
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

5-2015

Ultra-Low-Power Configurable Analog Signal
Processor for Wireless Sensors
James Kelly Griffin
University of Tennessee - Knoxville, jgriff48@vols.utk.edu

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Griffin, James Kelly, "Ultra-Low-Power Configurable Analog Signal Processor for Wireless Sensors. " Master's Thesis, University of
Tennessee, 2015.
https://trace.tennessee.edu/utk_gradthes/3364

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by James Kelly Griffin entitled "Ultra-Low-Power Configurable
Analog Signal Processor for Wireless Sensors." I have examined the final electronic copy of this thesis for
form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Master of Science, with a major in Electrical Engineering.

Jeremy Holleman, Major Professor

We have read this thesis and recommend its acceptance:

Benjamin Blalock, Garret Rose

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Ultra-Low-Power Configurable

Analog Signal Processor for

Wireless Sensors

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

James Kelly Griffin

May 2015

c© by James Kelly Griffin, 2015

All Rights Reserved.

ii

In dedication to my parents for providing me with their love and support throughout

my education.

iii

Acknowledgements

I would like to thank my advisor, Professor Jeremy Holleman, for all his help with

my graduate project as well as the priceless education he has provided me with at the

University of Tennessee. His mentoring has provided me with an education that will

allow me to join the work force and create new innovative technology. Professor Ben

Blalock has taught me a great deal about analog electronics and helped me obtain

real life experience. For this I will always be thankful. I’m very thankful to the entire

Integrated Silicon Systems group who has assisted me in every step of my graduate

project. A special thanks to Tan Yang and Junjie Lu for helping build components

in my signal processor as well as the overall design.

I would like to thank the research consortium CDADIC for funding my research

assistantship that allowed me to attend graduate school.

I would like to thank the administrative assistants, Dana Bryson, Julia Elkins,

and Melanie Kelley for their help throughout the years.

Lastly I would like to thank my co-workers and friends among the EECS

department for their advice and company in the lab. Thank you Jake Shelton, Jeff

Dix, Alex McHale, Shahriar “Pollob” Jahan, Nicholas Poore, Terence Randall, Logan

Taylor, Ifana Mahbub, Pranshu Bansal, and Jeremy Langford.

iv

Abstract

The demand for on-chip low-power Complementary Metal Oxide Semiconductor

(CMOS) analog signal processing has significantly increased in recent years. Digital

signal processors continue to shrink in size as transistors half in size every two years.

However, digital signal processors (DSP’s) notoriously use more power than analog

signal processors (APS’s). This thesis presents a configurable analog signal processor

(CASP) used for wireless sensors. This CASP contains a multitude of processing

blocks include the following: low pass filter (LPF), high pass filter (HPF) integrator,

differentiator, operational transconductance amplifier (OTA), rectifier with absolute

value functionality, and multiplier. Each block uses current-mode processing and

operates in the sub-threshold region of operation. Current-mode processing allows

for noise reduction, lower power consumption, and better dynamic range. Each block

contains configurable current sources and capacitor banks for maximum adaptability.

The blocks were designed, simulated, and fabricated in Cadence using IBM’s 130nm

CMOS process. The processing blocks were combined into a four by three array and

connected using specially designed interconnect fabric. A test structure including the

LPF, HPF, and multiplier was also constructed for characterization purposes. The

main goals for this project are frequency compression and creating a non-linear energy

operator for neural spike detection.

The test results for the low-pass filter, integrator, and frequency divider reflected

the simulated values. The other blocks didn’t perform as well as in simulation. The

interconnect fabric ties all the blocks together and achieved maximum configurability

v

with negligible attenuation. In simulation, frequency compression was achieved with

30µ[micro]W of power from a 1V supply rail.

vi

Table of Contents

1 Introduction 1

2 Background 4

2.1 Integrated Circuits . 4

2.1.1 Analog Circuits . 5

2.1.2 Digital Circuits . 5

2.2 Field Programmable Analog Arrays 6

2.3 Subthreshold Analog Circuits . 8

2.3.1 MOSFET Regions of Operation 8

2.3.2 Translinear Principle . 9

2.4 FPAA Performance Metric . 10

2.4.1 Dynamic Range . 10

3 Design and Simulations 11

3.1 Configurable Current Bias . 11

3.1.1 Current Mirror Design . 11

3.1.2 Current Sinking and Sourcing 12

3.1.3 Configurable Current Bias Simulations 12

3.1.4 Configurable Current Source Layout 15

3.2 Low-Pass Filter and Integrator . 15

3.2.1 LPF Design and Mathematical Derivation 16

3.2.2 LPF Simulation . 20

vii

3.2.3 LPF Layout . 21

3.2.4 Integrator Design . 25

3.2.5 Integrator Simulations . 26

3.2.6 Integrator Layout . 26

3.3 High-Pass Filter and Differentiator 26

3.3.1 HPF Design . 29

3.3.2 HPF Simulation . 30

3.3.3 HPF Layout . 31

3.3.4 Differentiator Design . 34

3.3.5 Differentiator Simulations . 35

3.3.6 Differentiator Layout . 35

3.4 Operational Transconductance Amplifier 35

3.4.1 OTA Design . 37

3.4.2 OTA Simulations . 37

3.4.3 OTA Layout . 40

3.5 Multiplier . 40

3.5.1 Multiplier Design . 41

3.5.2 Multiplier Simulations . 42

3.5.3 Multiplier Layout . 42

3.6 Rectifier . 45

3.6.1 Rectifier Design . 45

3.6.2 Rectifier Simulations . 46

3.6.3 Rectifier Layout . 48

3.7 Frequency Divider . 48

3.8 Interconnect Block . 48

3.8.1 Interconnect Design . 51

3.8.2 Interconnect Simulations . 51

3.8.3 Interconnect Layout . 52

3.9 Final Configurable Analog Signal Processor 54

viii

3.9.1 CASP Design . 54

3.9.2 CASP Simulation . 54

3.9.3 CASP Layout . 57

4 Experimental Results 58

4.1 LPF and Integrator Results . 60

4.1.1 LPF Results . 60

4.1.2 Integrator Results . 61

4.2 HPF and Differentiator Results . 62

4.3 OTA Results . 64

4.4 Multiplier Results . 65

4.5 Rectifier Results . 66

4.6 Frequency Divider Results . 66

5 Conclusions 69

Bibliography 71

Appendix 74

A 75

A.1 C++ Code for Bit Stream Generation 75

A.2 Python Code for MSP Code Generation 84

Vita 88

ix

List of Tables

3.1 LPF Corner Frequencies . 22

3.2 HPF Corner Frequencies . 32

4.1 Integrator Comparison . 62

x

List of Figures

2.1 (a) Analog translinear circuit computing x2/y (b) Correspondence

between ideal and actual results of x2/y computation 6

2.2 NFET Characterization for Regions of Operation 8

3.1 Configurable Current Mirror Structure Including Global Bias 13

3.2 Configurable Current Mirror Sink Simulation 14

3.3 Configurable Current Mirror Source Simulation 14

3.4 Configurable Current Source Layout 16

3.5 Output Translinear Structures . 17

3.6 Translinear Loop . 18

3.7 Translinear Low Pass Filter Circuit 19

3.8 LPF Corner Frequency Simulation . 22

3.9 LPF Noise Simulations . 22

3.10 LPF Layout . 23

3.11 LPF Layout . 24

3.12 Integrator Schematic . 25

3.13 Integrator Corner Frequencies . 27

3.14 Integrator Transient Response to Sine Wave 27

3.15 Integrator Transient Response to Square Wave 28

3.16 Integrator Layout . 28

3.17 HPF Schematic . 30

3.18 HPF Corner Frequency Simulation 32

xi

3.19 HPF Core Layout . 33

3.20 HPF Full Layout . 33

3.21 Differential AC Simulation . 34

3.22 Differential Full Layout . 35

3.23 Differential AC Simulation . 36

3.24 Differential Transient Simulation . 36

3.25 OTA schematic . 38

3.26 OTA AC Simulation . 39

3.27 OTA Transient Simulation . 39

3.28 OTA Core Layout . 40

3.29 OTA Full Layout . 41

3.30 Multiplier Schematic . 43

3.31 Multiplier Simulation: Sine Wave Multiplication 43

3.32 Multiplier Simulation: Square * Sine Wave 44

3.33 Multiplier Core Layout . 44

3.34 Multiplier Full Layout . 45

3.35 Rectifier Schematic . 46

3.36 Rectifier Transient Simulation . 47

3.37 Rectifier AC Simulation . 47

3.38 Frequency Divider Schematic . 49

3.39 Frequency Divider Simulation . 49

3.40 Rectifier Core Layout . 50

3.41 Rectifier Full Layout . 50

3.42 Transmission Gate Schematic . 51

3.43 Interconnect Schematic . 52

3.44 Interconnect AC Simulation . 53

3.45 Interconnect Layout . 53

3.46 CASP Schematic . 55

3.47 Envelope Detection Simulation . 56

xii

3.48 Frequency Compression Simulation 56

3.49 Final CASP Layout . 57

4.1 Input Stage for Testing . 59

4.2 PCB Board for Test Setup . 59

4.3 LPF Gain Results . 60

4.4 LPF Noise Results . 61

4.5 Integrator Corner Frequencies with Respect to Current Sources . . . 62

4.6 HPF Monte Carlo Simulation . 63

4.7 OTA Experimental Results . 64

4.8 Multiplier Monte Carlo Simulation 65

4.9 Frequency Divider - Divide by 2 . 67

4.10 Frequency Divider - Divide by 4 . 67

4.11 Frequency Divider - Divide by 8 . 68

4.12 Frequency Divider - Divide by 16 . 68

xiii

Chapter 1

Introduction

Recent advances in science and semiconductor technology have created exciting

possibilities for new-age micro electronic systems. The project at hand deals with

the acoustic signals emitted and observed by a bat. Another use could be to examine

neural recordings from a bat brain. Advancements in science allow humans to discover

new technology to better the world. For example, understanding the echolocation of

bats could lead to new radar systems with higher precision. In order to sense brain

activity, one must be able to sense minute spikes in the brain. This is achieved by

placing micro-electrodes on brain tissue and amplifying the signals sensed. These

signals will be either converted to digital form by an analog to digital converter

(ADC), or processed for easier ADC conversion. Finally a transmitter will send the

signals from the sensor chip to a base station.

The combination of a sensor, ADC, and transmitter can be described as

a microprocessor. With transistors reducing size according to Moore’s Law,

microprocessors show dramatic signs of improvement in the areas of power and price.

This trend has created a large market for miniature wireless sensors used for studying

neurological signals. A major area of research is how to process the data acquired

from these sensors in a power efficient manner. Designers face trade-offs between

processing data before transmission or after transmission.

1

The typical fashion for micro sensors is to send the raw signal directly into an

ADC. Then this data can be transmitted back to a base station where the data can

be processed by a digital signal processor (DSP). The problem with this data transfer

method is achieving maximum resolution with limited power. When detecting neuro-

spikes, designers usually acquire signals from an array of micro-electrodes. Each

channel must be amplified and digitized, creating the need for multi channel ADCs.

In order to digitize full waveforms, systems are typically limited to a small number

of channels by their power constraints. However, by reducing the information in each

channel, higher channel counts can be obtained. For example, in [4], 100 channels of

neural spike threshold detectors are digitized through an ADC and data is transmitted

back to another board. Such rudimentary processing discards potentially useful

information. If data is lost between the sensor and ADC, then the final results

may not accurately portray the information desired. Designers could use higher

resolution ADCs; however, these ADCs would burn significantly more power and

exceed available power produced by small batteries. Therefore, the data in general

must be reduced prior to transmission.

