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CHAPTER I 

INTRODUCTIOO 

An (n - 1)-sphere is a topological image of sn-l 
a i5�,x

2
, • • •  , 

xn) e Ff I � 2 + x
2 
2 + • • • + xn 2 = i} , an open n-cell is a topological 

image of {<� ,x
2
·, ••• , xn) e Ef I x1 2 + :x

2 
2� � • ··:+ x.;.2 � Y. J and a· closed 

n-cell is a topological image of {<x1, x2
, ••• , xn) e En I �2 + x

2
2 + 

+x 2<1} . • • • n -
In this thesis we consider certain (n - 1) -spheres embedded in 

Sn (we will frequently use the fact that Sn is topological.ly equivalent 

to the one point compactification of En) .  The problem is then to estab­

lish the existence or non-existence of certain topological properties of 

the two domains into which sn is separated by  the given (n - 1)-spheres. 

For the cases n = 1, 2 it is known that each (n - 1)-sphere in 

Sn separates Sn into two domains, either of which is an open n-cell 

and has a closure which is a closed n-cell. That this is not the case 
* for n a 3 is shown by numerous counter examples (see [2] and [S] ). 

A 2-sphere K in s3 that-is loc� polyhedral except at one, 

two or three points is considered in Chapter II and the following results 

are established. ·If K, is locally polyhedral except at one point�·, then 

the closure of one component of s3 - K is a closed 3-cell and the other 

component is an open 3-cell. If K is locally polyhedral except at two 

points, then either the closure of one complementar.r domain is a closed 

* Numbers in square brackets refer to numbers in the bibliopapb7 at 
the end of this paper. 
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3-cell or both camplementar,y domains are open 3-cells . If K is 

locally polyhedral except at three points, then one of the complementary 

domains is an open 3-cell. This domain may or may not have a closure 

which is a closed 3-cell. 

Let A = t<Xi,x2' • • • , xn) e �I xl2 + x2
2 

+ • • •  + xn2 � �, 

B = {<x1, x2, • • • , xn) e Ef I x1 
2 

+ x2 
2 

+ • • • + xn 
2 � �} , 

C = {<�, x2, • • •  , xn) & Ef I x12 + x2
2 

+ • • • + xn2 � 4} , and 

fl n 2 2 2 1. D = 1!�, x2, • • • , xn) e E I x1 + x2 + • • • + (xn + 1) � 4J • The 

Generalized Schoenflies Theorem states that if h is a homeomorphism of 

Cl. ( C "B) . into ff1 , then the closure of either complementary domain 

of h(Bd A) is a closed n-cell. A proof of a special case of this 

theorem by  Mazur [13] and a proof of the full theorem by Brown [8) point 

out that properties of the embedding homeomorphism of Sn-l = Bd A in 

Sn can be used to investigate the properties of the complementar,y do-

mains . One is naturally led to the following question, if h is a 

homeomorphism of Cl (A "B) into ffl , is the closure of the component 

of Sn "h(Bd A) which contains h(Bd B) a closed n-cell? This ques­

tion is answered affirmatively by Theorem 3.2. In fact the theorem 

follows from the Schoenflies Theorem and the two are therefore equiva-

lent. 

Two other embeddings of Bd A in Sn , n > 3 , are considered in 

Chapter IIIa (1) a homeomorphism h of Cl (D "B) into Sn , and 

(2) a homeomorphism h of Cl (D "A) into Sn • In the first case it 

is Shown that if h is semi-linear on each finite polyhedron of 

(Int A) "B , then the closure of either complementary domain of h(Bd A) 
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is a closed n-cell. In the second case it is shown that if h is semi-

linear on each finite polyhedron in a deleted neighborhood of (o,o, •• • ,l) 

(see Definition 3.7) , then the closure of the complementar,r domain of 

h(Bd A) which intersects h(Bd D) is a closed n-cell. The proofs of 

these theorems depend quite heavilY on the fact that an arc in En , 

n > 3 , which is local..l;y polyhedral except at a single point is tame (see 

Lemma 3. 3) . 

In Chapter IV three methods of constructing )-spheres in s4 from 

2-spheres in s3 are considered: (1) suspension of a 2-sphere in s3 , 

(2) rotation of a 2-cell in s3 about the plane of its boundar,r, and 

(3) capping a cylinder over a 2-sphere in s3 • The construction methods 

in cases (1) and (2) were introduced by Artin [4] and have been used by 

him and by Andrews and Curtis [ 3] to construct 2-spheres in s4 from 1-

spheres and 1-cells in s3 
• Their techniques are used to establish 

isomorphism theorems relating the fundamental groups of the complements 

of the constructed 3-spheres and the fundamental groups of the correspon­

ding complements of the given 2-spheres. In Case (1) it is shown that 

the second homotopy groups of the complements of the constructed 3-

spheres are trivial. Method (2) is also used to construct a 3-S}?here 

in s4 , one complementar,r domain of which is simplY connected bu� is not 

an open 4-cell. The third construction is considered because it seems 

to give the simplest scheme (in fact the only scheme of which I am aware) 

tor showing the existence of a 3-sphere in s4 su�h that one complemen­

tary" domain has a closure which is a closed 4-cell, and the other com­

plementar.y domain is an open 4-cell but its closure is not a closed 

4-cell. 



CHAPTER II 

ALMOST LOCALLY POLYHEDRAL 2-SPHERES IN g3 

Let K be a set in a geometric complex C • 

Definition 2.1.  K is local.l.l polyhedral�! point p 2£. K 

if there is an open set U containing p such that Cl U n K is a 

polyhedron in C • K is said to be locally polyhedral if it "is local.ly' 

.p01.ybeClr8.1. at each point of its points. 

Definition 2 . 2 . K is tamel.y embedded in C if there is a 

homeomorphism of C onto itself that carries K onto a polyhedron. 

Definition 2. 3. K is locallY tamel.y embedded in C if for 

each point p of K there is a neighborhood N of p and a homeo-

morphism h p of Cl N onto a polyhedron in C , such that 

hp ( Cl N n K) is a polyhedron. 

We will frequently have occasion to use the fact that a locally 

tamely embedded 2-manifold in a 3-manifold is tamely embedded [6, 15]. 

Lemma 2 .1. Let T be a torus in E3 that is the union of two - -- --- --
locally � annuli, A1 and A2 , which � along their common 

boundalz curves � _!!!!! a2 • � T !!, tamel.y embedded � E3. 

Proof. Let a3 be a simple closed curve on A2 which is homo­

logous to botq a1 and a2 on A2 • Let A21 be the annulus on A2 ' 
which is determined by a1 and a3 , and let A22 be the annulus on 

A2 which is determined by a2 and a3 • Let f1 be a space homeomor­

phism taking � onto a polyhedral annulus. By Theorem 2 of [14], there 

exists a space homeomorphism f2 which is the identity on f1 (�) and 



carries f1(A2) onto a set which is loc� polyhedral, except on 

r1(a1) u r1{a2) • 

5 

Let sa� min �(r2f1{�), r2f1(A22)], p(r2r1{a2), r2r1(A21)�, and 

let ul be an &-neighborhood of f2fl(�) and u2 be an &-neighborhood 

or r2rl{a2). By Lemma 5.2 or [15], there is a space homeomorphism f
3 

which is th� identit;r on f2r1(A1) u (E3"-u1) and carries f2f1('J_ u A21) 

onto a polyhedron·. We again apply Lemma 5.2 of [15] to obtain a space 

homeomorphism r4 which is the identity on f
3
r2r1{'J_) u (E3,u2) and 

carries r
3
r2r1 ('J_ u A22) onto a pol;rhedron. The mapping f = r4rf2r1 is 

then a space homeomorphism which carries T onto a polyhedron. 

Definition 2.4. A k-manifold M in Ff is said to be locallr 

periphera!ly unknotted at x if for each positive e there is a closed 

n-cell of diameter less that e whose interior contains x , such that 

the boundary of the n-cell and M meet in a locally peripherally un­

knotted cell or sphere, according as x lies on the boundary' or M or not. 

A 0-cell or 0-sphere is considered to be locall;r peripherall;r unknotted. 

If M is locall;r peripherall;r unknotted at each of its points, then we say 

M is local;y peripherat;r unknotted and use the corresponding abbrevia­

tion LPU • 

An investigation of the proof of Theorem 1 of [12] shows that the 

conclusions; of the theorem ma;r be obtained under slightl;r weaker hypotheses. 

Since in the proof of the theorem the LPU property is used onl;r at the 

points or· U ,  the theorem ma;rbe restated as follows. 

Theorem 2.1. .!:!:!: M �.! topological 2-manif'old without bound& 

in E3 �!! LPU �!!!open,!!! U � M. � e > O  22 A.! 
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component � E3 "M • .!!!!!! there !! ! space homeomorphism h � � 
(1) h(U) c A , 
(2) p(x, h{x) ; < � , 

(3) X & M "U implies h(x) =X • 

Definition 2. $. Let Y be a semi-linear mapping of a right prism 

P onto the solid torus B such that, if corresponding points of the two 

bases of P are identified, the mapping then induced by I is a homeo­

morphism. Let e be the boundary of the lower base of P • Those simple 

closed curves on Bd B which are homologous to Y(e) are called meridians 

of B • A polYhedral disk D , such that Int D c Int B and such that 

Bd D is a meridian of B , is called a meridinal .� of B • 

Definition 2. 6. Suppose that K is a polyhedral 3-cell in E3 
• 

By a chord of K is meant an oriented polygonal arc u whose end points 

lie on Bd K , but which is otherwise contained in the interior of K • 

Let the end points of u be joined by an arc w on Bd K • The chord 

u is said to be an unknotted chord of K if and only if u U w is an un­

knotted simple closed curve (bounds a disk in E3) • It is shown in 

[17, p .  1$$] that the knot type of u U w is independent of the choice of 

w c Bd K • 

Definition 2. 7. Let k1 and k2 be two knots in E3 
• Let S 

be a polyhedral 2-sphere in E3 , and denote by o1 and o2 the closures 

of the two components of E3 "S Choose a polygonal arc w on S with 

endpoints x and y • Then choose chords � (from x to y) and u2 

(from y to x) of o1 and 02 respectively, each with endpoints x 

and y , such that � U w (oriented as �) is a representative of the 
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knot � , and u2 U w (oriented as u2) is a representative of k2 • 

The knot represented by  the oriented polygon � U u2 is defined to be 

the product of the lmots k1 and k2 • It is shown in [17, p. 156] that 

the identity (the knot represented by a plane circle) cannot be expressed 

as a knot product containing non-identity factors .  

