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Abstract  

Foodborne pathogens are a major concern to the food industry and 

consumers but they may be controlled with antimicrobials. Naturally occurring 

antimicrobials may be isolated from a variety of plant, animal and microbial 

sources. Previous studies have demonstrated that peptides isolated from 

enzyme hydrolyzed milk proteins may have in vivo and in vitro antimicrobial 

activity. Such compounds could be of use as inhibitors of foodborne pathogens. 

The objectives of this study were to determine the antimicrobial effectiveness 

against Salmonella Typhimurium and Listeria monocytogenes of digests of 

bovine acid-precipitated casein with the enzymes pepsin and trypsin and to 

determine if these peptides were effective in combination with 

ethylendiaminetetraacetic acid (EDTA) and sodium lactate against these 

foodborne pathogens.  

Whole casein was precipitated from fresh, unpasteurized skimmed cow’s 

milk by addition of 2 N HCl. Precipitated casein was separated by centrifugation, 

washed and lyophilized. Rehydrated casein was hydrolyzed with either pepsin or 

trypsin and the reaction mixture was heated to inactivate each enzyme. 

For method 1, solutions with hydrolyzed protein were dialyzed against 

water and freeze-dried. For method 2, 5.0% casein was dissolved in buffer and 

treated similarly to method 1, however the peptides that were created from 

enzymatic hydrolysis were separated by centrifugation after inactivation of the 

enzymes by heat and were not dialyzed against water. For both methods, 
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hydrolysates created were adjusted to pH 7 and filter sterilized through a 0.45 µm 

membrane filter  

The inhibitory effect of filtered pepsin and trypsin hydrolysates (0.5% and 

1.0%) (method 1) and filtered supernate (pepsin and trypsin) (method 2) alone 

and in combination with EDTA and sodium lactate against four strains each of L. 

monocytogenes and S. Typhimurium DT104 was determined. Growth was 

monitored over 24 hours using a microbroth dilution assay for all hydrolysates. 

Growth curves were used to relate microtiter data to actual colony counts.  

For method 1, pepsin hydrolysates were not very effective in inhibiting the 

growth of any of the four strains of S. Typhimurium or L. monocytogenes while 

trypsin hydrolysates were only slightly effective at extending the lag phase and/or 

reducing the final growth level of all four strains of L. monocytogenes. This 

ineffectiveness was most likely due to the loss of small molecular weight peptides 

during the dialysis step. The addition of EDTA had little effect in enhancing the 

inhibitory effect of pepsin or trypsin hydrolysates against either microorganism.  

For method 2, trypsin hydrolysates were effective in extending the lag 

phase and/or reducing the final growth level of all four strains of L. 

monocytogenes tested; however, they were not effective against any of the 

strains of S. Typhimurium. Pepsin hydrolysate was not effective in extending the 

lag phase or reducing the final growth level in S. Typhimurium. However, pepsin 

did reduce the final growth level of one strain of L. monocytogenes, 101. Trypsin 

and pepsin hydrolysates derived from bovine milk in combination with EDTA and 

sodium lactate had antimicrobial activity against both L. monocytogenes and S. 
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Typhimurium in tryptic soy broth (TSB). Trypsin hydrolysates also enhanced the 

antimicrobial activity of sodium lactate against Listeria monocytogenes.  

The protein concentrations of pepsin and trypsin hydrolysates (before and 

after membrane filtration) prepared using method 2 was determined with three 

different protein assays, Bradford dye-binding, modified Lowry and UV 280 nm. 

For all three methods, non-filtered hydrolysates were higher in protein 

concentration than those that were filtered. Using the Bradford method, pepsin 

hydrolysates were higher in protein concentration than trypsin hydrolysates in 

both filtered and non-filtered samples. The opposite results were observed when 

using both modified Lowry method and UV 280 nm method to determine protein 

concentration. By examining the location of the peptide bond hydrolysis of the 

enzymes, it was possible to determine that small molecular weight peptides were 

created by the addition of trypsin and pepsin to bovine casein. Variation in 

number of amino acids as well as types of amino acids of peptides created 

during hydrolysis likely influenced the antimicrobial effectiveness of each 

hydrolysate.    

Casein-derived peptides could provide an alternative or adjunct to 

antimicrobials currently used in foods. It is suggested that antimicrobial peptides 

can be created by enzymatic hydrolysis of casein with trypsin and these peptides 

have the potential to serve as antimicrobials in food systems. Further research 

needs to be conducted in enhancing the activity by concentrating the 

hydrolysates or isolating and characterizing those peptides with the greatest 

antimicrobial potential. 
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1. Introduction 

Foodborne pathogens are a major concern in the food industry. 

Consumers are at risk for the harmful effects caused by many foodborne 

pathogenic bacteria, including Salmonella Typhimirium and Listeria 

monocytogenes. There are numerous methods of inhibiting or inactivating 

microorganisms in foods including, but not limited to, heating, refrigeration, 

freezing, dehydration, addition of sugars, salts or acids, fermentation, smoking, 

and the use of alternative packaging (Potter and Hotchkiss 1998). However, 

another means of inhibiting the growth of foodborne pathogens is through the 

use of chemical antimicrobials. One of the major drawbacks to the use of 

regulatory-approved traditional antimicrobials is their lack of activity in foods with 

pH less than 5.0. This limits their usefulness to control pathogens in most low 

acid foods. In addition, food processors are interested in so-called “natural” or 

bio-based compounds, such as those derived from animal products and plants, 

as antimicrobials because they perceive that consumers are interested in a 

reduction in the use of such preservatives (Dufour et al. 2002).  

Milk is not only nutritionally beneficial, but is known to possess bioactive 

compounds that may reduce or prevent bacterial growth. Casein, the main 

protein found in milk, is a good source of such peptides/protein fragments that 

have certain physiological functions such as aiding in gastrointestinal function 

and digestion, hemodynamic modulation (antihypertension and increased blood 



2 

flow), probiotic support of gut microflora, non-immune disease protection, passive 

immunity, immunoregulation, anti-inflammation, growth and development (Tome 

and Debabbi 1998; Schanbacher et al. 1997). Biologically active peptides have 

been obtained in vitro by proteolysis (Bellamy et al. 1992; Zucht et al. 1995; 

Recio and Visser 1999) and in vivo by gastric digestion of milk proteins (Kuwata 

et al. 1998; Meisel and Bockelmann 1999). Bioactive peptides derived from milk 

with specific antimicrobial properties, released from protein hydrolysis, have been 

found in milk protein hydrolysates, including those with opioid, antihypertensive 

and antithrombic properties (Schlimme and Meisel 1995; Korhonen et al. 1998; 

Clare and Swaisgood 2000; Pihlanto-Leppala 2001).   

Hydrolysis of the milk components, lactoferrin (Kimura et al. 2000; Kuwata 

et al. 1998; Nibbering et al. 2001; Groenink et al. 1999; Branen and Davidson 

2000; Qian et al. 1995), bovine hemoglobin (Froidevaux et al. 2001), casein 

(Liepke et al. 2001; Lahov and Regelson 1996; Recio and Visser 1999), α-

lactoalbumin (Pellegrini et al. 1999), α-lactoglobulin (Pellegrini et al. 2001) and 

whey (Pihlanto-Leppala 2001) produce hydrolysates with antimicrobial activity. 

Known fragments of bovine casein with antimicrobial activity are isracedin (Hill et 

al. 1974), casocidin-I (Zucht et al. 1995), α-casecidins (Otani and Suzuki 2003), 

kappacin (Malkoski et al. 2001), and the κ-casein-derived glycomacropeptide 

(Stromqvist et al. 1995; Aniansson et al. 1990).  

The objectives of this study were to: (1) determine the antimicrobial 

effectiveness against Salmonella Typhimurium and Listeria monocytogenes of 
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digests of bovine acid-precipitated casein with the enzymes pepsin and trypsin 

and (2) if these hydrolysates were effective in combination with 

ethylenediaminetetraacetic acid (EDTA) and sodium lactate against these 

foodborne pathogens.  
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2. Literature Review 

2.1 Listeria monocytogenes 

2.1.1 Characteristics of the Organism 

Listeria monocytogenes was first identified in animals in 1911 and in 

humans in 1929; however, it is only within the last twenty years that the 

microorganism was recognized as a foodborne pathogen. It has increased 

importance among the foodborne pathogens because of its ability to grow at 

refrigeration temperatures (FDA 2004). 

L.  monocytogenes is a small Gram-positive, non-spore-forming, non-acid-

fast rod. Listeria species have been found in a wide range of environments, have 

tolerances to stresses such as low pH and high NaCl concentrations (10-12%) 

and can grow over large temperature (0-45oC) and pH (4.4 to 9.6) ranges. 

Listeria are injured by heating to 50oC and above (Swaminathan 2001). Tryptose 

broth with up to 0.1% acetic, citric, or lactic acids has been found to inhibit the 

growth of L. monocytogenes (Ahamad and Marth 1989). Frozen storage and 

freezing affect the inactivation and injury of L. monocytogenes differently 

depending on the rate of freezing and type of substrate (Swaminathan 2001). L. 

monocytogenes is a facultative anaerobe that is not greatly affected by vacuum 

packaging (Swaminathan 2001). Resistance of the microorganism to such 

environments, in combination with its ability to colonize and grow in harsh 

conditions, makes L. monocytogenes a major threat to consumers and the food 

industry (Fenlon 1999).  
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2.1.2 Sources of Food Contamination 

L. monocytogenes is widely distributed and is commonly found in the soil 

and water as well as on decaying plant material; however, there are low numbers 

of organisms present in most environments (Fenlon 1999). L. monocytogenes 

has also been found in the feces of a wide range of healthy animal species 

including sheep, goats and cattle (Fenlon1999). Humans can be symptomatic 

and asymptomatic carriers (Fenlon 1999).  

Listeria can enter a food processing facility in a number of ways including, 

on the shoes and clothing of workers, on transportation equipment, through 

contaminated animal hides, on raw foods or by way of human carriers.  

Processing environments, such as drains and floors, with high humidity and 

nutrient sources favor the growth of Listeria (Swaminathan 2001; Rocourt and 

Cossart 1997).  

Foods that are at highest risk for causing listeriosis are ready-to-eat (RTE) 

and stored at refrigeration temperatures for long periods, such as deli meats and 

hot dogs, and dairy foods using unpasteurized milk, such as some soft cheeses 

(Swaminathan 2001; Rocourt and Cossart 1997). These foods may be 

contaminated with high populations of the bacteria (>100 CFU/g or ml). In a 

survey of retail vacuum-packaged meat samples, 53% tested were contaminated 

with L. monocytogenes (Grau and Vanderlinde 1992). L. monocytogenes can 

survive for long periods on foods and in food processing environments and can 

be found on both raw and processed foods. Ice cream, raw and cooked chicken, 

raw vegetables, and raw and smoked fish have all been associated with 
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infection. An important mode of transmission is post-processing contamination 

where RTE foods are contaminated after processing (Swaminathan 2001; 

Rocourt and Cossart 1997). 

