C D E F G H I J K Si 
A 0 1 1 1 1 1 1 2 2 2 2 1.4
B 1 0 1 2 2 2 2 1 1 1 1 1.4
C 1 1 0 2 2 2 2 2 2 2 2 1.8
D 1 2 2 0 2 2 2 3 3 3 3 2.3
E 1 2 2 2 0 2 2 3 3 3 3 2.3
F 1 2 2 2 2 0 2 3 3 3 3 2.3
G 1 2 2 2 2 2 0 3 3 3 3 2.3
H 2 1 2 3 3 3 3 0 2 2 2 2.3
I 2 1 2 3 3 3 3 2 0 2 2 2.3
J 2 1 2 3 3 3 3 2 2 0 2 2.3
K 2 1 2 3 3 3 3 2 2 2 0 2.3
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distance along the shortest paths from the corresponding node to all other nodes in the network. 

These row totals are then divided by the minimum number of linkages possible for connecting that 

node with all other nodes in the network to derive a standardized index Si (Equation (3), see Shaw, 

1993). 
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                                                                        (3) 

where Dij denotes topological distance along the shortest path from node i to node j. N is the 

number of nodes in a network. The lowest possible value of Si is 1, which means that node i has 

direct connections with all other nodes in the given network. A value of 2 for Si suggests that an 

average one stop/transfer is required to travel from the node i to any other node in the network. The 

higher the value of Si is, the less accessibility of a given node possesses. 

 In the hypothetical network of Figure 8, node A and node B have an Si index value of 1.4, 

node C has an Si index value of 1.8, and the Si index value of all other nodes on the network is 2.3 

(see Table 3). This indicates that node A and node B have the highest accessibility level on the 

network, node C ranks second in accessibility, and all other nodes present a low accessibility with 

a high Si index value.  

 Network analysis results of China’s international air transport network are presented and 

discussed in Chapter 4. Besides network analysis, this research conducts descriptive statistical 

analysis to measure regional differences denoted by air transport. Air traffic flow data are 

calculated and distributed to five world regions based on the origin or destination of the flow. For 

instance, 1,000 passengers were carried on the route of Beijing-New York in 1992, 2,000 

passengers embarked on the route of Los Angeles-Shanghai in the same year, then a volume of 

3,000 passengers were recorded in North America. This method is, however, error-prone if a 

transit is involved on a route and the transit city is not located in the same region as the 
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origin/destination city does. For example, the yearbook recorded a passenger volume of 5,000 on 

the route of Beijing-Tokyo-New York in 1993, but we cannot claim that 5,000 passengers landed 

in North America (i.e., New York in this example) in 1993 because some passengers might have 

boarded or disembarked in Asia (i.e., Tokyo in this example). The same holds true for freight flows. 

Nevertheless, only few routes in the dataset present such problem. This study assumes, therefore, 

that the volume of passengers or freight between the origin and the destination of a route is the 

same as what is reported in the yearbook. Flight, passenger, and freight distribution from 1990 to 

2004 are calculated and the trend of the distribution is graphed out and discussed in Chapter 4. 
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Chapter 4: Results and Discussion 

4.1 Change of Network Connectivity 

 Table 4 records the level of network connectivity from 1990 to 2004. As shown in Table 4, 

the connectivity of the network rose and fell during the study period. A sustained decrease was 

observed since 1990 and it reached its lowest point in 1993. Afterward the connectivity climbed up 

and attained a high level in 1995, followed by a slight drop in 1996. The development of the 

network reached a plateau since 1997 and remained a relative high level of connectivity during 

1997-1999. The number started to decline again since 2000 until it fell to a low level in 2002. 

Finally, an increase was observed in the last two years of the study period. 

Table 4. Network connectivity from 1990 to 2004 
Year Number of Linkages Number of Nodes Domestic Overseas γ 
1990 198 54 18 36 0.1384 
1991 194 55 13 42 0.1306 
1992 256 81 32 49 0.079 
1993 310 92 40 52 0.0741 
1994 342 94 39 55 0.0782 
1995 302 75 22 53 0.1088 
1996 354 85 27 58 0.0992 
1997 396 81 24 57 0.1222 
1998 460 91 27 64 0.1123 
1999 454 87 25 62 0.1214 
2000 506 101 39 62 0.1002 
2001 480 104 40 64 0.0896 
2002 538 112 41 71 0.0866 
2003 632 114 40 74 0.0981 
2004 790 121 44 77 0.1088 
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  It was found that the variation of the network connectivity was mainly caused by the 

change in the number of domestic cities that presented in the network. As shown in Table 4, there 

were 18 domestic cities in the network in 1990 and it decreased to 13 in 1991. The number 

increased drastically to 32 in 1992, reached an unprecedented height of 40 in 1993, and slightly 

dropped to 39 in 1994. Afterward it plunged to a low level of 22 in 1995 and varied slightly during 

1996 -1999. As it approached to the 21st century the number of domestic cities greatly increased to 

39 in 2000 and stayed stable with an average value no less than 40 during the last 4 years of the 

study period. The huge increase and decrease in the number were due to the entry/exit of provincial 

capitals, secondary cities, or tourist cities into/from the network, to name a few, Nanjing, Hefei, 

Luoyang, and Huangshan. These cities entered the network through their direct flights with Hong 

Kong and/or Macau. Other than that, these cities had no direct connections with any other overseas 

city in the network. That is, the presence of these cities increased the total number of nodes in the 

network; however, due to their relatively weak connections with other cities in the network, their 

contribution to the network connectivity was compromised. Similar conclusion could be drawn on 

overseas cities: the number of overseas cities exhibited an overall growth during the study period 

despite few minor fluctuations. The emergence of the newly opened overseas markets increased 

the total number of nodes in the network, but these foreign cities established connections with only 

few select cities in China such as Beijing, Shanghai, and Dalian. In conclusion, the growth in the 

number of linkages in the network was disproportionate to the increase in the number of nodes in 

the network. This disproportion explains the variation of the network connectivity and especially 

clarifies the dip in 1993 and 2002 and the climax in 1997 and 1999. 