Analog signal processing offers a potential solution to the problem. Analog circuits

can perform many operations on raw data from the sensors with a space and power

savings of up to three orders of magnitude compared to a digital solution [2]. An

ultra-low power analog signal processor (ASP) can be used on each channel to reduce

strain on the ADC and transmitter, while taking full advantage of the data received

from the sensor. This processor can solve the problem of data transfer by processing

data prior to digital conversion.

Presented in this thesis is a configurable analog signal processor (CASP), operating

at ultra-low power levels. The analog processing blocks include a low-pass filter

(LPF), high-pass filter (HPF) integrator, differentiator, operational transconductance

amplifier (OTA), rectifier with absolute value functionality, and multiplier. The

blocks use current-mode signal processing techniques in the weak inversion region of

2

operation. Each element was placed in an array and connects with multi-directional

interconnect fabric for maximum flexibility.

This thesis is organized to give the reader a full scope of the project goals,

research, and final results. Chapter 2 describes previous research on ASPs including

the challenges and low power capabilities. Chapter 3 will work through the design

procedures and provide simulations captured by Cadence. Chapter 4 will depict and

compare the final experimental measurements of CASP with the simulated results.

Finally Chapter 5 will summarize results, draw conclusions on the findings, and

describe future work.

3

Chapter 2

Background

This chapter addresses the background of field programmable analog arrays (FPAAs)

and other information concerning this thesis. Section 2.1 talks about the differences in

analog and digital integrated circuits in the areas of power, size, and design techniques.

Section 2.2 will discuss previous field programmable analog array (FPAA) designs and

analog transistor techniques. Section 2.3 covers the inversion mode of operation used

in this thesis. Finally, section 2.4 discusses some figures of merit for analog signal

blocks.

2.1 Integrated Circuits

Integrated circuits (ICs) have had a profound effect on human interaction. Before the

integrated circuit, people relied on vacuum tubes and solid-discrete state transistors

to control electricity. These devices use large amounts of area and power. Since the

1950’s, ICs have taken over and are now part of everyday life. An IC can be defined

as an electronic circuit containing a transistor and a combination of the following:

resistor, capacitors, diodes, or inductors. The transistor acts as a switch controlling

the flow of electricity depending on the voltages applied to its terminals. The other

components can be used along with a transistor to create amplifiers, flashing lights,

and numerous other electronic circuits. In modern days ICs can be implemented

4

using analog or digital techniques. Analog circuits refers to electronics dealing with

continuous, variable signals. On the contrary, digital circuits deal with only two levels

of signals usually called ones and zeros. There are many pros and cons for each IC.

2.1.1 Analog Circuits

Life can be considered analog in nature, so one would expect analog electronics to be

superior over digital electronics. This is not the case at all. The main advantage of

analog circuits is using direct input and output signals that don’t need to be converted

to the digital domain. No conversion means no data can be lost while being converted.

Another advantage can be the power used for analog computation is far less than for

a digital computation. Consequently, analog circuits are ideal for low power ICs that

interface directly with the outside world.

The difficult attributes of analog designs are design, flexibility, and susceptibility

to noise interference. Automation tools for analog designs have been created, but they

do not consider all effects. Analog designers must evaluate all parasitics and noise

contributions from surrounding circuitry. Many transistor matching techniques, like

common-centroid or ABBA, are used in layout to guarantee accurate functionality

[5]. When proper techniques are followed, analog designs can be powerful tools for

signal processing. Unfortunately analog designs can not be easily scaled down to new

technology; designers must consider short-channel effects and parasitics and redesign

circuits to fit new technologies.

2.1.2 Digital Circuits

Digital circuits dominate the electronics industry. Their popularity comes from

many factors. For one, digital designs are easily scaled to new technology. Also

digital designs can be synthesized from code. These attributes open up endless

possibilities to create complicated logic structures in a timely manner. One of the

most prominent digital applications is field programmable gate arrays (FPGAs).

5

FPGAs are widely used for signal processing, because they are easily programmed

for different applications. Their large power dissipation is the only drawback to being

used in micro sensors.

Other negative aspects of digital circuits are power consumption and conversion

loss. When integrated into systems, digital circuits must use an ADC to digitize the

outside signal. Once digitized, signals are more easily processed. Extensive work has

been done on ADCs in order to achieve minimal information loss during conversion;

however, there will always be some loss associated with ADCs. An example of

their high power consumption can be seen when comparing an analog translinear

computing circuit to a synthesized digital circuit. Figure 2.1 computes x2/y for two

input currents. The axis show IX and IOUT as the x-axis and y-axis, respectively; the

different curves are from varying IY . Simulations indicate that a digitally synthesized

counter circuit with the same dynamic range consumes about ten times more energy

per operation in comparison to the analog circuit.

Figure 2.1: (a) Analog translinear circuit computing x2/y (b) Correspondence between
ideal and actual results of x2/y computation

2.2 Field Programmable Analog Arrays

For years digital field programmable gate arrays (FPGAs) sufficed designers process-

ing needs. However, new fields of study demand lower power design that cannot

6

handle bulky, power hungry digital circuits. This effect has led to the development

of FPAAs. Designers have created FPAAs using several different techniques. The

most popular techniques being floating gate arrays and continuous-time operational

transconductance amplifiers (OTAs). In [7] and [1] the processing blocks are called

configurable analog blocks (CABs). These CABs can be configured to complete

different tasks based on processing needs.

The floating gate based FPAA presented in [1] contains 32 CABs and over 50,000

floating-gate elements. The use of floating gate switches allows their design to

eliminate memory for configuring switches. The floating gate approach uses less area,

but the programming becomes much more cumbersome. The routing techniques used

in this design use nearest neighbor as well as global wires. This allowed them to pass

a signal with 57 MHz bandwidth when using one near neighbor and one global line.

The interconnect fabric is a very important part of any array design. If not designed

properly, the bandwidth will limit the entire FPAA to low frequencies making it

useless. The CABs in this design contain floating gate OTAs, translinear Gilbert

multipliers, and folded Gilbert multipliers. Each cell processes signals in a different

way creating a large scale programmable analog array. [1]

The second related FPAA is a continuous-time operational transconductance

amplifier and capacitor (OTA-C) filter written by [7]. This analog array consists

of 40 CABs, which are OTA-Cs. By altering the transconductance and capacitor

setup, they created filters that operate from several kilohertz to several megahertz.

This design utilizes a programmable current mirror to enable control over the OTA-C

filter. Similar techniques will be explained in this thesis. The OTA-C FPAA was able

to achieve a 6th order bandpass filter and a fourth order bi-quad cascaded filter. [7]

7

2.3 Subthreshold Analog Circuits

2.3.1 MOSFET Regions of Operation

MOSFETs can operate in the following three different modes of operation: weak-

inversion, moderate-inversion, and strong-inversion mode. Transistors in weak and

strong-inversion can be saturated or not saturated. These regions of operation for a

minimum sized NFET in IBM’s 8RF process are seen in figure 2.2. For the simulation,

the threshold voltage was 137 mV. The operational modes are based on the voltage

relationships between the source, gate, and drain of the transistor. Weak-inversion

occurs when VGS is less than the threshold voltage. Strong-inversion happens when

VGS is greater than the threshold voltage plus about 200 mV. The regions above and

below the curve define the saturation and non-saturation regions, respectively. Most

transistors are used in the moderate and strong-inversion region because this is when

they are considered turned on. However, as designers looking for ways to save power,

utilize the weak-inversion region.

Figure 2.2: NFET Characterization for Regions of Operation

The weak-inversion region will be considered the subthreshold region throughout

this thesis. This operation occurs when the gate to source voltage is less than the

threshold voltage, VGS < Vth. In the late 1970’s, Vittoz was experimentally deriving

8

the characteristics of the subthreshold region [10]. With advanced control capabilities

of today, designers can more accurately operate in this region. As VGS approaches Vth,

the transistor produces a minute current with an exponential relationship described

by equation 2.1,

IDS = Io × (W/L)× ek(
VGS
UT

) × e(1−k)(
VBS
UT

)
(2.1)

if VDS >> Vth

where Io is a positive constant current, k or kappa is a technology-dependent

parameter assumed to be constant, VBS is the bulk to source voltage, and UT is

the thermal voltage equal to KT/q [9]. Many advantages can be taken from the

exponential involving VGS.

2.3.2 Translinear Principle

The exponential relationships in MOSFETs are refereed to as translinear circuits,

which were first discovered by Barrie Gilbert in 1975 for bipolar junction transistors

(BJTs) [3]. The word “translinear” refers to the exponential I/V characteristics of

bipolar transistors seen in equation 2.2.

IC = IS × e
k(
VBE
UT

)
(2.2)

The translinear principle applied to MOSFETs is further explored by Teresa

Serrano-Gotarredona [9]. She explains how an equal number of oppositely connected

translinear elements can create a loop relationship. The product of the currents in

the clockwise direction equals the opposite product of the counterclockwise currents,

creating a translinear loop. Using this relationship and capacitors, designers can

create powerful analog processing blocks. Subthreshold circuits are very sensitive

to matching errors and perform more slowly than transistors in other modes of

operation. This attribute does not make subthreshold circuits ideal for high speed use;

9

however, most signals associated with neurological brain waves are at low frequencies.

Since only the currents are under scrutiny, these circuits can be classified as current-

mode circuits. The voltages just need to bias the transistors in the correct mode of

operation.

2.4 FPAA Performance Metric

2.4.1 Dynamic Range

One figure of merit used for evaluating the processing blocks is dynamic range. The

dynamic range is the ratio of the maximum level of a parameter that does not distort

the signal to the minimum detectable level. For this thesis, dynamic range will be

based on the maximum input amplitude and the output integrated noise level. For

the maximum input range, a technique called total harmonic distortion, THD, will

be used. THD is the ratio of the power in all the harmonics to the power in the

fundamental frequency, described by equation 2.3.

THD =

∑
HarmonicsdB

Fundamntal FrequencydB
(2.3)

THD can easily be calculated on a network analyzer as well as in simulation. To

find the maximum input current for the dynamic range, the input will be increased

until the THD is 1.0%. The noise level will be determined for the minimal detectable

level of input. A noise simulation or test will be performed. The output will be in

ARMS/
√
Hz. The noise will be squared, integrated over frequency, and the square

root will be taken to find the final ARMS,noise level. Finally, the maximum input will

be divided with the minimum input, and dynamic range will be calculated, as seen

in equation 2.4.

DR = 20× log(
ARMS,input

ARMS,noise

) (2.4)

10

Chapter 3

Design and Simulations

This chapter works through the design and simulation for each block and the

overall hierarchy of the Configurable Analog Signal Processor (CASP) presented.

Throughout this work, the chip will be referred to as CASP. The first section, 3.1,

presents a configurable current mirror used in every block of the CASP design. Section

3.2 presents the low-pass filter design, which is used to realize an integrator as well.

A similarly designed high-pass filter and differentiator are demonstrated in section

3.3. The next sections, 3.4, 3.5, 3.6, and 3.7 will describe an OTA, multiplier, and

rectifier, and frequency divider respectively. Then, the interconnect fabric for CASP

will be presented in section 3.8. Finally, section 3.9 will pull all the blocks together

and demonstrate the full analog signal processor.

3.1 Configurable Current Bias

3.1.1 Current Mirror Design

Designing a universal configurable current source presented a few of its own challenges.