Let A' � {<x, y, z) • E) I x
2 

+ � - �) 
2 

+ z
2 < �}, 

C1 = {Cx, y, z)  e E3 I x
2 

+ y
2 

+ z
2 < i} , and for i = 1, 2 , • • • let ni 

·be the plane y = 1 ! i . Let the following s.ymbols denote the indicated 

subsets of E3 
• 

I f 
Di : ni n Cl A 

I 
'd. : Bd Di. 

1 
1 I 

G0 : Component of Bd A "'di 1-rhich contains (O, O, O) 
I I I : open annulus on Bd A determined by di and di+l 

: component of E3 ""' ( G 1 0 
I U Di ) which does not con-

. . 

• • 

tain (0, 1, 0) . 

component of E3"' (Gi
1 U n1

1 U D�+l) which does not 

contain (0, l, 0) 

I I 
component of Bd C "'e1 which contains (0, -l, O) 

I ·t I 
open annulus on Bd C deterinined by e1 and ei+l 

I I 
: the frustum of a cone determined by ei and di+l 

I 1 I 
: H0 U J1 U Cl G0 U o1 

I I I I 1 
Ti : Ji U Hi U Ji+l U Gi+l 

I I 
Ri : union of T1 and its bounded complementary domain. 
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Let K be a 2-sphere in E3 that is local.l.y polyhedral except 

at a single point p • According to Lemma 3 of [11], �there:_is a· COJ.!lponent 

EP of E3 '\.K , and a sequence n1, n2, • • •  ot disjoint polyhedral disks 

in 01 EP , such that (l) for each i , Di n K is the boundar,r di of 

Di , (2) the diameter of p U Di is less than 1/i , and (3) for each 

i , di+l separates p from di • Let the following symbols denote the 

indicated subsets of 01 E • p 

G0 s component of K "d:L which does not contain p 

Gi : open annulus on K determined by di and di+l 

A0 : component of E3 "(G0 U n1) which does not contain p 

Ai : component of E3 '\. (Gi U n1 U Di+l) which does 
.
not con-

tain p • 

In the proof of Theorem 1 of [ 11] a homeomorphism a , taking 
' 

01 A onto Cl E (compaotitied at infinit,y if E is the unbounded p p 

component of E3 '\.K) , was constructed which carries the "primed" sub-
I 

sets of Cl A onto the corresponding "unprimed" subsets of Cl E • p 

Lemma 2. 2 . There exists a 2-sphere L in E3 such that 1 E is 
- - - -- p 

contained !!! � complementarz domain E of E3 '\. L !!!!! L n K ... p • 

' 
Furthermore, there !! ! homeomorphism Y of Cl C � Cl E (compacti-

' � � infinity g necess&) � � Y agrees � ·a � Cl A • 

Proof • Let A denote the bounded component of E3 '\. K and B 

the unbounded ·component. We will first assume Ep "" A • 

Let e0, e1, . . .  be a sequence of positive numbers which converges 

to zero. By Theorem 2 . 1, there is a space homeomorphism h0 such that 

(1) h0(Cl G0 U G1) c B , {2) p(x, h0{x) )< e0 , and .. 



� 
(3) x s K '\_ (01 G U G1) implies h (x) "" x • Since Cl G U Cl Gl is 0 0 0 

locally polyhedral and h0 is a space homeomorphism, it follows that 

h0(Cl G0 U Cl G1) is a loc� tame disk. It follows, from Theorem 9. 3 

of [15]1 that T0 "" Cl G0 U Cl G1 U h0(01 G0 U Cl G1) is a tame 2-

sphere. Hence the closure of the bounded camplementar,r domain of T0 is 

a closed 3-cell [1]. 
I 

Let h0 be a homeomorphism of the disk H0 U J1 onto 
I I I I 

Cl (G0 U G1 ) which is the identit;y on d2 and carries e1 onto 
I � • Now define a homeomorphism a 0 of T 0 onto T 0 b;y the equations 

I 
a0(x) "" h0ah0 (x) , 

�0(x) = a(x) 1 
I 

' 
x e H0 U J1 

I I 
x e Cl (G0 U Gi ) • 

Since the spheres T0 and T0 are boundaries of closed 3-cells, 

a0 can be extended to their respective interiors. This extension will 

also be denoted by a0 • 

For each positive integer i we will associate a mapping ai with 

ai-l' ai_2, • • • , a0 by the following construction. 

For j a 011, • • •  , i � 1 denote the following subsets of E3 as 

indicated. 
' 

Ej+l : aj(Ej+l) 

ej+l J aj(eJ+l) 

J j+l I 
aj(Jj+l) 

Hj 1 aj(Hj) 

K.l {Jo CJ. � u J.l+l u (rg+2 CJ. o� up 

B j 1 unbounded component of E3 '\. K j 
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We again applY Theorem 2.1 to obtain a space homeomorphism h1 

such that (1) h1(Int Ji U di+l U Gi+l) c B1_1 , (2) p(x,hi(x)) < &i , 

and (3) X & Ki-l"' (Int Ji U di+l U Gi+l) implies hi (x) a X • Since 

Ji U Cl Gi+l is locallY tame and hi is a space homeomorphism, it follows 

that hi (Ji U Cl Gi+l) is locallY tame. These two locally tame annuli 

meet along their common boundary curves ei and di+2 , and hence their 

union is, by Lemma 2.1, a tame torus. Let us denote this torus by Ti • 

The bounded complementary domain of Ti is the common part of the in­

teriors of the tame spheres 

and 

Furthermore, by the construction of the sphere S 12 , it is evident that 

the image under a of the segment of the y-axis between di and di +2 
is an unlmotted chord of each of the cells bounded by· SU and si2 • 

Hence, by Hilfsatz 1, p. 167 of [17], it follows that the union of Ti 
and its bounded complementary domain is an unlmotted solid torus. Denote 

this solid torus by Ri . 
I I I 

Let hi be a homeomorphism of Cl Hi U J i + 1 onto 
I I 

J UCl G I I I 
i i+l which leaves e1 and d1+2fixed and carries ei+l onto 
I I 

di+l • Now define a homeomorphism a1 of T1 onto Ti by the equa-

tions 
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I I 

ai(x) = hiai-lhi (x) , x e Hi 
I I 

ai(x) = hiahi (x) , xe Ji+l 

ai (x) = ai-l (x) 
I 

, x e Ji 

ai 
(x) = a(x) 

I 
' x e Gi+l • 

I 
This gives a homeomorphism between the boundaries of the solid tori Ri 

and Ri • To be able to extend this homeomorphism to their interiors it 
I 

will suffice to exhibit a pair of meridian curves on Bd Ri Which are 

carried by  ai onto meridian curves of Bd Ri [17]. 
I 

Let ku be the intersection of the half plane x = 0 , z > 0 
and Ti 

1 
, and .t' 11 the intersection of the half plane x = 0 , z < 0 

I I 
and Ti • The assertion is that k11 and �

il are simple closed curves 
I 

of the desired type. We will show that ai (kil) is a meridian curve of 

Bd Ri • That a1 ( -l�1) is also a meridian curve of Bd Ri wouJ.d follow 

by a similar argmnent. 
I 

Let n be the half plane x = o, z > 0 and let u11 be the 
I I 

oriented arc from y1 = n n di+2 to x1 ... n n ei which lies in 
I I I 

n n (Hi U Ji+l) • Let wi be the arc from y1 to x1 which lies in 
I I I 

n n(Ji U Gi+l) • Let ui2 be an oriented arc from x1 to yl which 
I 

leads from x1 to the y-axis in Ei , then follows the y-axis to 
t I I I I I 

di+2 , and then leads to y1 in di+2 • Let k11 = u11 U wi , ki2 
I I 

a ui2 u wi 
' 

and ui2 • 

I I I I 
, and ki3 = u11 U ui2 , each w:l. th the orientation of u11 

Fins]] y let u11 , ui2 , wi , k11 , ki2 , and ki3 be the 
I 

images under ai of the corresponding "primed" sets.  Since ki3 bounds 
I I I I 

a disk in the cell bounded by Ei U Hi U Ji+l U Di+2 , it follows that 
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ki.3 bounds a disk in the cell bounded by si2 o Hence kiJ represents 

the identity knot and we have it given as the product of the knots repre­

sented by k11 and ki2 • Thus kil represents the identity knot. A 

disk F1 bounded by kil can then be found which, with the exception of 

the arc Uil on its boundary, lies in the interior of si2 • If Fi 
intersects Ji U Gi+l only in wi then Fi is a meridinal disk at Ri • 

Suppose, on the other hand, that there are components �' a2, • • •  , ani 

of F i n (Ji U Gi+l) other than wi • Then let aj be a component which 

contains no other such component in its interior (relative to Ji U Gi+l) • 

Let X be the disk of Ji U Gi+l bounded by aj , and let Y be the sub-
' 

disk of F i bounded by  a j • Then define F i = (F i ""Y) U X , and de-
' 

form F i semilinearly away from Ji U Gi+l in a sufficiently small 

neighborhood of X that no new intersections with Sil or si2 are in-
n 

troduced. The disk F k thus produced is bounded by  ki, and has one less 

intersection with Ji U Gi+l than F i • In this way each of the aj may 

be eliminated to obtain a disk F1
* 

which, except for its boundary kil , 

is in the interior of Ri • 

The extension of ai will also be denoted by  ui • 
co 

The desired  sphere L is taken to be i�O Cl H1 Up and I is 

defined by the equations 

Y(x) = u(x) , 

Y(x) = a0(x) , 

Y(x) = ai (x) , 

t 
x e Cl A 

I 
x e Ri , i = 1,  2, • • • • 
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Lemma 2. 3. 
I 

There !! ! continuous mapping g o:f Cl C 
I 

onto C1 C 

such that --

(1) 

(2) 

I 
g is fixed on Bd C , 

I I 
g .!!_ ! homeomorphi,!!!! 2.f Cl C '\. Cl A 

I 
Cl C '\. (0, 1, 0) , !:!!!! 

