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CHAPTER I
INTRODUCTIN

An (n - 1)-sphere is a topological image of st-1. {(xl,xz, ceey

xn) e E° | x12 + x22 + cee + xn2 = 1} » an open n-cell is a topological
n 2 2
n-cell is a topological image of {(xl, Xys eees xn) e E| X +x, +
o0 + x 2 < 1} L]
n -

In this thesis we consider certain (n - 1)-spheres embedded in

. 2
image of {(x.l,xz, cees X ) € E® | x, “+ix,

n (we will frequently use the fact that s is topologically equivalent

S
to the one point compactification of En). The problem is then to estab-
lish the existence or non-existence of certain topological properties of
the two domains into which S" is separated by the given (n - 1)-spheres.

For the cases n = 1, 2 it is known that each (n - 1)-sphere in
s? separates s® into two domains s either of which is an open n-cell
and has a closure which is a closed n-cell. That this is not the case
for n = 3 is shown by numerous counter examples (see [2] and [S]*).

A 2-sphere K in 83 that -is locally polyhedral except at one,
two or three points is considered in Chapter II and the following results
are established. If K is locally polyhedral except at one point, ;thén
the closure of one component of 83 - K is a closed 3-cell and the other
component is an open 3-cell. If K is locally polyhedral except at two

points, then either the closure of one complementary domain is a closed

*Numbers 4n square brackets refer to numbers in the bibliography at
the end of this paper.



3-cell or both complementary domains are open 3-cells. If K is
locally polyhedral except at three points, then one of the complementary
domains is an open 3-cell. This domain may or may not have a closure
which is a closed 3-cell.

Let A={(xl,x2, cees X ) e EN | Xy +x2+ +x251},

i} >

*eee v X <h} , and

B={(l,x2, ooo,xn)eEnle +x22+... +x
C= {(Il, JC2, ecey xn) € E!l l xlz +x22

D= {(xl, Xps eees xn) ¢ EV | x12 +x22 + cee + (xn + 1) < h} . The
Generalized Schoenflies Theorem states that if h is a homeomorphisfn of
ClL (C\\B). into S" , then the closure of either complementary domain
of h(Bd A) is a closed n-cell. A proof of a special case of this
theorem by Mazur [13] and a proof of the full theorem by Brown [8] point

out that properties of the embedding homeomorphism of Sn'l

=Bd A in
S" can be used to investigate the properties of the complementary do-
mains. One is naturally led to the following question, if h is a
homeomorphism of Cl (A \B) into s , is the closure of the component
of S®\|h(Bd A) which contains h(Bd B) a closed n-cell? This ques-
tion is answered affirmatively by Theorem 3.2. In fact the theorem
follows from the Schoenflies Theorem and the two are therefore equiva-
lent.

Two other embeddings of Bd A in s? s n> 3 , are considered in
Chapter ITI: (1) a homeomorphism h of Cl (D\B) into s® , and
(2) a homeomorphism h of Cl (D\ 4) into S? . In the first case it
is shown that if h is semi-linear on each finite polyhedron of

(Int A) \\ B , then the closure of either complementary demain of h(Bd A)



3
is a closed n-cell. In the second case it is shown that if h is semi-
linear on each finite polyhedron in a deleted neighborhood of (0,0,.4.,1)
(see Definition 3.7), then the closure of the complementary domain of
h(Bd A) which intersects h(Bd D) is a closed n-cell. The proofs of
these theorems depend quite heavily on the fact that an arc in E"? R
n > 3 , vhich is locally polyhedral except at a single point is tame (see
Lemma 3.3).

In Chapter IV three methods of cdnstructing 3-spheres in Sh from
2-spheres in s3 are considered: (1) suspension of a 2-sphere in s3 ,
(2) rotation of a 2-cell in s> about the plane of its boundary, and
(3) capping a cylinder over a 2-sphere in S3 . The construction methods
in cases (1) and (2) were introduced by Artin [4] and have been used by
him and by Andrews and Curtis [3] to construct 2-spheres in Sh from 1-
spheres and 1l-cells in 33 . Their techniques are used to establish
isomorphism theorems relating the fundamental groups of the complements
of the constructed 3-spheres and the fundamental groups of the correspon-
ding complements of the given 2-spheres. In Case (1) it is shown that
the second homotopy groups of the complements of the constructed 3-
spheres are trivial. Method (2) is also used to construct a 3-sphere
in Sh s one complementary domain of which is simply connected but is not
an open L-cell. The third construction is considered because it seems
to give the simplest scheme (in fact the only scheme of which I am aware)
for showing the existence of a 3-sphere in Sh such that one complemen-
tary domain has a closure which is a closed L-cell, and the other com-
plementary domain is an open L-cell but its closure is not a closed

L-cell.



CHAPTER II

AIMOST LOCALLY POLYHEDRAL 2-SPEERES IN S°

Let K be a set in a geometric complex C .
Definition 2.1. K is locally polyhedral at a point p of K

if there is an open set U containing p such that Cl U NK is a
polyhedron in C . K 4is said to be locally polyhedral if it is locally

polyhedral. at each point of its points.
Definition 2.2. K is tamely embedded in C if there is a

homeomorphism of C onto itself that carries K onto a polyhedron.
Definition 2.3. K 1is locally tamely embedded in C if for
each point p of K there is a neighborhood N of p and a homeo-
morphism hp of C1 N onto a polyhedron in C , such that
hp~(01 N N K) is a polyhedron.
We will frequently have occasion to use the fact that a locally
tamely embedded 2-manifold in a 3-manifold is tamely embedded [6, 15].

Lemma 2.1. Let T be a torus in E> that is the union of two

locally tame annuli, Al and A2 » which meet along their common

boundary curves a and a, . Then T is tamely embedded in E3 .

Proof. Let a3 be a simple closed curve on A2 which is homo-

logous to both a, and a, on A2 . Let A21 be the annulus on A2

¢
which is determined by a, and 83 s and let A22 be the anmulus on

1

which is determined by a, and a Let f. be a space homeomor-

2 2 3° 1
phism taking A, onto a polyhedral annulus. By Theorem 2 of [14], there

A

exists a space homeomorphism f2 which is the identity on fl(Al) and



carries fl(Az) onto a set which is locally polyhedral, except on
i‘l(al) v fl(a2) .

Let s = 7 min {plf)f)(a)), £21(4p))), pLEyE(85); 258, (8y))]}, amd
be an e-neighborhood

let U, be an e-neighborhood of f2f1(al) and U

1 2
of f2f1(8‘2)' By Lemma 5.2 of [15], there is a space homeomorphism f3
vhich is the identity on £,£(A)) U (B \U,) and carries f£,£;(A) U Ay)
onto a polyhedron. We again apply Lemma 5.2 of [15] to obtain a space
homeomorphism f, which is the identity on £,£,f,(4;) U (E°\\U,) and
carries f3f2f1(A1 U A22) onto a polyhedron. The mapping f = fhf3f2f1 is
then a space homeomorphism which carries T onto a polyhedron.

Definition 2.4. A k-manifold M in E® 1is said to be locally
peripherally unknotted at x if for each positive e there is a closed
n-cell of diameter less that & whose interior contains x , such that
the boundary of the n-cell and M meet in a locally peripherally un-
knotted cell or sphere, according as x 1lies on the boundary of M or not.
A O0-cell or O-sphere is considered to be locally peripherally unknotted.
If M 4is locally peripherally unknotted at each of its points, then we say

M is locally peripherally unknotted and use the corresponding abbrevia-

tion LFU .

An investigation of the proof of Theorem 1 of [12] shows that the
conclusionz of the theorem may be obtained under slightly weaker hypotheses.
S8ince in the proof of the theorem the LPU property is used only at the
points of' U , the theorem may be restatec_l as follows.

Theorem 2.1. Let M be a topological 2-manifold without boundary

in E° that is LPU onanocpenset U of M. Let e>0 and A s
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component, of E> \\M . Then there is a space homeomorphism h such that

(1) n@U) ca,

(2) p(x;h(x), <2,

(3) xeM\U implies h(x) = x .

Definition 2.5. let Y be a semi-linear mapping of a right prism

P onto the solid torus B such that, if corresponding points of the two
bases of P are identified, the mapping then induced by ¥ is a homeo-
morphism. ILet e be the boundary of the lower base of P . Those simple
closed curves on Bd B which are homologous to ¥(e) are called meridians
of B . A polyhedral disk D , such that Int D c Int B and such that

Bd D is a meridian of B , is called a meridinal disk of B .

Definition 2.6. Suppose that K is a polyhedral 3-cell in E3 .
By a M of K is meant an oriented polygonal arc u whose end points
lie on Bd K , but which is otherwise contained in the interior of K .
Let the end points of u be joined by an arc w on Bd K . The chord
u is said to be an unknotted chord of K if and only if u U w is an un-

knotted simple closed curve (bounds a disk in E3 ) . It is shown in
[17, p. 155] that the knot type of u U w is independent of the choice of
wcBdK.

1
be a polyhedral 2-sphere in E3 , and denote by C

Definition 2.7. Ilet k, and k2 be two knots in E3 « let S

and C, the closures

1 2
of the two components of E3 \S . Choose a polygonal arc w on S with
endpoints x and y . Then choose chords W (from x to y) and u,
(from y to x) of C, and G,
and y , such that uy Uw (oriented as ul) is a representative of the

respectively, each with endpoints =x



knot kl , and u, U w (oriented as u2) is a representative of k2 .
The knot represented by the oriented polygon uy U u, is defined to be

the product of the knots kl and k, . It is shown in [17, p. 156] that

the identity (the knot represented by a plane circle) cannot be expressed
as a knot product containing non-identity factors.

