# Separation of the n-Sphere by an (n-1)-Sphere 

James C. Cantrell<br>University of Tennessee - Knoxville

## Recommended Citation

Cantrell, James C., "Separation of the n-Sphere by an (n-1)-Sphere. " Master's Thesis, University of Tennessee, 1961.
https://trace.tennessee.edu/utk_gradthes/2948

To the Graduate Council:
I am submitting herewith a thesis written by James C. Cantrell entitled "Separation of the $n$-Sphere by an ( $\mathrm{n}-1$ )-Sphere." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Mathematics.

Orville G. Harrold, Major Professor
We have read this thesis and recommend its acceptance:
E. Cohen, Lee Simmons, \& W.S. Makavier

Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a thesis written by James C. Cantrell entitled "Separation of the $n$-sphere by an ( $n$ - l) -sphere." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Mathematics.

### 0.91. Harmed

Major Professor

We have read this thesis and recommend its acceptance:

rim. S. makavier


Dean of the Graduate School

## Copyright

 byJames Cecil Cantrell 1962

Dissertation
Presented to the Graduate Council of University of Tennessee

In Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy
by
James C. Cantrell
December 1961

## ACKNOWLEDGEMENT

The author wishes to acknowledge his indebtedness to Professor Orville G. Harrold, Jr., for his direction and assistance in the preparation of this dissertation. This research was supported in part through the National Science Foundation Grant 8239.

## TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCIION ..... 1
II. ALMOST LOCALITY POLYHEDRAL 2-SPHERES IN $s^{3}$ ..... 4
III. SOME EMBEDDINGS OF $s^{n-1}$ IN $s^{n}$ ..... 19
IV. SONR 3-SPHRERS IN $s^{4}$ ..... 36
Three-Spheres in $S^{4}$ Obtained by Suspension ..... 36
Three-Spheres in $S^{4}$ Obtained by Rotation ..... 40
Three-Spheres Obtained by Capping A Cylinder ..... 48
BIBLIOGRAPHY ..... 53

## LIST OF FIGURES

FIGURE PAGE

1. A Chambered n-cell ..... 31
2. A Countable Partition of an n-cell ..... 33
3. A Modified n-cell ..... 34
4. A Wild 2-Sphere in $s^{3}$ ..... 46
5. A Cross Section of a Wild 3-Sphere in $s^{4}$ ..... 47

## CHAPTER I

## INTRODUCTION

An $(n-1)$-sphere is a topological image of $s^{n-1}=\left\{\left(x_{1}, x_{2}, \ldots\right.\right.$, $\left.\left.x_{n}\right) \varepsilon E^{n} \mid x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{n}{ }^{2}=1\right\}$, an open $n$-cell is a topological 1mage of $\left\{\left(x_{1}, x_{2} ; \ldots, x_{n}\right) \in E^{n} \mid x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots . x_{n}{ }^{2}<1\right\}$, and a closed n-cell is a topological image of $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \varepsilon E^{n} \mid x_{1}^{2}+x_{2}^{2}+\right.$ $\left.\ldots+x_{n}^{2} \leq 1\right\}$.

In this thesis we consider certain ( $n-1$ )-spheres embedded in $S^{n}$ (we will frequently use the fact that $S^{n}$ is topologically equivalent to the one point compactification of $\mathrm{E}^{\mathrm{n}}$ ). The problem is then to establish the existence or non-existence of certain topological properties of the two domains into which $S^{n}$ is separated by the given ( $n-1$ )-spheres.

For the cases $n=1,2$ it is known that each ( $n-1$ )-sphere in $S^{n}$ separates $S^{n}$ into two domains, either of which is an open n-cell and has a closure which is a closed n-cell. That this is not the case for $n=3$ is shown by numerous counter examples (see [2] and [5]*).

A 2-sphere $K$ in $S^{3}$ that is locally polyhedral except at one, two or three points is considered in Chapter II and the following results are established. If $K$ is locally polyhedral except at one point; then the closure of one component of $S^{3}-K$ is a closed 3-cell and the other component is an open 3-cell. If $K$ is locally polyhedral except at two points, then either the closure of one complementary domain is a closed

[^0]3-cell or both complementary domains are open 3-cells. If $K$ is locally polyhedral except at three points, then one of the complementary domains is an open 3-cell. This domain may or may not have a closure which is a closed 3-cell.

Let $A=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in E^{n} \mid x_{1}{ }^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq 1\right\}$, $B=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \varepsilon E^{n} \left\lvert\, x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq \frac{1}{4}\right.\right\}$, $C=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \varepsilon E^{n} \mid x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq 4\right\}$, and $D=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \varepsilon E^{n} \mid x_{1}^{2}+x_{2}^{2}+\ldots+\left(x_{n}+1\right)^{2} \leq 4\right\}$. The Generalized Schoenflies Theorem states that if $h$ is a homeomorphism of Cl. $\left(C \backslash B\right.$ ). into $s^{n}$, then the closure of either complementary domain of $h(B d A)$ is a closed $n$-cell. A proof of a special case of this theorem by Mazur [13] and a proof of the full theorem by Brown [8] point out that properties of the embedding homeomorphism of $S^{n-1}=B d A$ in $S^{n}$ can be used to investigate the properties of the complementary domains. One is naturally led to the following question, if $h$ is a homeomorphism of $C l(A \backslash B)$ into $S^{n}$, is the closure of the component of $S^{n} \backslash h(B d A)$ which contains $h(B d B)$ a closed $n$-cell? This question is answered affirmatively by Theorem 3.2. In fact the theorem follows from the Schoenflies Theorem and the two are therefore equivalent.

Two other embeddings of $\mathrm{Bd} A$ in $\mathrm{S}^{\mathrm{n}}, \mathrm{n}>3$, are considered in Chapter IIIs (I) a homeomorphism $h$ of $C I(D \backslash B)$ into $S^{n}$, and (2) a homeomorphism $h$ of $C l(D \backslash A)$ into $S^{n}$. In the first case it is shown that if $h$ is semi-ltnear on each finite polyhedron of (Int $A) \ B$, then the closure of either complementary domain of $h(B d A)$
is a closed n-cell. In the second case it is shown that if $h$ is semilinear on each finite polyhedron in a deleted neighborhood of ( $0,0, \ldots, 1$ ) (see Definition 3.7), then the closure of the complementary domain of $h(B d A)$ which intersects $h(B d D)$ is a closed $n$-cell. The proofs of these theorems depend quite heavily on the fact that an arc in $\mathrm{E}^{\mathrm{n}}$, n > 3 , which is locally polyhedral except at a single point is tame (see Lemma 3.3).

In Chapter IV three methods of constructing 3-spheres in $S^{4}$ from 2-spheres in $S^{3}$ are considered: (1) suspension of a 2-sphere in $S^{3}$, (2) rotation of a $2-c e l l$ in $S^{3}$ about the plane of its boundary, and (3) capping a cylinder over a 2-sphere in $S^{3}$. The construction methods in cases (1) and (2) were introduced by Artin [4] and have been used by his and by Andrews and Curtis [3] to construct 2-spheres in $S^{4}$ from 1-. spheres and l-cells in $S^{3}$. Their techniques are used to establish isomorphism theorems relating the fundamental groups of the complements of the constructed 3-spheres and the fundamental groups of the corresponding complements of the given 2-spheres. In Case (I) it is shown that the second homotopy groups of the complements of the constructed 3spheres are trivial. Method (2) is also used to construct a 3-sphere in $S^{4}$, one complementary domain of which is simply connected but is not an open 4-cell. The third construction is considered because it seems to give the simplest scheme (in fact the only scheme of which I am aware) for showing the existence of a 3-sphere in $S^{4}$ such that one complementary danain has a closure which is a closed 4-cell, and the other complementary domain is an open 4 -cell but its closure is not a closed 4-cell.

## CHAPTER II

## ALMOST LOCALIT POLYHEDRAL 2-SPHERES IN $S^{3}$

Let $K$ be a set in a geometric complex C.
Definition 2.1. $K$ is locally polyhedral at a point $p$ of $K$ if there is an open set $U$ containing $p$ such that $C l U K$ is a polyhedron in C . $K$ is said to be locally polyhedral if it is locally polyhedral at each point of its points.

Definition 2.2. $K$ is tamely embedded in $C$ if there is a homeomorphism of $C$ onto itself that carries $K$ onto a polyhedron.

Definition 2.3. $K$ is locally tamely embedded in $C$ if for each point $p$ of $K$ there is a neighborhood $N$ of $p$ and a homeomorphism $h_{p}$ of $C l N$ onto a polyhedron in $C$, such that $h_{p}(C I N \cap K)$ is a polyhedron.

We will frequently have occasion to use the fact that a locally tamely embedded 2-manifold in a 3-manifold is tamely embedded [6, 15].

Lemma 2.1. Let $T$ be a torus in $E^{3}$ that is the union of two locally tame annuli, $A_{1}$ and $A_{2}$, which meet along their common boundary curves $a_{1}$ and $a_{2}$. Then $T$ is tamely embedded in $E^{3}$.

Proof. Let $a_{3}$ be a simple closed curve on $A_{2}$ which is homologous to both $a_{1}$ and $a_{2}$ on $A_{2}$. Let $A_{21}$ be the annulus on $A_{2}$ which is determined by $a_{1}$ and $a_{3}$, and let $A_{22}$ be the anmulus on $A_{2}$ which is determined by $a_{2}$ and $a_{3}$. Let $f_{1}$ be a space homeomorphism taking $A_{1}$ onto a polyhedral annulus. By Theorem 2 of [14], there exists a space homeomorphism $f_{2}$ which is the identity on $f_{1}\left(A_{1}\right)$ and
carries $f_{1}\left(A_{2}\right)$ onto a set which is locally polyhedral, except on $f_{1}\left(a_{1}\right) \cup f_{1}\left(a_{2}\right)$.

Let $\varepsilon=\frac{1}{2} \min \left\{\rho\left[f_{2} f_{1}\left(a_{1}\right), f_{2} f_{1}\left(A_{22}\right)\right], \rho\left[f_{2} f_{1}\left(a_{2}\right), f_{2} f_{1}\left(A_{21}\right)\right]\right\}$, and let $J_{1}$ be an $\varepsilon$-neighborhood of $f_{2} f_{1}\left(a_{1}\right)$ and $J_{2}$ be an $\varepsilon$-neighborhood of $f_{2} f_{1}\left(a_{2}\right)$. By Lemma 5.2 of [15], there is a space homeomorphism $f_{3}$ which is the identity on $f_{2} f_{1}\left(A_{1}\right) \cup\left(E^{3} \backslash U_{1}\right)$ and carries $f_{2} f_{1}\left(A_{1} \cup A_{21}\right)$ onto a polyhedron: We again apply Lemma 5.2 of [15] to obtain a space homeomorphism $f_{4}$ which is the identity on $f_{3} f_{2} f_{1}\left(A_{1}\right) \cup\left(E^{3} \backslash U_{2}\right)$ and carries $f_{3} f_{2} f_{1}\left(A_{1} \cup A_{22}\right)$ onto a polyhedron. The mapping $f=f_{4} f_{3} f_{2} f_{1}$ is then a space homeomorphism which carries $T$ onto a polyhedron.

Definition 2.4. A $k$-manifold $M$ in $E^{n}$ is said to be locally peripherally unknotted at $x$ if for each positive $\varepsilon$ there is a closed $n$-cell of diameter less that $\varepsilon$ whose interior contains $x$, such that the boundary of the $n$-cell and $M$ meet in a locally peripherally unknotted cell or sphere, according as $x$ lies on the boundary of $M$ or not. A O-cell or 0 -sphere is considered to be locally peripherally unknotted. If $M$ is locally peripherally unknotted at each of its points, then we say $M$ is locally peripherally unknotted and use the corresponding abbreviatimon LPD .

An investigation of the proof of Theorem 1 of [12] shows that the conclusions of the theorem may be obtained under slightly weaker hypotheses. Since in the proof of the theorem the IP U property is used only at the points of $U$, the theorem may be restated as follows.

Theorem 2.1. Let $M$ be a topological 2-manifold without boundary in $E^{3}$ that is $L P O$ on an open set $U$ of $M$. Let $\varepsilon>0$ and $A$ a
component of $E^{3} \backslash M$. Then there is a space homeomorphism $h$ such that
(I) $h(U) \subset A$,
(2) $\rho(x, h(x) ;<\varepsilon$,
(3) $x \in M \backslash U$ implies $h(x)=x$.

Definition 2.5. Let $\Psi$ be a semi-linear mapping of a right prism $P$ onto the solid torus $B$ such that, if corresponding points of the two bases of $P$ are identified, the mapping then induced by $\Psi$ is a homeomorphism. Let $e$ be the boundary of the lower base of $P$. Those simple closed curves on Bd B which are homologous to $\Psi(e)$ are called meridians of $B$. A polyhedral disk $D$, such that Int $D \subset$ Int $B$ and such that $B d D$ is a meridian of $B$, is called a meridinal disk of $B$. Definition 2.6. Suppose that $K$ is a polyhedral 3-cell in $E^{3}$. By a chord of $K$ is meant an oriented polygonal arc $u$ whose end points lie on $\mathrm{Bd} K$, but which is otherwise contained in the interior of K . Let the end points of $u$ be joined by an arc $w$ on $B d K$. The chord $u$ is said to be an unknotted chord of $K$ if and only if $u U w$ is an unknotted simple closed curve (bounds a disk in $E^{3}$ ). It is shown in [17, p. 155] that the knot type of $u \mathrm{UW}$ is independent of the choice of w $\subset$ Bd K.

Definition 2.7. Let $k_{1}$ and $k_{2}$ be two knots in $E^{3}$. Let $S$ be a polyhedral 2-sphere in $E^{3}$, and denote by $C_{1}$ and $C_{2}$ the closures of the two components of $E^{3} \backslash S$. Choose a polygonal arc $w$ on $S$ with endpoints $x$ and $y$. Then choose chords $u_{1}$ (from $x$ to $y$ ) and $u_{2}$ (from $y$ to $x$ ) of $C_{1}$ and $C_{2}$ respectively, each with endpoints $x$ and $Y$, such that $u_{1} U W$ (oriented as $u_{1}$ ) is a representative of the
knot $k_{1}$, and $u_{2} U w$ (oriented as $u_{2}$ ) is a representative of $k_{2}$. The knot represented by the oriented polygon $u_{1} \cup u_{2}$ is defined to be the product of the knots $k_{1}$ and $k_{2}$. It is shown in [17, p. 156] that the identity (the knot represented by a plane circle) cannot be expressed as a knot product containing non-identity factors.