I 
(3) g(Cl A ) = (0, 1, 0) • 

onto 

I I 
Proof. For x e Cl C '\. Cl A let X be the vector from (0, 1, 0) 

to x and L the line determined by (0, 1, 0) and x • Let � be the 
1 

point of intersection o :f L and Bd A and x2 the point o:f intersection 
' 

of L and Bd C • Let dx = p ( ( 0, 1, 0), x) , ex = p ( ( 0, 1, 0) , �) , 
' 

and fx = p ( (0, 1, 0) , x2) • For x e C'l(A ) let g(x) = ( o, 1, 0) and 
' ' 

for x e C1 C '\. C1 A let g(x) be the tenninal point o:f the vector 

(dx - ex)(fx + dx) X It is evident that g has the desired properties.  2dx(fx - ex) • 

Theorem 2. 2. Let K be a 2-sphere ,!!! E3 � !! locally �-
hedral except !1.! single point p • 

be A and B respective1y. �' 
Let the interior and exterior of K 

(1) either Cl A or Cl B (compactified � infinity) !! .! 
closed 3-cell, and --

( 2) � other compl.ementacy domain ( compacti :fied � infinity 

g necessag) !! !!! open 3-�· 

Proof. ' Statement (1) is Theorem 1 of [ll]. 

Suppose A is the domain such that 01 A is a closed 3-cell. Let 

Y , L , and E be as in the conclusion of Lemma 2. 2. Let g be the 
I I 

mapping o:f 01 0 onto 01 C defined in Lemma 2. 3. De:fine a continuous 

mapping f of E3 onto E3 by the equations 
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f(x) = x , 

From the definitions of the mappings I and g it is clear that f is 

a mapping of E3 onto E3 which takes B homeomorphical.:cy' onto E3 '\,. p • 

Thus B ( compactified at infinity) is an open 3-cell. 

A similar argument will apply in case 01 B is a closed 3-cell, 

to show that A is then an open 3-cell. 

Theorem 2. 3. !f K !! ! 2-sphere ,!!! � � !! locally �­

hedral except � two points p � q , � either 

(1) 01 A � 01 B (compactified � infinity) is a closed 3-cell, -

or 

(2) � A � B (compactified �infinity)� open 3-cells. 

Proof. According to Lenuna 2 of [11] we may associate with the point 

p a certain domain E of E3 '\,. K and a sequence {n .1- co of disjoint p �� 
polyhedral disks in 01 E such that (1) for each i , D .. n K is the p . � 
boundary dpi of D pi , 

and (3) for each i in 

(2) the diameter of p U Dpi is less than f , 

d ( i +l) separates p from �i in K • P. . co 
Similarly, let E be a domain of E3 '\,_ K and f D .·} q l qJ. i=l 

a se-

quence of disjoint polyhedral disks in Cl E such that (1) for each i , 
q 

D
qi n K is the boundary dqi of D

qi , (2) 

less than !1. , and (3) for each i , d q(i+l) 
K • 

the diameter of q UDqi is 

separates q from dqi in 

First suppose Ep = Eq = A • B.1 taking subsequences,  if necessary, 

we may assume that for each pair of integers i and j (1) D 1 n D _. = 0, . p q_, 
( 2) the disk 4 · is in the closure of the bounded component of qi 
E3 '\,_ (K U D . ) which has q as a limit point. pl. 
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Let G0 be the annulus on K determined by Dpl and Dql and 

for i > 0 , let Gpi be the annulus on K determined by Dpi and 

Dp(i+l) and Gqi the annulus determined by Dqi and Dq{i+l) • Denote 

the sphere G U D 1 U D 1 by K , and for i > 0 denote the sphere 0 p q 0 
Gpi U Dpi U Dp(i+l) by Kpi , and the sphere Gqi U D

qi U Dq{i+l) by 

K . • Let A be the bounded component of E3 '\. K , and for i > 0 let � 0 0 
Api be the bounded component of E3 "\_Kpi and A

qi the bounded com-

ponent of E3 '\.Kqi• By [1] we know that Cl A , Cl A . , and Cl A i , 
0 pl. q 

i = 1, 2, ... ' are closed 3-cells . 

Let K
1 

= {<x,y,z)(x2+ y2+ z2 "" 1} and A
1 

the bounded component 

of E3 "\_ K1 
• For each i > 0 let npi be the plane perpendicular to the 

y-axis at (o,1!1,o) and nqi the plane perpendicular to the y-axis at 
i ' ' ' ' 

(0, - i+l' O) .  Define Dpi = npi n Cl A , Dqi = nqi n Cl A , i = 1, 2, • •• , 
I I I I I I I t 

and let the sets G0, G i' K ,  K ., K 1, A ,  A . and A . corresuond to p 0 pl. q 0 pl. qJ. . 

the "unprimed" sets above. 
I 

A homeomorphism of Cl A onto Cl A is obtained by  first using the 
I I I 

lemma on page 40 of [10] to map the boundaries of A0, Api' and Aqi' i = 

1, 2, • • • , onto the boundaries of the corresponding A0, Api and A
qi 

' ' 

such that the disks Dpi and Dqi' i = 1, 2, • • •  , are mapped onto the cor-

responding Dpi and D qi • Then [1] is used to extend this homeomorphism 

to their respective interiors . This gives a homeomorphism h of 

[00 ' ] ' 

U i�l Cl Aqi = Cl A "[0,-1, 0) U (0,1, 0) ]  

onto Cl A "\_{p U q) . By defining h(0,-1, 0) = q and h(O, l, O) = p we 
I 

have a homeomorphism of the closed 3-cell Cl A onto Cl A • 



A similar argument may be used when E = E = B • p q 
The alternative case E f E will now be considered. Suppose p q 
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E "' A • We will shaw that A is an open 3-cell. A silnilar argument p 
would show that B (compaotified at infinity) is also an open 3-cell. 

co 

Let the sequence of polyhedral disks {n . 1,. be defined as 
p�J i=l 

above. We may assume that for each i , dpi separates p and q in 

K • For each i > 0 , let H. be the component of K "d i which does � p 

not contain p • Denote Hi U Dpi by Ki and the bounded component of 

E3 "Ki by Ai • Since each Ki is locally polyhedral except at the 

point q , we have, by Theorem 2.2, that each A. is an open 3-cell. � 
Since A is the union of the increasing sequence of open 3-cells Ai , 

i = 1, 2, • • •  , it follows from [9] that A is an open 3-cell. 

Let K be a 2-sphere in E3 that is locally polyhedral except 

at the three points p, q and r • Associate with the points p, q, 

and r , respectively', certain domains E , E , and Er of E3 "K 

and the sequences of po:cyhedral disks {n:ir :.: ' {nqir:.l and �rJ' :.1 

in accordance with Lenuna 2 of [11]. 

Theorem 2. 4. 

(1) !! Ep = Eq = Er , � 01 (Ep) (compactified!:!?, infinity 

if E = B) is a closed 3-cell. p -- -

(2) If E , E , and E do not coincide, sav E = E f E , then - p q - r - - � p q r -

Ep ( compactified ,!!! inf'ini ty g Ep = B) !!, � open 3-�. 

Proof� (1) .  

Suppose E = E = E = A • We m� assume that for each triple i , p q r 
j, k of positive integers that 
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(2) Dpi U Dqj is in the closure of the bounded component of 

E3 '\. (K U Drk) which does not have r as a limit point, 

( 3) Dpi U Drk is in the closure of tlle bounded component of 

E3 '\. (K U D qj) which does not have q as a limit point, and 

(4) Dqj U Drk is in the closure of the bounded component of 

E3 '\. (K U Dpi) which does not have p as a limit point. 

Let G be the component of E3 '\. (K U d 1 U d 1 U d 1) which o p q r 
contains neither p, q, nor r • Let K = G U D 1 U D 1 U D 1 and o o p q r 

A the bounded component of E3 '\. K • For i > 0 define the sets 0 0 
Gpi' Gqi' Gri' Kpi' Kqi' Kri' Api' Aqi' and Ari as indicated in the 

proof of statement {1) of Theorem 2.3. 

Let K1 = �x, y, z) I x 2 + y2 + z 2 
= j} and A1 the interior 

I 
of K • For i > 0 let npi be the plane perpendicular to the y-axis 

at (0, f : 5, 0) , nqi the plane perpendicular to the y-axis at 
i + 2 

(0, - i + 3' 0) , and nri the plane perpendicular to the z-axis at 

i + 2  I I I 
{0, O, i + j ) . For i > 0 define Dpi = npi n Cl A , Dqi = nqi 

I I I I I I 
n Cl A , and Dri = nri n Cl A • Let the sets G0 , Gpi" Gqi' Gri 

I I I I I I I I 
K0 , Kpi" Kqi" Kri' A0 , Api' Aqi' and Ari correspond to the "unprimed11 

sets above. 
I I I I 

The spheres G0 , G 1, G ., and G 1 are mapped onto the corres-p q1 r 
ponding spheres G , G . , G 1 , and Gri by [10] , and then (1] is used 0 p1 q 

to extend this mapping to their respective interiors. This gives a 
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homeomorphism h of 

' 
= 01 A . "[(0,1,0) U (0,-1,0) U {0,011)] 

onto Cl A "(p U q U r) • By defining h(O, 1, 0) = p ,  h(O, -1, 0) 
' 

= q , and h(O, 0, 1) = r , we have a homeomorphism of Cl A onto 

Cl A • 

Proof� (2). 

Suppose Ep • E = A and E = B • Let the sequences of poly-
co q co r 

hedral disks tnPJ i=1 and �qi1i=l be defined as above. For each pair 

i, j of positive integers we m� assume that r is on the annulus Dij 
of K determined by Dpi and Dqj • For each i > 0 let Ki = Dii 
U Dpi U Dqi and Ai the bounded component of E3" Ki • Each Ki is a 

2-sphere, 1oc� polyhedral except at r • Hence by Theorem 2.2, each 

Ai is an open 3-cell. Since A is the union of the increasing se­

quence of open 3-cells Ai , it follows that A is an open 3-cell. 