Let A ={(x,y,z)eE3|x +(y-%-)2+z <H}

c ={(x,y,z)eE3|x +y2+22<]},andfor i=1,2, ... 1let n

i
"be the plane y = 'i_+_I . let the following symbols denote the indicated

subsets of E3 .

' 1
Di oy NClA
!
a, Bd D4
1 !
Go ¢ Component of Bd A' \d i vhich contains (0,0,0)
t ] 1 !
Gi ¢ open annulus on Bd A determined by di and di+1
t 1 1
Ao ¢ component of E3 AN (Go Uub N ) which does not con-
tain (0, 1, 0).
' t of E\ (G, UD, UD,, ) which d t
4 ¢ component o \ ;3 UDy Dy +1) ch does no
contain (0, 1, 0)
1 '
Ei Y NClLC
] t
ey ¢ Bd Ei
HO’ ¢ component of Bd C' \el' which contains (0,-1,0)
1 R . g) 1
H; : open annuluson Bd C determined by e, and e, .,
1 ] !
Jd 3 ¢ the frustum of a cone determined by e i and di +1
' ! ] 1 1
To :HOUJl UClG UC‘r1
] !
Ti : Ji UHi UJ1+1U61
1
Ri ¢ union of Ti and its bounded complementary domain.
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let K be a 2-sphere in E3 that is locally polyhed;'al except
at a single point p . According to Lemma 3 of [11], there is a component
Ep of E3 \K » and a sequence Dl’ D2, ese Of disjoint polyhedral disks
in C1 Ep , such that (1) for each i , D, NK is the boundary d; of

is less than 1/i , and (3) for each

D (2) the diameter of p UD

i

separates p from di . Let the following symbols denote the

i,

i, di+1

indicated subsets of Cl Ep .

G, ¢ component of K\d1 which does not contain p

G, ¢ open annulus on K determined by d, and d

i i i+l
Ao ¢ component of E3 \(Go U Dl) which does not contain p
. 3 '
A; ¢ component of E \(Gi up, U Di+1) which does not con-

tain p .
In the proof of Theorem 1 of [11] a homeomorphism o , taking
C1 A' onto Cl Ep (compactified at infinity if Ep is the unbounded
component of E3 \K) s was constructed which carries the "primed" sub-

sets of Cl A' onto the corresponding "unprimed" subsets of Cl Ep .

Lemma 2.2. There exists a 2-sphere L in E° such that ' E, is

contained in one complementary domain E of B> \L and LNK=p.

Furthermore, there is a homeomorphism ¥ of Cl 0' onto Cl E (cox_rgact.i-

fied at infinity if necessary) such that ¥ sgrees with o on ClA -.

Proofs Let A denote the bounded component of E>\ K and B
the unbounded component. We will first assume Ep = A,

let e o® © be a sequence of positive numbers which converges

l,...
to zero. By Theorem 2.1, there is a space homeomorphism ho such that

(1) ho(Gl G, v Gl) cB, (2) p(x, ho(x) <e,,and .
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(3) xek\ (C1 G,V °1) implies ho(x) =x. Since C1G UCLG is
locally polyhedral and ho is a space homeomorphism, it follows that
ho(CI Go UCl Gl) is a locally tame disk. It follows, from Theorem 9.3
of [15], that T =ClLG,UCLG Uh(ClG, UClG,) isa tame 2-

1
sphere. Hence the closure of the bounded complementary domain of T o is

a closed 3-cell [1].
Let ho' be a homeomorphism of the disk Ho' V] Jl' onto

a (s v G,') which is the identity cn d, and carries el' onto

1
d1| . Now define a homeomorphism o  of T o onto T o by the equations

o
( l( 1 J ]
o‘ox) h oh, x) , xeH UJy
1 1
o_-o(x) = g(x) s x e Cl ((}0 U Gy ) .

Since the spheres '.l‘o' and To are boundaries of closed 3-cells,

o, can be extended to their respective interiors. This extension will

also be denoted by o .

For each positive integer i1 we will associate a mapping oy with
0412 T3_p2 ***s Oy by the following construction.
For j =0,1, ..., 1 « 1 denote the following subsets of E> as

indicated.
By * o3B30
e:]+1 3 cd(e:‘]*'l)
st 9503a)
Hy s 03(33) -

J )
KJ ’(kL-’O clﬂb UJJ+1 v (kay,,_zCl G]) Up

By unbounded component of E- \K 3
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We again apply Theorem 2.1 to obtain a space homeomorphism hi
such that (1) hi(Int Jyudi U Gi+1) B, (2) p(x,hi(x)) <&,
and (3) x ¢ Ki_l\(Int Jy Udy g UGy ,) dmplies h,(x) = x . Since

J, UCl1 G is locally tame and », is a space homeomorphism, it follows

i i+l i
that hi(Ji ucl Gi-!-l) is locally tame. These two locally tame anmuli
meet along their common boundary curves e i and di ) and hence their
union is, by Lemma 2.1, a tame torus. Let us denote this torus by Ti .
The bounded complementary domain of T 3 is the common part of the in-

teriors of the tame spheres

S39 =B UJy UG,y UDsp
and
Sip = By Uhg(Jy UGypq) UDy,

Furthermore, by the construction of the sphere S ip ? it is evident that
the image under o of the segment of the y-axis between di and di +2
is an unknotted chord of each of the cells bounded by - Sil and 812 .
Hence, by Hilfsatz 1, p. 167 of [17], it follows that the union of T,
and its bounded complementary domain is an unknotted solid torus. Denote

this solid torus by R,.

i
1 ] !
Let hi be a homeomorphism of Cl Hi Uud 141 onto
Ty UL G, inich leaves o' and d.,fixed and carries o .. ont
a 1 an ; ypfixed and carries e ., onto
! 1
di 4 Now define a homeomorphism oy of Ti onto Ti by the equa-

tions



] ]
o3 (x) = hyoy by (x) , x e Hy

1 ]
ci(x) =hoh, (x) , xedy,
o-i(x) = o-i_l(x) s Xeg Ji

!
ci(x) = g(x) s xe by,

This gives a homeomorphism between the boundaries of the solid tori Ri'

and Ri « To be able to extend this homeomorphism to their interiors it

will suffice to exhibit a pair of meridian curves on Bd R, which are

carried by onto meridian curves of Bd Ri [17].

%
]
Let kil

!
and Ti' ,» and £ i1 the intersection of the half plane x =0, 2< 0

and Ti' . The assertion is that k;.l and ‘éjl.l are simple closed curves

of the desired type. We will show that 0i(k;.1) is a meridian curve of

be the intersection of the half plane x=0, z2>0

t
Bd Ri . That ai( ‘eil) is also a meridian curve of Bd Ri would follow

by a similar argument.

let n be the half plane x =0, z> 0 and let u, be the

oriented arc from y' = n N d;+2 to x' =n N ei' which lies in
1 ] 1
N (H U Jig) - Iet W, Dbe the arc from y' to x' which lies in

] ! 1
n f'I(J':L U Gi-!-l) - let wu,, be an oriented arc from x' to y' which

leads from x' to the y-axis in Ei' » then follows the y-axis to

] ] 1 1
d;,p » and then leads to y' in d Let k qUW , k

142 ° 11 ° %1 12
1

] 1 1 1 1
=, v Wi and k13 =W, Uug, s each with the orientation of vy

]
and Usp o Finally let uu,uiz,wi,ku,kia,and kiB be the

'
images under o5 of the corresponding "primed" sets. Since ki3 bounds

UD,, , it follows that

a disk in the cell bounded by E, UH, U J. X

i i i+l
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ki3 bounds a disk in the cell bounded by Si2 . Hence kiB represents

the identity knot and we have it given as the product of the knots repre-

sented by k and k Thus k

il i2 °

disk F‘i bounded by kil

the arc Uil on its boundary, lies in the interior of S

11 represents the identity knot. A

can then be found which, with the exception of

59 ° Ii'Fi

intersects J i U Gi 4 only in LA then Fi is a meridinal disk at Ri .

Suppose, on the other hand, that there are components 815 85 seey 8y

of Fi n (J 5 UG,,,) other than w Then let a, be a component which

i+l i-* J

contains no other such component in its interior (relative to J, UG

i i-l-l) ‘

Iet X be the disk of J, UG and let Y be the sub-

i i+l 3

bounded by a, . Then define Fi' = (F;\Y) UX , and de-

in a sufficiently small

bounded by a

disk of Fi

!
form Fi semilinearly away from J i U Gi +1

neighborhood of X that no new intersections with Sil or Si2

n
troduced. The disk Fk thus produced is bounded by ki’

intersection with J i U Gi + than Fi . In this way each of the a 3

be eliminated to obtain a disk Fi* which, except for its boundary kil s

are in-
and has one less

may

is in the interior of Ri .

