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ABSTRACT 

 

A highly efficient, low-power, compact thermal neutron detection system with 

excellent gamma-ray discrimination is desired for a number of applications. 10B [boron-

10] has a large cross section for thermal values and a Q-value of 2.78 MeV. For this 

reason, investigations into boron carbide, boron nitride, and boron phosphide 

semiconductor neutron detectors are underway. Because boron carbide has the highest 

fraction of boron of the three, it holds the highest potential. With this in mind, a hot 

filament chemical vapor deposition (HFCVD) system was designed and built in order to 

grow thin films of boron carbide onto n-type silicon substrates. Deposition was 

accomplished via the thermal decomposition of B2H6 [diborane] and CH4 [methane].  
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CHAPTER ONE  

INTRODUCTION 

Background Information 

 

 Although the first boron carbide compound was discovered in 1858, it was not 

studied in detail until 1934. It was initially discovered as a byproduct of a reaction 

involving metal borides, with Joly preparing B3C in 1883 and Moissan preparing B6C in 

1894 [1, 2]. The stoichiometric ratio of B4C came about in the 1930s—albeit some 

controversy remained on the exact stoichiometry [1]. Because of its unique combination 

of properties, boron carbide is used in a wide array of engineering applications. Its high 

melting point (>2400°C), thermal stability, low density (2.52 g/cm3), and high hardness 

allow for it to be used in various industries—from refractory applications to 

semiconductor applications [1]. A low density, high chemical inertness, and high neutron 

capture cross section all make boron carbide an attractive material for nuclear, medical, 

space, military, and micro-electronic applications [3]. All of these properties make boron 

carbide a useful material in semiconductor technology as well, especially solid-state 

radiation detectors [1]. 

 

 Boron carbide is a refractory material and exists as a stable, single-phase 

compound, with the carbon concentrations ranging from 8 up to 20 at.% [3]. The 

rhombohedral boron carbide structures are the most stable, with this including the 

following stoichiometry: B13C2, B12C3, or B4C. Other phases close to B12C3 may also be 

considered rhombohedral. According to early work by Lagrenaudie, boron carbide is a p-

type semiconductor, even at very high temperatures [1, 3]. Several groups have estimated 

the band gap of boron carbide, with these values ranging from nearly 0.5 eV up to around 

2 eV, which is smaller than typical ceramic semiconductor values [1]. This range of 

values exists because the electrical and mechanical properties of the material are 

dependent upon the boron and carbon concentrations in the material. Much larger band 

gaps (e.g., 3 eV or greater) are found for boron carbide in theoretical band structure 

calculations; however, these calculations likely do not adequately account for the disorder 

in the material that could give rise to mid-gap states [1]. 

Theory 

 

 Boron trifluoride (BF3) and helium-3 (3He) gas-filled detectors are widely used in 

neutron detection [4]. However, 3He is becoming short in supply, while BF3 has limited 

application because of its toxicity. A semiconductor-based neutron detector is a possible 

alternative to these gas-filled detectors for applications not requiring a large area 

detection system. Additionally, due to a sensing medium with a higher density, these 

semiconductor-based detectors are inherently more efficient than BF3 and 3He detectors. 

In order for these detectors to have a high detection efficiency, however, a high purity 
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and a single-crystalline growth (e.g., single-crystalline boron carbide) are required [5]. 

Fortunately, many groups have investigated the growth of single-crystalline boron 

carbide.   

Semiconductors and Radiation Interaction 

 

  As previously discussed, boron carbide is a p-type semiconducting material. This 

means that it has an excess of electron acceptor sites in the bulk material, with holes 

being the majority carrier and dominating the electrical conductivity [5]. Because boron 

carbide is p-type, it needs to be deposited onto an n-type semiconducting material in 

order to form a p-n heterojunction. A simplified version of a p-n junction can be seen in 

Figure 1, with the depletion region, electric field, and forces acting on the charged 

carriers being seen in Figure 2 [6]. At the metallurgical junction, there is initially a very 

large density gradient in both electron and hole concentrations, with majority carrier 

electrons diffusing into the p-region and majority carrier holes diffusing into the n-region 

[6]. Assuming no external bias, this process cannot continue forever. Electrons leave 

behind positively charged donor atoms in the n region, while holes leave behind 

negatively charged acceptor atoms. The net positive and negative charges in the two 

regions then induce an electric field near the metallurgical junction. This electric field 

goes from the positive to the negative region, as seen in Figure 2. The net positively- and 

negatively-charged regions shown in Figure 2 form the depletion region, which is also 

known as the space charge region. By assuming no external bias across the p-n junction, 

the junction is in thermal equilibrium, with the Fermi energy level constant throughout 

the system [6]. 

 

 

 

Figure 1: Simple geometry of an ideal p-n junction [6]. 
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Figure 2: Depletion region, electric field, and forces acting on charged carrier with no external bias [6]. 

 

 

 By applying an external bias to the p and n regions, the conditions for equilibrium 

no longer apply, meaning the Fermi energy level is no longer constant through the 

system. Figure 3 shows a p-n junction in the case of an applied reverse bias. The electric 

fields in the neutral p and n regions are negligible, which means that the magnitude of the 

depletion region’s electric field must be higher than the thermal-equilibrium value due to 

the applied bias [6]. The number of positive and negative charges in the depletion region 

can only be increased if the depletion width, W, is increased; therefore, W increases with 

an increasing reverse bias, VR [6]. 

 

With semiconductor detectors, incident radiation will pass through the depletion 

region, interacting and depositing energy. Ionization from this then creates electron-hole 

pairs. In the case of neutrons, reaction products are what create the electron-hole pairs, as 

neutrons are indirectly ionizing. An important factor when making a p-n heterojunction is 

the epitaxy between the two materials. Comparisons must be made between the atomic 

lattice constant for each material. Minimal lattice mismatch is required for proper 

function, with a mismatch of less than 5% needed. Fortunately, the lattice constant of 

high purity rhombohedral boron carbide has been measured. For boron carbide with 

carbon concentrations from 7.7-20.5 at%, Aselage et al. measured the lattice constant to 

be 5.62 Angstroms [7]. For (100) silicon, the lattice constant is 5.43 Angstroms [8]. 

Comparing these two lattice constants results in a lattice mismatch of approximately 

3.5%, which is less than the required 5%. Because of this, (100) silicon is used as the 

substrate for the deposition of boron carbide. 
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Neutrons do not interact through Coulomb forces, making it more difficult to 

detect them than charged particles. Thermal neutron (~0.025 eV) detection generally 

relies upon nuclear reaction products that are generated from neutron captures. The 

reaction products deposit energy in the sensing medium, generating a measurable signal. 

For boron carbide, thermal neutrons are captured via 10B, which has a neutron capture 

cross section of around 3800 barns. The possible reactions for this interaction can be seen 

in the following two reactions [5]: 

 

𝐵5
10 + 𝑛𝑡ℎ0

1 → {
𝐿𝑖3
7 + 𝛼2

4  (𝑄 − 𝑣𝑎𝑙𝑢𝑒:  2.792 𝑀𝑒𝑉)

𝐿𝑖∗3
7 + 𝛼2

4  (𝑄 − 𝑣𝑎𝑙𝑢𝑒: 2.310 𝑀𝑒𝑉)
 

 

 This reaction results in the first excited state for the lithium ion 94% of the time, 

and it results in the ground state for the lithium ion 6% of the time. The resulting lithium 

and alpha ions can then ionize the detection medium, with the created electron-hole pairs 

collected at an anode and a cathode, creating a current pulse. This pulse can then be 

amplified and detected via signal processing equipment. Because a neutron needs to be 

captured and the reaction products need to deposit energy in the boron carbide, a thicker 

film will result in a higher detection efficiency. 

 

 

 

Figure 3: A p-n junction with applied reverse bias, VR, and depletion width, W [6]. 

 

 

 Researchers have investigated boron carbide conversion layer detectors for 

thermal neutron detection [9]. Because neutrons cannot be detected directly, a conversion 

layer detector utilizes a reactive material that has a large capture cross section for thermal 

neutrons. The reaction products generated then travel into the semiconductor material 

being used as the detector. Since the particles travel in opposite directions, only one of 

the particles can deposit its energy into the material per event. Unfortunately, the reaction 

products have a limited range, so if the film is made too thick, the reaction products may 

not make it to the detector material or may not have enough energy to generate electron-

hole pairs. As a result of this, conversion layer detectors have a limited efficiency based 

on the range of the reaction products and the thickness of the film coating [10]. 
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 Stopping and Range of Ions in Matter (SRIM) was used to determine the range of 

the reaction products in boron carbide. By using the properties of B4C, a range of 

approximately 1.69 µm was found for the 7Li ion, and a range of approximately 3.34 µm 

was found for the 4He ion. Conversion layers grown thicker than this would start to have 

reaction products not making it to the detection medium. If the boron carbide is instead 

used for both the capture of the neutron and the detection of the resulting signal, the 

thickness would not be limited to the range of the reaction products. In fact, increasing 

the thickness of the film to approximately 12 µm would allow for full charge collection 

of the generated electron-hole pairs, assuming a single-crystalline growth. 

Chemical Vapor Deposition 

 

 Chemical vapor deposition (CVD) can be performed via several different 

methods, but in each case, it is a very complex process. It is the process of chemically 

reacting a volatile compound that is to be deposited with other gases to produce a 

nonvolatile solid, with this depositing atomistically on a suitable substrate [11]. It differs 

from physical vapor deposition (PVD), as it does not rely on material transfer from 

sputter target sources or condensed-phase evaporant [11]. Several different types of CVD 

techniques exist, each with advantages and disadvantages. These include, among others, 

low pressure CVD (LPCVD), plasma-enhanced CVD (PECVD), hot filament CVD 

(HFCVD), synchrotron radiation induced CVD, and atmospheric pressure CVD 

(APCVD). In addition to these techniques, CVD systems can be either cold-walled or 

hot-walled. No matter the CVD process, there are a set of fundamental sequential steps. 

Figure 4 shows most of these steps, as it represents a sequence of gas transport and 

reaction processes contributing to CVD film growth [11]. 

 

 

 

Figure 4: Typical sequence of gas transport and resulting reactions for CVD film growth [11].  
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 Cold-walled CVD systems do not heat everything and focus only on heating the 

substrate. This may require active cooling of the chamber walls, depending on how the 

heating is accomplished. By only heating the substrate, a higher growth rate of films can 

occur than a hot-walled system, and there is likely less contamination than a hot-walled 

system. A hot-walled CVD system heats both the substrate and the chamber, typically via 

a surrounding furnace. This introduces an increased risk of contamination, as reactions 

could then occur between the chamber walls and the gases. 

 

 Beyond this, there are also different reaction types for CVD systems. Some of the 

possible reaction types are the following: pyrolysis, reduction, oxidation, compound 

formation, disproportionation, and reversible transfer. Pyrolysis reactions involve the 

thermal decomposition of hydrides, carbonyls, and organometallic compounds on hot 

substrates. An example of this is the low-temperature decomposition of nickel carbonyl 

to deposit nickel films [11]. Reduction reactions commonly employ hydrogen gas to 

impact the reduction of halides, carbonyl halides, oxyhalides, or other oxygen-containing 

compounds. An example of this is the reduction of silicon tetrachloride (SiCl4) on single-

crystal Si to produce epitaxial Si films [11].       
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CHAPTER TWO  

LITERATURE REVIEW 

Cold Wall CVD 

 

 Vandenbulcke et al. grew thin films of boron carbide in 1981, utilizing a cold-

walled CVD system. Both continuous and homogeneous layers of boron carbides were 

deposited using a stagnation flow technique. The experimental setup can be seen in 

Figure 5 below, with Figure 6 showing the substrate and deposition surface in more 

detail. The B–C solids were deposited from a mixture of hydrogen (H2), boron trichloride 

(BCl3), and methane (CH4). These gases were blown perpendicularly onto a flat disk of 

graphite that was heated by a radio frequency (RF) generator. In this experiment, H2 was 

used as the carrier gas, while BCl3 and CH4 were both used as the reactant gases. The 

growth was performed at atmospheric pressure and a temperature range of 1127 to 

1727°C, with a deposition time ranging from 30 seconds up to 10 minutes [12]. 