 Several significant social and political events happened during this period. For instance, 

Hong Kong was returned to China in 1997, as well as Macau in 1999, which presumably had great 
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impacts on the network structure. In fact, connections between domestic cities and Hong 

Kong/Macau had already existed before the returns. According to China Transportation and 

Communication Yearbook, routes connecting mainland China and Hong Kong existed prior to 

1990 and there was a record high of 37 scheduled flights between domestic cities and Hong Kong 

in 1993 as well as in 1994, and scheduled flights between mainland China and Macau emerged in 

1995 and the number of flights varied slightly since then (an average of 5 flights per year). So the 

returns of Hong Kong and Macau did not actually contribute to the expansion of the network even 

though the number of scheduled flights between mainland China and Hong Kong/Macau increased 

to 42 in 2000 (36 of Hong Kong and 6 of Macau). Other constructive events such as China’s entry 

into the WTO in 2001 and the airline consolidation in 2002 likely brought about favorable changes 

to the network structure: a large number of new direct routes was established between China and 

the Asia Pacific region in 2002, particularly between China and South Korea and Japan, for 

instance, Shanghai-Jeju, Shanghai-Gwangju, Shanghai-Oita, Chengdu-Tokyo, and 

Chengdu-Osaka emerged. Numerous new nonstop flights were launched between China and 

Southeast Asia, Europe, and North America in 2003, such as Shanghai-Phuket, Beijing-Kuala 

Lumpur, Shanghai-Rome, Shanghai-Amsterdam, Beijing-New York, and Beijing-Portland, and a 

sustained increase in the network connectivity has been observed since 2002. On the other hand, 

vicious events such as the 1997 Asian Currency Crisis, the September 11, 2001 terrorist attacks, 

and the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003 in China, severely struck 

the global airline industry (IATA, 2002; ICAO, 2003; Goetz and Graham, 2004). However, they 

did not pose any major problem for the development of China’s international air transport network. 

Arguably, these events are most likely to affect traffic volumes rather than the network structure, 

which is discussed in the following section. In general, the trend of China’s expanding 
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international airline network is towards a system with a high level of connectivity and great 

coverage. 

 

4.1 Change of Nodal Accessibility 

 Table 5 records the level of nodal accessibility of the three major hubs from 1990 to 2004. 

DB stands for the topological distance along the shortest path from Beijing to all other nodes in the 

network and SB denotes the standardized index Si of Beijing (see Equation (3)). DS and DG refer to 

the topological distance along the shortest path from Shanghai and from Guangzhou to all other 

nodes respectively, and SS and SG represent the standardized index Si of Shanghai and Guangzhou 

respectively. 

 The variation of nodal accessibility from 1990 to 2004 is displayed in Figure 9. As shown 

in Figure 9, Beijing ranked the highest in accessibility during the entire study period, with the 

exception of 2004 when Shanghai knocked off Beijing and became top one. Beijing’s high ranking 

was due to Beijing’s relatively small DB value as compared with Shanghai and Guangzhou, and its 

small DB value was associated with the large number of direct connections Beijing had from 1990 

to 2004 (see Table 6). As shown in Table 6, Beijing, by and large, exceeded Shanghai and 

Guangzhou in the number of direct connections. Basically, the more direct connections a city has, 

the smaller the topological distance along the shortest path from the city to all other cities in the 

network is. As a result, Beijing’s high ranking was observed. Shanghai placed second in 

accessibility from 1990 to 2003. Its accessibility was relatively low from 1990 to 1995. Its 

accessibility started to increase in 1996. Shanghai has been catching up fast since then, which 

made it a keen competitor to Beijing. Similarly, Shanghai’s 2nd place was due to its small number 

of direct connections with other cities, and its rapid growth in accessibility since 1996 was related 
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Table 5. Nodal accessibility of Beijing, Shanghai and Guangzhou from 1990 to 2004 
Year Number of Nodes DB SB DS SS DG SG 
1990 54 89 1.679 106 2 117 2.208 
1991 55 81 1.5 106 1.963 106 1.963 
1992 81 138 1.725 165 2.063 171 2.138 
1993 92 160 1.758 186 2.044 196 2.154 
1994 94 172 1.849 193 2.075 203 2.183 
1995 75 126 1.703 152 2.054 158 2.135 
1996 85 125 1.488 146 1.738 155 1.845 
1997 81 118 1.475 138 1.725 145 1.813 
1998 91 152 1.689 174 1.933 197 2.189 
1999 87 138 1.605 161 1.872 189 2.198 
2000 101 168 1.68 186 1.86 211 2.11 
2001 104 173 1.68 192 1.864 220 2.136 
2002 112 185 1.667 192 1.73 242 2.18 
2003 114 183 1.619 194 1.717 241 2.133 
2004 121 198 1.65 192 1.6 254 2.117 