The extension of oy

The desired sphere L is taken to be

will also be denoted by Os
Qo

i'.=10(!1Hi Up and Y is
defined by the equations
1
¥(x) =o(x) , xeClA
1
¥(x) = cro(x) s X & Ro

'
Y(x) = Gi(x) 0] X € Ri ’ i = 1, 2, eoe o



13

Lemma 2.3. There is a contimuous mapping g of C1 C' onto Cl C'

such that

!
(1) g is fixed on Bd C ,
(2) g is a homeomorphism of Cl c' \Cl 4 onto

c1c \(0, 1, 0) , and

!
(3) 8(01 A) = (0, 1, 0) .
Proof. For x e Cl C' \Cl A' let X be the vector from (0, 1, O)
to x and L the line determined by {0, 1, 0) and x . lLet x, be the

point of intersection of L and Bd A' and x, the point of intersection

2
1
of L and BdC . Let dx = p((0, 1, 0), x) , ex = p((0, 1, 0), xl) ’

1
and fx = p((0, 1, 0), x2) . For xe Cl(A) let g(x) = (0, 1, 0) and
for xe Cl1 C' \Cl A' let g(x) be the terminal point of the vector

(dx - ex)(fx + dx)
2dx(fx - ex)

Theorem 2.2. lLet K be a 2-sphere in E° that is locally poly-

X . It is evident that g has the desired properties.

hedral except at a single point p . Let the interior and exterior of K

be A and B respectively. Then,

(1) either C1 A or Cl1B (compactified at infinity) is a

closed 3-cell, and

(2) the other complementary domain (compactified at infinity

if necessary) is an open 3-cell.

Proof. ' Statement (1) is Theorem 1 of [11].

Suppose A is the domain such that Cl A is a closed 3-cell. Let
¥Y¥,L, and E be as in the conclusion of Lemma 2.2. Iet g be the
mapping of Cl C' onto Cl C' defined in Iemma 2.3. Define a continuous

mapping f of E3 onto E3 by the equations



1
f(x) = x s erB\E,

f(x) = YgY-l(x), xekE.

From the definitions of the mappings ¥ and g it is clear that f is

a mapping of E3 onto E3 which takes B homeaomorphically onto E3 \p ¢
Thus B (compactified at infinity) is an open 3-cell.

A similar argument will apply in case Cl1l B is a closed 3-cell,
to show that A is then an open 3-cell.
Theorem 2.3. If K is a 2-sphere in E3 that is locally poly-

hedral except at two points p and q , then either

(1) CL A or (1B (compactified at infinity) is a closed 3-cell,

(2) both A and B (compactified at infinity) are open 3-cells.

Proof. According to Lemma 2 of [11] we may associate with the point

oo
p a certain domain Ep of E3 N\ K and a sequence {Dpi} (=1 of disjoint
1=

polyhedral disks in Cl Ep such that (1) for each i, Dp:'.‘ N K is the
1
i 2 (2) the diameter of p UDpi is less than I

and (3) for each i in dp(_i+1)_ separates p from dy; in K.

boundary dpi of D

.= OO
Sinilarly, let E_ be a domain of E>\ K and {Dq'}i , o se
i =
quence of disjoint polyhedral disks in Cl Eq such that (1) for each i,

inﬂK is the boundary dqi of in s, (2) the diameter of qUin is
1

less than 7 , and (3) for each i, separates q from d_; in

d
q(i+1) q

K.

First suppose Ep = Eq = A . By taking subsequences, if necessary,
we may assume that for each pair of integers i and j (1) Dpi n qu =0,
(2) the disk dqi is in the closure of the bounded component of
E>\((K UD ;) which has q as a limit point.
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Let Go be the annulus on K determined by Dpl and Dql and

be the annulus on K determined by D

i and

for 1> 0, let Gpi

the annulus determined by in and Dq (141) °

by Ko s and for i > O denote the sphere

and G Denote

Dp(i-l-l) qi

the sphere Go U Dpl U Dql

Gpi v Dpi v Dp(i-l-l) by Kpi » and the sphere qu v in u Dq(i-i-l) by

K Let A Dbe the bounded component of E> \K,, and for 1> 0 let

qi *

3
Api be the bounded component of E \Kpi and Aqi

ponent of E3\xqi. By [1] we know that C1 A, CLA , and CLA, ,

the bounded com-

i=1, 2, ..., are closed 3-cells.
! 2, 2. 2 '
let K = (x,y,z)lx +y+2z = 1} and A the bounded component
of E3 \K . For each 1> 0 1let L
y-axis at (O, 11,0) and nqi the plane perpendicular to the y-axis at

be the plane perpendicular to the

]
ncLaA',D in01A',1=1,2,...,

i L =
(o ). Define D , = i~

- 1370 bi = Tpi
1 1 !
and let the sets Go, Gpi’ Ko, K

1 1 1} ] 1

.9 K.y A, A . and A . correspond to
pi’ "qi’ "o’ “pi qi :

the "unprimed" sets above.

A homeomorphism of Cl A' onto Cl A is obtained by first using the

lemma on page LO of [10] to map the boundaries of A;, A;i, and A:li’ is=

1, 2, ..., onto the boundaries of the corresponding Ao’ Ap:l. and Aqi

] !
such that the disks D and D i=12,..., are mapped onto the cor-

pi qi’

responding Dp i and in . Then [1] is used to extend this homeomorphism

to their respective interiors. This gives a homeomorphism h of

1 @ 1 ®© ! !
ClL A, u[igl C1 Api] v [191 c1 Aqi] =C14 \(0,-1,0) U (0,1,0)]

onto C1 AN\ (p VU q). By defining h(0,-1,0) = q and h(0,1,0) = p we
have a homeomorphism of the closed 3-cell Cl A' onto Cl A .
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A similar argument may be used when Ep = Eq =B .
The alternative case Ep F Eq will now be considered. Suppose

Ep = A . We will show that A is an open 3-cell. A similar argument

would show that B (compactified at infinity) is also an open 3-cell.
Qo
Let the sequence of polyhedral disks {Dpi} 1=1 be defined as

above. We may assume that for each 1 , dpi

K. For each i>0, let H, be the component of K\dpi which does

separates p and q in

not contain p . Denote Hi U l’lp1 by Ki and the bounded component of

E3 \Ki by Ai . Since each K, is locally polyhedral except at the

i
point q , we have, by Theorem 2.2, that each Ai is an open 3-cell.
Since A 1is the union of the increasing sequence of open 3-cells Ai ’
i=1,2, ..., it follows from [9] that A is an open 3-cell.

Let K be a 2-sphere in E3 that is locally polyhedral except
at the three points p, q and r . Associate with the points p, q,
and r , respectively, certain domains E_, E , and Er of EB\K
and the sequences of polyhedral disks Dpi}:.:l s {in}:=1 and @rﬁ}:l
in accordance with Lemma 2 of [11].

Theoren 2.lL.

(1) It Ep = Eq =E_, then Cl (Ep) (compactified at infinity

if Ep = B) is a closed 3-cell.

(2) I Ep, Eq, and E_  do not coincide, say Ep = Eq F E_ , then

Ep (compactified at infinity if Ep = B) is an open 3-cell.

Proof of (1).

Suppose Ep = Eq = Er = A . We may assume that for each triple i,

Js k of positive integers that
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(1) (1)pi n qu) U (Dpi nDo,)u (qu nD,) = a ,

(2) D,uD is in the closure of the bounded component of

pi "~ "q
B3 N\ (K v D,) vhich does not have r as a limit point,

(3) Dp i U Drk is in the closure of the bounded component of

E>\ (K U D,y) which does not have q as a limit point, and

(L) Dq j 0] Drk is in the closure of the bounded component of

B> N (K U Dpi) which does not have p as a limit point.

3
Let G = be the component of E N\ (K U dpl U dql U drl) which

contains neither p, q, nor r . Let Ko = Go U Dpl U Dql U Drl and
Ao the bounded component of E3 \Ko « For i >0 define the sets

G G G K K A Aqi s and Ar as indicated in the

pi’ qi’ "ri’ "pi’ in’ ri’ “pi’
proof of statement (1) of Theorem 2.3.

1 ]
let K ={(x,y, z)|x2+y2+22=]} and A the interior

i

of K' . For 1i>0 let n be the plane perpendicular to the y-axis

pi
i+2 .
at (o0, 3 o), L the plane perpendicular to the y-axis at
i+2

(o, - L 0) , and n,; the plane perpendicular to the z-axis at

i+2° 1 1 1
(o, 0,m). For i> 0 define Dpi=npinCIA R in=n

qi
1 1 ! J 1 1
NClLA , and Dri =Ty NClLA . Let the sets Go s Gpi’ qu, Gri
1 ! 1 1 1 1 1 ]
] f
K, > Kpi’ in, K. s A, Api’ Aqi’ and Ari correspond to the "unprimed

sets above.

1 1 1 1
The spheres Go s Gpi’ qu, and G i are mapped onto the corres-

qu »and G, by [10], and then [1] is used

to extend this mapping to their respective interiors. This gives a

ponding spheres Go s Gpi 5
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homeomorpbkism h of

c1a, U [UClAi:] [1” GlA:] [u cu.]

= Cl At- \[(0,1,0) v (0,-1,0) U (0,011)]

onto CLAN(pUqUr). Bydefining h(0, 1, 0) =p , h(0, -1, O)
=q, and h(O, O, 1) = r , we have a homeomorphism of Cl A' onto
ClaA.

Proof of (2).