Let $A^{\prime}=\left\{(x, y, z) \varepsilon E^{3} \left\lvert\, x^{2}+\left(y-\frac{1}{2}\right)^{2}+z^{2}<\frac{1}{4}\right.\right\}$,
$C^{\prime}=\left\{(x, y, z) \in E^{3} \mid x^{2}+y^{2}+z^{2}<1\right\}$, and for $i=1,2, \ldots$ let $\pi_{i}$ be the plane $y=\frac{i}{i+1}$. Let the following symbols denote the indicated subsets of $E^{3}$.
$D_{i}{ }^{\prime}: \pi_{i} \cap C A^{\prime}$
$d_{i}: B d D_{i}^{\prime}$
$G_{o}{ }^{\prime}$ : Component of $B d A^{\prime} \backslash d_{i}{ }^{\prime}$ which contains ( $0,0,0$ )
$G_{i}{ }^{\prime}$ : open annulus on $B d A^{\prime}$ determined by $d_{i}{ }^{\prime}$ and $d_{i+1}^{\prime}$
$A_{0}^{\prime}$ : component of $E^{3} \backslash\left(G_{0}^{\prime} \cup D_{i}^{\prime}\right)$ which does not con$\operatorname{tain}(0,1,0)$.
$A_{i}{ }^{\prime}$ : component of $E^{3} \backslash\left(G_{i}^{\prime} \cup D_{i}^{\prime} \cup D_{i+1}^{\prime}\right)$ which does not contain ( $0,1,0$ )
$E_{i}{ }^{\prime}: \pi_{i} \cap C 1 c^{\prime}$
$e_{i}{ }^{\prime}: \operatorname{Bd} E_{i}{ }^{\prime}$
$H_{0}{ }^{\prime}$ : component of $\mathrm{Bd} \mathrm{C}^{\prime} \backslash \mathrm{e}_{1}{ }^{\prime}$ which contains $(0,-1,0)$
$H_{i}^{\prime}$ : open annulus on Bd $C^{\prime}$ determined by $e_{i}^{\prime \prime}$ and $e_{i+1}^{\prime}$
$J_{i}^{\prime}$ : the frustum of a cone determined by $e_{i}^{\prime}$ and $d_{i+1}^{\prime}$
$T_{0}{ }^{\prime}: H_{0}{ }^{\prime} \cup J_{1}{ }^{\prime} \cup C l_{1} G_{0}{ }^{\prime} \cup G_{1}{ }^{\prime}$
$T_{i}^{\prime}: J_{i}^{\prime} \cup H_{i}^{\prime} \cup J_{i+1}^{\prime} \cup G_{i+1}^{\prime}$
$R_{i}{ }^{\prime}$ : union of $T_{i}{ }^{\prime}$ and its bounded complementary domain.

Let $K$ be a 2-sphere in $E^{3}$ that is locally polyhedral except at a single point $p$. According to Lemma 3 of [11], there is a component $E_{p}$ of $E^{3} \backslash K$, and a sequence $D_{1}, D_{2}, \ldots$ of disjoint polyhedral disks in $C 1 E_{p}$, such that (1) for each $i$, $D_{i} \cap K$ is the boundary $d_{i}$ of $D_{i}$, (2) the diameter of $p \cup D_{i}$ is less than $1 / i$, and (3) for each $i, d_{i+1}$ separates $p$ from $d_{i}$. Let the following symbols denote the indicated subsets of $C 1 E_{p}$.
$G_{0}$ : component of $K \backslash d_{1}$ which does not contain $p$ $G_{i}$ : open annulus on $K$ determined by $d_{i}$ and $d_{i+1}$ $A_{0}$ : component of $E^{3} \backslash\left(G_{0} \cup D_{1}\right)$ which does not contain $p$ $A_{i}$ : component of $E^{3} \backslash\left(G_{i} \cup D_{i} \cup D_{i+1}\right)$ which does not contain p.

In the proof of Theorem 1 of [17] a homeomorphism $\sigma$, taking CI $A^{\prime}$ onto Cl $E_{p}$ (compactified at infinity if $E_{p}$ is the unbounded component of $E^{3} \backslash K$, was constructed which carries the "primed" subsets of Cl $A^{\prime}$ onto the corresponding "unprimed" subsets of Cl $E_{p}$.

Lemma 2.2. There exists a 2-sphere $L$ in $E^{3}$ such that ' $E_{p}$ is contained in one complementary domain $E$ of $E^{3} \backslash L$ and $L \cap K=p$. Furthermore, there is a homeomorphism of Cl C' onto Cl E (compactified at infinity if necessary) such that $I$ agrees with $\sigma$ on $C 1 A^{\prime}$.

Proof: Let $A$ denote the bounded component of $E^{3} \backslash K$ and $B$ the unbounded component. We will first assume $E_{p}=A$.

Let $\varepsilon_{0}, \varepsilon_{1}, \ldots$ be a sequence of positive numbers which converges to zero. By Theorem 2.1, there is a space homeomorphism $h_{0}$ such that
(1) $h_{0}\left(C I G_{0} \cup G_{1}\right) \subset B$,
(2) $\rho\left(x, h_{0}(x)\right)<\varepsilon_{0}$, and
(3) $x \in K \backslash\left(C 1 G_{0} \cup G_{1}\right)$ implies $h_{0}(x)=x$. Since $C 1 G_{0} \cup C l G_{1}$ is locally polyhedral and $h_{0}$ is a space homeomorphism, it follows that $h_{0}\left(\mathrm{Cl}_{\mathrm{o}} \cup \mathrm{Cl} \mathrm{G}_{1}\right)$ is a locally tame disk. It follows, from Theorem 9.3 of [15], that $T_{0}=C l G_{0} \cup C l G_{1} \cup h_{0}\left(C l G_{0} \cup C l G_{1}\right)$ is a tame 2sphere. Hence the closure of the bounded complementary domain of $T_{0}$ is a closed 3-cell [1].

Let $h_{0}{ }^{\prime}$ be a homeomorphism of the disk $H_{0}{ }^{\prime} \cup J_{1}{ }^{\prime}$ onto G ( $G_{0}^{\prime} \cup G_{1}^{\prime}$ ) which is the identity on $d_{2}^{\prime}$ and carries $e_{1}^{\prime}$ onto $d_{1}{ }^{\prime}$. Now define a homeomorphism $\sigma_{0}$ of $T_{0}{ }^{\prime}$ onto $T_{0}$ by the equations

$$
\begin{array}{ll}
\sigma_{0}(x)=h_{0} \sigma_{0}^{\prime}(x), & x \in H_{0}^{\prime} \cup J_{1}^{\prime} \\
\sigma_{0}(x)=\sigma(x) \quad, & x \in C l\left(G_{0}^{\prime} \cup G_{i}^{\prime}\right) .
\end{array}
$$

Since the spheres $T_{0}{ }^{\prime}$ and $T_{0}$ are boundaries of closed 3-cells, $\sigma_{0}$ can be extended to their respective interiors. This extension will also be denoted by $\sigma_{0}$.

For each positive integer $i$ we will associate a mapping $\sigma_{i}$ with $\sigma_{i-1}, \sigma_{i-2}, \ldots, \sigma_{0}$ by the following construction.

For $j=0,1, \ldots, i-1$ denote the following subsets of $E^{3}$ as indicated.

$$
\begin{aligned}
& E_{j+1}: \sigma_{j}\left(E_{j+1}^{\prime}\right) \\
& e_{j+1}: \sigma_{j}\left(e_{j+1}^{\prime}\right) \\
& J_{j+1}: \sigma_{j}\left(J_{j+1}^{\prime}\right) \\
& \mathrm{H}_{j}: \sigma_{j}\left(\mathrm{H}_{j}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& B_{j} \text { : unbounded component of } E^{3} \backslash K_{j}
\end{aligned}
$$

We again apply Theorem 2.1 to obtain a space homeomorphism $h_{i}$ such that (1) $h_{i}\left(\operatorname{Int} J_{i} \cup d_{i+1} \cup G_{i+1}\right) \subset B_{i-1}$, (2) $\rho\left(x, h_{i}(x)\right)<\varepsilon_{i}$, and (3) $x \in K_{i-1} \backslash\left(\operatorname{Int} J_{i} \cup d_{i+1} \cup G_{i+1}\right)$ implies $h_{i}(x)=x$. Since $J_{i} \cup C l G_{i+1}$ is locally tame and $i_{i}$ is a space homeomorphism, it follows that $h_{i}\left(J_{i} \cup C 1 G_{i+1}\right)$ is locally tame. These two locally tame annuli meet along their common boundary curves $e_{i}$ and $d_{i+2}$, and hence their union is, by Lemma 2.1, a tame torus. Let us denote this torus by $T_{i}$. The bounded complementary domain of $T_{i}$ is the common part of the interiors of the tame spheres

$$
s_{i l}=E_{i} \cup J_{i} \cup G_{i+1} \cup D_{i+2}
$$

and

$$
S_{i 2}=E_{i} \cup h_{i}\left(J_{i} \cup G_{i+1}\right) \cup D_{i+2}
$$

Furthermore, by the construction of the sphere $S_{i 2}$, it is evident that the image under $\sigma$ of the segnent of the $y$-axis between $d_{i}$ and $d_{i+2}$ is an unknotted chord of each of the cells bounded by $S_{i l}$ and $S_{i 2}$. Hence, by Hilfsatz 1, p. 167 of [17], it follows that the union of $T_{i}$ and its bounded complementary domain is an unknotted solid torus. Denote this solid torus by $R_{i}$.

Let $h_{i}^{\prime}$ be a homeomorphism of $C l H_{i}^{\prime} \cup J_{i+1}^{\prime}$ onto $J_{i}^{\prime} \cup C 1 G_{i+1}^{\prime}$ which leaves $e_{i}^{\prime}$ and $d_{i+2}^{\prime}$ fixed and carries $e_{i+1}^{\prime}$ onto $d_{i+1}^{\prime}$. Now define a homeomorphism $\sigma_{i}$ of $T_{i}^{\prime}$ onto $T_{i}$ by the equations

$$
\begin{aligned}
& \sigma_{i}(x)=h_{i} \sigma_{i-1} h_{i}^{\prime}(x), x \in H_{i}^{\prime} \\
& \sigma_{i}(x)=h_{i} \sigma_{i}^{\prime}(x), \quad x \in J_{i+1}^{\prime} \\
& \sigma_{i}(x)=\sigma_{i-1}(x) \quad, \quad x \in J_{i}^{\prime} \\
& \sigma_{i}(x)=\sigma(x) \quad, \quad x \in G_{i+1}^{\prime} .
\end{aligned}
$$

This gives a homeomorphism between the boundaries of the solid tori $R_{i}{ }^{\prime}$ and $R_{i}$. To be able to extend this homeomorphism to their interiors it will suffice to exhibit a pair of meridian curves on $\mathrm{Bd}_{\mathrm{R}_{i}}{ }^{\prime}$ which are carried by $\sigma_{i}$ onto meridian curves of $B d R_{i}$ [17].

Let $k_{i l}^{\prime}$ be the intersection of the half plane $x=0, z>0$ and $T_{i}^{\prime}$, and $\mathcal{C}_{i l}^{\prime}$ the intersection of the half plane $x=0, z<0$ and $T_{i}{ }^{\prime}$. The assertion is that $k_{i l}^{\prime}$ and $l_{i l}^{\prime}$ are simple closed curves of the desired type. We will show that $\sigma_{i}\left(k_{i l}^{\prime}\right)$ is a meridian curve of Bd $R_{i}$. That $\sigma_{i}\left(l_{i l}^{\prime}\right)$ is also a meridian curve of $B d R_{i}$ would follow by a similar argument.

Let $\pi$ be the half plane $x=0, z>0$ and let $u_{i l}^{\prime}$ be the oriented arc from $y^{\prime}=\pi \cap d_{i+2}^{\prime}$ to $x^{\prime}=\pi \cap e_{i}^{\prime}$ which lies in $\pi \cap\left(H_{i}^{\prime} \cup J_{i+1}^{\prime}\right)$. Let $w_{i}^{\prime}$ be the arc from $y^{\prime}$ to $x^{\prime}$ which lies in $\pi \cap\left(J_{i}^{\prime} \cup G_{i+1}^{\prime}\right)$. Let $u_{i 2}^{\prime}$ be an oriented arc from $x^{\prime}$ to $y^{\prime}$ which leads from $x^{\prime}$ to the $y$-axis in $E_{i}^{\prime}$, then follows the $y$-axis to $d_{i+2}^{\prime}$, and then leads to $y^{\prime}$ in $d_{i+2}^{\prime}$. Let $k_{i l}^{\prime}=u_{i l}^{\prime} U w_{i}^{\prime}, k_{i 2}^{\prime}$ $=u_{i 2}^{\prime} U w_{i}^{\prime}$, and $k_{i 3}^{\prime}=u_{i 1}^{\prime} U u_{i 2}^{\prime}$, each with the orientation of $u_{i 1}^{\prime}$ and $u_{i 2}^{\prime}$. Finally let $u_{i 1}, u_{i 2}, w_{i}, k_{i 1}, k_{i 2}$, and $k_{i 3}$ be the images under $\sigma_{i}$ of the corresponding "primed" sets. Since $k_{i 3}^{\prime}$ bounds a disk in the cell bounded by $E_{i}^{\prime} \cup H_{i}^{\prime} \cup J_{i+1}^{\prime} \cup D_{i+2}^{\prime}$, it follows that
$k_{i 3}$ bounds a disk in the cell bounded by $S_{i 2}$. Hence $k_{i 3}$ represents the identity knot and we have it given as the product of the knots represented by $k_{i l}$ and $k_{i 2}$. Thus $k_{i l}$ represents the identity knot. $A$ disk $F_{i}$ bounded by $k_{i l}$ can then be found which, with the exception of the arc $U_{i l}$ on its boundary, lies in the interior of $S_{i 2}$. If $F_{i}$ intersects $J_{i} \cup G_{i+1}$ only in $w_{i}$ then $F_{i}$ is a meridinal disk at $R_{i}$. Suppose, on the other hand, that there are components $a_{1}, a_{2}, \ldots, a_{n i}$ of $F_{i} \cap\left(J_{i} \cup G_{i+1}\right)$ other than $w_{i}$. Then let $a_{j}$ be a component which contains no other such component in its interior (relative to $J_{i} \cup G_{i+1}$ ). Let $X$ be the disk of $J_{i} \cup G_{i+1}$ bounded by $a_{j}$, and let $Y$ be the subdisk of $F_{i}$ bounded by $a_{j}$. Then define $F_{i}^{\prime}=\left(F_{i} \backslash Y\right) \cup X$, and deform $F_{i}{ }^{\prime}$ semilinearly away from $J_{i} \cup G_{i+1}$ in a sufficiently smand neighborhood of $X$ that no new intersections with $S_{i l}$ or $S_{i 2}$ are introduced. The disk $F_{k}^{\prime \prime}$ thus produced is bounded by $k_{i}$, and has one less intersection with $J_{i} \cup G_{i+1}$ than $F_{i}$. In this way each of the $a_{j}$ may be eliminated to obtain a disk $F_{i}^{*}$ which, except for its boundary $k_{i l}$, is in the interior of $R_{i}$.