 

From the results of this growth setup, it can be seen that the deposition ratio of 

boron and carbon in the films is a function of the partial pressure of CH4 and of the 

temperature of the system. A comparison between the calculated and experimental 

results, some of which can be seen in Figure 7 below, indicates that there is a fairly 

significant limiting effect stemming from the surface kinetics, as the experimental 

deposition rate is much lower than the theoretical rates and the solid composition differs 

from what was expected at equilibrium [12]. Figure 7 shows the theoretically- and 

experimentally-determined deposition rates of boron and carbon under these conditions: 

T=1527°C, partial pressure of BCl3=0.2 atm, and mass flow rate of 0.04 g cm-2-s-1. As the 

graph shows, the deposition of boron carbide seems to be slightly limited by some sort of 

surface kinetic constraint—most likely from the inhibition of the kinetics by CH4. It was 

found that the amount of departure from equilibrium increases with increasing mass flow 

rate and an increasing CH4 partial pressure. A decrease in the temperature and a decrease 

in the BCl3 partial pressure will also cause a departure from equilibrium. In addition, the 

kind of reactants employed, especially the carbon-containing species, can cause a 

departure from equilibrium. Figure 8 presents the deposition regions of the different 

boron and carbon structures as a function of temperature and of CH4 partial pressure. At 

around 1627°C, which is near equilibrium conditions, the rhombohedral boron carbide 

phase starts to dominate, as it is the equilibrium phase encountered in the binary B–C 

phase diagram [12]. 
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Figure 5: System setup for the cold-walled CVD growth process [12]. 

 

 

 

Figure 6: Internal view of CVD system [12]. 
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Figure 7: Theoretical and experimental deposition rates of boron and carbon at set conditions (T=1527°C, 

partial pressure of BCl3=0.2 atm, and mass flow rate of 0.04 g cm-2-sec-1 [12]. 

 

 

 

Figure 8: Deposition regions of the different boron and carbon structures as a function of temperature and 

of CH4 partial pressure [12]. 
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 From this experiment, it appears that the composition, structure, and morphology 

of the binary B–C deposits depend on the temperature, amount of departure from 

equilibrium, and the interfacial conditions of deposition. Departure from equilibrium 

increases when temperature decreases, when the inlet molar fraction of BCl3 decreases, 

when the inlet molar fraction of CH4 increases, and when the mass flow rate increases. 

The B–C phase diagram phases are produced under near-equilibrium conditions, but 

other forms can often be obtained by CVD under kinetically-favored conditions of 

deposition when departure from equilibrium occurs [12]. 

 

 Niihara et al. looked into the effects of stoichiometry on mechanical properties of 

CVD boron carbides in 1984. In particular, this study looked at the effect of the B/C ratio 

on the hardness and fracture toughness of B4C. Plates of B4C with thicknesses of 1 to 3 

mm were prepared via CVD on a graphite substrate. BCl3, H2, and carbon tetrachloride 

(CCl4) were used for the gases. The deposition time ranged from 1 to 4 hours for the 

experiment, with a deposition temperature of 1400-1900°C and a total gas pressure of 

2.67-79.99 kN-m-2. The flow rates for CCl4, H2, and BCl3 were, in cm3-min-1, 80, 700, 

and 140-320, respectively [13]. 

 

 Analysis of the plates shows that the B/C ratios varied from 3.65 to 5.88, 

depending on deposition temperature, total gas pressure, and flow-rate ratio of BCl3 and 

CCl4. It was found that B/C ratios of 4 to 5.8 consisted of single-phase B4C of non-

stoichiometric composition and the deposits with B/C ratios that were less than 4 

consisted of B4C and free carbon. The density of the compounds decreased rapidly with 

increasing C content for the B4C and free carbon composites. In order to determine the 

fracture toughness, indentation tests were performed in a vacuum at loads of 0.98 to 9.80 

N for 20 seconds. Clear radial cracks were formed under these conditions, with the crack 

length increasing with the load as P3/2. This indicates the cracks on the surfaces 

correspond to the median cracks. Figure 9 below shows the fracture toughness and 

hardness of the various samples tested, with each data point representing an average of 5 

to 10 indentations at an indenter load of 2.45 N for the fracture toughness. As is evident 

in the figures, both fracture toughness and hardness reach a maximum at essentially the 

stoichiometric composition B/C=4. It is likely that the decrease in hardness and fracture 

toughness with increasing B/C at B/C>4 is from the decreasing bond strength in the B4C 

structure [13]. 

 

Kevill et al. grew boron carbide compounds via CVD in 1986. In this study, the 

B–C compounds were deposited by the flow of BCl3 and CCl4 in the presence of a large 

excess of hydrogen, with the surface maintained at around 997 to 1597°C. The general 

representation of the selection procedure used in this experiment can be seen in the below 

reaction [14]. Figure 10 shows the initial experimental setup used for this experiment; 

however, the system was then modified, replacing the RF generator by an Astro furnace 

and deposition was on a graphite liner situated in the hottest region of the tube. In 

addition, experiments were carried out where the graphite liner was replaced with a 

device that impedes flow of gases [14]. 
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𝑚𝐶𝐶𝑙4 + 𝑛𝐵𝐶𝑙3
𝑒𝑥𝑐𝑒𝑠𝑠 𝐻2,1000−1600℃
→                 𝐵𝑛𝐶𝑚(+𝐻𝐶𝑙) 

 

 

 

Figure 9: Fracture toughness as a function of B/C ratio (left) and Vickers hardness at 0.98-N load as a 

function of B/C ratio (right) [13]. 

 

 

 

Figure 10: Experimental setup of the CVD system used to grow the boron carbide [14]. 
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Initial growth results were found by varying the ratio of BCl3 to CCl4 to see the 

resulting composition. The deposition was performed on an RF-heated graphite disk. For 

deposit ratios of 4:1, 13:2, and 9:1 of BCl3 to CCl4 at 1250 to 1275°C, the carbon content 

came out to be around 22.1%, which lines up with the theoretical value of 21.7% in B4C. 

This indicates that the composition of the material is independent of the molar ratio of 

BCl3 to CCl4. Deposition within a graphite tube was also explored in this experiment. A 

BCl3 to CCl4 ratio of 2:1, 4:1, 13:2, and 9:1 were all considered, with a BCl3 plus CCl4 

flow rate of 0.05 g-min-1 in the presence of excess hydrogen. The depositions were 

carried out on a removable graphite liner inserted in a graphite tube that was heated in the 

Astro furnace. In this case, deposits at 2:1 and 4:1 ratios showed a uniform, dull-gray 

surface, while small crystallites could be seen in the 13:2 ratio deposit. Larger hexagonal 

plates were deposited in the 9:1 ratio, which resulted in a lower carbon content of 16.5% 

(i.e., B5.62C, rather than B4C) [14]. 

 

 In 1986, Jansson et al. presented findings on the initial stages of growth of boron 

carbides from a BCl3/H2/hydrocarbon vapor on molybdenum. A low-pressure, cold-

walled CVD system was used for this experiment. Thin foils of molybdenum (99.99% 

purity) were used as the substrates and were heated resistively, with a visual micro-

optical pyrometer used for temperature monitoring. Any scratches on the foils were 

removed via electrolytic polishing. The deposition was performed at 1127°C, with a total 

pressure of 6.7 kPa and a gas-flow velocity of 15 cm/s. The partial pressure ratio between 

the boron trichloride and hydrogen was kept constant at 0.1 in all experiments [15]. 

 

 The nucleation of boron on molybdenum was first investigated with a BCl3/H2 

mixture. Boronizing of the substrate and formation of boron nuclei were both observed 

from this. The boron atoms initially diffused into the substrate with the formation of 

borides. After 15 seconds of deposition time, several borides with a total thickness of 

about 5 μm were observed in a cross section of the substrate. When CH4 was added, 

boron carbides were deposited. It was found that the substrate could be boronized and/or 

carburized during the initial stages of growth. Small amounts of carbon were observed on 

the substrates that were exposed to the BCl3/H2/CH4 gas mixtures after 10 seconds of 

deposition. These carbon concentrations were higher than when the substrates were 

exposed to BCl3/H2. The study then replaced CH4 with C2H4. Again, the molybdenum 

substrates were boronized, but the boronizing rate was much lower than when methane 

was used. Only small amounts of carbon were observed in the substrates, and the surface 

of each substrate was completely smooth. These results show that the nucleation behavior 

of boron carbides on molybdenum is strongly influenced by the hydrocarbons used in the 

vapor, with increased concentrations of hydrocarbons reducing the boronizing and 

nucleation rates. The phase composition of the borides also seemed to be controlled by 

the concentration and type of the hydrocarbon in the vapor. With only a small amount of 

carbon being detected in the substrates, it seems that the strong influence of ethylene and 

methane on the initial stages of growth can be explained by the presence of adsorbed 

hydrocarbon fragments on the surface [15]. 
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 Jansson et al. grew thin films of boron carbide in 1989 via a cold-walled CVD 

system. The films were grown on a 5-10 μm thick α-rhombohedral boron substrate, and a 

BCl3-CH4-H2 gas mixture was used for the deposition. Unlike some other studies that use 

this gas combination, this study was performed at a reduced pressure, rather than 

atmospheric pressure. The influence of experimental conditions on the phase and 

chemical composition of boron carbides formed at a reduced pressure (i.e., 6.7 kPa) was 

investigated in this experiment. While the H2:BCl3 molar ratio was kept constant at 10, 

other conditions were varied to observe the effect on the growth: the temperature ranged 

from 1027 to 1227°C, the pressure ranged from 1.3 to 6.7 kPa, and the CH4 and BCl3 

vapor compositions were altered. The temperature range was determined because of a 

low deposition rate below 1027°C and because of poor adhesion above 1227°C. When 

altering the temperature, the pressure was kept constant at 6.7 kPa; when altering the 

pressure, the temperature was kept constant at 1127°C [16]. 

 

 With this study, several metastable boron carbides were grown, with the carbon 

concentration ranging from 2% to about 7%. These different phases include B13C2, B50C2, 

B49C3, and B51C. The rhombohedral phase, B13C2, had varying carbon concentration from 

about 7% to about 15% (compared to the generally accepted 9% to 20% for 

homogeneity), and it was deposited at higher CH4 concentrations in the vapor. As these 

results show, a high carbon concentration was difficult to obtain using these experimental 

conditions. This could be fixed by increasing the total pressure or by increasing the 

deposition temperature. By using a hot-walled reactor, the experimental conditions used 

in this study could produce rhombohedral B13C2 with carbon contents closer to 20%. 

Figure 11 shows the influence of total pressure on the carbon content of B13C2. A 

decrease in total pressure results in a lower carbon concentration, with the lowest limit 

(1.3 kPa) resulting in deposition of the tetragonal T1 carbide [16]. 

 

 

 

Figure 11: The influence of total pressure on the carbon content of B13C2 [16]. 
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 The experimental depositions obtained in this investigation have large differences 

from the calculated diagrams, as the calculated diagrams show that rhombohedral boron 

carbide is also formed for very small methane concentrations in the vapor; the 

calculations show that almost all methane in the vapor should react to form boron carbide 

or graphite. The experimental results show that rhombohedral boron carbide was difficult 

to grow, with low carbon concentrations being measured in the films that had high 

methane concentrations in the vapor. These results indicate that the deposition of boron 

carbide occurred far from equilibrium conditions, with the major reason likely being a 

kinetic barrier in the deposition of carbon [16]. 

 

 In 2012, Chaudhari et al. utilized a hot wire chemical vapor deposition (HWCVD) 

technique using ortho-carborane as a precursor. A naturally occurring solid o-carborane 

was sublimated at ~70 to 90°C in a bubbler assembly designed especially for sublimation 

of o-carborane. In order to prevent condensation, the o-carborane vapor was carried into 

the reactor by argon gas through heated tubing. The boron carbide films were deposited 

to approximately 0.2 μm at 100 mTorr and a substrate temperature between 200 to 

300°C, while the tantalum filament temperature was in the range of 1300 to 2000°C. This 

deposition was performed with only a rotary pump, rather than a turbomolecular and 

rotary pump combination. Infrared spectroscopy showed the presence of a prominent 

peak of a B–C bond at 100 cm-1. Secondary ion mass spectrometry (SIMS) measurements 

have confirmed that there is 10B in the film that was grown. The BC/c-Si heterostructure 

that was grown was subjected to forward and reverse I-V characteristics, as shown in 

Figure 12. These results show that a p-n junction was formed [17]. 