Suppose Ep =E = A and Er = B . Let the sequences of poly-
hedral disks {Dpj} i=1 and @qi}:ﬂ be defined as above. For each pair

i, j of positive integers we may assume that r is on the annulus Di j

of K determined by Dpi and qu . For each 1> 0 let Ki = Dii
3
U Dpi U in and Ai the bounded component of E \Ki . Each Ki is a

2-sphere, locally polyhedral except at r . Hence by Theorem 2.2, each
Ai is an open 3-cell. Since A is the union of the increasing se-

quence of open 3-cells Ai s it follows that A is an open 3-cell.



GHAPTER IIT
SOME EMBEDDINGS OF S*1 m s@

Let us consider the following subsets of E" .

2 2 2
Aa{‘(xl, X)) ...,xn) | X"+ X" el + X 51} s
2 2 21
B = {(x]-’ 12, seoy xn) I xl +x2 + oo +xn SK} 9

2 2 2
C={(x1,x2, cees X |x1 Xy *eee v X 5)4} ,

2 2 2 }
D= Xny esey X + 4 eee + <L
{(xl, 22 s X | xl x, (xn + 1)< .

Let h be a homeomorphism taldng Bd A into the n-sphere s" and de-
note h(Bd A) by S°1 .

Definition 3.1. We say that h can be __ tended in one direction

along a cylinder if there ists a homeomorphism f of the closed annulus

determined by A and B into s? s such that for each x ¢ Bd A ,
£(x) = h(x) .

A Observe that the condition of Definition 3.1 is equivalent to the
statement: there ists a homeomorphism f of Bd A x [0, 1] into s?
such that for each x ¢ Bd A, f(x, 0) = h(x) .

Definition 3.2. We say that h can be extended in both directions

along a cylinder if there exists a homeomorphism f of the closed annulus

determined by B and C into S" such that for each x ¢ Bd A s
£f(x) = h(x) .
The usual formulation of the condition in Definition 3.2 is: there

exists a homeomorphism f of Bd A x [-1, 1] into S" , such that for
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each xe BdA, f£(x, 0)= h(x) .

Definition 3.3. If f 4is a continuous mapping of a topological
space X into a topological space Y ; then an inverse set (under £)
is a set M c X , containing at least two points, and such that for some
point ye £(X) , M=£1(y) .

Definition 3.4. A set M 1is cellular in an n-dimensional metric
space X if there exists n-cells Q) Qy, ... in X such that
Q4 cInt Q , and iﬁlQi-M .

The concepts defined in Definitions 3.3 and 3.4 were used by M.
Brown to prove the Generalized Schoenflies Theorem [8]. This theorem is
stated as Theorem 3.1 below for the sake of completeness.

Theorem 3.1. If h can be extended in both directions along a

cylinder, then the closure of either cgmlement;uz domain of Sn-l 8 a
closed n-cell.

Lemma 3,1. There exists a continuous mapping g of the annulus

(Bd A) x [0, 1] onto a closed n-cell such that the only inverse set
1s (a4) x 1. o
Prdof. We may take the ammulus to be the one determined by A

and B, with (Bd A) x {0} identified with BdA , and (Bd4)x 1
identified with BdB . For x e A\B et X be the vector from the
origin to x and let dx be the length of the vector X . For x ¢ B
let gfx) = (0, Oy «eo; O) and for x e A\ B let g(x) be the ter-
minal. point of the vector (2 dx - 1)X .

Theorem 3.2.. If h can be extended in one direction along

linder, then the closure of one complementary domain of gh-l

io

i
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closed n-cell.

More precisely, if E is the component of S \Sn'l which con-

tains f[(Bd A) x {1}] s then ClLE 1is a closed n-cell.
Proof. Let E be the complementary domain of f£[(Bd A) x {1}]

n-1

which does not contain S . We first observe that Cl E' is a cellu-

lar subset of E . For, if E; is the complementary domain of

i
{(Bd 4) x{ﬁ}] whicli contatns E s then, by Theorem 3.1, each

cE, and

ClE 141 5

1 is a closed n-cell. Furthermore Cl E

o0 ]
400LE =CLE .

Let g be a continuous mapping of (Bd A) x [0, 1] onto an n-
cell Q such that (Bd A) x{l} is the only inverse set. Define a map-

ping k of Cl E onto Q by the equations

k(x) = gf(x), xeCLE \CE
k(x) = g(Bd A x{1}), xeCLE.

The mapping k carries Cl E continuously onto the closed n-cell Q

such that the only inverse set is the cellular subset Cl E' of E.

Thus, by Theorem 2 of [8], ClE is a closed n-cell. '

‘ The local connectednessproperty 6f an .arc gives the following lemma.
Lemma 3.2;. Suppose L is an arc in E" and p is a point of L.

Given & > O , there exists &> O such that, if 11 is any subarc of

L whose endpoints lie in Sa(p) » then L, c Se(p) .
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Lenma 3.3. Let L be anarc in E", n> 3, such that L is

locally polyhedral except at a single point p . Then, given &> 0,
there exists a homeomorphism h of E® onto E® such that h is fixed

outside Saa(p)‘} and h(L) is pvlyhedral.
Proof. We will prove the lemma for p an interior point. Essen-

tially the same proof may be applied in case p 1is an endpoint. Iet a

and b be the endpoints of L and Vl the closed cubical neighborhood

centered at p of diameter & = €. For i=2, 3, b4y .. let si be
€
i-

given by lemma 3.2 for e = €y 9 and let e = min (61, T) . let

V., be the closed cubical neighborhood of p of diameter e

i i°®

By making use of semi-linear deformations in small neighborhoods

of the Bd v2i’ if necessary, we may assume that L N Vd V21 is a finite

set of points, and that no pair of components of L\v2i share a common end.-

point..For each integer i let ujq, +ees L

of 1.'\v2_,L which have both endpoints on Bd V

.be the closures of the components

o4 ° Observe that each of

these components is contained in the half open annulus Int V2 i-1 \\Int V2 i

Let w be a polyhedral arc in Bd V which connects the endpoints of

il 21

usq and, except for these two points, is disjoint from L . The resulting

simple closed curve dil = U4
Int V,; , 5 since n> 3 [10].

Uw in

11 bounds a polyhedral 2-cell D

il
If (Dil N Bd V21) \wil # O , the components that are either
points, arcs, or 2-dimensional subsets of Dil may be eliminated by semi-
linear deformations in small neighborhoods of these components. The com-
ponents that are simple closed curves may be eliminated as follows. Let

¢ be a component which contains no other such component in its interior
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Iet Y be the subdisk of D bounded by c¢ , and

il) ° il
let r be a point in the complementary domain of Bd V2 i opposite to

(relative to D

the one containing Y . Select r sufficiently close to Bd v, for
X (the joinof r and c¢) to meet Dil only in ¢ . Define

!

i1 semi-linearly away from Bd V2 i in
a sufficiently small neighborhood of ¢ , so that no new intersections

]
D,,= (1)il \Y) UX , and deform D

n
are introduced. The disk D i1

tersects Bd v21 in exactly those components, other than ¢ , in which

thus obtained is bounded by dﬂ and in-

Dil intersected Bd V21 .

3¢
Djy i1 0

3t
Int(Vy, ; \Vyy) - Since dim Dy, =

intersects L only in u

After a finite number of steps we obtain a disk

which, except for is contained in the open annulus

2 ,dmL=1, and n>3§f,wemay
3¢

assume that Dil

the mn-neighborhood S

41 ° Let m > 0 be such that

3
47 ©Of Dj; intersects LN (v21_1\v21) only in

Uyq s and such that S is contained in Int(vzi-l\vﬁ-o-l) . Bya

i1
sequence of simplicial moves across the 2-simplexes of D;(:l the arc ugq

may be moved onto the arc LA By making use of a corresponding semi-
linear space homeomorphism, we may deform ug4y onto Wiq and then into

Int V2 i by a semi-linear homeomorphism which is the identity outside

Si1 [(Lerma 3, 19]. The components Ujps ooep Uy are successively moved

into Int(in - ) by a technique similar to that used on u We

V2141 11 °
are careful in each move to leave the remaining components fixed. This

is to keep from introducing new intersections with Bd V2 i We denote
the composition of these moves by fi s and observe that fi is a semi-~
linear space homeomorphism and is fixed outside Int(V2 i-1 \V2 i +l) .

Also, if a, 1is the first point of L N B4 V. relative to the order

i 2i
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of L from a to p, and b, is the last point (equivalently b, is

the first point of L N Bd V2 i relative to the order of L from b +to

p) , then fi(L)anV =a, Ub, .

2i i i
We define a mapping f of E® onto E" by the equations

f(x) =x, X e En\Vl s

£(x)

£,(x) s X e vei_l\v2i+l s 1=1; 2, cus,
f(p) =p .

It is clear, since, for each i , fi is fixed on Bd V21-1 U Bd V21 +1

and f, eliminates all but two points of intersection of L and

i
Bd V2 ) that f is a space homeomorphism, semilinear except at p , and

that £(L) NBd Vy, =a, Ub, .

We now consider the arc f(L) . Let Ly be the subarc of f£(L)

from 8‘1 to ai+1 and let I'i2 be the subarc of L from bi to bi+1'

be the point of intersection of the segment 'a_]'.fa' with Bd Vo,

i
and let y, be the point of intersection of the 3;5 with Bd V,, .