2.1.3 Epidemiology of Disease 

According to the Centers for Disease Control (CDC), L. monocytogenes 

causes 2500 cases and 500 deaths annually (2003). The first documented 

outbreak of foodborne listeriosis occurred in Canada in 1981 and was traced to 

the consumption of contaminated coleslaw. The coleslaw, which was fertilized 

with sheep manure, was thought the most possible source of Listeria 

contamination (Rocourt and Cossart 1997). The largest outbreak in the US was 

in California in 1985 and implicated L. monocytogenes 4b in a Mexican style 

cheese called queso blanco. There were 142 cases and 48 deaths in the 

outbreak. The cause was theorized to be due to use of raw milk in the cheese 

and/or general contamination of the processing plant and workers (CDC 2004). 

The consumption of contaminated turkey meat resulted in 54 illnesses, 8 deaths, 

and 3 fetal deaths in 9 states in 2002 (CDC 2003). A majority of listeriosis cases 

are sporadic and difficult to link epidemiologically (FDA 2004) while the annual 

incidence of listeriosis has decreased by 38% from 1996 to 2002 (CDC 2003)., 

outbreaks continue to occur.  

When ingested, L. monocytogenes colonizes the intestinal tract, invades 

the tissues and enters the blood stream. Listeriolysin O (LLO), a secreted protein 

of 58-60 kDa belonging to the family of pore-forming, sulfhydryl-activated 
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cytolysins, has been identified as the substance responsible for beta-hemolysis 

of erythrocytes and the engulfment and destruction of phagocytic cells (Kuhn and 

Goebel 1999). LLO is very similar to streptolysin O (SLO), its prototype produced 

by Streptococcus pyogenes. LLO and SLO are only active on membranes 

containing cholesterol. Listeria enters the phagocytes either directly into the 

phagosomes or from the phagosomes into the phagocytic cytoplasm. Listeria are 

internalized in membrane-bound vacuoles, which are then lysed within 30 min. 

LLO is the main factor in the lysis of the vacuole. The intracellular bacteria are 

released into the cytosol and begin to multiply. LLO assists L. monocytogenes 

once inside macrophages by aiding in their escape from the phagolysosomal 

membranes into the cytosol. Once in the cytosol, ActA, a 610 amino acid surface 

protein anchored to the bacterial cytoplasmic membrane, facilitates the 

production of actin tails which provide the organisms the ability to move toward 

the cytoplasmic membrane (Swaminathan 2001; Rocourt and Cossart 1997). The 

bacteria become covered with cell actin filaments which rearrange into a “comet 

tail”, composed of actin microfilaments that are continuously assembled and left 

behind in the cytosol by moving bacteria. At the plasma membrane, the bacteria 

form protrusions with a bacterium at the tip. The protrusions are internalized by a 

neighboring cell, forming a two-membrane-bound vacuole. Lysis of this new 

vacuole starts a new cycle of replication, movement and spreading of bacteria 

(Swaminathan 2001; Rocourt and Cossart 1997). 

Listeriosis is the disease caused by L. monocytogenes. Healthy 

individuals, that are neither immuno-compromised nor pregnant, are highly 
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resistant to contracting listeriosis. At risk groups for disease include the elderly, 

pregnant women and the immuno-compromised. AIDS patients are nearly 300 

times more likely to develop the disease than those individuals with a normal 

immune system. Healthy children and adults occasionally develop listeriosis; 

however, the illness is not usually severe. The infectious dose is believed to be 

more than 100 CFU/ml (Swaminathan 2001). Onset of symptoms for serious 

forms of the infection can be from a few days up to three weeks. The most 

common symptoms of listeriosis are meningitis and sepsis with mortality rates of 

20 to 25% (Swaminathan 2001). Pregnant females typically develop the disease 

in the third trimester but may not show any signs or very mild signs such as flu-

like symptoms. Pregnant females contracting the disease can deliver 

prematurely; abort, or have stillbirths (Swaminathan 2001; Rocourt and Cossart 

1997). 

2.2. Salmonella Typhimurium 

2.2.1 Characteristics of the Organism 

Salmonella enterica ssp. enterica serotype Typhimurium is a gram-

negative, motile, non-spore forming rod, primarily found in the intestinal tract of 

animals. Besides the peptidoglycan layer, gram-negative bacteria, such as S. 

Typhimurium contain an additional lipolysaccharide (LPS) layer that contains 

both polysaccharide and protein linked together in the outer layer, further 

protecting the bacterial cell (D’Aoust et al. 2001; D’Aoust 1997).  



9 

Salmonella species are organisms that are highly adaptable to extreme 

environmental conditions (D’Aoust et al. 2001). Optimal growth for Salmonella is 

at 37oC and pH range 6.5 to 7.5 with the ability to grow at elevated temperatures 

greater than 54oC and pH values in the range of 4.5 to 9.5 (D’Aoust et al. 2001). 

Growth is inhibited at aw < 0.93 in microbiological media at neutral pH. 

Salmonellae are unable to grow in 3 to 4% NaCl, however they have the ability to 

survive in salt concentrations of up to 30% with increasing temperature (D’Aoust 

et al. 2001). Salmonella are generally easily destroyed by heating to 63oC which 

is the temperature of milk pasteurization. Salmonella Typhimurium DT (definitive 

type) 104 is characterized by its pentaresistance to ampicillin, chloramphenicol, 

streptomycin, sulfonamides and tetracycline.  Additionally, resistance to 

gentamicin, trimethoprim and fluoroquinolones has been observed (D’Aoust et al. 

2001; D’Aoust 1997).   

2.2.2 Sources 

S. Typhimurium is found in the intestinal tract of animals such as birds, 

reptiles, farm animals, humans and some insects. Foods mostly associated with 

the presence of Salmonella spp. are typically of animal origin and include poultry, 

eggs, milk, and beef. The exposure of livestock to environmental sources of 

Salmonella such as contaminated feeds likely has contributed to the persistence 

of Salmonella in the meat industry (D’Aoust et al. 2001). Fruits and vegetables 

that have contacted contaminated soil, water or surfaces are also associated with 

Salmonella. Foods may also be contaminated by improper sanitation of food 
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contact surfaces, i.e., “cross contamination,” as well as through poor hygiene of 

foodservice workers (D’Aoust et al. 2001; D’Aoust 1997).   

2.2.3 Epidemiology of Disease 

According to the CDC, it is estimated that the total number of human 

Salmonella infections in the United States ranges from 800,000 to 4,000,000 

annually with an estimated range of 59,200 to 296,000 of those being S. 

Typhimurium DT104 (Hogue et al. 1997). Of the Salmonella isolates reported to 

the CDC in 1996, approximately 24% were Salmonella Typhimurium (Hogue et 

al. 1997). Salmonella Typhimurium DT104 is now one of the more prevalent 

strains isolated from humans. It was first isolated from humans in the United 

Kingdom in 1984 and became a major cause of salmonellosis in humans in the 

late 1980s. It was first recognized in the United States and elsewhere  in the mid-

1990s. (CDC 2004).  

Salmonella species have numerous virulence factors. These virulence 

factors include those necessary for the organism to adhere to intestinal surfaces, 

to invade the epithelial cells of the host, and the ability to grow and survive in 

phagocytic cells. Salmonella contain greater than 200 virulence factors, and at 

least 60 genes are required for virulence in S. Typhimurium (IFT 2004; D’Aoust 

et al. 2001). Salmonella species use a combination of six adhesins, filamentous, 

hair-like structures or hair-like fimbriae composed of glycoproteins or glycolipids 

on their surfaces that aid in the intestinal colonization by their ability to target 

specific host cell molecules (IFT 2004; D’Aoust et al. 2001). Further, Salmonella 

species have the ability to enter host cells by penetrating the intestinal epithelial 
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barrier. The Type III secretion system, a complex secretion apparatus that 

delivers numerous bacterial proteins into the cytosol of host cells is used by 

Salmonella (IFT 2004; D’Aoust et al. 2001).  The microorganism invades host 

cells by affecting normal cellular processes such as those that control the actin 

cytoskeleton and other signal transduction pathways causing a rearrangement in 

the actin beneath the adherent bacterium. This causes membrane ruffling, 

leading to the engulfment of the bacteria into a membrane-bound vacuole (IFT 

2004; D’Aoust et al. 2001). It is within the vacuole that the bacteria survive and 

reproduce. Salmonella species have an additional Type III secretion system that 

encodes the factors needed for their survival in the intracellular compartment 

formed in the phagocytic cell. Salmonella have virulence plasmids that have 

additional factors, such as the ability to induce lysis, inflammatory responses and 

enteritis in animal hosts, aiding in the extended survival of the bacteria within the 

host cells (IFT 2004; D’Aoust et al. 2001).  

Salmonellosis is the disease caused by Salmonella species. Healthy 

individuals, that are neither immuno-compromised nor pregnant, are less 

susceptible to contracting salmonellosis. At risk groups for disease include the 

elderly, pregnant women and the immuno-compromised. The ingestion of just a 

few cells can cause infection. Symptoms of nausea, vomiting, abdominal pain, 

headache, chills and diarrhea can develop within 12-14 hours of ingestion and 

last for 2-3 days. Other symptoms that can be observed along with above 

symptoms are weakness, faintness, moderate fever, drowsiness and 

restlessness. A mortality rate of 2% to 15% has been observed depending on 
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age of the affected. Approximately 5% of those infected can become carriers of 

the disease (D’Aoust et al. 2001; Jay 2000; D’Aoust 1997).    

2.3 Milk 

2.3.1 Introduction 

The secretion of the mammary gland of female mammals is referred to as 

milk. Milk is typically the only nourishment for young mammals and contains 

components that provide necessary immunological protection. The major 

constituent of milk is water, while the remaining components include fat, lactose, 

and protein (both whey and casein). Smaller quantities of minerals, certain blood 

proteins, enzymes and intermediates of mammary synthesis are also found in 

milk. Each of the components found in milk are important to its structural and 

functional properties. Milk fat is important to flavor and potential off-flavor that 

develop in milk. Proteins bind calcium and stabilize colloidal particles. Lactose 

contributes to osmotic pressure, freezing point depression, and boiling point 

elevation (Singh and Bennett 2002). 

Milk fat and protein composition vary with bovine breed, including Friesian, 

Jersey, Guernsey, Ayrshire, Brown Swiss and Holstein, as well as among 

individual cows within the same herd. This variation in composition is mainly due 

to genetic variation, but can be caused by time of lactation as well as other 

environmental and physiological factors such as type and amount of feed, 

mastitis, weather changes, stress, exhaustion, time of day milking occurs  and 

milking frequency (Singh and Bennett 2002). Following calving, colostrum (the 

first secretion of milk) has a large concentration of fat and protein and low 
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concentration of lactose. Concentrations of these components change to that of 

normal mature milk gradually within two to four weeks (Singh and Bennett 2002).  

