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Abstract 

 

 

 Detailed in this manuscript is a methodology to model ground state properties of 

4He droplets at zero pressure and zero Kelvin using a density functional theory of liquid 

helium.  The density functional approach examined here consists of two noted functionals 

from the literature and corresponding mean field definitions.  A mean field and trial 

density are defined for each system and optimized to self-consistency using a matrix 

diagonalization technique.  Initial calculations of planar slabs are performed and 

demonstrate reasonable agreement with experiment and with prior studies using density 

functional theory.  Quantum properties of droplets and droplets containing atomic 

dopants are calculated.  Three different He-dopant potentials are examined to test the 

limits of the functional methods.   For each impurity interaction, an average of 12 atoms 

were found to reside in the first solvation shell with an atomic dopant placed at the 

droplet center.  Maximum densities in the first solvation shell reached those of solid 

helium as predicted by DF methods.   
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Chapter 1:  Summary and motivation for research  

 

  

1.1    Characteristics of quantum fluids 

 

 Quantum fluids have been of great interest to the scientific community for multiple 

reasons, as they are an illustration of unique quantum properties on a broad scale.  

Observables on the microscopic level manifest themselves in macroscopic-level behavior, 

so that individual quantum states, which are represented mathematically, can be 

visualized with the naked eye.  At absolute zero 4He remains a liquid because weak van 

der Waals interactions are the predominant intermolecular forces within the fluid.  

Helium exhibits a weakly cohesive internal structure, yet each atom is strongly 

correlated to every other.  Properties of superfluidity arise from zero viscosity, zero 

entropy, and absolute thermal conductivity.  Helium is the one element that does not 

form a solid at zero Kelvin and atmospheric pressure; it freezes only under the 

application of external pressure.  At the lambda point of 2.17 K, the state of liquid 4He 

sustains a low viscosity and transitions into the superfluid phase due to the expression of 

Bose-Einstein statistics.   

 4He has integer spin of a boson, exhibiting Bose-Einstein statistics that predict the 

non-existence of the Pauli-exclusion principle, so that upon an exchange, the 

wavefunction remains symmetrical.  For bosons this means that 4He particles become 

indistinguishable upon the condensation to an equivalent ground-state energy.  This 

energetic state occurs as wavefunctions of individual atoms of the Bose condensate 
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overlap to express a single projection of the wavefunction.  Because of respective Bose or 

Fermi statistics which govern the nature of superfluidity, quantum properties determine 

whether a system behaves like a quantum fluid.(1)  This is visually manifested in 

quantized spin states.  As a beaker of quantum fluid is swirled, it may only spin with 

allowed velocities as the energy increases by specified increments.  Because 4He is a 

boson with integer spin, quantum characteristics of the atom are expressed on an 

macroscopic scale as seen in quantum fluids such as the phenomenon of continuous 

thermal conductivity.  The expression of quantum phenomena on a large scale such as in 

a cluster of atoms has aroused interest in computational work that aims in developing a 

mean field to accurately discern interactions of 4He.  The convention must be defined on 

the quantum level in order to make predictions and correlation to experimental data.   

 In order to interpret a density functional for superfluid 4He, dimensionality 

dependence of the system must be considered—spatially how the density fluctuates 

within the liquid.  Under external constraints of zero temperature and zero pressure, the 

bulk liquid density for certain system geometries may be approximated to a one 

dimensional system where the density varies only with alteration of the coordinate 

direction perpendicular to the planar-liquid interface.(2, 3)  This asymptote is defined as 

the transition from the liquid to vacuum phase as the density fades into vapor and 

vacuum.  Unidimensional dependence may also be adapted from Cartesian coordinates to 

spherical coordinates when examining a 4He droplet-like system.(3)  Similarly, in a 

spherical conformation the density only deviates with the displacement of one coordinate, 

defining the radius of the helium sphere.  Movement from the Cartesian z axis to a 

proposed z’ axis or r axis to r’ axis will track close-range fluctuation throughout the liquid 

and demonstrate the variation of density in square slabs or spherical shells of the liquid.   

 Weak van der Waals forces are the cohesive force in superfluid helium, and further 

motivation for this research comes from inconsistencies in models of dynamic energetic 

interactions within the liquid.  Predictions vary as to whether or not minute oscillations 

exist at the planar interface as the density decays into the gas phase and then to 
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vacuum.(2, 3, 4)  It has been determined that 4He clusters have less restrictions for bound 

states, unlike the 3He Fermi condensate, which must form a Cooper pair upon transition 

to superfluidity.(1)  Calculations demonstrate that 4He clusters are bound for all values of 

N.(5)   

 Excitations and dynamic properties within the bulk liquid arise from phonon-roton 

dispersion.(6)  Phonons are symmetrical fluctuations of energy which arise from sound 

wave vibrations and are dependent on the velocity of sound.  An accurate description of 

phonon excitations is likely to incorporate the three-body interaction into the theory as 

phonons arise from the three-body movement within the condensed helium.  Sound waves 

act as a perturbation, which then resonates as it is periodically absorbed by each atom in 

the Bose-condensate.  Rotons are similar to phonon vibrations except they are motivated 

by rotational fluctuations. Phonon-roton dispersion is the observed quantum energy 

fluctuations as a combination of the two(7) and are dependent upon the helium trimer 

interaction.   

 The phenomenon of backflow arises from close-range dispersive effects as atoms 

move within the liquid.  While one atom moves, others are pushed into the available 

empty spaces. Backflow manifests itself as excitations within the bulk liquid, but also 

influences surface character in quantum evaporation and oscillations of surface density.(8, 

9, 10)  Backflow and phonon-roton dispersion are dynamic properties within the liquid and 

echo on the liquid-vacuum interface.  The character of these fluctuations can be measured 

directly from neutron scattering experiment in the dynamic structure factor 𝑆 𝑞, 𝜔 (7) and 

incorporated into parameters of the density functional.(3, 11)  The static density response 

function 𝜒 𝑞  is inversely proportional to the dynamic structure factor and also defines 

properties of bulk liquid helium.  Van der Waals interactions oversee these internal 

properties of liquid 4He, which in turn structures the functional.  To properly understand 

quantum interactions at the atomic level, interest lies in the improvement of theoretical 

methods which define liquid 4He at zero temperature and zero pressure.  
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1.2    4He as a cryogenic matrix for spectroscopy 

  

 Superfluid 4He is commonly used as an ultra-cold spectral medium to probe an 

embedded molecule because it creates a unique matrix which can easily be doped upon 

formation.  Helium droplets are best suited for spectroscopy because of their finite size, 

while samples of bulk fluid are less likely to isolate a single molecule for perturbation.  

OCS and SF6 are such molecules of interest.  Using helium as the matrix yields increased 

spectroscopic resolution; one such avenue, by eliminating hot bands since the dopant will 

most likely be in the ground state upon superfluid transformation at these 

temperatures.(12)  For a more in depth description of experimental design and 

spectroscopic technique for using 4He as a cryogenic matrix see reference 12 and sources 

therein.   

 In order to expand upon the understanding of helium nanodroplets as an 

experimental matrix, it must be known how the impurity interacts with the helium.  The 

question of whether or not solvation of the dopant occurs and what solvation shells may 

form is of great importance.  The dimensionless value of lambda, dissimilar from the 

temperature lambda point of superfluid transition, defines the solvation nature of a 

dopant.  Lambda predicts whether or not an impurity will be fully solvated at the center 

of the droplet, or have little to no solvation and reside in dimples at various depths within 

the droplet.  It has been determined that a lambda value of 1.9 is the threshold of 

solvation; values below 1.9 are indicative of surface location and above 1.9 predict 

complete solvation.(13)  Lambda is dependent upon the surface tension and particle 

density of the helium droplet, along with the well depth and equilibrium bond length of 

the He-dopant interaction potential.  With varied He-dopant interactions potentials that 

include higher order corrections, different behavior of solvation could be calculated for the 

same impurity near the solvation threshold.  Using different levels of computation such 

as density functional theory (DFT) or quantum Monte Carlo (QMC) may yield different 

descriptions of He-He interactions within the droplet.  The development of more accurate 
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He-dopant potentials will facilitate the study of borderline impurities, one such example 

is that of the Mg atom.  It is relevant to note here that Mg may reside at varied depths in 

a spherical system depending upon the size of the droplet and level of theory or 

experiment used.(14)  Correlation of theory can be helpful in the calculation of the chemical 

potential of superfluid helium systems and binding energies of impurities,(12, 15)  which 

directly leads into the question of solvation.  Thus far, density functional theory has 

found reasonable agreement with diffusion Monte Carlo simulations; however, there are 

some systems that have yet to find agreement.(16)  

 As a dopant becomes more and more attractive, the first solvation shell may 

contain densities approaching solid helium.  As the density elevates to densities near the 

solid-state limit around 0.0287 Å−3, it believed that three-body interactions play a more 

representative role.(17)  The research here aims to analyze the capabilities and 

weaknesses of density functional methods to examine doped 4He droplets when the 

impurity is of an attractive nature.  We intend to compute energy components calculated 

with density functional theory which include only two-body potentials.  

 Superfluids, such as 4He, are of great relevance as ultra-cold matrices suited for 

high resolution spectroscopy.  In the simple 4He quantum fluid, a droplet becomes an 

ideal environment for cryogenic spectral analysis of embedded molecules;(12)  therefore, it 

is important to understand the interatomic forces within a system of 4He.  Further 

interest of this proposal lies in the description of internal forces within the 4He quantum 

fluid, with the ultimate goal of examining the importance of two-body interaction 

potentials of helium droplets and droplets with the presence of alkaline earth metal 

impurities.   
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1.3  Outline of current manuscript 

 

 The remainder of the manuscript is organized as follows. Chapter two examines 

the relevant interaction potentials of helium, with division of the chapter considering 

two-body and three-body with higher order terms.  Chapter three is an exploration of 

recent literature studies, including three noted density functionals used to scrutinize 

systems of 4He in the form of planar slabs, nanodroplets, and nanodroplets containing 

atomic dopants placed at the center.  Chapter four imparts the methodology and 

mathematics of the current work, along with details of numerical test cases and fine 

points to consider in the process.  Chapter five presents the results and interpretation of 

the data.  Finally, chapter six concludes with items for future research interests. 
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Chapter 2: Atomic interactions in condensed phases of helium 

 

 

2.1  Pairwise additive interactions  

 

 In the study of simple quantum fluids, two-body potentials are the primary 

interactions which influence the character of the liquid.(18)  In density functional studies 

of liquid helium, the most frequent representation of the He-He pair interaction has been 

the Lennard-Jones 6-12 potential, modified at short-range with a variety of screening 

effects.(3, 11, 18)  The Aziz pair potential is another notable form in the literature with a 

softer core repulsion than the Lennard-Jones.(19)    

 The development of the pair interaction relies upon the second virial coefficient, 

B(T) in equation (1), to define properties of weak van der Waals interactions present in 

4He.  The second virial coefficient is temperature dependent and can be measured from 

experiment or derived from theory.  A form of the virial equation is listed as equation (1), 

where 𝜌 in this respect is the molar density.  The constant R is the molar gas constant, P 

is the pressure, and T is the absolute temperature.  Higher order correction terms are 

represented by the higher order virial coefficients, C(T) and D(T).  Deviations from ideal 

gas behavior in helium can be described by the virial equation, with second order 

corrections described by the second virial coefficient.(20)  From a discrete use of pair 

potentials, one can determine energy and density values for a system of low-density 

liquids.(19)    

             (1) 

𝑃

𝜌𝑅𝑇
= 1 + 𝐵(𝑇)𝜌 + 𝐶(𝑇)𝜌2 + 𝐷(𝑇)𝜌3 + ⋯ 



 

8 

 

 

 By deriving properties that arise from pair interactions and that can be defined 

through the second virial coefficient, we set the groundwork for describing a system of 

4He.  Such properties can be improved upon with higher order corrections.     

 

 

2.2 Three-body interactions and higher 

 

 The third virial coefficient, C(T) from equation (1), has only recently been 

approximated by theory.  C(T) grows highly complex because it must include two-body 

and three-body interactions to the correction term.  One such method of derivation is 

described by Garberoglio and Harvey, using a form of path-integral calculations.(21)  

Interactions of a higher order become apparent in liquids of higher densities and 

densities that approach the solid state hexagonal close-packed lattice formation.  

Exchange nonadditivity is  a three-body interaction relevant at short-range and more 

difficult to quantify than long-range dispersive interactions defined by Axilrod Teller 

triple dipole interactions.(20)  For an explanation of exchange nonadditivity and tripole 

dipole terms, see references 22 and 23, respectively.   

 Higher order terms contribute less to atomic interactions within a system of 

helium.  One cannot ignore interactions of a higher order; however, there are certain 

properties that are dominated by two-body terms used in density functional studies.  

According to recent progress in the field, QMC simulations have been used as the 

benchmark to study interactions of liquid helium.  Thus far, DFT methods have given 

reasonable agreement to Monte Carlo studies which can inherently include three-body 

interactons.(24)  At higher densities, the case argues for the inclusion of higher order 

correlation terms.   
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Chapter 3:  Recent DFT approaches from the literature 

 

 

3.1 Density functional theory of quantum fluids 

 

 The basis of density functional theory for quantum fluids is different from 

traditional DFT principles which utilizes electron density to write the energy of a system.  

Here, the energy is dependent upon the one-body density, from this point on, referred to 

as ρ.  In 1990 Dupont-Roc et al.(3) prepared a novel density functional that has been a 

strong basis for current research studies.(3, 4, 11)  In reference 3 the authors make a more 

concise yet simple model than previous theory.  They examine parameters to model 

nuclear forces as one inclusive mean field interaction, utilizing previous density 

functional theory considerations and expanding to correct former shortcomings in 

accordance with experimental data.  A many-body problem is averaged to a single mean 

field expression.  Previous to Dupont-Roc et al.,(3) Stringari and Treiner’s approach(2) 

chose a Skyrme interaction to define the density dependent energy functional.  Skyrme 

calculations define ground-state nuclei correlations as a zero-range potential of superfluid 

4He.  However, this functional is predicted to be unable to govern corrections such as the 

presence of impurities.(3)   Density functional theory has proven a valid resource to 

examine atomic forces within nanodroplets of 4He.  Since the transition between states 

occurs in a small range of temperature, it is important to incorporate the inhomogeneous 

equation of state with respect to a small range of temperature.     

 Density functional theory of superfluid helium defines an approximation of the 

energy of a model inhomogeneous system of 4He as a function of the fluid’s one-body 
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density.  With an appropriate correlation energy, one may readily interpret properties of 

the density profile, characteristic wavefunction, mean field expression, and calculate 

energetic properties of the system such as the chemical potential.  However, the 

duplication of theory to experiment does not yet suffice within a reasonable window of 

error to consistently predict solvation of dopants that have a weak tendency to dissolve in 

liquid helium.  We will refer to the functional developed within the Dupont-Roc paper(3) 

as the Orsay-Paris collaboration. The authors take a many-body problem and reduce the 

interacting forces to a one-body problem dependent upon a single variable, where the 

mean field potential varies with respect to the coordinate axis perpendicular to a liquid-

vacuum interface.  The simplification is lifted directly from the assumption that the 

density of bulk fluid or spherical droplets is only dependent upon the direction 

perpendicular to the interface of the system as the density decays into vacuum; and the 

energy of the system is a function of the particle density.  Density varies with the 

symmetry of the system, either in planar slabs or spherical shells.  The behavior of the 

system with respect to each atom is characterized by the mean field potential 

approximation, accounting for long and short-range interaction terms as well as the 

presence of superfluid, liquid, and solid variations throughout the density of the system.   