Let 

note 

CHAPTER II! 

SOME EMBEDDDJGS OF gn-l IN S
n 

n Let us consider the following subsets of E : 

A = {c�, x2, ••• , X ) I 2 
+ x2 

2 + • • •  + xn
2 � 1} n xl 

B == {<x1, x2, . .  o, xn) I 2 + x2 
2 + ••• + xn

2 
� �} xl 

, 

, 

C = {cx1, x2, I� 2 2 + ••• + xn
2 � 4} , ••• , X + x2 n 

D = {<�, x2, I x1 
2 + x2 

2 
+ ••• + (x + 1)2 ·� 4} . ••• , xn n 

h be a homeomorphism taking Bd A into the n-sphere sn and de-

h(Bd A) by sn-1 • 

Definition 3.1. We say that h can be extended�� direction 

along ! cylinder if there exists a homeomorphism f of the closed annulus 
n determined by A and B into S , such that for each x e Bd A , 

f(x) ... h(x) • 

Observe that the condition of Definition 3.1 is equivalent to the 

statement: there exists a homeomorphism f of Bd A x [ 0, 1] into Sn 

such that for each x & Bd A , f(x, 0) = h(x) • 

Definition 3.2. We say that h can be extended in both directions ------- - - --------

along ! cylinder if there exists a homeomorphism f of the closed annulus 

determined by B and C into sn such that for each x e Bd A , 

f(x) = h(x) • 

The usual formulation of the condition in Definition 3.2 is: there 

exists a homeomorphism f of Bd A X [-1, 1] into sn ' such that for 
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each x e Bd A , f(x, 0) w h(x) • 

Definition ).). If f is a continuous mapping of a topological 

space X into a topological space Y , then an inverse � (under f) 

is a set M c X , contain:t.ng at least two points, and such that for some 

point y e f(X) , M a r-1
{y) • 

Definition ).4. A set M is cellular in an n-dimensional metric 

space X if there exists n-cells �, �, • • • in X such that 
QO 

Qi+l c Int Qi , and 1Q1 Qi a M  • 

The concepts defined in Definitions ).) and 3.4 were used by M. 
Brown to prove the Generalized Schoenfl.ies Theorem [8]. This theorem is 

stated as Theorem 3.1 below for ·the sake of completeness. 

Theorem 3.1. � h ��extended B;! �directions along! 
-n-1 

&linder, � !!!, closure 2£ either complementaxz domain .2! �::s is a 

closed n-cell. -

Lemma .3.1. There exists ! continuous m&PJ)ing g .2!.!:!!!, annulus 

(Bd A) x [0, l] � !closed n-cell !!!!!!! � � .2!!!z im'erse _!!l 
is (Bd A) x ·\)} • 

Proof. We m.a.y take the annulus to be the one dete�ed by A 
and B , with (Bel A) x {o} identified with Bd A , and (!d A) X i 
identified vi th Bd B • For x e A '\. B ·1et X be the vector from the 

origin to x and let dx be the length of the vector X • For x s B 

l.et g(x)· • (0, o, • • •  , 0) and for x e A '\.B let g(x) be the ter­

minal . point of the vector ( 2 dx - l)X • 

Theorem 3.2 • .  !! h � :2! extended� .2!!! direction along! 

czlinder, .!:!!!!! !!!! closure � � cQ!P!ementarr domain � sn-l !!. ! 
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closed n-cell. 

!12!:!. preciseq, g E !!. � component � Sn '\. sn-l which 2.2,!!­

tains £[ (Bd A) x {1} 1 , � Cl E !! ! closed n-�· 
1 

Proof. Let E be the complementary' domain of f[(Bd A) x {1) 1 
which does not contain sn-l 

• We first observe that Cl E 1 is a cellu-

lar subset of E • For 1 if Ei is the complementary domain of 

1 {(Bd A) x� ; �] which contains E 1 then, by Theorem ).1, each 

Cl Ei is a closed n-cell. Furthermore Cl Ei+l c Ei and 

Let g be a continuous mapping of (Bd A) x [01 1] onto an n­

oell Q such that (Bd A) x { 1} is the only inverse set. Define a map­

ping k of Cl E onto Q by the equations 

k(x) = g(Bd A x[l} )1 X s Cl E • 

The mapping k carries C1 E continuously onto the closed n-cell Q 
1 

such that the only- inverse set is the cellular subset Cl E of E • 

Thus, by Theorem 2 of [8], Cl E is a closed n-cell. 

The local cC}DDectedness·'Property .of an· .arc gives· the folloWing lemma. 

� ).2�. SupPOSe L .!!, � � Bl Ef � p !!_! point� L. 

Given s > 0 , there exists 6 > 0 � �� g � !! !& subarc � 

L whose endpoints_!!!� s6(p) , � It c �e{p) � 



LeJ11J11B. 3. 3. Let L be an arc in Ff , n > 3 , such that L is - ---- --
locally polyhedral except�!. single point p • �' given e > 0 , 
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there exists !. homeomorphism h � En � Ef 
outside S�p) � 2! h(L) !!,:'PNlJ!e<Dal. 

such that h is fixed 

Proof. We will prove the lemma for p an interior point. Essen-

tial.l.y the same proof I11Q' be applied in case p is an endpoint. Let a 

and b be the endpoilits of L and v1 the closed cubical neighborhood 

centered at p of diameter e1 a e • For i a 2, 3, 4, • .• let 61 be ( ei 1) given by Lemma 3. 2 for e a ei-1 ' and let ei a min 6i' -,r- . Let 

Vi be the closed cubical neighborhood of p of diameter ei • 

By making use of semi-linear deformations in small neighborhoods 

of the Bd v2i, if necessary, we may assume that L n Vd v2i is a finite 

set of points, and that no pair of components of L "'. v2i share a conunon end·· 

poin14:PO!l each intege·r i let lltl' • �., uie . be the closures of the components 

of L "'. V 2i which have both endpoints on Bd V 2i • Observe that each of 

these components is contained in the half open annul.us Int V 2i-l "'. Int V 2i. 

Let wil be a pol;yhedral arc in Bd V 2i which connects the endpoints of 

u11 and, except for these two points, is disjoint from L • The resul.ting 

simple closed curve dil = u11 U w11 bounds a polyhedral 2-cell Dil in 

Int v2i-l ' since n > 3 [10]. 

If (D11 0 Bd V 2i ) "'. w11 f Q , the components that are either 

points, arcs, or 2-dimensional subsets of D11 may be eliminated by semi­

linear deformations in small neighborhoods of these components . The com­

ponents that are simple closed curves may be eliminated as follows. Let 

c be a component which contains no other such component in its interior 
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(relative to n11). Let Y be the su.bdisk of n11 bounded by c , and 

let r be a point in the complementar,r domain of Bd v2i opposite to 

the one containing Y • Select r ��ficiently close to Bd v2i for 

X (the join of r and c) to meet n11 only in c • Define 
I I 

Du= (Dil '\.Y) U X , and deform n11 semi-linearly away from Bd v2i in 

a sufficiently small neighborhood of c , so that no new intersections 
n 

are introduced.. The disk n11 thus obtained is bounded by du and in-

tersects Bd V 2i in exactly those components, other than c , in which 

n11 intersected Bd v2i • After a finite number of steps we obtain a disk 
* Dil which, except for wil , is contained in the open annulus 

* � Int(v2i-l '\. v2i) 
• 

Since dim n11 .. 2 , dim L = 1 , and n > 3�, we may 
* assume that Dil intersects L only in u11 • Let � > 0 be such that 

the �-neighborhood Sil of D� intersects L n (V 2i-l '\_ V 2i) only in 

u11 , and such that s11 is contained in Int(v2i-l '\. v2i+l) • By a 
* sequence of simplicial moves across the 2-simplexes of Dil the arc uU 

may be moved onto the arc w11 • By making use of a corresponding semi­

linear space homeomorphism, we may deform u11 onto w11 and then into 

Int v2i by a semi-linear homeomorphism which is the identity outside 

Sil [Lemma 3, 19]. The components ui2, • • • , uie are successively moved 

into Int(V2i - v2i+l) by a technique similar to that used on uil • We 

are careful in each move to leave the remaining components fixed. This 

is to keep from introducing new intersections with Bd v2i • We denote 

the composition of these moves by f1 , and observe that fi is a semi­

linear space homeomorphism and is fixed outside Int(V21_1 '\_ V2i+l) • 

Also, if ai is the first point of L n Bd V2i relative to the order 
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of L from a to p , and b. is t.h.e last point (equivalently b. is 
2 2 

the first point of L n Bd v2i , relative to the order of L from b to 

p) , then fi(L) n Bd v2i a ai Ubi o 

We define a mapping f of � onto � by the equations 

f(x) = x , 

f(p) = p • 

It is clear, since, for each i , fi is fixed on Bd v2i-l U Bd v2i+l 

and f i eliminates all but two points of intersection of L and 

Bd v2i , that f is a space homeomorphism, semilinear except at p , and 

that f(L) n Bd v2i = ai u bi • 

We now consider the arc f(L) • Let Lu be the subar c of f(L) 

from ai to ai+l and let r.i2 be the subarc of L from bi to bi+l• 
Let xi be the point of intersection of the segment a1p with Bd v21 
and let yi be the point of intersection of the b1p with Bd v21 • 

Let pi be a semi-linear space homeomorphism which is fixed outside 

v2i-l "v2i+l and which carries Bd v2i onto Bd V-2i , with pi (ai) =xi 
and pi(bi) = yi • Since a1 = � and b1 = y1 , we will assume that �l 
is the identity homeomorphism. We may assume that the ar cs xixi+l and 

�i+Jti (Li1) meet only in their endpoints, that yiyi+l and �i+Jti (Li2) 

meet only in their endpoints, that xixi+l does not meet �i+�i(L11) � 

and that yiyi+l does not meet ,Oi+ySi (Lil):- � The simple ·closed 

curve pi+�i(Lil) U XiXi+l ·bounds a polyhed�al disk n11 , 

which, because of the restrictions on dimensions, may be taken to be 
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disjoint from pi+�i(L12) U yiyi+l • 
Furthermore, in the light of the 

elimination of component scheme used above, Dil may be selected so that 

Dil n (Bd V2iu Bd v2i+2) = xiU xi+l. The arc pi+�i(Lil) is then moved 

across the disk Dil onto the arc x1xi+l by a space homeomorphism Y11 , 

which is the identity outside v2i"v2i+2 and on pi+�i(Li2). Similarly 

pi+�i(L12) is moved onto yiyi+l by a space homeomorphism Yi2, which 

is fixed outside v21"v2i+2 and on xixi+l . The composition Y12t11 

is denoted by Yi • 

A mapping g is defined by the equations 

g(x) = x , x & En "v2 
g(x) = Yipi+�i(x) ' X & v2i - v2i+2 ' i = 1, 2, • •• , 

g(p) = p • 

Since Yipi+�i and Yi+lpi+�i+l agree on the common part of their 

domains of definition, Bd v2i+2 (each reduces to pi+l on this set), it 

is clear that g is a space homeomorphism. Also g carries f(L) onto 

the sum of four polyhedral arcs: (1) the subarc of f(L) from a to 

� = x1, (2) x1p , (3) py1 , and (4) the subarc of f(L) from 

b1 = y1 to b • The desired space homeomorphism h is taken to be the 

composition gf • Since each of f and g is fixed outside v1 , all 

the requirements of the lemma are met. 