2.3.2. Milk Proteins 

Bovine milk contains approximately 3.5% protein which can be separated into 

two main groups—whey and casein (Table 1) (Singh and Bennett 2002). Casein 

can be subdivided into four different proteins:  αs1-, αs2-, β- and κ-casein. 

Caseins which are derived from the actions of native milk proteases are termed 

γ-caseins. All caseins are phosphoproteins with their phosphate groups esterified 

to serine residues within the protein chains. These phosphate groups have the 

ability to bind large quantities of calcium and aid in development of the structures 

of the casein micelles. Of the casein found in normal milk, 95% exists as micelles 

with an average diameter of 150 nm and a range of diameters of 80 to 300 nm. 

There are approximately 1014 casein micelles/ml milk. These micelles are 

approximately 94% protein and 6% colloidal calcium phosphate, which is 

calcium, phosphate, magnesium and citrate (Singh and Bennett 2002).  

The isoelectric point (pI) of casein is at pH 4.6 (Singh and Bennett 2002; 

Swaisgood 1996). Caseins are highly soluble in their native state and heat stable 

at pH > 6. This solubility along with the hydrophobic amino acids covering the 

surface give casein its amphiphilic structure This amphiphilic structure provides 

casein with good emulsifying properties. Hydrophobic residues within the casein 

molecule are not distributed uniformly across the polypeptide chain. The three  



14 

Table 1. Milk proteins (casein and whey) and their characteristics (Singh and 
Bennett 2002; Swaisgood 1996). 

 % of total milk protein Estimated Average 
MW range (kDa) 

Casein 80  
  αs1-casein 34 23.6 
  αs2-casein 8 25.2 
  β-casein 25 24.0 
  κ-casein 9 19.0 
  γ-casein 4 20.5 
Whey protein 20  
  β-lactoglobulin 9 18.4 
  α-lactalbumin 4 14.2 
  Proteose peptone 4  
  Blood proteins   
  Serum albumin 1 66.3 
  Immunoglobulin 2  
Total 100  
 

hydrophobic regions of αs1-casein are located at residues 1-44, 90-113, and 132-

199 while the two hydrophobic regions of αs2-casein are at segments 90-120 and 

160-207. The C-terminal two-thirds of β-casein is the greatest hydrophobic 

portion of the caseins. The hydrophobic segments of κ-casein are 5-65 and 105-

115. The charged residues are clustered. κ-casein is more polar than αs1-, αs2- 

and β-caseins (Singh and Bennett 2002).  

The remaining soluble proteins found in milk are referred to as whey 

proteins (Singh and Bennett 2002). Whey proteins can be further subdivided into 

α-lactalbumin, β-lactoglobulin, bovine serum albumin (BSA), immunoglobulins 

and proteose peptone (Singh and Bennett 2002; Swaisgood 1996). Whey 

proteins have a net negative charge at pH 6.8, the physiological pH of milk. The 

distribution of hydrophobic, polar and charged residues is uniform in whey 
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proteins. Whey proteins fold intramolecularly, concealing their hydrophobic 

residues, and therefore, do not interact with other proteins. β -lactoglobulin is the 

most abundant whey protein (50%) with a β -barrel structure, similar to the 

structure of a β-sheet but rolled up to form a cylinder, with α-helix on the surface 

and a molecular weight of around 18.0 kDa. With this structure, β-lactoglobulin 

binds with many small hydrophobic molecules. β-lactoglobulin has two disulfide 

bonds in its internal structure and a free single thiol group that account for the 

changes in milk during heating.  Heating causes aggregation due to formation of 

κ-casein-β-lactoglobulin complexes through a disulfide linkage. The second most 

abundant whey protein is α-lactalbumin (20%) with a structure that is compact, 

forming a spherical globular protein and a molecular weight of around 14.0 kDa. 

α-lactalbumin contains four disulfide bonds within the chain which allows for the 

strong binding of two calcium atoms. When these calcium atoms are removed, 

the protein is easily denatured.  Immunoglobulins are the third most abundant 

whey protein (10%) and are antibodies that are created by the presence of 

foreign macromolecular antigens. The fourth most abundant whey protein is 

serum albumin (5%) which is made in the liver and enters milk through the 

secretory cells and appears to function as a carrier of small molecules such as 

fatty acids, but have no known specific role. Other minor components within 

whey proteins are β-microglobulin, lactoferrin, transferrin, protease peptones, 

and acyl glycoproteins (Singh and Bennett 2002; Swaisgood 1996). 
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2.3.3 Antimicrobial Properties 

Milk is not only nutritionally beneficially, but is known to possess 

compounds that may reduce or prevent bacterial growth. For example, in the 

form of colostrum, milk is the first natural defense in the protection and 

development of newborns (Naidu 2000a).  

Lactoferrin, an iron-binding protein found in milk, has antimicrobial 

properties when used at higher concentrations (Law and Reiter 1977; Naidu 

2000b).  The antimicrobial activity of lactoferrin is related to its ability to bind 

essential iron which slows the growth of microorganisms (Law and Reiter 1977), 

to bind directly to the surface of microorganisms (Arnold et al. 1977), or to 

directly damage the outer membrane of gram-negative bacteria releasing 

lipopolysaccharide (Ellison et al. 1988; Ellison et al. 1990). Lactoferricin, or 

pepsin hydrolyzed lactoferrin, provides broad-spectrum activity against various 

bacteria, viruses, fungi and parasites, making it a potent natural antimicrobial 

(Bellamy et al. 1992). At 0.5 to 500 mg/ml, lactoferricin has antimicrobial activity 

against gram-positive and gram-negative bacteria (Bellamy et al. 1992). This 

activity is reduced or eliminated in complex microbiological media and in foods 

(Branen and Davidson 2000).  

Lactoperoxidase, an oxidoreductase and the most abundant enzyme 

secreted in bovine milk, protects the mammary gland as well as the intestinal 

tract of newborns from infection by pathogenic microorganisms (Naidu 2000c). 

Thiocyanate ions and hydrogen peroxide, together with lactoperoxidase compose 

the lactoperoxidase system. It is the through the enzymatic reaction of 
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lactoperoxidase with thiocyanate and hydrogen that provide a broad spectrum of 

activity against bacteria, viruses and fungi (Naidu 2000c).  

Lactoglobulins, or milk-derived immunoglobulins or antibodies, are another 

component which has been examined for its potential to inactivate 

microorganisms. Immunoglobulins can recognize and precipitate bacteria, 

viruses, polysaccharides, nucleotides, peptides and proteins. Colostrum contains 

high levels of these immunoglobulins that provide the primary source of 

protection to the newborn from the mother (Bostwick et al. 2000).  

Lactolipids are another known form of natural antimicrobials found in milk. 

The antimicrobial activity of lipids found in milk is due to the presence of long-

chain unsaturated fatty acids and the medium-chain saturated fatty acids and 

their monoglycerides that act by destabilizing the bacterial membrane by forming 

holes and increasing its porosity (Lampe and Isaacs 2000).  

2.4 Enzymatic Protein Hydrolysis 

Enzymatic protein hydrolysis is the degradation of proteins into peptides 

and/or amino acids by using proteolytic enzymes, such as trypsin and pepsin. 

During protein hydrolysis, peptide bonds are cleaved, and with the addition of 

water, peptides and free amino acids are released (Adler-Nissen 1993). 

Proteolysis is dependent upon the protein substrate, type of proteases used and 

hydrolysis conditions. The sequence of amino acids and the three-dimensional 

structure of the protein affect the ability of the protein to undergo hydrolysis and 

the type of peptides formed during hydrolysis. Enzyme-substrate binding is 
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essential for protein hydrolysis. Globular proteins may be composed of single 

chains or two or more chains which can interact in different ways and are 

spherical in shape (Damodaran 1996). Globular proteins, such as whey protein, 

have most of the peptide bonds within the interior of the protein and, therefore, 

they are inaccessible to the enzyme (Damodaran 1996). Therefore, for 

successful hydrolysis of these proteins, reversible unfolding is necessary in order 

to expose the interior peptide bonds for hydrolysis. Caseins are flexible proteins 

due to their open structure and can be easily hydrolyzed (Swaisgood 1996). 

Hydrolysis of proteins with different amounts of hydrophobic and charged groups 

can result in the formation of peptides varying in their distribution of hydrophobic 

and hydrophilic side groups. 

There are many proteases available for protein hydrolysis and they are 

classified based on their origins (plant, animal, or microbial), mode of action, or 

catalytic site (Adler-Nissen 1993). Endoproteases are enzymes which cleave 

amide bonds within the protein chain. Pepsin and trypsin are examples of 

endoproteases. Pepsin and trypsin are two of the three proteolytic enzymes 

found in the digestive system, the other one being chymotrypsin. Pepsin cleaves 

peptide bonds associated with the aromatic amino acids, phenylalanine, 

tryptophane and tyrosine and is effective in the pH range of 1 to 4. Trypsin 

cleaves bonds associated with the amino acids, lysine and arginine and is 

effective in the pH range of 7 to 9 (Adler-Nissen 1993).    

 The degree of hydrolysis is dependent upon the conditions, temperature, 

pH, enzyme to substrate ratio and reaction time. Temperature, pH and enzyme to 
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substrate ratio determine the rate of the reaction. The reaction time determines 

the final extent of hydrolysis. At low pH, all amino groups are protonated and only 

a portion of carboxyl groups are deprotonated, resulting in an uptake of protons 

for each peptide bond cleaved, increasing the pH. At neutral or alkaline pH, a 

decrease in pH occurs due to the deprotonation of all the carboxyl groups and 

partial protonation of amino groups. In order to prevent these changes in pH in a 

controlled system, a buffer may be used to maintain desired pH (Whitaker 1996).  

 Protein hydrolysis causes the molecular properties of proteins to change 

such as a decrease in molecular weight, an increase in charge, the exposure of 

hydrophobic groups and the exposure of reactive amino acid side chains. As a 

result of these changes, the functional properties may be affected including 

nutritional and physiological. Changes in the nutritional properties of hydrolysates 

include increased digestibility and decreased allergenicity. Smaller peptides are 

easier to digest than whole proteins, which can be beneficial to those people who 

suffer from certain digestive disorders. Further, hydrolysis can be used to destroy 

protein sequences responsible for allergic reactions in those individuals sensitive 

to certain allergens (Damodaran 1996). Physiological properties changed may 

include creation of bioactive peptides (Bellamy et al. 1992; Zucht et al. 1995; 

Recio and Visser 1999), angiotensin converting enzyme (ACE) inhibition (Clare 

and Swaisgood 2000) and opioid activity (Brantl et al. 1979).     
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2.5 Bioactive Peptides from Milk 

2.5.1 Introduction 

Biologically active peptides have been discovered in both animals and 

plants (Gennaro 1989; Lee 1989; Bevins and Zesloft 1990; Lehrer et al. 1993; 

Boman 1995; Cowan 1999; Ganz and Lehrer 1999; Meisel 1997, 1997b, 1998; 

Schanbacher 1997, 1998). Bioactive peptides derived from casein have been 

found to exhibit a variety of biological, physiological, nutritional and antimicrobial 

properties/functions. Bioactive peptides from milk protein hydrolysis include those 

with antimicrobial, opioids, endorphin-like, antihypertensive, decreased blood 

pressure, and antithrombotic, decreased blood clotting properties (Schlimme and 

Meisel 1995; Korhonen et al. 1998; Clare and Swaisgood 2000; Pihlanto-Leppala 

2001). These biologically active peptides have been obtained in vitro by 

proteolysis (Bellamy et al. 1992; Zucht et al. 1995; Recio and Visser 1999) and in 

vivo by gastric digestion of milk proteins (Kuwata et al. 1998; Meisel and 

Bockelmann 1999).  