Iet =x

Ilet §¢ i be a semi-linear space homeomorphism which is fixed outside

and which carries Bd V21 onto Bd Vr21 s

and ;Si(bi) =y; - Since & =x; and by =y; , we will assume that ﬁl

with ;Si(ai) =X

Vo121 \Voi14 1

is the identity homeomorphism. We may assume that the arcs x 1%5 41 and

ﬁi +1¢1(Lil) meet only in their endpoints, that y.y, ., and ;Si_'_lﬂi(Liz)

meet only in their endpoints, that X, , does not meet "i +1¢1(Lil) s

and that ¥,7, ., does not meet Ai+1ﬁi(1'il)~:-" The simple closed
curve ﬁi-ﬂ-l’si(l'il) U Xiiiﬂ ‘bounds a polyhedral disk D, ,

which, because of the restrictions on dimensions, may be taken to be
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disjoint from g, .8, (L;5) UF[y;,; - Furthermore, in the light of the

elimination of component scheme used above, Dil may be selected so that

D, N (Bd V,;U Bd V21+2) = x,Ux The arc ¢i+1‘i(Lil) is then moved

i” Tia
across the disk Dil onto the arc XX by a space homeomorphism Yil ’

which is the identity outside Vzi\\V21+2 and on ﬁi+1¢i(L12)’ Similarly
¢i+l¢i(Li2) is moved onto y,y, ., by a space homeomorphism Y,,, which

is fixed outside V,,\V, and on X X The composition ¥ ,¥,,

i+2 i"i+l
is denoted by Yi .
A mapping g is defined by the equations

g(x) = x , x ¢ E"\,

g(X) = Yiﬁi"‘lﬁi(x) 5 X 8 Vzi - V21+2 K] i = 1, 2, cooy

g(p) =p .

and Y

Since Y agree on the common part of their

i¢i+l¢i i+l¢i+2¢i+1
domains of definition, Bd V,, ., (each reduces to ¢i+1 on this set), it
is clear that g is a space homeomorphism. Also g carries f(L) onto
the sum of four polyhedral arcs: (1) the subarc of f(L) from a to
8 =X, (2) i;; , (3) 5;; , and (4) the subarc of f£(L) from

b to b . The desired space homeomorphism h is taken to be the

1N
composition gf . Since each of f and g is fixed outside V, , all
the requirements of the lemma are met.

A technique similar to that used in the proofs of Lemma 2.3 and
Lemma 3.1 may be used to prove the following lemmas.

Lemma 3.4. There is a continuous mapping g of D onto D such

that
(1) g is fixedon Bd D,

(2) g is a homeomorphism of D\A onto D\ (0,0, ...,0,1) and
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(3) g(a) = (0,0, ...,01).
Lema 3.5. Let L' be the seguent of the x -axis from

(05 0, +evy 0, %) %0 (0, 0, .ee, O, 1) . Then, there 18 a continuous
mapping of Cl (D\B) onto C1(D\4) , such that (1) g is fixed
on BAD, (2) g(BdB) =BdA, and (3) L' is the only inverse set
under g .

Definition 3.5. We say that h can be extended in one direction

along a oylinder and in the opposite direction al@g a8 cylinder trun-

cated at (0, Oy «cvy O, 1) if there exists a homeomorphism f carrying
the closed annulus determined by B and D into S° s such that f
agrees with h on Bd A .

Theorem 3.3. Syppose h can be extended in one direction along

& oylinder and in the opposite direction along a cylinder truncated at

(0, Oy <ees 0, 1) . Let G be the component of S" \ 8”1 which inter-

sects f£(BAD) . Then G 1is an open n-cell.

Proof. Let J be the closure of the component of S \ 871
which contains f(Bd B) . By Theorem 3.2, J is a closed n-cell and
hence there is an extension ¥ of h , which carries A homeomorphically

onto J . Define a homeomorphism g of D into st by the equations

#(x)=£(x), =xeD\4A
p(x) =¥(x), xeA.

Let £(0, Oy eeey O, 1) = p , and use the mapping g and the mapping g
of lemma 3.4 to define Va mapping k of s® onto S® as follows ’
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k(x) = x ,  x& 8PN\ ,
K(x) = g L(x) , x¢&4D).

The mapping k carries s onto S° s leaves p fixed, and has J as
the only inverse set. Hence G 1is carried homeomorphically onto s? \\P
and is an open n-cell.

Let B, be the closed n-cell in E" » which is centered at the

1
origin and has radius three-fourths. Iet I.l' be the segment of the
[}
x_-axis from (0, O, ..., O, 3/L4) to (0, 0, ..., 0, 1), and L =£(5,) .
let h, G, and p be as in Theorem 3.3, and let g be given by
1
lerma 3.4, with B and L replaced by B1 and Ll' respectively.

Theorem 3.4. If H is the closure of the component of

S"\£(Bd B)) which contains G , then H 1is a closed n-cell, and

(C1 )\ p is topologically equivalent to H\Ll .
Proof. That H 1is a closed n-cell follows immediately from Theo-

rem 3.2.
Let I be the component of Sn\f(Bd D) which does not inter-

sect Sn_l . The mapping k of H onto C1 G defined by

k(x) = x s xeIl,

k(x) = fef1(x), x e H\I,

is a continuous mapping of H onto Cl G such that the only inverse set

is I‘.L and k(Ll) =p. Hence, k is a homeomorphism of H\Il onto
(cLa¢)\p -
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In case there exists a continuous mapping £ of H onto H such
that 11 is the only inverse set under £ s then we can state that Cl G
is a closed n-gell. In fact, the product mapping —61("1 is a homeomor-
phism of C1 G onto E .

Let us now suppose that the extension f of h is semi-linear on
each finite polyhedron of Int(AN\ B) . Then f£(Bd Bl) is a polyhedron
and Ll is logally pelyhedral except at p . Let & > O be such that
Se (p) cInt E and let § be a homeomorphism of S" onto S" such that
4 1is fixed outside S ¢ (p) and ﬁ(Il) is polyhedral. let q be the
endpoint of Ii which lies on Bd H and let Q be a polyhedral n-cell
in H , such that q ¢ Bd qQ , ﬁ(Ll)\qcIntQ , and Q has a subdivi-
sion isomorphic to a subdivision of a simplex (see Lemma 5.32 of [10]).
et Y be a simi-linear homeomorphism of Q onto a simplex R . The arc
Yﬁ(Ll) is then polyhedral in R and, tcgether with the linear segment
m bounds a polyhedral disk D in R whkich, except for ¥4(q) ,
iies in tﬁe interior of R . There is then a homeomorphism n of .R
onto R such that 7 is fixed on Bd R and carries Y;S(Ll) onto the
segment m . It is then easy to find a continuous mapping ©
of R onto R such that O is fixed on Bd R , O( ¥4(a)¥8(p) )
= ¥6(q) , and m is the only inverse set. The mapping -é, de-
fined by €(x) = Ylon#é(x) , x €Q, and €(x) =x, x e H\Q , is
a continuous mapping of H onto H such that I‘l is the only inverse
set. Thus we have the following theorem.

Theorem 3.5, let h be a homeomorphism embedding Bd A in st ,

ns 3 ,‘ If h can be extended in one direction along a cylinder and in
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the opposite direction along a cylinder truncated at (0, 0, ..., 0, 1),

such thal the extension is locally semi-linear on Int A \\B , then the

closure of either compiementary domain of h(Bd A) is a closed n-cell.

Definition 3.6. We say that h can be extended in one direction

along a cylinder truncated at {0, 9, ..., 0, 1) , if there exists a

homeomorphism f carrying the closed pinched annulus determined by D

n, such tzat f agrees with h ¢n Bd A .

and A into &
Definition 3.7. Let f Vbe the extension homeomorphism of Defini-

tion 3.6. If there exists a neighborhood N of (0, Oy .., O, 1) in E°

such that f is semi-linear on each finite polyhedron of Int{D\A) NN,

then we say that f is semi-linear on a deleted neighborhood of

(O, (XX X] 1) °
Theorem 3.6, Let h be a homeomorphism embedding Bd A 1in st s

n> 3, such that h can be extended in one direction along a cylinder

truncated at (0, O, ..., 0, 1) , and let G be the component of

leted neighborhood of (0, 0y ..., O, 1) , then C1 G is a closed n-gcell.

Proof. Let D, be a cell, obtaired from D by a slight contrac-

1
tion on E' toward (0, O, ..., 0, 1) , such that [Bd D, \(0,0,...,0,1)]
is contained in D\\A . lLet Gl and G2 respectively be the components
of S"N\f(BdD;) and S"\f(Bd L) , which are contained in G . We now
observe that Cl Gl is homeomorphic to C1 G . For, 1f g 1is a space
homeomorphism which is fixed on Bd D and carries Bd Dl onto Bd A ,
then the mapping @ defined by

B(x)

#(x)

)

X , xa(‘:2

fgf-l(x) sy X & 01(‘2'1 \C’2) P
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carries Cl Gl homeomorphically onte Cl1 G . This suggests the following

observation: if one attaches a copy of (1l G1 te Cl1 (D1 \A) along

1l

Bd Dl with £~ , the set thus obtained is equivalent to Cl Gl (it is

simply C1 @) . This will be used to show that Cl Gl is a closed n-

cell, and hence that Cl1 G is a closed n-cell.