The extension of $\sigma_{i}$ will also be denoted by $\sigma_{i}$. The desired sphere $L$ is taken to be $\bigcup_{i=0}^{\infty} C l H_{i} U p$ and $\Psi$ is defined by the equations

$$
\begin{aligned}
& \Psi(x)=\sigma(x), \quad x \in C I A^{\prime} \\
& \Psi(x)=\sigma_{0}(x), \quad x \in R_{0}^{\prime} \\
& \Psi(x)=\sigma_{i}(x), \quad x \in R_{i}^{\prime}, i=1,2, \ldots .
\end{aligned}
$$

Lemme 2.3. There is a continuous mapping $g$ of $C l C^{\prime}$ onto $C 1 C^{\prime}$ such that
(1) $g$ is fixed on $B d C^{\prime}$,
(2) $g$ is a homeomorphism of $C l C^{\prime} \backslash C l A^{\prime}$ onto Cl C' $\backslash(0,1,0)$, and
(3) $g\left(C l A^{\prime}\right)=(0,1,0)$.

Proof. For $x \in C l C^{\prime} \backslash C l A^{\prime}$ let $X$ be the vector from ( $0,1,0$ ) to $x$ and $L$ the line determined by $(0,1,0)$ and $x$. Let $x_{1}$ be the point of intersection of $L$ and $B d A^{\prime}$ and $x_{2}$ the point of intersection of $L$ and $B d C^{\prime}$. Let $d x=\rho((0,1,0), x), e x=\rho\left((0,1,0), x_{1}\right)$, and $f x=\rho\left((0,1,0), x_{2}\right)$. For $x \in \operatorname{Cl}\left(A^{\prime}\right)$ let $g(x)=(0,1,0)$ and for $x \in C l C^{\prime} \backslash C l A^{\prime}$ let $g(x)$ be the terminal point of the vector $\frac{(d x-e x)(f x+d x)}{2 d x(f x-e x)} X$. It is evident that $g$ has the desired properties. Theorem 2.2. Let $K$ be a 2-sphere in $E^{3}$ that is locally polyhedral except at a single point $p$. Let the interior and exterior of $K$ be $A$ and $B$ respectively. Then,
(1) either Cl A or CI B (compactified at infinity) is a closed 3-cell, and
(2) the other complementary domain (compactified at infinity if necessary) is an open 3-cell.

Proof. ' Statement (1) is Theorem 1 of [1]].
Suppose A is the domain such that Cl A is a closed 3-cell. Let I, $L$, and $E$ be as in the conclusion of Lemma 2.2. Let $g$ be the mapping of CI C' onto CI C' defined in Lemma 2.3. Define a continuous mapping $f$ of $E^{3}$ onto $E^{3}$ by the equations

$$
\begin{array}{ll}
f(x)=x \quad, & x \in E^{3} \backslash E, \\
f(x)=\Psi g Y^{-1}(x), & x \in E .
\end{array}
$$

From the definitions of the mappings $\Psi$ and $g$ it is clear that $f$ is a mapping of $E^{3}$ onto $E^{3}$ which takes $B$ homeomorphically onto $E^{3} \ p$. Thus B (compactified at infinity) is an open 3-cell.

A similar argument will apply in case Cl B is a closed 3-cell, to show that $A$ is then an open 3-cell.

Theorem 2.3. If $K$ is a 2-sphere in $E^{3}$ that is locally polyhedral except at two points $p$ and $q$, then either
(1) Cl A or Cl B (compactified at infinity) is a closed 3-cell,
or
(2) both $A$ and $B$ (compactified at infinity) are open 3-cells.

Proof. According to Lenma 2 of [11] we may associate with the point $p$ a certain domain $E_{p}$ of $E^{3} \backslash K$ and a sequence $\left\{D_{p i}\right\}_{i=1}^{\infty}$ of disjoint polyhedral disks in Cl $E_{p}$ such that (1) for each. i, $D_{p i} \cap K$ is the boundary $d_{p i}$ of $D_{p i}$, (2) the diameter of $p \cup D_{p i}$ is less than $\frac{l}{i}$, and (3) for each $i$ in $d_{p(i+1)}$ separates $p$ from $d_{p i}$ in $K$.

Similarly, let $E_{q}$ be a domain of $E^{3} \backslash K$ and $\left\{D_{q i}\right\}_{i=1}^{\infty}$ a sequence of disjoint polyhedral disks in $C l E_{q}$ such that (l) for each $i$, $D_{q i} \cap K$ is the boundary $d_{q i}$ of $D_{q i}$, (2) the diameter of $q U D_{q i}$ is less than $\frac{1}{i}$, and (3) for each $i$, $d_{q(i+1)}$ separates $q$ from $d_{q i}$ in K .

First suppose $E_{p}=E_{q}=A$. By taking subsequences, if necessary, we may assume that for each pair of integers $i$ and $j$ (1) $D_{p i} \cap D_{q j}=\square$, (2) the disk ${ }_{\text {qi }}$ is in the closure of the bounded component of $E^{3} \backslash\left(K \cup D_{p i}\right)$ which has $q$ as a limit point.

Let $G_{0}$ be the annulus on $K$ determined by $D_{p l}$ and $D_{q l}$ and for $i>0$, let $G_{p i}$ be the annulus on $K$ determined by $D_{p i}$ and $\mathrm{D}_{\mathrm{p}(\mathrm{i}+1)}$ and $\mathrm{G}_{\mathrm{qi}}$ the annulus determined by $\mathrm{D}_{\mathrm{qi}}$ and $\mathrm{D}_{\mathrm{q}(\mathrm{i}+1)}$. Denote the sphere $G_{0} \cup D_{p l} \cup D_{q l}$ by $K_{0}$, and for $i>0$ denote the sphere $G_{p i} \cup D_{p i} \cup D_{p(i+1)}$ by $K_{p i}$, and the sphere $G_{q i} \cup D_{q i} \cup D_{q(i+1)}$ by $K_{q i}$. Let $A_{0}$ be the bounded component of $E^{3} \backslash K_{o}$, and for $i>0$ let $A_{p i}$ be the bounded component of $E^{3} \backslash K_{p i}$ and $A_{q i}$ the bounded component of $E^{3} \ K_{q i}$. By [l] we know that $C l A_{0}, C l A_{p i}$, and $C l A_{q i}$, $i=1,2, \ldots$, are closed 3-cells.

Let $K^{\prime}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$ and $A^{\prime}$ the bounded component of $E^{3} \backslash K^{\prime}$. For each $i>0$ let $\pi_{p i}$ be the plane perpendicular to the $y$-axis at $\left(0, \frac{i}{i+1}, 0\right)$ and $\pi_{q i}$ the plane perpendicular to the $\bar{y}$-axis at $\left(0,-\frac{i}{i+1}, 0\right)$. Define $D_{p i}^{\prime}=\pi_{p i} \cap C 1 A^{\prime}, D_{q i}^{\prime}=\pi_{q i} \cap C I A^{\prime}, i=1,2, \ldots$, and let the sets $G_{0}^{\prime}, G_{p i}^{\prime}, K_{0}^{\prime}, K_{p i}^{\prime}, K_{q i}^{\prime}, A_{0}^{\prime}, A_{p i}^{\prime}$ and $A_{q i}^{\prime}$ correspond to the "unprimed" sets above.

A homeomorphism of Cl $A^{\prime}$ onto $C l A$ is obtained by first using the lemma on page 40 of [10] to map the boundaries of $A_{0}^{\prime}, A_{p i}^{\prime}$, and $A_{q i}^{\prime}, i=$ $1,2, \ldots$, onto the boundaries of the corresponding $A_{0}, A_{p i}$ and $A_{q i}$ such that the disks $D_{p i}^{\prime}$ and $D_{q i}^{\prime}, i=1,2, \ldots$, are mapped onto the corresponding $D_{p i}$ and $D_{q i}$. Then [1] is used to extend this homeomorphism to their respective interiors. This gives a homeomorphism $h$ of

$$
\left.C l A_{0}^{\prime} \cup\left[\bigcup_{i=1}^{\infty} C l A_{p i}^{\prime}\right] \cup\left[\bigcup_{i=1}^{\infty} C l A_{q i}^{\prime}\right]=C l A^{\prime} \backslash[0,-1,0) \cup(0,1,0)\right]
$$

onto $C l A \backslash(p \cup q)$. By defining $h(0,-1,0)=q$ and $h(0,1,0)=p$ we have a homeomorphism of the closed 3-cell Cl A' onto Cl A.

A similar argument may be used when $E_{p}=E_{q}=B$.
The alternative case $\mathrm{E}_{\mathrm{p}} \neq \mathrm{E}_{\mathrm{q}}$ will now be considered. Suppose $E_{p}=A$. We will show that $A$ is an open 3-cell. A sinilar argument would show that $B$ (compactified at infinity) is also an open 3-cell.

Let the sequence of polyhedral disks $\left\{D_{p i}\right\}_{i=1}^{\infty}$ be defined as above. We may assume that for each $i, d_{p i}$ separates $p$ and $q$ in $K$. For each $i>0$, let $H_{i}$ be the component of $K \backslash d_{p i}$ which does not contain $p$. Denote $H_{i} \cup D_{p i}$ by $K_{i}$ and the bounded component of $E^{3} \backslash K_{i}$ by $A_{i}$. Since each $K_{i}$ is locally polyhedral except at the point $q$, we have, by Theorem 2.2, that each $A_{i}$ is an open 3-cell. Since $A$ is the union of the increasing sequence of open 3-cells $A_{i}$, $i=1,2, \ldots$, it follows from [9] that $A$ is an open 3-cell.

Let $K$ be a 2-sphere in $E^{3}$ that is locally polyhedral except at the three points $p, q$ and $r$. Associate with the points $p, q$, and $r$, respectively, certain domains $E_{p}, E_{q}$, and $E_{r}$ of $E^{3} \backslash K$ and the sequences of polyhedral disks $\left\{D_{p i}^{\infty}\right\}_{i=1}^{\infty},\left\{D_{q i}\right\}_{i=1}^{\infty}$ and $\left\{D_{r i}\right\}_{i=1}^{\infty}$ in accordance with Lemma 2 of [7]].

Theorem 2.4.
(1) If $E_{p}=E_{q}=E_{r}$, then $C l\left(E_{p}\right)$ (compactified at infinity if $E_{p}=B$ ) is a closed 3-cell.
(2) If $E_{p}, E_{q}$, and $E_{r}$ do not coincide, say $E_{p}=E_{q} \neq E_{r}$, then $\mathrm{E}_{\mathrm{p}}$ (compactified at infinity if $\mathrm{E}_{\mathrm{p}}=\mathrm{B}$ ) is an open 3-cell. Proof of (1).
Suppose $E_{p}=E_{q}=E_{r}=A$. We may assume that for each triple $i$, $j, k$ of positive integers that
(1) $\left(D_{p i} \cap D_{q j}\right) \cup\left(D_{p i} \cap D_{r k}\right) \cup\left(D_{q j} \cap D_{r k}\right)=\square$,
(2) $D_{p i} \cup D_{q j}$ is in the closure of the bounded component of $E^{3} \backslash\left(K \cup D_{\text {Pk }}\right)$ which does not have $r$ as a limit point,
(3) $D_{p i} \cup D_{r k}$ is in the closure of the bounded component of $\mathrm{E}^{3} \backslash\left(\mathrm{~K} \cup \mathrm{D}_{\mathrm{qj}}\right)$ which does not have q as a limit point, and (4) $D_{q j} \cup D_{r k}$ is in the closure of the bounded component of $E^{3} \backslash\left(K \cup D_{p i}\right)$ which does not have $p$ as a limit point. Let $G_{0}$ be the component of $E^{3} \backslash\left(K \cup d_{p l} \cup d_{q I} \cup d_{r l}\right)$ which contains neither $p, q$, nor $r$. Let $K_{o}=G_{0} \cup D_{p l} \cup D_{q 1} \cup D_{r l}$ and $A_{0}$ the bounded component of $E^{3} \backslash K_{0}$. For $i>0$ define the sets $G_{p i}, G_{q i}, G_{r i}, K_{p i}, K_{q i}, K_{r i}, A_{p i}, A_{q i}$, and $A_{r i}$ as indicated in the proof of statement ( 1 ) of Theorem 2.3.

Let $K^{\prime}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$ and $A^{\prime}$ the interior of $K^{\prime}$. For $i>0$ let $\pi_{p i}$ be the plane perpendicular to the $y$-axis at $\left(0, \frac{i+2}{i+3}, 0\right), \pi_{q i}$ the plane perpendicular to the $y$-axis at ( $0,-\frac{i+2}{i+3}, 0$ ), and $\pi_{r i}$ the plane perpendicular to the 2 -axis at $\left(0,0, \frac{i+2}{i+3}\right)$. For $i>0$ define $D_{p i}^{\prime}=\pi_{p i} \cap C 1 A^{\prime}, D_{q i}^{\prime}=\pi_{q i}$ $\cap C l A^{\prime}$, and $D_{r i}=\pi_{r i} \cap C 1 A^{\prime}$. Let the sets $G_{0}^{\prime}, G_{p i}^{\prime}, G_{q i}^{\prime}, G_{r i}^{\prime}$ $K_{0}^{\prime}, K_{p i}^{\prime}, K_{q i}^{\prime}, K_{r i}^{\prime}, A_{0}^{\prime}, A_{p i}^{\prime}, A_{q i}^{\prime}$, and $A_{r i}^{\prime}$ correspond to the "unprimed" sets above.

The spheres $G_{0}^{\prime}, G_{p i}^{\prime}, G_{q i}^{\prime}$, and $G_{r i}^{\prime}$ are mapped onto the correspending spheres $G_{0}, G_{p i}, G_{q i}$, and $G_{r i}$ by [10], and then [1] is used to extend this mapping to their respective interiors. This gives a
homeomorphism $h$ of

$$
\begin{aligned}
C 1 A_{0}^{\prime} U\left[\bigcup_{i=1}^{\infty} C 1 A_{p i}^{\prime}\right] & U\left[\bigcup_{i=1}^{\infty} \text { Gl } A_{q i}^{\prime}\right] \cup\left[\begin{array}{ccc}
\bigcup_{i=1}^{\infty} & C 1 & A_{p i}^{\prime}
\end{array}\right] \\
& =C 1 A^{\prime} \quad \backslash[(0,1,0) \cup(0,-1,0) \cup(0,011)]
\end{aligned}
$$

onto $C l A \backslash(p \cup q \cup r)$. By defining $h(0,1,0)=p, h(0,-1,0)$ $=q$, and $h(0,0,1)=r$, we have a homeomorphism of $C l A^{\prime}$ onto Cl A.