Casein is a good source of such peptides/protein fragments that have 

these certain physiological functions including aiding in gastrointestinal function 

and digestion, hemodynamic modulation (antihypertension and increased blood 

flow), probiotic support of gut microflora, nonimmune disesase protection, 

passive immunity, immunoregulation, anti- inflammation, growth and 

development (Tome and Debabbi 1998; Schanbacher et al. 1997). Thus, it is 



21 

important to study the potential for creating peptides through proteolytic 

hydrolysis in vitro which could have antimicrobial activity. 

2.5.2 Opioid Activity 

Peptides derived from the enzymatic digests of casein with opioid activity 

were first reported by Brantl et al. (1979). Peptides with similar activity were 

found by Ziodrou et al. (1979) in the pepsin hydrolysates of α-casein. Bitri (2004) 

found that through a mild acidic hydrolysis using pepsin, imitating gastric-like 

digestion, the release of bioactive material occurred over time. The release of 

material was correlated with acidity rather than enzymatic activity indicating a 

chemical proteolysis produced the protein fragments rather than an enzymatic 

hydrolysis. Biziulevicius et al. (2002) reported on the antimicrobial activity of 

tryptic casein hydrolysate, its mode of antimicrobial action, and its efficacy as a 

treatment and prophylaxis of colibacillus in newborn calves by its stimulation to 

the microbial autolytic system.  

Opioid peptides are short peptides, 5-10 amino acids, and have the ability 

to bind opioid receptors on intestinal epithelial as well as other cells 

(Teschemacher and Koch 1991; Schlimme and Meisel 1995). Opioid peptides 

are derived from β-casein, αs1-casein, β-lactoglobulin, and α-lactalbumin 

(Teschemacher and Koch 1991; Schlimme and Meisel 1995). The major opioid 

peptides are β-casomorphins, which are the 60 to 70 amino acid residues of 

bovine β-casein (Clare and Swaisgood 2000). Opioid peptides are responsible 
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for altering the emptying of gastric contents and decreased intestinal motility 

(Schanbacher et al. 1997; Clare and Swaisgood 2000). 

2.5.3 Immunomodulatory Peptides 

 Immunomodulatory peptides modulate lymphocyte function, lymphocyte 

differentiation, enhance killer cell activity and affect both the immune system and 

cell multiplication responses (Clare and Swaisgood 2000; Schanbacher et al. 

1997). Casein hydrolysates were shown to increase the phagocytic activity of 

human macrophages against red blood cells (Fiat et al. 1989; Jolles et al. 1981; 

Milgliore-Samour et al. 1989). Small peptides at the N-terminal end of bovine α-

lactalbumin and κ-casein increased the multiplication of human peripheral blood 

lymphocytes (Kayser and Meisel 1996).  

2.5.4 Antihypertensive Peptides  

The angiotensin converting enzyme (ACE) is a peptidyldipeptidase that 

cleaves dipeptides from the carboxy terminal end of a protein, and converts 

angiotensin I to angiotensin II, causing an increase in blood pressure (Clare and 

Swaisgood 2000). Peptides can act as ACE inhibitors. True inhibitors are those 

which bind to the active site of ACE without being hydrolyzed by the enzyme. 

Inhibitor peptides can also be substrates of ACE, which can be cleaved by ACE 

releasing new peptides. Those new peptides that are created that yield more 

effective inhibitors are called “pro-drug type inhibitors” while those peptides that 

create less effective inhibitors are called “substrate type inhibitors.” There have 

been numerous peptides and hydrolysates derived from food proteins reported to 

work as ACE inhibitors (Ariyoshi 1993; Meisel and Schlimme 1996; Yamamoto 
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1997; Shah 2000). Hydrolysis with trypsin results in hydrolysates with good ACE-

inhibiting activity (Mullally et al. 1997). ACE inhibition by hydrolysates is mainly 

due to low molecular weight peptides (Meisel et al. 1997; Pihlanto-Leppala et al. 

2000). Casokinins are ACE inhibitors that are derived from the tryptic digestion of 

bovine casein and provide antihypertensive properties (Clare and Swaisgood 

2000). ACE inhibitory peptides have also been created through the hydrolysis of 

αs1-casein and β-casein with Lactobacillus helveticus CP790 (Clare and 

Swaisgood 2000).   

2.5.5 Other Milk Components 

Hydrolysis of the milk components, lactoferrin (Kimura et al. 2000; Kuwata 

et al. 1998; Nibbering et al. 2001; Groenink et al. 1999; Branen and Davidson 

2000; Qian et al. 1995), bovine hemoglobin (Froidevaux et al. 2001), casein 

(Liepke et al. 2001; Lahov and Regelson 1996; Recio and Visser 1999; ), α-

lactoalbumin (Pellegrini et al. 1999) and α-lactoglobulin (Pellegrini et al. 2001) 

and whey (Pihlanto-Leppala 2001) produce hydrolysates with antimicrobial 

activity. Antimicrobial activity of hydrolyzed lactoferrin was observed in peptone 

glucose yeast extract media, but not tryptic soy broth (Branen and Davidson 

2000). When cation and amphipathic peptides were derived from bovine and 

human lactoferrins, those peptides containing the largest number of positively 

charged amino acids showed the greatest antimicrobial activity against both 

gram-positive and gram-negative bacteria (Groenink et al. 1999). Sheep and 

human lactoferrins as well as their pepsin hydrolysates inhibited thrombin-

induced platelet aggregation in a dose dependent manner (Qian et al. 1995). The 
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1-23 fragment of the peptic digest of bovine hemoglobin had low antimicrobial 

activity against Micrococcus luteus A270 (Froidevaux et al. 2001). Pepsin 

hydrolysis of κ-casein (residues 63-117) was found to inhibit growth of gram-

positive bacteria, gram-negative bacteria and yeasts (Liepke et al. 2001). Using a 

heat treatment in combination with the enzyme chymosin, casecidines or 

polycationic low molecular mass peptides with antimicrobial activity were formed 

(Lahov and Regelson 1996). Three bactericidal domains were isolated and 

identified using reversed phase chromatography from bovine α-lactalbumin after 

partial digestion with trypsin and chymotrypsin (Pellegrini et al. 1999) and four 

bactericidal domains were isolated and identified using reversed phase 

chromatography from bovine α-lactoglobulin after digestion with trypsin 

(Pellegrini et al. 2001). Domains derived from both α-lactalbumin and α-

lactoglobulin digesion with trypsin were effective against gram-positive bacteria 

(Pellegrini et al. 2001). Digestion with pepsin created fragments with no 

antimicrobial activity (Pellegrini et al. 1999). However, Recio and Visser (1999), 

using peptic hydrolysis, found two distinct antibacterial domains (183-207 and 

164-179) within the sequence of bovine αs2-casein.  

Known fragments of bovine casein with antimicrobial activity are isracidin 

(Hill et al. 1974), casocidin-I (Zucht et al. 1995), α-casecidins (Otani and Suzuki 

2003), kappacin (Malkoski et al. 2001), and the casein-κ-derived 

glycomacropeptide (Stromqvist et al. 1995; Aniansson et al. 1990). Isracidin is a 

non-immunological polypeptide (with a molecular weight of 2770 Da) obtained 
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from the chymosin digestion of αs1-casein B and consists of the N-terminal 

segment (1-23) of αs1-casein B (Lahov and Regelson 1996). Isracidin was found 

to be significantly effective in vivo at concentrations comparable to antibiotics 

against Staphylococcus aureus strain Smith as well as produced long-term 

immune resistance (Lahov and Regelson 1996).     

 
2.5.6 Antimicrobial mechanism of action 

The mode of action/mechanism of peptide hydrolysates is not fully 

understood. Hydrolysates may affect transmembrane pore-forming mechanisms 

as described for several antimicrobial peptides.  Cationic peptides have been 

shown to kill bacteria by disrupting or permeabilizing the bacterial membrane by 

inducing the uptake of extracellular K+ ions. This uptake of ions leads to the 

depolarization of the outer membrane or, in the case of Gram-negative bacteria, 

permeabilization of the outer membrane. Antimicrobial peptides may accumulate 

at the target membrane surfaces causing displacement of phospholipids leading 

to changes in membrane fluidity and membrane disruption (Yeaman and Yount 

2003). 

It is proposed that the positive charges affect the anionic lipids of the 

bacterial membrane, causing destabilization and destruction of the membrane by 

changing their lipid structure (Kragol et al. 2001). A positive net charge and a 

potentially amphipathic α-helix have been identified as the major structural 

components that interact with the lipid bilayer to enhance the permeability of 

membranes (Dathe et al. 1996).  Dathe et al. (1996) found that amphipathic 
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peptide bound the lipid bilayer at the membrane interface by electrostatic 

interactions between cationic peptide charges and anionic lipid head groups of 

the membrane and through hydrophobic interactions. Peptides with cationic 

amphipathic structures show a high affinity for negatively charged bacterial 

membranes with lipopolysaccharides or anionic phospholipids (Matsuzaki 2001). 

These cationic peptides target the cell surface of the anionic lipids unique to the 

microorganisms (Matsuzaki 2001; Hancock and Lehrer 1998).  

Peptides that are cysteine-rich are thought to form pores or ion-permeable 

channels within the lipid bilayer (Marshall and Arenas 2003). Membrane-active 

peptides that are cationic due to the presence of multiple lysine and arginine 

residues form amphipathic secondary structures which can enter the membrane 

(Matsuzaki 1999).          

. 
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3. Materials and Methods 

3.1 Hydrolysate Preparation 

Whole casein was precipitated at room temperature from 10.8 L of fresh, 

unpasteurized skimmed cow’s milk (Broad Acre Farms, Powell, TN) by the slow 

addition of 300 mL of 2 N HCl to pH 4.6. Precipitated casein was separated by 

centrifugation at 1370 g for 10 min and was subsequently washed by suspending 

in 2.25 L of deionized water followed by recentrifugation. The washing was 

repeated five times. The resulting precipitate was freeze-dried.  