Let N be a neighborhood of (0, O, -.., O, 1) such that f is
semi-linear on Tnt(D \A) NN . Let S, 5 S, , and S5 be three n-
simplexes in C1 (Dl \\4) NN, such that S, has (05 Oy eeey 0, 1) as
one vertex, sl\(o, 05 «eey 0, 1) c Int(D) \\4) , Bd S, N Bd S,
= (0, Oy veuy 0, 1) , 32\(0, Oy eee5 0, 1) c Int S, , and Sy c Int §,.
Iet k be the component of Sn\f(Bd 82) which contains Gl . Then
by Theorem 3.5, Cl k is a closed n-cell. Let H = Sn\Cl G , then
Cl k can be realized by taking P = Cl (Dl \4) \\Int S, and attaching

1

CLH to P along Bd A with £ to P along

Bd D, with £1

, and attaching Cl Gl

. The set P 1is a’closed n-cell (the closure of the

exterior of 82) with the interiors of two cells sharing a common boun-

dary point with Bd 82, removed. The cell obtained from P by attaching

1

ClLG, and C1 H to the interior boundary spheres of P with f — will be

1
denoted by P .
Let E be the part of the solid unit ball in E® centered at

ijo
= 0) N BAd E such that, if Qg is repre-

Qo
(0, 0y ey 1, 0) , determined by X 20. Let {q} be a sequence of
points (x.l =Xy = s =X,
sented by (0, Oy ocus 3(n-1)1’ ani) , then 3(p-1)0 * 2 and the n-1)1
converge monotonically to zero through positive values, and a ni > o,

i=0.
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Bd S

Figure 1

A Chambered n-cell.
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We then section E into a countable number of n-cells by projec-

ting the (n - 1)-plane X, =X
determined by Py 3 and Py is denoted by C

= 0 onto each of the Py - The section

i We then delete from Ci
the interior of a cell Cj_| s similar in shape to Ci

boundary point (0, O, ..., O, 0O) , contained in the interior of C; . Any

and, except for the

two adjacent sections then form a copy of P , and are labeled by Pi s

1 ] 1
Pi s as in Figure 2. Notice that Pi and Pi have Wy = Bd 021 in
I

t
common, and P; and P, have W, . =BdC, . in common. Let ;Si

be a homeomorphism of Pi onto Pi' which leaves Wy fixed and carries
Let Yi be a homeomorphism of Pi' onto P

fixed and carries w2i onto w2 142 °

w2i-1 onto wﬁ 4
which leaves w

ivl

2i+l

We identify P, with P , with w, identified with Bd D, and

1l 1 1

W, identified with Bd A . The sets Cl Gl and Cl1 H are then sewn to
P along Wy and Lo respectively, with f':L « The resulting n-cell
is denoted by ?i' . The sets Cl (}1 and Cl H are then sewn into alter-

nate holes bounded by Vo141 and Wos 42 by the attaching homeomorphisms

By -ee ,sz,slf'l

Bd Gl —> Wpy4 2

1. B ——> w

LN YYf- 2i+2 .

¥ 2%1

The sets thus obtained from the Pi and Pi' are denoted by ?{ and

P,  , and the union of the P, is denoted by E

i 1°

Since ;Sl is the identity on w, , we can extend ;Sl to a homeo-

|
morphism of P; onto Fi' s and conclude that Pl is also a closed n-

cell. In a similar manner we extend the homeomorphism Yi to a haomeo-
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Figure 2

A Countable Pai-tition of an - n-cell



3k

=

Figure 3

A Modified n-cell.
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morphism of T’;' onto ?i 4 @and extend the homecmorphism 4, to a

homeomorphism of ?{ onto F;_ 41 - It then follows that each of the P_i

and Ti' is a closed n-cell.

We now observe that El is a closed n-cell. This is established
by constructing a homeomorphiam of E onto El . We map the boundary of

C,yq U Cp onto the boundary of '15'_,: with the identity homeomorphism.
Since 021_1 u 021 and 'f’: are n-cells, this homeomorphism between

their boundaries can be extended to a homeomorphism between the cells.

These extensions for i =1, 2, ... yleld a homeomorphism from E onto

We next observe that E., is a copy of Gl(Dl' \A') with Cl G

1 1
sewn along one of the boundary spheres. This can be established by showing

that E:I. s-with Gl removed from ?’{ s 1s homeomorphic to E with

! .
Int Cl removed. ILet A be the identity mapping on Gl \Int cl' and
on Bd(Cyy U Cpypy
closed n-cells and A restricts to a homeomorphism between their boun-

1
)»1=1,2, ... . Since C,, U Cpy4q and P; are

darigs, A can be extended over their interiors. The extensions over each

of the G, U : yield the desired homeamorphism.

Co141
We have seen that El may first be viewed as a closed n-cell and

secondly as Cl G, sewn into a boundary sphere of a copy of Gl (DI\A).

We previously observed that a set of the second type is homeomorphic to

0101. Hence Cl G

) s OF equivalently Cl1 G , is a closed n-cell.



CHAPTER IV
SOME 3-SPHERES IN Sh

L.1. Three-Spheres in Sh Obtained by Suspension

Definition 4.1. In E"l we take coordinates X5 Xy x3, x),
and let E3 be described by x), = O. Let a=(0, 0, 001) and
b = (0, 0, O, ;l) . For aset A in E3 the suspension of A in
Eh is the join of A and a Ub (the collection of line segments

ax and bx , x € A). The abbreviation Susp A will be used for the

suspension of A in Eh .

If A =«xl’ Xos X35 0) | x12 + x22 + x32 = J} , then it is
clear that Susp A is a 3-sphere in Eh and that Susp(Int A) =
Int(Susp A) is an open L-cell. Furthermore, the suspension of the
union of A and its interior is a closed L-cell.
and A2 are homeomorphic subsets of E3 R

1
then Susp Al and Susp A2 are homeomorphic subsets of Eh .

Lemma L.1. If A

Proof. Let g be a homeomorphism of Al onto A2 . For 0i a
< <
an open set in A, and -13t,<t,31 let Oia(tl, t2) be the
part of Susp Oia which lies between the 3-planes xh = tl and
xh = t2 . If either tl = -1 or t2 =1 , then we will add to
Oia(tl,tz) the point b or a ast, =-1 or t, = 1. The collec-

tion of sets
1 < <
{Oia(tl,tz) |o;, openin A, , -1St, <t,= 1}

forms a basis for the topology of Ai .
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Let 2y be a point of Susp Al . Then there exists an x e Al

anda -1StS1 such that 2z, is the intersection of x), = t and a

1
segment x';i or gﬁ s, according as t is positive or non-positive.
In the first case we associate with 29 the intersection of x), = t and

-g'('il-)'i - In the latter case we associate with z, the intersection of
x, =t and E(x?s . The mapping thus defined carries Susp A, onto
Susp A2 in a one-to-one manner and carries the basis elements of A1
onto the basis elements of A2 in a one-to-one manner.

let L be the xh axis and let M denote the part of L with
Ixhl >21.

Lemma L.2. let S be a 2-sphere in E- and K = Susp S . For
each e > O there exists a set T  in the ¢-neighborhood of K UM

such that Te is homeomorphic with S x El and there exists a homotopic

deformation of Eh\'re onto EZ\(S .

Proof. ILet O< tl < 1 and sufficiently close to 1 for the set

P(a) = {(xl, Xy X35 xh) e K| x) 2 tl} to be in the e-neighborhood of
a. Let -1<t,<0 and sufficiently close to -1 for the set P(b)

= {(xl,xz,xB,xh) e K| x), < t2} to be in the e-neighborhood of b. Let
Q(a) be those points of P(a) with x) coordinate ty and Q(b) those
points of P(b) with x), coordinate t, . Let R(a) be the union of
all half-lines which are directed in the positive x), direction and have
their endpoint in Q(a) , and let R(b) be the union of all half-lines
which are directed in the negative X, direction and have their endpoint
in Q(b) . The set Te is then defined to be

{E\[p2) U P} U [R(a) U RD)] -



From the definition of Ta it is easy to see that there is a
homeomorphism f of Eh onto Eh which is the identity on E3 and
carries T onto SxEl. For 0StS1 let T be the transforma-
tion which carries (xl, Xps X3 xh) onto (xl, Xys X9 ‘Ixh) . The de-
sired deformation G 1is then defined by G(x, t) = £ 1%f(x) .

Definition L4.2. lLet A and B be two arcwise connected spaces
with AcB. let pe A be used as the base point for computing the
fundamental groups nl(A) and nl(B) . The injection homomorphism of
nl(A) into nl(B) is the homomorphism induced by the identity mapping
of A into B .

Theorem L.1. Let S be a 2-sphere in E° and K = Susp S .

Let A1 and A, be the bounded and unbounded components of E3 \.8

2
respectively, and Bl ’ 32 the corresponding components of Eh\K .

Then the injection homomorphism i:’ "nl(A.j') —_— "1(33)’ J=1,2, is

an onto isomorphism.

Proof. First consider the sets Al and B1 . Let W be an

element of nl(Bl) and let w be a representa;bive of W. Let w!

be the path in Al which is the image of w under the deformation G
of Lerma 4.2. Then w' is also a representative of W. If W' is the
element of nl(Al) represented by w' , then :I.l(W') = W, by the

definition of 11 s and il is an onto homomorphism.