The first attempt was to use a self biasing current source and add a current mirror for

reconfigurability. However, a safer design was implemented by providing an external

voltage to a global biasing block. This block connects to several reconfigurable current

11

mirrors across the chip. Figure 3.1 portrays an entire configurable current source

block. The part labeled “global bias” is only implemented one time on the chip, and

the Vb1 and Vb2 pins are connected to every current mirror throughout the system.

The current mirror is a cascode current mirror design that includes an extra row of

transistors acting as switches. All of the transistors in the current mirror and global

bias have the same gate length, 240 nm, and gate width, 360 nm. The scaling is done

with gate fingers. Adding fingers to a transistor makes it have two gates separated by

a pad. In figure 3.1, the transistors are set up so that each branch has twice as many

fingers as the previous branch, starting with a single finger transistor. The global

biasing transistors all have eight fingers, which allows the current in the first three

branches of the current mirror to be scaled down while the other current branches are

scale up. This current mirror design suffices for any current biases needed in CASP.

3.1.2 Current Sinking and Sourcing

The additional circuitry above the current mirror provide functionality to sink current

instead of sourcing current. The pin labeled “R” runs through an inverter to create

“Rbar.” The switches S1 and S2 are transmission gate switches that operate based

on the values of R and Rbar. When R is set high to VDD, Rbar turns off the NMOS

transistor and turns on both the switches. This allows current to flow through the

PMOS cascode current mirror providing current source. The PMOS current mirror

was altered from a standard cascode current mirror in order to achieve higher output

impedance. The PMOS current stage re-design was necessary for the current source

to work properly with some of the processing blocks. When R is set low to ground,

the current flows out through the NMOS transistor providing a current sink.

3.1.3 Configurable Current Bias Simulations

Extensive simulation were performed on the configurable current mirror to test its

functionality. The current mirror was also used when simulating other blocks such

12

as the LPF, HPF and multiplier. The current sourcing capabilities range from 3 nA

to 490 nA, as shown in figure 3.2. The current sinking capabilities range from 3 nA

to 626 nA, as shown in figure 3.3. The simulations were run by setting each control

switch, D0-D7, to a specific bit and the incrementing the eight bits from 1 to 255.

The spikes in the simulations are due to switching activity and should be ignored

because the current source won’t be switching during operation. The large jumps

in current are due to switching on of the last three current branches. These three

branches produce significantly more current than the other branches, and when they

turn on, the other branches are turned off. The current source will only provide a

DC current to processing blocks.

Figure 3.1: Configurable Current Mirror Structure Including Global Bias

13

Figure 3.2: Configurable Current Mirror Sink Simulation

Figure 3.3: Configurable Current Mirror Source Simulation

14

3.1.4 Configurable Current Source Layout

The layout for the configurable current mirror was challenging. All of the transistors

in a particular current branch need to be matched with each other. Also the PMOS

transistors need to be matched among each other. An important layout variation that

needs to be accounted for is called gradients [5]. A gradient runs any direction across

a chip and produce small property changes such as: oxide thickness, carrier mobilities,

and threshold voltages. Gradient-induced mismatch can be minimized by reducing

the distance between the centroids of matched devices [5]. A centroid refers to the

center point of a transistors overall area. In order to ensure matching, all the NMOS

transistors are grouped together at the bottom of the layout in figure 3.4. Branches

from ground are inserted in between each row of NMOS transistors to create ideal

conditions for the substrates of these devices. The PMOS transistors are similarly

matched in the top left corner, and their substrate is well connected to VDD. The

switches and inverter are grouped to the right of the PMOS devices, and the entire

design is enclosed in a guard ring for isolation from other blocks. The layout area

was 2000 µm2.

3.2 Low-Pass Filter and Integrator

The low-pass filter (LPF) is designed using the translinear principle, which was

introduced in section 2.3. Translinear circuits are ideal for low-power, low-noise

designs. The low-noise advantage is realized through current-mode circuits. The noise

contribution at low frequencies are flicker or 1/f noise, and at higher frequencies, white

noise takes over but is still very minimal. Overall, the thermal noise contributions

to the translinear circuit are much lower than in voltage mode designs. Since the

transistors operate in the subthreshold region, low-power is easily achieved by keeping

the voltage rail low. In the area of neurological research, low-pass filters are important

because high frequency noise can interfere with the intended signals from a brain.

15

Figure 3.4: Configurable Current Source Layout

3.2.1 LPF Design and Mathematical Derivation

The math for the LPF is cumbersome, but presented below is the method that led to

the final LPF circuit. First, an important inverting translinear structures is shown

in figure 3.5, [6]. The structure relationships are described by the equation below it.

These relationships will come into play when synthesizing a LPF using math. The

following image and derivation is based off a presentation by Bradley Minch in 2010,

[6].

From a mathematical standpoint, equation 3.1 represents a first order LPF.

Using a ratio of signal current to unit current, an ordinary differential equation can

be realized in equation 3.2. In this equation, “y” is the input, and “x” is the output.

x = y + τ
dy

dt
(3.1)

16

Figure 3.5: Output Translinear Structures

Ix
I1

=
Iy
I1

+ τ

(
d

dt

)(
Iy
I1

)
==> Ix = Iy + τ

dIy
dt

(3.2)

Next a log-compressed voltage state variable, Vy, is introduced giving equation

3.3. From the inverting structure relationship and dividing by Iy, equation 3.3 will

create equation 3.4.

Ix = Iy + τ

(
dIy
dVy

)
dVy
dt

(3.3)

Ix
Iy

= 1 +

(
−κ× τ
Ut

)
dVy
dt

(3.4)

By multiplying the last term in equation 3.4 by C/C to introduce capacitance

into the equations, equation 3.5 is created. Two relationships lead to equation 3.6.

The first is the relationship for a capacitor’s current to voltage, Ic = CdV
dt

. The second

is the relationship is the time constant, τ , to the current, Iτ , described by τ = C×UT
Iτ×κ .

Multiplying through by Iτ gives equation 3.7.

Ix
Iy

= 1 +

(
−k × τ
C × Ut

)
C × dVy

dt
(3.5)

17

Ix
Iy

= 1−
(

1

Iτ

)
Ic (3.6)

Iτ − Ic =
Ix × Iτ
Iy

= Ip (3.7)

In section 2.3, translinear loops were introduced. Now those loops need to be

further explained. According to the translinear principle (TLP), the products of

clockwise and counterclockwise translinear element’s currents inside a closed loop are

equal, [3]. Instead of BJT’s, the translinear elements are MOSFETs biased in the

subthreshold region. From the TLP, the currents in figure 3.6 can be defined by Ix*Iτ

= Iy*Ip.

Figure 3.6: Translinear Loop

Next, the final equation, 3.7, needs to be accomplished by using the inverting

structure in figure 3.5. With the addition of a current mirror to provide biasing Iτ ,

the final schematic for the LPF created in figure 3.7. Using Kirchhoff’s current law,

equation 3.7 can be seen as: Iτ = Ic + Ip. Also, the output needed to source current,

not sink current, in order to work with subsequent stages, so the addition of a PMOS

current mirror was added to the output. The current provided by Ibias is the Iτ current

from the mathematical derivation. This lengthy derivation creates a LPF from the

original LPF transfer equation seen in equation 3.2. The next subsection will describe

the simulations of the LPF.

18

Figure 3.7: Translinear Low Pass Filter Circuit

19

3.2.2 LPF Simulation

All simulations were completed using cadence 6.1.5. The first simulation tests the

different configurations of the LPF. This LPF is configurable by two different methods.

The biasing current can be varied on a binary scale with eight bits of resolution from

3 nA to 490 nA using a configurable current source presented in section 3.1. Cvar

can also be changed between four different capacitors with values equal to: 750 fF,

5 pF, 20 pF and 90 pF. The capacitors add for a maximum capacitance of 115.75 pF.

The current configuration allows the low-pass filter to have a multitude of corner

frequencies for each capacitance value tabulated in table 3.1. The tabulated values are

from simulations and show that the LPF has a wide tuning range reaching from 125 Hz

to 1.5 MHz. For these simulations the output was sent through a diode connected

NMOS transistor; this output matches the impedance seen if the output is sent to

another processing block. All of the AC simulations for each high and low corner

frequency are depicted together in figure 3.8. The simulated power consumption with

the lowest and highest bias current is 110.8 nW and 1.96 µW, respectively. This power

consumption weighs heavily on the input bias current provided to the LPF because

the output signal is sent through a PMOS current mirror. The frequency range and

power consumption are acceptable for low-power neurological signal processing.

Another important simulation for this LPF to test the dynamic range. For this

test setup, the LPF is in the following configuration: the bias current is set to 366 nA

and the all of the capacitors were on adding up to 115.75 pF of capacitance. This

setup makes the corner frequency at 10.5 kHz. First, a noise measurement needs to

be made. The noise simulation was run in Cadence with the input current source

set as the input noise and a 0 V voltage source on Iout set as the output noise. The

simulation was run from 1 Hz to 1 MHz with a logarithmic scale and 30 points per

decade. The output noise waveform is in A/
√
Hz, shown in figure 3.9. This resulting

output noise waveform was then squared and integrated from 100 Hz to 100 kHz

with respect to frequency and the square root was taken to come up with an output

20

integrated noise number in ARMS,noise units. Next, the output integrated noise needs

to be divided by the midband gain of the LPF, which is -0.515 mdB. Then a transient

simulation is run and the total harmonic distortion, (THD), is calculated using the

cadence calculator. The input offset current is set to 300 nA, frequency set to 1 kHz,

and the amplitude is varied until the THD equals 1%. This amplitude, 206 nAPP , is

divided by
√

2 to give the amplitude ARMS,input units. Finally, as seen in equation

3.8, the dynamic range is calculated to be 58 dB.

DR = 20× log(
ARMS,input

ARMS,noise

) = 20× log(
145 nARMS

180 pARMS

) = 58 (3.8)

3.2.3 LPF Layout

Analog processing requires many layout techniques to insure proper matching among

transistors. For the LPF, the transistors in the translinear loop, Q1-Q4 in figure

3.7, need to be matched as accurately as possible. Also the current mirrors for

biasing Iτ and the output stage need to be matched, respectively. Any mismatch can

lead to gain errors due to channel-length modulation. Channel-length modulation,

which is a shortening of transistor channel length, between two transistors that can

create DC current offsets in the path among two matched transistors. In order to

mitigate mismatch, techniques from [5] were implemented. For transistors Q1-Q4, the

multiplicity was set to two, meaning two transistors hooked up in parallel equaled

one transistor. Then the devices were interdigitated in an DCBAABCD pattern with

dummy transistors added on the outsides. Q5-Q6, Q7-Q9, Q10-Q12, Q13 and Q15,

and Q14 and Q16 were also interdigitated using similar patterns with dummy devices.

The layout is presented in figure 3.10. The addition of the capacitors and configurable

current source makes the layout sixteen times larger as seen in figure 3.11. The LPF

core layout has and area of 1,600 µm2 and the full layout has an area of 49,250 µm2.

21

Table 3.1: LPF Corner Frequencies

Capacitance Low Corner High Corner
750 fF 11.83 kHz 1.52 MHz
5 pF 2.53 kHz 334.8 kHz
20 pF 671 Hz 87.81 kHz
90 pF 152 Hz 19.58 kHz
115.75 pF 125 Hz 15.6 kHz

Figure 3.8: LPF Corner Frequency Simulation

(a) LPF Low Corner Noise (b) LPF High Corner Noise

Figure 3.9: LPF Noise Simulations

22

Figure 3.10: LPF Layout

23

Figure 3.11: LPF Layout

24

3.2.4 Integrator Design

An integrator is a continuous analog counter accumulating the input into the output.