 

 

 

Figure 12: I-V measurements of the BC/c-Si heterostructure [17]. 
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Plasma-Enhanced CVD 

 

 In 1992, Lee et al. studied the characterization of boron carbide thin films that 

were fabricated by PECVD from boranes. Nido-decaborane (B10H14) and nido-

pentaborane (B5H9) were used for this experiment, along with methane. Nido-decaborane 

was found to be an air-stable, white crystalline solid and had a vapor pressure of several 

Torr at room temperature. The experiments were carried out in a custom-designed 

parallel plate 13.56 MHz radio-frequency PECVD reactor. Various boron carbide 

compositions were grown on n-type silicon and high-temperature glass. Unlike most of 

the other experiments discussed, a carrier gas was not used for these depositions. The 

deposition temperature, total pressure of reactants, applied power, and deposition time 

were fixed for each growth attempt. These were, respectively, 400°C, 50 mTorr, 20 W, 

and 30 minutes. The film compositions were determined via an Auger electron 

spectrometer equipped with a cylindrical mirror analyzer (CMA) [18]. 

 

 For each deposition, the correct partial pressure for each mixture was attained and 

stabilized, with a plasma then created and held for the deposition process. It was found to 

be easy to grow pure boron carbide films, as long as the source compounds were pure or 

contained very little contaminants. When the films were exposed to air, oxygen was 

found, especially for the films fabricated from B10H14. In addition, the films grown with 

B5H9 seemed to be of a more uniform composition than the films grown with B10H14, 

which resulted in a larger investigation into the use of B5H9 for the growth of boron 

carbide films. Figure 13 below shows an Auger electron spectra for a typical film grown 

using B5H9 and CH4, with little or no impurities found in the films. Analysis of the boron 

carbide films deposited on silicon showed that hydrogen is the only impurity in the 

source gases; however, the very thick films showed a hydrogen impurity level much less 

than 6% [18]. 

 

For this experiment, the partial pressure ratio was defined as the ratio of partial 

pressures for the source vapor pentaborane containing boron and the source vapor 

methane containing carbon [18]. Using this definition, a correlation between the partial 

pressure ratio and the boron-to-carbon ratio was found. Any systematic error in the 

experiment seems to have occurred from sample annealing temperature, plasma power, 

and total pressure. Even when available boron or carbon atom numbers are considered, it 

seems that the relationship between the partial pressure ratio and the boron-to-carbon 

ratio is not proportional. When using extreme partial pressure ratios (e.g., a drastic 

reduction or increase in B5H9 source particle pressure), only moderate film composition 

ratios are produced. This lack of proportionality suggests that there are many surface 

reactions that could be occurring, including carborane cluster formation initiated during 

the deposition process or gas phase plasma-initiated chemistry. X-ray diffraction (XRD) 

studies of the thicker films of boron carbide that were deposited on silicon exhibit boron 

carbide diffraction features, as seen in Figure 14. These diffraction lines range from 

42°<2θ<50° [18]. 
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Figure 13: An Auger electron spectroscopy depth profile of boron, carbon, silicon, and oxygen of a boron 

carbide film that was grown from B5H9 and CH4 [18]. 

 

 

 

Figure 14: Broad peak of diffraction pattern for B7.2C from 20° to 60° in the 2θ range [18]. 
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 A wide composition range from 4.7 to 19.0 boron-to-carbon ratio at temperatures 

from room temperature to 100°C was looked at for the dark electrical conductivity. The 

conductivity seems to vary exponentially with the reciprocal of the temperature, whereas 

little variation is seen in the conductivity when changing composition, as seen in Figure 

15. The samples were illuminated with visible light, with this not showing a drastic 

change in the conductivity, meaning the conductivity is generally insensitive to visible 

light. The conductivities found for the films grown ranged from ~10-4 to ~10-10 Ω-1-cm-1, 

which is very small, especially when compared to previously studied boron carbide 

conductivities. This is likely because there is little free carbon when growing boron 

carbide films with PECVD, B5H9, and CH4. This claim of little free carbon being present 

is supported by the thermal activation barrier, as the magnitude of the conductivities 

measured is seen for other boron carbides at temperatures well below room temperature. 

The thermal activation barrier for this study is around 1.25 eV, with it being virtually 

independent of composition. Others have also found that the thermal activation barrier is 

independent of composition; however, their conductivities were much higher and thermal 

activation barriers much smaller. In fact, the values found in this study lined up more 

with pure boron, instead of boron carbides fabricated by other methodologies, which 

further supports the claim that there is little free carbon in this process of growing boron 

carbide [18]. 

 

The band gap of the films produced over the composition range of 2.4 to 50 

boron-to-carbon ratio was measured. With the highest carbon concentration, the lowest 

band gap of 0.77 eV was obtained, while the band gap could get all the way up to 1.80 

eV. Unlike the conductivity, it seems that the band gap is closely related to the 

composition of the boron carbide films grown—albeit this study finds that the band gap 

shows a greater dependence on composition than indicated by some other measurements. 

While the band gap for boron-rich films obtained in this study agree with some other 

studies (e.g., 1.5-1.6 eV and 1.6-2.0 eV), it is somewhat larger than other band gaps 

found (1.34 eV). When comparing the measured band gaps at room temperature with 

theoretical band gaps, they are generally smaller than expected, which could be from the 

fact that band gaps are calculated by density functional theory and that is often wrong for 

zinc blende and diamond structure semiconductors. In addition, boron carbide fabricated 

via PECVD could have a somewhat different structure than the one commonly fabricated, 

which could also account for differences in conductivity and band gap values [18]. 

 

In 1993, Lee et al. again looked into the structural homogeneity of boron carbide 

thin films fabricated using PECVD. Similar to the study presented in 1992, nido-

pentaborane and methane were used to grow the films on silicon. The experimental setup 

was the same as the study the group did in 1992, with the deposition temperature again 

being around 400°C. The film compositions were controlled by adjusting the partial 

pressure ratio of B5H9 and CH4. Varying film thicknesses (0.1 to 1.0 μm) were grown. 

The composition and thicknesses were again determined via Auger electron 

spectroscopy, as well as a profilometer [19]. 
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Figure 15: Boron carbide (approximately 20% carbon) sample conductivities vs. reciprocal temperature 

[18].  

 

 

 A wide range of stoichiometries (0.29<B/C<49) of boron carbide were obtained 

for the films grown in this experiment. As presented in the previous study, the film 

composition is not directly proportional to the composition of the reactant gases, likely 

from surface reactions including carborane cluster formation. The concentration of boron 

and carbon seemed to be very uniform throughout the films, with little impurities found, 

besides small amounts of hydrogen and sometimes oxygen, which again was found when 

introducing the films to air. A very low DC electrical conductivity suggests that the films 

grown are homogeneous and single-phase. The microstructure of the thin films was found 

to be the same as those presented in the previous study. The microstructure of boron 

carbide on silicon made via PECVD from diborane indicated an inclusion of hydrogen 

and helium, with a transition temperature in the range of 730-800°C between an 

amorphous and a microcrystalline structure [20, 21]. The films grown with B5H9 exhibit 

X-ray diffraction patterns more along the line of microcrystalline or polycrystalline boron 

carbide, with there being an indication of an amorphous film from the reflection high 

energy electron diffraction (RHEED) pattern [19]. 

 

 Boron carbide grown via PECVD with B5H9 and CH4 in this study appears 

compositionally homogeneous over a wide composition range, with microcrystalline 

films deposited onto a silicon surface at lower temperatures than other precursors. These 

boron carbide films that were grown seem to have a high resistivity, as there were no 

precipitates of carbon or other conductive phase [19]. Using PECVD to grow boron 

carbide seems to cause vastly reduced conductivities than boron carbide fabricated over 

other methods. It also shows a strong relationship between band gap and composition, 
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with increasing carbon concentrations reducing the band gap. This is consistent with 

models proposed by Werheit and co-workers [18]. It is possible that the reduced 

conductivity is from the lack of free carbon when compared to other fabrication 

techniques. The boron carbide films produced by PECVD demonstrated the capability of 

producing photosensitive p-n heterojunction diodes [19]. 

 

 In 1992, Künzli et al. looked into the influence of B2H6/CH4 and trimethylborane 

(B(CH3)3) as process gases on boron carbide coatings. They utilized an RF plasma-

assisted chemical vapor deposition (PACVD) method in order to deposit the boron 

carbide. The process was performed in a high vacuum chamber at a base pressure of 

approximately 2.25*10-7 Torr after baking the chamber at a temperature of 100°C. The 

depositions were prepared at room temperature and were deposited on Si substrates. 

Before the depositions, the substrates were cleaned by Ar+ ion bombardment, until no 

oxygen and carbon contamination could be detected. A few other typical deposition 

parameters are the following: self-bias voltage of -200 to -250 V, power of 300 to 400 W, 

total gas flow of 20 to 140 standard cubic centimeters per minute (sccm), and deposition 

time of 2 to 30 minutes [22]. 

 

 The boron-to-carbon ratios in the process gas were chosen as 4:1, 1:2.5, and 1:3. 

Depositions with pure methane and pure B2H6/He were also used. B(CH3)3 was also used 

on different substrates (Au and Sn). When using different gas mixtures of B2H6/CH4, an 

increasing growth rate was associated with increasing methane content in the process gas. 

Typical thicknesses when using B2H6 were in the range of 50 to 750 Angstroms. When 

using similar deposition parameters, other than gas flows, thicknesses of 1000 to 1200 

Angstroms were obtained with B(CH3)3. The two different process gases produced 

similar electronic structures, but B(CH3)3 had a slightly higher growth rate. Oxygen 

contaminations were negligible in both cases, and all coatings showed good adherence to 

the substrate, with no peeling off observed after atmospheric exposure [22]. 

 

 As a study in 1999, Zhang et al. looked into the growth and characterization of 

boron carbide nanowires via PECVD. The nanowires were grown on silicon substrates in 

a parallel plate PECVD chamber. The plasma power was kept at 50 W, and the 

temperature was between 1100-1200°C. Argon was used as the carrier gas and ortho-

carborane (C2B10H12) was used as the reactant gas. The argon flowed through the source 

bottle at a temperature of 50°C during deposition. The substrates were placed on the 

grounded electrode during deposition [23]. 

 

 A thickness of ~1 μm was obtained after 2 hours of deposition using these 

experimental parameters. The boron carbide deposits appear to be a dull grayish-black 

color, and scanning electron microscopy (SEM) revealed that the deposits are highly 

porous, with an array of nanowires. The nanowires vary in diameter from roughly 18 to 

150 nm and have lengths beyond 13 μm, which corresponds to aspect ratios ranging from 

9 to 720. There were three forms of the nanowires present, with all present on an 

individual substrate: cylindrical with smooth surfaces and an average diameter of 20 nm, 
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cylindrical with rough, faceted surfaces and an average diameter of 50 nm, and linear 

arrays of roughly equally-spaced rhomboidal nanostructures. Selected-area diffraction 

(SAD) showed that the nanowires and rhomboidal structures are monocrystalline with a 

rhombohedral crystal structure. B13C2 has identical crystal structures and similar lattice 

parameters to B4C, making it difficult to correctly identify the phase. Although the study 

could not unambiguously identify the B-C phase, energy dispersive spectroscopy (EDS) 

measurements indicated that the B:C ratio was close to 4:1, meaning the nanowires are 

likely B4C [23]. 

 

 The tips of the nanowires indicated the presence of iron, which had not been 

added to the growth chamber. This was likely the result of a contaminant present from a 

previous deposition. Because of the iron present in the tips of the nanowires, it is clear 

that they grew by the vapor-liquid-solid (VLS) mechanism, as this particular mechanism 

requires an impurity to act as a catalyst for crystal growth. The rough-walled nanowires 

may be smooth-walled nanowires with small boron carbide nanocrystals, based on their 

morphology. This would imply that the smooth-walled nanowires grow first, before 

acting as a nucleation site for further crystal growth. Because of the unique properties of 

boron carbide and the unique structure of these nanowires, it is possible that they could 

have unique quantum transport properties at low temperatures in a regime where 

polaronic transport is precluded [23]. 

Hot Wall CVD 

 

 Liu et al. performed low pressure chemical vapor deposition (LPCVD) to grow 

boron carbide in 2009. The boron carbide films were grown up to 18 μm thick onto 

30mm x 15mm x 2mm graphite wafers. In this study, a BCl3-CH4-H2 mixture was used 

and a low pressure chamber was used. Influences of deposition temperature, deposition 

time, inlet BCl3/CH4 gas ratio, and inlet H2/CH4 gas ratio on deposition rate and 

microstructure of the coatings were investigated in this study. The experimental setup can 

be seen in Figure 16; the deposition was performed via a vertical, hot-walled deposition 

furnace. The temperature within the reactor was calibrated by a thermocouple and the 

pressure was fixed at 10 kPa and measured via a pressure transducer [24]. 