In Method 1, a solution of 1.7 % whole dry casein at pH 2 was incubated 

with pepsin (1:100 w/w) at 37 oC, and a solution of 1.7 % whole dry casein at pH 

8 was incubated with trypsin (1:100 w/w) at 37 oC. After 5 hr, the reaction 

solutions were heated for 5 min at 95 oC to inactivate each enzyme, and rapidly 

cooled to room temperature. The solutions were dialyzed using Spectra/Por® 2 

dialysis membrane (MW cutoff = 12000-14000 Da) (Spectrum Laboratories, Inc., 

Rancho Dominquez, CA) against water for 40 hr with 5 water changes and 

freeze-dried. Solutions containing 0.5% and 1% of each hydrolysate were 

prepared, pH adjusted to ca. 7.0 + 0.2 and filter sterilized through a cellulose 

acetate 0.45 µm membrane filter (Corning Incorporated, Corning, NY). 

In Method 2, a solution of 5.0 % casein was prepared by dissolving whole 

dry casein in 0.1 M pH 7.2 phosphate buffer. The 5.0 % casein solution treated 

similarly to Method 1, however, the hydrolysates created were separated by 

centrifugation at 4000 g for 10 min after inactivation of the enzymes and were not 
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dialyzed against water. The resulting supernatant from centrifugation was pH 

adjusted to ca. 7.0 + 0.2 and filtered sterilized as described in Method 1. 

3.2 Culture Preparation 

Listeria monocytogenes, strains 101, 108, 310 and Scott A and 

Salmonella Typhimurium strains 2380, 2576, 2582 and 2486 were stock cultures 

obtained from microbiology laboratory at the University of Tennessee. All cultures 

were grown in tryptic soy broth (TSB; Difco, Sparks, MD) and transferred every 4 

wk to maintain viability. Working cultures were obtained by inoculating a loopful 

of culture into TSB and incubating for 24 hr at 32oC. Working cultures were 

subsequently transferred every day for 3 days prior to use. After incubation, the 

cultures were diluted to ca. 5.0 log CFU/mL. 

3.3 Micro-broth Dilution Assay 

Sterile 96-well microtiter plates with a well capacity of 300 µL were used 

for all methods. In Method 1, for testing hydrolysate alone, a total volume of 250 

µL was used consisting of 125 µL of double strength TSB, 100 µL of filtered 

hydrolysate and 25 µL of inoculum (ca. 5.0 log CFU/mL). For testing hydrolysate 

in combination with EDTA, a total volume of 250 µL was used consisting of 125 

µL of double strength TSB, 50 µL of filtered hydrolysate (pepsin or trypsin at 0.5 

% and 1 %), 50 µL of EDTA (250 µg/mL EDTA for L. monocytogenes and 1250 

µg/mL for S. Typhimurium DT104) and 25 µL of inoculum (ca. 5.0 log CFU/mL).  

In Method 2, for testing hydrolysate alone, the same method was used as 

in Method 1. However, hydrolysates were tested in combination with either EDTA 
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or sodium lactate and with both EDTA and sodium lactate. For testing 

hydrolysate in combination with either EDTA or sodium lactate, a total volume of 

250 µL was used consisting of 125 µL of double strength TSB, 50 µL of filtered 

hydrolysate (pepsin or trypsin), 50 µL of EDTA (250 µg/mL EDTA for L. 

monocytogenes and 1250 µg/mL for S. Typhimurium DT104) or 50 µL of sodium 

lactate (1 %) and 25 µL of inoculum (ca. 5.0 log CFU/mL). For testing hydrolysate 

in combination with both EDTA and sodium lactate, a total volume of 250 µL was 

used consisting of 125 µL of double strength TSB, 33 µL of filtered hydrolysate 

(pepsin or trypsin), 33 µL of EDTA (250 µg/mL EDTA for L. monocytogenes and 

1250 µg/mL for S. Typhimurium DT104), 33 µL of sodium lactate (1 %) and 25 µL 

of inoculum (ca. 5.0 log CFU/mL).  

For both methods 1 and 2, microtiter plates were covered with a sterile lid 

and incubated 24 hr at 32 oC and the absorbance (630 nm) of each well was 

read at 0, 3, 6, 12, and 24 hr with a microtiter plate spectrophotometer (Elx800 

Universal Microplate reader, BioTek Instruments, Winooski, VT). The micro-broth 

dilution assays for all methods were performed in triplicate. 

3.4 Growth Curve 

In Method 1, pepsin and trypsin hydrolysates (5 %) were mixed with 

bacteria harvested at late logarithmic phase and diluted to ca. 5.0 log CFU/mL. 

The bacteria and hydrolysates were incubated in TSB at 32 oC for 24 hr.  

Bacterial suspensions were enumerated on tryptic soy agar (TSA; Difco) at 0, 3, 

6, 12 and 24 hr. Plates, in duplicate, were incubated for 24 hr at 32 oC. 
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In Method 2, trypsin hydrolysates were mixed with bacteria harvested at 

late logarithmic phase and diluted to ca. 5.0 log CFU/mL. The bacteria and 

hydrolysates were incubated in TSB at 32 oC for 24 hr.  The bacterial 

suspensions were enumerated on TSA at 0, 3, 6, 12 and 24 hr. Plates, in 

duplicate, were incubated for 24 hr at 32 oC. 

3.5 Determination of Protein Content 

The protein concentrations of pepsin and trypsin hydrolysates (before and 

after filtering) in methods was determined using three different protein assays, 

Bradford dye-binding method (Bio-Rad Laboratories, Hercules, CA), modified 

Lowry method (Pierce, Rockford, IL) and UV 280 nm (Chang 1998) . Protein 

concentration determined using the Bradford dye-binding method utilized a 5-

point standard curve that was prepared using bovine serum albumin (BSA), 

ranging from 0.2 to 1 mg protein/mL or a 10-point standard curve also prepared 

using BSA, ranging from 0 to 2 mg protein/mL. To a 50 µL aliquot of unknown or 

standard, 2.5 mL of diluted (1 volume of Dye Reagent Concentrate with 4 

volumes deionized water) and filtered (using Whatman No. 1 paper) Bio-Rad Dye 

Reagent Concentrate was added and the samples were mixed using a vortex. 

The samples were allowed to sit at room temperature for at least 10 min to allow 

for color development. The absorbance was stable for about 1 hr. Each sample 

(unknowns and standards) was transferred to a disposable polystyrene cuvette 

and the absorbance was measured at 595 nm using a UV-VIS scanning 
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spectrophotometer (UV-2101PC, Shimadzu, Japan). Protein concentrations of 

the unknown samples were determined using the standard curves. 

In the modified Lowry Protein Assay Kit (Pierce, Rockford, IL), a 10-point 

standard curve was developed using BSA ranging from 0 to 1.5 mg protein/ml. A 

1N Folin-Ciocalteu Reagent was prepared by diluting the 2N reagent 1:1 with 

deionized water. To a 0.2 mL aliquot of unknown or standard, 1.0 mL Modified 

Lowry Reagent (containing cupric sulfate, potassium iodide and sodium tartrate 

in an alkaline solution buffer) was added, mixed well by vortexing and incubated 

for exactly 10 min at room temperature. At the end of the incubation period, 100 

µL of prepared 1N Folin-Ciocalteu Reagent was added, mixed well by vortexing 

and incubated for exactly 30 min at room temperature. Samples (unknowns and 

standards) were transferred to disposable polystyrene cuvettes and the 

absorbance measured at 750 nm. Protein concentrations of the unknown 

samples were determined using the standard curves. 

   For the UV 280 nm method, a 10-point standard curve that was prepared 

with BSA ranging from 0 to 2 mg protein/mL. Each standard and sample were 

transferred to a quartz cuvette and the absorbance at 280 nm measured using a 

UV-VIS spectrophotometer (UNICAM, Cambridge, UK)..The protein 

concentrations of the unknown samples were determined using the standard 

curve.  
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4. Results and Discussion 

4.1. Method 1 

Pepsin and trypsin hydrolysates produced with Method 1 showed little 

antimicrobial activity. Trypsin hydrolysates were slightly effective in extending the 

lag phase and/or reducing the final growth level of three of four strains of Listeria 

monocytogenes (101, 108 and Scott A) (Fig. 1A-D) (all figures located within 

appendix) at 1.0 % (w/v). Trypsin hydrolysates alone or in combination with 

EDTA had no activity against any strain of S. Typhimurium (Fig. 2A-D, 5A-D) at 

up to 1.0. Pepsin hydrolysates were effective in slightly extending the lag phase 

of two of the four strains of L. monocytogenes (101 and 108 at 0.5 %) (Fig. 1B) 

without and with EDTA (3A, 3B) and one of the four strains of S. Typhimurium 

(2486 at 1.0 %) without EDTA (Fig. 2D).  

EDTA alone was effective against one of the four strains of L. 

monocytogenes (101) (Fig. 3A, 4A) and all four strains of S. Typhimurium (2380, 

2576, 2582 and 2486) (Fig. 5A-D, 6A-D) by decreasing the final growth level 

and/or extending the lag phase; however, EDTA had little effect on enhancing the 

inhibitory effect of pepsin or trypsin hydrolysates against either microorganism. 

To more precisely determine the influence of the compounds on growth of 

the test microorganisms, numbers of each were monitored over time (Fig. 7, 8). 

Neither pepsin nor trypsin hydrolysates at 5 % prepared using Method 1 were 

effective in inhibiting the growth of any of the strains of L. monocytogenes (Fig. 

7A-B) or S. Typhimurium (Fig. 8A-B). S. Typhimurium 2486 had decreased 
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growth from 6 to 12 hr; however, there was no decrease in the final level of 

growth as compared to the control (Fig 8B). 

In conclusion, hydrolysate preparation using Method 1 was shown to 

produce solutions that demonstrated little or no inhibition of the test 

microorganisms. The probable reason for this was that low molecular weight 

peptides were lost during dialysis due to the large pore size (MW cutoff = 12000-

14000 Da) in the dialysis tubing. It was theorized that low molecular weight 

peptides are necessary to have antimicrobial activity. This was supported by 

research that showed that peptides from bovine casein and hydrolyzed with 

pepsin and trypsin demonstrated some antimicrobial activity (Miclo et al.. 2001; 

Recio and Visser 1999). Lack of antimicrobial effectiveness may have also been 

due to potential enhancement of bacterial growth due to larger peptides being 

utilized as nutrient sources. 

4.2. Method 2  

4.2.1 Antimicrobial Activity 

 Method 1 was modified to capture the low molecular weight peptides 

proposed to possess the primary antimicrobial activity. By using centrifugation 

instead of dialysis, the smaller molecular weight peptides were captured in the 

supernatant while the larger molecular weight peptides were removed in the form 

of a precipitate.  