A current-mode integrator performs time integration of an electric current. Therefore,

the output is the total charge accumulated from the input. This function can be

completed using the LPF presented in section 3.2.1 with an offset current. The one

change from the LPF is that the capacitance for the integrator is set to 80 pF. The

final integrator schematic is shown in figure 3.12. This large capacitance keeps the

corner frequency low. In order to achieve integration, the signal frequency needs to be

at least four times greater than the corner frequency. Frequencies below or near the

corner frequency will pass straight through. Signals with frequencies greater than the

corner frequency will experience a lag time in charging the capacitor that is reflected

to the output.

Figure 3.12: Integrator Schematic

25

3.2.5 Integrator Simulations

The integrator simulations include an AC and transient analysis. The noise analysis

of this integrator closely follows the analysis of the LPF presented in section 3.2.2.

The biasing current for the integrator is provided using the previously discussed

configurable current source. This allows the corner frequency of the integrator to

be varied from 49 Hz to 7.58 kHz. Figure 3.13 shows an AC simulation when a single

branch of the configurable current source is on at a time.

Next two transient analyses were run to show the integration of a sine wave and

a square wave. The integration of a sine wave is a cosine wave, and the integration of

a square wave is a triangular wave shown in figures 3.14 and 3.15, respectively. For

these transient simulation, the cutoff frequency was set to 2 kHz, the DC input was

200 nA, the input amplitude was 25 nA, and frequency was set to 8 kHz. Each figure

correctly represent an integrating function. The simulated power consumption with

the lowest and highest bias current is 56.27 nW and 987.5 nW, respectively. This

power is also based on the input bias current to the integrator.

3.2.6 Integrator Layout

The full integrator layout is shown in figure 3.16 and consumes 30,390 µm2. On-

chip capacitors consume massive amounts of area. Different designs could create an

integrator with smaller on chip capacitance.

3.3 High-Pass Filter and Differentiator

A high-pass filter (HPF) in combination with a LPF can create a bandpass filter.

Both high-pass filtering and bandpass filtering can be very useful in signal processing.

When trying to study brain waves at specific frequencies a bandpass filter would be

ideal. Also a high pass filter can eliminate any low frequency interference.

26

Figure 3.13: Integrator Corner Frequencies

Figure 3.14: Integrator Transient Response to Sine Wave

27

Figure 3.15: Integrator Transient Response to Square Wave

Figure 3.16: Integrator Layout

28

3.3.1 HPF Design

This HPF design is based off the LPF translinear circuit proposed in section 3.2. The

technique used to create the HPF can be explained using transfer functions. The

following set of equations will prove that a LPF signal subtracted from the original

signal will produce a HPF. The transfer function for a LPF can be described by

equation 3.9, where Ix1 is the input and Iy1 is the output. An all pass filter transfer

function can be described by equation 3.10, where Ix2 is the input and Iy2 is the

output.

Iy1
Ix1

=
1

1 + sC
(3.9)

Iy2
Ix2

= 1 (3.10)

Then the output to the LPF transfer function is subtracted from the output of

the all-pass filter transfer function resulting in ∆Iy shown in equation 3.11. Since the

same input is being used for each transfer function, Ix1 = Ix2 = Ix, which leads to an

end result shown in equation 3.12.

∆Iy = Iy2 − Iy1 = Ix2 −
Ix1

1 + sC
(3.11)

∆Iy = Ix −
Ix

1 + sC
=

sCIx
1 + sC

(3.12)

The final result is the transfer equation for a HPF. As frequency approaches

infinity, sC = 1 + sC and ∆Iy = Ix, and as frequency approaches zero, ∆Iy = 0/1 =

0. Following this logic, an additional current mirror was added to the LPF schematic

in figure 3.7 to create the HPF in figure 3.17. This filter was design with assistance

from Tan Yang, part of the Integrated Silicon Systems group at the University of

Tennessee..

29

Figure 3.17: HPF Schematic

3.3.2 HPF Simulation

The HPF is configurable by changing the biasing current using the configurable

current source and by changing the capacitance. The Cvar in the HPF contains

the following capacitances: 5.3 pF, 10.6 pF, 21.3 pF, and 42.6 pF. Any combination

of capacitors can be turned on making the total possible capacitance nearly 80 pF.

The output signal is the input signal minus the LPF output, and therefore the low-

frequency current will be subtracted from the output. In order to compensate an

additional current source was added to the output of the HPF to restore the DC bias

level. For simulations, the output is linked to a diode connected NMOS transistor.

In order to bias the output NMOS transistor for simulations, the output current

source is configured to produce 44 nA of current. Table 3.2 lists the high and low

corner frequencies for each capacitance in the HPF. The AC responses for these

30

corner frequencies can be seen in figure 3.18. The HPF frequencies above 2 MHz are

attenuated, so the AC simulation is only run from 1 Hz to 1.5 MHz. This effect is

due to the nature of the biasing of these transistors and their switching speeds in

the subthreshold region of operation. The power consumption across the range of

frequency presented spans from 761 nA to 2.61 µW.

Next a noise and transient simulations were carried out to find the dynamic range

of the HPF. The test setup for the HPF has the following parameters: bias current

is set to 53.9 nA, all the capacitors were on, and the output bias current is set to 284

nA. This setup creates a corner frequency of 2.85 kHz. The same noise measurement

as the one in section 3.2.2 is used for the HPF noise simulation. The output noise was

squared, integrated from 100 Hz to 500 kHz with respect to frequency, and the square

root is taken to find the output integrated noise in ARMS. Then the output integrated

noise is divided by the midband gain of -0.201 dB. The final output integrated noise

level is 1.192 nA RMS. Now a transient response is observed in order to find an

amplitude leading to a THD of 1%. The transient input is a sine wave with a 300 nA

DC offset at 50 kHz. The amplitude that makes the THD equal to 1% is 280 nA. The

THD scales highly with the input bias current as long as the output bias current is

set to equal magnitudes. Using the numbers above a dynamic range equation, 3.13,

is presented.

DR = 20× log(
ARMS,input

ARMS,noie

) = 20× log(
396 nARMS

1.22 nARMS

) = 50.2 (3.13)

3.3.3 HPF Layout

The layout for the HPF consists of the LPF layout with an additional PMOS current

mirror for the input signal. Again an interdigitated layout method is used. The final

HPF core is shown in figure 3.19. The entire core is only 1,760 µm2. Figure 3.20

31

Table 3.2: HPF Corner Frequencies

Capacitance Low Corner High Corner
5.3 pF 2.66 kHz 312.3 kHz
10.6 pF 1.36 kHz 163.4 kHz
21.3 pF 690.8 Hz 86.24 kHz
42.6 pF 352 Hz 44.22 kHz
79.8 pF 183.7 Hz 23.27 kHz

Figure 3.18: HPF Corner Frequency Simulation

32

Figure 3.19: HPF Core Layout

Figure 3.20: HPF Full Layout

33

depicts the entire HPF layout including the capacitors. This layout consumes an area

of 42,728 µm2.

3.3.4 Differentiator Design

The differentiator works very similarly to the integrator. The HPF is used with a

set capacitor to create the differentiator. A differentiator will output the slope of the

input signal. As with the integrator, the differentiator input needs to be much lower

than the corner frequency. There will be attenuation in the output signal, but it will

be the derivative of the input. The schematic is seen in 3.21.

Figure 3.21: Differential AC Simulation

34

3.3.5 Differentiator Simulations

The differentiator is simulated for its corner frequency as well as the transient

response. Configurable current sources are used for the bias current and on the

output. The output current is set to 93 nA for this test. The AC response showing

the extremes of the variable corner frequency is seen in figure 3.23. The max and

min frequencies are 2.85 kHz and 250 kHz, respectively. A transient simulation will

demonstrate the functionality of the differentiator. The input bias current is set to 24

nA, giving the differentiator a corner frequency of 20.3 kHz. The output bias current

is set to 93 nA. Figure 3.24 shows the input sign wave and the output derivative of

a sine wave, which is a cosine wave. The power consumption of the derivative ranges

from 455.8 nW to 2.3 µW.

3.3.6 Differentiator Layout

The core layout is the same as the HPF core layout in figure 3.19. The full layout

including the current sources is in figure 3.22 and spans over an area of 11,725 µm2.

Figure 3.22: Differential Full Layout

3.4 Operational Transconductance Amplifier

An operational transconductance amplifier, (OTA), converts a differential voltage

into a current. When processing brain signals, voltages signals are captured from

35

Figure 3.23: Differential AC Simulation

Figure 3.24: Differential Transient Simulation

36

brain waves. An OTA is crucial for conversion from voltage to current so that the

signals can be processed with current-mode signal processors. An on chip OTA can

also provide an easy way to test other processing blocks using a voltage waveform

generator. The OTA selected for this analog signal process was designed by Tan

Yang.

3.4.1 OTA Design

This OTA operates in the subthreshold region like the other processing blocks that

are a part of this analog signal processor. The schematic is presented in figure 3.25.

The differential input signal, ∆Vin, is connected to the gates of Q1 and Q2; each gate

gets ∆Vin/2. The small signal current through Q1 and Q2 are described by equation

3.14, where the currents are of equal magnitude and opposite direction. Once the

currents are mirrored to the output, the small signal output voltage can be derived

as equation 3.15, where rop and ron are the small signal resistances for transistors Q5

and Q7, respectively. Plugging equation 3.14 into equation 3.15 and dividing by the

input voltage ∆V, the OTA gain is found and presented in equation 3.16. The bias

current determines the transconductance, gm, value and allows for variable gain.

id = gm × (
∆V

2
) (3.14)

Vout = −2× id × (rop||ron) (3.15)

Av =
Vo
Vi

= −gm × (rop||ron) (3.16)

3.4.2 OTA Simulations

An AC simulation is run to find the open loop gain, corner frequency, and calculate

the gain bandwidth product, (GBP) of the OTA. For the AC simulation the bias

37

Figure 3.25: OTA schematic

current is set with a configurable current source block to both extremes, 2.82 nA

and 490.7 nA. The negative terminal is connected to a voltage source with AC set

to zero and 500 mV DC. The positive input is given an AC magnitude of 1 and a

DC voltage of 500 mV. Figure 3.26 is obtained by sweeping the frequency at the

highest and lowest bias currents. The highest and lowest corner frequencies, f −3dB,

are 636.9 kHz and 11.17 kHz, respectively. The gains for each corner are 24.3 dB and

21.1 dB, respectively. From these values, the GBP can be calculated using equation

3.17. The GBP spans from 10.44 MHz to 126.78 kHz. The power consumption for

these simulations ranges from 19.56 nW to 2.72 µW.

A transient simulation was run to observe the response to a sine wave input

voltage. The “IN-” node was set to 500 mV, and the “IN+” node was set to a sine

wave with a DC bias of 500 mV and an AC magnitude of 40 mV. The bias current is

set to 94.7 nA. The inputs and outputs are shown in figure 3.27. The resulting output

is a current sine wave with DC offset of 76.5 nA and an AC magnitude of 78 nApp.

GBP = Av × f−3dB (3.17)

38

Figure 3.26: OTA AC Simulation

Figure 3.27: OTA Transient Simulation

39

3.4.3 OTA Layout

The OTA core layout was completed by Tan Yang. The layout is presented in figure

3.28, and area for this layout is 310 µm2. The addition to the OTA core was a

configurable current source resulting in figure 3.29 with an area of 3,437 µm2. The

OTA was implemented into the analog signal processor in two ways: one block allows

control of Vin+ and Vin−, and the other block allows control of Vin+ and Ibias, where

Vin− is set to the reference voltage, Vref . This will be further explained in section

3.9.