 

Regression analysis was utilized in this study for both relative weight gain rate 

and average thickening rate against the deposition parameters in order to examine the 

influence of deposition parameters on deposition rate. This was accomplished with 

Uniform Design Version 2.20. From this analysis, it was found that the main factors 

affecting relative weight gain rate and average thickening rate are temperature, deposition 

time, and inlet BCl3/CH4 gas ratio. The equations produced from the software do not 

include the inlet H2/CH4 gas ratio, indicating that it could possibly be omitted in the effect 

on the CVD of B4C for this study. From this analysis, it was found that the deposition 

rate varies most with temperature (varies exponentially), followed by the inlet BCl3/CH4 

ratio (varies linearly), and then deposition time (varies linearly). Figure 17 shows the 

relationship between the relative weight gain rate and temperature for varying BCl3/CH4 
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gas ratios and varying deposition times. The optimized parameters for the maximizing 

average weight growth rate of B4C were selected by the Uniform Design software as the 

following: temperature of 1100°C, a deposition time of 50 hours, an inlet BCl3/CH4 gas 

ratio of 5.0, and an inlet H2/CH4 gas ratio of 3.5. Results from the study showed that the 

deposited films were constituted by pyrogenation carbon (PyC) and B4C at high 

temperatures (1050 to 1100°C). 1100°C and 1050°C resulted in an average boron content 

on the coatings of 49 and 45 at.%, respectively. When deposited at 900°C, the coatings 

displayed cluster surface morphology, with the microstructure and phase composition of 

the coatings homogeneous with a high boron content of approximately 79 at.% [24]. 

 

The results of these studies showed that B4C coatings adhered to the substrates 

compactly and the thickness of the coating ranged from 0 to 18.0 μm. As previously 

mentioned, the major factors affecting deposition results are deposition temperature and 

inlet BCl3/CH4 gas ratio, with time having affected it slightly less and the inlet H2/CH4 

gas ratio having little effect on the deposition rate. The different microstructure and phase 

composition coatings were deposited by three different kinds of mechanisms: the reaction 

products’ nucleation mechanism (900°C), the polycyclic aromatic hydrocarbons 

nucleation mechanism (950°C), and the liquid phase nucleation mechanism (1050 to 

1100°C) [24]. 

 

 

 

Figure 16: Experimental setup of hot-walled CVD system [24]. 

 

 

 

Figure 17: Relation curves between Rw and T. (a) Presents five inlet gas ratios at t=50 h and H2 ratio=3.5. 

(b) Presents five deposition times at δ=5 and H2 ratio=3.5 [24]. 
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 In 2011, Guan et al. investigated boron carbide nanowires using diborane and 

methane in a low-pressure CVD system via the vapor-liquid-solid growth mechanism. In 

this study, boron carbide 1D nanostructures were fabricated via co-pyrolysis of B2H6 and 

CH4 at elevated temperatures on silicon wafers that have one micron thick, thermally-

grown silicon dioxide. The substrates were cleaned and then coated with a 2-nm thick 

nickel thin film via magnetron sputtering. The substrates were then placed into a quartz 

boat and into a desired position in the quartz tube of the LPCVD system. A pressure of 

~7 mTorr was used, with the temperature ramped up to 1050°C in 50 minutes. A constant 

argon flow of 15 sccm was used throughout the experiment, with 15 sccm B2H6 and 15 

sccm CH4 introduced to the quartz tube for 45 minutes at 1050°C and a pressure of ~440 

mTorr. The subsequent substrates were analyzed via SEM [25]. 

  

Crystalline boron-based 1D nanostructures with various morphologies were 

fabricated because of unique combinations of temperature gradient and gas distribution in 

the system. B50C2 nano-ribbons were produced at 630-750°C. Tapered short boron 

carbide nanostructures approximately 2 μm in length were produced at 908-931°C. Long 

and thin boron carbide nanowires (~15 mm long) were found at 964-977°C. Figure 18 

below shows an SEM image of as-synthesized nanowires, typical results for the 

crystallographic information of the nanowires as found via transmission electron 

microscopy (TEM), and EDS results showing the compositional information within the 

core, sheath, and catalyst of a nanowire. The nanowires have lengths up to 10 μm and 

diameters between 15 and 90 nm. Inset I in Figure 18b clearly reveals the catalytic 

material at the tip of the nanowire. The high-resolution TEM image of the black rectangle 

in inset I shows the nanowire has a single crystalline core, with a 0.5-2 nm thick 

amorphous sheath. The image reveals planar defects, such as twins and stacking faults in 

the nanowire. Inset II’s streaks in the diffraction pattern further confirm the existence of 

planar defects. Based on the imaging in Figure 18b and 18c, the nanowire is found to 

have a rhombohedral boron carbide lattice. Because there are at least seven rhombohedral 

boron carbides (e.g., B4C, B10C, B13C2, etc.) with identical crystal structure and similar 

lattice parameters, it is difficult to distinguish phases between various boron carbides. 

Although it is difficult, this particular nanowire seems to have calculated lattice constants 

closer to B13.7C1.48, with a preferred growth direction being perpendicular to the (101)h 

plane. In this notation, h represents the hexagonal representation, and (101)h is equivalent 

to (100)r, which is the rhombohedral representation [25]. 

 

 Figure 18c shows the EDS results of the compositional information, with B, C, O, 

and Si all being found in both the core and the sheath. The Cu seen in the figure comes 

from the supporting copper grid and is not part of the nanowire. The higher O:B (or O:C) 

ratio observed from the sheath indicates that the nanowire’s periphery is rich in oxygen. 

The atomic compositions shown in the five nanowires found in Figure 18c are semi-

quantitative and are consistent with the fact that boron carbide has a varying carbon 

atomic percentage between 8.8 and 20%. The Si found in the core and sheath could have 

come from the substrates, quartz boats, or even the quartz tubes used for the growth [25]. 

 



 

23 
 

 

Figure 18: Materials characterization of as-synthesized nanowires, with (a) showing an SEM image of both 

straight and kinked nanowires, (b) showing TEM results and indicating a single crystalline core, and (c) 

showing EDS results for the compositional information within the core, sheath, and catalyst of a nanowire 

[25]. 

 

 

 Various controlled synthesis experiments were carried out to investigate the 

growth mechanism and to optimize the growth conditions of boron carbide nanowires. 

The boron carbide nanowires only grew with the presence of catalytic materials, such as 

Ni. TEM analysis showed that Ni was commonly found at the tips of nanowires, 

indicating that the VLS mechanism was the method in which these nanowires grew. 

Leaving all other parameters constant, the reaction time was varied from 5 to 120 

minutes. No nanowires were observed with a reaction time less than 15 minutes, while a 

reaction time between 15 and 80 minutes showed more and longer nanowires the longer 

the reaction time was. Increasing beyond 80 minutes did not result in more and longer 

nanowires; rather, it resulted in the coarsening of nanowires. An optimal reaction time of 

80-90 minutes was found, which produced nanowires with a mean diameter of ~50 nm 

and an average length of 10 μm. The center temperature of the furnace was also varied 

from 900 to 1050°C in 50°C intervals. No nanowires were observed until the center 

temperature was at least 950°C, with this resulting in nanowires in the 879-885°C 

temperature zone region. Nanowires were found in the 964-977°C region with a center 

temperature of 1050°C. Higher center temperatures seem to lead to more and longer 

nanowires. The effect of the amount of gas precursors was also looked at, with nanowires 

growing with a ratio of flow rate between B2H6 and CH4 of less than 5. A higher CH4 

flow also facilitated the growth of the nanowires [25]. 
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 This method of boron carbide synthesis seems to be more energy efficient than 

other widely used carbothermal methods, as it requires a much lower reaction 

temperature and shorter reaction time. The as-synthesized boron carbide nanowires were 

characterized as single crystalline boron carbide cores with thin amorphous oxide 

sheaths. Variable width twins and stacking faults were both observed as planar faults in 

the nanowires. The nanowires were grown via the VLS mechanism, but further 

investigation into the growth mechanism for the planar faults is needed. The thermal 

conductivities of these nanowires are significantly reduced values when compared to the 

reported thermal conductivities of bulk boron carbides. In addition, the thermal 

conductivity seems to have a dependence on diameter, with lower thermal conductivities 

being found with smaller diameter wires, suggesting that these nanowires could have 

significantly enhanced thermoelectric figures-of-merit compared to corresponding bulk 

boron carbides [25]. 

 

 In 2013, Pallier et al. looked into the structure of amorphous boron carbide film in 

both an experimental and computational approach. The boron carbide ceramic was 

prepared via hot-walled CVD using BCl3, CH4, and H2 at a deposition temperature of 

1000°C. The optical band gap of BxC films can be varied by changing the B/C ratio. 

Some benefits of boron carbide can be strongly limited by the poor oxidation resistance 

of boron carbide in air above 600°C; however, in the case of self-healing matrices, a high 

oxidability actually becomes an advantage, as boron carbide layers introduced in the last 

generation of silicon carbide-based composites are aimed at promoting matrix oxidation. 

This then forms a borosilicate glass, which seals the matrix cracks and protects the fiber 

reinforcement against oxidation; this particular feature provides self-healing matrix 

composites that have excellent durability under load in air [26]. 

 

 The boron carbide coatings were obtained via a hot-walled CVD system with a 

deposition temperature of 1000°C and total pressure of 10 kPa. The system consists of a 

silica tube with a 100 mm inner diameter and is heated via an RF generator. The 

deposition area is ~100 mm long and can be approximated as quasi-isothermal (±5°C). 

The total gas rate was equal to 390 sccm and a deposition rate of ~1.5 μm/h was obtained. 

Most depositions were performed on open-cell vitreous carbon foams that have a pore 

size of 100 ppi, an apparent density of 0.05 g/cm3, and a specific surface of ~55 cm-1. 

Deposition times were typically around 6 hours, which led to thicknesses of ~9 μm. 

Before analyzing the samples, the foams were carefully crushed, and the carbon substrate 

was removed by oxidation in dry air at 430°C, with the a-BxC ceramic then weighed and 

cleaned to ensure complete elimination of the original substrate. Once pure a-BxC 

ceramic powder was obtained, the coatings were deposited onto silicon wafers. In 

addition, part of the a-BxC powder was heat-treated for 2 hours at roughly 1300°C under 

a pure argon flow to allow for investigation of structural changes [26]. 

 

 The composition of the films deposited were measured to be 70.5 at.% boron, 

28.6 at.% carbon, and 0.9 at.% oxygen (i.e., a-B2.5C), revealing a significant excess of 

carbon when compared to B4C. Under the conditions of this experiment, it seems that the 
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equilibrium phase diagram suggests the existence of both rhombohedral B4C and 

graphitic carbon. The density of the material is 2.47±0.01 g/cm3, which agrees fairly well 

with the density of crystalline B4C (2.52 g/cm3). Figure 19 below shows that there are not 

any crystalline order or graphene sheets. A limited number of complete and diffuse rings 

can be seen in the inset of Figure 19, which is usually found for isotropic and amorphous 

material. The X-ray diffraction pattern and Raman spectrum both confirm the absence of 

crystalline boron carbide phases and pure carbon, unlike the thermodynamic predictions. 

Figure 20 shows the Raman spectra of the as-prepared (a-B2.5C) and heat-treated (HT-

BxC) coating. The broad bands at ~400-700 cm-1 and 850-1350 cm-1 are typical of an 

amorphous state, while the more intense band centered around 1050 cm-1 could be from 

breathing modes of some icosahedron-like units. The absence of D and G bands that are 

characteristic of graphite-like carbon supports the claim that there is an absence of free 

carbon in the films [26]. 

 

There is a good agreement between the experimental and modeled structure factor 

and pair distribution function, as seen in Figure 21. All of the peaks found in the 

experimental functions are reproduced quite well in the model, both in terms of position 

and intensity. The model used atomistic B154C62, and the atomic structure and the reduced 

pair distribution functions for the experimental results were found via neutron diffraction 

[26]. The heat-treated material showed no change in the bulk chemical composition at the 

micrometer scale. An abundance of typical diffraction spots and lattice fringes were 

found, leading to the conclusion of rhombohedral B4C being present in a highly 

crystalline state, which was confirmed by x-ray diffraction (XRD) analysis. The mean 

size of the B4C crystallites, found via the Scherrer equation, comes out to be 44 nm. In 

addition, Figure 20 shows that free graphite-like carbon is clearly visible in the Raman 

spectrum,  as the signal is dominated by the G and D carbon bands [26]. 