 The Orsay-Paris calculation of the surface tension is agreeable to existing data, 

quantified within the density profile through the characterization of a value known as 

surface thickness.  The surface thickness is defined t10-90, which represents the interval 

over which helium undergoes a transition from 10% to 90% of the bulk superfluid density.  

The surface thickness value from the Orsay-Paris functional was computed to be 5.8 Å, 

compared to previous calculations of 7 Å.(3)  Improvements to calculation of the density 

profile originate with added parameters extrapolated from experiment, such as the static 

density response function 𝜒 𝑞  or consideration of quantum backflow effects.  

Pricaupenko and Treiner(4) explore excitations within the bulk liquid using the Orsay-

Paris functional.  However, Dalfovo et al.(11) aggregate the static density response 

function and backflow effects into an improved density functional theory named the 
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Orsay-Trento collaboration.  The Orsay-Paris functional lacks these corrections.  The 

static response function can be computed from the dynamic structure function 𝑆 𝑞, 𝜔  

which is taken directly from neutron scattering data(3) and incorporated into the energy 

functional.  Quantum backflow is responsible for density fluctuations within bulk liquid 

and distinct excitations at the surface which influence the transition to the vapor phase, 

arising from phonon-roton excitations.(8, 9)  Resultant oscillations from phonon-roton 

currents occur in density values particularly as defined by the surface profile. Monte 

Carlo simulations predict these small fluctuations.(16)  Calculations of superfluid 4He with 

the majority of atoms in the ground state must allow for the possibility of excited states, 

particularly at surface locations which promote movement to and from the vapor phase.  

The adjustment of existing computational methods to experimental observation and 

emerging theory, proves the progressive approach to define a sufficient density 

functional.(4, 11) 

 The mean field must define bulk 4He interactions at infinite depth throughout the 

liquid and across the transition to gas phase at a surface.  The functional should 

encompass the consideration of multiple surfaces which project a finite depth formation 

found in the spherical structure of a nanodroplet and contain an added potential to 

exploit the possibility of impurities such as nitrogen, neon, alkali and alkaline earth 

metals.  The potential for the presence of impurities takes its value from the energy 

difference in calculations performed with the impurity and separately without. The 

energy difference is the potential.(11)  Nitrogen and neon add dispersion forces which are 

stronger than helium-helium attractions because they tolerate an increased mass.  

Further, it is under debate whether alkali and alkaline earth metals may be absorbed by 

nanodroplets of liquid helium.  Because of the coexistence of He I and He II phases, the 

classical and quantum nature of the sample must be incorporated into the functional.  

Inhomogeneous helium includes the equation of state where solid, superfluid, liquid, or 

gas might coincide.  Theory must also take into account the superposition of phase I 

liquid state and phase II quantum fluid state which may reside in the bulk liquid.(3)  As 
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well as examining depth and surface properties, calculations must also be able to 

incorporate the presence of impurities that promote van der Waals forces within the 

liquid. The current literature contains a variety of density functionals which mimic the 

behavior of inhomogeneous 4He on the quantum level; however, since each functional is 

an approximation, they each have presuppositions.  The proposed research begins with 

the review of preceding literature papers to determine a density functional which 

accurately defines a mean field approximation for 4He at zero temperature and zero 

pressure.  The mean field defines an energy potential in units of Kelvin with respect to 

each atom. Much of the current research begins with the phenomenological functional 

contained in the Orsay-Paris functional and continues to the Orsay-Trento collaboration.  

Phenomenological methods incorporate the combination of experimental parameters and 

theory to improve upon the model system of interest.  

 Here, we are interested in the ground state properties and static interactions of 

liquid 4He at zero temperature and zero pressure.  The variance of liquid 4He depends 

upon the surface character of the system and the interface that exists.  A few examples 

could be qualitatively described by a sample of bulk fluid, a thin film which does not 

approach bulk properties, or a nanodroplet which has spherical shells.  The authors of the 

Orsay-Paris collaboration describe their functional as radical yet simple compared to 

precedent works, with correlation between the calculated surface tension (σ) and the 

experimental value, 𝜍 =  0.277 𝐾 Å−2 and 0.274 𝐾 Å−2, respectively. The functional 

predicts long-range interactions and represents well the constant-density bulk helium 

found infinitely far away from an interface, but has less agility when dealing with short- 

range interactions found in the surface width and vaporization transition.(3)  Subsequent 

work has added a correction to the Orsay-Paris approximation with consideration 

towards the static response function and phonon-roton dispersion.  The Orsay-Trento 

collaboration developed a functional that predicts minute oscillations in the density 

profile as it decays at a liquid-gas interface.  It is noted however, that these oscillations 

may be too small to be found in experimental data of the density profile, but have been 



 

13 

 

congruously predicted in the literature by Monte Carlo simulations.(14)  

 Imaginary time-step methods, an iterative process outlined by the Orsay-Paris 

collaboration are used to advance an initial trial wavefunction with the Hamiltonian 

operator to calculate a self-consistent form of the wavefunction.  U is the mean field 

approximation.  Through the process given in equation (2), the system is optimized to 

self-consistency.             

             (2) 

| 𝜑 𝑛+1  =  𝑒−ℋΔ𝜏  |𝜑 𝑛  ≈  1 − Δ𝜏   
−ℏ2

2𝑚
∇2 +  𝑈    |𝜑 𝑛   

 

 

∆𝜏 ≅ 0.05 ∙  
(∆𝑥)2

4
∙

2𝑚

ℏ2
 

 

 Upon reaching self-consistency of the wavefunction between subsequent time-

steps, equation (3) defines the relation to the chemical potential μ with a planar system 

dependent upon the z direction.  A similar iterative process can be performed with a 

matrix diagonalization technique which calculates the lowest eigenvalue returned as the 

chemical potential through a Schrödinger-like equation.   

 Equation (3) defines the relationship between the kinetic energy, mean field, and 

chemical potential operating on the wavefunction in Cartesian coordinates. 

             (3) 

−
ℏ2

2𝑚
∇2  𝜑 𝑧 + 𝑈 𝑧  𝜑 𝑧 = 𝜇 𝜑(𝑧) 

 

 Interactions within liquid 4He are relatively simple as van der Waals forces are the 

dominant interactions between atoms.  Therefore, the predominant forces within the fluid 

are assumed to be defined mainly by two-body potentials.(18)  The relevance of a three-

body potential relies upon the strength of theory to describe such terms.(25)  It is believed 
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that the first solvation shell of liquid 4He approaches densities of the solid phase where 

three-body interactions then become important.  Properties of interest of quantum fluids 

are the structure, phase transitions, binding energies, excitation spectra, and properties 

where bulk character is apparent.   

 Szybisz(24) looks at DFT compared to Monte Carlo (MC) techniques for energetic 

calculations of free films of liquid helium.  DFT lacks an inherent test for accuracy, and 

so it is imperative to examine the results from a secondary method.  QMC simulations 

are accepted as a highly accurate computational analysis of a quantum system of bosons.  

Three-body interactions of importance in liquid argon and krypton suggest that they play 

a role in liquid helium as well.  At the critical density, triple dipole (DDD) interactions 

exhibit the largest contribution to the potential for liquid krypton.  The triple dipole or 

Axilrod Teller terms define weak, long-range, three-body interactions that must be 

damped at close-range.  Calculations of krypton indicate that three-body corrections play 

a larger role in the energy per particle calculations.(26)   

 Pairwise additive interaction potentials can currently be calculated with a high 

degree of accuracy using ab initio methods.  Much improvement in correlation with 

experimental data has been made in calculations of 4He ground state properties with 

terms added to account for phenomenological data.  As mentioned previously, an 

interesting question of current literature is whether a Mg or Ca atom will be solvated or 

remain in dimples closer to the surface of the helium droplet.  Both Mg and Ca are close 

to the cutoff point of potential solvation, noted by the dimensionless lambda.  According 

to Hinde,(15) a Mg atom is indeed solvated, while Ca is proposed to reside in deep pockets 

below the surface, but not entirely solvated by the 4He droplet.  This is also dependent 

upon the size of the 4He droplet.  Further, it is determined that for N < 30 atoms Mg 

resides on the surface.(14)  DFT has been used to examine solvation properties of atomic 

dopants.   
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 3.2  Earliest functional for 4He:  Stringari and Treiner  

 

 Density functional theory of simple fluids begins with the definition of the energy 

as a function of the one-body density, where the overall energy is the quantum kinetic 

energy plus the potential energy interaction.  A thorough discussion of the choice of terms 

can be found in references 2 and 3.  For initial forms of the energy functional shown in 

equation (4), the potential interaction is defined by the simplistic Skyrme interaction 

with mathematical expressions to represent long and short-range effects.(2, 3)    

             (4) 

 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐  𝜌 + 𝐸𝑆𝑘𝑦𝑟𝑚𝑒 [𝜌] =  𝑑3𝑟
ℏ2

2𝑚
|∇𝜑|2 +  𝑑3𝑟  

𝑏

2
𝜌2 +

𝑐

2
𝜌(2+𝛾) + 𝑑(∇𝜌)2  

 

 

Where the one-body density is equal to the square of the wavefunction. 

             (5) 

𝜌 = 𝜑2 

 

Parameters are chosen to reproduce experimental values of surface tension, equation of 

state, and bulk liquid properties with the following definitions for 4He.(2, 3) 

 

𝑏 = −8.88810 𝑥 102𝐾 Å3 

𝑐 = 1.04554 𝑥 107𝐾 Å3(1+𝛾) 

𝑑 = 2.383 𝑥 103𝐾 Å5 

𝛾 = 2.8 

 

To discuss the terms which contribute to the Skyrme potential, each will be referenced in 

relation to their corresponding coefficients of b, c, and d.  The b term is a negative 
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contribution to the energy, defining the attractive forces with a  favorable interaction 

potential dependent upon the square of the density.  The c term is positive, indicative of a 

repulsive term that contains the density held to a power greater than two.  As the atoms 

become closer and closer together, this term becomes more significant than a squared 

term.  The gradient term with the d coefficient favors bulk density over surface positions, 

since the term is zero where the density remains constant and non-zero at places of 

fluctuation in the density such as at surface interactions. 

 With an expression for the kinetic and potential energies, one can extrapolate 

directly the mean field potential, represented by U[ ρ ], by taking the first functional 

derivative of the potential with respect to the one-body density represented by equation 

(6).  The total energy is a definition of the entire system, while the mean field potential 

delineates an effective interaction with respect to one  atom.   

 

             (6) 

𝛿𝐸[𝜌]

𝛿𝜌
= 𝑈 𝜌  

 

 

The mean field expression for the Stringari and Treiner functional is given by equation 

(7), where r is the generic variable of change along the coordinate system. 

 

             (7) 

𝑈 𝑟 = 𝑏𝜌 𝑟 +
2 +  𝛾

2
𝑐 𝜌(𝑟)(1+𝛾) − 2𝑑∇2𝜌(𝑟) 

 

The initial density profile guess from Stringari and Treiner is given in equation (8).  The 

use of this equation is dependent upon the location of the interface.  A fair trial density, 

along with the mean field expression, is produced to intiate the matrix diagonalization 

process.   
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             (8) 

  

𝜌 𝑟 =  
𝜌0

 1 + exp  
𝑟
𝑎𝑖𝑛

  
𝜈  

 

The trial density has the following parameters. 

      𝜌0 = 0.021836 Å−3 

𝑎𝑖𝑛 = 1.96 Å 

𝜐 = 2.5 

With the mean field of equation (7), there is now a practical application of the density 

functional theory to produce a self-consistent density profile, along with the 

corresponding chemical potential from the implementation of a matrix diagonalization 

subroutine. 

 

 

 3.3  First improvements:  Orsay-Paris collaboration 

   

 Improvements to the Stringari and Treiner functional are  seen in adjustments to 

the Skyrme potential,(3) replacing the attractive b term with a Lennard-Jones 6-12 

potential seen as the first term of the Epotential of equation (9).  This creates an effective 

screening at short distances and an attractive interaction at long-range distances.   The 

positive c term from the Skyrme interaction is replaced by the second term of the 

potential energy that increases in response to hard core repulsion at short distances.  

Equation (9) is the overall energy interaction, corresponding to the Stringari and Treiner 

expression in equation (4).  The vector r describes the point at which the function exists 

on the grid coordinate system, while the vector r’ represents movement along a second 

axis throughout the fluid.   
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             (9) 

 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐  𝜌 + 𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝜌 =  𝑑3𝑟
ℏ2

2𝑚
 ∇𝜑 2 +

1

2
  𝑑3𝑟 𝑑3𝑟′ 𝜌 𝒓 𝜌 𝒓′ 𝑉𝑙  𝒓 − 𝒓′    

+ 𝑑3𝑟 
𝑐

2
𝜌(𝒓)𝜌 𝒓

(1+𝛾) 

 

 

With the Lennard-Jones potential defined by 𝑉𝑙  𝒓 − 𝒓′  , with appropriate screening at 

short distances. 

 

   | r- r’ | > h   𝑉𝑙  𝒓 − 𝒓′  = 4𝜀   
𝛼

 𝒓−𝒓′  
 

12

−  
𝛼

 𝒓−𝒓′  
 

6

  

   

   | r - r’ | ≤ h   𝑉𝑙  𝒓 − 𝒓′  = 𝑉𝑙 𝑕  
 𝒓−𝒓′  

𝑕
 

4

 

 

 

The parameters for the 4He Lennard-Jones potential are listed below.   

 

𝜀 = 10.22 𝐾 

𝛼 = 2.556 Å 

𝛾 = 2.8 

𝑕 = 2.377Å 

𝑐 = 1.04554 𝑥 107𝐾 Å3(1+𝛾) 

 

The coarse-grained density represented by 𝜌 𝒓 is given in equation (10) and is used in lieu 

of the Skyrme interaction term c.  This sets up an averaging sphere over which the 

density is calculated. 
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             (10) 

𝜌 𝒓 =   𝑑3𝑟 𝜌(𝒓)Π𝑕(𝒓 − 𝒓′) 

 

 

The following are limitations for  Π𝑕(𝒓 − 𝒓′). 

 

   | r – r’| > h   Π𝑕 𝒓 − 𝒓′ =  0 

 

   | r – r’| ≤ h   Π𝑕 𝒓 − 𝒓′ =  
3

4𝜋𝑕3   

 

The limit h is parameterized to the coefficient b, which comes from experimental data.  

The mean field is taken as the first functional derivative to the potential energy with 

respect to the density.  This yields the Orsay-Paris mean field expression seen in 

equation (11).  

  

             (11) 

 

𝑈(𝒓) =  𝑑3𝑟′ 𝜌 𝒓′  𝑉𝑙  𝒓 − 𝒓′   +
𝑐

2
 (𝜌 𝒓)(𝛾+1) +

𝑐

2
(1 + 𝛾) 𝑑3𝑟′ Π𝑕(|𝒓 − 𝒓′|)𝜌(𝒓′)(𝜌 𝒓′)

𝛾  

          

 Here, r and r’ are vector quantities, which must be integrated out over two 

variables, following the assumption that the density is dependent upon the movement 

perpendicular to the phase transition interface.  Further details of the exploitation of this 

functional form can be found in a later section.   