Figure 3.28: OTA Core Layout

3.5 Multiplier

Multipliers have many applications in the analog signal processing domain. They

are useful in modulators, nonlinear filtering, programmable-gain amplifiers, root-

mean-square converters, etc. Analog multipliers can achieve high resolution with

minimal power compared to digital multipliers that can achieve greater resolution

with significantly more power. The application this multiplier was intended for was a

frequency compression circuit that will be discussed in section 3.9. The multiplier is

40

Figure 3.29: OTA Full Layout

designed using subthreshold transistors configured in a translinear loop. The design

and optimization was completed by Tan Yang as well.

3.5.1 Multiplier Design

The multiplier schematic is presented in figure 3.30. There are two identical

translinear loops in this design. The current mirror with an input labeled Ibias,

provides the currents Ic. The translinear loop is described in equation 3.18. This

loop equation can also describe the relationship between Q8-Q11. Iy+ is then mirrored

across to the output where Iy− is subtracted from it. The resulting current is sent to

the output and described by equation 3.19. Because of the current subtraction, an

additional configurable current source was placed on the output to provide sufficient

DC current for the output. There are several inputs for this multiplier, so a

simplification was made in the final design. The inputs IA− and IB− are tied to

configurable current sources. The bias current is also provided by a current source.

41

This setup allows the subtracted signal to consist of purely DC levels. The inputs

available for signals are IA+ and IB+.

Vgs,Q5 + Vgs,Q6 = Vgs,Q4 + Vgs,Q7 ∴ IA+ × IB+ = IC × Iy+ (3.18)

Iy+ − Iy− =
IA+ × IB+

IC
− IA− × IB−

IC
∴ Iout =

IA+ × IB+

IC
− IDC (3.19)

3.5.2 Multiplier Simulations

Transient simulations were performed to show the functionality of the multiplier. The

first simulation will multiply two sine waves at different frequencies. The inputs were

set to the following configuration: IA− is 9.6 nADC , IB− is 8.1 nADC , IA+ is a sine

wave equal to 80 nADC + 40 nAAC , and IB+ is a sine wave equal to 40 nADC +

10 nAAC . The result is shown in figure 3.31. For a second simulation the inputs were

set to the following configuration: IA− is 9.6 nADC , IB− is 8.1 nADC , IA+ is a square

wave going from 0 nA to 40 nA, and IB+ is a sine wave equal to 40 nADC + 10 nAAC .

These result is shown in figure 3.32.

3.5.3 Multiplier Layout

The layout for the multiplier requires matching between the transistors in the

translinear loop as well as the current mirror providing the bias current. The

interdigitated design techniques from [5] were used again with dummy transistors

on the outsides of each DCBAABCD layout pattern. The core layout is shown in

figure 3.33. The full layout with the configurable current sources is shown in figure

3.34. The sizes of the core and full layout are 1,207 µm2 and 14,371 µm2, respectively.

42

Figure 3.30: Multiplier Schematic

Figure 3.31: Multiplier Simulation: Sine Wave Multiplication

43

Figure 3.32: Multiplier Simulation: Square * Sine Wave

Figure 3.33: Multiplier Core Layout

44

Figure 3.34: Multiplier Full Layout

3.6 Rectifier

The final processing block is an absolute value or rectifier block. The block performs

an absolute value function on an input current and also outputs the sign in voltage

as 0 V for negative and 1 V for positive. This function is very useful in analog

signal processing. Specifically for the CASP presented, it will help perform envelope

detection and frequency compression. The block was originally created by Junjie Lu,

part of the Integrate Silicon Systems group at the University of Tennessee.

3.6.1 Rectifier Design

The schematic for the rectifier is shown in figure 3.35. The node Vref is set to 500

mV. Vbn is set by the drain of a diode connected NMOS to ground that has a DC

current flowing through it. Vbn sets the current mirror that biases twp differential

pairs. Vref biases one branch of each differential pair. The input sees a PMOS and

NMOS transistor. If the current is sourced to the input, it will flow directly through

the PMOS transistor, Q2, to the output. Conversely, if the current is being sinked to

the input, the current is sent through the NMOS transistor, Q1, and reflected through

the PMOS current mirror of Q3 and Q4. The differential pair, Q9 and Q10, provide

negative feedback from one inversion through transistor Q10.

Node “A” is set by the Vgs relationship to either Q1 or Q2. The biasing for the

second differential pair, Q12 and Q13, sets the “SIGN” output. The “SIGN” output

is 0 V for negative currents and VDD for positive currents. This differential pair is

45

Figure 3.35: Rectifier Schematic

a comparator that sets the class AB output stage made of Q15-Q18. A few design

changes had to be made from the original rectifier including: removal of the cascode

transistors in the PMOS current mirror, Q3-Q4, for lower voltage capabilities, and

the output stage was changed to a class AB structure for faster discharging. Junjie

was generous enough to make theses changes in the schematic and layout.

3.6.2 Rectifier Simulations

A transient simulation was run on the rectifier to test its functionality. A simple

simulation was set up with the Vref set to 500 mV. The current setting Vbn was set

using a configurable current source to 43.75 nA, which made Vbn equal 470 mV. The

input signal is a sine wave at 15 kHz with a 50 nA amplitude based around 0 nADC .

Figure 3.36 shows the input, output, and SIGN output signals from top to bottom.

This performs as expected. The rectifier is a non-linear block and therefore an AC

simulation is not necessary. In simulation, the rectifier works upwards to 500 kHz.

46

Figure 3.36: Rectifier Transient Simulation

Figure 3.37: Rectifier AC Simulation

47

3.6.3 Rectifier Layout

The layout was completed by Junjie as well. Important note for the layout were

common centroid matching and keeping node “Iin” isolated to reduce coupling

capacitance. The core layout is shown in figure 3.40, and the final layout is shown in

figure 3.41. The layout sizes are 221 µm2 and 3,181 µµm2, respectively.

3.7 Frequency Divider

The only digital block implemented on CASP is a frequency divider. A frequency

divider can be very useful for signal processing. This block will be used with the

SIGN output of the rectifier to reduce the output frequency. The design is simple

and created using the default D flip-flops provided in the IBM-8RF digital library.

A schematic is presented in figure 3.38. The switches are transmission gate (TG)

switches controlled by shift registers. The output is configurable from divide by two

to divide by sixteen on a binary scale. A simulation of the frequency being divided can

be seen in figure 3.39. This block is purely digital and required no other verification.

3.8 Interconnect Block

The interconnect fabric for an analog signal processor is crucial to the end results.

The connections between blocks need to be able to convey accurate signals with little

to no attenuation from the interconnect. Large FPGAs have several different methods

of interconnecting their blocks like programmable switches and buses. Many papers

on FPAAs were reviewed in deciding how to interconnect CASP’s processing blocks.

The ideas of global and horizontal interconnects were experimented with but not

implemented. The following subsection describes the interconnect blocks applied.

48

Figure 3.38: Frequency Divider Schematic

Figure 3.39: Frequency Divider Simulation

49

Figure 3.40: Rectifier Core Layout

Figure 3.41: Rectifier Full Layout

50

3.8.1 Interconnect Design

For passing the signals, transmission gates were designed. The transmission gate

(TG) consists of a NMOS-PMOS pair as seen in figure 3.42. The two control switches

are connect by three inverters that scale up from 1X to 2X to 4X. These inverters

make sure that CTRL1 is the opposite of CTRL2. Eight of these TG create the

final interconnect block. The full schematic is shown in figure 3.43. Each one of the

switches in this figure are TG switches controlled by a single switch pin. All of the

switch pins are connected to a digital shift register. There are many shift registers

throughout the board, which will be explained in section 3.9. The interconnections

are labeled with respect to their directions such as: IN1L is input 1 left, OUT2B is

output 2 bottom, etc. They pins are labeled input and output, but all of them are

actually bi-directional. The labels with a “1” in them can only connect to other “1’s”

and the same with the “2’s” labels. This creates a block that can pass two signals

and connect in any direction necessary.

Figure 3.42: Transmission Gate Schematic

3.8.2 Interconnect Simulations

Transient simulations were run on the interconnect block to verify signals pass through

with no attenuation. The simulations were setup with inputs connected to sign

51

Figure 3.43: Interconnect Schematic

waves and outputs connected to resistors and capacitors that represent the loads

of processing blocks. The simulation results showed negligible attenuation in signals

regardless of the connection path. The results are not shown here because they are

just overlapping sine waves with the same magnitude. An AC simulation shows that

the interconnect block can pass signals up to 370 MHz. The AC simulation is shown

in figure 3.44. The curve that rolls off more quickly is the response of two interconnect

blocks tested in series. The simulations indicated that signals should be able to move

from block to block uninterrupted.

3.8.3 Interconnect Layout

The interconnect block was laid out in a manner to make it easily integrated in

between processing cells. The structure was designed to have the inputs and outputs

run to the very outsides of the whole layout. Figure 3.45 shows the interconnect block

fully laid out including its 8-bit shift register.

52

Figure 3.44: Interconnect AC Simulation

Figure 3.45: Interconnect Layout

53

3.9 Final Configurable Analog Signal Processor

All of the processing blocks come together to create this configurable analog signal

processor, (CASP). The inspiration for CASP comes from low-power applications. It

will be a part of an overall system and help save power by pre-processing information

before it is converted by an ADC. CASP is a four by three array with twelve processing

blocks. The next section describes the overall design of CASP. Then the top level

simulations are presented. The layout is covered last.

3.9.1 CASP Design

The CASP schematic is shown in figure 3.46. The twelve blocks inside consist of

the following: 2 OTAs, 2 LPFs, 2 rectifiers, 2 differentiators, 1 multiplier, 1 HPF,

1 integrator, and 1 frequency divider. The blocks are integrated into a web of

interconnect blocks. Every block in the design has configurability; therefore, each

block must have a way to set the bits that control them. This problem is solved

by using shift registers. The shift registers are also made of D flip-flops from the

IBM-8RF digital library. In total, there are 278 configurable control bits. The bits

are programmed in using a MSP430ez. The bits are generated using C++ code.

The bits are then converted to decimal numbers and implemented on the MSP430ez.

The MSP430ez code converts the decimal numbers back to binary and loads them

into CASP in the correct order. A C++ code example is show in appendix A.1.

The Python script that converts the bit-stream out into decimal number is shown in

appendix A.2.

3.9.2 CASP Simulation

Considering all of the configurable bits, the top level simulations were difficult to

perform. The first simulation presented is an envelope detector circuit. The two

processing blocks utilized are the rectifier and the LPF. The input to the rectifier is a

54

Figure 3.46: CASP Schematic

modulated sign wave produced from a 500 kHz sine wave and a 4 kHz sign wave. The

modulation circuit uses an ideal multiplier based on Verilog-A code. The signal is

rectified and then sent to the LPF. The high frequency component is averaged, which

results in an output sine wave at 4 kHz with a DC offset. Figure 3.47 shows the

input, rectified signal, and output. This simulation uses 355 nW of power. Another

top level simulation is frequency compression. This function is completed using the

envelope detector along with the frequency divider and OTA. The input is the same

modulated wave in the previous simulation. The “SIGN” output of the rectifier is sent

to the frequency divider. Once the frequency is divided it is hooked up to the positive

input of the OTA with the negative input at 500 mV. The bias current for the OTA

is the output of the envelope detector circuit. This arrangement changes the gain of

the OTA with respect to the lower frequency of the modulated wave. Unfortunately,

there was feedback from the high frequency signal in the rectifier that affected the

output of the envelope detector; therefore for simulations purposes an ideal 4 kHz sine

wave is used to show how this function could be completed. The results are shown in

55

Figure 3.47: Envelope Detection Simulation

Figure 3.48: Frequency Compression Simulation

56

figure 3.48. The power for this operation is 30 µW. More operations will be explored

for the next version of CASP.