 Using Method 2, trypsin hydrolysates were effective in extending the lag 

phase and/or reducing the final growth level of all four strains of L. 

monocytogenes tested (Fig. 9A). However, they were not effective against any of 
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the strain of S. Typhimurium (Fig. 9B). It is suggested that proteolytic digestion of 

bovine casein with trypsin led to the production of several heat stable peptide 

fragments possessing antimicrobial properties. The peptides produced from the 

tryptic digestion of casein displayed greater antimicrobial activity against Gram-

positive bacteria. This would suggest that they may be similar to other cationic 

antimicrobial peptides, such as nisin, which act as surface active compounds 

(Rurh and Sahl 1985). The lack of activity against S. Typhimurium, a Gram-

negative bacterium, was possibly because of the protection afforded to the 

microorganism by the outer membrane which is often effective in screening 

amphiphilic compounds (Matsuzaki 1999). In a similar study, trypsin digestion of 

rabbit casein also did not produce antimicrobial activity against Gram-negative 

organisms (Barayni et al. 2003). 

 Pepsin hydrolysates were not effective in extending the lag phase and/or 

reducing the final growth level of any of the four strains of S. Typhimurium (Fig. 

9D). However, they were effective in reducing the final growth level in L. 

monocytogenes 101 (Fig. 9B). This is contrary to the observations of Baranyi et 

al. (2003) who found that casein-derived peptides isolated from rabbit 

(Oryctolagus cuniculus) milk and digested with chymotrypsin, pepsin and 

clostipain produced several peptide fragments with antimicrobial activity. 

Additionally, Liepke et al. (2001) found that hydrolyzing human milk proteins with 

pepsin produced low-molecular-mass peptide fragments similar to κ-casein that 

increased the antimicrobial activity against Gram-positive, Gram-negative 

bacteria and yeasts. The differences in antimicrobial activity between what we 
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found and those results from Baranyi et al. (2003) and Liepke et al. (2001) most 

probably are due to their increased purification by the previous researchers of 

those compounds responsible for activity. 

 The mechanism of bioactive peptides is thought to be related to their 

ability to increase permeability of the bacterial membrane or other type of 

membrane destabilization (Yeaman and Yount 2003). Therefore, combinations of 

the peptides with traditional, regulatory-approved antimicrobials were tested to 

observe whether or not the inhibition caused by the peptides could enhance 

antimicrobial activity. Method 2 results confirm that trypsin hydrolysates derived 

from bovine milk were effective in extending the lag phase and/or reducing the 

final growth level L. monocytogenes (Fig. 10A-D) and slightly effective in 

reducing the final growth level of S. Typhimurium (Fig. 11A-D). Trypsin 

hydrolysates were found to enhance the antimicrobial activity of sodium lactate 

against L. monocytogenes (Fig. 10A-D) and only slightly enhance the 

antimicrobial activity of sodium lactate against S. Typhimurium (Fig. 11A-D). 

Trypsin hydrolysates derived from bovine milk in combination with EDTA have 

antimicrobial activity against L. monocytogenes and S. Typhimurium in tryptic soy 

broth (TSB) (Fig. 10A-D, 11A-D). However, in this study, the activity was 

primarily due to the presence of EDTA. 

 Pepsin hydrolysates alone showed no antimicrobial activity against either 

L. monocytogenes or S. Typhimurium and did not enhance the antimicrobial 

activity of either sodium lactate or EDTA (data not shown). Branen and Davidson 

(2000) found that pepsin hydrolyzed lactoferrin (HLF) was effective against L. 
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monocytogenes, enterohemorrhagic E. coli and Salmonella Enteritidis in peptone 

yeast extract broth (PYE) but not in TSB. Addition of EDTA enhanced the activity 

of HLF in TSB (Branen and Davidson 2000). In a separate study, Branen and 

Davidson (2004) examined the effect of combining the antimicrobials nisin, 

lysozyme and monolaurin with EDTA and lactoferrin and found that antimicrobial 

activity of certain antimicrobials can be enhanced in combination. For example, 

EDTA enhanced the activity of nisin, monolaurin and lysozyme in TSB against 

two enterohemorrhagic E. coli (Branen and Davidson 2004). Further, while none 

of the antimicrobials alone were bactericidal, in combination with EDTA, nisin, 

lysozyme and monolaurin were bactericidal against some Gram-negative 

bacteria (Branen and Davidson 2004). However, in the present study, addition of 

pepsin or trypsin hydrolysates did not enhance the antimicrobial activity of EDTA 

and lactate against Gram-negative bacteria (Fig. 11A-D).  

Another test was run to determine whether antimicrobial activity could be 

increased by combining both pepsin and trypsin hydrolysates. It was found that 

by adding pepsin hydrolysates, the antimicrobial activity of trypsin hydrolysates 

actually decreased in activity against L. monocytogenes (Fig. 12A-D) and there 

was no effect on the activity against S. Typhimurium (13A-D). 

The Method 2 hydrolysates were evaluated against L. monocytogenes 

and S. Typhimurium  by enumerating the microorganisms over time (Fig. 14 and 

15). Compared to the extent of antimicrobial activity of trypsin hydrolysates 

demonstrated in the spectrophotometric analysis, the activity was reduced using 

the count method (Fig 14A-B, 15A-B). A possible reason for this may be the 
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detection limits of the analysis. The limit of detection of cells using the 

spectrophotometric method is on the order of 5-6 log CFU/mL. In contrast, the 

cell count method used followed growth from 4 log CFU/mL. The lack of increase 

in OD seen in the spectrophotometric assay could be due to the reduced final 

growth level as seen in the count assay. 

It is suggested that activity of the peptide solutions may be enhanced if 

further isolation techniques for the antimicrobial peptides were used. For 

example, it has been found that isolating specific peptide sequences from casein 

that possess antimicrobial activity is important to maximal activity (Malkoski et al. 

2001; Helinck et al. 2003). Malkoski et al. (2001) isolated kappacin, a novel 

antimicrobial peptide from bovine milk and the active form of 

caseinomacropeptide (CMP) consisting of non-glycosylated, phosphorylated κ-

casein (residues 106-169). Malkoski et al. (2001) prepared CMP by chymosin 

digestion of casein and gel-filtration. CMP was effective in inhibiting growth of 

both gram-positive and gram-negative microorganisms. Further, hydrolyzation of 

CMP with endoproteinase Glu-C generated the nonglycosylated peptides 

Ser(P)149 κ-casein-A(138-158) that displayed inhibitory activity in the growth of 

Streptococcus mutans (Malkoski et al. 2001). Recio and Visser (1999) isolated 

and identified two distinct antimicrobial domains from a peptic hydrolysate of 

bovine αs2-casein and determined the C-terminal part of the αs2-casein interacted 

with the cation-exchange membrane used to obtain the antimicrobial fraction. 

Further, in isolating the antibacterial peptides, fragments were found to have 

antimicrobial activity against both Gram-positive and Gram-negative bacteria 
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(Recio and Visser 1999). Otani and Suzuki (2003) isolated cytotoxic peptides, α-

casecidins, from tryptic digestion of bovine αs1-casein and ion-exchange 

chromatography. These peptides were found to be cytotoxic toward all 

lymphocytes examined. The α-casecidins showed little cytotoxic activity towards 

bovine milk cells. Otani and Suzuki (2003) examined the effects of strength of 

charge or cationic peptide on cytotoxic activity and determined no correlation. 

Zucht et al. (1995) found that peptides derived from acid hydrolyzed αs2-casein, 

casocidin-I, demonstrate activity against both gram-positive and Gram-negative 

organisms and further demonstrated that gram-positive microorganisms were 

more sensitive than gram-negative microorganisms. Lahov and Regelson (1996) 

showed that chymosin-hydrolyzed casein and αs1-casein were antimicrobial 

against gram-positive microorganisms in vitro and against Staphylococcus 

aureus in vivo in mice. 

  While it is known that further purification steps to isolate antimicrobial 

peptides from casein are possible, the most useful form of antimicrobials for the 

food industry are crude extracts or preparation (Davidson and Zivanovic, 2003). 

Since casein-derived peptides could provide an alternative or adjunct to 

antimicrobials currently used in foods, further research needs to be conducted to 

find simple methods for enhancing activity by concentrating the hydrolysates or 

isolating and characterizing those peptides with the greatest antimicrobial 

potential. 



39 

4.2.2 Protein Concentration and Peptide Fragment Determination in 

Method 2 

 A 5 % (w/v) casein (50 mg/mL) starting solution was used for creating 

each type of hydrolysate. Using the Bradford method, non-membrane filtered 

hydrolysates were higher in protein than those that were filtered (84.5 µg/mL vs. 

37.0 µg/mL respectively). Pepsin hydrolysates were higher in protein than trypsin 

hydrolysates in both filtered and non-filtered samples. Average protein 

concentrations for filtered pepsin, non-filtered pepsin, filtered trypsin and non-

filtered trypsin were 62.3 µg/mL, 125.9 µg/mL, 11.7µg/mL and 42.9 µg/mL, 

respectively. The Coomassie brilliant blue dye used in the Bradford method binds 

to primarily basic (arginine groups) and aromatic amino acids (Compton and 

Jones 1985).  

Using the Modified Lowry method, non-filtered hydrolysates were slightly 

higher in protein concentration than those that were filtered (30.4 mg/mL vs. 27.8 

mg/mL respectively). Pepsin hydrolysates were lower in protein concentration 

than trypsin hydrolysates in both filtered and non-filtered samples. Average 

protein concentrations for filtered pepsin, non-filtered pepsin, filtered trypsin and 

non-filtered trypsin were 11.2 mg/mL, 16.0 mg/mL, 44.4 mg/mL and 44.9 mg/mL, 

respectively. The Lowry method applies two reagents, one with Cu2+ which reacts 

with peptide bonds giving a blue color reaction and a second folin cupric reagent 

that reacts with –OH also resulting in a blue color (Lowry et al. 1951). The 

resulting color indicates the amount of small molecular weight peptides.  
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Using the UV 280 nm method, non-filtered hydrolysates were higher in 

protein concentration than those that were filtered (1,680 µg/mL versus 1,500 

µg/mL respectively). Trypsin hydrolysates were higher in protein concentration 

than pepsin hydrolysates in both filtered and non-filtered samples. Average 

protein concentrations for filtered pepsin, non-filtered pepsin, filtered trypsin and 

non-filtered trypsin were 480 µg/mL, 920 µg/mL, 2,180 µg/mL, and 2,450 µg/mL, 

respectively. Just as the Lowry Method, theUV 280 nm determination measures 

smaller sized proteins.  

The actual identity of the peptides isolated from bovine milk casein and 

digested with pepsin and trypsin cannot be discerned from the methods used. 

However, by examining the protein sequence and understanding the method of 

enzymatic cleavage, one can speculate on the peptides formed Fig. (16-19). 