 Calculation of the quantum kinetic energy density given by equation (12) and free 

energy density given by equation (13) is useful in the analysis of the final self-consistent 

mean field along the fluid-vacuum interface.  Appropriate units are 𝐾Å−3.   
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The quantum kinetic energy density,          

             (12)  

        
ℏ2|∇𝜙|2

2𝑚
  

 

and free energy density,  

             (13) 

       ℋ 𝜌 −  𝜇 𝜌       

 

are shifted to the sharpest part of the density profile along the coordinate system.  The 

location of these curves in relation to the density profile is an appropriate recreation of 

the character of van der Waals fluids.(3) 

 

 

 

 3.4 Further improvements:  Orsay-Trento collaboration 

 

 The Orsay-Trento functional(11) is an advancement to the Orsay-Paris 

collaboration, with the total energy given by equation (14).  Here, the Lennard-Jones 

potential is entirely screened at short-distances and replaced by a gradient-gradient 

term, which more effectively assimilates short-range interactions into the energy 

expression.  The c term from the original Skyrme potential is replaced with two terms 

dependent upon varying powers of a coarse-grained density averaged over sphere with 

radius h.  For the Orsay-Trento functional, h takes on a different value from the 

preceding Orsay-Paris functional.   
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             (14) 

 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐  𝜌 +  𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝜌 =  𝑑3𝑟
ℏ2

2𝑚
 ∇𝜑 2 +

1

2
  𝑑3𝑟 𝑑3𝑟′ 𝜌 𝒓 𝜌 𝒓′ 𝑉𝑙

𝑒  𝒓 − 𝒓′    

 

+
𝑐2

2
 𝑑3𝑟 𝜌 𝒓  𝜌 𝒓 

2 +
𝑐3

3
 𝑑3𝑟 𝜌 𝒓  𝜌 𝒓 

3 −
ℏ2

4𝑚
𝛼𝑠  𝑑3𝑟 𝑑3𝑟′ 𝐹  𝒓 − 𝒓′    

 

×  1 −
𝜌 𝒓 

𝜌0𝑠
 ∇𝜌(𝒓) ∙ ∇𝜌(𝒓′)  1 −

𝜌(𝒓′)

𝜌0𝑠
  

 

 

 

 The additional terms allow for enhanced sensitivity of energetic calculations across 

the transition interface of the density profile.  The coarse-grained density is similarly 

defined as before by equation (15). 

             (15) 

 

𝜌 𝒓 =   𝑑3𝑟 𝜌(𝒓)Π𝑕(𝒓 − 𝒓′) 

 

 

  for  | r – r’|  > h     Π𝑕 𝒓 = 0 

 

  for  | r – r’|  ≤ h    Π𝑕 𝒓 =
3

4𝜋𝑕3 
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The three dimensional Gaussian weighting function is given by equation (16), 

 

             (16) 

𝐹  𝒓 − 𝒓′   =
1

𝜋
3

2   𝑙3
 𝑒− 𝒓−𝒓

′  
2
𝑙2  

 

where 𝑙 = 1 Å. 

 The Lennard-Jones pair potential is given below and entirely screened at short-

distances.  

 

  | r – r’|  > h                      𝑉𝑙
𝑒 |𝒓 − 𝒓′ | = 4𝜀   

𝜍

 𝒓−𝒓′  
 

12

−  
𝜍

 𝒓−𝒓′  
 

6

  

 

  | r – r’|  ≤ h             𝑉𝑙
𝑒 |𝒓 − 𝒓′ | = 0 

 

 

 

 

 

The screening effect is replaced by the gradient-gradient term.  Parameter constants for 

the mean field expression are defined below. 

 

𝑕 = 2.1903 Å 

𝜌0𝑠 = 0.04 Å−3 

𝑐2 = −2.411857𝑥104 𝐾 Å6 

𝑐3 = 1.858496𝑥106 𝐾 Å9 

𝛼𝑠 = 54.31 Å3 
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Here 𝜍 and 𝜀 correspond to the Lennard-Jones parameters of the He-He pair interaction. 

 

𝜍 = 2.556 Å 

ℰ = 10.22 𝐾 

 

Finally, through similar measures, the form of the mean field is given by equation (17) 

and can be found as equation 14 in reference 29.  Authors Eloranta et al. note that the 

weighted average term 𝜌 (𝒓) in the division with 𝜌0𝑠  is reduced to 𝜌(𝒓) in order to simplify 

computational time.  This is a fair approximation in most cases. 

             (17)

     

 𝑈 𝒓 =  𝑑3𝑟′𝜌 𝒓′ 𝑉𝑙
𝑒 𝒓, 𝒓′ +

𝑐2

2
(𝜌 𝒓)2 + 𝑐2  𝑑

3𝑟′𝜌 𝒓′ 𝜌 𝒓′  Πh (𝒓 , 𝒓′) +
𝑐3

3
(𝜌 𝒓)3 

 

+𝑐3  𝑑3𝑟′ 𝜌(𝒓′)(𝜌 𝒓′ )
2Πh 𝒓, 𝒓′  

 

+
ℏ2

2𝑚
𝛼𝑠  1 −

𝜌 𝒓 

𝜌0𝑠
  𝑑3𝑟′ ∇𝒓𝐹  𝒓 − 𝒓′   ∙ ∇ 𝜌 𝒓′  1 −

𝜌 𝒓′ 

𝜌0𝑠
  

 

 

Due to the vector quantities r and r’, the mean field must also be integrated to a form 

dependent upon one-dimension for the application of the Schrödinger-like formulation of 

equation (3).  The manipulation of the three mean field functionals is discussed in the 

following chapter.     
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Chapter 4:  Methodology of current research 

 

 

4.1 Definitions of the mean field 

  

 Much of the following mean field definitions can be pieced together from various 

papers throughout the literature in one version or another.  See references 2, 3, 11, 24, 

and 27.  The current treatment of the mean field potentials and surface density profiles 

are included in the following sections.   

 

 

 4.1.1 Stringari and Treiner 

  

 The Stringari and Treiner functional is the least demanding of the three examined 

in this work because integration is not required to obtain the mean field potential.   

 

  4.1.1.1  Planar symmetry 

 

 Planar slabs are designed with a system of Cartesian coordinates, so that the 

pertinent form of the mean field is given by equation (18), where the z coordinate is 

perpendicular to the fluid-vacuum interface.   

             (18) 

𝑈 𝑧 = 𝑏𝜌 𝑧 +
2 +  𝛾

2
𝑐 𝜌(𝑧)(1+𝛾) − 2𝑑∇2𝜌(𝑧) 
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The mean field will then employ an approximation that will be discussed in the technical 

details section of the present research to write the Laplacian in terms that are accessible 

to computer languages.   

 

             (19) 

𝑈 𝑧 = 𝑏𝜌 𝑧 +
2 +  𝛾

2
𝑐 𝜌 𝑧 (1+𝛾) −

2𝑑

(∆𝑧)2
 𝜌 𝑧 + ∆𝑧 − 2𝜌 𝑧 + 𝜌 𝑧 − ∆𝑧   

 

 

Here, Δz is the z grid-coordinate system spacing between each point on the z-axis.  This 

value can be arbitrarily chosen to allow for sufficient spacing resolution of the system.    

With the mean field approximation in equation (19) and the kinetic energy operator, the 

Hamiltonian and corresponding wavefunction calculated from the density profile can be 

input to the eigenvalue subroutine.  The subroutine calculates all of the eigenvalues 

using the iterative process of matrix diagonalization, returning the lowest eigenvalue in 

the form of the chemical potential.  This process is looped until self-consistency is 

achieved when the difference between the density values in subsequent time-steps 

becomes inconsequential.   

 

 

  4.1.1.2  Droplet with spherical symmetry 

 

 For the Stringari and Treiner mean field applied to helium droplets, the Laplacian 

is merely evolved into spherical polar coordinates, where the density is dependent only 

upon r, the direction perpendicular to the phase transition interface.  The spherical mean 

field is defined by Equation (20). 
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             (20)

        

𝑈 𝑟 = 𝑏𝜌 𝑟 +
2 +  𝛾

2
𝑐 𝜌(𝑟)(1+𝛾) − 2𝑑∇2𝜌(𝑟) 

 

 

Equation (21) utilizes central difference approximations for the first and second 

derivatives to appeal to a viable form of the Laplacian in the mean field expression. 

 

             (21) 

𝑈 𝑟 = 𝑏𝜌 𝑟 +
2 +  𝛾

2
𝑐 𝜌 𝑟 (1+𝛾) 

 

−2𝑑   
1

(∆𝑟)2
  𝜌 𝑟 + ∆𝑟 − 2𝜌 𝑟 + 𝜌 𝑟 − ∆𝑟   +  

1

𝑟∆𝑟
 𝜌 𝑟 + ∆𝑟 − 𝜌 𝑟 − ∆𝑟     

 

 

 With the mean field forms given in equations (19) and (21), an iterative process can 

propagate the wavefunction in time with a matrix diagonalization of the eigenfunctions of 

the Hamiltonian to return the lowest eigenvalue.  Upon self-consistency of this cycle, the 

optimized wavefunction can be used to model energetic properties of 4He systems of 

planar slabs and droplets.   

 

 4.1.2  Orsay-Paris collaboration 

 

 The total energy or correlation energy of the Orsay-Paris collaboration contains  

double integration, which influences the integro-form of the mean field expression 

dissimilar to the Stringari and Treiner mean field.   
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  4.1.2.1  Planar symmetry 

 

 For a planar system in Cartesian coordinates, the vector quantity |r – r’| is 

defined by the following the relation  |𝒓 − 𝒓′ | =   (𝑥 − 𝑥 ′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2 .  With z 

chosen as the direction perpendicular to the fluid-vacuum, the first step is to reorder the 

limits of integration, so that the function can be integrated out over dx’ and dy’ with the 

use of trigonometric identities.  The prime variables track the movement throughout the 

liquid in relation to the non-prime variables.  Upon the integration of x’ and y’ directions, 

the mean field becomes dependent upon the z’ direction for each value of z, following 

previously established theory of superfluid helium systems.  The z coordinate defines the 

location along the coordinate system, while z’ is the variable of integration.  Two 

integrals, one of the coarse-grained density expression and one for the mean field 

functional, must be established to set the precedence for utilization of the time-step 

method.  The coarse-grained density is given in equation (22) for a planar system.  Limits 

of integration for close range exchanges are defined for values of z’  between z – h and  z + 

h. 

 

             (22) 

𝜌 𝑧 =
3

4𝑕
 𝑑𝑧 ′𝜌 𝑧 ′  1 −   

𝑧 − 𝑧′

𝑕
  

2

     

𝑧+𝑕

𝑧−𝑕

 

 

Equation (23) is the mean field equation dependent upon the z direction.  Equation (23) is 

given in references 3 and 24 while equation (22) can also be found in reference 24. 

 

 

 

 



 

28 

 

             (23)

          

𝑈 𝑧 = 4𝜋𝜀𝛼2  𝑑𝑧 ′

∞

𝑧+𝑕

𝜌 𝑧 ′   
1

5
  

𝛼

𝑧 − 𝑧′
  

6

−
1

2
    

𝛼

𝑧 − 𝑧′
  

4

 

 

+ 4𝜋𝜀𝛼2  𝑑𝑧 ′𝜌(𝑟′)

𝑧+𝑕

𝑧−𝑕

  
8

15
  
𝛼

𝑕
  

6

−
5

6
 −

1

3
   

𝛼

𝑕
  

6

− 1   
𝑧 − 𝑧′

𝑕
  

6

   
𝛼

𝑕
  

4

 

 

+ 4𝜋𝜀𝛼2  𝑑𝑧 ′

𝑧−𝑕

−∞

𝜌 𝑧 ′   
1

5
  

𝛼

𝑧 − 𝑧′
  

6

−
1

2
    

𝛼

𝑧 − 𝑧′
  

4

 

 

+ 
3𝑐

8𝑕
 1 + 𝛾  𝑑𝑧 ′  1 −   

𝑧 − 𝑧′

𝑕
  

2

 

𝑧+𝑕

𝑧−𝑕

𝜌(𝑧 ′)(𝜌 𝑧 ′ )
𝛾 +

𝑐

2
(𝜌 𝑧)𝛾+1 

 

 

Parameters are defined in the previous chapter within the original definition of the mean 

field.  The first three terms include the Lennard-Jones potential at long range and a 

screening effect at short distances according to the limits of integration, while the fourth 

and fifth terms represent the short-range exchanges of hard core repulsion.   

 

 

  4.1.2.2  Droplet with spherical symmetry 

 

 The previous technique is applied to a spherical droplet system in the form of 

spherical polar coordinates (r, θ, 𝜙 ) and (r’, θ’, 𝜙’ ).  The r coordinate is perpendicular to 

the interface, and θ’ and 𝜙’ variable forms are integrated out of the functional leaving a 

dependence upon r’.  Here, to define the vector quantity|r - r’|, we use the Law of 
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Cosines, relating cos θ’  in terms of r and r’.  The integral containing dθ’ undergoes a 

change of variable to dcos θ’  for the ease of integration, according to the implementation 

of equation (24).   

 

             (24) 

( 𝒓 − 𝒓′  )2 = 𝑢2 = 𝑟2 + (𝑟′) 2 − 2 𝑟 𝑟′ cos 𝜃′ = 𝑕2 

 

 

Solving for cos θ’, one arrives at equation (25), which will be used to define limits of 

integration for  cos θ’  with respect to the constant h. 

 

             (25) 

cos𝜃′ =  
𝑟2 + (𝑟′)2 − 𝑕2

2 𝑟 𝑟′
 

 

 

 Due to constraints upon the limits of integration in varied regions of the coordinate 

grid, the system must be divided into three unambiguous regions in space, r = 0, r ≤ h, 

and r > h.  The limits for 𝜙′ are from 0 to 2𝜋 in all cases.   

 For the point at which r = 0, the center of the averaging sphere between r – h and  

r + h lies exactly at the origin of the coordinate grid system, where the limiting regions 

for r’ are divided between 0 to h and h to ∞, with corresponding limits 1 ≤ cos θ’ ≤ -1 for 

both areas in space.  Limits are dependent upon the location of the r’ value of integration. 
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Figure 1.  Short-range averaging sphere for r = 0. 

 

For r = 0,  

             (26) 

𝜌 𝑟 =
3

𝑕3
 𝑑𝑟′(𝑟′)2𝜌 𝑟′ 

𝑕

0

 

 

To avoid the singularity of dividing by 0, U(r) must be defined for the special case of r = 0.   

             (27) 

𝑈 𝑟 =
16𝜋𝜀

𝑕4
  
𝛼

𝑕
 

12

−  
𝛼

𝑕
 

6

  𝑑𝑟′

𝑕

0

(𝑟′)6 𝜌 𝑟′ + 16𝜋𝜀 𝑑𝑟′  𝜌 𝑟′ 

∞

𝑕

  
𝛼12

( 𝑟′)10
 −  

𝛼6

( 𝑟′)4
   

 

+ 
3𝑐

𝑕3
(1 + 𝛾) 𝑑𝑟′(𝑟′)2𝜌 𝑟′ 

𝑕

0

(𝜌 𝑟 ′ )
𝛾 +

𝑐

2
(𝜌 𝑟)𝛾+1   
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 For r values less than or equal to h, the averaging sphere must be divided into two 

spheres with limits on r’ of 0 to h – r and h – r to r + h.  This depiction allows for the 

separation of an inner and an outer sphere with unique limits on cos θ’.  For the inner 

sphere, limits have the following values 0 < r’ ≤ h – r and 1 ≤ cos θ’ ≤ -1.  For the outer 

sphere, the limits become h – r  ≤  r’  ≤ r + h and 1 ≤ cos θ’ ≤ 
𝑟2+(𝑟 ′ )2−𝑕2

2 𝑟 𝑟′
  .  Refer to Figure 2 

for a schematic drawing of the regions in space.   