 

 Figure 22 shows the pair distribution function of the heat-treated coating as 

obtained from neutron diffraction, with the modeled results also shown. Based on the 

model and experimental results, the as-deposited a-B2.5C coating contains a high amount 

of complete 12-atom boron-rich icosahedral units with compositions B12, B11C, or B10C2. 

Opposite of c-B4C, the icosahedra are randomly located in an amorphous matrix, 

essentially consisting of sp2 boron atoms and sp3 carbon atoms. Clear signatures of tri-

coordinated boron atoms were found in the amorphous materials, even though they did 

not seem to exist in the crystal. The heat treatment of the amorphous a-B2.5C coating 

allows for it to crystallize into rhombohedral boron carbide (B4C). This crystallization is 

accompanied by free turbostratic carbon domains, as evidenced by Raman spectroscopy 

and TEM. As measured by neutron diffraction, two small peaks appeared in the 

probability density function (PDF) with the apparition of B4C crystallites in HT-B2.5C. 

Compared with the data from the B4C model, the distances correspond to the C-B-C 

linear chains, confirming that linear chains do not exist in the amorphous state. The 

results of this study indicate that some carbon atoms from the amorphous state likely gain 

enough mobility to coalesce into free turbostratic carbon at elevated temperatures [26]. 
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Figure 19: HRTEM image of a-B2.5C material, with SAED pattern shown in inset [26]. 

 

 

 

Figure 20: Raman spectra of the a-B2.5C and heat-treated coating, with the 200-1200 cm-1 region of the 

heat-treated spectrum highlighted in the inset [26]. 
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Figure 21: Structure factor (a) and pair distribution function (b) of amorphous boron carbide, with empty 

circles representing the neutron diffraction data obtained from the a-B2.5C material and the lines 

representing the B154C62 model [26]. 

 

 

 

Figure 22: Pair distribution function of the heat-treated coating as obtained from neutron diffraction, with 

the inset showing the curve calculated from the model B4C crystal [26]. 
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CHAPTER THREE  

DESIGN SELECTION AND EXPERIMENTAL METHODS 

Gas Selection 

 

 Boron carbide thin films have been deposited with several different reactant gas 

combinations [12-19, 22-26]. A popular choice appears to be BCl3 and CH4 as the 

reactant gases, with H2 as the carrier gas. Each study used different parameters (e.g., 

different temperature and pressures) and CVD processes (e.g., HFCVD and PECVD), so 

the resulting stoichiometry is different for each study. Studies have shown it is possible to 

grow B4C with either BCl3 or B2H6, along with CH4 or CCl4. Unfortunately, BCl3 and 

B2H6 are both very dangerous. According to the Airgas Material Safety Data Sheet 

(MSDS) for BCl3, it is a colorless gas with an obnoxious and sharp odor. It can cause 

serious eye damage, respiratory irritation, and severe skin burns [27]. According to the 

Airgas MSDS for B2H6, it is highly toxic. It can cause burns to the eyes and skin, and it is 

fatal if inhaled. It is a colorless gas, has a sickly sweet odor, and can ignite spontaneously 

in air [28]. With both gases being highly toxic, the choice was made to use B2H6 as one 

of the reactant gases. CH4 is flammable, but it is less dangerous overall than CCl4. 

Diborane also reacts with free chlorine, so CH4 was selected as the other reactant gas. H2 

was selected as the carrier gas. When using B2H6 and a temperature of approximately 

800°C, boron carbide can be deposited according to several published works [29, 30] 

CVD System Design 

  
 In order to allow for fine control of the growth process, an HFCVD system was 

selected for the project. The system was designed and built with several different parts. 

Figure 23 shows a 3D representation of the early design for the system. The chamber for 

growth was selected as a base well and a bell jar. Since this system needs to be under 

vacuum conditions, the base well has to be connected to a vacuum pump. A table was 

custom-built in order to hold the system.  

 

 A stainless steel base well with an 11” inner diameter and eight ports from 

Huntington Vacuum was selected. The bell jar selected is also stainless steel and has two 

view ports, as well as a port on top, but it is unknown where it was purchased. Three 

Parker Model 201 mass flow controllers (MFCs) are used for the gases, with these each 

using Kalrez for seals because of its chemical corrosion resistance. These are controlled 

by a Parker Porter CM-400. Stainless steel tubing is used for all gas processes, except for 

the nitrogen flow to the vacuum pump. The system is put under vacuum via an Edwards 

iQDP80 Dry Semiconductor DryStar Vacuum Pump with iQMB-250 Booster purchased 

from spectraVAC. Attached to the exhaust of this pump is a NOVASAFE Dry Gas 

Abatement System. The table was built from aluminum extrusions and an aluminum 

plate. A pulley is mounted on top of the table, with a winch mounted to the table to allow 
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for the bell jar to be lifted up when needed. The gas tanks are all mounted to the side of 

the table, except for the B2H6 (1% in H2) tank, as it is in a vented cabinet behind the table. 

Plastic is mounted all around the table to minimize the possibility of a gas leaking into 

the room without detection. Tungsten filaments are used to heat the substrate, with a 10 

kW Lambda GEN 20-500 Power Supply used for the heating. Phosphorus-doped silicon 

wafers were selected as the growth substrate, with these being n-type and having an 

orientation of (100). Some of the wafers have a resistivity of 1-10 Ω-cm, with others 

having a resistivity of >10,000 Ω-cm. These substrates are placed onto a boron nitride 

plate, as boron nitride has high thermal conductivity and high electrical resistance. 

Additionally, it is chemically inert, non-toxic, and easily machined. 

 

 

 

Figure 23: 3D representation of the initial design of the system. 

 

System Construction 

 

 Before the system could be used, many things had to be considered. Most 

importantly, the correct base well needed to be purchased to make a good seal with the 

bell jar. Because the bell jar has an outer diameter of just under 13”, a base well with an 

outer diameter of 12.875” was selected. Eight viewports were selected because several 

components would need to be fed through to the inner chamber. The Edwards iQDP80 

with iQMB-250 was selected as the pump, so the base well also needed to have an ISO63 

bolt flange on its bottom port to allow for connection to the pump. Figure 24 shows the 

base well with only the gas lines and high voltage lines in the chamber. 

 

Because the bell jar was purchased before starting this project, its composition is 

unknown. With diborane, aluminum needs to be avoided, so verification that the bell jar 

is not aluminum was required. This was done via a scratch test and estimations of its 

density. Attempting to scratch the bell jar with a piece of stainless steel produced no 

visible signs of scratching. The density was calculated by weighing the bell jar and 

estimating its volume. The bell jar came out to be approximately 31.8 kg, and its volume 

was estimated to be 0.00468 m3. The volume was estimated by assuming a thin-walled 

cylinder and adding in the view port areas as more thin-walled cylinders. By dividing the 

mass by the volume, the density comes out to be approximately 6795 kg/m3. While this is 

lower than the density of stainless steel (~8000 kg/m3), it is entirely too high to be 



 

30 
 

aluminum; therefore, the scratch test and density estimation provided enough evidence 

that the bell jar is stainless steel. 

 

 

 

Figure 24: Base well without components placed in it. 

  

 

 After figuring out the base well and pump to be used, something was needed to 

actually hold the base well and bell jar up. Because the base well would need to connect 

to the pump somehow, an aluminum plate with a hole in the middle was selected as the 

table top. Aluminum extrusions were then selected for the frame of the system, as they 

are easy to machine and relatively cost effective. After some preliminary sketches and 

ideas, Bertelkamp Automation was contacted to verify that this design would work. They 

verified that the table should hold and provided a rendering of the table, as seen in Figure 

25. The basic idea of the table is to mount the aluminum plate to the extrusions, place the 

base well through the hole of the table top, place the bell jar on top of the base well, place 

the pump underneath the table, and mount a pulley on the extrusion in the middle of the 

frame at the top. Careful measurements needed to be made for the table requirements 

because of space concerns, as well as the pump being a specific height and the base well 

having a specific diameter for its bottom port. 

 

 

 

Figure 25: Rendering of table used to hold system, courtesy of Bertelkamp Automation. 
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 To create the table, the aluminum extrusions were cut down to the proper lengths 

via a bandsaw. The extrusions for the table top are connected via connections from 

McMaster Carr that require no tapping, drilling, or counterboring. The connections screw 

into the extrusions with an Allen wrench and lock into place via a rotatable head. The 

extrusions at the top of the frame are connected via 3-way corner connectors, which does 

require tapping. Leveling feet are also used for the frame and to make the table even, with 

this requiring more tapping. Once the frame was all connected and set up, it would sway 

from very little movement. Although none of the weight was on it yet, as the table top, 

base well, and bell jar were not in place yet, the table swayed too much; therefore, 

support frames were added halfway between the table top and the top of the frame. These 

made the table much more stable. The aluminum plate purchased did not have a hole in 

the center, so it was cut out with a 6” diameter hole saw. The corners of the plate were 

cut to allow for the plate to fit on the frame. Figure 26 shows the frame without anything 

attached to it before adding the support to prevent the swaying.  

 

 Unfortunately, as Figure 26 shows, the table top was placed a little too high up, 

making it to where the pump and base well could not be directly attached to each other. A 

gate valve is attached to the top of the pump to help manage gas usage, and a custom 

stainless steel ISO63 nipple was ordered from Huntington Vacuum to allow for the base 

well and the pump to be connected without having to modify the table. Figure 27 shows 

the pump, gate valve, nipple, and base well all attached. Because the gas used is highly 

toxic, a dry gas abatement system is attached to the exhaust of the pump, to strip away as 

much as possible. The exhaust line then goes from there to the room exhaust.  With the 

pump and base well connected, the pulley and winch were mounted to allow for the bell 

jar to be lifted when needed. The pulley was mounted on the bottom of the extrusion at 

the top of the frame, and the winch was mounted to the side of the aluminum plate. The 

rope attached to the pulley and winch is fed through the bell jar via two hooks that are 

attached to two eye bolts on the blank stainless steel flange at the top. Figure 28 shows 

the bell jar lifted from the base well, with the winch locked.  

 

For each gas tank, stainless steel tubing is used. Nitrogen is used for the pump and 

for purging. A Swagelok union cross is used to split the nitrogen three ways. It is fed into 

the chamber via a gas feedthrough, with a quarter-turn valve used to close the line off 

when the chamber is not being purged. It is sent to the pump via plastic tubing, as this 

line is completely separate from the rest of the system. It is also sent through an SMC 

filter regulator and check valve to help with the safety of the diborane. The methane and 

hydrogen are fed into a Swagelok union tee, with the two mixing and going into the 

chamber via a gas feedthrough. A quarter-turn valve is used on the hydrogen line before 

the union tee to prevent any methane from flowing over to it during the carburization 

process. The diborane line is completely separate from the other gases until going into the 

chamber via another gas feedthrough. Once into the chamber, the two feedthrough lines 

go through a Swagelok union tee to completely mix the three gases before feeding into a 

custom-designed showerhead. Figure 29 shows the gas lines before going into the 

chamber.  



 

32 
 

 

Figure 26: Image of frame and pump without anything attached and without added support frames. 

 

 

 

Figure 27: Pump, ISO nipple, gate valve, and base well all connected together. 

  



 

33 
 

 

Figure 28: System with the bell jar lifted off of the base well via the winch and pulley. 

   

 

 

Figure 29: Gas lines before getting into the chamber (with the nitrogen disconnected from changing tanks). 
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Inside the chamber is a stainless steel mesh disc to prevent any debris from falling 

into the pump. A stainless steel table was built and welded to allow for the heating of the 

tungsten filaments used. Boron nitride blocks were machined and placed on this table, 

with machined copper bars being placed down into them. These copper bars have the 

tungsten filaments fed through them. The filaments are tightened on one end via set 

screws and allowed to freely expand and contract on the other end to accommodate for 

thermal expansion and extend the life of the filaments. These filaments are also 

carburized before growth to allow for a cleaner deposition. A stainless steel scissor lift is 

used to hold the silicon substrate. A thin boron nitride plate is placed on top of the scissor 

lift because of its high thermal conductivity. Another stainless steel table was built and 

welded to hold the showerhead. This table was initially too big for the chamber, so each 

leg was grinded down to allow for it to fit. Figure 30 shows the two tables and the scissor 

lift in the chamber without the boron nitride, copper bars, and showerhead—albeit the 

table holding the showerhead was altered to allow for the showerhead to be held in a 

more efficient way. 

 

 

 

Figure 30: Initial design of the tables. 