 

 

Figure 9. Nodal accessibility of Beijing, Shanghai, and Guangzhou from 1990 to 2004 
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 Table 6. Number of direct connections with Beijing, Shanghai, and Guangzhou from 1990 to 2004 
Beijing Shanghai Guangzhou  

Year Overseas Domestic Total Overseas Domestic Total Overseas Domestic Total
1990 11 7 18 9 1 10 6 2 8 
1991 13 7 20 9 1 10 7 3 10 
1992 13 7 20 10 2 12 7 3 10 
1993 13 11 24 14 2 16 8 2 10 
1994 18 7 25 16 2 18 9 3 12 
1995 21 6 27 15 2 17 10 3 13 
1996 23 9 32 21 3 24 11 4 15 
1997 26 9 35 21 3 24 13 4 17 
1998 25 8 33 25 2 27 13 3 16 
1999 26 8 34 25 2 27 11 2 13 
2000 24 8 32 27 2 29 11 2 13 
2001 24 8 32 27 3 30 13 1 14 
2002 27 8 35 34 7 41 14 1 15 
2003 31 10 41 40 7 47 16 1 17 
2004 33 12 45 47 11 58 19 4 23 
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to the major increase in the number of direct connections Shanghai had since then (see Table 6). 

Guangzhou possessed the lowest accessibility among the three, which is explained by its smallest 

number of direct connections with other cities during the entire study period (see Table 6).  

 In general, the accessibility of the three cities showed little variation over the entire study 

period except for 1991, 1996, and 1997. All three cities experienced a significant increase in 

accessibility in 1996 and 1997. The increase can be explained by the emergence of new direct 

connections in the network. As shown in Table 5, the number of nodes increased while DB, DS, and 

DG decreased in 1996 and 1997 as compared to 1995. This indicated that direct connections 

emerged on certain routes where they were not available prior to 1996. For instance, a transit was 

required between Beijing and Seattle, Beijing and Anchorage, Beijing and Qingdao, and Shanghai 

and Guangzhou in 1995 while they were nonstop flights in 1996 and 1997. Direct connections 

replaced indirect connections and consequently the value of DB, DS, and DG declined. Thus a high 

level of accessibility of all three cities was observed. Another major increase in accessibility was 

found in Beijing and Guangzhou in 1991. The increase was due to the replacement of indirect 

connections by direct ones as well as the removal of many isolated cities from the network with 

which neither Beijing nor Guangzhou was directly connected. For instance, in 1990 a transit was 

required between Beijing and Zurich, Beijing and Paris, and Beijing and Berlin, whereas in 1991 

they were nonstop flights. Besides, several isolated cities, such as Nanjing, Chengdu, Qingdao, 

and Fuzhou withdrew from the network in 1991. These cities were only connected with Hong 

Kong in 1990. Their disappearance in 1991 made DB and DG decline because they did not 

contribute to the value of DB and DG. For instance, a route of Beijing-Hong Kong-Nanjing added 2 

to the value of DB in 1990, whereas DB declined in 1991 because there was no such a route present 

in the network. Lastly, an unusual drop in the number of nodes was observed in 1995, which 
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resulted in a low to moderate increase in accessibility of each city. As shown in Table 5, the 

number of nodes plunged to 75 in 1995 as compared to 94 in 1994. The decline was largely due to 

the removal of domestic cities from the network. There were 39 domestic cities present in the 

network in 1994, whereas there were 22 in 1995. These cities such as Chengdu, Nanjing, and 

Wuhan were only connected with Hong Kong in 1994. Similarly, their withdrawal from the 

network greatly reduced the value of DB, DS, and DG and consequently the accessibility of each 

city increased. 

 The competition among Beijing, Shanghai and Guangzhou can also be measured by giving 

a closer look at the number of direct connections that each city established from 1990 to 2004. As 

shown in Table 6, Beijing exceeded Shanghai and Guangzhou in the number of direct connections 

with domestic cities during the entire study period. This indicated that Beijing had easier access to 

China’s domestic airline network than Shanghai and Guangzhou did, which greatly enhanced 

Beijing’s overall accessibility because domestic connections were taken into account in 

calculating a city’s accessibility. Besides, certain foreign cities, such as Islamabad, Alma Ata, and 

Novosibirsk could only be reached through Urumqi, so Beijing’s accessibility increased as a result 

of its exclusive connection with Urumqi as well as other exclusive routes (Beijing-Nanning and 

Beijing-Dalian). Beijing also had the largest number of direct connections with overseas cities 

until 2000. Overall, Beijing exceeded Shanghai and Guangzhou in the number of total direct 

connections except for the last three years of the study period. This pattern, for the most part, is 

consistent with the trend revealed in Figure 9 that Beijing ranked first in nodal accessibility 

followed by Shanghai and Guangzhou. The inconsistency was observed in 2002 and 2003 when 

Beijing’s accessibility exceeded Shanghai’s even though Beijing had a smaller number of direct 

connections than Shanghai did. As shown in Table 6, Shanghai had the largest number of direct 
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connections in 2002 and 2003. Accordingly, Shanghai’s accessibility would be the greatest among 

the three. In fact, a large number of cities (11 out of 41) with which Shanghai were directly 

connected were quite isolated such as Phnom Penh, Okinawa, Oita, and Jeju. These cities were not 

connected with any other city in the network except with Shanghai. Besides, the absence of direct 

connections between Shanghai and Guangzhou and between Shanghai and Urumqi greatly 

weakened Shanghai’s accessibility in that Guangzhou was a major hub and Urumqi emerged as a 

regional hub in the network. Thus the overall accessibility of Shanghai was compromised.  