 

 

 

     

 

 

 

Figure 2.  Depiction of the inner and outer averaging spheres.  
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 In this the region where r ≤ h, the coarse-grained density takes the form of 

equation (28). 

 

             (28) 

𝜌 𝑟 =
3

𝑕3
 𝑑𝑟′(𝑟′)2𝜌 𝑟′ +   

3

2𝑕3
 𝑑𝑟′(𝑟′)2𝜌(𝑟′)

𝑟+𝑕

𝑕−𝑟

 1 −
−𝑕2 + 𝑟2 + (𝑟′)2

2 𝑟 𝑟′
 

𝑕−𝑟

0

 

 

 

The spherical mean field expression for r values less than or equal to h is described by 

equation (29). 

             

             (29) 

𝑈 𝑟 =
4𝜋𝜀

3𝑕4
  
𝛼

𝑕
 

12

−  
𝛼

𝑕
 

6

  𝑑𝑟′
𝑟′𝜌 𝑟′ 

𝑟

𝑕−𝑟

0

  𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′ 3 −  𝑟2 +  𝑟′ 2 − 2 𝑟 𝑟′ 3  

 

+ 
4𝜋𝜀

3𝑕4
  
𝛼

𝑕
 

12

−  
𝛼

𝑕
 

6

  𝑑𝑟′

𝑟+𝑕

𝑕−𝑟

𝑟′𝜌 𝑟′ 

𝑟
  𝑕6 −  𝑟2 + (𝑟′)2 − 2 𝑟 𝑟′ 3  

 

+ 8𝜋𝜀  𝑑𝑟′
𝑟′𝜌(𝑟′)

𝑟

∞

𝑟+𝑕

  
𝛼12

10
 

1

(𝑟2 + (𝑟′)2 − 2 𝑟 𝑟′)5
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)5
 

−
𝛼6

4
 

1

(𝑟2 + (𝑟′)2 − 2 𝑟 𝑟′)2
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)2
   

 

+ 8𝜋𝜀  𝑑𝑟′

𝑟+𝑕

𝑕−𝑟

𝑟′𝜌(𝑟′)

𝑟
  
𝛼12

10
 

1

𝑕10
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)5
 −

𝛼6

4
 

1

𝑕4
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)2
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+ 
3𝑐

𝑕3
(1 + 𝛾)  𝑑𝑟′(𝑟′)2𝜌 𝑟′ 

𝑕−𝑟

0

(𝜌 𝑟 ′ )
𝛾 +

𝑐

2
(𝜌 𝑟)𝛾+1 

  

+ 
3𝑐

2𝑕3
(1 + 𝛾)  𝑑𝑟′(𝑟′)2𝜌(𝑟′)(𝜌 𝑟′)

𝛾

𝑟+𝑕

𝑕−𝑟

 1 −
−𝑕2 + 𝑟2 + (𝑟′)2

2 𝑟 𝑟′
  

 

 The third form of the functional comes from values of r greater than h.  Figure 3 is 

an arbitrary set-up of r’ located outside of the averaging sphere with r values greater 

than h.  Notice the definitions of h, r, r’, θ’ , 𝜙’  and |r – r’ |.   

 

    

 

 

 

     

Figure 3. Generalized depiction of the averaging sphere.  
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For values of r greater than h, the coarse-grained density in spherical coordinates is 

given by equation (30). 

             (30) 

 

 𝜌 𝑟 =
3

2𝑕3
 𝑑𝑟′(𝑟′)2𝜌 𝑟′  1 −

−𝑕2 + 𝑟2 + (𝑟′)2

2 𝑟 𝑟′
 

𝑟+𝑕

𝑟−𝑕

 

 

 

The form of equation (30) comes from integration over the variables cos θ’ and φ’.  The 

corresponding mean field is expressed by equation (31). 

 

             (31) 

 

𝑈 𝑟 = 8𝜋𝜀  𝑑𝑟′  
𝑟′𝜌 𝑟′ 

𝑟

𝑟−𝑕

0

  
𝛼12

10
 

1

(𝑟2 +  𝑟′ 2 − 2 𝑟 𝑟′)5
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)5
 

−
𝛼6

4
 

1

(𝑟2 + (𝑟′)2 − 2 𝑟 𝑟′)2
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)2
   

 

+ 8𝜋𝜀  𝑑𝑟′  
𝑟′ 𝜌(𝑟′)

𝑟

∞

𝑟+𝑕

  
𝛼12

10
 

1

(𝑟2 + (𝑟′)2 − 2 𝑟 𝑟′)5
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)5
 

−
𝛼6

4
 

1

(𝑟2 + (𝑟′)2 − 2 𝑟 𝑟′)2
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)2
   

 

+ 
4𝜋𝜀

3𝑕4
   
𝛼

𝑕
 

12

−  
𝛼

𝑕
 

6

  𝑑𝑟′
𝑟′𝜌 𝑟′ 

𝑟

𝑟+𝑕

𝑟−𝑕

 𝑕6 −  𝑟2 +  𝑟′ 2 − 2 𝑟 𝑟′ 3   
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+ 8𝜋𝜀  𝑑𝑟′

𝑟+𝑕

𝑟−𝑕

𝑟′𝜌(𝑟′)

𝑟
  
𝛼12

10
 

1

𝑕10
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)5
 −

𝛼6

4
 

1

𝑕4
−

1

(𝑟2 +  𝑟′ 2 + 2 𝑟 𝑟′)2
   

 

+
𝑐

2
(𝜌 𝑟) 𝛾+1 +

3𝑐

2𝑕3
(1 + 𝛾)  𝑑𝑟′

𝑟+𝑕

𝑟−𝑕

(𝑟′)2  𝜌 𝑟′ (𝜌 𝑟 ′ )
𝛾  1 −

−𝑕2 + 𝑟2 + (𝑟′)2

2 𝑟 𝑟′
  

 

 Parameters are previously noted within the definition of the mean field.  U(z) of 

the Orsay-Paris collaboration is now in an appropriate form to compute energetic 

calculations, such as the chemical potential, and optimized density profiles for ground 

state systems of 4He at 0 K and zero pressure.  

 

 

 4.1.3  Orsay-Trento collaboration 

 

 With the repetition of the approach previously undertaken for both Cartesian and 

spherical polar coordinates, a similar derivation can be obtained for the Orsay-Trento 

mean field and corresponding equations.  

 

 

  4.1.3.1  Planar symmetry 

 

 For a planar system, the vector quantity|r – r’|is again defined by the following, 

|𝒓 − 𝒓′ | =   (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2.  The variable vector r indicates location in the 

fluid, while r’ examines movement within the fluid.  Similar to the Orsay-Paris 

collaboration for a planar slab, the definition of the coarse-grained density is given by 

equation (32). 
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             (32) 

𝜌 𝑧 =
3

4𝑕
 𝑑𝑧 ′𝜌 𝑧 ′  1 −   

𝑧 − 𝑧′

𝑕
  

2

 

𝑧+𝑕

𝑧−𝑕

 

 

 

The corresponding mean field is given in equation (33) with the consideration of novel 

terms due to improvements upon the Orsay-Paris functional.  A version of equation (33) 

can be found in reference 24 as equation A.11. 

             (33) 

      

𝑈 𝑧 = 4𝜋𝜀𝜍2  𝑑𝑧 ′

𝑧−𝑕

−∞

𝜌 𝑧 ′   
1

5
  

𝜍

𝑧 − 𝑧′
  

6

−
1

2
    

𝜍

𝑧 − 𝑧′
  

4

+ 4𝜋𝜀𝜍2  𝑑𝑧 ′

∞

𝑧+𝑕

𝜌 𝑧 ′   
1

5
  

𝜍

𝑧 − 𝑧′
  

6

−
1

2
    

𝜍

𝑧 − 𝑧′
  

4

 

 

+ 4𝜋𝜀𝜍2  𝑑𝑧 ′𝜌 𝑧 ′ 

𝑧+𝑕

𝑧−𝑕

 
1

5
  
𝜍

𝑕
  

6

−
1

2
   

𝜍

𝑕
  

4

+
𝑐2

2
  𝜌 𝑧   2 +

3𝑐2

4𝑕
 𝑑𝑧 ′𝜌 𝑧 ′  𝜌 𝑧 ′   1 −   

𝑧 − 𝑧 ′

𝑕
  

2

 

𝑧+𝑕

𝑧−𝑕

+ 

 

+ 
𝑐3

3
  𝜌 𝑧   3 +

3𝑐3

4𝑕
 𝑑𝑧 ′𝜌 𝑧 ′    𝜌 𝑧 ′   

2   1 −   
𝑧 − 𝑧 ′

𝑕
  

2

 

𝑧+𝑕

𝑧−𝑕

 

 

+ 
ℏ2

2𝑚

𝛼𝑠
𝜌0𝑠

 𝑑𝑧 ′𝐹  𝑧 − 𝑧 ′    
𝑑𝜌(𝑧 ′)

𝑑𝑧′
  𝐼(𝑧 ′)

∞

−∞

+  
ℏ2

2𝑚
𝛼𝑠

𝑑

𝑑𝑧
  1 −

𝜌  𝑧 

𝜌0𝑠
 𝐼(𝑧)  
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The intermediate function I(z) is represented by the following equation. 

             (34) 

 

𝐼 𝑧 =  𝑑𝑧′

∞

−∞

  1 −
𝜌  𝑧 ′ 

𝜌0𝑠
 𝐹( 𝑧 − 𝑧 ′  )

𝑑𝜌(𝑧 ′)

𝑑𝑧′
 

 

A new function, the average weighted density in three dimensions is introduced in 

equation (35). 

             (35) 

𝜌  𝑧 =   𝑑3𝒓′𝜌 𝑧 ′ 𝐹( 𝒓 − 𝒓′  ) 

 

Since the density variation lies in one direction, equation (35) is simplified to equation 

(36) as an adequate approximation.   

             (36) 

𝜌 (𝑧) =  𝑑𝑧 ′𝜌 𝑧 ′ 𝐹( 𝑧 − 𝑧 ′  )

∞

−∞

 

 

With F(|r - r’|) simplified to a one-dimensional Gaussian; however, this approximation 

does not work as well in circumstances of strong binding.(27)  

             (37) 

 

𝐹  𝑧 − 𝑧 ′   =
1

𝜋
1

2  𝑙
𝑒−(𝑧−𝑧′)2 𝑙2  

 

𝑙 = 1 Å 
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 Now, the Orsay-Trento functional has been evolved into a complete set of equations 

and constants that allow manipulations of planar slabs of superfluid helium.  The process 

continues with the optimization of the wavefunction to produce the chemical potential 

and density profile.  Further emphasis will be examined in the technical details of the 

current report.     

 

 

  4.1.3.2  Droplet with spherical symmetry 

 

 The spherical droplet system of the Orsay-Trento collaboration follows the 

previously established methodology for droplets with the exception of variance in certain 

terms between the Orsay-Paris and Orsay-Trento.  Variables of θ’ and 𝜙’ are integrated 

out of the functions to yield dependence only upon r’.  The expressions are divided into 

three unambiguous regions in space and the Law of Cosines is used to encapsulate the 

variables of integration.  Since the methodology has not yet been tested, the 

representative equations for this section are included in Appendix B.  

 At the current point, the mean fields have undergone viable formatting to reach 

coding capacity.  Representative programs for the mean fields may be found in the 

appendices. 

 

 

4.2  Iterative approach 

 

 Initially, a simple program is written to define a trial density profile that mimics 

both bulk and surface properties with movement along a grid coordinate system.  The 

general form of equation (8) has been used as the density guess for all systems.(2)  A 

simple linear decay is not efficient as an initial guess for the density profile.  The 
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coordinate grid system is defined by the distinctive symmetry of the system of interest, 

either planar or spherical symmetries with resolution or either Δz or Δr.  The density is 

input into the main program to calculate the mean field, and the wavefunction is defined 

as the square root of the density.  The kinetic energy operator is also delineated here.  

The mean field plus the kinetic energy becomes the Hamiltonian operating on the 

wavefunction from which eigenvalues are calculated in a matrix diagonalization 

subroutine which returns the lowest eigenvalue.  From the enhanced wavefunction, a 

new density is established and a new mean field calculated and returned as the 

Hamiltonian into the subroutine.  The propagation cycle continues until the divergence 

between each step of the subroutine becomes minimal.  Figure 4 depicts the cycling of the 

wavefunction in Cartesian coordinates towards optimization. The cycle continues until 

the wavefunction reaches self-consistency.   

 

 

     

 

Figure 4.  Schematic representation of the optimization cycle.  
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 To incite a proper progression of the wavefuntion between subsequent cycles of the 

subroutine, a dampening of the density values must occur from old to new.  This ensures 

a small change of the wavefunction from one iteration to the next.(27)  The ratio in most 

calculations of our work is 99.85 % of old density to 0.15 % new density returned as the 

squared wavefunction from the subroutine.  This cycle continues until the difference 

between each iteration of the subroutine becomes obsolete.  The difference at this point is 

recorded on the order of 1 x 10-5 between iterations.     

 Planar slabs and droplets are normalized to the integration of the original density 

function, which in effect normalizes each step in the iterative process to a set number of 

atoms.  This accounts for a systematic approach and maintains a unified system 

throughout the optimization cycle.  In a different manner, altering the initial trial density 

and subsequent integration value allows us to examine droplets with varied number of 

atoms in separate simulations.   

 The presence of an impurity is modeled according to a supplemental He-dopant 

potential interaction added on to the mean field potential.  As an intial characterization 

of the atomic dopant, the Lennard-Jones pair potential is used to define the helium-

impurity interaction.  Factors of 2 x LJ potential, 1.5 x LJ potential, and 0.703898 x LJ 

potential are utilized to test the limits of the helium system.  The factor of 0.703898 x LJ 

potential is chosen to imitate the Mg-He pair interaction extrapolated from a calculation 

by Hinde.(15)  A doped density profile is also created to exhibit zero density at the center of 

the droplet for the location of the atomic impurity.  The matrix diagonalization 

calculations and iterative process for pure droplets are followed in a similar manner to 

simulate the doping of droplets.  
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4.3  Technical details 

 

 Section 4.3 deals with particularities applied to the mean field functions.  The first 

consideration is the resolution of ∆𝑧 or ∆𝑟  for each of the defined systems.  The Stringari 

and Treiner functional in planar symmetry has a resolution of ∆𝑧 = 0.1 Å.  For spherical 

symmetry, the functional is correlated to the Orsay-Paris functional value of h, so that 

∆𝑟 = 0.02377 Å.  All systems of the Orsay-Paris functional use a resolution value of 

0.02377 Å  for simplicity.  Systems that correspond to the Orsay-Trento collaboration have 

a spacing resolution of 0.021903 Å  related to the value of h for the Orsay-Trento 

functional.    

 When examining the input of derivatives for the special case of the -∞ endpoint, 

the derivative is assumed to be constant, so that ρ(z - Δz) = ρ(z).  The previous also applies 

to the kinetic energy operator on spherical systems at the r = 0  endpoint, which requires 

a second derivative at a phantom point previous to r = 0.  The eigenvalue subroutine used 

for matrix diagonalization of spherical coordinates must be set for real general matrices 

to account for an asymmetrical Hamiltonian matrix produced in the mean field program.  