 

 

 The gas needed to be delivered via some sort of showerhead. It was difficult to 

find a showerhead readily available for purchase, so a custom showerhead was designed 

and built. A thin-walled stainless steel cylinder was cut, with a stainless steel disc placed 

on the back side. The stainless steel disc has a hole in the center for the gas tubing. The 

side for the gas delivery has a boron nitride disc attached to it to try and prevent risk from 
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any type of arcing from the copper bars or tungsten filaments. This disc was cut out using 

a hole saw, and the disc was placed onto a mini drill press to create the holes in it for gas 

delivery. Holes were tapped in the stainless steel to attach the boron nitride, with ceramic 

screws used because of the possibility of electrical arcing. Figure 31 shows the 

showerhead in place on the table; however, this is with the initial design. The problem 

with this design is that the gases could have deposited onto the stainless steel cross bars. 

The redesign can be seen in Figure 32. For this, a single thin-walled stainless steel bar 

was welded to the table, and a bandsaw was used to cut into the bar on the end. The 

showerhead was then placed into the bar via a hose clamp. Because of how the 

showerhead is placed, there should not be any risk of deposition on the table. 

 

The power supply used for heating the tungsten filaments is a Lambda GEN 20-

500 Power Supply. This power supply can go up to 20 V and 500 A for a total of 10 kW. 

This power supply was selected because a high substrate temperature is needed for 

deposition. The tungsten filaments were selected with a 0.020” diameter, with the voltage 

and current needs verified via calculations. This was determined by assuming Ohm’s 

Law applies to the system. Although this is not necessarily true, it gives an idea of what 

is needed. Because resistivity is a function of temperature, the resistivity of the tungsten 

was taken as 66 µΩ-cm, which corresponds to a temperature of 2000°C [31]. Nine 

filaments are used in the system, with the total resistance of the filaments coming out to 

be 0.11 Ω. Each filament is 6” in length. By using the maximum power output of the 

power supply and this calculated resistance, the current comes out to around 425 A. This 

results in a voltage of approximately 23 V. While this indicates that the power supply will 

not be able to allow full energy deposition in the wires, this shows that the 10 kW power 

supply should be sufficient for the heating done for the growth. 

 

 

 

Figure 31: Table with showerhead (initial design). 
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Figure 32: Redesigned table for showerhead with hose clamp and single bar to hold showerhead. 

 

Diborane Safety 

 

 With how dangerous diborane is, safety was top priority when designing and 

building this system. Diborane is a boron hydride compound. At room temperature, it is a 

colorless gas, and its odor has been described in several different ways, including 

unpleasant, distinctive, and sickly sweet [28, 32]. While it is insensitive to mechanical 

shock, diborane is very toxic and decomposes slowly to hydrogen and higher-molecular-

weight boron hydrides at room temperature [32]. Diborane is extremely flammable and 

has a high chemical reactivity. It can ignite spontaneously in air and is completely 

hydrolyzed by water. Additionally, it readily reacts with halogens, reactive metals, 

various inorganic compounds, and many organic chemicals [32]. In the case of a fire 

from diborane, the fire should be kept under control by water fog, but it should not be 

completely extinguished if it can be controlled, unless the source of diborane is depleted 

[28, 32-34]. This is because an explosive diborane-air mixture might accumulate if the 

fire is extinguished [32]. 

 

 Like all boron hydrides, diborane is thermodynamically unstable at room 

temperature. At around 100°C, thermal decomposition becomes pronounced, with 

hydrogen evolved and condensed higher boron hydrides formed; these decompose at 

progressively higher temperatures to give elemental boron at around 600°C to 700°C 

[32]. If diborane burns in air, it creates a characteristic green flame, which gives off boric 

oxide and water (or boric acid) [32]. 

 

 As previously mentioned, diborane is rapidly and completely hydrolyzed by 

water, which generates a lot of hydrogen gas. Reactions of diborane with halogens and 

hydrogen halides lead to terminal substitution and the formation of boron trihalides. Free 

chlorine is the most reactive agent from the halogens [32]. Boranes are electron-deficient, 

so they will accept electrons from active metals under suitable reaction conditions, 
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leading to borohydrides. Diborane is a selective reducing agent, reducing aldehydes, 

ketones, nitriles, esters, and other types of compounds [32]. 

 

 Potential hazards involved with diborane are associated with three of the general 

health categories: toxicity (physiological activity), flammability, and explosivity. Since 

diborane is a highly toxic chemical, serious personnel health hazards can result from 

inhalation. Diborane is primarily a pulmonary irritant; inhalation of diborane vapors 

produces an exothermic reaction in the lungs as the borane is rapidly hydrolyzed to boric 

acid and hydrogen [32]. Severe exposure could impair the central nervous system, 

possibly by blocking the oxygen-reduction enzymes. The threshold limit used for 

diborane has been established as 0.1 ppm by volume, which represents the average 

concentration over a normal work day to which the average human can be safely exposed 

on a daily basis with no adverse effects. The odor of diborane offers some warning, but 

small concentrations may be below the threshold limit for detection by the nose. In 

addition to this, prolonged exposure to small concentrations of diborane may also 

temporarily impair the sense of smell, so odor should not be relied upon as a detection 

method [32]. 

 

 Depending on the concentration inhaled, diborane can cause coughing, a sense of 

tightness in the chest, nausea, temporary elevated pulse, blood pressure, and temperature, 

fatigue, heaviness of legs, headache, and skeletal muscular tremors and spasms [32-34]. 

A person who has inhaled diborane may be slow to respond to questions, be dull, and 

have body movements not unlike mild alcohol intoxication. Patients may also lose 

control of a particular muscular function, such as the inability to hold up the head or to 

retract the tongue. Although diborane is highly toxic and hospitalization has been 

required for numerous cases, it should be noted that most reported exposures have caused 

only minor distress, which is likely from the fact that workers quickly leave the 

contaminated area once diborane is smelled or symptoms are noticed [28]. Diborane may 

cause damage to the following organs: lungs, liver, mucous membranes, kidneys, upper 

respiratory tract, skin, eyes, and central nervous system [28]. 

 

 When using diborane, materials in contact with the gas are very important, as 

diborane will react with many materials. All materials in contact need to be thoroughly 

cleaned. Stainless steel and low carbon steels are unaffected by diborane, but rusty iron 

causes the decomposition of diborane at atmospheric pressure [32]. Investigations found 

that most common metals are safe for use with diborane; however, their oxides are not. 

Most rubbers and other nonmetallic materials are attacked by diborane, meaning that care 

must be exercised in the selection of seals, gaskets, lubricants, solvents, etc. [32]. Of 

particular note, aluminum is incompatible with diborane, while stainless steel, copper, 

tungsten, boron nitride, Kalrez, PTFE, Pyrex, Quarts, Teflon, and Viton are all 

compatible. 

 

 With all of this in mind, the safety features of the system were considered. Each 

material to be in contact with the diborane was checked for compatibility, with aluminum 
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completely avoided. Stainless steel was used for all metal components not used for 

heating. The stainless steel scissor lift initially had plastic spacers and a rubber handle, 

but these were all removed before use. Each gas line that could be in contact with the 

diborane is stainless steel, along with each connector or valve. One view port on the bell 

jar was replaced with a blank stainless steel flange. Each flange has a copper gasket for 

the seal. The MFCs use Kalrez, and each part of the pump that comes in contact with the 

gases is compatible. The materials used for the welding were verified to be compatible as 

well. 

 

 In case of a gas leak, plastic walls are mounted all around the system via Velcro. 

Diborane is slightly lighter than air, so if it leaks, it should float up. These plastic walls 

help guide any gas up to the upper part of the room, where it poses a much lower risk to 

personnel. Additionally, a diborane gas sensor and a hydrogen gas sensor are set up 

above the gas lines and chamber. The diborane sensor is powered by an RKI Beacon 800 

Gas Detection Controller. A pressure gauge used on the system and the gas sensors are 

connected to a PC. This PC runs a LabVIEW program that monitors the pressure of the 

system and the gas sensors. If the pressure of the system gets too high (i.e., the pump 

stops working) or the sensors go off, the system kills power to the normally-closed 

solenoid valve attached to the diborane, which cuts off the gas flow. 

 

 An additional safety measure used is on the diborane gas line. The tank is located 

in a vented cabinet. Once the line is passed the solenoid valve, it is enclosed in a second 

stainless steel tubing by passing through a 1/4” to 1/2” connector, with a third connector 

used to exhaust anything in the second tube. The main gas line is 1/4” stainless steel 

tubing. A 1/2” stainless steel tube is placed around this tubing, with the two being bent 

together using a tube bender. Once this double-walled tubing goes through the plastic 

wall of the system, it goes through another 1/2” to 1/4” connector, taking the diborane 

line back to just the 1/4” tubing. A 3/8” fitting is also on this connector, with one of the 

nitrogen lines attached to this. A check valve is placed on the nitrogen line to prevent any 

backflow of diborane in case of a leak, and a filter regulator is also attached to this line to 

allow for pressure regulation. This allows for a flow of nitrogen into the 1/2” tubing that 

flows back to the vented cabinet. In the event of a leak, the diborane will then be pushed 

back to the vented cabinet via the nitrogen. This prevents any diborane from leaking into 

the atmosphere before the gas sensor. If there was a leak inside of the plastic walls, the 

diborane sensor and hydrogen sensor are there to detect anything. Figures 33 and 34 

show the double-walled tubing. 

 

Due to the currents and voltage being supplied, the entire system is grounded. 

Because the back of the power supply does not have any real enclosures to prevent 

personnel from shocking themselves, an enclosure was created with plastic to place over 

the back half of the power supply. If anything needs to be done to the power supply, the 

box can easily be removed, but the disconnect box should be turned off before doing this 

to ensure the power supply does not have power. Figure 35 shows the power supply with 

the plastic enclosure. 
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Figure 33: Double-walled tubing for the diborane. 

 

 

 

Figure 34: The double-walled tubing becomes just the 1/4” tube again. 
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Figure 35: Power supply with plastic enclosure to prevent shock hazard. 

 

Growth Methodology 

 

 Before growths could be performed, several dry runs and tests were performed to 

get an idea of how to optimize the growth. Each gas line had heat tape applied to it to try 

and get rid of as much moisture as possible. The temperature of the tungsten filaments, as 

well as the surrounding area were investigated at various voltage and current values. 

Starting with low values for each and increasing, the temperatures were measured via a 

thermocouple feedthrough. With 3 V and 55 A, the filaments got up to around 300°C, 

and the substrate area got up to around 120°C. Increasing to approximately 12 V and 150 

A resulted in filament temperatures being right around 1000°C, and the substrate area 

temperature being approximately 800°C. The filaments were all slightly different 

temperatures in each test case, but they all seemed to be within 5-10% of each other. A 

somewhat slow ramp-up to these values is required to avoid possible damage to the 

system. For each of these tests, the system was placed under vacuum to avoid oxidization 

concerns. 

 

 With the heating tests completed, the pump was investigated. This pump requires 

nitrogen when pumping, so it is important to not start a growth with a nitrogen tank that 

is low. In order to test how long a tank will last, a dry run was performed, with the 

nitrogen flowing to the pump and to the double-walled tubing containing the diborane. 

The tank emptied in around 8 hours, but it was not a completely full tank, as it had been 

used for carburization of the tungsten filaments and other tests. Because of this, a tank 

seems to last approximately 14 hours, assuming carburization is not being performed 

repeatedly. The chamber is purged with nitrogen after every growth, so this could result 

in varying times. 

 

 Before getting into the general methodology of the growths, a discussion of some 

early problems will be presented. A bake out was attempted before growing to get rid of 

as much moisture as possible, since diborane is highly reactive with water. While 

attempting this bake out, however, the chiller attached to the pump continued to produce 
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an error and stop working. This would result in the pump rapidly increasing in 

temperature. Several different things were attempted to fix it, but the problem persisted. It 

would sometimes error out within five minutes of turning on, and it would sometimes 

error out in twenty minutes. The error code said there was likely debris in the lines and 

explained where the reset button was for the error. Resetting the error would fix it 

temporarily, but the problem would still occur. Eventually, the filter for the chiller was 

changed just to see if that might help, and the error stopped occurring. With the chiller 

working, the bake out could be performed. 

 

 Once the bake out was performed, the growths could be performed. 

Unfortunately, during the first growth, the temperature around the substrate started to 

decrease after a certain point. The tungsten filaments stopped glowing, and the power 

supply was dropping in both current and voltage. Upon inspecting the chamber, one of 

the tungsten filaments apparently snapped in two during the heating and hit the boron 

nitride plate. This caused it to snap in two and created a mess in the chamber. After 

cleaning the chamber and replacing the boron nitride plate, another growth was 

attempted. This time, the substrate area was around 600°C when an audible pop could be 

heard, and, again, the temperature of the chamber started to drop rapidly, as did the 

current and voltage of the power supply. After inspecting the chamber, it appears that one 

of the copper wires used for the heating somehow broke loose and hit one of the boron 

nitride bars used to hold the copper bars, snapping it in two and creating another mess 

inside of the chamber. Figure 36 shows some of the damage that was done.  