3.9.3 CASP Layout

The layout for CASP was an extremely large task. Each block was laid out in a

manner that was suppose to simplify the final layout. This was true for the most

part, but more structured design could have been utilized. The blocks were placed

based on the schematic. The block were various sizes, so the placement was a little

more difficult than intended. Then the routing was completed, and the final design

was put into a pad frame. The final layout is shown in figure 3.49. The total size is

340,820 µm2.

Figure 3.49: Final CASP Layout

57

Chapter 4

Experimental Results

This chapter walks through the results obtained from lab testing. Most of the blocks

worked correctly on the test bench, but some blocks didn’t perform as they did in

simulation. The results for the LPF and integrator are in section 4.1. The HPF and

integrator didn’t work as expected, but some ideas on why they failed are presented

in section 4.2. The OTA test results are in section 4.3. The multiplier block also faced

challenges on the test bench, and some solutions are presented in section 4.4. The

rectifier results are presented in figure 4.5. Lastly the frequency divider results are

presented in section 4.6. Not all of the blocks worked well enough to create any of the

top level simulations like the envelope detector. The generation of a zero DC offset

sine wave, made the final simulations very difficult. Overall, the results presented

below show that CASP has useful processing blocks. All of the experiments used a

MSP430ez for programming of bits. The test setup required a printed circuit board

(PCB) to build the input stage circuitry and extend the pins of the chip through a

project. The input stage converts voltage to current using the circuit in figure 4.1;

the output current equals 5V−Vin
R1

. All of the pins for CASP are sent to pin headers

where they can be connected to respective stages. There was an additional board

needed for a bias T network that was omitted from the initial PCB design. Also

the voltage regulators on the original board didn’t work correctly, so another board

58

supplied voltage regulators to bias VDD, DVDD, Vref , and Vb1. The full test setup is

shown in figure 4.2. The CASP chip goes in the green socket located on the bottom

right, the bias T is on the top right, and the voltage regulators are on the left. Also

a voltage divider for the clock and data pins is on the top left of figure 4.2.

Figure 4.1: Input Stage for Testing

Figure 4.2: PCB Board for Test Setup

59

4.1 LPF and Integrator Results

4.1.1 LPF Results

The equipment used for test was a network analyzer, SR770, and a current

preamplifier, SR570. A bias T circuit is used to combine a DC voltage offset with

the network analyzer’s AC output. This signal is fed to the input stage where it

is converted to AC current with DC offset current. The signal is low-pass filtered

on CASP and then sent to the SR570. The SR570 converts current to voltage with

programmable capabilities for gain; these tests use the 100 nA/V gain setting. The

SR570 output is then sent back into the network analyzer where the results can be

extracted using the GPIO cable and MATLAB. The network analyzer has capabilities

to find the gain, THD, and noise response in V/
√
Hz.

First, a gain test is run to find the corner frequency. The results for the maximum

and minimum corner frequency are shown in figure 4.3. The span reaches from 404 Hz

to 42.5 kHz. The high frequency corner is expected to be less than simulated due

to parasitic capacitance and limitation of the IBM-8RF process. Also noise induced

from the surrounding environment caused the large spikes seen in figure 4.3.

(a) LPF Low Corner Gain (b) LPF High Corner Gain

Figure 4.3: LPF Gain Results

Next a noise test is performed. For the noise test, the input is set to the voltage

seen in normal operation in order to correctly bias the circuit. All of the voltages

60

are pulled from a 9V battery, and the circuit is placed in a grounded metal box.

The output is sent to the network analyzer, which is measuring the power spectral

density (PSD) in VRMS/
√
Hz. Figure 4.4 show the noise result. After the data is

obtained, it needs to be converted from voltage to current by dividing by 100 nA/V.

Then the data is squared, integrated over the entire frequency range available, and

the square root is taken to find the noise in nARMS. The data needs to be divided by

the midband gain obtained in the AC test. Then the THD is found using the network

analyzer. The THD test show an input amplitude of 2.55 dBV creates a THD of

1%. Then using equation 4.1, the dynamic range is found to be 46. Compared to a

dynamic range of 58 in simulation. The power dissipation ranges from 645 nWV DD

+ 85 nWDVDD to 4.2 µWV DD + 85 nWDVDD from these tests.

(a) LPF Low Corner Noise (b) LPF High Corner Noise

Figure 4.4: LPF Noise Results

DR = 20× log(
ARMS,input

ARMS,noie

) = 20× log(
94.83 nARMS

287.3 pARMS

) = 46 (4.1)

4.1.2 Integrator Results

The integrator was tested using the same instruments as the LPF. The AC results for

the integrator are presented in figure 4.5. These measurements were taken with 1, 3,

5, and all 8 current source branches activated. The high and low corner frequencies

61

are 141 Hz and 13.4 kHz, respectively, compared to simulated values of 49 Hz and

7.58 kHz. The power consumption ranged from 730 nW to 4.3 µW. The noise analysis

was identical to the LPF measurements, which makes sense when considering the

similarities in design. The dynamic range for the integrator is compared to a similar

integrator in table 4.1.

Figure 4.5: Integrator Corner Frequencies with Respect to Current Sources

Table 4.1: Integrator Comparison

Integrator Power Consumption Frequency Range Dynamic Range
This work 730 nW 0.14 - 13.4 kHz 46 (THD=1%)
[8] 6 µW 1.6 - 8 kHz 58 (THD=2%)

4.2 HPF and Differentiator Results

The HPF test was run using the same method as the LPF test. The bits were loaded

in via the MSP430 and the output was sent to the network analyzer through the

SR570. However, the output looked like a LPF with a high corner frequency. It

62

seemed that the subtraction of the LPF signal from the original signal was not being

completed. To further investigate the problem, a Monte Carlo simulation was run on

the HPF. The results are shown in figure 4.6. This simulation shows that there was

a possibility that the HPF would not work under certain circumstances. The Monte

Carlo simulations that didn’t perform as expected were traced to voltage headroom

problems that occurred when running a “Slow NMOS, Slow PMOS,”(ss) simulation.

In figure 3.17, the NMOS transistor that IP flows into has a VDS that is very small.

This voltage causes the transistor to fall out of saturation mode and into linear mode.

Therefore, the transistor properties necessary for the HPF no longer hold true. The

differentiator results were the same as the HPF.

Figure 4.6: HPF Monte Carlo Simulation

63

4.3 OTA Results

The OTA receives a input voltage signal. The “IN-” input was connected to a 500 mV

voltage; the “IN+” input was connected to a waveform generator with a 40 mVAC

plus 500 mVDC . The output was sent to the SR570, which converted the current to

voltage. The final voltage was observed on an oscilloscope. The same parameters

from the simulation were used for comparison reasons. The output is shown in figure

4.7. After converting the voltage back to current, the output is 72.5 nApp with a DC

offset of 113 nA. The power consumed by VDD was 1.18 µW.

Figure 4.7: OTA Experimental Results

64

4.4 Multiplier Results

The multiplier was tested using several different configurations of bits; however, no

combination ever produced the desired output. For having such good simulation

results, its odd for the experimental results not to work. A Monte Carlo simulation

of the transient response is shown in figure 3.31. The result is shown in figure 4.8.

With respect to the Monte Carlo simulation, it is possible that the multiplier won’t

work due to process variations. The simulations that didn’t perform multiplication

are found when under “ff” and “fs” simulations. These simulations correlate with

the HPF Monte Carlo simulation that didn’t work with the “Slow PMOS” variation.

Resizing the transistors to work better for all corners of process variation can fix the

multipliers problems.

Figure 4.8: Multiplier Monte Carlo Simulation

65

4.5 Rectifier Results

The rectifier was a difficult block to test. The input stage built for testing only sources

current, meaning all the current is in the same direction. However, the rectifier need

a current that is positive and negative. This input current is difficult to create. The

OTA output current signal was hooked up to the rectifier and a source-meter. The

idea was to use the source-meter to sink the DC current off the output signal. This

method didn’t work because the added capacitance of the source-meter and OTA

output caused the input of the rectifier to not work correctly. Therefore, this block

wasn’t tested.

4.6 Frequency Divider Results

The frequency divider was an all digital block. The experimental results were expected

to work well and they did. The frequency was tested for all cases, divide by 2 to divide

by 16. The divide by 2 and divide by 4 inputs were at 20 kHz and are shown in figure

4.9 and 4.10, respectively. The divide by 8 input was 100 kHz, shown in figure

4.11. Finally the divide by 16 input was set to 160 kHz, shown in figure 4.12; the

oscilloscope says the input was 157 kHz because of its resolution limitation. The only

improvement could be adding some buffers to the output to sharpen the edges.

66

Figure 4.9: Frequency Divider - Divide by 2

Figure 4.10: Frequency Divider - Divide by 4

67

Figure 4.11: Frequency Divider - Divide by 8

Figure 4.12: Frequency Divider - Divide by 16

68

Chapter 5

Conclusions

This thesis presents ultra-low-power analog signal processing techniques that could

be used for wireless sensors. Seven analog signal processing blocks are able to

complete functions at a lower power cost compared to digital signal processing. The

move towards power efficiency creates a high demand for on-chip ASP’s. CASP

can successfully low-pass filter, integrate, and divide frequency with minimal power

consumption. The goals were to be able to process neural recordings or acoustic

signals coming from a bat. With some future work these goals should be met. The

interconnect fabric for CASP was also a success. This interconnect design is ideal

for small scale analog arrays that don’t need large buses or global connections. For

larger FPAA designs, global routing would be necessary to mitigate attenuation for

signals traveling along long paths.

A second revision would allow CASP to perform more high level signal processing

techniques such as: frequency compression, non-linear energy operator, and sigma-

delta modulation. The high-pass filter and multiplier blocks need improvements for

the second revision of CASP. Following the suggestions in the HPF and multiplier

section about process variation, a future researcher could resize transistors for better

results. Also bi-directional outputs would be helpful for certain processing techniques.

69

With these revision CASP could be an essential part integrated into a full system on

chip used to monitor bat activity.

70

Bibliography

71

[1] Arindam Basu, Stephen Brink, Craig Schlottmann, Shubha Ramakrishnan,

Csaba Petre, Scott Koziol, Faik Baskaya, Christopher M Twigg, and Paul Hasler.

A floating-gate-based field-programmable analog array. Solid-State Circuits,

IEEE Journal of, 45(9):1781–1794, 2010. 7

[2] Ravi Chawla, Abhishek Bandyopadhyay, Venkatesh Srinivasan, and Paul Hasler.