Proof of (2).
Suppose $E_{p_{\infty}}=E_{q}=A$ and $E_{r}=B$. Let the sequences of polyhedral disks $\left\{D_{p i}\right\}_{i=1}^{\infty}$ and $\left\{D_{q i}\right\}_{i=1}^{\infty}$ be defined as above. For each pair $i$, $j$ of positive integers we may assume that $r$ is on the annulus $D_{i j}$ of $K$ determined by $D_{p i}$ and $D_{q j}$. For each $i>0$ let $K_{i}=D_{i i}$ $U D_{p i} \cup D_{q i}$ and $A_{i}$ the bounded component of $E^{3} \backslash K_{i}$. Each $K_{i}$ is a 2-sphere, locally polyhedral except at $r$. Hence by Theorem 2.2, each $A_{i}$ is an open 3-cell. Since $A$ is the union of the increasing sequince of open 3-cells $A_{i}$, it follows that $A$ is an open 3-cell.

Let us consider the following subsets of $E^{n}$ :

$$
\begin{aligned}
& A=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq 1\right\}, \\
& B=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \left\lvert\, x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq \frac{1}{4}\right.\right\}, \\
& C=\left\{\left(x_{1}, x_{2}, \ldots, x_{n} \mid x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq 4\right\},\right. \\
& D=\left\{\left(x_{1}, x_{2}, \ldots, x_{n} \mid x_{1}^{2}+x_{2}^{2}+\ldots+\left(x_{n}+1\right)^{2} \leq 4\right\} .\right.
\end{aligned}
$$

Let $h$ be a homeomorphism taking $B d A$ into the $n$-sphere $S^{n}$ and denote $h(B d A)$ by $S^{n-1}$.

Definition 3.1. We say that $h$ can be tended in one direction along a cylinder if there ists a homeomorphism $f$ of the closed annulus determined by $A$ and $B$ into $S^{n}$, such that for each $x \in B d A$, $f(x)=h(x)$.

Observe that the condition of Definition 3.1 is equivalent to the statement: there ists a homeomorphism $f$ of $\operatorname{BdA} x[0,1]$ into $S^{n}$ such that for each $x \in$ Bd $A, f(x, 0)=h(x)$.

Definition 3.2. We say that $h$ can be extended in both directions along a cylinder if there exists a homeomorphism $f$ of the closed annulus determined by $B$ and $C$ into $S^{n}$ such that for each $x \in B d A$, $f(x)=h(x)$.

The usual formulation of the condition in Definition 3.2 iss there exists a homeomorphism $f$ of $B d A x[-1,1]$ into $S^{n}$, such that for
each $x \in \operatorname{BdA}, f(x, 0)=h(x)$.
Definition 3.3. If $f$ is a continuous mapping of a topological space $X$ into a topological space $Y$, then an inverse set (under $f$ ) is a set $M \subset X$, containing at least two points, and such that for some point $Y \in f(X), M=f^{-1}(y)$.

Definition 3.4. A set $M$ is cellular in an n-dimensional metric space $X$ if there exists $n-c e l l s Q_{1}, Q_{2}, \ldots$ in $X$ such that $Q_{i+1} \subset$ Int $Q_{i}$, and ${ }_{i=1}^{\infty} Q_{i}=M$ 。

The concepts defined in Definitions 3.3 and 3.4 were used by M. Brown to prove the Ceneralized Schoenilles Theorem [8]. Thls theorem is stated as Theorem 3.1 below for the sake of completeness.

Theorem 3.1. If $h$ can be extended in both directions along a cylinder, then the closure of either complementexy domatn of $s^{n-1}$ is a closed n-cell.

Lemms 3.1. There exists a continuous mapping 8 of the annulus (Bd A) $x[0,1]$ onto a closed n-cell such that the only inverse set is $(\operatorname{Bd} A) \times\{1\}$.

Proof. We may take the amolus to be the one determined by $A$ and $B$, with (Bd A) $x\{0\}$ identified with Bd $A$, and (Bd A) $x i$ identified with $B d B$. For $x \in A \backslash B$ let $X$ be the vector from the origin to $x$ and let $d x$ be the length of the vector $X$. For $x \in B$ let $g(x)=(0,0, \ldots, 0)$ and for $x \in A \backslash B$ let $g(x)$ be the terminal. point of the vector $(2 d x-1) X$.

Theorem 3.2. If $h$ can be extended in one direction along a cylinder, then the closure of one complementary domatn of $s^{n-1}$ is a
closed n-cell.
More precisely, if $E$ is the component of $S^{n} \backslash S^{n-1}$ which contrains $f[(\operatorname{Bd} A) \times\{l\}]$, then $C 1 E$ is a closed $n$-cell.

Proof. Let $E^{\prime}$ be the complementary domain of $f[(B d A) x\{l\}]$ which does not contain $S^{n-1}$. We first observe that $C l E^{\prime}$ is a cellular subset of $E$. For, if $E_{i}$ is the complementary domain of $\left\{\left[(B d A) \times\left\{\frac{i}{i+I}\right\}\right]\right.$ which contains $E^{\prime}$, then, by Theorem 3.1, each $C l E_{i}$ is a closed n-cell. Furthermore $C l E_{i+1} \subset E_{i}$ and $\hat{N}_{1}^{\infty} C l E_{i}=C l E^{\prime}$.

Let $g$ be a continuous mapping of (B dA) $x[0,1]$ onto an $n$ cell $Q$ such that ( $\operatorname{Bd} A$ ) $x\{I\}$ is the only inverse set. Define a mapping $k$ of $C l E$ onto $Q$ by the equations

$$
\begin{aligned}
& k(x)=g^{-1}(x), \quad x \in C l E \backslash C l E^{\prime} \\
& k(x)=g(B d A x\{1\}), \quad x \in C l E .
\end{aligned}
$$

The mapping $k$ carries CLE continuously onto the closed n-cell $Q$ such that the only inverse set is the cellular subset $C l E^{\prime}$ of $E$. Thus, by Theorem 2 of [8], Cl E is a closed n-cell.

The local connectedness property of an arc gives the following lemma. Lemma 3.2:. Suppose $L$ is an arc in $E^{n}$ and $p$ is a point of $L$. Given $\varepsilon>0$, there exists $\delta>0$ such that, if $I_{1}$ is any subarc of $I$ whose endpoints lie in $S_{\delta}(p)$, then $I_{1} \subset S_{\cdot}(p)$;

Lemma 3.3. Let $L$ be an arc in $\mathrm{E}^{n}, \mathrm{n}>3$, such that $L$ is locally polyhedral except at a single point $p$. Then, given $\varepsilon>0$, there exists a homeomorphism $h$ of $E^{n}$ onto $E^{n}$ such that $h$ is fixed outside $S_{8}(p)$ : and $h(L)$ is polyhedral.

Proof. We will prove the lerma for $p$ an interior point. Essentially the same proof moy be applied in case $p$ is an endpoint. Let a and $b$ be the endpoints of $L$ and $\nabla_{1}$ the closed cubical neighborhood centered at $p$ of diameter $\varepsilon_{1}=\varepsilon$. For $i=2,3,4, \ldots$ let $\delta_{i}$ be given by Lemma 3.2 for $\varepsilon=\varepsilon_{i-1}$, and let $\varepsilon_{i}=\min \left(\delta_{i}, \frac{\varepsilon_{i-1}}{2}\right)$. Let $\nabla_{i}$ be the closed cubical neighborhood of $p$ of diameter $\varepsilon_{i}$.

By making use of semi-linear deformations in small neighborhoods of the $B d \nabla_{2 i}$, if necessary, we may assume that $L \cap V d \nabla_{2 i}$ is a finite set of points, and that no pair of components of $L \backslash \nabla_{2 i}$ share a common end.pointi: For each integer $i$ let $u_{i l}, \ldots, u_{\text {ie }}$ be the closures of the components of $L \backslash \nabla_{2 i}$ which have both endpoints on $B d V_{2 i}$. Observe that each of these components is contained in the half open annulus Int $\nabla_{2 i-1} \backslash$ Int $V_{2 i}$. Let $w_{i l}$ be a polyhedral arc in $B d V_{2 i}$ which connects the endpoints of $u_{i l}$ and, except for these two points, is disjoint from $L$. The resulting sirmple closed curve $d_{i l}=u_{i l} U w_{i l}$ bounds a polyhedral 2-cell $D_{i l}$ in Int $\nabla_{2 i-1}$, since $n>3$ [10].

If $\left(D_{i l} \cap B d V_{2 i}\right) \backslash w_{i l} \neq \square$, the components that are either points, arcs, or 2-dimensional subsets of $D_{i l}$ may be eliminated by semilinear deformations in small neighborhoods of these components. The components that are simple closed curves may be elininated as follows. Let c be a component which contains no other such component in its interior
(relative to $D_{i l}$ ). Let $Y$ be the subdisk of $D_{i l}$ bounded by $c$, and let $r$ be a point in the complementary domain of $B d V_{2 i}$ opposite to the one containing $Y$. Select $r$ sufficiently close to $B d V_{2 i}$ for $X$ (the join of $r$ and $c$ ) to meet $D_{i l}$ only in $c$. Define $D_{i l}^{\prime}=\left(D_{i l} \backslash Y\right) \cup X$, and deform $D_{i l}^{\prime}$ semi-linearly away from $B d V_{2 i}$ in a sufficiently small neighborhood of $c$, so that no new intersections are introduced. The disk $D_{i l}^{n}$ thus obtained is bounded by $d_{i l}$ and intersects $\mathrm{Bd} \mathrm{V}_{2 i}$ in exactly those components, other than c , in which $D_{i l}$ intersected $B d V_{2 i}$. After a finite number of steps we obtain a disk $D_{i l}^{*}$ which, except for $w_{i l}$, is contained in the open annulus $\operatorname{Int}\left(\nabla_{2 i-1} \backslash \nabla_{2 i}\right)$. Since $\operatorname{dim} D_{i l}^{*}=2$, dir $L=1$, and $n>3^{3}$, we may assume that $D_{i l}^{*}$ intersects $L$ only in $u_{i l}$. Let $\eta>0$ be such that the $\eta$-neighborhood $S_{i l}$ of $D_{i l}^{*}$ intersects $L \cap\left(\nabla_{2 i-1} \backslash \nabla_{2 i}\right)$ only in $u_{11}$, and such that $S_{i l}$ is contained in $\operatorname{Int}\left(V_{2 i-1} \backslash V_{2 i+1}\right)$. By a sequence of simplicial moves across the 2 -simplexes of $D_{i l}^{*}$ the arc $u_{i l}$ may be moved onto the arc $w_{i l}$. By making use of a corresponding semilinear space homeomorphism, we may deform $u_{i l}$ onto $w_{i l}$ and then into Int $V_{2 i}$ by a semi-linear homeomorphism which is the identity outside $S_{i l}$ [Lemma 3, 19]. The components $u_{i 2}, \ldots, u_{i e}$ are successively moved into $\operatorname{Int}\left(V_{2 i}-V_{2 i+1}\right)$ by a technique similar to that used on $u_{i l}$. We are careful in each move to leave the remaining components fixed. This is to keep from introducing new intersections with $\mathrm{Bd} \mathrm{V}_{2 i}$. We denote the composition of these moves by $f_{i}$, and observe that $f_{i}$ is a semilinear space homeomorphism and is fixed outside $\operatorname{Int}\left(V_{2 i-1} \backslash \nabla_{2 i+1}\right)$. Also, if $a_{i}$ is the first point of $L \cap B d V_{2 i}$ relative to the order
of $L$ from $a$ to $p$, and $b_{i}$ is the last point (equivalently $b_{i}$ is the first point of $L \cap B d V_{2 i}$, relative to the order of $L$ from $b$ to $p)$, then $f_{i}(L) \cap B d V_{2 i}=a_{i} \cup b_{i}$ 。

We define a mapping $f$ of $E^{n}$ onto $E^{n}$ by the equations

$$
\begin{aligned}
& f(x)=x, \quad x \& E^{n} \backslash V_{1}, \\
& f(x)=f_{i}(x), X \in V_{2 i-1} \backslash V_{2 i+1}, i=1,2, \ldots, \\
& f(p)=p .
\end{aligned}
$$

It is clear, since, for each $i, f_{i}$ is fixed on $B d \nabla_{2 i-1} \cup B d \nabla_{2 i+1}$ and $f_{i}$ eliminates all but two points of intersection of $L$ and $\mathrm{Bd} \nabla_{2 i}$, that $f$ is a space homeomorphism, semilinear except at $p$, and that $f(L) \cap B d V_{2 i}=a_{i} \cup b_{i}$.

We now consider the arc $f(L)$. Let $L_{11}$ be the subarc of $f(L)$ from $a_{i}$ to $a_{i+1}$ and let $I_{i 2}$ be the subarc of $L$ from $b_{i}$ to $b_{i+1}$. Let $x_{i}$ be the point of intersection of the segment $\overline{a_{1} p}$ with $\operatorname{Bd} \nabla_{2 i}$ and let $y_{i}$ be the point of intersection of the $\overline{b_{1} p}$ with $B d V_{2 i}$. Let $\phi_{i}$ be a semi-linear space homeomorphism which is fixed outside $\nabla_{2 i-1} \backslash \nabla_{2 i+1}$ and which carries $\mathrm{Bd} \nabla_{2 i}$ onto $\mathrm{Bd} \nabla_{2 i}$, with $\beta_{i}\left(a_{i}\right)=x_{i}$ and $\phi_{i}\left(b_{i}\right)=y_{i}$. Since $a_{1}=x_{1}$ and $b_{1}=y_{1}$, we will assume that $\phi_{1}$ is the identity homeomorphism. We may assume that the arcs $\overline{x_{i} x_{i}+1}$ and $\phi_{i+1} \phi_{i}\left(L_{i 1}\right)$ meet only in their endpoints, that $\overline{y_{i} y_{i+1}}$ and $\phi_{i+1} \phi_{i}\left(L_{i 2}\right)$ meet only in their endpoints, that $\overline{x_{i} x_{i+1}}$ does not meet $\phi_{i+1} \phi_{i}\left(L_{i l}\right)$, and that $\overline{y_{i} y_{i+1}}$ does not meet $\phi_{i+1} \beta_{i}\left(L_{i l}\right)$ : The simple closed curve $\beta_{i+1} \phi_{i}\left(L_{i l}\right) \cup \bar{X}_{i} \bar{X}_{i+1}$ bounds a polyhedral disk $D_{i l}$, which, because of the restrictions on dimensions, may be taken to be
disjoint from $\phi_{i+1} \phi_{i}\left(L_{i 2}\right) \cup \overline{\bar{y}_{i} \overline{y_{i+1}}}$. Furthermore, in the light of the elimination of component scheme used above, $D_{i l}$ may be selected so that $D_{i l} \cap\left(B d \nabla_{2 i} \cup B d \nabla_{2 i+2}\right)=x_{i} \cup x_{i+1}$. The arc $\phi_{i+1} \beta_{i}\left(L_{i 1}\right)$ is then moved across the disk $D_{i l}$ onto the arc $\overline{x_{i} x_{i+1}}$ by a space homeomorphism $\mathbb{I}_{i l}$, which is the identity outside $\nabla_{2 i} \backslash \nabla_{2 i+2}$ and on $\phi_{i+1} \phi_{i}\left(L_{i 2}\right)$. Similarly $\phi_{i+1} \phi_{i}\left(L_{i 2}\right)$ is moved onto $\overline{\bar{y}_{i} \bar{y}_{i+1}}$ by a space homeomorphism $\bar{Y}_{i 2}$, which is fixed outside $\nabla_{2 i} \backslash \nabla_{2 i+2}$ and on $\overline{x_{i} x_{i+1}}$. The composition $\Psi_{i 2}{ }^{Y_{i 1}}$ is denoted by $X_{i}$.