Planar slabs are defined with two interfaces, which produce a symmetrical Hamiltonian 

operator and utilize a real symmetric matrix for diagonalization.  For the +∞ endpoint, 

the density has decayed to zero, so that the mean field function is itself zero and directly 

defined as such.   

 For spherical droplets, the form of certain equations must be multiplied by 2𝑟𝑟′ to 

remove the possibility of zero in the denominator for points at which 𝑟 or  𝑟′ = 0.  

Although the representative equations from the previous chapters are not explicitly 

shown in this format, this multiplication is performed when programming the 

expressions into computer code in order to avoid a singularity in the denominator.  

Equation (38) is an example of such.  
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             (38)

            

𝜌 𝑟 =   
3

4𝑕3
 

𝑑𝑟′(𝑟′)𝜌(𝑟′)

𝑟

𝑟+𝑕

𝑟−𝑕

 2 𝑟 𝑟′ − (−𝑕2 + 𝑟2 + (𝑟′)2)  

 

 Evolving the density functionals into a form that could be mathematically 

represented by the Fortran coding, requires the application of certain techniques.  

Further formatting for the approximations are encompassed in the following sub-sections.  

Sample code for most of the systems can be found in Appendix A for some of the relevant 

systems.  Upon removal of the dopant potential, the code is the same for pure droplets.   

 

 

 

 4.3.1  Trapezoid approximation for integration 

 

 In circumstances where analytical integration methods are not feasible, the 

trapezoidal rule of integration can arrive at a finite value for a continous integral.  Refer 

to equation (39) for the definition of the trapezoid rule.  The result of the trapezoidal rule 

is an equitable approximation to exact integration; however, it is highly dependent upon 

the value of the spacing 𝑑𝑧 used.  For the intents of the research here, the trapezoid rule 

is used to simplify the integral terms of the density functional to a viable form in the 

computer code.  The calculation is highly limited by the resolution of the slices by which 

the function is divided.  The smaller the spacing, the greater the accuracy and the greater 

the expenditure.  Simulations must find a balance between computational costs and 

limitations with accuracy of the technique.  Even though minimal, the greatest source of 

error of this work comes from the employment of this technique. 
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             (39) 

 𝑓 𝑧 𝑑𝑧 ≅  
𝑏 − 𝑎

2𝑛

𝑏

𝑎

 [𝑓 𝑧0 + 2𝑓 𝑧1 + 2𝑓 𝑧2 + ⋯2𝑓 𝑧𝑛−1 + 𝑓(𝑧𝑛)] 

 

 

Where, 𝑎 is the lower limit of integration and 𝑏 is the upper limit.  The function is defined 

by 𝑓(𝑧) at each separation point 0, 1, 2, 3,….  The number of slices is represented by 𝑛, 

while 𝑑𝑧 is the distance between each segment of the function.  

  

 

 

 4.3.2  Central difference approximations  

 

 The central difference approximations begin with Taylor series expansions of 

𝑓 𝑧 + 𝑕  and 𝑓 𝑧 − 𝑕 , represented by equations (40) and (41), respectively.  

Approximations of the first and second derivatives, 𝑓′ 𝑧  and 𝑓′′  𝑧 , are extracted from 

these expressions.  The 𝑕 is equivalent to a quantity of 𝛥𝑧 or 𝑑𝑧, which define the 

resolution and movement of the ordinate variable of the function.   

 

             (40) 

𝑓 𝑧 + 𝑕 =  𝑓 𝑧 + 𝑕 𝑓′  𝑧 +  
1

2
𝑕2 𝑓′′  𝑧 +

1

6
𝑕3𝑓′′′  𝑧 +

1

24
𝑕4𝑓′′′′  𝑧 + ⋯  

 

           

             (41) 

𝑓 𝑧 − 𝑕 = 𝑓 𝑧 − 𝑕 𝑓′  𝑧 +
1

2
𝑕2𝑓′′  𝑧 −

1

6
𝑕3𝑓′′′  𝑧 +

1

24
𝑕4𝑓′′′′  𝑧 ± ⋯  
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 The first-order central difference approximation is truncated at the first-order 

derivative term and given by the subtraction of the backward step of the function from 

the forward step, seen in equation (42).   

         

             (42) 

𝑓 𝑧 + 𝑕 −  𝑓 𝑧 − 𝑕 =  2 𝑕 𝑓′ 𝑧 ± ⋯ 

  

 

Solving for the first derivative gives the expression represented by the following equation. 

 

             (43) 

𝑓′ 𝑧 ≈
1

2𝑕
 [ 𝑓(𝑧 + 𝑕) − 𝑓(𝑧 − 𝑕) ] 

 

 

 The second-order central difference approximation is pared at the second-order 

derivative term by the addition of equations (40) and (41) and term cancellation.   

 

             (44) 

𝑓 𝑧 + 𝑕 +  𝑓 𝑧 − 𝑕 =  2 𝑓 𝑧 +
2

2
𝑕2𝑓′′  𝑧 + ⋯ 

 

 

 Solving for the 𝑓′′ (𝑧) represents the second derivative in a suitable form for the 

programming language.    

      (45) 

𝑓′′  𝑧 ≈  
1

𝑕2
[ 𝑓 𝑧 + 𝑕 − 2 𝑓 𝑧 +  𝑓 𝑧 − 𝑕 ] 
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 The reduction of higher order terms lowers the accuracy of the Taylor series 

expansion; however, this method allows for a direct determination of the first and second 

derivatives of a function.  The central difference formulas are utilized in the next section 

to format the mathematical operators for ∇ and ∇2.  Error arises from this approximation 

in the value of 𝑕, which could be addressed with increased resolution in the 𝑧 and 𝑟 

coordinate step size at the cost of greater computational time.  

 

 

 4.3.3  Application of central difference approximations applied to 𝛁 and 𝛁𝟐 

 

 Based upon the original definition of liquid helium systems, the uniformity of the 

density varies only in the coordinate direction that is perpendicular to the liquid to 

vacuum interface.  Therefore, this promotes the simplification of the ∇ and ∇2 operators to 

the dependence on one dimension of the system. 

 

 

  4.3.3.1 Cartesian coordinates 

 

 The density variation of a planar system of superfluid helium is throughout planar 

slabs of the fluid and delimited by a system of Cartesian coordinates.  With the previous 

statement of a single dimensionality dependence, comes the simplification of ∇ in 

equation (46) to 
𝑑

𝑑𝑧
 because the z direction is defined as the direction perpendicular to the 

interace and contains the only nonzero derivative. 

             (46) 

∇ 𝑓 =  
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
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Therefore in Cartesian coordinates, the gradient simplifies to equation (47),  

      (47) 

∇𝑓(𝑧) =
𝑑

𝑑𝑧
 

 

which then creates an opportunity for a substitution with the first-order central  

difference approximation.   

 

Equation (48) is now easily formulated for computer code. 

 

             (48) 

∇𝑓 𝑧 =
1

2𝑕
  𝑓 𝑧 + 𝑕 − 𝑓 𝑧 − 𝑕   

 

 

 The Laplacian may be formulated in a similar manner.  The Laplacian in 

Cartesian coordinates is defined by equation (49), three partial second derivatives with 

respect to x, y, and z. 

 

             (49) 

∇2 𝑓 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

 

 

With the established density dependence upon the z coordinate direction, equation (49) 

simplifies to the second derivative of the function with respect to movement along the z 

axis.  Therefore, the function no longer has partial derivatives as seen in equation (50).   
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      (50) 

∇2𝑓(𝑧) =  
𝑑2

𝑑𝑧2
 

 

 

With the incorporation of the second-order central difference approximation, ∇2𝑓(𝑧) can 

be written in the form of equation (51). 

 

      (51) 

∇2𝑓 𝑧 =
1

𝑕2
[ 𝑓 𝑧 + 𝑕 − 2 𝑓 𝑧 +  𝑓 𝑧 − 𝑕 ] 

 

 

 The ultimate manipulation of  approximations creates a version of the operators in 

terms that are easily accessible for computation of the density functionals in Fortran 77.   

 

 

  4.33.2  Spherical polar coordinates 

 

 For the spherical polar coordinate system of helium nanodroplets, the r coordinate 

direction contains the only non-zero derivative.  The gradient expression of spherical 

polar coordinates is defined by equation (52) with the additional interaction terms of 𝜃 

and 𝜑.   

             (52) 

∇𝑓 =
𝜕

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝜃
+

1

𝑟 sin 𝜃 

𝜕

𝜕𝜑
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The gradient term becomes equation (53), dependent only upon the r-axis while the 𝜃 and 

𝜑 terms drop out of the expression.  

             (53) 

∇𝑓(𝑟) =
𝑑

𝑑𝑟
 

 

Equation (54) expresses the gradient of the spherical polar coordinates in terms of the 

central difference approximation. 

 

             (54) 

∇𝑓 𝑟 =
1

2𝑕
 𝑓 𝑟 + 𝑕 − 𝑓 𝑟 − 𝑕   

 

 

 The Laplacian operator for spherical polar coordinates is seen in equation (55) and 

used here to define droplet systems.   

 

             (55) 

∇2 𝑓 =  
1

𝑟2𝑠𝑖𝑛𝜃
 sin 𝜃 

𝜕

𝜕𝑟
   𝑟2

𝜕

𝜕𝑟
  +

𝜕

𝜕𝜃
 sin 𝜃  

𝜕

𝜕𝜃
  +

1

sin 𝜃

𝜕2

𝜕𝜑2
  

 

 

Upon abridgement of the Laplacian with the assumption that the density is dependent 

upon variation of the r coordinate only, the Laplacian for the helium nanodroplets 

becomes equation (56) with the supplemental first derivative term.  Interaction terms 

from 𝜃 and 𝜑 now influence change with respect to the second derivative of the r 

coordinate. 
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             (56) 

 

       ∇2𝑓(𝑟) =  
𝑑2

𝑑𝑟 2 +  
2

𝑟
 
𝑑

𝑑𝑟
 

     

Equation (56) contains both a first and second derivative, which will then incorporate the 

first and second-order central difference approximations in the form of equation (57).  

  

             (57) 

∇2𝑓(𝑟) =
1

𝑕2
 𝑓 𝑟 + 𝑕 − 2𝑓 𝑟 + 𝑓 𝑟 − 𝑕  +

1

𝑕 𝑟
[𝑓 𝑟 + 𝑕 − 𝑓 𝑟 − 𝑕 ] 

 

 Section 4.3 composes the central tools for articulating the mean field from a 

general form into a characteristic expressions that are easily maneuvered with computer 

programming.   

  

 

4.4  Numerical tests 

 

 Numerical testing of the mean field programming was originally examined with 

the imaginary time-step method instead of the matrix diagonalization approach.   

 

 

 4.4.1  Trial with harmonic oscillator  

 

 Numerical testing of the methodology was carried out with the harmonic oscillator 

as an exemplar for the imaginary time-step method.  The intent was to begin with a 

sample wavefunction of the known harmonic oscillator that deviated from the accurate 
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form.  The starting wavefunction was purposely faulted to investigate if the time-step 

methods would optimize a mean field potential, given in equation (58), to a fixed value for 

helium parameters.  Where z is the grid coordinate of the system, U(z) is the mean field, 

and k is the spring constant calculated to a system of 4He.   

  

           (58) 

𝑈 𝑧 =  
1

2
𝑘 𝑧2 

 

 

Application of the mean field into the time-step method is given in equation (59).   

 

           (59) 

| 𝜑 𝑛+1  =  𝑒−ℋΔ𝜏  |𝜑 𝑛  ≈  1 − Δ𝜏   
−ℏ2

2𝑚
+  

1

2
𝑘𝑧2    |𝜑 𝑛   

 

 

Due to the simplicity of the system and the ease at which to define an initial guess of the 

wavefuntion, blending of the wavefunction between each step was not necessary for 

optimization to the correct form.  Two intial guesses of the wavefunction were set; one 

that was twice the height of the harmonic oscillator and the second that was half the 

height with a greater width.  Each of the false guesses propagated in time, yielding the 

accurate helium wavefunction from the harmonic oscillator approximation.   
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Chapter 5:  Results and discussion 

 

 

 Chapter 5 is a discussion of the relevant results and conclusions from this work.  

We begin with an overall summary and comparison of the functionals on various systems, 

given in Table 1.  In the case of planar slabs, the chemical potentials are not extrapolated 

to bulk density.  The recorded chemical potentials from Table 1, come from a direct 

calculation of a planar slab that nears bulk density at the interior.    

 

Table 1. Comparison of chemical potentials and maximum densities. (Read values across 

for each functional). The number of atoms in each system is given by n, where 𝜇 is the 

chemical potential in units of Kelvin, and 𝜌𝑚𝑎𝑥  is the maximum density in units of 

𝑎𝑡𝑜𝑚𝑠/Å3.   
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 Bulk density of liquid 4He is established at the value 𝜌 𝑙𝑖𝑞𝑢𝑖𝑑 = 0.021836 𝑎𝑡𝑜𝑚𝑠/Å3, 

while solid 4He densities near 𝜌𝑠𝑜𝑙𝑖𝑑 = 0.04 𝑎𝑡𝑜𝑚𝑠/Å3.(27)  Freezing is experimentally 

calculated to occur at 𝜌𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 = 0.029 𝑎𝑡𝑜𝑚𝑠/Å3.(17)  As a benchmark comparison, the 

chemical potential of bulk superfluid 4He is -7.15 K from experiment.(2)  All three of the 

functionals produce values near the bulk chemical potential for planar slabs; however, a 

standard deviation for these values is not calculated.  Orsay-Trento data for the droplet 

systems and systems containing impurities is not yet finalized and will be discussed in a 

future publication. 

 Droplets of assorted sizes report a divergence between chemical potentials, due to 

the contribuation from a greater or fewer number of atoms in the system.  Variance in 

surface area positions also contribute to the chemical potential.  An increase in droplet 

size is favored due to a decrease in the chemical potential as the number of interior 

positions grows.  Also, droplet calculations with the previously discussed dopant 

potentials are given here.  Since the impurities were applied to large droplets, the added 

He-dopant interaction did not change the overall chemical potential between varied 

dopant interactions with the same density functional.   

 The following sub-sections are further divided according to the symmetry of the 

systems of 4He that are analyzed. 

 

5.1  Planar systems 

 

 Figure 5 plots the density profiles for fluid-vacuum interface of the three density 

functionals, shifted along the z axis to align 50 % density values at z = 0.  The Stringari 

and Treiner functional is characteristic of a less steep transition, while the Orsay-Paris 

and Orsay-Trento functionals are more similar.  The Orsay-Trento functional exhibits 

greater oscillation, as expected, as it decays along the interface to zero density.  
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Figure 5. Density Profile: Planar Symmetry. Comparison of density functional 

methods with planar symmetry. Long dash: Stringari and Treiner (+2.15 z-shift).  Solid 

line: Orsay-Paris (-22.308 z-shift).  Short dash: Orsay-Trento (-20.4909 z-shift). Note: 

Density profiles are shifted to align  50% density at z = 0.   

 

 Figure 6 plots the corresponding Stringari and Treiner, Orsay-Paris, and Orsay-

Trento mean field expressions along the interface with 50 % density shifted to z = 0.  The 

relevant z shifts are given in the caption of Figure 5.  Notice that the Stringari and 

Treiner mean field does not produce the well evident in the other two mean field 

calculations.   
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Figure 6.  Mean Field: Planar Symmetry. Comparison between density functional 

methods with planar symmetry. Long dash: Stringari and Treiner. Solid line: Orsay-

Paris. Short dash: Orsay-Trento. Note: mean fields correspond to the shifts in Figure 5, 

aligning 50 % density with z = 0.  
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 Tables 2 – 4 give numerical data for values of the mean field, density profile, and z 

coordinate over the transition interface.  These values are shifted to align 50 % density at 

z = 0.  