Trypsin cleaves proteins at the amino acids, lysine and arginine. Trypsin 

cleavage of αs1-casein yields 40 different peptide sequences varying in length 

(from one to 41 amino acids) with 28 sequences with 5 amino acids or less (Fig. 

16A). Trypsin cleavage of αs2-casein yields 51 different peptide sequences 

varying in length (from one to 24 amino acids) with 37 sequences with 5 amino 

acids or less (Fig. 17B). Trypsin cleavage of β-casein yields 31 different peptide 

sequences varying in length (from one to  55 amino acids) with 23 sequences 

with 5 amino acids or less (Fig. 17A). Trypsin cleavage of κ-casein yields 27 

different peptide sequences varying in length (from one to 53 amino acids) with 

18 sequences with 5 amino acids or less (Fig 17B).  
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Pepsin cleaves proteins at the amino acids, phenylalanine, tyrosine and 

tryptophan. Pepsin cleavage of of αs1-casein yields 32 different peptide 

sequences varying in length (from one to 58 amino acids) with 24 sequences 

with  5 amino acids or less (Fig. 18A). Pepsin cleavage of αs2-casein yields 33 

different peptide sequences varying in length (from one to  38 amino acids) with 

22 sequences with 5 amino acids or less (Fig. 18B). Pepsin cleavage of β-casein 

yields 29 different peptide sequences varying in length (from one to  32 amino 

acids) with 16 sequences with 5 amino acids or less (Fig. 19A). Pepsin cleavage 

of κ-casein yields 22 different peptide sequences varying in length (from one to 

66 amino acids) with 17 sequences with 5 amino acids or less (Fig 19B). 

Therefore, it was possible that small molecular weight peptides were 

created by the addition of trypsin and pepsin to bovine casein. The possible 

variation in lengths of amino acid sequences created could indicate the varying 

antimicrobial affects from one method to another as well as the variation in 

replications. It appears that trypsin hydrolysates contained a greater quantity of 

small molecular weight peptides which may have contributed to greater 

antimicrobial activity. 
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5. Conclusions 

 Bovine milk contains an assortment of biologically active peptides that can 

be released during enzymatic proteolysis. The primary objective of the food 

industry is to protect consumers from the harmful effects of foodborne 

pathogens. Exploring the potential for use of antimicrobials derived from natural 

sources or bio-based compounds is important in finding alternatives or adjuncts 

to regulatory-approved traditional antimicrobials. The antimicrobial activity of 

traditional antimicrobials may be enhanced by combining them with trypsin or 

pepsin hydrolysates against both Gram-positive and Gram-negative 

microorganisms. Further research will need to be done to characterize and 

identify these “natural” antimicrobial peptides as well as examine their 

effectiveness in food systems. 
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Figure 1. Antimicrobial activity of hydrolysates of acid-precipitated casein, digested with pepsin 
and trypsin, dialyzed and lyophilized (method 1) at 0.5% and 1.0% on Listeria monocytogenes (A) 
101 (B) 108 (C) 310 and (D) Scott A. 
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Figure 2. Antimicrobial activity of acid-precipitated casein digested with pepsin and trypsin, 
dialyzed and lyophilized at 0.5% and 1.0% (method 1) on Salmonella Typhimurium (A) 2380 (B) 
2576 (C) 2582 and (D) 2486. 



55 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 6 12 18 24

O
D

63
0

Control

EDTA

0.5% Trypsin

1.0% Trypsin

0.5% Trypsin+EDTA

1.0% Trypsin+EDTA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 6 12 18 24

Control

EDTA

0.5% Trypsin

1.0% Trypsin

0.5% Trypsin+EDTA

1.0% Trypsin+EDTA

 
(A) (B) 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 6 12 18 24
Time (hr)

O
D

63
0

Control

EDTA

0.5% Trypsin

1.0% Trypsin

0.5% Trypsin+EDTA

1.0% Trypsin+EDTA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 6 12 18 24
Time (hr)

Control

EDTA

0.5% Trypsin

1.0% Trypsin

0.5% Trypsin+EDTA

1.0% Trypsin+EDTA

 
   (C)      (D) 
Figure 3. Antimicrobial activity of acid-precipitated casein digested with pepsin, dialyzed and 
lyophilized at 0.5% and 1.0% (method 1) alone and in combination with EDTA against Listeria 
monocytogenes (A) 101 (B) 108 (C) 310 and (D) Scott A. 
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Figure 4. Antimicrobial activity of acid-precipitated casein, digested with trypsin, dialyzed, 
lyophilized at 0.5% and 1.0% (method 1) alone and in combination with EDTA against Listeria 
monocytogenes (A) 101 (B) 108 (C) 310 and (D) Scott A. 
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Figure 5. Antimicrobial activity of acid-precipitated casein digested with trypsin, dialyzed and 
lyophilized at 0.5% and 1.0% (method 1) alone and in combination with EDTA against Salmonella 
Typhimurium (A) 2380 (B) 2576 (C) 2582 and (D) 2486. 
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Figure 6. Antimicrobial activity of acid-precipitated casein, digested with pepsin, dialyzed, 
lyophilized at 0.5% and 1.0% (method 1) alone and in combination with EDTA against Salmonella 
Typhimurium (A) 2380 (B) 2576 (C) 2582 and (D) 2486. 
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Figure 7. Antimicrobial activity of acid-precipitated casein digested with (A) pepsin (B) trypsin, 
dialyzed, lyophilized at 5% against Listeria monocytogenes 108 and 310. 
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Figure 8. Antimicrobial activity of acid-precipitated casein digested with (A) pepsin (B) trypsin, 
dialyzed, lyophilized at 5% against Salmonella Typhimurium 2582 and 2486. 



61 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 6 12 18 24

O
D

63
0

101
108
310
Scott A
101 + Trypsin
108 + Trypsin
310 + Trypsin
Scott A + Trypsin

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 6 12 18 24

101
108
310
Scott A
101+ Pepsin
108 + Pepsin
310 + Pepsin
Scott A + Pepsin

 
   (A)      (B) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 6 12 18 24
Time (hr)

O
D

63
0

2380
2576
2582
2486
2380 + Trypsin
2576 + Trypsin
2582 + Trypsin
2486 + Trypsin

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 6 12 18 24
Time (hr)

2380
2576
2582
2486
2380 + Pepsin
2576 + Pepsin
2582 + Pepsin
2486 + Pepsin

 
   (C)      (D) 
Figure 9. Antimicrobial activity of acid-precipitated casein digested with (A) trypsin (B) pepsin, 
centrifuged (method 2) on Listeria monocytogenes and acid-precipitated casein digested with (C) 
trypsin and (D) pepsin, centrifuged (method 2) on Salmonella Typhimurium. 
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Figure 10. Antimicrobial activity of acid-precipitated casein digested with trypsin, centrifuged 
(method 2), and combined with EDTA and sodium lactate on Listeria monocytogenes (A) 101 (B) 
108 (C) 310 and (D) Scott A. 
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Figure 11. Antimicrobial activity of acid-precipitated casein digested with trypsin, centrifuged 
(method 2), and combined with EDTA and sodium lactate on Salmonella Typhimurium (A) 2380 
(B) 2576 (C) 2582 and (D) 2486. 
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Figure 12. Antimicrobial activity of acid-precipitated casein digested with pepsin and trypsin, 
centrifuged (method 2) alone or in combination on Listeria monoctyogenes (A) 101 (B) 108 (C) 
310 and (D) Scott A. 



65 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 6 12 18 24

O
D

63
0

2380
2380+Trypsin
2380+Pepsin
2380+Trypsin+Pepsin

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 6 12 18 24
O

D
63

0

2576
2576+Trypsin
2576+Pepsin
2576+Trypsin+Pepsin

 
   (A)      (B) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 6 12 18 24
Time (hr)

O
D

63
0

2582
2582+Trypsin
2582+Pepsin
2582+Trypsin+Pepsin

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 6 12 18 24
Time (hr)

2486
2486+Trypsin
2486+Pepsin
2486+Trypsin+Pepsin

 
   (C)      (D) 
Figure 13. Antimicrobial activity of acid-precipitated casein digested with pepsin and trypsin, 
centrifuged (method 2) alone or in combination on Salmonella Typhimurium (A) 2380 (B) 2576 
(C) 2582 and (D) 2486. 
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(B) 

Figure 14. Antimicrobial activity of acid-precipitated casein digested with trypsin and centrifuged 
(method 2) on (A) Listeria monocytogenes 108 and 310 and (B) Salmonella Typhimurium 2582 
and 2486. 
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(B) 

Figure 15. Antimicrobial activity of acid-precipitated casein digested with trypsin and centrifuged 
(method 2) on (A) Listeria monocytogenes 101 and Scott A and (B) Salmonella Typhimurium 
2582 and 2486. 
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Arg pro Lys his pro ile Lys his gln gly leu pro gln (glu val leu asn glu asn leu 
(Absent in Varient A) 30                   40 
leu Arg phe phe val ala) pro phe pro gln val phe gly Lys glu Lys val asn glu leu 
          P   P   50     ThrP in varient D   60 
ser Lys asp ile gly ser glu ser thr glu asp gln ala met glu asp ile Lys glu met 
      P   P P P 70         P         80 
glu ala glu ser ile ser ser ser glu glu ile val pro asn ser val glu gln Lys his 
                  90                   100 
ile gln Lys glu asp val pro ser glu Arg tyr leu gly tyr leu glu gln leu leu Arg 
                  110         P         120 
leu Lys Lys tyr Lys val pro gln leu glu ile val pro asn ser ala glu glu Arg leu 
                  130                   140 
his ser met Lys gln gly ile his ala gln gln Lys glu pro met gly val asn asn gln 
                  150                   160 
glu leu ala typ phe tyr pro glu leu phe arg gln phe tyr gln leu asp ala tyr pro 
                  170                   180 
ser gly ala trp tyr tyr val pro leu gly thr gln tyr thr asp ala pro ser phe ser 
                  190   gly in varient C   199   
asp ile pro asn pro ile gly ser glu asn ser glu Lys thr thre met pro leu trp OH 

(A) 
 
 
1             P P P 11         P         
Lys Asn Thr Met Glu His Val Ser Ser Ser Glu Glu Ser Ile Ile Ser Gln Gln Thr Thr 
21                   31                   
Lys Glu Glu Lys Asn Met Ala Ile Asn Pro Ser Lys Glu Asn Leu Cys Ser Thr Phe Cys 
41                   51         P P P     
Lys Glu Val Val Arg Asn Ala Asn Glu Glu Glu Tyr Ser Ile Gly Ser Ser Ser Glu Glu 
P 62                 71                   
Ser Ala Glu Val Ala Thr Glu Glu Val Lys Ile Thr Val Asp Asp Lys His Tyr Gln Lys 
81                   91                   
Ala Leu Asn Glu Ile Asn Gli Phr Typ Gln Lys Phe Pro Gln Tyr Leu Gln Tyr Lue Tyr 
101                   111                   
Gln Gly Pro Ile Val Leu Asn Pro Trp Asp Gln Val Lys Arg Asn Ala Val Pro Ile Thr 
121               P   P                   
Pro Thr Leu Asn Agr Glu Gln Lue Ser Thr Ser Glu Glu Asn Ser Lys Lys Thr Val Asp 
141   P               151                   
Met Glu Ser Thr Glu Val Phe Thr Lys Lys Thr Lys Leu Thr Glu Glu Glu Lys Asn Arg 
161                   171                   
Leu Asn Phe Leu Lsu Lsy Ile Ser Gln Agr Thr Gln Lys Phe Ala Leu Pro Gln Tyr Leu 
181                   191                   
Lsy Thr Val Tyr Gln His Gln Lys Ala Met Lys Pro Trp Ile Gln Pro Lys Thr Lys Val 
201           207                           
Ile Pro Tyr Val Arg Ttr Leu OH               

(B) 
 

Figure 16. Sequence of amino acids for (A) αs1-casein (B) αs2-casein indicating cleavage at the 
amino acids, lysine (bold) and arginine (underline), using trypsin. 
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pro gln Arg asp met pro ile gln ala phe leu leu tyr gln gln pro va; leu gly pro 

 
 

(B) 
Figure 17. Sequence of amino acids for (A) β-casein (B) κ -casein indicating cleavage at the 
amino acids, lysine (bold) and arginine (underline), using trypsin. 