 The impacts of those significant events had on the major hubs are also examined. It appears 

that Shanghai derived more benefits from the airline consolidation than the other two hubs. As 

shown in Table 6, Shanghai enjoyed a large increase in the number of direct connections as 

compared with Beijing and Guangzhou since 2002. Other than that, no significant increase or 

decrease in nodal accessibility or in the number of direct connections was observed during the 

study period. Arguably, Shanghai will replace Beijing to become the most accessible hub in the 

foreseeable future, and Guangzhou’s accessibility can be greatly enhanced by improving its weak 

connections with overseas and domestic cities. In general, the pattern of competition among the 

three major hub cities revealed in Figure 9 is consistent with the finding of Jin et al.’s (2004) study 

that China’s international air transport center migrated toward Southeast China. 

 

4.3 Regional Differences 

 There are 6 world macro regions designated by the United Nation, of which 5 regions 

established connections with China via Chinese airlines from 1990 to 2004: Africa, Asia, Europe, 

North America, and Oceania. The exception was Latin America with which no connection was 

ever established during the entire study period (see Table 7). According to the CAAC, the first 
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international flight between Latin America and China via Chinese airlines was launched on 

December 10, 2006. The route (Beijing-Madrid-Sao Paulo) was operated by Air China. A possible 

explanation for this long absence is the low level of air travel between China and Latin American 

countries. Table 8 shows the number of foreigner tourists by region. Data were compiled from 

National Bureau of Statistics of China (statistics from 1991 to 1994 are missing). As shown in 

Table 8, the number of tourists from Latin America was significantly smaller than from other 

regions. Low demand for overseas travel suppressed the development of air routes between China 

and Latin America which in turn further weakened the demand for air travel. Similarly, the number 

of tourists from Africa was also marginal, which could explain the suspension of airline service 

between Africa and China after 1994 (see Table 7). Actually, connections between China and 

Africa via Chinese airlines did not reemerge until 2006 when China Southern operated the route of 

Beijing-Dubai-Lagos on December 30, 2006 (CAAC, 2007). In contrast, the largest volume of 

tourists recorded was in Asia and accordingly air passenger volume within Asia was the highest 

among the six regions (see Table 9 and Figure 10). Europe was the second largest region in terms 

of number of tourists, followed by North America and Oceania. Consequently, the same ranking 

was observed in the air passenger sector (see Figure 11).  

. As to the freight sector, freight volume within Asia greatly exceeded other regions (see 

Table 10 and Figure 12). Asia’s top ranking can be explained from an economic perspective. 

According to China’s foreign trade statistics (National Bureau of Statistics of China, 2005), 

China’s major partners in international trade (imports plus exports), were the following 

countries/territories: Japan, the United States, the European Union, Hong Kong, ASEAN, South 

Korea, Taiwan, Australia, and Russia. Despite their relative rankings varied from time to time, 

trade volume within Asia has always been the largest. Table 11 records foreign trade volume by 
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Table 7. Flight distribution among world macro regions from 1990 to 2004 
Year Africa Asia Europe Latin America North America Oceania
1990 64 5033 1414 0 601 104 
1991 24 5714 1727 0 685 104 
1992 145 7018 2270 0 671 104 
1993 90 8846 2168 0 1111 50 
1994 54 9931 1994 0 1074 106 
1995 0 14218 2316 0 640 104 
1996 0 17593 2679 0 1207 188 
1997 0 20540 3606 0 1814 591 
1998 0 24236 3934 0 2436 604 
1999 0 27366 4005 0 2733 718 
2000 0 29471 3741 0 2933 764 
2001 0 36581 4369 0 2596 355 
2002 0 48406 5104 0 2706 334 
2003 0 44295 5629 0 3980 1288 
2004 0 67690 7925 0 5526 2140 

 
Table 8. Number of foreigner tourists by region (Unit: 10000 person-times) 

                         Year 
Region                 1990 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Africa        1.17 4.08 4.72 4.91 5.43 5.21 6.56 7.32 9.85 10.42 17.34
Asia      91.52 338.26 406.51 428.17 400.06 499.27 610.15 686.42 864.38 726.50 1073.66
Europe      44.63 159.06 163.30 201.83 181.33 211.27 248.90 268.38 282.58 259.76 377.57
Latin America       2.36 5.37 7.62 7.66 7.46 7.59 8.29 7.45 9.71 8.01 13.25
Northern America     28.08 64.36 73.30 79.05 87.33 95.01 113.28 120.31 141.25 105.28 165.67
Oceania   6.35 15.85 17.34 19.35 22.48 24.38 28.18 30.97 35.37 30.01 45.21

 