1 t
Iet W ©be an element of nl(Al) such that 11(w ) 1is the
identity element E of nl(Bl) , and let w' be a representative of

W' « Then w' bounds a singular 2-cell D in B, . ILet D' be the

1
image of D under the deformation G . Since w'! is fixed under G ,
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w!' bounds the singular disk D' in Al . Hence, W' is the identity
element E of nl(A.l) and the kernel of i, is E .
Now consider A, and B, . Let W be an element of nl(B2) s
.and let W be represented by a polygonal path w in B2 . Since w

and M are l-dimensional subsets of the L-dimensional set 32 we may,

by deforming w away from M if necessary assume that p(w, M) > 0.
By selecting & < p(w, M) and selecting T g and G by Lemma k.2, we

can deform w by G into A, and thus obtain a path w' representing

2
an element W such that 1,(W ) =W .
1
Let W be an element of "1(A2) such that 12(W ) = E , and let

W Dbe represented by a polygonal path w' in A2 o Then w' bounds a

singular 2-cell D in B By the Deformative Theorem [18, p. 115],

o *
we may assume that D 1is a simplicial 2-complex. Again, since the
dimensions of D and M add up to three, we may assume that p(M, D)
= ¢g>0. Then, by Lemma L.2, we can find a G which deforms D into
A2 and leaves w' fixed. Thus w' represents the identity element of
"1(A2) » and i, is an isomorphism.

If Eh is compactified with a point at infinity, then Eh be-
L

comes S~ and E3 becomes 83 s and the corresponding proofs for
Lemma 4.2 and Theorem L.l can be carried out with s4 and §3 replacing
E* end E3.

Theorem L.2. Let Al, A2 s Bl’ 82 denote the components of

s3 \S and S’" \K as indicated in Theorem L.1. Then the second homo-

topy groups “2(31) and n2(82) are trivial.
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Proof, It is proved in [16, p. 19] that each of n2(A1) and
u2(A2) is trivial. The proof then will be to show that each singular
2-sphere in Bl or B2 can be deformed into Al or A, respectively
without crossing K .

Iet D be a singular 2-sphere in B Then by Lemma k.2,

1 [ ]
there exists a deformation G which deforms D into Al. The situation

is quite similar for B ILet D be a singular 2-sphere in B

o * o
Again by the Deformation Theorem, we may assume that D is a simplicial
2-complex in 32 and, since the dimensions of D and X (K U the
point at infinity) add up to three, we may assume that D and K do not
intersect. Let & = p(D, K) and let G be given by Lemma 4.2, The
deformation G deforms D continuously into A2 and the theorem is
proved,

In [5] there are examples of 2-spheres in S3 such that one
complementary domain has a non-trivial fundamental group. An elementary
modification of these examples will give 2-spheres in 83 such that
the fundamental group of either complementary domain is non-trivial.
These examples plus Theorem L.l give the existence of 3-spheres in Sh
such that either one or both complementary domains have non-trivial
fundamental groups. However, Theorem 4.2 tells us that both complemen-

tary domains of these examples will have trivial second homotopy groups.

4.2, Three-Spheres in s* obtained by Rotation

Definition L.3. Let Ei = {(xl, Xp5 Xg 0) e Eh | Xy 2 0}
and let P be the plane X3 X = O. ILet M be a subset of Ez and



1
H = . X X X h X =
define R(M) as follows: R(M) {(xl, Xys X35 xh) e E° | X% X;
X, =X, §3 = x4c08 ty X) = xpin ¢ for some (x)5 x5, g 0) e M
and 05 t<2n}.
The following theorem is an immediate consequence of

Definition L.3.
Theorem 4.3. Let M be the hemisphere in E. defined by the

equation x12 + x22 + x32 =1. Then R(M) is the 3-sphere
2 2 2 2 _ L
X"+ X, +13 +xh lﬂi_n_E .
Furthermore, if D is the bounded complementary domain of

dn{-(x1,x2)eP|x12+322=1} in P, A, the bounded comple-
mentary domain of MUD in Ei s and A, the unbounded complementary
domain of MUD in E] , then R(A, UD) and R(A,) are respectively

the bounded and unbounded complementary domains of R(M) in Eh .

A proof similar to that of Lemma L.l can be used to establish the

following lemma.
Lemma L.3. .Suppose Al and A2 are homeomorphic subsets of Ez

With f a homeomorphism of A, onto A, and h the restriction of f
to A, NP. If h is a homeomorphism of A, NP onto A, NP, then

R(Al) and R(Aa) are homeomorphic subsets of E"‘.

Let M, D, d, A}, and A, be as in Theorem he3, and let M be
a 2-cellin E. suchthat M NP=BdM =d . Let D be the
bounded complementary domain of P \d' and Al' ) AZ' the bounded and
unbounded complementary domains of M' v D' in Ei respectively. A

combination of Lemma L.3 and Theorem L.3 yields that R(M') is a
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1
3-sphere in Eh . Denote the bounded component of Eh \R(M ) by Bl

and the unbounded component by 32 .
Theorem L.L. nl(Ai') = nl(Bi) ,i=1,2.

Proof. First consider Al| and Bl and select a point p in
]
Al as the base point for computing nl(Al') and nl(Bl) . Let L be

an element of nl(Bl) s, and let £ be a polygonal representative of L .

Let EE be the collection of points in Eh

L

with positive fourth co-

ordinates, and let E~ be those points with negative fourth coordinates.

We will say that a 1is an exceptional point of € if ae € n Al and
each interval on € about a contains points of E)'_l . Let a be an
exceptional point of € » and let q traverse - in the direction
determined by the requirement that q approach a through points in

Eh . The exceptional point a of < will then be classified according

as

(1) q passes from a immediately back into El_4 s

(2) q moves from a along a polygonal curve in Al to

another exceptional point and then into El: R
(3) q moves from a along a polygonal curve u, in Al|
to a vertex b and then into Eli s Or
(b)) q passes from a immediately into El:_ .
In cases (1) and (2) a may be eliminated as an exceptional point by
decreasing fourth coordinates slightly in a neighborhood of a . An ex-
ceptional point of type (3) may be reclassified as type (L) by rotating
u, about a so that u, \a c EE . We then may assume that the excep-

tional points, 815 8p5 eeey 8 of € are all of type (L).
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For each exceptional point ay of € let b, be a vertex in D

i
and u a directed polygonal arc in A;' from ay to bi . We then take
as our representative of L the curve m obtained from L2 by inserting
-1
at each a; the arc uu” .

L

For each x ¢ E° let y, = (xl,xa,xB,O) and t_be the unique point

in Ei and real number 0 = tx < 2n respectively, such that x =
(xl,x2 ,x3cos tx’ xBSin tx)' We will say that x 1is obtained by rotating

Ve about P through an angle tx and write x = R"-x(yx)' The con-

tinuous mapping x —> Yy “of Eh onto Ei will be dendted by R'l .

We now return to the curve m and define a homotopic deformation
n
carrying m into Ei. For x & m\ ( 191“11 ) and 0SSt S 2n let
R,;i'(x) = R(tx-t)(yx) if 0= t < ty, and R,','.%(x) =y, if t, St <on.

For x ¢ B wl et 'l(x) =R (x). Observe that for each m
1 Fmg (2n-t)(%)- ’

nsl
R”-‘%n is the restriction of RL to m , and hence m ~ R-l(m) in B, .
Iet h be the homomorphism of nl(Bl) onto nl(A!.I.) defined by
associating the element L of nl(Bl) with the homotopy class of
nl(Al) determined by R-l(m) . We need to establish that h is well

defined (if €~ £' in B, , then Ri(m) ~ RX(m') in A{) , and

1 3
that h is a homomorphism (R-l(mm') ~ R'l(m)R'l(m' )) . The second

condition, in fact the equality between R'l(mm') and R'l(m)R'l(m') ,

follows immediately from the definition of Rl . To establish the

1

first condition, suppose that m' ~ m or equivalently m'm ~ ~ O in

B,

circle C into B

and let f be a continuous mapping of the boundary of the unit

, such that f(Bd C) = m'm™l . Then there exists a_

continuous extension g of f carrying C into Bl o The mapping

1 '

R"g then carries C into A, with Bd C being carried onto
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R 1 ‘(m'm l) . Hence R l(m'm 1) ~ 0 in Al , or equivalently

t
1 L]
We now observe that if i denotes the injection homomorphism

B l(m )R (m™L) ~0 in A

of nl(Al') into nl(Bl) , then each of hi and ih is the identity
homomorphism and hence each of i and h is an onto isomorphism. To
see that hi is the identity mapping, let K ¢ ny(A)') and let k be
a polygonal representative of K . Then i(K) is the element of
H(Bl) determined by k , and hi(K) is the element of nl(A') deter-
mined by R'l(k) =k . Now consider an element L ¢ nl(B) , and let us
determine ih(L) . Let -g represent L and replace £ by a simple
closed curve m by the above rule. Then h(L) is the element of
ni(Al) determined by R-l(m) , and ih(L) is the element of nl(Bl)
determined by R'l(m) . This is the element L , since R'l(m) ~m

in Bl.

The fact that nl(Az') % n,(B,) follows by a similar argument.
The proof of Theorem L.l may be used to prove the following

argument.

Theorem U4.5. Let M be a closed subset of Ez and A a com-

ponent of Ei M. If P is arcwise accessible from each point of 4 ,

then 1|1(A) b nl[R(A)] .
Let S be a 2-sphere in E. which is locally polyhedral except

at a finite number of points, and which is embedded in Ez such that
SNP=D isa 2-cell. Let M =CL(S\D) and let A; and A, , res-
pectively, denote the bounded and unbounded components of Ez \S .