A technique similar to that used in the proofs of Lemma 2 . 3 and 

Lemma 3.1 may be used to prove the following lemmas. 

that 

Lemma 3.4. There ,!:! ! continuous mapping g of D onto D such 

(1) g !!, fixed � Bd D , 

(2) g !!_ !. homeomorphism 2£ D "A onto D "  (o,o, • . •  ,O,l) � 



(3) g{A) = (0, O, ••• , O, 1) • 

I 
Lemma 3.S. !:!:!! L· 2! �segment .2! � xn-!!!! � 
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(o, o, ••• , o, i> to (o, o, • • •  , o, l) • �� there !! ! continuous 

maPping .2£ 01 (D "B) onto Cl(D "A) , � � (1) g !! fixed 
I 

� Bd D , (2) g(Bd B) • Bd A , � (3) L !! !:!!!, � inverse � 
under g • 

Definition 3�5. We say that h can be extended in one direction ........................ - - oiiiiiiiiii ...................... 

along ! Cllinder !22 !a � OppOSite direction along ! $[linder �­

.-,Ca;;;.;to.iiiie.-d � ( 01 0, • • •  , 0, 1) if there exists a homeomorphism f c&r1'1'ing 

the closed annulus determined by B and D into sn , such that f 

agrees with h on Bd A • 

Theorem 3.3. @\!PpOSe h .2!!! 2! extended !!! .2!!! direction along 

! eylinder � � � opposite direction along ! crlinder truncated � 
(0, o, ... , o, 1) • � G !:!,! !!! component ,2! sn ,:jl-l which inter­

sects f(Bd D) • � G !! !!! open n-�· 

Proof. Let J be the closure of the component of � '\. sn-l 

which contains f(Bd B) • By' Theorem 3.2, J is a closed n-cell and 

hence there is an extension Y of h , which carries A homeomorphic� 

onto J • Define a homeomorphism p of D into sn by the equations 

p(x) ... f(x) , 

p(x} ... Y(x} , X eA. 

Let p( 01 0, • • •  1 o, 1) "" p , and use the mapping p and the mapping g 
of Lemma 3. 4 to define a mapping k of � onto ffl as follows , 
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k(x) = x 

X & p(D) • 

n n The mapping k carries S onto S , leaves p fixed, and has J as 

the only inverse set. Hence G is carried homeomorphical.l.y onto Sn "-p 

and is an open n-cell. 

Let B1 be the closed n-oell in En , which is centered at the 
I 

Let. S, be the segment o£ the origin and has radius three-fourths. 

x -axis from (0, o, • • •  , o, 3/4) to n 
I (0, o, . • •  , o, 1), and � = f(� ) • 

Let h , G , and p be as in Theoi·em 3. 3, and let g be given by 
I I 

Lemma 3.4, with B and L replaced by B1 and L:J. respectively. 

Theorem 3.4. If H .!,! �closure£!� component 2£ 

Sn "-f(Bd B1) which contains G , � H !! ! closed n-�, � 
( Cl G >"- p _!! topologically equivalent � H "-L:t • 

Proof. That H is a closed n-cell follows immediately from Theo-

rem 3.2. 

sect 

Let I be the component of Sn "-f(Bd D) which does not inter-
n-1 s . The mapping k of R onto Cl G defined by 

k(x) = x , x e I , 

is a continuous mapping of H onto Cl G such that the only �erse set 

is � and k(�) = p • Hence, k is a homeomorphism of H "-� onto 

(Cl G) "'p • 



28 

In case there exists a continuous mapping .,.t of H onto H sucll 

that � is the onlY inverse set under � , then we can state that Cl G 
is a closed n-oell.. In fact, the product mapping �k-l is a hom.eomor-

phism o£ Ol. G onto R o 

Let us now suppose that the eactensj.on f of h is semi-linear on 

each finite polyhedron of Int(A "-.B) o �ilen :t(Bd B1) is a polyhedron 

and � is locally polyhedral except at p o Let s > 0 be such that 

S & (p) c Int H and let p be a homeomorphism o£ Sn onto Sn such that 

p is fixed outside S & {p) and p(s_) is pol�yhedral. Let q be the 

endpoin·t of � which lies on Bd H and let Q be a polyhedral n-cell 

in H , such that q s Bd Q , p(s_) "-.
_
q c Int Q , and Q has a subdivi­

sion isomorphic to a subdivision of a simplex (see Lemma 5.32 of [10]). 
Let Y be a simi-linear homeomorphism o£ Q onto a simplex R • The arc 

Yp(L1) is then polyhedral in R and, together with the linear segment 

Yp(q}!)(p) bounds a po:cyhedral disk D in R which, except for Yp(q) , 

lies in the interior of R • There is then a homeomorphism � o£ R 

onto R such that T) is fixed on Bd R and carries Yp(�) onto the 

segment Yp(q)Y�(p) • It is then easy to find a continuous mapping Q 
of R onto R such that Q is fixed on Bd R , Q( �(q)Y�(p) ) 

= "fp(q) , and Y�(q)Y�(p) is the onlY inverse set.. The mapping �, de-
. ,.;1 :tined by -e(x) = Y Qr)Yp{x) , x 6 Q , and -t'(x) = x , x 6 H "-. Q , is 

a continuous mapping of H onto H such that L1 is the o� inverse 

set. Thus we have the following theorem. 

Theorem 3. 5.. � h � .! homeomorphism embedding Bd A .!!! ffl , 

n > 3 • f! h .2!:!! � extended ,!!! � direction along ! cylinder � � 
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� �PO!:f:�!. direction �2!!:& !: �1!��!: _!.!:IE!£ated � ( 0.., 0.., o • o, 0, l), 

� � � �enJi.9.!! _!! l?c!flz �-!_�e!!. � Int A "-B , � � 
closure 2£ eitl!,e_r c_g�lelll;�.!!!z �o� £!. h(Bd A) is a closed n-cello 

Definition 3.6o We say that h can be extended in one direction ecn 'tiT!ftr-f"' � ....-.. lYnna -- -.... ----
alon_g ! �lin4�!: �:x;mcate2; � ( 0, 0:� • • •  , 0.., 1) , ii' there exists a 

homeomorphism f carrying the closed pinched annul.us determined by D 

and A into Sn , su:::!l �t f agrees w'"i th h en Bd A o 

Definiti,S)!!, 3. 7. Let f be the extension homeomorphism of Defini­

tion 3.6. If there exists a neighborhood N of (o, 0.)1 • • •  , 0, 1) in Ff 
such that f is semi-linear on eae;..il finite polyhedron of Int(D '\,A) n N , 

then we say that f is �-line_£ � ! delete� neig1lborhood _2! 
(0, • • • , l) 0 

Theo� 3. 6. � h � ! homeomorphism embeddin� Bd A � Sn .., 

n > 3 , � � h � £! extended � � direction along ! cylinder 

truncated at (0, 0, • • •  .., o, l) , � � G � � component .2£ 

S
n 

'\,f(Bd A) which intersects f'(Bd D) o If f is semi-linear on a de--- ---
leted nei_g!!borhoo� 2.£ ( 0, 0, • • • , 0, 1) , � Cl G � ! closed n-�· 

Proof. Let D1 be a cell.ll obtained from D by a slight contrac­

tion on En toward (0, o, • • •  .., o, 1) , such that [Bd n1 "- (o,o, . • •  ,O,l)] 

is contained in D "-.A . Let o1 and G2 respectively be the components 

of Sn '\,f(Bd n1) and � '\,f(Bd D) , which are contained in G • We now 

observe that Cl o1 is homeomorphic to OJ. G • For, ii' g is a space 

homeomorphism which is fixed on Bd D and carries Bd n1 onto Bd A , 

then the mapping p defined by 

p(x) = X , X f. G2 

p(x) = fgf-l(x) , x s 01( G1 '\. G2) , 
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carries Cl G1 homeomorphic� onto Cl G • This suggests the following 

observations if one attaches a copy of Cl G1 'to Cl (D1 "-A) along 

Bd � with f-l , the set thus obtained is equivalent to Cl G1 (it is 

simply Cl G) • This will be used to show that Cl G1 is a closed n­

cell, and hence that Cl G is a closed n-cell. 

Let N be a neighborhood of ( 0, 0, 0, l) such that f is 

semi-linear on J.nt(D '\.,A) n N • Let � , s2 , and 53 be ·three n­

simplexes in Cl (D1 "A) n N , such that 51 has (0, O, • • •  , O, 1) as 

one vertex, 51" (0, 0, • • •  , o, 1) c J.n�(D1 "A) , Bd 51 n Bd 52 

g (0, o, • • • , o, 1) , 52 "-<o, o, • • • , o, 1) c Int 51, and 53 c Int 52. 