Table 9. Passenger distribution among world macro regions from 1990 to 2004 
Year Africa Asia Europe Latin America North America Oceania
1990 6140 739036 185735 0 136589 19858 
1991 1458 982140 271835 0 171089 32745 
1992 11067 1301384 371502 0 182630 35930 
1993 5830 1467496 311140 0 248115 17005 
1994 7116 1813920 306631 0 308932 34713 
1995 0 2471479 448711 0 174868 37791 
1996 0 3049063 517407 0 340663 62612 
1997 0 3517388 657634 0 503162 155728
1998 0 3544882 726433 0 591292 163500
1999 0 4459405 821339 0 637060 203693
2000 0 4554397 822630 0 618313 245610
2001 0 5748273 800987 0 464103 107728
2002 0 6803563 981208 0 553632 112686
2003 0 5388242 885179 0 504613 331852
2004 0 8786063 1435139 0 821176 531642

 

 
Figure 10. Passenger distribution among five world macro regions 
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Figure 11. Passenger distribution among Europe, North America, and Oceania 
 

Table 10. Freight distribution among world macro regions from 1990 to 2004 (Unit: ton) 
Year Africa Asia Europe Latin America North America Oceania
1990 343 41431 16843 0 15031 1131 
1991 111.9 52106 22620 0 17932.5 1387.8
1992 579.4 64236.5 31723.1 0 18754.2 1458.6
1993 380.6 82584.7 30737.7 0 37260.3 680 
1994 279.6 87113.7 27100.8 0 28573.7 1527.9
1995 0 113099.9 38439.1 0 20300.6 1722.7
1996 0 129622.6 41632 0 39905.3 2504.9
1997 0 152404.2 61052 0 54611.6 7723.3
1998 0 149256 72102 0 52861 8496 
1999 0 207640.2 96479.9 0 91004.8 10665.8
2000 0 225111.5 104707 0 109485.4 10885.9
2001 0 172801.6 95336.3 0 76026.2 3308.9
2002 0 197828.2 114452.1 0 83250.6 3614.6
2003 0 203075.1 153097.5 0 185969.6 8868.7
2004 0 279437.7 199209.1 0 288974.4 12017.1
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Table 11. Volume of imports and exports by region (Unit: USD 10000) 
                     Year 
Region  1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 

Africa 264263 392122 403082 567300 553587 649013 1059708 1079952 1238836 1854184 2945928
Asia      14221565 17004950 17468084 19736260 18523504 20424334 27365011 28813909 36303033 49547835 66490646.8
Europe 4378863 5079024 5151412 5474428 5973511 6812664 8626564 9764102 11024571 15786463 21138553
Latin America 470224 611416 672548 837651 831215 826186 1259549 1493889 1782440 2680681 4000062
North America 3860218 4504444 4702729 5293195 5930284 6620376 8139310 8788218 10514619 13639397 18526063
Oceania 463946 492365 589779 607165 580150 730387 978757 1036728 1212288 1588998 2350431

Figure 12. Freight distribution among five world macro regions 
 

 



region. Data were also compiled from National Bureau of Statistics of China (statistics from 1990 

to 1993 are missing). As shown in Table 11, Asia greatly overtook other regions in trade volume. 

Europe came in second with a much smaller amount followed by North America, and trade volume 

with Oceania, Latin America and Africa was extremely low as compared with Asia, Europe or 

North America. While the proportions are not necessarily replicated for air freight, air freight, in 

the main, should follow the pattern. In fact, similar ranking did exist among different world 

regions with respect to air freight traffic (see Table 10 and Figure 12): the largest freight volume 

was recorded in Asia from 1990 to 2003; Europe ranked second and occasionally was overtaken by 

North America; North America, for the most part, placed third notwithstanding it exceeded Asia in 

2004; Oceania ranked 4th during the entire study period; and Latin America and Africa did not 

come into picture because of the absence of airline links as mentioned previously. Variation in the 

relative ranking among Asia, Europe and North America was probably due to the freighter flights 

between China and North America. According to the yearbook, China started to operate freighter 

flights connecting North America since 1996. The dedicated freighter routes greatly increased the 

capacity for freight transportation between North America and China. But there were no such 

specialized connections between China and Europe or within Asia. The variation could also arise 

from the fragmented data in that the recorded freight volumes were those carried by Chinese 

airlines, foreign carriers’ market share were not included in this study.  

 The impacts of various economic, social, and political events and circumstances on 

international air travel were also examined. It was found that several major variations were 

associated with those incidents. As shown in Figure 10, Asia experienced a big decrease in 

passenger volume in 2003, Europe and North America suffered a great loss in passenger traffic in 

the same year (see Figure 11). The decrease was consistent with the fall in tourists volume in 2003 
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(see Table 8). The outbreak of Severe Acute Respiratory Syndrome (SARS) in China in 2003 was 

likely responsible for the decline. The highly contagious disease caused great damage to China’s 

international air transport market. Obviously, passenger sector was the first to be affected, whereas 

freight traffic was not interrupted by the dreadful virus (see Figure 12), which was reasonable 

because the disease spreads upon personal contact. However, passenger traffic between Oceania 

and China significantly increased in 2003 (see Figure 11), which was very surprising considering 

the high lethality of the disease. This huge increase may have something to do with the large 

number of scheduled flights in 2003. As shown in Table 7, there were 334 flights connecting China 

and Oceania in 2002 and the number soared to 1288 in 2003. More flights indicated a stronger 

demand for air travel. Consequently, passenger traffic recorded a higher volume. Another 

significant decrease occurred in 2001, and it was likely associated with the terrorist attacks on 

September 11, 2001. As discussed in Chapter 2, the horrifying attacks had significant adverse 

impacts on the United States and the rest of the world. As far as airline business is concerned, a 

major decrease in freight traffic within Asia was observed, and passenger and freight traffic with 