 

Table 2.   Stringari and Treiner Functional: Planar Slab. Mean field, density, and z 

coordinate values for the Stringari and Treiner density functional, corresponding to 

Figures 1 and 2.  The z coordinate has a z-shift of +2.15 Å to align 50 % density to z = 0.   

 

 

    

 



 

56 

 

Table 3.  Orsay-Paris Functional: Planar Slab. Mean field, density, and z coordinate 

values for the Orsay-Paris density functional, corresponding to Figures 1 and 2.  The z 

coordinate has a z-shift of -22.308 Å to align 50 % density to z = 0.   
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Table 4. Orsay-Trento Functional: Planar Slab.  Mean field, density, and z coordinate 

values for the Orsay-Trento density functional, corresponding to Figures 1 and 2.  The z 

coordinate has a z-shift of -20.4909 Å to align 50 % density to z = 0.           

 

 

 

    

    

 

 

   

 



 

58 

 

 The quantum kinetic energy density and free energy densities are calculated for 

the Orsay-Paris functional to show the alignment of the mean field to the right of the 

density profile.  Figure 7 plots the density profile, kinetic energy density, and free energy 

density to show the location of the energetic properties with respect to the pattern of 

density decay.  This graph provides a correlation of the location of the mean field shifted 

to the right of the density profile as seen in a comparison of Figures 5 and 6 in relation to 

the z = 0 position.    

 

 

 

 

 

 

 



 

59 

 

  

 

 

Figure 7. Quantum Kinetic Energy and Free Energy Density. Orsay-Paris functional for 

a free planar slab of superfluid 4He. Solid line: free energy density (𝐾Å−3). Long dashed 

line: quantum kinetic energy density (𝐾Å−3). Small dashed line: density profile (Å−3).  50 

% density aligned with z = 0. 

 

 From corrections added to the correlation energy and improvements to the energy 

functional, also seen in the mean field expressions, minute oscillations are observed in 

the Orsay-Trento calculations.  The presence of these fluctuations is also predicted by 

Monte Carlo studies and is believed to arise from phonon-roton dispersion effects along 

with the phenomenon of backflow.(15,16)      
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5.2  Spherical droplets 

 

 For the case of spherical droplets, results are shown below.  Figure 8 is a 

comparison, similar to before, of the density profile and mean field of spherical symmetry 

between density functional methods.  Plots are aligned to 50 % density along the r axis.  

It is interesting and difficult to note that there is a slight deviation in the point at r = 0 

for calculations of the coarse-grained density in the Orsay-Paris pure droplet systems.  

This point does not affect doped droplets due to zero density at r = 0.  The deviant point 

stems from the inherent error in the trapezoid approximation technique employed for 

integration.  However, the stray point can only be recognized upon acute scrutiny in this 

region; and it is determined that the slight discrepancy does not infringe upon 

optimization of the droplet system.  Due to time constraints, data for the Orsay-Trento 

collaboration is not yet complete for spherical droplet systems.    
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Figure 8. Density Profile: Spherical Symmetry. Comparison between density functional 

methods with spherical symmetry. Long dash: Stringari and Treiner (-0.4065 r-shift). 

Solid line: Orsay-Paris (-0.51351 r-shift).  Note: Density profiles are shifted to align 50 % 

density at r = 20.   

 

 In Figure 8, the Stringari and Treiner and Orsay-Paris functionals model a droplet 

of 795 atoms.  Chemical potentials are given previously in Table 1.  The Stringari and 

Treiner functional yields a steep decay along the fluid-vacuum interface, along with a 

diminished depiction of the mean field and chemical potential in comparison to the 

Orsay-Paris calculation.   
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Figure 9. Mean Field: Spherical Symmetry. Comparison of density functional methods 

with spherical symmetry. Long dash: Stringari and Treiner. Solid line: Orsay-Paris. Note: 

mean fields correspond to the shifts in Figure 8, aligning 50 % density with r = 20.  

 

 The following plots compare droplet sizes within the same functional approach for 

the Orsay-Paris collaboration.  Due to the diminished ability of the Stringari and Treiner 

functional to scrutinize spherical symmetry, an examination with this method is not 

significant.  Figure 10 shows three droplets of different sizes defined by the number of 

atoms n using the Orsay-Paris collaboration.   
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Figure 10. Density Profile: Varied Droplet Size (OP). Long dashed line: n = 232 atoms. 

Solid line: n = 795 atoms. Short dashed line: n = 2252 atoms.   

 

 Figure 11 is the corresponding mean field for density profiles in Figure 10 using 

the Orsay-Paris collaboration. 
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Figure 11. Mean Field: Varied Droplet Size (OP). Long dashed line: n = 232 atoms. Solid 

line: n = 795 atoms. Short dashed line: n = 2252 atoms.  Corresponds to density profiles 

from Figure 10.  
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 Smaller droplets have less of a contribution to the chemical potential, compare -

5.237 K, -5.903 K, and -6.319 K with increasing values of n.  The most negative chemical 

potential of n = 2252 atoms is the most favorable.   

  From the initial examination of pure helium droplets, helium droplets with the 

added impurity interaction are calculated.  Data is given in the following section.    

 

 

5.3  Droplets with atomic dopants 

 

 The Stringari and Treiner functional failed upon the addition of an atomic dopant 

and self-consistency was never reached.  Therefore, no results are reported here for a 

doped droplet with the Stringari and Treiner functional.  Data for the Orsay-Trento 

collaboration will be available in a later publication.    

 Figures 12 – 13 depict doped droplets with varied potentials for the Orsay-Paris 

collaboration.  Plots visualize the interaction with an atomic dopant placed at r = 0 

through the effective change to the density profile and mean field potential.  
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Figure 12. Density Profile: Spherical Symmetry with Atomic Dopant (OP). Density 

profiles with spherical symmetry and varied dopant-He potentials. Solid line: 2 x 

Lennard-Jones He-He potential. Long dash: 1.5 x Lennard-Jones He-He potential. Short 

dash: 0.703898 x Lennard-Jones He-He potential, mimicking the He-Mg interaction 

potential from Hinde.(15) Droplet size is held constant at 12,165 atoms. Dopant is located 

at r = 0.  
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Figure 13. Mean Field: Spherical Symmetry with Atomic Dopant (OP). Mean fields 

corresponding to density profiles in Figure 12 with spherical symmetry and varied 

dopant-He potentials. Solid line: 2 x Lennard-Jones He-He potential. Long dash: 1.5 x 

Lennard-Jones He-He potential. Short dash: 0.703898 x Lennard-Jones He-He potential, 

mimicking the He-Mg interaction potential from Hinde.(15)  Chemical potential μ = -6.671 

K. 

 

 Although the mean field functions vary at distances shorter than 14 Å from r = 0, 

the calculated chemical potential stays consistent while varying the relative strengths of 

the He-dopant interaction.  This is observed because there is little contribution from the 
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atomic dopant to the remainder of the droplet.  The decay character of the meanfield at 

the liquid to vacuum interface as the density drops to zero also remains steady with a 

change in He-dopant interaction strength.  Upon altering the He-dopant exchange, an 

adjustment to the chemical potential would be expected for droplets that are significantly 

smaller in size.   The factor of 2 x Lennard-Jones interaction potential explores an upper 

limit of the attractive nature of the dopant.  Densities reached exceed those of solid 

helium.   

 Integration of the density profiles (Figure 12) provides an indication of the number 

of atoms in each solvation shell.  From the density profiles with an added dopant, it looks 

as though there are three obvious solvation shells for each system examined, with the 

possibility of a minor fourth shell.  Solvation shells are detailed in Table 5.  Notice the r 

location of each shell also recorded.  Here, the value of r indicates the outer limit or 

endpoint of the solvation shell. 
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Table 5.  Integration of Solvation Shells.  Chart indicates the endpoint r value of each 

shell and the number of atoms in the shell rounded to the nearest whole number.  Data is 

given for the Orsay-Paris at the varied He-dopant potentials. 
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 Upon freezing, helium may develop the hexagonal close-packed lattice formation 

with each atom surrounded by 12 others.(17)  It is interesting to note that the calculations 

indicate a trend towards 12 atoms in the first solvation shell for both the 1.5 and 2 x LJ 

dopant potential.  Maximum density values, reported in Table 1, in the first solvation 

shell for the 1.5 and 2 x LJ dopant potential supports the prospect of solid formation.  The 

He-Mg impurity potential lies close to this borderline, also leaning towards the possibility 

of freezing densities in the first solvation shell.   

 Upon conclusion of the current work, the reader should have gained some insight 

of the approach taken to model droplets of helium and doped droplets with a density 

functional model.  This research is intended to contribute to the pursuit of a detailed 

understanding of quantum systems of superfluid helium and the nature of solvation 

effects.   
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Chapter 6:  Items for future work 

 

 Future work will include the comparison between Orsay-Paris and Orsay-Trento 

funcionals of droplet systems and droplet systems with impurities.  One of the main 

considerations, which is not thoroughly examined here, is how  size dependence alters the 

calculations of droplets with atomic dopants.  Future work should investigate the 

relationship of droplet size to impurity solvation.  This could be done with the same 

processes outlined in the current research with multiple calculations to model doped 

droplets under a wide range in the number of atoms.  The simulations could also compare 

data between the Orsay-Paris and Orsay-Trento functionals with calculations of droplets 

of the exact size.   

 Prospective research should also improve upon the model used to delineate the He-

dopant potential with more descriptive methods.  Helium-impurity pair potentials can be 

found in recent literature studies and an improvement to this area of the current 

research could be used to augment the technique detailed here.   

 Further examination of density functional theory of helium droplets will be 

necessary to determine the importance of three-body interactions at the point where 

atomic dopants produce solid densities, particularly in the first solvation shell 

surrounding an impurity.  Research of this nature should be approached with a 

correlation of density functional theory and Monte Carlo simulations.  Diffusion Monte 

Carlo simulations should first be used to model the Bose-Einstein condensate with a pair-

wise interaction potential, and then progress with the addition of a three-body potential 

to examine the contribution of three-body interactions.  Due to the  simplistic nature of 

superfluid helium, diffusion Monte Carlo simulations may be in order to evaluate the 
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delicate contribution of three-body terms.  Without dispute, two-body interactions 

contribute the majority to the interaction potential.  However, to increase computational 

ability, three-body terms cannot be disregarded. 

 In order to separate two-body from three-body interactions, two different diffusion 

Monte Carlo methods could be utilized.  First, the Monte Carlo simulations would include 

only a pairwise-additive potential to compare directly with DFT calculations.  Then, 

simulations would be expanded to incorporate the presence of three-body interactions.  

Two aspects should be examined here—how important is the contribution of three-body 

interactions in doped 4He droplets that approach densities of solid helium and what are 

the limitations of DFT methods with such systems as doped 4He droplets.   
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Appendix A 

Fortran Code 

 

 

 

Program 1:  Stringari and Treiner 

Planar Symmetry 

 

 
implicit real*8 (a-h, o-z) 

      real*8 mass 

      dimension rhoorig(400), hmat(800, 800), tmat(800, 800), p(800) 

      dimension z(800), vmat(800, 800), psinew(800), rho(800) 

      dimension psi(800), U(400), UU(800), rhogam(400), delsq(400) 

      dimension rhonew(800), rhohybrid(800), rhogamma(800), p1(800) 

      dimension delsqrho(800), psiold(800), rhoave(400), differ(800) 

 

c      DEFINE  VARIABLES: 

c      Hmat = HAMILTONIAN MATRIX 

c      Vmat = POTENTIAL ENERGY MATRIX 

c      Tmat = KINETIC ENERGY MATRIX 

c      rhoorig = DENSITY from original fxn   

c      z = COORDINATE VALUE 

c      rhogamma and delsqRho are used to calculate U fxn 

c      U = original meanfield from rhoorig 

c      rho = includes mirror image of rhoorig and is replaced by rhohybrid 

c      UU = includes mirror image of U fxn 

c      psinew = WAVEFXN imported from subroutine 

c      psi = WAVEFXN from density rhohybrid 

c      rhonew = calculated from psinew 

c      rhohybrid =  99:1 ratio of old:new density fxns 

 

 

      open (16, file='summary2.out') 

 

      nmax=800 

      nmax1=400 

      dz=0.10d0 

      rho0=0.021836d0 

 

c     Z COORDINATE RANGE FROM -60 to +19.9  (Angstroms) 

 

      z(1)=-60.0d0 

       

      do n=2, nmax 

         z(n)=z(n-1)+dz 

c         write (6, *) z(n) 

      end do 

 

c     CONSTANTS 
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c     mass=kg, hbar=kg*m^2*s-1, boltz=kg*m^2*s-2*K-1     

   

      mass=4.002602*1.6605402d-27 

      hbar=(1.05457266d-34)*1.0d20 

      boltz=(1.380658d-23)*1.0d20 

      const=-(hbar**2)/(2*mass*boltz) 

c      dtau=(0.05d0*boltz*mass*dz**2)/(2.0d0*hbar**2) 

c      write (6, *)  hbar, boltz, const 

         

       

     

c     IMPORT MEANFIELD (Kelvin) 

       

      open (9, file='meaneqn26.out') 

      do n=1, nmax1 

         read (9, *) rhoorig(n), U(n)         

      end do 

 

      close (9) 

 

      do n=1, nmax1 

         UU(n+400)=U(n) 

         UU(401-n)=U(n) 

         rho(n+400)=rhoorig(n) 

         rho(401-n)=rhoorig(n) 

       end do 

 

c     trapezoidal rule integration of original density rho(n) 

       

      summ=0.0d0 

      a1=z(1) 

      b1=z(800) 

 

 

      do n=1, nmax  

          

         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         summ=summ+k*rho(n) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         summ=summ+k*rho(n) 

         end if 

        

      end do 

         fxn1=((b1-a1)/(2*nmax))*summ 

 

 

c     Tmat and Vmat INITIATE WITH ZEROES 

 

      do n=1, nmax 

      do o=1, nmax 

         tmat(n, o)=0.0d0 
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         vmat(n, o)=0.0d0 

      end do 

      end do 

 

c    ITERATION LOOP 

  

c      goto 400       

 

      do iteration=1, 50000 

     

    

c     Tmat and Vmat INITIATE VALUES  

 

      do n=1, nmax 

      do o=1, nmax 

         if (n.eq.o) then 

            vmat(n, o)=UU(n) 

            tmat(n, o)=(hbar**2/(mass*boltz*dz**2)) 

         else if (o.eq.(n+1).or.o.eq.(n-1)) then  

            tmat(n, o)=-(hbar**2/(2*mass*boltz*dz**2)) 

         end if  

      end do  

      end do 

 

      do n=1, nmax 

      do o=1, nmax 

         hmat(n, o)=vmat(n, o) + tmat(n, o) 

      end do    

      end do 

                  

      

      call calcpsi(hmat, psinew, eval) 

 

c     NORMALIZE PSINEW(N) 

 

      sum2=0.0d0 

      do n=1, nmax 

         sum2=sum2+psinew(n)   

      end do 

      

      do n=1, nmax  

         psinew(n)=psinew(n)/sum2       

c         write (6, *)  psinew(n), z(n) 

      end do 

 

c     CALCULATE RHONEW(N) 