Let k be the component of 5n "- f(Bd s2) which contains G1 • Then 

by Theorem 3.5, Cl k is a closed n-cell. Let H = 5n " Cl G , then 

Cl k can be realized by taking P "' Cl (D1 "\.A) "- Int 52 and attaching 
-·1 

C1 H to P along Bd A with f , and attaching Cl a1 to P along 
� ( �d D1 with f • The set P is a closed n-cell the closure of the 

eXterior of s2) with the interiors of two cells sharing a common boun­

dary point with Bd 52, removed. The cell obtained from P by attaching 

Cl a1 and m. H to ·the interior boundary spheres of P w1 th r-
1 

will be 

denoted by P . 

Let E be the part of the solid unit ball in � centered at 
co 

(0, 0, • • •  , 1, 0) , determined by x � 0. Let rq.1 be a sequence of n 1' �jo 
points (� = x2 = • •  _. = xn_2 = 0) n Bd E such that, if qi is repre-

sented by (0, 0, • • • , a(n-l)i' ani) ·' then a(n-l)O = 
2 and the a(n-l)i 

converge monotonically to zero through positive values, and ani > 0 , 
i = 0 • 
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Figure 1 

A Chambered n-cel1. 
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We then section E into a countable number of n-cells by projec­

ting the (n - 1)-plane x = x 1 = 0 onto each of the pi • The section n n-
deter.mined by pi-l and pi is denoted by Ci • We then delete from Ci 

I 
the interior of a cell ci , similar in shape to ci and, except for the 

boundary point ( 0, 0, • • •  , 0, 0) , contained in the interior of Ci • Arr:f 

two adjacent sections then form a copy of P , and are labeled by Pi , 
t t I 

Pi , as in Figure 2. Notice that Pi and Pi have w2i = Bd c2i in 
' ' 

common, and Pi and P i+i have w2i+l = Bd c2i+l in common. Let p1 
' 

be a homeomorphism of Pi onto Pi which leaves v2i fixed and carries 
t 

w2i-l onto w2i+l • Let Y1 be a homeomorphism of Pi onto P i+l 

which leaves w2i+l fixed and carries w21 onto w2i+2 • 

We identify P 1 with P , with v1 identified with Bd n1 and 

w2 identified with Bd A • The sets Cl G1 and Cl H are then sewn to 
-1 P along w1 and v2 , respectively, with f • The resul.ting n-cell 

is denoted by Pi . The sets Cl G1 and Cl H are then sewn into altar­

nate holes bounded by  w2i+l and v2i+2 by  the attaching homeomorphisms 

w Y I f-l • Bd H "i • • •  2 1 • ---t>�· 
w2i+2 • 

' 
The sets thus obtained from the Pi and Pi are denoted by  � and 

I JSi , and the union of the � is denoted by E1 • 

Since p1 is the identity on w2 , we can extend p1 to a homeo-
- �· _, 

morphism of P1 onto r1 , and conclude that P1 is also a closed n-

cell. In a similar manner we extend the homeomorphism Yi to a homeo-
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Figure 2 

A Countable Partition of an . n-cell 



34 

I •' 

Figure 3 

A Modified n-cell . 
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morphism 0£ �� onto Pi+l and extend the homeomorphism pi to a 

homeomorphism of � onto P�+l .. It then follows that each of the � 
I 

and J5! is a closed n-cell. 

We now observe that E1 is a closed n-cell. This is established 

by- constructing a homeomorphism of E onto E1 • We map the boundar;r of 

o2i-l U o2i onto the boundary' o£ � with the identity homeomorphism. 

Since o21_1 U o21 and � are n-cells, this homeomorphism between 

their boundaries can be extended to a homeomorphism between the cells. 

These extensions for 1 � l, 2, . .. .  yield a homeomorphism from E onto 

� -
I 1 

We next observe that E1 is a copy of Cl(D1 'A ) with 01 G1 
sewn along one of' the boundary spheres. This can be established by- showing 

that E:J_ , . with G1 removed from Pi , is homeomorphic to E with 
I . t 

Int c1 . removed. Let 'A be the identity mapping on c1 ""�t c1 and 
' �- �d(C21 �- c2i+l) , i = 1, 2, • • •  • Since c21 u c2i+l and v;: are 

closed n_-cells and 'A restricts to a homeomorphism between their boun­

daries, l. can be extended over their interiors. !he extensions over each 

ot the c2i u c2i+l yi.eld the desired homeomorphism. 

We have seen tbat � mq first be viewed � a .. closed n-cell aDd 

sec� as Cl G1 sewn into a boundary" sphere o£ a cow of Cl (D1 "A). 

We previous]1" observed that a se� of the second type is homeomorphic to 

Cl. '\ • Hence C1. a1 , or equivalen� Cl Q , is a closed n-cell. 



CHAPTER IV 

SOME 3-SPHERES IN s4 

4. 1 . Three-Spheres in s4 Obtained by Suspension 

Definition Lh l.  In E4 we take coordinates x1, x2, x
3

, x
4 

and let E3 b� described by x
4 

= 0 • Let a = (0, 0, 0, 1) and 

b = (0, 0, 0, -1) • For a set A in E3 the suspension of A in 

E4 is the join of A and a U b (the collection of line segments 

ax and bX , x e A) . The abbreviation � !  will be used for the 

suspension of A in E4 • 

If A = �x1, x2, x3, 0) I x1
2 

+ x2
2 

+ x3
2 

= :i} ,  then it is 

clear that Susp A is a 3-sphere in E4 and that Susp(Int A) = 

Int(Susp A) is an open 4-cell. Furthermore, the suspension of the 

union of A and its interior is a closed 4-cell. 

Lenuna 4. 1 . If A1 !!!2 A2 .!!:! homeomorphic subsets of E3 , 
� Susp A1 and Susp A2 .!::! homeomorphic subsets £! E4 • 

Proof. Let g be a homeomorphism of A1 onto A2 • For Oia 
an open set in Ai and -1 � t1 < t2 � 1 let Oia(t1, t2) be the 

part of Susp Oia which lies between the )-planes x
4 

= t1 and 

x4 = t2 • If either t1 = -1 or t2 = 1 , then we will add to 

Oia(t1,t2) the point b or a as t1 = -1 or t2 = 1. The collec­

tion of sets 

forms a basis for the topology of A. • 
� 
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Let ;_ be a point of Susp � • Then there exists an � e � 

and a -1 � t � l such that z1 is the intersection of x4 = t and a 

segment �a or x1b , according as t is positive or non-positive. 

In the first case we associate with z1 the intersection of x4 = t and 

g(�)a • In the latter case we associate with z1 the intersection of 

x4 = t and g(,.)b • The mapping thus defined carries Susp � onto 

Susp A2 in a one-to-one manner and carries the basis elements of � 

onto the basis elements of A2 in a one-to-one manner. 

Let L be the x4 axis and let M denote the part of L with 

lx41 :: 1 . 

Lemma 4. 2. Let S be a 2 -sphere _!!! E3 !:!!!! K = Susp S • !:2!: 
� e > 0 there exists ! � T e in � &-neighborhood .2£ K U M 

� � Te !! homeomorphiC � S X r � there exists ! homotopic 

-.de .. f.,.orma__.,..ti .. o.-n £! E4 '-. T e � E3 '-. S • 

Proof. Let 0 < t1 < 1 and sufficient]Jr close to 1 for the set 

P(a) = {<�, x2, x3, x4) e K I x4 :: t1} to be in the &-neighborhood of 

a • Let -1 < t2 < 0 and sufficient� close to -1 :for the set P(b) 

= ��,x2,x3,x4) e ,K I x4 � t2} to be in the e..:neighoorhood of b.. Let 

Q(a) be those points of P (a)  with x4 coordinate t1 , and Q(b) those 

points of P (b )  with x4 coordinate t2 • Let R(a)  be the union of 

all half-lines which are directed in the positive x4 direction and have 

their endpoint in Q(a) , and let R(b) be the union of all half-lines 

which are directed in the negative x4 direction and have their endpoint 

in Q(b) • The set T is then defined to be e 

{K " [P(a) U P(b) ]} u [R(a) U R(b ) ] . 



From the definition of T it is easy to see that there is a 
s 

homeomorphism f of E4 onto E4 which is the identity on E3 and 

carries T onto S x E1 • For 0 � t � 1 let t be the transform&-

tion which carries (�, x2, x3, x4) onto (x1, x2, x3, tx4) • The de­

sired deformation G is then defined by G(x, t) = f-1tr{x) • 

Definition 4. 2 •. Let A and B be two arcwise connected spaces 

with A c B • Let p s A be used as the base point for computing the 

fundamental groups �{A) and �(B) • The injection homomorphism of 

�(A) into �(B) is the homomorphism induced by the identit)r mapping 

of A into B • 

Theorem 4.1. � S � ! 2-sphere � E3 � K = Susp S • 

� -'J. � A2 � :!=!!!. bounded � unbounded components � E3 '\. s 

respective]y, ,!!!!! B1 , B2 � corresponding components 2.! E4 '\. K • 

� !!!! injection homomorphism ij a �(Aj) ---+ �(Bj ) ,  j .a 1, 2, !! 

.!!! � isomorphism. 