A mapping $g$ is defined by the equations

$$
\begin{aligned}
& g(x)=x, \quad x \varepsilon E^{n} \backslash \nabla_{2} \\
& g(x)=\Psi_{i} \phi_{i+1} \phi_{i}(x), \quad x \varepsilon \nabla_{2 i}-\nabla_{2 i+2}, i=1,2, \ldots, \\
& g(p)=p .
\end{aligned}
$$

Since $\Psi_{i} \phi_{i+1} \phi_{i}$ and $\Psi_{i+1} \phi_{i+2} \phi_{i+1}$ agree on the conmon part of their domains of definition, Bd $\nabla_{2 i+2}$ (each reduces to $\phi_{i+1}$ on this set), it is clear that $g$ is a space homeomorphism. Also $g$ carries $f(L)$ onto the sum of four polyhedral arcs: (1) the subarc of $f(L)$ from a to $a_{1}=x_{1}$, (2) $\overline{x_{1} p}$, (3) $\overline{\mathrm{py}_{1}}$, and (4) the subarc of $f(L)$ from $b_{1}=y_{1}$ to $b$. The desired space homeomorphism $h$ is taken to be the composition gf. Since each of $f$ and $g$ is fixed outside $\nabla_{1}$, all the requirements of the lemma are met.

A technique similar to that used in the proofs of Lemna 2.3 and
Lemma 3.1 may be used to prove the following lemmas.
Lemma 3.4. There is a continuous mapping g of D onto D such that
(1) g is fixed on $\mathrm{Bd} D$,
(2) $g$ is a homeomorphism of $D \backslash A$ onto $D \backslash(0,0, \ldots, 0,1)$ and
(3) $g(A)=(0,0, \ldots, 0,1)$.

Lemma 3.5. Let $L^{\prime}$ be the segment of the $x_{n}$-aris from $\left(0,0, \ldots, 0, \frac{1}{2}\right)$ to $(0,0, \ldots, 0,1)$. Then, there is a continuous mapping of $C I(D \backslash B)$ onto $C l(D \backslash A)$, such that $(1) E$ is fixed on $B d D$, (2) $g(B d B)=B d A$, and (3) $L^{\prime}$ is the only inverse set under $g$ -

Definition 3:5. We say that $h$ can be extended in one direction along a oylinder and in the opposite direction along a cylinder truncated at $(0,0, \ldots, 0,1)$ if there exists a homeomorphism $f$ carrying the closed annulus determined by $B$ and $D$ into $s^{n}$, such that $f$ agrees with $h$ on BdA.

Theorem 3.3. Suypose $h$ can be extended in one direction along a cylinder and in the opposite direction along a cylinder truncated at $(0,0, \ldots, 0,1)$. Let $G$ be the component of $s^{n} \backslash s^{n-1}$ which intersects $f(B d D)$. Then $G$ is an open $n$-cell.

Proof. Let $J$ be the closure of the component of $s^{n} \backslash s^{n-1}$ which contains $f(B d B)$. By Theorem 3.2, $J$ is a closed n-cell and hence there is an extension $Y$ of $h$, which carries A homeomorphicaily onto $J$. Define a homeomorphism $\phi$ of $D$ into $s^{n}$ by the equations

$$
\begin{array}{ll}
\phi(x)=f(x), & x \in \mathbb{A} \\
\phi(x)=\mathbf{Y}(x), & x \in \mathbb{A} .
\end{array}
$$

Let $\beta(0,0, \ldots, 0,1)=p$, and use the mapping $\beta$ and the mapping $g$ of Lemma 3.4 to define a mapping $k$ of $s^{n}$ onto $s^{n}$ as follows,

$$
\begin{array}{ll}
k(x)=x & x \in S^{n} \backslash \phi(D), \\
k(x)=\phi g \phi^{-1}(x), & x \in \phi(D) .
\end{array}
$$

The mapping $k$ carries $S^{n}$ onto $S^{n}$, leaves $p$ fixed, and has $J$ as the only inverse set. Hence $G$ is carried homeomorphically onto $S^{n} \ p$ and is an open n-cell.

Let $B_{1}$ be the closed $n$-cell in $E^{n}$, which is centered at the origin and has radius three-fourths. Iet, $I_{I}{ }^{\prime}$ be the segment of the $x_{n}$-axis from $(0,0, \ldots, 0,3 / 4)$ to $(0,0, \ldots, 0,1)$, and $L_{1}=f\left(L_{1}^{\prime}\right)$. Let $h, G$, and $p$ be as in Theorem 3.3, and let $g$ be given by Lemma 3.4, with $B$ and $I^{\prime}$ replaced by $B_{1}$ and $I_{1}^{\prime}$ respectively.

Theorem 3.4. If $H$ is the closure of the component of
$S^{n} \backslash f\left(B d B_{1}\right)$ which contains $G$, then $H$ is a closed n-cell, and ( $C 1 G \backslash p$ is topologically equivalent to $H \backslash I_{1}$.

Proof. That $H$ is a closed n-cell follows inmediately from Theorem 3.2.

Let $I$ be the component of $S^{n} \backslash f(B d D)$ which does not intersect $S^{n-1}$. The mapping $k$ of $H$ onto $C l G$ defined by

$$
\begin{array}{ll}
k(x)=x \quad, \quad x \in I, \\
k(x)=f_{g f^{-1}(x),} \quad x \in H \backslash I,
\end{array}
$$

is a continuous mapping of $H$ onto $C l G$ such that the only inverse set is $I_{1}$ and $k\left(I_{1}\right)=p$. Hence, $k$ is a homeomorphism of $H \backslash I_{1}$ onto (Cl G) \p.

In case there exists a continuous mapping $l$ of $H$ onto $H$ such that $I_{1}$ is the only inverse set under $l$, then we can state that $C I G$ is a closed n-cell. In fact, the product mapping $\ell_{k^{-1}}$ is a homeomorphism of GI G onto E .

Let us now suppose that the extension $f$ of $h$ is semi-linear on each finite polyhedron of $\operatorname{Int}(A \backslash B)$. Then $f\left(B d B_{1}\right)$ is a polyhedron and $L_{1}$ is locally polyhedral except at $p$. Let $\&>0$ be such that $S \varepsilon(p) \subset$ Int $H$ and let $\oint$ be a homeomorphism of $S^{n}$ onto $S^{n}$ such that $\phi$ is fixed outside $S \in(p)$ and $\phi\left(I_{1}\right)$ is polyhedral. Let $q$ be the endpoint of $I_{i}$ which lies on $B d H$ and let $Q$ be a polyhedral n-cell in $H$, such that $q \in B d Q, \beta\left(I_{1}\right) \backslash q \subset$ Int $Q$, and $Q$ has a subdivision isomorphic to a subdivision of a simplex (see Lemma 5.32 of [10]). Let $\Psi$ be a simi-linear homeomorphism of $Q$ onto a simplex $R$. The arc $\Psi \beta\left(L_{1}\right)$ is then polyhedral in $R$ and, together with the linear segment $\bar{\Psi} b(q) \bar{Y} b(p)$ bounds a polyhedral disk $D$ in $R$ which, except for $\Psi \phi(q)$, lies in the interior of $R$. There is then a homeomorphism $\eta$ of $R$ onto $R$ such that $\eta$ is fixed on $B d R$ and carries $\Psi \phi\left(I_{1}\right)$ onto the segment $\overline{\Psi \phi}(q) \Psi \phi(p)$. It is then easy to find a continuous mapping $\theta$ of $R$ onto $R$ such that $\theta$ is fixed on $B d R, \theta(\overline{\Psi b}(q) \Psi \bar{p}(p))$ $=\Psi \phi(q)$, and $\Psi \phi(q) \Psi \phi(p)$ is the only inverse set. The mapping $l$, defined by $\ell(x)=\Psi^{-1} \Theta \eta \Psi(x), x \in Q$, and $\ell(x)=x, x \in H \backslash Q$, is a continuous mapping of $H$ onto $H$ such that $L_{1}$ is the only inverse set. Thus we have the following theorem.

Theorem 3.5. Let $h$ be a homeomorphism embedding $B d A$ in $S^{n}$, $n>3$ - If $h$ can be extended in one direction along a cylinder and in
the opposite direction along a cylinder truncated at $(0,0, \ldots, 0,1)$, such that the extension is locally semi-linear on Int $A \backslash B$, then the closure of either compiementary domain of $h(B d A)$ is a closed n-cell.

Definition 3.6. We say that $h$ can be extended in one direction along a cylinder truncated $a 屯 \quad(0,0, \ldots, 0,1)$, if there exists a homeomorphism $f$ carrying the closed pincined annulus determined by $D$ and $A$ into $s^{n}$, suah that $f$ agrees with $h$ on BdA.

Definition 3.7. Let $f$ be the extension homeomorphism of Definition 3.6. If there exists a neighborhood $N$ of ( $0,0, \ldots, 0,1$ ) in $E^{n}$ such that $f$ is semi-linear on each finite polyhedron of $\operatorname{Int}(D \backslash A) \cap N$, then we say that $f$ is semi-linear on a deleted neighborhood of ( $0, \ldots, \ldots$ ) .

Theorem 3.6. Iet $h$ be a homeomorphism embedding $B d A$ in $S^{n}$, $n>3$, such that $h$ can be extended in one direction along a cylinder truncated at $(0,0, \ldots, 0,1)$, and let $G$ be the component of $S^{n} \backslash f(B d A)$ which intersects $f^{\prime}(B d D)$. If $f$ is semi-linear on a deleted neighborhood of $(0,0, \ldots, 0,1)$, then $C l G$ is a closed n-cell. Proof. Let $D_{1}$ be a cell, obtained from $D$ by a slight contraction on $E^{n}$ toward $(0,0, \ldots, 0,1)$, such that $\left[B d D_{1} \backslash(0,0, \ldots, 0,1)\right]$ is contained in $D \backslash A$. Let $G_{1}$ and $G_{2}$ respectively be the components of $s^{n} \backslash f\left(B d D_{1}\right)$ and $s^{n} \backslash f(B d L)$, which are contained in $G$. We now observe that $C 1 G_{1}$ is homeomorphic to $G \mathcal{G}$ 。For, if $g$ is a space homeomorphism which is fixed on $B d D$ and carries $B d D_{1}$ onto Bd A , then the mapping $\varnothing$ defined by

$$
\begin{aligned}
& \phi(x)=x, \quad x \in G_{2} \\
& \phi(x)=f g f^{-1}(x), \quad x=\operatorname{Cl}\left(G_{1} \backslash G_{2}\right),
\end{aligned}
$$

carries $C l G_{1}$ homeomorphically onto $C l G$. This suggests the following observations if one attaches a copy of $C l G_{1}$ to $C l\left(D_{1} \backslash A\right)$ along $E d D_{1}$ with $f^{-1}$, the set thus obtained is equivalent to $C 1 G_{1}$ (it is simply Cl Q). This will be used to show that $C 1 G_{1}$ is a closed ncell, and hence that $G 1 G$ is a closed n-cell.

Let $N$ be a neighborhood of ( $0,0, \ldots, 0,1$ ) such that $f$ is semi-linear on $\operatorname{Int}(D \backslash A) \cap N$. Let $S_{1}, S_{2}$, and $S_{3}$ be three $n$ simplexes in $C l\left(D_{1} \backslash A\right) \cap N$, such that $S_{1}$ has ( $0,0, \ldots, 0,1$ ) as one vertex, $S_{1} \backslash(0,0, \ldots, 0,1) \subset \operatorname{In}\left(D_{1} \backslash A\right), B d S_{1} \cap B d S_{2}$ $=(0,0, \ldots, 0, I), S_{2} \backslash(0,0, \ldots, 0, I) \subset \operatorname{Int} S_{1}$, and $S_{3} \subset \operatorname{Int} S_{2}$. Let $k$ be the component of $S^{n} \backslash f\left(B d S_{2}\right)$ which contains $G_{1}$. Then by Theorem 3.5, Cl $k$ is a closed $n$-cell. Let $H=S^{n} \backslash C l G$, then $C 1 k$ can be realized by taking $P=C 1\left(D_{1} \backslash A\right) \backslash$ Int $S_{2}$ and attaching $C l H$ to $P$ along $B d A$ with $f^{-1}$, and attaching $C l G_{1}$ to $P$ along $B d D_{l}$ with $f^{-1}$. The set $P$ is a closed $n-c e l l$ (the closure of the exterior of $S_{2}$ ) with the interiors of two cells sharing a common boundary point with $B d S_{2}$, removed. The cell obtained from $P$ by attaching $C l G_{1}$ and $C l H$ to the interior boundary spheres of $P$ with $f^{-1}$ will be denoted by $\overline{\mathrm{P}}$.

Let $E$ be the part of the solid unit ball in $E^{n}$ centered at $(0,0, \ldots, l, 0)$, determined by $x_{n} \geq 0$. Let $\left\{q_{i}\right\}_{0}^{\infty}$ be a sequence of points $\left(x_{1}=x_{2}=\ldots=x_{n-2}=0\right) \cap B d E$ such that, if $q_{i}$ is represented by $\left(0,0, \ldots, a_{(n-1) i}, a_{n i}\right)$, then $a_{(n-1) 0}=2$ and the $a_{(n-1) i}$ converge monotonically to zero through positive values, and $a_{n i}>0$, $i=0$.


Figure 1
A Chambered n-cell.