A 531 nw/mhz, 128× 32 current-mode programmable analog vector-matrix

multiplier with over two decades of linearity. In Custom Integrated Circuits

Conference, 2004. Proceedings of the IEEE 2004, pages 651–654. IEEE, 2004. 2

[3] Barrie Gilbert. Translinear circuits: A proposed classification. Electronics

Letters, 11(1):14–16, 1975. 9, 18

[4] Reid R Harrison, Paul T Watkins, Ryan J Kier, Robert O Lovejoy, Daniel J

Black, Bradley Greger, and Florian Solzbacher. A low-power integrated circuit

for a wireless 100-electrode neural recording system. Solid-State Circuits, IEEE

Journal of, 42(1):123–133, 2007. 2

[5] Ray Alan Hastings. The art of analog layout, volume 2. Prentice Hall, 2006. 5,

15, 21, 42

[6] Bradley Minch. Static and dynamic trnaslinear circuits. May 2010. 16

[7] Bogdan Pankiewicz, Marek Wojcikowski, Stanislaw Szczepanski, and Yichuang

Sun. A field programmable analog array for cmos continuous-time ota-c filter

applications. Solid-State Circuits, IEEE Journal of, 37(2):125–136, 2002. 7

72

[8] Wouter A Serdijn, Martijn Broest, Jan Mulder, Albert C van der Woerd, and

Arthur HM van Roermund. A low-voltage ultra-low-power translinear integrator

for audio filter applications. Solid-State Circuits, IEEE Journal of, 32(4):577–

581, 1997. 62

[9] T. Serrano-Gotarredona, B. Linares-Barranco, and A. Andreou. A general

translinear principle for subthreshold MOS transistors. IEEE Transaction on

Circuits and Systems–I: Fundamental Theory and Applications, 46(5):607–616,

1999. 9

[10] Eric Vittoz and Jean Fellrath. Cmos analog integrated circuits based on weak

inversion operations. Solid-State Circuits, IEEE Journal of, 12(3):224–231, 1977.

9

73

Appendix

74

Appendix A

A.1 C++ Code for Bit Stream Generation

#include <iostream>

#include <f stream>

#include <vector>

using namespace std ;

//Function f o r in t e r connec t b l o c k

vec to r <int> interConnect (s t r i n g s1 , s t r i n g s2)

{

vec to r <int> out ;

out . r e s i z e (8 , 0) ;

i f (s1 == ”IN1LtoIN1R”) out [6]= out [1] = 1 ;

else i f (s1 == ”IN1LtoOUT1T”) out [6]= out [7] = 1 ;

else i f (s1 == ”IN1LtoOUT1B”) out [6]= out [4] = 1 ;

else i f (s1 == ”IN1RtoOUT1T”) out [1]= out [7] = 1 ;

else i f (s1 == ”IN1RtoOUT1B”) out [1]= out [4] = 1 ;

else i f (s1 == ”OUT1TtoOUT1B”) out [4]= out [7] = 1 ;

else i f (s1 == ” o f f ”) out [1]= out [4]= out [6]= out [7] = 0 ;

else i f (s1 == ” s p e c i a l ”) out [1]= out [4]= out [7] = 1 ;

75

else out [0] = 9 ;

i f (s2 == ”IN2LtoIN2R”) out [5]= out [2] = 1 ;

else i f (s2 == ”IN2LtoOUT2T”) out [5]= out [0] = 1 ;

else i f (s2 == ”IN2LtoOUT2B”) out [5]= out [3] = 1 ;

else i f (s2 == ”IN2RtoOUT2T”) out [2]= out [0] = 1 ;

else i f (s2 == ”IN2RtoOUT2B”) out [2]= out [3] = 1 ;

else i f (s2 == ”OUT2TtoOUT2B”) out [3]= out [0] = 1 ;

else i f (s2 == ” o f f ”) out [0]= out [2]= out [3]= out [5] = 0 ;

else out [7] = 9 ;

return out ;

}

//Function f o r curren t source b l o c k

vec to r <int> currentSource (s t r i n g s0 , s t r i n g s1 , s t r i n g s2 ,

s t r i n g s3 ,

s t r i n g s4 , s t r i n g s5 , s t r i n g s6 , s t r i n g s7 , s t r i n g s8

)

{

vec to r <int> out ;

out . r e s i z e (9 , 0) ;

i f (s0 == ”on”) out [0] = 1 ;

i f (s1 == ”on”) out [1] = 1 ;

i f (s2 == ”on”) out [2] = 1 ;

i f (s3 == ”on”) out [3] = 1 ;

i f (s4 == ”on”) out [4] = 1 ;

i f (s5 == ”on”) out [5] = 1 ;

i f (s6 == ”on”) out [6] = 1 ;

76

i f (s7 == ”on”) out [7] = 1 ;

i f (s8 == ” source ”) out [8] = 1 ;

return out ;

}

//Function f o r 9− b i t S h i f t Reg i s t e r b l o c k

vec to r <int> s h i f t 9 b i t (s t r i n g s0 , s t r i n g s1 , s t r i n g s2 ,

s t r i n g s3 , s t r i n g s4 , s t r i n g s5 , s t r i n g s6 , s t r i n g s7 ,

s t r i n g s8)

{

vec to r <int> out ;

out . r e s i z e (9 , 0) ;

i f (s0 == ”on”) out [0] = 1 ;

i f (s1 == ”on”) out [1] = 1 ;

i f (s2 == ”on”) out [2] = 1 ;

i f (s3 == ”on”) out [3] = 1 ;

i f (s4 == ”on”) out [4] = 1 ;

i f (s5 == ”on”) out [5] = 1 ;

i f (s6 == ”on”) out [6] = 1 ;

i f (s7 == ”on”) out [7] = 1 ;

i f (s8 == ”on”) out [8] = 1 ;

return out ;

}

//Function f o r capac i t o r array

vec to r <int> capArray (s t r i n g s0 , s t r i n g s1 , s t r i n g s2 , s t r i n g

s3)

{

77

vec to r <int> out ;

out . r e s i z e (4 , 0) ;

i f (s0 == ”on”) out [0] = 1 ;

i f (s1 == ”on”) out [1] = 1 ;

i f (s2 == ”on”) out [2] = 1 ;

i f (s3 == ”on”) out [3] = 1 ;

return out ;

}

//Function f o r f requency d i v i d e r

vec to r <int> f r e q D i v i d e r (s t r i n g s0 , s t r i n g s1 , s t r i n g s2 ,

s t r i n g s3)

{

vec to r <int> out ;

out . r e s i z e (4 , 0) ;

i f (s0 == ” d iv ide2 ”) out [0] = 1 ;

i f (s1 == ” d iv ide4 ”) out [1] = 1 ;

i f (s2 == ” d iv ide8 ”) out [2] = 1 ;

i f (s3 == ” d iv ide16 ”) out [3] = 1 ;

return out ;

}

// Fina l Function f o r wr i t i n g b i t s

int main () {

vec to r <int> I0 , I1 , I2 , I3 , I4 , I5 , I6 , I7 , I8 , I9 ,

I10 , I11 , I12 , I13 , I14 , I15 , I16 ;

vec to r <int> I17 , I18 , I19 , I20 , I21 , I22 , I23 , I24 ,

LPF, HPF, IB , IOUT, I b i a s ;

78

ofstream myf i l e ;

my f i l e . open (” bi tStream abs . txt ”) ;

//Row 1

I0 = interConnect (”OUT1TtoOUT1B” , ” o f f ”) ;

for (int i =0; i<I0 . s i z e () ; i++) myf i l e << I0 [i] ;

I1 = interConnect (”OUT1TtoOUT1B” , ” o f f ”) ;

for (int i =0; i<I1 . s i z e () ; i++) myf i l e << I1 [i] ;

I2 = interConnect (” o f f ” , ” o f f ”) ;

for (int i =0; i<I2 . s i z e () ; i++) myf i l e << I2 [i] ;

//Row 2

I3 = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” source ”) ; //Abs curren t

for (int i =0; i<I3 . s i z e () ; i++) myf i l e << I3 [i] ;

I4 = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” s ink ”) ; //LPF curren t

LPF = capArray (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ”) ; //LPF

caps

for (int j =0; j<LPF. s i z e () ; j++) { int i = LPF[

j] ;

I4 . push back (i) ;}

for (int i =0; i<I4 . s i z e () ; i++) myf i l e << I4 [i] ;

I5 = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” source ”) ; //OTA curren t

for (int i =0; i<I5 . s i z e () ; i++) myf i l e << I5 [i] ;

I6 = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” source ”) ; //IA−

mu l t i p l i e r

79

IB = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f

” , ” o f f ” , ” o f f ” , ” o f f ” , ” source ”) ; //IB−

mu l t i p l i e r

for (int j =0; j<IB . s i z e () ; j++) { int i = IB [j

] ; //Adds IB− onto end o f I6

I6 . push back (i) ;}

IOUT = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ”

o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” source ”

) ; //IOUT mu l t i p l i e r

for (int j =0; j<IOUT. s i z e () ; j++) { int i =

IOUT[j] ; //Adds IOUT onto end o f I6

I6 . push back (i) ;}

I b i a s = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ”

o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” source ”

) ; // I b i a s mu l t i p l i e r

for (int j =0; j<I b i a s . s i z e () ; j++) { int i =

I b i a s [j] ; //Adds I b i a s onto end o f I6

I6 . push back (i) ;}

for (int i =0; i<I6 . s i z e () ; i++) myf i l e << I6 [i] ;

//Row 3

I7 = interConnect (” s p e c i a l ” , ” o f f ”) ;

for (int i =0; i<I7 . s i z e () ; i++) myf i l e << I7 [i] ;

I8 = interConnect (”IN1LtoOUT1T” , ” o f f ”) ;

for (int i =0; i<I8 . s i z e () ; i++) myf i l e << I8 [i] ;

I9 = interConnect (” o f f ” , ” o f f ”) ;

for (int i =0; i<I9 . s i z e () ; i++) myf i l e << I9 [i] ;

80

//Row 4

I10 = currentSource (”on” , ”on” , ”on” , ”on” , ”on” , ” o f f ” , ” o f f

” , ” o f f ” , ” source ”) ; //OTA curren t

for (int i =0; i<I10 . s i z e () ; i++) myf i l e << I10 [i] ;

I11 = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” s ink ”) ; //Abs curren t

for (int i =0; i<I11 . s i z e () ; i++) myf i l e << I11 [i] ;

I12 = f r e q D i v i d e r (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ”) ; //Frequency

Div ider

for (int i =0; i<I12 . s i z e () ; i++) myf i l e << I12 [i] ;

I13 = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” s ink ”) ; //LPF curren t

LPF = capArray (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ”) ; //LPF

caps

for (int j =0; j<LPF. s i z e () ; j++) { int i = LPF[

j] ;

I13 . push back (i) ;}

for (int i =0; i<I13 . s i z e () ; i++) myf i l e << I13 [i] ;

//Row 5

I14 = interConnect (” o f f ” , ” o f f ”) ;

for (int i =0; i<I14 . s i z e () ; i++) myf i l e << I14 [i] ;

I15 = interConnect (” o f f ” , ” o f f ”) ;

for (int i =0; i<I15 . s i z e () ; i++) myf i l e << I15 [i] ;

I16 = interConnect (” o f f ” , ” o f f ”) ;

for (int i =0; i<I16 . s i z e () ; i++) myf i l e << I16 [i] ;

//Row 6

81

I17 = currentSource (”on” , ”on” , ”on” , ”on” , ” o f f ” , ” o f f ” , ”

o f f ” , ” o f f ” , ” s ink ”) ; //HPF current IOUT

IB = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” o f f ” , ” source ”) ; //HPF current

IBIAS

for (int j =0; j<IB . s i z e () ; j++) { int i = IB [j

] ;

I17 . push back (i) ;}

HPF = capArray (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ”) ; //HPF

caps

for (int j =0; j<HPF. s i z e () ; j++) { int i = HPF[

j] ;

I17 . push back (i) ;}

for (int i =0; i<I17 . s i z e () ; i++) myf i l e << I17

[i] ;

I18 = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” source ”) ; // D i f f e r e n t i a t o r

curren t IOUT

IB = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” o f f ” , ” source ”) ; //