Proof. First consider the sets A1 and B1 • Let W be an 

element of �(B1) and let w be a representative of W .  Let w1 

be the path in � which is the image of w under the deformation G 
I 

of Lemma 4. 2. Then w' is also a representative of W. If W is the 
I 

element of �(A1) represented by w1 , then i1(W ) = W ,  by the 

definition of i1 , and i1 is an onto homomorphism. 
' ' 

Let W be an element of 1'J. (�) such that i1 (W ) is the 

identity element E of � (B1) , and let w' be a representative of 
I I 

W • Then w' bounds a singular 2-cell D in B1 • Let D be the 

image of D under the deformation G • Since w1 is fixed under G , 
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w1 bounds the singular disk D in � • Hence, W is the identity 
' 

element E of 'i. ("J.) and the kernel of i1 is 
• 

E • 

Now consider A2 and B2 • Let W be an element of 'i. (B2 ) , 

. and let W be represented by a po�gonal path w in B2 • Since 
. 
w 

and M are 1-dimensional. subsets of the 4-dimensional set B2 we mq, 

by deforming w away from M if necessaey assume that p(w, M) > 0 • 

By selecting e < p (w, M) and selecting T6 and G by Lemma 4.2 , we 

can deform w by G into A2 and thus obtain a path w' representing 
I t 

an element W such that i2 (W ) = W • 

I 

I I 
Let W be an element of � (A2 ) such that i2 (W ) ... E , and let 

W be represented by a polygonal path w1 in A2 • Then w1 bounds a 

singular 2-cell D in B2 • By the Deformative Theorem [18, p.  115], 

we may assume that D is a simplicial 2-complex. Again, since the 

dimensions of D and M add up to three, we may assume that p (M, D )  

= e > 0 • Then, by Lermna 4. 2 , we can find a G which deforms D into 

A2 and leaves w1 fixed. Thus w• represents the identity element of 

� (A2 ) , and i2 is an isomorphism. 

If E4 is compactified with a point at infinity, then E4 be­

comes s4 and E3 becomes s3 , and the corresponding proofs for 

Lemma 4.2 and Theorem 4.1 can be carried out with s4 and s3 replacing 

E4 and E3 
• 

Theorem 4. 2. � A1, A2, B1, B2 denote � components � 

s3 "s !!!!! s4 "K !! indicated ,;a Theorem 4.1. � � second �­

� groups �(B1) � n2(B2) .!!:! trivial. 
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Proof. It is proved in [16, p. 19] that each of �(�) and 

n2(A2) is trivial. The proof then will be to show that each singular 

2-sphere in B1 or B2 can be deformed into A1 or A2 respective:Qr 

w:L thout crossing K • 

Let D be a singular 2-sphere in B1 • Then b;y Lemma 4. 2, 

there exists a deformation G which deforms D into Ar The situation 

is quite similar for B2 • Let D be a singular 2-sphere in B2 • 

Again b;y the Deformation Theorem, we mq assume that D is a simplicial 

2-complex in B2 and, since the dimensions of D and f (K U the 

point at infinity-) add up to three, we mq assume that D and I do not 

intersect. Let e = p (D, X) and let G be given b;y Lemma 4.2 . The 

deformation G deforms D continuous:Qr into A2 and the theorem is 

proved. 

In [ Sl there are examples of 2-spheres in s3 such that one 

complementary domain has a non-trivial fundamental group. An elementary 

modification of these examples will give 2-spheres in s3 such that 

the fundamental group of either complementary domain is non-trivial. 

These examples plus Theorem 4.1 give the existence of 3-spheres in s4 

such that either one or both complementary domains have non-trivial 

.tundamental groups. However, Theorem 4. 2 tells us that both complemen­

tary domains of these examples will have trivial second homotop;r groups. 

4. 2 . Three-Spheres !!! s4 Obtained � Rotation 

Definition 4. 3. Let E; = { (x1, x2, x3, 0) e E4 I x3 � o} 

and let P be the plane x3 cr x4 a 0 • Let M be a subset of E; and 



define R(M) as follows: R(M) = [<�, x2, i3, x4) e E4 l � = � , 
i2 a x2 , i3 a x3cos t , .. i4 a Xfin t tor some (�, x2, x3, 0) e M 

and 0 � t < 2n} • 

The following theorem is an immediate consequence of 

Definition 4. 3. 

Theorem 4. 3. � M £! !!!!, hemisphere ,!!! E; defined � � 
2 2 2 

equation � + x2 + x3 a 1 • !!!!!! R(M) !! � 3-sphere 
2 2 2 2 4 � + x2 + x3 + x4 a 1 . �· E • 

Furthermore, g: D !! � bounded complementary domain £! 
d a {<�, x2) e p I � 

2 
+ x2 

2 
a 1} !!! p , � .!!!. bounded COmple­

mentazz domain £! M u D � E; , !!!! A2 :!f.!!! unbounded complementm 

domain £! M U D  !!! E; , � R(� U D) !!!! R(A2) !!!, respeotive].z 

� bounded !!!! unbounded oomplementa.Iz domains £! R(M) � E4 
• 

A proof similar to that or Lema 4.1 can be used to establish the 

following lemma. 

Lemma 4. 3 • .  Suppose � !!!2 � .!!:! homeomorphic subsets � E; 

� t ! homeomorphism £! � � A2 � h � restriction £! f 

� � n P • !£ h .!!, ! homeomorphism £! A1 n P � A2 n P 1 � 
R(�) !!!!! R(A2 ) !!:! homeomorphic subsets £! E4. 

I 
Let M, D, d, �" and A2 be as in Theorem 4. 3, and let M be 

3 I I I 1 
a 2-cell in E + such that M n P .. Bd M a d • Let D be the 

I I I 
bounded complementary domain of P '\. d and A1 , A2 the bounded and 

I I 3 unbounded complementary domains of M U D in E + respective]¥. A 
I 

combination of Lemma 4.3 and Theorem 4.3 yields that R(M ) is a 



42 

3-sphere in E4 • Denote the bounded component of E4 '\.R(M1 ) by B1 
and the unbounded component by B2 • 

Theorem 4.4. �(Ai
:
) : �(Bi) , i = 1, 2 • 

I 
Proof. First consider A1 and B1 and select a point p in 

I I 
A1 as the base point for computing n1(A1 ) and n1(B1) • Let L be 

an element of � (B1) , and let ..e be a polygonal representative of L • 

Let E� be the collection of points in E4 with positive fourth co­

ordinates , and let E� be those points with negative fourth coordinates . 

We will say that a is an exceptional point of -e if a e -e n A1 and 

each interval on -t about a contains points of E� • Let a be an 

exceptional point of � , and let q traverse � in the direction 

determined by the requirement that q approach a through points in 

E4 • The exceptional point a of -e will then be classified according 

as 

(1) q passes from a immediately back into E� , 

(2) 
I 

q moves from a along a polygonal curve in A1 
another exceptional point and then into � , 

to 

( 3) 
I 

q moves from a along a polygonal curve ua in A1 

to a vertex b and then into � , or 

(4) q passes from a immediately into E� • 

In cases (1) and ( 2) a may be eliminated as an exceptional point by 

decreasing fourth coordinates slightly in a neighborhood of a • An ex-

ceptional point of type ( 3) may be reclassified as type (4) by rotating 

u about a so that u '\. a  c E4
+ 

• We then may assume that the excep-a a 
tional points,  a1, a2, • • •  , an , of � are all of type (4) .  
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For each exceptional point ai of .f. let bi be a vertex in D 
• and ui a directed polygonal arc in Aj_ from ai to bi • We then take 

as our representative or L the curve m obtained from Jl by inserting 
-1 at each ai the arc uiui • 

For each x e E4 let yx "' (;_,x2,x3,o) and tx be the unique point 

in E� and real number 0 � tx < 2n respectively, such that x a 

(x1,x2 ,x3cos tx' x3sin tx) .  We will say that x is obtained by rotating 

:r.x about P through an angle t and write x "' Rt (y: ) • The con-x X X 
tinuous mapping x ---\> yx · of .� onto E; will be den�ted by R-l 

• 

We now return to the curve m and define a homotopic deformation 
n 

carrying m into E;. For x e m " ( i�h ui1 ) and 0 � t � 2n let 

�(x) = R(tx-t)CYx) it 0 � t < tx, and Biii�(x) .. Yx it 1:x � t � 2n • 

n -1 -1( ( For x e n�l ui let RMt x)  "' R(2n-t) x). Observe that for each m, 

-1 -1 -1 Rm2n is the restriction of R to m , and hence m • R (m) in B1 • 

' Let h be the homomorphism of '1. (B1) onto n1 (A]_) defined by 

associating the element L of � (B1) with the homotopy class of 

'1. ('J_) d�termined by R-1(m) • We need to establish that h is well 

defined (it .t • .£ '  in B1 , then R-1(m) • R-1(m1 ) in �) , and 

that h is a homomorphism (R-1(mm' ) • R-1(m)R-1(m' ) )  • The second 

condition, in fact the equality between R-1(mm' ) and R-1(m)R-1(m' ) , 

follows immediatel;r from the definition of R-l 
• To establish the 

-1 first condition, suppose that m' • m or equivalently m 'm  • 0 in 

B1 and let f be a continuous mapping of the boundar,y of the unit 

circle 0 into B1 such that f(Bd C) ... m'm-1 
• Then there exists a_, 

continuous extension g or r carrying C into B1 • The mapping 

R-1g then carries C into 4 with Bd C being carried onto 



R-l ·(m • m-1) • Hence R-1
(m 1 m-1) N 0 in 

R-1(m 1 )R-1(m-1) N 0 in A1
1 

• 

' � , or equivalently 
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We now observe that if i denotes the injection homomorphism 
I 

of �(A1 ) into �(B1) , then each of hi and ih is the identity 

bomomo!Phism and hence each of i and h is an onto isomorphism. To 
' see that hi is the identity mapping, let K � n1(A1 ) and let k be 

a polygonal representative of K • Then i(K) is the element of 
' 

�(B1) determined by k ,  and hi(K) is the element of n1(A ) deter-
mined by R-1(k ) = k • Now consider an element L � n1(B) , and let us 

determine ib(L) • Let ..e represent L and replace ..e by a simple 

closed curve m by the above rule. Then h(L) is the element of 

�(A1) determined by R-1
(m) , and ih(L) is the element of n1(B1) 

determined by R-1
(m) • This is the element L , since R-1(m) N m 

in B1 • 

' 
The fact that n1 (A2 ) :: n1 (B2 ) follows by a similar argument. 

The proof of Theorem 4. 4 m� be used to prove the following 

argument. 

Theorem 4. 5. Let M � ! closed subset .2f E� � A .! �­

ponent � E� '\._ M • !! P is arcwise accessible � � point � A , 

then �(A) : n1[R(A)] • 

Let_ S be a 2-sphere in E� which is locally polyhedral except 

at a finite number of points, and which is embedded in E; such that 

S n P = D is a 2-cell. Let M = Cl(S '\.. D) and let A1 and A2 , res­

pectively, denote the bounded and unbounded components of E; '\._ S • 

Then R(M) is a 3-sphere in E4 and, if Bi is the component of 



45 

E4 "-R(M) corresponding to Ai , then, by Theorem 4. 4, "1 (Bi) :: '1. (Ai) .  