We then section $E$ into a countable number of $n$-cells by projecting the $(n-1)$-plane $x_{n}=x_{n-1}=0$ onto each of the $p_{i}$. The section determined by $p_{i-1}$ and $p_{i}$ is denoted by $C_{i}$. We then delete from $C_{i}$ the interior of a cell $C_{i}^{\prime}$, similar in shape to $C_{i}$ and, except for the boundary point $(0,0, \ldots, 0,0)$, contained in the interior of $c_{i}$. Ans two adjacent sections then form a copy of $P$, and are labeled by $P_{i}$, $P_{i}^{\prime}$, as in Figure 2. Notice that $P_{i}$ and $P_{i}^{\prime}$ have $w_{2 i}=B d C_{2 i}^{\prime}$ in common, and $P_{i}^{\prime}$ and $P_{i+1}$ have $w_{2 i+1}=B d C_{2 i+1}^{\prime}$ in common. Let $\beta_{i}$ be a homeomorphism of $P_{i}$ onto $P_{i}^{\prime}$ which leaves $w_{2 i}$ fixed and carries $w_{2 i-1}$ onto $w_{2 i+1}$. Let $\Psi_{i}$ be a homeomorphism of $P_{i}^{\prime}$ onto $P_{i+1}$ which leaves $w_{2 i+1}$ fixed and carries $w_{2 i}$ onto $w_{2 i+2}$.

We identify $P_{1}$ with $P$, with $W_{1}$ identified with $B d D_{1}$ and $w_{2}$ identified with $B d A$. The sets $C l G_{1}$ and $C I H$ are then sem to $P$ along $W_{1}$ and $W_{2}$, respectively, with $f^{-1}$. The resulting n-cell is denoted by $\overline{P_{1}}$. The sets $C l G_{1}$ and $C l H$ are then sewn into alternate holes bounded by $w_{2 i+1}$ and $w_{2 i+2}$ by the attaching homeomorphisms

$$
\begin{aligned}
& \phi_{i} \ldots \phi_{2} \phi_{1} \mathrm{f}^{-1}: B d G_{1} \longrightarrow w_{2 i+1}, \\
& \Psi_{i} \ldots \Psi_{2}{ }^{\Psi} 1^{f^{-1}}: B d H \longrightarrow w_{2 i+2} .
\end{aligned}
$$

The sets thus obtained from the $P_{i}$ and $P_{i}^{\prime}$ are denoted by $\overline{P_{i}}$ and $\bar{P}_{1}^{\prime}$, and the union of the $\overline{P_{i}}$ is denoted by $E_{1}$.

Since $\phi_{1}$ is the identity on $w_{2}$, we can extend $\phi_{1}$ to a homemorphism of $\bar{P}_{1}$ onto ${\overline{P_{1}}}^{\prime}$, and conclude that ${\overline{P_{1}}}^{\prime}$ is also a closed $n$ cell. In a similar manner we extend the homeomorphism $\Psi_{i}$ to a homeo-


Figure 2
A Countable Partition of an n-cell


Figure 3
A Modified n-cell.
morphism of $\bar{P}_{i}^{\prime}$ onto $\overline{P_{i+1}}$ and estend the homeamorphism $\phi_{i}$ to a homeomorphism of $\overline{P_{i}}$ onto $\bar{P}_{i+1}^{\prime}$. It then follows that each of the $\overline{P_{i}}$ and $P_{i}^{\prime}$ is a closed n-cell.

We now observe that $E_{1}$ is a closed $n$-cell. This is established by constructing a homeomorphism of $E$ onto $E_{1}$. We map the boundary of $C_{2 i-1} \cup C_{2 i}$ onto the boundary of $\bar{P}_{i}$ with the identity homeomorphism. Since $C_{2 i-1} \cup C_{2 i}$ and $\bar{P}_{i}$ are $n$-cells, this homeomorphism between their boundaries can be extended to a homeomorphism between the celle. These extensions for $i=1,2, \ldots$ yield a homeomorphism from $E$ onto $\mathrm{E}_{1}$ 。

We next observe that $E_{1}$ is a copy of $G\left(D_{1}^{\prime} \backslash A^{\prime}\right)$ with $C l G_{1}$ sewn along one of the boundary spheres. This can be established by showing that $E_{1}$, with $G_{1}$ removed from $F_{1}$, is homeomorphic to $E$ with Int $C_{1}{ }^{\prime}$ removed. Let $\lambda$ be the identity mapping on $C_{1} \backslash \operatorname{Int} C_{1}{ }^{\prime}$ and on $\operatorname{Bd}\left(C_{2 i} \cup C_{2 i+1}\right), i=1,2, \ldots$. Since $C_{2 i} \cup C_{2 i+1}$ and $P_{i}^{\prime}$ are closed n-cells and $\lambda$ restricts to a homeomorphism between their boundaries, $\lambda$ can be extended over their interiors. The extensions over each of the $C_{21} \cup C_{2 i+1}$ Field the desired homeamorphism.

We have seen that $E_{1}$ may first be Fiewed as a closed $n$-cell and secondly as $C l G_{1}$ sewn into a boundary sphere of a copy of $C I\left(D_{1} \backslash A\right)$. We previously observed that a set of the second type is homeomorphic to $\omega G_{1}$. Hence $C l G_{1}$, or equivalently $C 1 G$, is a closed $n$-cell.

## CHAPTER IV

SONE 3-SPHERES IN $S^{4}$
4.1. Three-Spheres in $S^{4}$ Obtained by Suspension

Definition 4.1. In $E^{4}$ we take coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ and let $E^{3}$ be described by $x_{L}=0$. Let $a=(0,0,0,1)$ and $b=(0,0,0,-1)$. For a set $A$ in $E^{3}$ the suspension of $A$ in $E^{4}$ is the join of $A$ and $a U b$ (the collection of line segments $\overline{a x}$ and $\overline{b x}, x \in A)$. The abbreviation Susp A will be used for the suspension of $A$ in $E^{4}$.

If $A=\left\{\left(x_{1}, x_{2}, x_{3}, 0\right) \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$, then it is clear that Susp A is a 3-sphere in $E^{4}$ and that Susp(Int A) = Int(Susp A) is an open 4-cell. Furthermore, the suspension of the union of $A$ and its interior is a closed L-cell.

Lemma 4.1. If $A_{1}$ and $A_{2}$ are homeomorphic subsets of $E^{3}$, then Cusp $A_{1}$ and Cusp $A_{2}$ are homeomorphic subsets of $E^{4}$.

Proof. Let $g$ be a homeomorphism of $A_{1}$ onto $A_{2}$. For $O_{i \alpha}$ an open set in $A_{i}$ and $-1 \leq t_{1}<t_{2} \leq 1$ let $0_{i a}\left(t_{1}, t_{2}\right)$ be the part of Cusp $O_{i a}$ which lies between the 3 -planes $x_{4}=t_{1}$ and $x_{4}=t_{2}$. If either $t_{1}=-1$ or $t_{2}=1$, then we will add to $O_{i \alpha}\left(t_{1}, t_{2}\right)$ the point $b$ or $a$ as $t_{1}=-1$ or $t_{2}=1$. The colleclion of sets

$$
\left\{0_{i \alpha}\left(t_{1}, t_{2}\right) \mid o_{i \alpha} \text { open in } A_{i},-1 \leq t_{1}<t_{2} \leq 1\right\}
$$

forms a basis for the topology of $A_{i}$.

Let $z_{1}$ be a point of Susp $A_{1}$. Then there exists an $x_{1} \varepsilon A_{1}$ and a $-1 \leq t \leq 1$ such that $z_{1}$ is the intersection of $x_{4}=t$ and a segment $\overline{\bar{X}_{1} a}$ or $\overline{X_{1} \bar{b}}$, according as $t$ is positive or non-positive. In the first case we associate with $z_{1}$ the intersection of $x_{4}=t$ and $\overline{\mathrm{g}\left(\bar{x}_{1}\right) \text { a }}$. In the latter case we associate with $z_{1}$ the intersection of $x_{4}=t$ and $\overline{g\left(x_{1}\right) b}$. The mapping thus defined carries Susp $A_{1}$ onto Susp $A_{2}$ in a one-to-one manner and carries the basis elements of $A_{1}$ onto the basis elements of $A_{2}$ in a one-to-one manner.

Let $L$ be the $x_{L}$ axis and let $M$ denote the part of $L$ with $\left|x_{4}\right| \geq 1$.

Lemsua 4.2. Let $S$ be a 2-sphere in $E^{3}$ and $K=$ Susp $S$ For each $\varepsilon>0$ there exists a set $T_{\varepsilon}$ in the $\varepsilon$-neighborhood of $K \cup M$ such that $T_{\varepsilon}$ is homeomorphic with $S \times E^{1}$ and there exists a homotopic deformation of $E^{4} \backslash T_{\varepsilon}$ onto $E^{3} \backslash S$.

Proof. Let $0<t_{1}<1$ and sufficiently close to 1 for the set $P(a)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \varepsilon K \mid x_{4} \geq t_{1}\right\}$ to be in the $\varepsilon$-neighborhood of a. Let $-1<t_{2}<0$ and sufficiently close to -1 for the set $P(b)$ $=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \varepsilon K \mid x_{4} \leq t_{2}\right\}$ to be in the $\varepsilon$-neighbiorhood of bo Let $Q(a)$ be those points of $P(a)$ with $x_{4}$ coordinate $t_{1}$, and $Q(b)$ those points of $P(b)$ with $x_{4}$ coordinate $t_{2}$. Let $R(a)$ be the union of all half-lines which are directed in the positive $x_{4}$ direction and have their endpoint in $Q(a)$, and let $R(b)$ be the union of all half-lines which are directed in the negative $x_{4}$ direction and have their endpoint in $Q(b)$. The set $T_{\varepsilon}$ is then defined to be

$$
\{K \backslash[P(a) \cup P(b)]\} \cup[R(a) \cup R(b)]
$$

From the definition of $T_{\varepsilon}$ it is easy to see that there is a homeomorphism $f$ of $E^{4}$ onto $E^{4}$ which is the identity on $E^{3}$ and carries $T$ onto $S \times E^{1}$. For $0 \leq t \leq 1$ let $\bar{t}$ be the transformstion whioh carries $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ onto $\left(x_{1}, x_{2}, x_{3}, t x_{4}\right)$. The desired deformation $G$ is then defined by $G(x, t)=f^{-l} f f(x)$.

Definition 4.2. Let $A$ and $B$ be two arcwise connected spaces with $A \subset B$. Let $p \in A$ be used as the base point for computing the fundamental groups $\pi_{1}(A)$ and $\pi_{1}(B)$. The injection homomorphism of $r_{1}(A)$ into $\pi_{1}(B)$ is the homomorphism induced by the identits mapping of $A$ into $B$.

Theorem 4.1. Let $S$ be a 2-sphere in $E^{3}$ and $K=$ Susp $S$. Let $A_{1}$ and $A_{2}$ be the bounded and unbounded components of $E^{3} \backslash S$ respectively, and $B_{1}, B_{2}$ the corresponding components of $E^{4} \backslash K$. Then the injection homomorphism $i_{j}: \pi_{1}\left(A_{j}\right) \longrightarrow \pi_{1}\left(\dot{B}_{j}\right), j=1,2$, is an onto isomorphism.

Proof. First consider the sets $A_{1}$ and $B_{1}$. Let $W$ be an element of $\pi_{1}\left(B_{1}\right)$ and let $w$ be a representative of $W$. Let $w^{\prime}$ be the path in $A_{1}$ which is the image of $w$ under the deformation $G$ of Lemma 4.2. Then $W^{\prime}$ is also a representative of $W$. If $W^{\prime}$ is the element of $\pi_{1}\left(A_{1}\right)$ represented by $w^{\prime}$, then $i_{1}\left(W^{\prime}\right)=W$, by the definition of $i_{1}$, and $i_{1}$ is an onto homomorphism.

Let $W^{\prime}$ be an element of $\pi_{1}\left(A_{1}\right)$ such that $i_{1}\left(W^{\prime}\right)$ is the identity element $E$ of $r_{1}\left(B_{1}\right)$, and let $w^{\prime}$ be a representative of $W^{\prime}$. Then $W^{\prime}$ bounds a singular 2-cell $D$ in $B_{1}$. Let $D^{\prime}$ be the image of $D$ under the deformation $G$. Since $W^{\prime}$ is fixed under $G$,
wi bounds the singular disk $D^{\prime}$ in $A_{1}$. Hence, $W^{\prime}$ is the identity element $E^{\prime}$ of $\pi_{1}\left(A_{1}\right)$ and the kernel of $i_{1}$ is $E^{\prime}$.

Now consider $A_{2}$ and $B_{2}$. Let $W$ be an element of $\pi_{1}\left(B_{2}\right)$, and let $W$ be represented by a polygonal path $w$ in $B_{2}$. Since $w$ and $M$ are l-dimensional subsets of the 4 -dimensional set $B_{2}$ we may, by deforming $w$ away from $M$ if necessary assume that $\rho(w, M)>0$. By selecting $\varepsilon<\rho(w, M)$ and selecting $T_{e}$ and $G$ by Lemma 4.2, we can deform $w$ by $G$ into $A_{2}$ and thus obtain a path $w^{\prime}$ representing an element $W^{\prime}$ such that $i_{2}\left(W^{\prime}\right)=W$.

Let $W^{\prime}$ be an element of $\pi_{1}\left(A_{2}\right)$ such that $i_{2}\left(W^{\prime}\right)=E$, and let $W^{\prime}$ be represented by a polygonal path $W^{\prime}$ in $A_{2}$. Then $W^{\prime}$ bounds a singular 2-cell $D$ in $B_{2}$. By the Deformative Theorem [18, p. 115], we may assume that $D$ is a simplicial 2-complex. Again, since the dimensions of $D$ and $M$ add up to three, we may assume that $\rho(M, D)$ $=\varepsilon>0$. Then, by Lemme 4.2, we can find a $G$ which deforms $D$ into $A_{2}$ and leaves $w^{\prime}$ fixed. Thus $w^{\prime}$ represents the identity element of $r_{1}\left(A_{2}\right)$, and $i_{2}$ is an isomorphism.

If $\mathrm{E}^{4}$ is compactified with a point at infinity, then $\mathrm{E}^{4}$ becomes $S^{4}$ and $E^{3}$ becomes $S^{3}$, and the corresponding proofs for Lemma 4.2 and Theorem 4.1 can be carried out with $S^{4}$ and $S^{3}$ replacing $E^{4}$ and $E^{3}$.

Theorem 4.2. Let $A_{1}, A_{2}, B_{1}, B_{2}$ denote the components of
$S^{3} \backslash S$ and $S^{4} \backslash K$ as indicated in Theorem 4.1. Then the second homotopy groups $\pi_{2}\left(B_{1}\right)$ and $\pi_{2}\left(B_{2}\right)$ are trivial.

Proof. It is proved in [16, p. 19] that each of $\pi_{2}\left(A_{1}\right)$ and $\pi_{2}\left(A_{2}\right)$ is trivial. The proof then will be to show that each singular 2-sphere in $B_{1}$ or $B_{2}$ can be deformed into $A_{1}$ or $A_{2}$ respectively without crossing $K$.