 

      do n=1, nmax 

         rhonew(n)=((psinew(n))**2) 

      end do 

 

c     makes density symmetrical by taking average of two values 

      do n=1, nmax1 

         rhoave(n)=(rhonew(n)+rhonew(801-n))/2 
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c         write (6, *) rhoave(n), z(n) 

      end do 

 

      do n=1, nmax1 

         rhonew(n)=rhoave(n) 

         rhonew(801-n)=rhoave(n) 

      end do 

          

c     initiate summ to zero 

c     trapezoidal rule integration of rhonew to rescale density 

ccccccccccccccc 

       

      summ=0.0d0 

       

      a2=z(1) 

      b2=z(800) 

      

      do n=1, nmax 

         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         summ=summ+k*rhonew(n) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         summ=summ+k*rhonew(n) 

         end if 

 

      end do 

         fxn2=((b2-a2)/(2*nmax))*summ    

 

 

      do n=1, nmax 

         rhonew(n)=rhonew(n)/fxn2 

      end do 

 

      do n=1, nmax 

         rhonew(n)=fxn1*rhonew(n) 

      end do 

cccccccccccccc 

 

       

c     scale density to equal integration of original density 

c     rescale  

 

 

c     OUTPUT new dens=rhonew,  

c       hybrid dens=rhohybrid 

c       bigdiff to see difference of densities btw iterations 

 

      bigdiff=0.0d0 

 

      do n=1, nmax 

         rhohybrid(n)=(0.995d0*rho(n))+(0.005d0*rhonew(n)) 

         differ(n)=abs(rhohybrid(n)-rhonew(n)) 

         if (differ(n).gt.bigdiff) then 
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             bigdiff=differ(n) 

         else  

             bigdiff=bigdiff 

         end if 

c         write (6, *) rhohybrid(n), rho(n), rhonew(n), z(n) 

      end do 

 

      write (6, *) bigdiff, eval 

 

      write (16, *) bigdiff, eval, fxn1, fxn2 

 

      call flush(16) 

 

c      calculates second derivative of rhohybrid(n) 

      do n=1, nmax 

         if (n.eq.1.or.n.eq.nmax) then 

         delsqrho(n)=0 

         else 

         delsqrho(n)=(1/dz**2)*(rhohybrid(n+1)-2*rhohybrid(n)+ 

     .   rhohybrid(n-1)) 

         end if 

      end do 

    

 

      b=-8.88810d2 

      c=1.04554d7 

      gamm=2.8d0 

      coeff=(2.0d0+gamm)/2.0d0 

      d=2.383d3        

    

c      open a file for the output of only this iteration 

 

      open (18, file='output2.txt') 

 

c      meanfield output U(n) 

      do n=1, nmax 

         rhogamma(n)=rhohybrid(n)**(1+gamm) 

         UU(n)=b*rhohybrid(n)+coeff*c*rhogamma(n)-(2.0d0*d*delsqrho(n)) 

      write (6, *) UU(n), rho(n), rhohybrid(n), z(n) 

      write (18, *) UU(n), rho(n), rhohybrid(n), z(n) 

      end do  

      

      close (18) 

 

c      WAVEFXN FROM SQRT(rhohybrid(N)) 

      do n=1, nmax 

         psi(n)=sqrt(rhohybrid(n))  

c         write (6, *) psi(n), z(n) 

      end do 

 

c     define rhohybrid as rho for the next loop. continues cycle 

      do n=1, nmax 

         rho(n)=rhohybrid(n) 

c         write (6, *) rho(n), z(n) 
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      end do 

 

 

c      END ITERATION LOOP 

      end do   

 

400   continue 

 

 

      stop  

      end 
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Program 2:  Stringari and Treiner 

Spherical Droplets 

 

 
  implicit real*8 (a-h, o-z) 

      real*8 mass 

      dimension rho(1861), hmat(1861, 1861), tmat(1861, 1861) 

      dimension r(1861), vmat(1861, 1861), psinew(1861) 

      dimension U(1861), delsqrho(1861), differ(1861) 

      dimension rhonew(1861), rhohybrid(1861), rhogamma(1861) 

  

 

c      Hmat = HAMILTONIAN MATRIX 

c      Vmat = POTENTIAL ENERGY MATRIX 

c      Tmat = KINETIC ENERGY MATRIX 

c      rho = DENSITY  

c      r = COORDINATE VALUE 

c      rhogamma and delsqRho are used to calculate U fxn 

c      U = original meanfield from rho 

c      psinew = WAVEFXN imported from subroutine 

c      psi = WAVEFXN from density rhohybrid 

c      rhonew = calculated from psinew 

c      rhohybrid =  99.5:0.5 ratio of old:new density fxns 

 

 

      open (16, file='summary.out') 

 

 

 

c     CONSTANTS 

c     mass=kg, hbar=kg*m^2*s-1, boltz=kg*m^2*s-2*K-1     

   

      pi=3.1415926535d0 

      mass=4.002602*1.6605402d-27 

      hbar=(1.05457266d-34)*1.0d20 

      boltz=(1.380658d-23)*1.0d20 

      const=-(hbar**2)/(2*mass*boltz) 

 

c      write (6, *)  hbar, boltz, const 

             

      b=-8.88810d2 

      c=1.04554d7 

      gamm=2.8d0 

      coeff=(2.0d0+gamm)/2.0d0 

      d=2.383d3  

 

      nmax=1861 

      dr=0.02377d0 

      r(1)=0.0d0 

      h0=2.377d0 

  

      rho0=0.021836d0 
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c     R COORDINATE RANGE FROM 0 to 44.2122 (Angstroms)     

       

      do n=2, nmax 

         r(n)=r(n-1)+dr 

c         write (6, *) r(n) 

      end do 

 

 

c     initial guess of denisty profile using Treiner eqn 26 

   

       

      open (17, file='densitytest.out') 

      do n=1, nmax 

          

         read (17, *) rho(n)     

          

      end do 

 

      close (17) 

 

c     trapezoidal rule integration of original density rho(n)   = fxn1 

       

      sum1=0.0d0 

      a1=r(1) 

      b1=r(1861) 

 

 

      do n=1, nmax  

          

         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         sum1=sum1+(k*4.0d0*rho(n)*pi*r(n)**2) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         sum1=sum1+(k*4.0d0*rho(n)*pi*r(n)**2) 

         end if 

        

      end do 

         fxn1=((b1-a1)/(2*nmax))*sum1 

 

 

c     Tmat and Vmat INITIATE WITH ZEROES 

 

      do n=1, nmax 

      do o=1, nmax 

         tmat(n, o)=0.0d0 

         vmat(n, o)=0.0d0 

      end do 

      end do 

 

c    BEGIN  ITERATION LOOP 

  

 

      do iteration=1, 50000 
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c    calculates second derivative of rho(n). assumes density is constant at r=0 and 

r=44.2122 A 

       

      do n=1, nmax 

         if (n.eq.1) then 

         delsqrho(n)=(1.0d0/dr**2)*(2.0d0*rho(n+1)-2.0d0*rho(n)) 

         else if (n.eq.nmax) then 

         delsqrho(n)=(1.0d0/dr**2)*(2.0d0*rho(n-1)-2.0d0*rho(n)) 

         else 

         delsqrho(n)=((1.0d0/dr**2)*(rho(n+1)-2*rho(n)+rho(n-1)))* 

     .   ((1.0d0/(r(n)*dr))*(rho(n+1)-rho(n-1))) 

         end if 

      end do 

    

    

c      meanfield U(n) 

      do n=1, nmax 

         rhogamma(n)=rho(n)**(1.0d0+gamm) 

         U(n)=b*rho(n)+coeff*c*rhogamma(n)-(2.0d0*d*delsqrho(n)) 

c      write (6, *) U(n), rho(n), r(n) 

 

      end do  

 

 

c     Tmat and Vmat INITIATE VALUES    

c     special case of r=0 use x, y, z for kinetic energy operator 

 

      do n=1, 1 

      do o=1, 2 

         if (o.eq.1) then 

            vmat(n, o)=U(n) 

            tmat(n, o)=((3.0d0*hbar**2)/(boltz*mass*dr**2)) 

         else if (o.eq.2) then 

            tmat(n, o)=-((3.0d0*hbar**2)/(boltz*mass*dr**2)) 

         end if 

      end do 

      end do 

 

c     kinetic energy operator in all other cases 

 

      do n=2, nmax 

      do o=1, nmax 

         if (n.eq.o) then 

            vmat(n, o)=U(n) 

            tmat(n, o)=(hbar**2/(mass*boltz*dr**2)) 

         else if (o.eq.(n+1)) then  

            tmat(n, o)=-(hbar**2/(2.0d0*mass*boltz*dr**2))-(hbar**2/( 

     .mass*boltz*2.0d0*dr*r(n))) 

         else if (o.eq.(n-1)) then 

            tmat(n, o)=-(hbar**2/(2.0d0*mass*boltz*dr**2))+(hbar**2/( 

     .mass*boltz*2.0d0*dr*r(n))) 

         end if  
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      end do  

      end do 

 

      do n=1, nmax 

      do o=1, nmax 

         hmat(n, o)=vmat(n, o) + tmat(n, o) 

 

c        if (n.lt.5.and.o.lt.5) then 

       

c        write (6, *) n, o, tmat(n, o), vmat(n, o), hmat(n, o) 

            

c        end if 

 

      end do    

      end do 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc   

 

      call calcpsi(hmat, psinew, eval) 

 

      sum5=0.0d0 

      do n=1, nmax 

         sum5=sum5+(psinew(n)*4.0d0*pi*r(n)**2)   

      end do 

      

      do n=1, nmax  

         psinew(n)=psinew(n)/sum5     

      end do 

 

      do n=1, nmax 

         rhonew(n)=psinew(n)**2 

c         write (6, *)  psinew(n), r(n), rhonew(n) 

      end do 

 

 

c     trapezoidal rule integration of rhonew to rescale density    

c     fxn 8          

       

      sum8=0.0d0 

      a8=r(1) 

      b8=r(nmax) 

      tmax8=nmax-1      

 

      do n=1, nmax 

         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         sum8=sum8+(k*4.0d0*pi*rhonew(n)*r(n)**2) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         sum8=sum8+(k*4.0d0*pi*rhonew(n)*r(n)**2) 

         end if 

      end do 

         fxn8=((b8-a8)/(2.0d0*tmax8))*sum8 

c         write (6, *) fxn8 
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      do n=1, nmax 

         rhonew(n)=fxn1*(rhonew(n)/fxn8) 

      end do 

 

cccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c     OUTPUT original density=rho, new density=rhonew,  

c       hybrid density=rhohybrid 

c       bigdiff to see difference of densities btw iterations 

 

      bigdiff=0.0d0 

 

      do n=1, nmax 

         rhohybrid(n)=(0.9975d0*rho(n))+(0.0025d0*rhonew(n)) 

         differ(n)=abs(rhohybrid(n)-rhonew(n)) 

         if (differ(n).gt.bigdiff) then 

             bigdiff=differ(n) 

         else  

             bigdiff=bigdiff 

         end if 

c         write (6, *) rhohybrid(n), rho(n), U(n), r(n) 

      end do 

 

      write (6, *) bigdiff, eval 

 

      write (16, *) bigdiff, eval, fxn1, fxn8 

 

      call flush(16) 

 

c      open a file for the output of only this iteration 

 

      open (18, file='output.txt') 

 

c ccccccccc     meanfield output U(n)    ccccccccccccc 

     

      do n=1, nmax 

 

         write (6, *) U(n), rho(n), rhohybrid(n), psinew(n), r(n) 

         write (18, *) U(n), rho(n), rhohybrid(n), psinew(n), r(n) 

       

      end do  

      

      close (18) 

 

cccccc     define rho as rhohybrid for the next loop. continues cycle ccccccccc 

      do n=1, nmax 

         rho(n)=rhohybrid(n) 

c         write (6, *) rho(n), r(n) 

      end do 

 

ccc   end iteration loop 

      end do 

   

      stop 

      end 
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Program 3:  Orsay-Paris Collaboration 

Planar Symmetry 

 

 
implicit real*8 (a-h, o-z) 

      real*8 mass 

 

      dimension rho(4001), z(4001), U(4001), fxnI(4001), fxnF(4001) 

      dimension rhobar(4001), hmat(4001, 4001)  

      dimension vmat(4001, 4001), differ(4001), psinew(4001), fxnH(4001) 

      dimension rhonew(4001), rhb(4001), tmat(4001, 4001) 

      dimension rhohybrid(4001), drho(4001), fxnG(4001) 

      dimension UtermG(4001), UtermE(4001), UtermD(4001), UtermA(4001) 

      dimension UtermB(4001), UtermF1(4001), UtermF2(4001) 

      dimension UtermC(4001), fxnA(4001) 

      dimension fxnB(4001), fxnC(4001), fxnE(4001) 

      dimension rhobg(4001), Utemp(4001) 

 

 

c     initial parameters 

 

      nmax=4001 

      dz=0.02377d0 

      rho0=0.021836d0 

 

c     z coordinate system 

 

      z(1)=-47.54d0 

 

      do n=2, nmax 

         z(n)=z(n-1)+dz 

      end do 

 

c    IMPORT initial density profile 

 

      open (22, file='temp.txt') 

      do n=1, nmax 

          

         read (22, *) Utemp(n), rho(n)     

          

      end do 

 

      close (22) 

 

 

c    fxn1 is the normalization of the droplet size 

       

      sum1=0.0d0 

      a1=z(1) 

      b1=z(nmax) 

      tmax1=nmax-1 

 

      do n=1, nmax  
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         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         sum1=sum1+k*rho(n) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         sum1=sum1+k*rho(n) 

         end if 

       

      end do 

 

         fxn1=((b1-a1)/(2.0d0*tmax1))*sum1 

c         write (6, *) fxn1 

 

 

c     CONSTANTS 

 

      h=2.377d0 

      pi=3.1415926535d0 

      epsilom=10.22d0 

      alpha=2.556d0 

      alph0=2.556d0/2.377d0 

      gamm=2.8d0 

      c=1.04554d7 

       

      mass=4.002602*1.6605402d-27 

      hbar=(1.05457266d-34)*1.0d20 

      boltz=(1.380658d-23)*1.0d20 

 

c     COEFFICIENTs 

 

      coeffrhb=(3.0d0/(4.0d0*h)) 

 

      coeffA=4.0d0*pi*epsilom*alpha**2 

      coeffB=4.0d0*pi*epsilom*alpha**2 

      coeffC=4.0d0*pi*epsilom*alpha**2 

 

      coeffD=c/2.0d0 

      coeffE=((3.0d0*c)/(8.0d0*h))*(gamm+1.0d0) 

     

 

ccccccccccccc     Tmat and Vmat INITIATE WITH ZEROES cccccccccccccc 

 

      do n=1, nmax 

      do o=1, nmax 

         tmat(n, o)=0.0d0 

         vmat(n, o)=0.0d0 

      end do 

      end do    

 

 

c     open file for bigdiff  

 

      open (26, file='summary.out') 
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c     BEGIN ITERATION LOOP 

 

      do iteration=1, 50000 

 

 

c    rhobar   coarse-grained density 

 

 

      do n=1, 101 

   

        rhobar(n)=0.0d0 

        rhobg(n)=0.0d0 

    

c        write (6, *) rhobar(n), z(n) 

 

      end do 

 

      do n=102, 3901 

 

        i=n-100 

        j=n+100 

        nmaxrhb=200 

        sumrhb=0.0d0 

        arhb=z(i) 

        brhb=z(j) 

  

 

        do n1=i, j 

         

        rhb(n1)=(1.0d0-((z(n)-z(n1))/h)**2)*rho(n1) 