North America, Europe, and Oceania significantly dropped in 2001. However, each region went 

through the economic aftermath and enjoyed reasonable increases in both passenger and freight 

traffic in 2002 (see Figures 10, 11 and 12). Asia and North America experienced another fall in 

freight traffic in 1998 (see Figure 12). The decline was probably due to the 1997 Asian Currency 

Crisis. Airlines suffered from a big loss in the high-yield international freight market. Total 

international airline capacity fell in the Southeast Asian region as a result of the broadening 

economic crisis in 1998 (Bowen, 2000). In fact, the adverse impacts of the crisis were also found in 

foreign trade. Asia reported a decline in foreign trade volume in 1998 (see Table 11). Additionally, 

North America experienced a major decline in passenger traffic as well as in freight traffic in 1995 
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(see Figures 11 and 12). The decline was likely caused by the cancellation of a large number of 

flights connecting China and North America in 1995. As shown in Table 7, there were 1074 

scheduled flights in 1994 and the number plunged to 640 in 1995. The reason for cutting down on 

flights was unclear, but the impact was obviously unfavorable in that both passenger and freight 

traffic reported losses in that year. Basically, the pattern of the development of freight traffic 

revealed in Figure 12 is consistent with the findings by Jiang et al. (2003) that despite two drops in 

the years 1998 and 2001, air cargo throughout enjoyed a rapid growth.  

 In conclusion, the distribution of air passengers and freight displayed a great disparity 

among different world regions. The largest air traffic flows resided in Asia. The second largest 

traffic volume was between Europe and China. North America came in third, but North America 

had a great capacity for freight transportation because of the dedicated freighter flights connecting 

North America and China. Oceania placed fourth due to a relatively small amount of passenger 

and freight traffic. Air traffic volume recorded for Latin America and Africa was insignificant in 

that connection with Latin America was absent during the entire study period and links between 

Africa and China were suspended after 1994. Hopefully, this situation will improve with the 

recently launched routes of Beijing-Madrid-Sao Paulo and Beijing-Dubai-Lagos. 
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Chapter 5: Conclusion 

 China started its airline reforms in the early 1980s, which can be seen as an integral part of 

the much broader economic reforms launched in 1978 by the Chinese government. Since then, 

China’s economy has experienced significant development and its aviation has been the fastest 

growing mode in the transport sector. The rapid growth of China's economy, the size of its 

population, and the sweeping tide of globalization, all lead to China’s increasingly major role in 

shaping the pattern of airline networks with the rest of the world. In light of these great changes 

and challenges, this research was conducted to study the development of international air transport 

network served by Chinese airlines from 1990 to 2004.  

 The research first examined the overall growth of the network by measuring network 

connectivity level. It was found that there were a few major variations in network connectivity 

over the study period. The fluctuation was largely caused by provincial capitals, secondary cities 

and tourist cities’ entry into or exit from the network. As the epitome of state intervention, the 

airline consolidation in 2002 greatly enhanced network connectivity and is believed to continue to 

do so. More cities (domestic and overseas) entered the network and the number of linkages greatly 

increased. Arguably, the trend of China’s expanding international airline network is towards a 

system with a higher level of connectivity and greater coverage. 

 The research then examined nodal development of the three major hub cities by measuring 

their nodal accessibility level. It was found that all three cities had experienced low to moderate 

increases in accessibility. Specifically, Shanghai had a relatively large increase in accessibility 

while increases in Beijing and Guangzhou were minor. The study also evaluated competitions 

among the three major hubs by comparing their nodal accessibility. In general, Beijing maintained 

as the most accessible hub during the study period, Shanghai placed second yet was catching up 
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very fast in recent years. It actually overtook Beijing in accessibility in 2004. Arguably, Shanghai 

will develop into the most accessible hub in the network. Guangzhou was the least accessible hub 

over the study period, but its accessibility can be greatly enhanced by improving its weak 

connections with overseas and domestic cities. 

 In addition, this paper assessed regional differences denoted by air transport by examining 

the distribution of air traffic among different world regions. It was found that the distribution of air 

passengers and freight displayed a great disparity among different world regions. The largest air 

traffic flows resided in Asia. Europe came in second followed by North America. However, 

increasing competition between North America and Asia in the freight sector was observed since 

2003. Arguably, North America will replace Asia to become the dominant player in the freight 

market because of the dedicated freighter flights between North America and China. Oceania 

placed fourth due to a relatively small amount of passenger and freight traffic. Links with Africa 

were suspended after 1994 probably because of the weak demand for air travel between China and 

Africa countries. Connection with Latin America was absent during the entire study period. In the 

meantime, the study identified several major declines in air traffic during the study period. The 

declines were associated with the 1997 Asian Currency Crisis, the terrorist attacks on September 

11, 2001, and the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003.  

 Lastly, this paper would like to address competitions from foreign airlines on China’s 

international routes. On one hand, the airline deregulation, “open skies” initiative, and merger and 

strategic alliance offer great opportunities for foreign airline companies to penetrate the market. 