D i f f e r e n t i a t o r curren t IBIAS

for (int j =0; j<IB . s i z e () ; j++) { int i = IB [j

] ;

I18 . push back (i) ;}

for (int i =0; i<I18 . s i z e () ; i++) myf i l e << I18

[i] ;

I19 = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” s ink ”) ; // In t e g r a t o r current

82

for (int i =0; i<I19 . s i z e () ; i++) myf i l e << I19 [i] ;

I20 = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” source ”) ; // D i f f e r e n t i a t o r

curren t IOUT

IB = currentSource (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” ,

” o f f ” , ” o f f ” , ” o f f ” , ” source ”) ; //

D i f f e r e n t i a t o r curren t IBIAS

for (int j =0; j<IB . s i z e () ; j++) { int i = IB [j

] ;

I20 . push back (i) ;}

for (int i =0; i<I20 . s i z e () ; i++) myf i l e << I20

[i] ;

// S h i f t Reg i s t e r s

I21 = s h i f t 9 b i t (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ”

o f f ” , ” o f f ” , ” o f f ”) ; //9 Bit S h i f t Reg i s t e r

for (int i =0; i<I21 . s i z e () ; i++) myf i l e << I21 [i] ;

I22 = s h i f t 9 b i t (” o f f ” , ” o f f ” , ” o f f ” , ”on” , ”on” , ”on” , ” o f f ” ,

” o f f ” , ” o f f ”) ; //9 Bit S h i f t Reg i s t e r

for (int i =0; i<I22 . s i z e () ; i++) myf i l e << I22 [i] ;

I23 = s h i f t 9 b i t (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ”

o f f ” , ” o f f ” , ”on”) ; //9 Bit S h i f t Reg i s t e r

for (int i =0; i<I23 . s i z e () ; i++) myf i l e << I23 [i] ;

I24 = s h i f t 9 b i t (” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ” o f f ” , ”

o f f ” , ” o f f ” , ” o f f ”) ; //9 Bit S h i f t Reg i s t e r

for (int i =0; i<I24 . s i z e () ; i++) myf i l e << I24 [i] ;

my f i l e << ”00000000” ;

my f i l e . c l o s e () ;

83

return 0 ;

}

A.2 Python Code for MSP Code Generation

#!/ usr / b in /env python

code to c r ea t e MSP main func t i on code

bitName1 = ’#d e f i n e b i t 1 ’

bitName2 = ’#d e f i n e b i t 2 ’

bitName3 = ’#d e f i n e b i t 3 ’

bitName4 = ’#d e f i n e b i t 4 ’

bitName5 = ’#d e f i n e b i t 5 ’

bitName6 = ’#d e f i n e b i t 6 ’

bitName7 = ’#d e f i n e b i t 7 ’

bitName8 = ’#d e f i n e b i t 8 ’

bitName9 = ’#d e f i n e b i t 9 ’

bitName10 = ’#d e f i n e b i t10 ’

bitName11 = ’#d e f i n e b i t11 ’

bitName12 = ’#d e f i n e b i t12 ’

bitName13 = ’#d e f i n e b i t13 ’

bitName14 = ’#d e f i n e b i t14 ’

bitName15 = ’#d e f i n e b i t15 ’

bitName16 = ’#d e f i n e b i t16 ’

bitName17 = ’#d e f i n e b i t17 ’

bitName18 = ’#d e f i n e b i t18 ’

bitName19 = ’#d e f i n e b i t19 ’

b i t S t r i n g = open(’ b i tStream abs . txt ’ , ’ r ’)

f = b i t S t r i n g . r e a d l i n e ()

84

b i t 1 = f [0 : 1 5]

b i t 2 = f [1 5 : 3 0]

b i t 3 = f [3 0 : 4 5]

b i t 4 = f [4 5 : 6 0]

b i t 5 = f [6 0 : 7 5]

b i t 6 = f [7 5 : 9 0]

b i t 7 = f [9 0 : 1 0 5]

b i t 8 = f [1 0 5 : 1 2 0]

b i t 9 = f [1 2 0 : 1 3 5]

b i t10 = f [1 3 5 : 1 5 0]

b i t11 = f [1 5 0 : 1 6 5]

b i t12 = f [1 6 5 : 1 8 0]

b i t13 = f [1 8 0 : 1 9 5]

b i t14 = f [1 9 5 : 2 1 0]

b i t15 = f [2 1 0 : 2 2 5]

b i t16 = f [2 2 5 : 2 4 0]

b i t17 = f [2 4 0 : 2 5 5]

b i t18 = f [2 5 5 : 2 7 0]

b i t19 = f [2 7 0 : 2 8 5]

b i t 1 = int (b it1 , 2)

b i t 2 = int (b it2 , 2)

b i t 3 = int (b it3 , 2)

b i t 4 = int (b it4 , 2)

b i t 5 = int (b it5 , 2)

b i t 6 = int (b it6 , 2)

b i t 7 = int (b it7 , 2)

85

b i t 8 = int (b it8 , 2)

b i t 9 = int (b it9 , 2)

b i t10 = int (bit10 , 2)

b i t11 = int (bit11 , 2)

b i t12 = int (bit12 , 2)

b i t13 = int (bit13 , 2)

b i t14 = int (bit14 , 2)

b i t15 = int (bit15 , 2)

b i t16 = int (bit16 , 2)

b i t17 = int (bit17 , 2)

b i t18 = int (bit18 , 2)

b i t19 = int (bit19 , 2)

b i tS t r ingWr i t e = open(’ bitStream MSP abs . txt ’ , ’w ’)

b i t 1 f i n a l = bitName1 + ’ ’ + str (b i t 1) + ’\n ’

b i t 2 f i n a l = bitName2 + ’ ’ + str (b i t 2) + ’\n ’

b i t 3 f i n a l = bitName3 + ’ ’ + str (b i t 3) + ’\n ’

b i t 4 f i n a l = bitName4 + ’ ’ + str (b i t 4) + ’\n ’

b i t 5 f i n a l = bitName5 + ’ ’ + str (b i t 5) + ’\n ’

b i t 6 f i n a l = bitName6 + ’ ’ + str (b i t 6) + ’\n ’

b i t 7 f i n a l = bitName7 + ’ ’ + str (b i t 7) + ’\n ’

b i t 8 f i n a l = bitName8 + ’ ’ + str (b i t 8) + ’\n ’

b i t 9 f i n a l = bitName9 + ’ ’ + str (b i t 9) + ’\n ’

b i t 1 0 f i n a l = bitName10 + ’ ’ + str (b i t10) + ’\n ’

b i t 1 1 f i n a l = bitName11 + ’ ’ + str (b i t11) + ’\n ’

b i t 1 2 f i n a l = bitName12 + ’ ’ + str (b i t12) + ’\n ’

b i t 1 3 f i n a l = bitName13 + ’ ’ + str (b i t13) + ’\n ’

86

b i t 1 4 f i n a l = bitName14 + ’ ’ + str (b i t14) + ’\n ’

b i t 1 5 f i n a l = bitName15 + ’ ’ + str (b i t15) + ’\n ’

b i t 1 6 f i n a l = bitName16 + ’ ’ + str (b i t16) + ’\n ’

b i t 1 7 f i n a l = bitName17 + ’ ’ + str (b i t17) + ’\n ’

b i t 1 8 f i n a l = bitName18 + ’ ’ + str (b i t18) + ’\n ’

b i t 1 9 f i n a l = bitName19 + ’ ’ + str (b i t19) + ’\n ’

b i tS t r ingWr i t e . wr i t e (b i t 1 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 2 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 3 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 4 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 5 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 6 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 7 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 8 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 9 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 0 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 1 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 2 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 3 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 4 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 5 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 6 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 7 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 8 f i n a l)

b i tS t r ingWr i t e . wr i t e (b i t 1 9 f i n a l)

87

Vita

James Kelly Griffin was born in Greenville, SC, on 10 November 1990, the son

of Mary Griffin and Jimmie Griffin. After graduating from Baylor High school in

Chattanooga, TN, he went on to attend the University of Tennessee (UTK) as an

Engineering student in 2009. Initially he attended the university as a Materials

Science Engineering student, but his interests moved quickly towards electronics.

After joining the Electrical Engineering and Computer Science (EECS) department,

he developed an interest in microelectronics. Following this path and receiving the

Tennessee HOPE scholarship all four years, he graduated with his Bachelors of Science

in Electrical Engineering in the spring of 2013.

During James’s stint at the UTK, he obtained two internships (Summer 2013

and Summer 2014) with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena,

California. While there he worked on the James Webb Space Telescope, a next-

generation integrated camera, and an oil quality sensor.

During James’s senior year at UTK, he spoke with Dr. Jeremy Holleman about

graduate school. Dr. Holleman supported the idea of the 5 year MS/BS program, and

James began work on the CASP project presented in this thesis. James is expected to

graduate in the Spring of 2015. He will move to Dallas, TX in June and start working

for Texas Instruments as a Verification Engineer for the Haptic Feedback team.

88

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2015

	Ultra-Low-Power Configurable Analog Signal Processor for Wireless Sensors
	James Kelly Griffin
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	2 Background
	2.1 Integrated Circuits
	2.1.1 Analog Circuits
	2.1.2 Digital Circuits

	2.2 Field Programmable Analog Arrays
	2.3 Subthreshold Analog Circuits
	2.3.1 MOSFET Regions of Operation
	2.3.2 Translinear Principle

	2.4 FPAA Performance Metric
	2.4.1 Dynamic Range

	3 Design and Simulations
	3.1 Configurable Current Bias
	3.1.1 Current Mirror Design
	3.1.2 Current Sinking and Sourcing
	3.1.3 Configurable Current Bias Simulations
	3.1.4 Configurable Current Source Layout

	3.2 Low-Pass Filter and Integrator
	3.2.1 LPF Design and Mathematical Derivation
	3.2.2 LPF Simulation
	3.2.3 LPF Layout
	3.2.4 Integrator Design
	3.2.5 Integrator Simulations
	3.2.6 Integrator Layout

	3.3 High-Pass Filter and Differentiator
	3.3.1 HPF Design
	3.3.2 HPF Simulation
	3.3.3 HPF Layout
	3.3.4 Differentiator Design
	3.3.5 Differentiator Simulations
	3.3.6 Differentiator Layout

	3.4 Operational Transconductance Amplifier
	3.4.1 OTA Design
	3.4.2 OTA Simulations
	3.4.3 OTA Layout

	3.5 Multiplier
	3.5.1 Multiplier Design
	3.5.2 Multiplier Simulations
	3.5.3 Multiplier Layout

	3.6 Rectifier
	3.6.1 Rectifier Design
	3.6.2 Rectifier Simulations
	3.6.3 Rectifier Layout

	3.7 Frequency Divider
	3.8 Interconnect Block
	3.8.1 Interconnect Design
	3.8.2 Interconnect Simulations
	3.8.3 Interconnect Layout

	3.9 Final Configurable Analog Signal Processor
	3.9.1 CASP Design
	3.9.2 CASP Simulation
	3.9.3 CASP Layout

	4 Experimental Results
	4.1 LPF and Integrator Results
	4.1.1 LPF Results
	4.1.2 Integrator Results

	4.2 HPF and Differentiator Results
	4.3 OTA Results
	4.4 Multiplier Results
	4.5 Rectifier Results
	4.6 Frequency Divider Results

	5 Conclusions
	Bibliography
	Appendix
	A
	A.1 C++ Code for Bit Stream Generation
	A.2 Python Code for MSP Code Generation

	Vita