Let $D$ be a siagular 2-sphere in $B_{1}$. Then by Leama 4.2, there exists a deformation $G$ which deforms $D$ into $A_{1}$. The situation is quite similar for $B_{2}$. Let $D$ be a singular 2-sphere in $B_{2}$. Agadn by the Deformation Theorem, we may assume that $D$ is a simplicial 2-complex in $B_{2}$ and, since the dimensions of $D$ and $F$ ( $K \cup$ the point at infinity) add up to three, we may assume that $D$ and $\bar{K}$ do not intersect. Let $\varepsilon=\rho(D, \bar{K})$ and let $G$ be given by Lemms 4.2. The deformation $G$ deforms $D$ continuously into $A_{2}$ and the theorem is proved.

In [5] there are examples of 2-spheres in $S^{3}$ such that one complementary domain has a non-trivial fundamental group. An elementary modification of these examples will give 2 -spheres in $S^{3}$ such that the fundamental group of either complementary domain is non-trivial. These examples plus Theorem 4.1 give the existence of 3 -spheres in $S^{4}$ such that either one or both complementary domains have non-trivial fundamental groups. However, Theorem 4.2 tells us that both complementary domains of these examples will have trivial second homotops groups.
4.2. Three-Spheres in $s^{4}$ Obtained by Rotation

Definition 4.3. Let $E_{+}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, 0\right) \varepsilon E^{4} \mid x_{3} \geq 0\right\}$ and let $P$ be the plane $x_{3}=x_{4}=0$. Let $M$ be a subset of $E_{+}^{3}$ and
define $R(M)$ as follows: $R(M)=\left\{\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}\right) \in E^{4} \mid \bar{x}_{1}=x_{1}\right.$, $\bar{x}_{2}=x_{2}, \bar{x}_{3}=x_{3} \cos t, \bar{x}_{4}=x_{3} \sin t$ for some $\left(x_{1}, x_{2}, x_{3}, 0\right) \varepsilon M$ and $0 \leq t<2 \pi\}$.

The following theorem is an inmediate consequence of
Definition 4.3.
Theorem 4.3. Let $M$ be the hemisphere in $E_{+}^{3}$ defined by the equation $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$. Then $R(M)$ is the 3 -sphere $x_{1}{ }^{2}+x_{2}^{2}+x_{3}{ }^{2}+x_{4}^{2}=1$ in $E^{4}$.

Furthermore, if $D$ is the bounded complementary domain of $d=\left\{\left(x_{1}, x_{2}\right) \in P \mid x_{1}{ }^{2}+x_{2}^{2}=1\right\}$ in $P, A_{1}$ the bounded complementary domain of $M \cup D$ in $E_{+}^{3}$, and $A_{2}$ the unbounded complementary domain of $M \cup D$ in $E_{+}^{3}$, then $R\left(A_{1} \cup D\right)$ and $R\left(A_{2}\right)$ are respectively the bounded and unbounded complementary domains of $R(M)$ in $E^{4}$.

A proof similar to that of Lemma 4.1 can be used to establish the following lerma.

Lemms 4.3. Suppose $A_{1}$ and $A_{2}$ are homeomorphic subsets of $E_{+}^{3}$ With $f$ a homeomorphiam of $A_{1}$ onto $A_{2}$ and $h$ the restriction of $f$ to $A_{1} \cap P$. If $h$ is a homoomorphism of $A_{1} \cap P$ onto $A_{2} \cap P$, then $R\left(A_{1}\right)$ and $R\left(A_{2}\right)$ are homeomorphic subsets of $E^{4}$.

Let $M, D, d, A_{1}$, and $A_{2}$ be as in Theorem 4.3, and let $M^{\prime}$ be a 2-cell in $E_{+}^{3}$ such that $M^{\prime} \cap P=B d M^{\prime}=d^{\prime}$. Let $D^{\prime}$ be the bounded complementary domain of $P \backslash d^{\prime}$ and $A_{1}{ }^{\prime}, A_{2}^{\prime}$ the bounded and unbounded complementary domains of $M^{\prime} U D^{\prime}$ in $E_{+}^{3}$ respectively. $A$ combination of Lema 4.3 and Theorem 4.3 yields that $R\left(M^{\prime}\right)$ is a

3-sphere in $E^{4}$. Denote the bounded component of $E^{4} \backslash R\left(M^{\prime}\right)$ by $B_{1}$ and the unbounded component by $\mathrm{B}_{2}$.

Theorem 4.4. $\pi_{1}\left(A_{i}^{\prime}\right) \approx \pi_{1}\left(B_{i}\right), i=1,2$.
Proof. First consider $A_{1}{ }^{\prime}$ and $B_{1}$ and select a point $p$ in $A_{1}^{\prime}$ as the base point for computing $\pi_{1}\left(A_{1}{ }^{\prime}\right)$ and $\pi_{1}\left(B_{1}\right)$. Let $L$ be an element of $\pi_{1}\left(B_{1}\right)$, and let $l$ be a polygonal representative of $L$. Let $E_{+}^{4}$ be the collection of points in $E^{4}$ with positive fourth coordinates, and let $E_{-}^{4}$ be those points with negative fourth coordinates. We will say that $a$ is an exceptional point of $\mathcal{L}$ if a $\varepsilon \mathcal{L} \cap A_{1}$ and each interval on $l$ about a contains points of $E_{-}^{4}$. Let $a$ be an exceptional point of $l$, and let $q$ traverse $l$ in the direction determined by the requirement that $q$ approach a through points in $\mathrm{E}_{\text {_ }}$. The exceptional point $a$ of $\ell$ will then be classified according as
(1) a passes from a immediately back into $\mathrm{E}_{-}^{4}$,
(2) $q$ moves from a along a polygonal curve in $A_{1}{ }^{\prime}$ to another exceptional point and then into $\mathrm{E}_{-}^{4}$,
(3) $q$ moves from a along a polygonal curve $u_{a}$ in $A_{1}{ }^{\prime}$ to $a$ vertex $b$ and then into $E_{+}^{4}$, or
(4) q passes from a immediately into $E_{+}^{4}$. In cases (1) and (2) a may be eliminated as an exceptional point by decreasing fourth coordinates slightly in a neighborhood of a . An exceptional point of type (3) may be reclassified as type (4) by rotating $u_{a}$ about $a$ so that $u_{a} \backslash a \subset E_{+}^{L}$. We then may assume that the exceptional points, $a_{1}, a_{2}, \ldots, a_{n}$, of $l$ are all of type (4).

For each exceptional point $a_{i}$ of $\ell$ let $b_{i}$ be a vertex in $D$ and $u_{i}$ a directed polygonal arc in $A_{1}^{\prime}$ from $a_{i}$ to $b_{i}$. We then take as our representative of $L$ the curve $m$ obtained from $\mathcal{l}$ by inserting at each $a_{i}$ the arc $u_{i} u_{i}^{-1}$.

For each $x \in E^{4}$ let $y_{x}=\left(x_{1}, x_{2}, x_{3}, 0\right)$ and $t_{x}$ be the unique point in $E_{+}^{3}$ and real number $0 \leq t_{x}<2 \pi$ respectively, such that $x=$ ( $x_{1}, x_{2}, x_{3} \cos t_{x}, x_{3} \sin t_{x}$ ). We will say that $x$ is obtained by rotating $y_{x}$ about $P$ through an angle $t_{x}$ and write $x=R_{t_{x}}\left(y_{x}\right)$. The continuous mapping $x \longrightarrow y_{x}$ of $E^{4}$ onto $E_{+}^{3}$ will be denoted by $R^{-1}$.

We now return to the curve $m$ and define a homotopic deformation carrying $m$ into $E_{+}^{3}$. For $x \varepsilon m \backslash\left(\sum_{i=1}^{n} u_{i}^{-1}\right)$ and $0 \leq t \leq 2 \pi$ let $R_{m_{t}}^{-1}(x)=R\left(t_{x}-t\right)\left(y_{x}\right)$ if $0 \leq t<t_{x}$, and $R_{m_{t}}^{-1}(x)=y_{x}$ if $t_{x} \leq t \leq 2 \pi$. For $x \varepsilon \sum_{n=1}^{n} u_{i}^{-1}$ let $R_{m t}^{-1}(x)=R_{(2 \pi-t)}(x)$. Observe that for each $m$, $R_{m 2 \pi}^{-1}$ is the restriction of $R^{-1}$ to $m$, and hence $m \sim R^{-1}(m)$ in $B_{1}$.

Let $h$ be the homomorphism of $\pi_{1}\left(B_{1}\right)$ onto $\pi_{1}\left(A_{1}^{\prime}\right)$ defined by associating the element $L$ of $\pi_{1}\left(B_{1}\right)$ with the homotopy class of $\pi_{1}\left(A_{1}\right)$ determined by $R^{-1}(m)$. We need to establish that $h$ is well defined (if $\ell \sim \ell^{\prime}$ in $B_{1}$, then $R^{-1}(m) \sim R^{-1}\left(m^{\prime}\right)$ in $A_{1}^{\prime}$ ), and that $h$ is a homomorphism $\left(R^{-1}\left(m m^{\prime}\right) \sim R^{-1}(m) R^{-1}\left(m^{\prime}\right)\right)$. The second condition, in fact the equality between $R^{-1}\left(m m^{\prime}\right)$ and $R^{-1}(m) R^{-1}\left(m^{\prime}\right)$, follows immediately from the definition of $R^{-1}$. To establish the first condition, suppose that $m^{\prime} \sim m$ or equivalently $m^{\prime} m^{-1} \sim 0$ in $B_{1}$ and let $f$ be a continuous mapping of the boundary of the unit circle $C$ into $B_{1}$ such that $f(B d C)=m^{\prime} m^{-1}$. Then there exists a continuous extension $g$ of $f$ carrying $C$ into $B_{1}$. The mapping $R^{-1} g$ then carries $C$ into $A_{1}^{\prime}$ with $B d C$ being carried onto
$R^{-1} \cdot\left(m^{\prime} m^{-1}\right)$. Hence $R^{-1}\left(m^{\prime} m^{-1}\right) \sim 0$ in $A_{1}^{\prime}$, or equivalently $R^{-1}\left(m^{\prime}\right) R^{-1}\left(m^{-1}\right) \sim 0$ in $A_{1}^{\prime}$.

We now observe that if i denotes the injection homomorphism of $\pi_{1}\left(A_{1}^{\prime}\right)$ into $\pi_{1}\left(B_{1}\right)$, then each of hi and in is the identity homomorphism and hence each of $i$ and $h$ is an onto isomorphism. To see that $h i$ is the identity mapping, let $K \varepsilon \pi_{1}\left(A_{1}{ }^{\prime}\right)$ and let $k$ be a polygonal representative of $K$. Then $i(K)$ is the element of $\pi_{1}\left(B_{1}\right)$ determined by $k$, and $h i(K)$ is the element of $\pi_{1}\left(A^{\prime}\right)$ determined by $R^{-1}(k)=k$. Now consider an element $L \varepsilon \pi_{1}(B)$, and let us determine $i h(L)$. Let $\ell$ represent $L$ and replace $\ell$ by a simple closed curve $m$ by the above rule. Then $h(L)$ is the element of $\pi_{1}\left(A_{1}\right)$ determined by $R^{-1}(m)$, and $\operatorname{in}(L)$ is the element of $\pi_{1}\left(B_{1}\right)$ determined by $R^{-1}(m)$. This is the element $L$, since $R^{-1}(m) \sim m$ in $B_{1}$.

The fact that $\pi_{1}\left(A_{2}{ }^{\prime}\right) \approx \pi_{1}\left(B_{2}\right)$ follows by a similar argument.
The proof of Theorem 4.4 may be used to prove the following argument.

Theorem 4.5. Let $M$ be a closed subset of $E_{+}^{3}$ and $A$ a component of $E_{+}^{3} \backslash M$. If $P$ is arcwise accessible from each point of $A$, then $\pi_{1}(A) \approx \pi_{1}[R(A)]$.

Let $S$ be a 2-sphere in $E_{+}^{3}$ which is locally polyhedral except at a finite number of points, and which is embedded in $E_{+}^{3}$ such that $S \cap P=D$ is a 2-cell. Let $M=C 1(S \backslash D)$ and let $A_{1}$ and $A_{2}$, respectively, denote the bounded and unbounded components of $E_{+}^{3} \backslash S$. Then $R(M)$ is a 3 -sphere in $E^{4}$ and, if $B_{i}$ is the component of
$E^{4} \backslash R(M)$ corresponding to $A_{i}$, then, by Theorem 4.4, $\pi_{1}\left(B_{i}\right) \approx \pi_{1}\left(A_{i}\right)$. One may again select well known 2-spheres in $E^{3}$ to construct examples of 3 -spheres in $E^{4}$ such that either one or both complementary domains will have nontrivial fundamental groups.

In passing, we observe one difference between the spheres Susp $S$ and $R(M)$. Associated with each exceptional point $p \varepsilon M$ there will be an are, Susp p, of exceptional points on Cusp $S$ and a simple closed curve, $R(p)$, of exceptional points on $R(M)$.

We now use the rotation of a disk about $P$ to construct a 3sphere in $S^{4}$, one complementary domain of which is simply connected but is not an open 4-cell. Let us first embed the 2 -sphere $S$, discussed as Example 3.3 in [5], in $\mathrm{E}_{+}^{3}$ as indicated in Figure 4. . The sphere $S$ is to intersect $P$ in a 2-cell $D$ and $S \backslash D$ is denoted by M . The proof in [5] that the exterior of $S$ in $E^{3}$ is simply connected may be used directly to show that $A_{2}$ (the exterior of $S$ in $E_{+}^{3}$ ) is simply connected. Hence, by Theorem 4.4, $B_{2}$ (the exterior of $R(M)$ in $E^{4}\left(S^{4}\right)$ ) is simply connected.

The cross section $\left[M \cup R_{\pi}(M)\right]$ of $R(M)$ in $E^{3}\left(S^{3}\right)$ is shown in Figure 5. .

Let $A_{2}{ }^{\prime}$ denote the exterior of $M U \operatorname{Rr}(M)$ in $E^{3}$. It is shown in [5] (Example 1.3) that $C_{0}$ cannot be contracted to a point in $A_{2}^{\prime} \backslash\left[W \cup R_{\pi}(W)\right]$. This fact is now used to show that $R(W)$ is containe in no closed 4 -cell subset of $B_{2}$ whose complement in $B_{2}$ is simply connected. Hence, $B_{2}$ is not an open 4-cell.


Figure 4
A Wild 2-Sphere in $s^{3}$.


Figure 5
A Cross Section of a Wild 3-Sphere in $\mathrm{s}^{4}$.