 

 

 

Figure 36: Boron nitride bar broken in two (silver wire is the thermocouple). 
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 After replacing the boron nitride block and verifying that everything was securely 

connected, another growth was attempted. This time no errors occurred, and the growth 

was able to be completed. When looking at the film, it was very blue in color, which was 

not expected. It seems that the tungsten filaments were not carburized enough, resulting 

in deposition of tungsten on the substrate. After carburizing the filaments, another growth 

was attempted. Although there was not any blue on the substrate this time, there was also 

no real deposition on the substrate. A few more growths were attempted with similar 

results. It was determined that the thermocouple was actually reading the temperature of 

the filaments and not the substrate, resulting in temperatures that were too low to allow 

for deposition. Once this was corrected, growths were continued with actual depositions. 

 

 A very general procedure for a growth will now be presented. It may differ 

slightly from growth to growth, as parameters were tweaked, but each growth follows 

this general method. If needed, heat tape can be applied to each gas line, but this is only 

required if the non-nitrogen lines were disconnected for any reason. Unless the tungsten 

filaments need to be changed, carburization should not be required. The bell jar needs to 

be lifted to allow for the sample to be inserted into the chamber. Inspection of everything 

inside the chamber is paramount for safety, so a thorough inspection should be 

performed, while wearing gloves to avoid contamination. Assuming nothing needs to be 

fixed or changed, the sample can be placed on the boron nitride plate. The power supply 

and pump can then be turned on via their respective disconnect boxes. The chiller and 

nitrogen are turned on for the pump, and the system is placed under vacuum. Once the 

system is under vacuum, the power supply is turned on to begin heating up the chamber. 

Once the system gets to the desired temperature for growth, the hydrogen and methane 

can be allowed to flow via the MFCs, with the diborane being allowed after this. The 

temperature and pressure of the system are monitored while deposition occurs. After the 

growth is completed, the power supply is turned off, the MFCs are turned off via the 

controller, and the gas tanks are closed, except the nitrogen. The quarter-turn valve 

blocking the nitrogen from entering the chamber is opened to allow for purging of the 

chamber. With this completed, the quarter-turn valve should be closed again, and the 

pump can then be turned off, as well as the chiller and nitrogen. After cooling down, the 

sample is removed from the chamber. 

 

 The parameters used for a typical growth are presented in Table 1. These values 

may change slightly as the process is optimized, but this gives an idea of the values used 

for each parameter. The pressure increases slightly when the power supply starts heating 

the chamber, so the pressure it reaches after the power supply is turned on is reported. 
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Table 1: Typical parameters for deposition of boron carbide onto silicon wafers. 

Parameter: Value: 

Gas Flow Rate (H2) 35 sccm 

Gas Flow Rate (CH4) 50 sccm 

Gas Flow Rate (B2H6) 10 sccm 

Substrate Temperature 800-1000°C 

Pressure 500 mTorr 

Substrate to Filament Distance 6 mm 

Deposition Time 2-3 hours 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 Before growing films, simulations were performed to get an idea of what to 

expect from the grown films and to get an idea of the necessary system parameters to 

achieve full depletion within the boron carbide layer. Monte Carlo N-Particle Transport 

Code (MCNP) was used to simulate a boron carbide detector, as well as a conversion 

layer silicon detector with boron carbide as the conversion layer. Silvaco was used to 

simulate the electric field profile in a B4C-silicon detection system architecture. Because 

boron carbide is p-type, n-type silicon was selected for simulations to allow for a 

heterostructured diode with a boron carbide active layer. After actually growing films, 

they were looked at using a scanning electron microscope (SEM). 

MCNP6 Simulations 

 

 MCNP6 simulations were performed to see the possible detection efficiency of a 

solid-state boron carbide detector at varying thicknesses. A cylinder was used for the 

boron carbide, and a cylinder made of silicon was placed underneath the boron carbide. 

For the normal simulation, a 20% isotopic amount of 10B was selected. For the 

isotopically-enriched simulation, a 95% isotopic amount of 10B was selected. The carbon 

content was selected to be at 20 at.% in each case. A plane wave of thermal neutrons 

(0.025 eV) was used for the simulations. The simulations started with a boron carbide 

thickness of 3 µm, with each case increasing in thickness by 2 µm until reaching a 

thickness of 101 µm. The silicon thickness was selected as a static 100 µm. 

 

 To acquire good statistics, 30,000,000 neutrons were simulated for each of these 

simulations. The detection efficiency for the solid-state boron carbide detector was 

defined as the number of neutron captures in the boron carbide divided by the total 

number of neutrons. Table 2 shows the detection efficiency of boron carbide at several 

different thicknesses with a zero threshold.  

 

 

Table 2: Detection efficiency based on varying thicknesses of boron carbide on silicon with a zero 

threshold 

 3 µm 15 µm 25 µm 55 µm 75 µm 95 µm 

B4C (%) 2.52 11.94 19.08 37.25 47.03 55.29 
10B-Enriched (%) 12.03 47.30 65.60 90.43 95.92 98.25 

 

 

In the case of a conversion layer, it has been previously discussed that the range 

of the reaction products will ultimately limit the detection efficiency. The range of an 

alpha particle is approximately 3 µm in boron carbide, so the maximum detection 

efficiency of a single-sided boron carbide conversion layer detector is approximately 
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2.52% for natural boron carbide and 12.03% for 10B-enriched boron carbide. For a solid-

state boron carbide detector, the efficiency increases with increasing thickness of B4C. 

For natural boron carbide, the efficiency reaches approximately 55% at a film thickness 

of 95 µm, while 10B-enriched boron carbide approaches 100% efficiency at a film 

thickness of 95 µm. It appears that a film thickness of around 12 µm would result in a 

detection efficiency of 10% for natural boron carbide. 

 

 The pulse height spectra for three different thicknesses of natural boron carbide 

can be seen in Figure 37. Each of these show the expected peak at 2.31 MeV and 2.79 

MeV. Increasing the thickness of the boron carbide allowed for the spectrum to flatten 

out, as the wall effect diminishes with increasing thickness. Figure 38 shows the same 

pulse height spectra as Figure 37, but with the addition of the pulse height spectra in the 

silicon at the same thickness. As previously discussed, conservation of momentum only 

allows one of the particles to be deposited into the silicon in this setup; therefore, the 

expected energy peaks are at around 0.84 MeV and 1.47 MeV. This can be seen in the 

silicon spectra, but as the thickness of the boron carbide is increased, the peak decreases. 

This is due to the fact that the reaction products start to be absorbed in the boron carbide, 

instead of the silicon. 

Silvaco Simulations 

 

 Silvaco simulations were performed to determine band structures and electrical 

field profiles of the diodes with different doping and bias to compare with experimental 

results. The electron deficiency created by vacancy defects and point defects results in the 

generation of intrinsic defects formed as gap states inside of the band gap of the 

semiconductor. Such high concentrations of gap states attached to the valence band affect 

the electronic charge transport. Conclusively, the p-type character of the semiconductor is 

aroused [35]. Amongst all of the stable BC isotopes, B4C was selected for simulations, as 

it is what is grown by the HFCVD; however, B4C has rarely had its physical properties 

investigated. Therefore, the few experimentally known values were employed to conduct 

simulations. As previously discussed, there is a range of band gap values for boron 

carbide, depending on the carbon concentration. For simulation purposes, 0.9 eV was 

selected as the band gap, which was measured via optical absorption by Werheit [36]. 

Although 0.9 eV was used for the simulations, the band gap of the grown boron carbide 

should be closer to 2 eV, based on the resulting carbon concentration. The diode 

modeling in this study was based on the values of the doping concentration of B4C from 

Hong et al. [37]. Table 3 shows all of the characteristics of the parameters used for the 

modeling. A schematic of the simulations can be seen in Figure 39.a, while Figure 39.b 

shows the energy band structure of the B4C/n-Si heterostructure used in the Silvaco 

simulations. For this simulation, a thickness of B4C and n-Si were selected as 100 µm and 

500 µm, respectively. Aluminum was used for the metal contact to boron carbide. The 

simulation results showed the Al/B4C contact created a rectifying contact, since the work 

function of B4C is larger than that of Al. This feature was kept to continually simulate the 

other electrical properties. 
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Figure 37: Pulse height spectra for three different thicknesses of (natural) boron carbide. 

 

 

 

Figure 38: Pulse height spectra for the three different (natural) boron carbide thicknesses and the 

corresponding silicon pulse height spectra. 
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Table 3: Properties of B4C that were used for Silvaco simulations in this study. 

Characteristics: Values: Unit: 

Band gap energy 0.9 at 300 K [18] eV 

Carrier lifetime 1.0x10-8 [18] Second 

Dopant concentration 4.2x1012 [37] cm-3 

Mobility electron: 0.001, hole: 7.5x10-4 [37] cm2/V-second 

 

 

 

Figure 39: Schematic of the setup for the simulation (a) and the energy band structure (b). 
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From the simulations, it was found that the silicon must have a much higher free 

carrier concentration than the boron carbide to ensure that the junction resides mainly in 

the boron carbide layer. Figure 40 shows the electric field as a function of depth from the 

surface for one set of simulations. As Figure 40 shows, the necessary bias to obtain full 

depletion of the 100 µm thick boron carbide layer is only around 50 V in this system 

design. Using a properly designed blocking front contact, the electric field could be 

enhanced and flattened in the boron carbide, thereby maximizing charge collection. 

Thin Film Analysis 

 

 The films appear to have a uniform deposition across the silicon wafers and 

appear dark gray or black in color. A Zeiss Auriga Focused Ion Beam Scanning Electron 

Microscope (FIB-SEM) was used to view the surface features of the grown samples. Van 

der Pauw and Hall measurements were performed on the deposited films to determine the 

resistivity, bulk carrier density, and Hall mobility. These measurements were performed 

with a printed circuit board (PCB) and a Keithley 2410 SourceMeter. XRD analysis was 

also performed on two samples to compare to expected results for B4C. Alpha and 

neutron response were both tested for several different deposited films; however, there 

was a large source of noise for each test, indicating that the films may have had too much 

contamination on the surface.  

SEM Imaging 

 

 Using the SEM, the surface of the samples could be seen to check for uniformity 

and abnormalities. Figures 41, 42, and 43 all show images from a 10 Ω-cm silicon wafer 

with boron carbide deposited onto it. Figure 41 seems to show a uniform deposition 

across the wafer, but there are some slight differences that can be seen. Figure 42 shows a 

closer look at the surface than Figure 41. This shows that there is at least some difference 

in film thickness across the wafer. This could have resulted from the wafer not being 

centered for the growth process. Figure 43 shows a closer image of the more elevated 

region to the left in Figure 42. As this image shows, it appears that this sample was 

polycrystalline or amorphous, instead of single-crystalline. This may have resulted from a 

deposition rate that was too fast, which could prevent a single-crystalline formation from 

occurring. A 10 kΩ-cm silicon wafer was also imaged with the SEM. Figure 44 shows 

the surface of the wafer with boron carbide deposited on it. Similar to the 10 Ω-cm wafer 

already discussed, the deposition appeared to be uniform across the surface; however, 

there were spots on the wafer that did not receive any deposition. This could be from the 

wafer being slightly out of place or from the gases not flowing onto that section of the 

substrate. Figure 44 seems to show a more pronounced difference in the film thickness 

than Figure 42. Zooming in on this section produced Figure 45. Like Figure 43, Figure 45 

appears to suggest that this film is amorphous or polycrystalline. Because both samples 

were amorphous or polycrystalline, instead of single-crystalline, it is likely that either the 

deposition rate was too fast or the substrate was too far from the filaments. 
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Figure 40: The electric field as a function of depth from the surface for one set of simulations. 

 

 

 

Figure 41: SEM image of 10 Ω-cm silicon wafer with thin film of boron carbide. 
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Figure 42: Closer SEM image of 10 Ω-cm silicon wafer with thin film of boron carbide. 

 

 

 

Figure 43: Closer SEM image of boron carbide on 10 Ω-cm silicon. This image suggests a polycrystalline 

or amorphous film, rather than single-crystalline. 
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Figure 44: SEM image of 10 kΩ-cm silicon with film of boron carbide. 