One may again select well known 2-spheres in i3 to construct 

examples of 3-spheres in E4 such that either one or both complementary' 

domains will have non-trivial fundamental groups. 

In passing, we observe one difference between the spheres Susp S 

and R(M) • Associated with each exceptional point p e M  there will 

be an arc, Susp p , of exceptional points on Susp S and a simple closed 

curve, R(p) , of exceptional points on R(M) • 

We now use the rotation of a disk about P to construct a 3-

sphere in s4 , one complementary domain of which is simply connected 

but is not an open 4-cell. Let us first embed the 2-sphere S , dis­

cussed as Example 3. 3 in [5] , in E� as indicated in Figure 4 • . • The 

sphere S is to intersect P in a 2-cell D and S "-D is denoted by 

M • The proof in [5] that the exterior of S in E3 is simply connected 

may be used directly to show that A2 (the exterior of S in E�) is 

simply connected. Hence, by Theorem 4.4, B2 (the exterior of R(M) in 

E4(s4)) is simply connected. 

The cross section [M U R :(M) ] of R(M) in E3(s3) is shown in 
n 

Figure 5. . 

Let � 1 denote the exterior of M U Rn(M) in E3 • It is shown 

in [5] (Example 1.3)  that C0 cannot be contracted to a point in 
I 

A2 "- [W U Rri(W) ] • This fact is now used to show that R(W) is con-

tained in no closed 4-cell subset of B2 whose complement in B2 is 

simply connected. Hence, B2 is not an open 4-cell. 
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Figure 4 

A Wild 2-Sphere in s3• 



Figure 5 

A Cross Section of a Wild 3-Sphere in s4. 
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Suppose that such a 4-cell J did exist. Choose the base point 

for computing � (B2 " J) in P and so close to d that there is a 

path f) in (B2 "J) n P which represents C 0 11'1 n:t{A� \ [W U .Rn(W) �. 

Let E be a unit disk in E2 w:L th boundar;r e � and let h be a con­

tinuous mapping of e onto c • Since � (B2 " J) is trivial, there 

exists an extension H of h which carries E into B2 " J  . We then 
� �, follow H by R and obtain a singular 2-cell, R """""H E) , in 

A2 " R-1(J) which is bounded by c • Since A2 "R-1(J) c A2 \w , we 

see that c can be contracted to a point in A2 "W and hence in the 
I 

larger set A2 " [W U Rn(W) 1 • This contradiction establishes the de-

sired conclusion. 

4. 3. Three-spheres Obtained � Capping ! Cylinder 

In Jil we again take coordinates � 1 x21 • • •  1 xn and let ]f-l 

be described by xn a 0 • 

Lemma 4. 4. !!,! S � !!! (n-2) -sphere _!!! Ef-l � � bounded 

� unbounded components ,2! If-l "S denoted :2z � � � -respec­

tiveJ.y. !:£ Cl A2 (compactified � infinity) !! ! closed (n - l)-�1 

� {s x [0, lll U {Ar x [lj} !! ! closed (n - 1)-!:!£. 

Proof. Let b be a homeomorphism of Cl A2 onto a standard unit 

ball B in tt-1 
• Let s1 .. Bd B and let s2 be the sphere concentric 

with s1 and with radius one-halt. Then h-1(s2 ) is a sphere in A2 1 

and h -l restricted to s2 can be extended in both directions along a 

cylinder (b-l is such an extension) ' . Ii' C is the closure at the 

component of En-l "h-1(s2) which contains A1 1 then, by Theorem .).2�  
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C is a closed (n - 1)-cell. We now observe that C consists of a 

closed annulus (h-1(B '\..Int s2 ) )  with Cl � sewn along one boundary 

component (along h -l(s1) = S) , and is therefore homeomorphic with 

{s x [o, 1U' u {c1 � x [lJ} . 

Theorem 4. 6. � S � !!! (n - 2 )-sphere _!!! En-l � � 

bounded .!!!! unbounded components ,2! Eft-l '\.. S denoted � A1 !;!!!! A2 
respectiveq. !,! Cl A2 (compactified ,!! infinity) !! ! closed (n - 1)­

�, .!:!!!!! { S X [ -1, lj} U { Cl � X [ -1]} U { Cl � X [lfr !! !!! 

(n - 1)-sphere � � • 

Proof. By- Lennna 4. 4, each of {s x [ -l, ofr u {c1 � x [ -1]} 

and {s x [0, 1]} U { Cl � x [1� is a closed (n - 1)-cell. These 

two cells intersect along their conunon boundary sphere S , and hence 

their union is an (n - 1)-sphere. 

We now consider a 2-sphere S , locally polyhedral except at a 

single point, in E3 (s3) such that the bounded complementary domain 

� is an open .3-cell, Cl � is not a closed .3-cell, the unbounded 

complementar,r domain A2 (compactified at infinity) is an open .3-cell, 

and Cl A2 is a closed .3-cell. The assertion is that the .3-sphere 

is embedded in s4 such that, if B1 and B2 respectively . are the 

components of s4 '\.. T which contain A1 and A2 , then B1 is an open 

4-cell, Cl B1 is not a closed 4-cell, and Cl B2 is a closed 4-cell. 

Since B1 is the product of the open .3-cell A1 and the open 

interval (-1, 1 ) ,  it follows inunediately that B1 is an open 4-cell. 
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If C1 B1 = 01 y f-:J.:,1] were a closed 4-cell, a theorem .due to l'3ing [7] 

would imply that Cl � is a closed 3-cell. Thus we have a contradic­

tion of our assumption on the embedding of S in E3 
• 

We now show that Cl B2 is a closed 4-cell by constructing a 

homeomorphism f : T x [ 0, l ] ---i> Cl B2 such that the mapping f 0 de­

fined by f0(y) = f(y, 0) is the identity mapping on T , and then ap­

plying Theorem 3.2 . Since Cl A2 is a closed 3-cell, there exists a 
1 homeomorphism h : S x [0, � ] ---i> Cl A2 such that h0(x) "" h(x, 0) 

= x for all x & S • For Y' & T , let x be the point of Cl � which 

lies under y {y = (x, t )  for some t & [ -1, 1] )  • We define f b,y 

the following equations• 

(1) fr(y) = (x, P +  :r) , y = (x, 1) , X & � J 

(2 ) fr(y) = (x, -1 - r) , Y = (x, -1) , X & � J 

(3) fr(y) = (hr(x) ,  t) , X & S , -1 + r < t < 1 - r , 

(4) fr(y) = (h(l-t) (x) , 2t - (1 , - r) )  , x & S , 1 - r � t � 1 , 

(5) fr(y) = (h(l-t) (x) , 2t - (r - 1) ) ,  x & S , -1 � t � -1 + r • 

To show that f is a one-to-one mapping of T x [0, l ] into 

Cl B2 we must show that if y1 = (,_, t1) , y2 = (x2, t2 ) , and 

f:l'J.(y1 ) = fr-/Y2 ) , then � = x2 , t1 = t2 , and r1 = r2 • Since fr 
cannot decrease second coordinates of points of {s x [0, 1� U {A1 x [1� 

and cannot increase second coordinates of {s x [-1, 0� U {_A x  [-1!} , 

we may assume that both t1 and t2 are non-negative, or that both are 

negative. We will only consider the first case, the latter would follow 
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� = � · 
For �' x2 in S and f'r1 {y1) = f'r2 {y2 ) , we must have � = x2 , 

since fr1 {y 1) and f'r2 {y 2 ) lie over points of the arcs ht (�) , 

0 � t � � ' and ht(x2 ) , 0 � t � � , respectively. Since h is a 

homeomorphism, these arcs intersect if and only if � = x2 • 

We now consider two special cases t1 = t2 and r1 = r2 • If 

t1 = t2 , we may assume r1 � r2 • There are then three possibilitiess 

(a) 0 � � < 1 - r , 0 � t2 = t1 < 1 - r2 , {b ) 0 � � < 1 - r1 , 

1 - r2 � t2 = t1 � 1 , {c)  1 - r1 � t1 � 1 , 1 - r2 � t2 = t1 � 1 • 

For (a) we have hri (�) = hr2 {�) and r1 = r2 , . since h is one-to-
1 one on S x [0, � ] • For {b) we have r1 = 1 - t1 , t1 = 2t1 - (1 - r2) 

and for (c)  we have 2t1 - (1 - r1) = 2t1 - (1 - r2 ), each . of which leads to 

r1 = r2 • If r1 = r2 , then � = t2 , since each fr is one-to-one. 

We now return to the general case y1 = (x1, t1) , y2 = (x1, t2 ) , 

x & S and �
l 

(y1) = hr2 {y2) • We may assume t1 � t2 • Equations (3) 

and (4) them imply the following possibilities: (a) t1 < 1 - r1 , 

t2 < 1 - r2 , ( b) t1 < 1 - r1--· , t2 :: 1 - r2 , ( c ) ·: t1 :: 1 - r1 , 

t2 . � 1 ;_- r2 • In (a) , � = t2 (the second coordinates of fr1 (y1) and 

fr2 (y2) must be equal) ,  and hence r1 = r2 • In (b ) ,  r1 = 1 - t2 , and 

t1 = 2t2 - (1 - r2 ) imply that t1 = 2(1-r1) � (l-r2) = ( l-r1) + (r2-r1) • 

Since t1 < 1 - r 1 , we must have r 2 - r1 < 0 , or 1 - r1 < 1 - r 2 • 

This leads to t2 = 1 - r1 < 1 - r2 , which contradicts our assumption 

that t2 � 1 - r 2 • Hence (b) cannot occur. In (c )  we have 



since the first coordinates of fr1C-:r1) and fr2C-:r1 ) must be equal. 

Since t1 = t2 , we must also have r1 = r2 • 

The continuity of f follows rather quickly from the definition 

of f in terms of the continuous mapping h and a set of linear 

equations . 
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