Then R(M) is a 3-sphere in ELl and, if Bi is the component of
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Eh\R(M) corresponding to A, , then, by Theorem L.L, nl(Bi) ] "I(Ai)'

One may again select well known 2-spheres in I:‘.3 to construct
examples of 3-spheres in Eh such that either one or both complementary
domains will have non-trivial fundamental groups.

In passing, we observe one difference between the spheres Susp S
and R(M) . Associated with each exceptional point p ¢ M there will
be an arc, Susp p , of exceptional points on Susp S and a simple closed
curve, R(p) , of exceptional points on R(M) .

We now use the rotation of a disk about P to construct a 3-
sphere in Sh s one complementary domain of which is simply connected
but is not an open L-cell. Let us first embed the 2-sphere S , dis-
cussed as Example 3.3 in [5], in Ei as indicated in Figure L. .The
sphere S is to intersect P ina 2-cell D and S\ D is denoted by
M . The proof in [5] that the exterior of S in E> is simply connected
may be used directly to show that A2 (the exterior of S in Ei) is
simply connected. Hence, by Theorem L.k, B, (the exterior of R(M) in
Eh(Sh)) is simply connected.

The cross section [M U R ,{(M)] of R(M) in E3(83) is shown in
Figure 5. .

Let A2' denote the exterior of M U Rn(M) in E3 « It is shown
in [5) (Example 1.3) that C, cannot be contracted to a point in
A2' \[Wu Rﬁ(w)] . This fact is now used to show that R(W) is con-
tained in no closed L-cell subset of 32 whose complement in 32 is

simply connected. Hence, 32 is not an open L-cell.



W

Figure L
A Wild 2-Sphere in S°.
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Figure 5

A Crosé Section of a Wild 3-Sphere in Sh.
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Suppose that such a L-cell J did exist. Choose the base point
for computing 1:1(132\.1) in P and so close to d that there is a
path ¢ in (B, N\J) NP which represents C EL nl{A; \:[W U.Rn(W)i}.
Iet E be a unit disk in E° with boundary e , and let h be a con-
tinuous mapping of e onto ¢ . Since 1!1(]32 \\J) 1is trivial, there
exists an extension H of h which carries E into 32 \J . We then

1 and obtain a singular 2-cell, R']'H(E) , in

follow H by R~
8, \E}(J) which 1s bounded by e . Since A, \E"}(J) c 4, \\W , we
see that c can be contracted to a point in A2 \W and hence in the
larger set Aa' \ W U Rn(W)] . This contradiction establishes the de-

sired conclusion.

4.3, Three-Spheres Cbtained by Capping a Cylinder

In E® we again take coordinates X5 Xpy eeey X and let En'l
be described by x = o.

Lerma L.L. let S be an (n-2)-sphere in E®1 with the bounded
and unbounded components of E" - \S demoted by A, and A, Tespec-
tively. If Cl A, (compactified at infinity) is a closed (n - 1)-cell,
then {sx [0, 1]} u{a, x (1]} is s closed (n - 1)-gell.

Proof, Iet h be a homeomorphisam of Cl A, onto a standard unit

2
ball B in E1 . Iet S, =BdB and let S, be the sphere concentric

with S, and with radius one-half. Then h1(S,) is a sphere in 4, ,

1

1

and h™~ restricted to S, can be extended in both directions along a

2
cylinder (h"l is such an extension) . If C is the closure at the

component of gl \h"l(sz) vhich contains 4, , then, by Theorem 3.2,
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C is a closed (n - 1)-cell. We now observe that C consists of a
closed anmilus (h~>(B \\Int S,)) with Cl A, sewn along one boundary
component (along h'l(Sl) = S) , and is therefore homecmorphic with
{Sx [0, 13} v {a A x (1)} .
Theorem L.6. Iet S be an (n - 2)-sphere in P21 with the
bounded and unbounded components of E® -1 \\S denoted by Al and A

2
(compactified at infinity) is a closed (n - 1)-

respectively. If Cl A2

cell, then {Sx [-1, 1]} U {oa =1} v{naxnl} tsa
(n - 1)-sphere in E" .

Proof. By Lemma L.L, each of {S X [-l,Oﬁ U {Cl A x [-1]}
and {Sx [0, 1]} U {G1 A x (1]} isa closed (n - 1)-cell. These

two cells intersect along their common boundary sphere S , and hence
their union is an (n - 1)-sphere.

We now consider a 2-sphere S , locally polyhedral except at a
single point, in E3 (S3 ) such that the bounded complementary domain
A1 is an open 3-cell, Cl A1 is not a closed 3-cell, the unbounded
complementary domain A2 (compactified at infinity) is an open 3-cell,

and Cl A2 is a closed 3-cell. The assertion is that the 3-sphere

T = {S b'e [-l,lj_l} U4, x [lﬁ U {A'.I. x [-lﬁ

is embedded in Sh such that, if B1 and 32 respectively are the

components of Sh \T which contain Al and A2 s then Bl is an open

Lh-cell, Cl B, is not a closed L-cell, and Cl B, 1is a closed L-cell.

1

Since B and the open

is the product of the open 3-cell Al

is an open L-cell. =~

1

interval (-1, 1), it follows immediately that By



_ 50
If C Bl = Cl Al.x {‘;1;,1] were a closed L-cell, a theorem.due to Bing [7]
would imply that Cl A1 is a closed 3-cell. Thus we have a contradic-
tion of our assumption on the embedding of S in E3 .

We now show that Cl1 B, is a closed L-cell by constructing a

2
homeomorphism f : T x (O, % ] —>C1 32 such that the mapping fo de-
fined by fo(y) = f(y, 0) is the identity mapping on T , and then ap-
Plying Theorem 3.2. Since Cl A2 is a closed 3-cell, there exists a
homeomorphism h ¢ S x [0, % ] => C1 A, such that ho(x) = h(x, 0)
=x forall xeS. For yeT , let x be the point of 01A1 which
lies under y (y = (x, t) for some t & [-1, 1]) . We define f by

the following equationss

(1) fr(y) = (x, 1+ 1) , y=(x,1), x e Al ’
(2) fr(y) = (x,-1-r) , y=(x,-1), xe Al )
(3) £.(y) = (b (x), t) , xeS, -l+r<t<l-r,

2t-(1-r)), xesS, 1-rsts1,

-

() £.(3) = (Beq_gy(x)

(5) £ (y) = (h(l-t)(x) s26 -(r-1)), xe8,-1<tS-1+r.

To show that f is a one-to-one mapping of T x [O, % ] into
Cl B, we must show that if y, = (xl, tl) s ¥p o (xz, tz) , and
f:l‘l(yl) = frz(yz) s then X =%, tl =t, , and r =T, . Since f
cannot decrease second coordinates of points of {S x [0, 1]‘} v {Al x [1]}
and cannot increase second coordinates of {S x [-1, OD v {A x [-1} s
we may assume that both tl and t2 are non-negative, or that both are

negative. We will only consider the first cases the latter would follow
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by a similar arg'mnent. If g, (yl) = f, (y2) is a point of A, x [L+r ]
for some r & [0, 1, thenby(l) s T
1%

For x,,x, in S and frl(yl) = frz(yz) » We must have x, =x, ,

=T, =Ty t =t2=1,and

1l 1

since f, (yl) and (y2) lie over points of the arcs ht(xl) s
0sts 5 sand h (x2) s 0StS 5 , respectively. Since h is a
homeomorphism, these arcs intersect if and only if X =% .

We now consider two special cases tl = t2 and Ty =T, . If
tl = t, , We may assume r = r, - There are then three possibilities:
(a) 0SSt <1-r, 0St, =%, <1-r1,, (v) 0t <l-r,
l-r2_t2 151, (e¢) 1-r, = 1_1, l-rz_t2=tlfl.
For (a) we have hr:[(xl) = by, (x.l) and r) =T, , since h is one-to-
one on S x [0,%] . For (b) we have rp=l-ty, t =2t - (1-r2)
and for (c) we have 2t, - (1 - rl) =2t - 1- r,), each of which leads to

Ty . If ry = 2,then tl=t2,

We now return to the general case ¥, = (xl, tl) s ¥y = (xl, t2) ’

rl since each fr is one-to-one.

xeS and hrl(yl) =xh1.2 (y2) - We may assume t, s t, . Equations (3)

and (L4) them imply the following possibilities: (a) ty<l-r,

- 21 - - >1 -
ty<l-r,, (b) t,<1- 1 r2,(c).tl_1 r, o,

1 SR
t, 2z l1.-r, . In (a), t =t, (the second coordinates of fr) (y,) and

frz(yz) must be equal), and hence ry=T,. In (b), rp=1-t%,,and

ty = 2, - (1 - r,) imply that t, = 2(1-r1) - (1-ry) = (1-r;) + (ry-ry) .

1
Since tl<1-r1,wemusthave r2-r1<0,or 1-r1<1-r2.

This leads to t2 =1 - r) < 1l- ) which contradicts our assumption

that ¢, 21 - r, . Hence (b) cannot occur. In (¢) we have
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1-t1=1-t2,or t1=t2,

since the first coordinates of frl(yl) and frz(yl) must be equal.
Since tl = t2 s we must also have Ty =T, .

The continuity of f follows rather quickly from the definition
of f in terms of the continuous mapping h and a set of linear

equations.
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