 
 
 

Arg glu leu glu glu leu asn val pro gly glu ile val glu ser leu ser ser ser glu 
      In G 1 Casein, split here 30         P lys in varient E 40 
glu ser ile thr Arg ile asn Lys Lys ile glu Lys phe gln ser glu glu gln gln gln 
                  50       In varient C, lys     60 
thr glu asp glu leu gln asp Lys ile his pro phe ala gln thr gln ser leu val tyr 
  In varients B, A1 & C his     70                   80 
pro phe pro gly pro ile pro asn ser leu pro gln asn ile pro pro leu thr gln pro 
                  90                   100 
pro val val val pro pro phe leu gln pro glu val met Lys val ser Lys val Lys glu 
In G 3 Casein, split here   Split here in G 2 Casein                 120 
ala met ala pro Lys his Lys glu met pro phe pro Lys tyr pro val gln pro phe thr 
  arg in varient B         130                   140 
glu ser gln ser leu thr leu thr asp val glu asn leu his leu pro pro leu leu leu 
                  150                   160 
gln ser trp met his gln pro his gln pro leu pro pro thr val met phe pro pro gln 
                  170                   180 
ser val leu ser leu ser gln ser Lys val leu pro val pro glu Lys ala val pro tyr 
                  190                   200 
pro gln Arg asp met pro ile gln ala phe leu leu tyr gln gln pro va; leu gly pro 
         209           
val Arg gly asp met phe pro ile ile val OH          
                  190                   200 

                    

(A) 
 

 
 

1          11          

Glu Glu Gln Asn Gln Glu Gln Pro Ile Arg Cys Glu Lys Asp Glu Arg Phe Phe Ser Asp 
21                   31                   
Lys Ile Ala Lys Tyr Ile Pro Ile Gln Tyr Val Leu Ser Arg Tyr Pro Ser Tyr Gly Leu 
41                   51                   
Asn Tyr Tyr Gln Gln Lys Pro Val Ala Leu Ile Asn Asn Gln Phe Lue Pro Tyr Pro Tyr 
61                   61                   
Tyr Ala Lys Pro Ala Ala Val Arg Ser Pro Ala Gln Ile Leu Gln Trp Gln Val Leu Ser 
81                   81                   
Asp Thr Val Pro Ala Lys Ser Cys Gln Ala Gln Pro Thr Thr Met Ala Arg His Pro His 
101       105 106         111                   
Pro His Leu Ser Phe Met Ala Ile Pro Pro Lys Lys Asn Gln Asp Lys Thr Glu Ile Pro 
121                   131       Ile Varient B     
Thr Ile Asn Thr Ile Ala Ser Gly Glu Pro Thr Ser Thr Pro Thr Thr Glu Ala Val Glu 
141       Varient B has Ala P   151                   
Ser Thr Val Ala Thr Leu Glu Asp Ser Pro Glu Val Ile Glu Ser Pro Pro Glu Ile Asn 
161               169                       
Thr Val Gln Val Thr Ser Thr Ala Val            
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arg pro lys his pro ile lys his gln gly leu pro gln (glu val leu asn glu asn leu 
(Absent in Varient A) 30                   40 
leu arg Phe Phe val ala) pro Phe pro gln val Phe gly lys glu lys val asn glu leu 
          P   P   50     ThrP in varient D   60 
ser lys asp ile gly ser glu ser thr glu asp gln ala met glu asp ile lys glu met 
      P   P P P 70         P         80 
glu ala glu ser ile ser ser ser glu glu ile val pro asn ser val glu gln lys his 
                  90                   100 
ile gln lys glu asp val pro ser glu arg Tyr leu gly Tyr leu glu gln leu leu arg 
                  110         P         120 
leu lys lys Tyr lys val pro gln leu glu ile val pro asn ser ala glu glu arg leu 
                  130                   140 
his ser met lys gln gly ile his ala gln gln lys glu pro met gly val asn asn gln 
                  150                   160 
glu leu ala typ Phe Tyr pro glu leu Phe arg gln Phe Tyr gln leu asp ala Tyr pro 
                  170                   180 
ser gly ala Trp Tyr Tyr val pro leu gly thr gln Tyr thr asp ala pro ser Phe ser 
                  190   gly in varient C   199   
asp ile pro asn pro ile gly ser glu asn ser glu lys thr thre met pro leu Trp OH 

(A) 

1             P P P 11         P         
Lys Asn Thr Met Glu His Val Ser Ser Ser Glu Glu Ser Ile Ile Ser Gln Gln Thr Thr 
21                   31                   
Lys Glu Glu Lys Asn Met Ala Ile Asn Pro Ser Lys Glu Asn Leu Cys Ser Thr Phe Cys 
41                   51         P P P     
Lys Glu Val Val Arg Asn Ala Asn Glu Glu Glu Tyr Ser Ile Gly Ser Ser Ser Glu Glu 
P 62                 71                   
Ser Ala Glu Val Ala Thr Glu Glu Val Lys Ile Thr Val Asp Asp Lys His Tyr Gln Lys 
81                   91                   
Ala Leu Asn Glu Ile Asn Gli Phr Typ Gln Lys Phe Pro Gln Tyr Leu Gln Tyr Lue Tyr 
101                   111                   
Gln Gly Pro Ile Val Leu Asn Pro Trp Asp Gln Val Lys Arg Asn Ala Val Pro Ile Thr 
121               P   P                   
Pro Thr Leu Asn Agr Glu Gln Lue Ser Thr Ser Glu Glu Asn Ser Lys Lys Thr Val Asp 
141   P               151                   
Met Glu Ser Thr Glu Val Phe Thr Lys Lys Thr Lys Leu Thr Glu Glu Glu Lys Asn Arg 
161                   171                   
Leu Asn Phe Leu Lsu Lsy Ile Ser Gln Agr Thr Gln Lys Phe Ala Leu Pro Gln Tyr Leu 
181                   191                   
Lsy Thr Val Tyr Gln His Gln Lys Ala Met Lys Pro Trp Ile Gln Pro Lys Thr Lys Val 
201           207                           
Ile Pro Tyr Val Arg Ttr Leu OH               

(B) 

Figure 18. Sequence of amino acids for (A) αs1-casein (B) αs2-casein indicating cleavage at the 
amino acids, phenylalanine (bold), tyrosine (italics) and trytophan (underline) using pepsin. 
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(B) 

Figure 19. Sequence of amino acids for (A) β-casein (B) κ-casein indicating cleavage at the 
amino acids, phenylalanine (bold), tyrosine (italics) and trytophan (underline) using pepsin. 

arg glu leu glu glu leu asn val pro gly glu ile val glu ser leu ser ser ser glu 
      In G 1 Casein, split here 30         P lys in varient E 40 
glu ser ile thr arg ile asn lys lys ile glu lys Phe gln ser glu glu gln gln gln 
                  50       In varient C, lys     60 
thr glu asp glu leu gln asp lys ile his pro Phe ala gln thr gln ser leu val Tyr 
  In varients B, A1 & C his     70                   80 
pro Phe pro gly pro ile pro asn ser leu pro gln asn ile pro pro leu thr gln pro 
                  90                   100 
pro val val val pro pro Phe leu gln pro glu val met lys val ser lys val lys glu 
In G 3 Casein, split here   Split here in G 2 Casein                 120 
ala met ala pro lys his lys glu met pro Phe pro lys Tyr pro val gln pro Phe thr 
  arg in varient B         130                   140 
glu ser gln ser leu thr leu thr asp val glu asn leu his leu pro pro leu leu leu 
                  150                   160 
gln ser Trp met his gln pro his gln pro leu pro pro thr val met Phe pro pro gln 
                  170                   180 
ser val leu ser leu ser gln ser lys val leu pro val pro glu lys ala val pro Tyr 
                  190                   200 
pro gln arg asp met pro ile gln ala Phe leu leu Tyr gln gln pro va; leu gly pro 
                209                       
val arg gly pro Phe pro ile ile val OH                     

 
                    
                    
         (A)           
                    
                    
1                   11                   
Glu Glu Gln Asn Gln Glu Gln Pro Ile Arg Cys Glu Lys Asp Glu Arg Phe Phe Ser Asp 
21                   31                   
Lys Ile Ala Lys Tyr Ile Pro Ile Gln Tyr Val Leu Ser Arg Tyr Pro Ser Tyr Gly Leu 
41                   51                   
Asn Tyr Tyr Gln Gln Lys Pro Val Ala Leu Ile Asn Asn Gln Phe Lue Pro Tyr Pro Tyr 
61                  71                   
Tyr Ala Lys Pro Ala Ala Val Arg Ser Pro Ala Gln Ile Leu Gln Trp Gln Val Leu Ser 
81                   91                   
Asp Thr Val Pro Ala Lys Ser Cys Gln Ala Gln Pro Thr Thr Met Ala Arg His Pro His 
101       105 106         111                   
Pro His Leu Ser Phe Met Ala Ile Pro Pro Lys Lys Asn Gln Asp Lys Thr Glu Ile Pro 
121                   131       Ile Varient B     
Thr Ile Asn Thr Ile Ala Ser Gly Glu Pro Thr Ser Thr Pro Thr Thr Glu Ala Val Glu 
141       Varient B has Ala P   151                   
Ser Thr Val Ala Thr Leu Glu Asp Ser Pro Glu Val Ile Glu Ser Pro Pro Glu Ile Asn 
161               169                       
Thr Val Gln Val Thr Ser Thr Ala Val            
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