On the other hand, restrictive bilaterals, regulatory control over pricing, and safety concerns 

restrain air transport network from expanding. Foreign airlines, while they pursue joint ventures 

with domestic companies under the new regulations, continue to assault the marketplace by 
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establishing new international flight routes to and from China. Last Spring, a nonstop flight 

connecting Beijing and Washington D.C. was launched by United Airlines. Connecting two of the 

world's most important cities for the first time was a historic occasion. The new route was expected 

to be favored by executives and government officials and was estimated to generate more than 

$200 million a year (China Daily, 2007). In the freight market, express shipment companies such 

as FedEx, UPS, and DHL have already built up large-capacity logistics processing centers in 

Shanghai and Guangzhou. Similar actions have been taken by other foreign competitors for the 

highly profitable international air transport market in China. As Debbage (1994) suggested, the 

most competitive air carriers will emerge in countries that most successfully manage the transition 

from the restrictive bilateral system to “open skies” multilateralism. The regulatory regime will 

continue to change to reflect these trends. These trends, and the aviation system arising from them, 

will contribute to bringing China and other nations closer together. China’s airline industry that is 

currently in the course of this transition has a long way to go. 
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Appendix 

Visual Basic codes for Great circle path 
 
Const Pi = 3.1415926535 
Const NUM = 100 
Private Type myPOINT 
        x As Double 
        y As Double 
End Type 
Private pList() As myPOINT 
Private plLists() As myPOINT 
Private nLines As Integer 
 
Private Function Asin(ByVal x As Double) As Double 
If x = 1 Then 
    Asin = Pi / 2 
ElseIf x = -1 Then 
    Asin = -Pi / 2 
Else 
    Asin = Atn(x / Sqr(-x * x + 1)) 
End If 
End Function 
 
Private Function DegToRad(ByVal x As Double) As Double 
DegToRad = x * Pi / 180 
End Function 
 
Private Function RadToDeg(ByVal x As Double) As Double 
RadToDeg = x * 180 / Pi 
End Function 
 
Private Function GreatCircleDistance(p1 As myPOINT, p2 As myPOINT) As Double 
lambda1 = DegToRad(p1.x) 
phi1 = DegToRad(p1.y) 
lambda2 = DegToRad(p2.x) 
phi2 = DegToRad(p2.y) 
xdiff2 = Sin((lambda2 - lambda1) / 2#) 
ydiff2 = Sin((phi2 - phi1) / 2#) 
tmp = Sqr(ydiff2 * ydiff2 + Cos(phi1) * Cos(phi2) * xdiff2 * xdiff2) 
gcd = Asin(tmp) * 2 
GreatCircleDistance = RadToDeg(gcd) 
End Function 
   
Private Function GreatCirclePath(ByVal i As Integer) As Double 

 74



Dim nCount As Integer 
nCount = UBound(pList) - LBound(pList) + 1 
numLines = nCount / 2 
ReDim plLists(0 To NUM - 1) As myPOINT 
Dim p1 As myPOINT 
Dim p2 As myPOINT 
   ReDim lineList(0 To NUM - 1) As myPOINT 
   p1 = pList(2 * i) 
   p2 = pList(2 * i + 1) 
   lon1 = p1.x 
   lon0 = lon1 
   lat1 = p1.y 
   lon2 = p2.x 
   lat2 = p2.y 
   c = GreatCircleDistance(p1, p2)   'c is the number of degrees between points p1 and p2 
   If (lon1 < 0#) Then lon1 = lon1 + 360 
   If (lon2 < 0#) Then lon2 = lon2 + 360 
   xdiff = Abs(lon2 - lon1) 
   If (xdiff > 180) Then 
      xdiff = 360 - xdiff 
      If (lon1 < lon2) Then 
         reverse = 1 
         Start = lon2 
         lon1 = 0 
         lon2 = xdiff 
         tmp = lat1 
         lat1 = lat2 
         lat2 = tmp 
      Else 
         reverse = 0 
         Start = lon1 
         lon1 = 0 
         lon2 = xdiff 
      End If 
   Else 
      If (lon1 > lon2) Then 
         reverse = 1 
         Start = lon2 
         lon1 = 0 
         lon2 = xdiff 
         tmp = lat1 
         lat1 = lat2 
         lat2 = tmp 
      Else 
         reverse = 0 
         Start = lon1 
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         lon1 = 0 
         lon2 = xdiff 
      End If 
   End If 
   delC = DegToRad(c) / (NUM - 1) 
   lambda1 = DegToRad(lon1) 
   phi1 = DegToRad(lat1) 
   lambda2 = DegToRad(lon2) 
   phi2 = DegToRad(lat2) 
   xdiff = lambda2 - lambda1 
   azTmp = (Cos(phi2) * Sin(xdiff)) / ((Cos(phi1) * Sin(phi2)) - (Sin(phi1) * Cos(phi2) * 
Cos(xdiff))) 
   az = Asin(azTmp / Sqr(1 + (azTmp * azTmp))) 
   If (azTmp < 0#) Then az = az + Pi 
   For j = 0 To NUM - 1 
      delCj = delC * j 
      phiTmp = ((Sin(phi1) * Cos(delCj)) + (Cos(phi1) * Sin(delCj) * Cos(az))) 
      phi = Asin(phiTmp) 
      lambdaTmp = ((Sin(delCj) * Sin(az)) / ((Cos(phi1) * Cos(delCj)) - (Sin(phi1) * Sin(delCj) * 
Cos(az)))) 
      lambda = Asin(lambdaTmp / Sqr(1 + (lambdaTmp * lambdaTmp))) 
      If (lambdaTmp < 0#) Then lambda = lambda + Pi 
      lon = RadToDeg(lambda) 
      lat = RadToDeg(phi) 
      lon = lon + Start 
      If (lon > 360) Then lon = lon - 360 
      If (lon > 180) Then lon = lon - 360 
      Dim p As myPOINT 
      p.x = lon 
      p.y = lat 
      lineList(j) = p 
   Next j 
    