 

 

 

Figure 45: SEM image of 10 kΩ-cm silicon with film of boron carbide. This image again suggests a 

polycrystalline or amorphous film, instead of single-crystalline. 
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Van der Pauw and Hall Measurements 

 

The van der Pauw method can be used to determine the specific resistivity of an 

arbitrary shape without knowing the current pattern, assuming that several different 

conditions are satisfied. These conditions are the following: the contacts are sufficiently 

small, the contacts are at the circumference of the sample, the sample is homogeneous in 

thickness, and the surface of the sample does not have isolated holes [38]. In particular, 

the average diameters of the contacts and sample thickness must be much smaller than 

the distance between the contacts [39]. The measurements are performed by sourcing a 

voltage across two of the sample corners and measuring the resulting current from the 

other two corners. This is done for a range of voltage values, and eight different 

combinations are used. Because half of the combinations are redundant, a check of 

measurement consistency can be performed. If any of the measurement checks differ by 

more than 5%, there is likely a source of error that needs to be identified. Characteristic 

resistances, RA and RB, are found from the inverse of the slopes of these combinations 

when plotted as current vs. voltage. Once these values are obtained, MATLAB can be 

used to solve for the sheet resistance (RS), which can then give the resistivity of the 

sample. A numerical approach is used to solve for RS because both RA and RB are known. 

The following equation is used in an iterative process to find RS [39]: 

 

exp (−𝜋 ∗
𝑅𝐴
𝑅𝑆
) + exp (−𝜋 ∗

𝑅𝐵
𝑅𝑆
) = 1 

 

 In order to verify the results from the experimental setup, measurements were 

performed on silicon substrates as well. Two different silicon substrates with a resistivity 

>10,000 Ω-cm were used for this check. Each sample was cleaned with acetone, 

isopropyl alcohol (IPA), and de-ionized water before performing the measurements to 

eliminate as much contamination as possible. Once cleaned, the samples were placed on a 

PCB, with each corner of the sample connected to the board via a spring clip. For the first 

silicon substrate, the resistivity was shown to be around 16,000 Ω-cm. For the second 

silicon substrate, the resistivity was shown to be around 25,500 Ω-cm. These were 

slightly different from one another, but this could be from oxidation on the substrates or 

some sort of contamination. While not exactly the same, this seems to indicate that the 

system gives accurate results. For the thin films deposited on the 10 Ω-cm substrates, the 

bulk resistivity was approximately 4,300 Ω-cm. Each film was slightly different, but they 

were all around this value. For the thin films deposited on the 10,000 Ω-cm substrates, 

the bulk resistivity was approximately 5,700 Ω-cm. Again, each film was slightly 

different, but they were all around this value. There are likely differences due to 

contamination or due to the higher resistivity of the 10,000 Ω-cm silicon substrates. 

 

Literature shows a wide range of conductivity for boron carbide, depending on 

carbon concentration, method of preparation, and purity [18, 40, 41]. Plasma-enhanced 

CVD seems to produce extremely small conductivities, on the range of 10-4 to 10-10 Ω-1-

cm-1, possibly due to very little free carbon being present [18]. Increasing the carbon 
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concentration appears to decrease the conductivity. Based on the results discussed above, 

the thin films grown on 10 Ω-cm substrates have a conductivity of approximately 

2.33x10-4 Ω-1-cm-1, and the films grown on 10,000 Ω-cm substrates have a conductivity 

of approximately 1.75x10-4 Ω-1-cm-1. This is a little lower than expected, as literature 

shows conductivities several magnitudes higher than this at room temperature [18, 40, 

41]. These values could be this small because there is a small amount of free carbon in 

the thin films, as a higher amount of free carbon will increase the conductivity. 

 

After obtaining the resistivity of the samples, the sheet carrier density, bulk carrier 

density, and Hall mobility of the deposited films can be found. A custom-built Hall 

measurement system was used to determine these values. An iron yoke was created by 

welding together iron, leaving a gap big enough for two neodymium magnets and the 

PCB used for measurements. The resulting magnetic field with the magnets in place on 

the iron yoke is roughly 12,000 gauss. For the Hall measurements, a current is applied 

across opposite sample corners, and the resulting voltage from the other two corners is 

recorded. Once each measurement combination is done, the magnetic field is reversed, 

and the same procedure is performed. With these measurements, the sample type can be 

determined based on the sign of the voltage sum. The voltage sum is found by subtracting 

the values for the negative magnetic field from the corresponding values for the positive 

magnetic field and then adding the four values together. The sheet carrier density, bulk 

carrier density, and Hall mobility are then found from the following equations, where ps 

is the sheet carrier density, ns is the sheet carrier density, n is the bulk carrier density, p is 

the bulk carrier density, and µ is the Hall mobility [39]: 

 

𝑝𝑠 =
8𝑥10−8𝐼𝐵

[𝑞(𝑉𝐶 + 𝑉𝐷 + 𝑉𝐸 + 𝑉𝐹)]
  (𝑖𝑓 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑠𝑢𝑚 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

𝑛𝑠 = |
8𝑥10−8𝐼𝐵

[𝑞(𝑉𝐶 + 𝑉𝐷 + 𝑉𝐸 + 𝑉𝐹)]
|  (𝑖𝑓 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑠𝑢𝑚 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

𝑛 =
𝑛𝑠
𝑑

 

𝑝 =
𝑝𝑠
𝑑

 

𝜇 =
1

𝑞𝑛𝑠𝑅𝑆
  𝑜𝑟 𝜇 =

1

𝑞𝑝𝑠𝑅𝑆
 

 

Hall measurements were performed on an n-type, 10 Ω-cm silicon substrate that 

had not been used for a growth to verify that the values were within reason. For the 10 Ω-

cm substrate, the resistivity came out to be 76.4 Ω-cm, the bulk carrier density came out 

to be approximately 1.05x1014 cm-3, and the Hall mobility came out to be 775 cm2V-1s-1. 

The measurement resulted in a voltage indicating that the material is n-type. Using an 

online resistivity and mobility calculator for silicon with a bulk carrier density of 

1.05x1014 cm-3 results in a mobility of 1,400 cm2V-1s-1 and a resistivity of 42 Ω-cm. The 
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mobility is nearly twice what was measured, and the resistivity is nearly half of what was 

measured. This may be from contamination on the silicon.  

 

10 Ω-cm and 10,000 Ω-cm silicon substrates with deposited B4C were used for 

the Hall measurements. For each of these cases, two different samples were used to get 

measurements. For the thin films grown on the 10 Ω-cm substrates, the bulk carrier 

density came out to be approximately 5.68x1013 cm-3 and 4.78x1013 cm-3. The Hall 

mobility came out to be 2.48 cm2V-1s-1 and 3.06 cm2V-1s-1, respectively. For the thin 

films grown on the 10,000 Ω-cm substrates, the bulk carrier density came out to be 

approximately 4.62x1013 cm-3 and 5.33x1013 cm-3. The Hall mobility came out to be 23.3 

cm2V-1s-1 and 20.3 cm2V-1s-1, respectively. These are slightly higher than the values used 

in Table 4, but this could be from contamination or from the silicon substrates 

themselves. For all of these, the measurement resulted in a voltage indicating that the 

material is p-type. Based on the work by Wood and Emin, the Hall mobility of boron 

carbide ranges from 0.1 to around 1 cm2V-1s-1 [41]. The values for the 10 Ω-cm substrates 

is close to 1; however, the 10 kΩ-cm substrate values are a magnitude higher. This may 

be from the silicon itself, as the films are thin (4 micron). Although boron carbide is p-

type, the Hall effect is n-type at very low carbon content [41]. Table 4 summarizes the 

results for the cases discussed. 

 

 

Table 4: Results from van der Pauw and Hall measurements for several different thin films and a Si 

substrate. 

 10 Ω-cm Si 10 Ω-cm 

Si (B4C) 

10 Ω-cm 

Si (B4C) 

10 kΩ-cm 

Si (B4C) 

10 kΩ-cm 

Si (B4C) 

n-type or p-type: n-type p-type p-type p-type p-type 

Bulk Resistivity: 76.4 4,428 4,270 5,783 5,790 

Bulk Carrier Density: 1.05x1014 5.68x1013 4.78x1013 5.33x1013 4.62x1013 

Hall Mobility: 775 2.48 3.06 20.3 23.3 

 

XRD Analysis 

 

XRD was used to determine if the films are single-crystalline, polycrystalline, or 

amorphous. Figure 46 shows an XRD analysis of boron carbide from Alizadeh, Taheri-

Nassaj, and Ehsani [42]. Figure 47 shows an XRD analysis of boron nitride from Zhong 

et al. [43]. The boron carbide has many different peaks, with it showing 17 total B4C 

peaks and one peak for free carbon. These peaks are all quite narrow, with the free carbon 

being the broadest. The boron nitride only has four peaks. Again, these peaks are quite 

narrow.  
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Figure 48 shows the XRD analysis for a 10 Ω-cm film. The narrow peaks seen at 

70° and approximately 28° are silicon peaks, and the narrow peak at around 26° is likely 

free carbon. Other than the silicon peaks and free carbon, the rest of the peaks appear to 

be very broad, likely from nanoparticles being present in the films. There are peaks at 

around 22°, 34°, 41°, 50°, and 55°. Because the peaks are so broad, it is possible that 

there are multiple peaks within these. Compared to Figure 46, it appears that these peaks 

could correspond to boron carbide; however, a few of the peaks (e.g., the peak at 41° and 

55°) could also be from boron nitride contamination from the showerhead of the HFCVD 

system. Due to this possible contamination and nanoparticles, it is unclear if all the 

expected peaks are present. Figure 49 shows a second XRD analysis performed with a 

different film. This analysis was performed with a more accurate machine. With this 

scan, the silicon peaks disappeared, but the peaks appeared to get a little broader. The 

broad peak at around 24° appears to show two different peaks, one around 22° and one 

around 24°. There are other peaks at approximately 28°, 34°, 41°, 50°, 55°, and 60°. 

Compared to Figure 46, these peaks could still correspond to boron carbide, but the 

broadness of the peaks again makes it unclear. Figure 47 shows that boron nitride has a 

peak at around 26°, which could overlap with the boron carbide and free carbon peaks 

expected because the peaks are so broad. Because peaks were seen with both XRD 

analyses, it can be determined that the films are not single-crystalline. These films are 

polycrystalline instead. The XRD analysis shows that the growth process needs to be 

refined and contamination needs to be eliminated to be able to produce single-crystalline 

films. 

 

 

 

Figure 46: XRD analysis of boron carbide [42]. 

 

 



 

56 
 

 

Figure 47: XRD analysis of boron nitride [43]. 

 

 

 

Figure 48: XRD analysis of boron carbide thin film. 
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Figure 49: XRD analysis of boron carbide without silicon peaks 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

 

 Boron carbide films have been grown using a custom-built HFCVD system. The 

system was designed to be used with diborane as one of the reactant gases, so stainless 

steel was used wherever possible. Safety was a top priority in the design and construction 

of this system. Double-walled tubing is used for the diborane line, and gas sensors are 

connected to a PC to allow for automated shutdown of the system should a gas leak or 

system abnormality occur. A pressure gauge and thermocouple were both installed on the 

system in order to monitor conditions of the system during the growth process. Substrate 

temperatures of 800-1000°C were used for the deposition of the boron carbide onto the n-

type silicon wafers. An SEM was used to image the grown samples. The deposition 

appeared to be uniform across the wafer, but there were differences when magnified. Van 

der Pauw and Hall measurements were performed to determine the resistivity, bulk 

carrier density, and the Hall mobility of the thin films. The Hall mobility was slightly 

higher than expected, indicating contamination or growth parameter issues. XRD analysis 

was performed to see if the films were single-crystalline. Unfortunately, the films 

appeared to be polycrystalline, indicating that further optimization of the growth process 

is required to produce single-crystalline boron carbide deposited onto the silicon wafers. 

Radiation detection was not possible with these samples, as there was a large amount of 

noise in each sample tested. This is likely due to contamination of some sort—possibly 

boron nitride contamination. 

 

 Future work consists of further optimization of the system and growth parameters, 

as deposition of single-crystalline boron carbide is desired. A design change to an 

inverted chimney reactor using a graphite susceptor is currently being investigated. Other 

analysis techniques will be performed on the grown films, including transmission 

electron microscopy (TEM), energy dispersive spectroscopy (EDS), laser-induced 

breakdown spectroscopy (LIBS), and Raman spectroscopy. Once a proper film has been 

grown, a boron carbide Schottky diode p-n heterojunction device will be created and 

tested for alpha and neutron response. 
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