Suppose that such a L-cell J did exist. Choose the base point for computing $\pi_{1}\left(B_{2} \backslash J\right)$ in $P$ and so close to $d$ that there is a path in $\left(B_{2} \backslash J\right) \cap P$ which represents $C_{0}$ in $\pi_{1}\left\{A_{2}^{\prime} \searrow^{i}[W \cup . \operatorname{Rr}(W)]\right\}$. Let $E$ be a unit disk in $E^{2}$ with boundary $e$, and let $h$ be a continuous mapping of e onto c. Since $\pi_{1}\left(B_{2} \backslash J\right)$ is trivial, there exists an extension $H$ of $h$ which carries $E$ into $B_{2} \backslash J$. We then follow $H$ by $R^{-1}$ and obtain a singular 2-cell, $R^{-1} H(E)$, in $A_{2} \backslash R^{-1}(J)$ which is bounded by $c$. Since $A_{2} \backslash R^{-1}(J) \subset A_{2} \backslash W$, we see that $c$ can be contracted to a point in $A_{2} \backslash W$ and hence in the larger set $A_{2}^{\prime} \backslash\left[\begin{array}{lll}W & U & R \pi(W)\end{array}\right]$. This contradiction establishes the desired conclusion.
4.3. Three-Spheres Obtained by Capping a Cyiinder

In $F^{n}$ we again take coordinates $x_{1}, x_{2}, \ldots, x_{n}$ and let $E^{n-1}$ be described by $x_{n}=0$.

Lemma 4.4. Let $S$ be an ( $n-2$ )-sphere in $E^{n-1}$ with the bounded and unbounded components of $E^{n-1} \backslash S$ denoted $b_{F} A_{1}$ and $A_{2}$ respectively. If $C l A_{2}$ (compactified at infinity) is a closed ( $n-1$ )-cell, then $\{S x[0,1]\} \cup\left\{A_{1} x[1]\right\}$ is a closed $(n-1)$-cell.

Proof. Let $h$ be a homeomorphism of $C l A_{2}$ onto a standard unit ball $B$ in $E^{n-1}$. Let $S_{1}=B d B$ and let $S_{2}$ be the sphere concentric with $S_{1}$ and with radius one-half. Then $h^{-1}\left(S_{2}\right)$ is a sphere in $A_{2}$, and $h^{-1}$ restricted to $S_{2}$ can be extended in both directions along a cylinder ( $h^{-1}$ is such an extension). If $C$ is the closure at the component of $E^{n-1} \backslash h^{-1}\left(S_{2}\right)$ which contains $A_{1}$, then, by Theorem 3.2,
$C$ is a closed ( $n-1$ )-cell. We now observe that $C$ consists of a closed annulus $\left(h^{-1}\left(B \backslash\right.\right.$ Int $\left.S_{2}\right)$ ) with $C l A_{1}$ sewn along one boundary component (along $h^{-1}\left(S_{1}\right)=S$ ), and is therefore homeomorphic with $\{S x[0,1]\} \cup\left\{C 1 A_{1} x[1]\right\}$.

Theorem 4.6. Let $S$ be an ( $n-2$ )-sphere in $E^{n-1}$ with the bounded and unbounded components of $E^{n-1} \backslash S$ denoted by $A_{1}$ and $A_{2}$ respectively. If $C 1 A_{2}$ (compactified at infinity) is a closed ( $n-1$ )cell, then $\{S x[-1,1]\} \cup\left\{C 1 A_{1} x[-1]\right\} \cup\left\{C 1 A_{1} x[1]\right\}$ is an $(n-1)$-sphere in $E^{n}$.

Proof. By Lemma 4.4 , each of $\{S x[-1,0]\} \cup\left\{c l A_{1} x[-1]\right\}$ and $\{S x[0,1]\} \cup\left\{C 1 A_{1} x[1]\right\}$ is a closed $(n-1)$-cell. These two cells intersect along their common boundary sphere $S$, and hence their union is an ( $n-1$ )-sphere.

We now consider a 2-sphere $S$, locally polyhedral except at a single point, in $E^{3}\left(S^{3}\right)$ such that the bounded complementary domain $A_{1}$ is an open 3-cell, $C l A_{1}$ is not a closed 3-cell, the unbounded complementary domain $A_{2}$ (compactified at infinity) is an open 3-cell, and $\mathrm{Cl} \mathrm{A}_{2}$ is a closed 3-cell. The assertion is that the 3-sphere

$$
T=\{S x[-1,1]\} \cup\left\{A_{1} x[1]\right\} \cup\left\{A_{1} x[-1]\right\}
$$

is embedded in $S^{4}$ such that, if $B_{1}$ and $B_{2}$ respectively are the components of $S^{4} \backslash T$ which contain $A_{1}$ and $A_{2}$, then $B_{1}$ is an open 4-cell, $C I B_{1}$ is not a closed 4-cell, and $C l B_{2}$ is a closed 4-cell.

Since $B_{1}$ is the product of the open 3-cell $A_{1}$ and the open interval (-1, 1), it follows immediately that $B_{1}$ is an open 4-cell.

If $C 1 B_{1}=C l A_{1} X[-1,1]$ were a closed 4 -cell, a theorem due to Bing [7] would imply that $C 1 A_{1}$ is a closed 3 -cell. Thus we have a contradiction of our assumption on the embedding of $S$ in $E^{3}$.

We now show that $\mathrm{Cl}_{2}$ is a closed 4 -cell by constructing a homeomorphism $\mathrm{f}: \mathrm{T} \times\left[\mathrm{O}, \frac{1}{2}\right] \longrightarrow \mathrm{Cl} \mathrm{B}_{2}$ such that the mapping $\mathrm{f}_{\mathrm{o}}$ defined by $f_{0}(y)=f(y, 0)$ is the identity mapping on $T$, and then applying Theorem 3.2. Since $\mathrm{Cl}_{2}$ is a closed 3-cell, there exists a homeomorphism $h: S x\left[0, \frac{1}{2}\right] \longrightarrow C l A_{2}$ such that $h_{0}(x)=h(x, 0)$ $=x$ for all $x \in S$. For $y \in T$, let $x$ be the point of $C l A_{1}$ which lies under $y(y=(x, t)$ for some $t \varepsilon[-1,1])$. We define $f$ by the following equations:
(1) $f_{r}(y)=\left(x, 1^{r}+r\right), \quad y=(x, 1), \quad x \in A_{1}$,
(2) $f_{r}(y)=(x,-1-r), \quad y=(x,-1), \quad x \in A_{1}$,
(3) $f_{r}(y)=\left(h_{r}(x), t\right), \quad x \in S, \quad-1+r<t<1-r$,
(4) $f_{r}(y)=\left(h_{(1-t)}(x), 2 t-(1,-r)\right), x \in S, 1-r \leq t \leq 1$,
(5) $f_{r}(y)=\left(h_{(1-t)}(x), 2 t-(r-1)\right), x \in S,-1 \leq t \leq-1+r$.

To show that $f$ is a one-to-one mapping of $T x\left[0, \frac{1}{2}\right]$ into $C 1 B_{2}$ we must show that if $y_{1}=\left(x_{1}, t_{1}\right), y_{2}=\left(x_{2}, t_{2}\right)$, and $f_{: r_{1}}\left(y_{1}\right)=f_{r_{2}}\left(y_{2}\right)$, then $x_{1}=x_{2}, t_{1}=t_{2}$, and $r_{1}=r_{2}$. Since $f_{r}$ cannot decrease second coordinates of points of $\{S x[0,1]\} \cup\left\{A_{1} x[1]\right\}$ and cannot increase second coordinates of $\{S \times[-1,0]\} \cup\{A \times[-1]\}$, we may assume that both $t_{1}$ and $t_{2}$ are non-negative, or that both are negative. We will only consider the first case; the latter would follow
by a similar argument. If $f_{r_{1}}\left(y_{1}\right)=f_{r_{2}}\left(y_{2}\right)$ is a point of $A_{1} x\left[1+r_{0}\right]$ for some $r_{0} \varepsilon\left[0, \frac{1}{2}\right]$, then by (1), $r_{1}=r_{0}=r_{2}, t_{1}=t_{2}=1$, and $x_{1}=x_{2}$.

For $x_{1}, x_{2}$ in $S$ and $f_{r_{1}}\left(y_{1}\right)=f_{r_{2}}\left(y_{2}\right)$, we must have $x_{1}=x_{2}$, since $f_{r_{1}}\left(y_{1}\right)$ and $f_{r_{2}}\left(y_{2}\right)$ lie over points of the arcs $h_{t}\left(x_{1}\right)$, $0 \leq t \leq \frac{1}{2}$, and $h_{t}\left(x_{2}\right), 0 \leq t \leq \frac{1}{2}$, respectively. Since $h$ is a homeomorphism, these arcs intersect if and only if $x_{1}=x_{2}$.

We now consider two special cases $t_{1}=t_{2}$ and $r_{1}=r_{2}$. If $t_{1}=t_{2}$, we mas assume $r_{1} \leq r_{2}$. There are then three possibilities s (a) $0 \leq t_{1}<1-r, 0 \leq t_{2}=t_{1}<1-r_{2}$, (b) $0 \leq t_{1}<1-r_{1}$, $1-r_{2} \leq t_{2}=t_{1} \leq 1$, (c) $1-r_{1} \leq t_{1} \leq 1,1-r_{2} \leq t_{2}=t_{1} \leq 1$. For (a) we have $h_{r_{1}}\left(x_{1}\right)=h_{r_{2}}\left(x_{1}\right)$ and $r_{1}=r_{2}$, since $h$ is one-toone on $S \times\left[0, \frac{1}{2}\right]$. For $(b)$ we have $r_{1}=1-t_{1}, t_{1}=2 t_{1}-\left(1-r_{2}\right)$ and for (c) we have $2 t_{1}-\left(1-r_{1}\right)=2 t_{1}-\left(1-r_{2}\right)$, each of which leads to $r_{1}=r_{2}$. If $r_{1}=r_{2}$, then $t_{1}=t_{2}$, since each $f_{r}$ is one-to-one. We now return to the general case $y_{1}=\left(x_{1}, t_{1}\right), y_{2}=\left(x_{1}, t_{2}\right)$, $x \in S$ and $h_{r_{1}}\left(y_{1}\right)=h_{r_{2}}\left(y_{2}\right)$. We may assume $t_{1} \leq t_{2}$. Equations (3) and (4) them imply the following possibilities: (a) $t_{1}<1-r_{1}$, $t_{2}<1-r_{2}$, (b) $t_{1}<1-r_{1}, t_{2} \geq 1-r_{2}$, (c): $t_{1} \geq 1-r_{1}$, $t_{2} \geq 1-r_{2}$. In (a), $t_{1}=t_{2}$ (the second coordinates of $f_{r_{1}}\left(y_{1}\right)$ and $f_{r_{2}}\left(y_{2}\right)$ must be equal), and hence $r_{1}=r_{2}$. In (b), $r_{1}=1-t_{2}$, and $t_{1}=2 t_{2}-\left(1-r_{2}\right)$ imply that $t_{1}=2\left(1-r_{1}\right)-\left(1-r_{2}\right)=\left(1-r_{1}\right)+\left(r_{2}-r_{1}\right)$. Since $t_{1}<1-r_{1}$, we must have $r_{2}-r_{1}<0$, or $1-r_{1}<1-r_{2}$. This leads to $t_{2}=1-r_{1}<1-r_{2}$, which contradicts our assumption that $t_{2} \geq 1-r_{2}$. Hence (b) cannot occur. In (c) we have

$$
1-t_{1}=1-t_{2}, \text { or } t_{1}=t_{2},
$$

since the first coordinates of $f_{r_{1}}\left(y_{1}\right)$ and $f_{r_{2}}\left(y_{1}\right)$ must be equal. Since $t_{1}=t_{2}$, we must also have $r_{1}=r_{2}$.

The continuity of follows rather quickly from the definition of $f$ in terms of the continuous mapping $h$ and a set of linear equations.

```
BIBLIOGRAPHY
```


## BIBLTOGRAPHY

1. Alexander, J. W. "On the subdivision of space by a polyhedron," Proceedings of the National Academy of Sciences, Vol. 10 (1924), pp. 6-8.
2. Alexander, J. W. "An example of a simply connected surface bounding a region which is not simply connected," Proceedings of the National Academy of Sciences, Vol. 10 (1924), pp. 9-10.
3. Andrews, J. J. and M. L. Curtis. "Knotted 2-spheres in the 4sphere," Annals of Mathematics, Vol. 70 (1959), pp. 565-571.
4. Artin, E. "Zur Isotopie zweidimensionaler Flächen im $\mathrm{R}_{4}$ " AbhandIungen aus. dem mathematischen Seminar der Hamburgischen Universität, Vo1. 4 (1925), pp. 174-177.
5. Artin, E. and R. H. Fox. "Some wild cells and spheres in threedimensional space," Annals of Mathematics, Vol. 49 (1948), pp. 979990.
6. Bing, R. H. "Locally tame sets are tame," Annals of Mathematics, Vol. 59 (1954), pp. 145-158.
7. Bing, R. H. "A set is a 3-cell if its cartesian product with an arc is a 4-cell," Proceedings of the American Mathematical Society, Vol. 12 (1961), pp. 13-19.
8. Brown, M. "A proof of the Generalized Schoenflies Theorem," Bulletin of the American Mathematical Society, Vol. 66 (1960), pp. 74-76.
9. Brown, M. "The monotone union of open n-cells is an open n-cell," Proceedings of the American Mathematical Society, Vol. 12 (1961), pp. 812-814.
10. Gugenheim, V.K.A.M. "Piecewise linear isotopy and embedding of elements and spheres ( $I$ )," Proceedings of the London Mathematical Society, Series 3, Vol. 3 (1953), pp. 29-53.
11. Harrold, O. G. and E. E. Moise. "Almost locally polyhedral spheres," Annals of Mathematics, Vol. 57 (1953), pp. 575-578.
12. Harrold, O. G. "Locally peripherally unknotted surfaces in $\mathrm{E}^{3}$," Annals of Mathematics, Vol. 69 (1959), pp. 276-290.
13. Mazur, B. "On embeddings of spheres," Bulletin of the American Mathematical Society, Vol. 65 (1959), pp. 59-65.
14. Moise, E. E. "Affine structures in 3-manifolds, V. The triangulation theorem and hauptvermutung," Annals of Mathematics, Vol. 56 (1952), pp. 96-114.
15. Moise, E. E. "Affine structures in 3-manifolds, VIII. Invariance of the knot-types; local tame imbedding," Annals of Mathematics, Vol. 59 (1954), pp. 159-170.
16. Papakyriakopoulos, C. D. "On Dehn's lemma and the asphericity of knots, Annals of Mathematics, Vol. 66 (1957), pp. 1-26.
17. Schubert, H. "Knoten and Vollringe," Acta Mathematica, Vol. 90 (1953), pp. 131-286.
18. Seifert, H. and W. Threlfall. Lehrbuch der Topologie. New York: Chelsea Publishing Co., 1947.
19. Zeeman, E. C. "Unknotting spheres," Annals of Mathematics, Vol. 72 (1960), pp. 350-361.

[^0]:    *Numbers in square brackets refer to numbers in the bibliography at the end of this paper.