   If (reverse = 1) Then 
      ReDim rList(0 To NUM - 1) As myPOINT 
      For k = 0 To NUM - 1 
         rList(k) = lineList(NUM - 1 - k) 
      Next k 
      For k = 0 To NUM - 1 
         lineList(k) = rList(k) 
      Next k 
   End If 
    
   nSplit = 0 
   lon0 = lineList(0).x 
   For k = 1 To NUM - 1 
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      lon = lineList(k).x 
      If (((lon * lon0) > 0) Or ((lon * lon0 < 0) And (Abs(lon - lon0) < 180))) Then 
      Else 
         nSplit = nSplit + 1 
      End If 
      lon0 = lon 
   Next k 
    
   If (nSplit > 1) Then 
     ' MsgBox ("Split = " + Split.AsString) 
   End If 
   If (nSplit = 1) Then 
      ReDim pList1(0 To NUM - 1) As myPOINT 
      ReDim pList2(0 To NUM - 1) As myPOINT 
      p = lineList(0) 
      lon0 = p.x 
      pList1(0) = p 
      Change = 0 
      M = 1 
      n = 0 
      For k = 1 To NUM - 1 
         p = lineList(k) 
         lon = p.x 
         If ((Change = 0) And (((lon * lon0) > 0) Or ((lon * lon0 < 0) And (Abs(lon - lon0) < 180)))) 
Then 
            pList1(M) = p 
            M = M + 1 
         Else 
            Change = 1 
            pList2(n) = p 
            n = n + 1 
         End If 
         lon0 = lon 
      Next k 
      For k = 0 To M - 1 
        plLists(k) = pList1(k) 
      Next k 
      For k = 0 To n - 1 
        plLists(M + k) = pList2(k) 
      Next k 
   Else 
      For k = 0 To NUM - 1 
        plLists(k) = lineList(k) 
      Next k 
   End If 
GreatCirclePath = 0 
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End Function 
 
Private Sub LoadFile_Click() 
Dim newline As String 
Dim org_x(0 To 500) As Double 
Dim org_y(0 To 500) As Double 
Dim dest_x(0 To 500) As Double 
Dim dest_y(0 To 500) As Double 
nLines = 0 
Open "C:\Documents and Settings\Xumei\Desktop\Airline Networks\Shape File\1990.txt" For 
Input As #1 
Line Input #1, newline 
Do While Not EOF(1) 
    Line Input #1, newline 
    lineArray = Split(newline, vbTab) 
    org_x(nLines) = lineArray(1) 
    org_y(nLines) = lineArray(2) 
    dest_x(nLines) = lineArray(4) 
    dest_y(nLines) = lineArray(5) 
    nLines = nLines + 1 
Loop 
Close #1 
ReDim pList(0 To 2 * nLines - 1) As myPOINT 
For i = 0 To nLines - 1 
    pList(2 * i).x = org_x(i) 
    pList(2 * i).y = org_y(i) 
    pList(2 * i + 1).x = dest_x(i) 
    pList(2 * i + 1).y = dest_y(i) 
Next i 
End Sub 
 
Private Sub Solve_Click() 
Dim pmap As IMap 
Dim pmxdoc As IMxDocument 
Set pmxdoc = ThisDocument 
Set pmap = pmxdoc.FocusMap 
Dim plinelayer As IGeoFeatureLayer 
Set plinelayer = pmap.Layer(0) 
 
Dim pline(0 To 100 - 1) As ILine 
Dim pP(0 To 100) As IPoint 
For j = 0 To nLines - 1 
   GreatCirclePath j 
For i = 0 To 100 - 1 
Set pP(i) = New Point 
 pP(i).PutCoords plLists(i).x, plLists(i).y 
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Next i 
 
Dim pSegCollection0 As ISegmentCollection 
Dim pSegCollection1 As ISegmentCollection 
Set pSegCollection0 = New esriGeometry.Path 
Set pSegCollection1 = New esriGeometry.Path 
 
Dim found As Boolean 
found = False 
For i = 0 To 100 - 2 
If Not found Then 
    If pP(i).x * pP(i + 1).x >= 0 Then 
        Set pline(i) = New Line 
        pline(i).PutCoords pP(i), pP(i + 1) 
        pSegCollection0.AddSegment pline(i) 
    Else 
        found = True 
    End If 
Else 
    Set pline(i) = New Line 
    pline(i).PutCoords pP(i), pP(i + 1) 
    pSegCollection1.AddSegment pline(i) 
End If 
Next i 
 
Dim pPolyline As IPolyline 'IGeometryCollection 
Set pPolyline = New Polyline 
Dim pGeoColl As IGeometryCollection 
Set pGeoColl = pPolyline 
pGeoColl.AddGeometry pSegCollection0 
If found Then 
    pGeoColl.AddGeometry pSegCollection1 
End If 
 
Dim plclass As IFeatureClass 
Set plclass = plinelayer.FeatureClass 
Dim pyline As IFeature 
Set pyline = plclass.CreateFeature 
Set pyline.Shape = pPolyline 
pyline.Store 
Next 
MsgBox ("Finished") 
End Sub 
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