         

        if (n1.eq.i.or.n1.eq.j) then 

         k=1 

         sumrhb=sumrhb+k*rhb(n1) 

        else if (n1.gt.i.and.n1.lt.j) then 

         k=2 

         sumrhb=sumrhb+k*rhb(n1) 

        else 

         sumrhb=0.0d0       

      end if 

      end do 

       rhobar(n)=coeffrhb*((brhb-arhb)/(2.0d0*nmaxrhb))*sumrhb 

       rhobg(n)=exp(2.8d0*dlog(rhobar(n))) 

c        write (6, *) rhobar(n), z(n) 

    

      end do 

 

 

      do n=3902, 4001 

 

        rhobar(n)=0.0d0 

        rhobg(n)=0.0d0 
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c        write (6, *) rhobar(n), z(n) 

 

      end do 

 

 

c     remainder of Uterms and calculation of U(n) 

 

 

      do n=1, 100 

 

        U(n)=0.0d0 

 

c        write (6, *) U(n), rho(n), z(n) 

 

      end do 

 

 

      do n=101, 3900 

 

      i=n-100 

      j=n+100 

       

      sumA=0.0d0 

      nmaxA=i 

      aA=z(1) 

      bA=z(i) 

 

 

c       limits -inf to z-h 

 

         do n1=1, i 

 

         fxnA(n1)=rho(n1)*((alpha/(z(n)-z(n1)))**4)*((0.2d0* 

     .   ((alpha/(z(n)-z(n1)))**6))-0.5d0) 

 

        if (n1.eq.1.or.n1.eq.i) then 

         k=1 

         sumA=sumA+k*fxnA(n1) 

        else if (n1.gt.1.and.n1.lt.i) then 

         k=2 

         sumA=sumA+k*fxnA(n1) 

        else  

         sumA=0.0d0 

        end if 

        end do 

 

         UtermA(n)=coeffA*((bA-aA)/(2.0d0*nmaxA))*sumA 

 

         

c       limits z-h to z+h 

 

        sumC=0.0d0 

        nmaxC=200 
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        aC=z(i) 

        bC=z(j) 

 

        sumE=0.0d0 

        nmaxE=200 

        aE=z(i) 

        bE=z(j) 

 

         do n1=i, j 

 

         fxnC(n1)=(rho(n1)*(alph0**4))*((((8.0d0/15.0d0)*(alph0**6))- 

     .   (5.0d0/6.0d0))-(1.0d0/3.0d0)*(((z(n)-z(n1))/h)**6)* 

     .   ((alph0**6)-1.0d0)) 

 

         fxnE(n1)=(rho(n1)*rhobg(n1))*(1.0d0-(((z(n)-z(n1))/h)**2)) 

           

        if (n1.eq.i.or.n1.eq.j) then 

         k=1 

         sumC=sumC+k*fxnC(n1) 

         sumE=sumE+k*fxnE(n1) 

        else if (n1.gt.i.and.n1.lt.j) then 

         k=2 

         sumC=sumC+k*fxnC(n1) 

         sumE=sumE+k*fxnE(n1) 

        else  

         sumC=0.0d0 

         sumE=0.0d0 

        end if 

        end do 

          

 

         UtermC(n)=coeffC*((bC-aC)/(2.0d0*nmaxC))*sumC 

 

         UtermE(n)=coeffE*((bE-aE)/(2.0d0*nmaxE))*sumE 

 

 

c       limits z+h to +inf 

 

         sumB=0.0d0 

         nmaxB=nmax-j 

         aB=z(j) 

         bB=z(nmax) 

 

         do n1=j, nmax 

 

         fxnB(n1)=rho(n1)*((alpha/(z(n)-z(n1)))**4)*((0.2d0* 

     .   ((alpha/(z(n)-z(n1)))**6))-0.5d0) 

 

        if (n1.eq.j.or.n1.eq.nmax) then 

         k=1 

         sumB=sumB+k*fxnB(n1) 

        else if (n1.gt.j.and.n1.lt.nmax) then 

         k=2 

         sumB=sumB+k*fxnB(n1) 
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        else  

         sumB=0.0d0 

        end if 

        end do 

 

        UtermB(n)=coeffB*((bB-aB)/(2.0d0*nmaxB))*sumB 

       

        UtermD(n)=coeffD*(rhobar(n)**(gamm+1.0d0)) 

 

        U(n)=UtermA(n)+UtermB(n)+UtermC(n)+UtermD(n)+UtermE(n) 

 

c      write (6, *) UtermA(n), UtermB(n), UtermC(n), z(n) 

c      write (6, *) UtermE(n), UtermD(n), z(n) 

 

c       write (6, *) U(n), rho(n), z(n) 

 

      end do 

 

 

      do n=3901 , nmax 

   

        U(n)=0.0d0 

c        write (6, *) U(n), rho(n), z(n) 

  

      end do 

 

c      goto 4004 

ccccccccccccccc     Tmat and Vmat INITIATE VALUES   ccccccccccccccccccc 

 

      do n=1, nmax 

      do o=1, nmax 

         if (n.eq.o) then 

            vmat(n, o)=U(n) 

            tmat(n, o)=(hbar**2/(mass*boltz*dz**2)) 

         else if (o.eq.(n+1).or.o.eq.(n-1)) then  

            tmat(n, o)=-(hbar**2/(2.0d0*mass*boltz*dz**2)) 

         end if  

      end do  

      end do 

 

      do n=1, nmax 

      do o=1, nmax 

         hmat(n, o)=vmat(n, o) + tmat(n, o) 

      end do    

      end do 

 

 

 

      call calcpsi(hmat, psinew, eval) 

 

      sumpsi=0.0d0 

 

      do n=1, nmax 

         sumpsi=sumpsi+psinew(n)   
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      end do 

      

      do n=1, nmax  

         psinew(n)=psinew(n)/sumpsi     

      end do 

 

      do n=1, nmax 

         rhonew(n)=psinew(n)**2 

c         write (6, *)  psinew(n), z(n), rhonew(n) 

      end do 

 

 

 

 

cccccccccccccccc     trapezoidal rule integration of rhonew to rescale density   

cccccccccccccc 

 

       

      sum8=0.0d0 

      a8=z(1) 

      b8=z(nmax) 

      tmax8=nmax-1      

 

      do n=1, nmax 

         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         sum8=sum8+(k*rhonew(n)) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         sum8=sum8+(k*rhonew(n)) 

         end if 

      end do 

         fxn8=((b8-a8)/(2.0d0*tmax8))*sum8 

c         write (6, *) fxn8 

    

      do n=1, nmax 

         rhonew(n)=fxn1*(rhonew(n)/fxn8) 

      end do 

 

 

 

 

c     OUTPUT original density=rhomirror, new dens=rhonew,  

c       hybrid dens=rhohybrid 

c       bigdiff to see difference of densities btw iterations 

 

      bigdiff=0.0d0 

 

      do n=1, nmax 

         rhohybrid(n)=(0.9985d0*rho(n))+(0.0015d0*rhonew(n)) 

         differ(n)=abs(rhohybrid(n)-rhonew(n)) 

         if (differ(n).gt.bigdiff) then 

             bigdiff=differ(n) 

         else  
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             bigdiff=bigdiff 

         end if 

c         write (6, *) rhohybrid(n), rho(n), U(n), z(n) 

      end do 

 

      write (6, *) bigdiff, eval 

 

      write (26, *) bigdiff, eval, fxn1, fxn8 

 

      call flush(26) 

 

 

      open (25, file='output.txt') 

 

c ccccccccc     meanfield output U(n)    ccccccccccccc 

     

      do n=1, nmax 

 

         write (6, *) U(n), rho(n), rhohybrid(n), psinew(n), z(n) 

         write (25, *) U(n), rho(n), rhohybrid(n), psinew(n), z(n) 

       

      end do  

      

      close (25) 

 

cccccc     define rhohybrid as rhomir for the next loop. continues cycle ccccccccc 

      do n=1, nmax 

         rho(n)=rhohybrid(n) 

c         write (6, *) rho(n), z(n) 

      end do 

 

4004   continue 

 

c     END ITERATION LOOP 

 

      end do 

 

      stop 

        end 

 

 

 

 

 

 

 

 

 

 

 



 

98 

 

Program 4:  Orsay-Paris Collaboration 

Spherical Droplets with Atomic Dopant 

 

 
implicit real*8 (a-h, o-z) 

      real*8 mass 

      dimension rho(3162), r(3162), rhobar(3162), rhobg(3162) 

      dimension rhbtermA(3162), rhbtermAa(3162), rhbtermB(3162) 

      dimension rhbtermBb(3162), rhbtermC(3162), rhbtermCc(3162) 

      dimension termA1(3162), termAa(3162), termB1(3162), termC1(3162) 

      dimension termC2(3162), termA2(3162), termB2(3162), termD1(3162)            

      dimension psi(3162), U(3162), termD2(3162), termCc(3162) 

      dimension termE1(3162), termE2(3162), termF1(3162), termF2(3162) 

      dimension termF3(3162), termF4(3162), termG1(3162), termG2(3162) 

      dimension termFf(3162), psinew(3162), tmat(3162, 3162) 

      dimension hmat(3162, 3162), vmat(3162, 3162), rhohybrid(3162) 

      dimension differ(3162), rhoave(3162), rhonew(3162) 

      dimension dopant(3162), Utmp(3162) 

 

cccccccccccccc    initial parameters of coordinate array  

 

      nmax=3162 

      dr=0.02377d0 

      r(1)=0.0d0 

      h0=2.377d0 

  

      rho0=0.021836d0 

 

cccccccccccccc    r coordinate range (Angstroms)     

       

      do n=2, nmax 

         r(n)=r(n-1)+dr 

c         write (6, *) r(n) 

      end do 

 

 

cccccccccccccc     initial guess of denisty profile using Treiner eqn 26 

cccccccccccccc     density = rho(n)   

cccccccccccc        imported from density of r coordinate system 

         

       

      open (91, file='tempinput.txt') 

      do n=1, nmax 

          

         read (91, *) Utmp(n), rho(n)     

          

      end do 

 

      close (91) 

 

ccccccccccccc     Tmat and Vmat INITIATE WITH ZEROES cccccccccccccc 

 

      do n=1, nmax 
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      do o=1, nmax 

         tmat(n, o)=0.0d0 

         vmat(n, o)=0.0d0 

      end do 

      end do  

 

cccccccccccccccc     constants      

 

c     mass=kg, hbar=kg*m^2*s-1, boltz=kg*m^2*s-2*K-1     

 

      mass=4.002602*1.6605402d-27 

      hbar=(1.05457266d-34)*1.0d20 

      boltz=(1.380658d-23)*1.0d20 

      const=-(hbar**2)/(2*mass*boltz) 

 

c      dtau=(0.05d0*boltz*mass*dz**2)/(2.0d0*hbar**2) 

c      write (6, *)  hbar, boltz, const 

 

c      coefficients for terms in meanfield function 

 

c     define constants 

       

      epsilom=10.22d0 

      pi=3.1415926535d0 

      alpha=2.556d0 

      alph0=alpha/h0 

      c=1.04554d7 

 

 

c     define dopant potential as a Lennard Jones function 

c     using a value of 2 times epsilom to indicate an attractive impurity centered 

at the middle c     of the droplet 

 

    

      

      dopant(1)=5.8d30 

 

      do n=2, nmax 

 

      dopant(n)=(4.0d0*epsilom*2.0d0)*((alpha/r(n))**12-(alpha/r(n))**6) 

         

      end do 

 

c      do n=1, nmax 

c        write (6, *) dopant(n), r(n)    

  

c      end do 

  

c     define coefficients 

   

      coeffA1=((8.0d0*pi*epsilom)/(h0**4))*((alph0**12)- 

     .(alph0**6)) 

      coeffA2=(3.0d0/h0**3)*((c*3.8d0)/2.0d0) 
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      coeffB1=((4.0d0*pi*epsilom)/(3.0d0*h0**4))*((alph0**12)- 

     .(alph0**6)) 

      coeffB2=(3.0d0*3.8d0*c)/(8.0d0*h0**3) 

 

      coeffC1=(4.0d0*pi*epsilom*alpha**12)/5.0d0 

      coeffC2=-(2.0d0*pi*epsilom*alpha**6) 

 

 

      coeffD1=(8.0d0*pi*epsilom*alpha**12) 

      coeffD2=-(8.0d0*pi*epsilom*alpha**6) 

 

      coeffE1=(4.0d0*pi*epsilom*alpha**12)/5.0d0 

      coeffE2=(-2.0d0*pi*epsilom*alpha**6) 

 

      coeffF1=(3.0d0*c*3.8d0)/(8.0d0*h0**3) 

      coeffF2=((4.0d0*pi*epsilom)/(3.0d0*h0**4))*(alph0**12-alph0**6) 

      coeffF3=(4.0d0*pi*epsilom*alpha**12)/5.0d0 

      coeffF4=(-2.0d0*pi*epsilom*alpha**6) 

 

      coeffG1=(4.0d0*pi*epsilom*alpha**12)/5.0d0 

      coeffG2=(-2.0d0*pi*epsilom*alpha**6)               

 

cccccccccccccc    trapezoidal rule integration of original density rho(n)  

cccccccccccccc     used to normalize density  

c       Main Explanation of Term Notation 

c   numbers are used to indicate the order that trapezoid rule functions appear in 

the code 

c   letters beginning with A1, A2, B1, F4,... are used to indicate intermediate 

functions used in order that they appear in the code. double letters Aa are further 

encased intermediates. 

c   represent coefficients used within the function to simplify the expression.  

 

c   sum1 becomes additive function during subsequent trapezoid integrations 

c   a1 first r-coordinate in trapezoid integration 

c   b1 is endpoint r-coordinate in trapezoid integration 

c   tmax1 is the number of sections that the function is divided into for trap. 

integration 

 

c    fxn1 is the normalization of the droplet size 

       

      sum1=0.0d0 

      a1=r(1) 

      b1=r(nmax) 

      tmax1=nmax-1 

 

      do n=1, nmax  

          

         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         sum1=sum1+(k*4.0d0*pi*rho(n)*r(n)**2) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         sum1=sum1+(k*4.0d0*pi*rho(n)*r(n)**2) 

         end if 
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      end do 

 

         fxn1=((b1-a1)/(2.0d0*tmax1))*sum1 

c         write (6, *) fxn1 

       

ccccccccccccccccccccc     rho bar^gamma=rhobg(n)    rho bar=rhobar(n)      

ccccccccccccccccc 

   

c    trapezoid integration of rhobar(n) for r-values where r < h 

c    ii  is the ending n1 value for the trapezoid integration 

c    here variables with 2 indicate inside the sphere from 0 to h-r limits 

c    a is the starting r-coordinate for the trap int  

c    b is the endpoint r-coordinate for the trap int 

c    tmax is the number of sections over which the trap int is done 

c    sum becomes the integration function added to with each subsequent loop 

c    variables with 3 indicate inside the sphere from h-r to r+h limits  

    

      open (70, file='dopedsummary.out') 

cccccccccccccccccc     ITERATION LOOP        cccccccccccccccccc 

  

 

      do iteration=1, 50000 

 

 

c      define parameters  rhobar and rhobargamma for    r<h          

 

      do n=1, 101 

 

         ii=102-n 

         i=n-100 

         j=n+100 

          

         a2=r(1) 

         b2=r(ii) 

         tmax2=ii-1 

          

         tmax3=j-ii 

         a3=r(ii) 

         b3=r(j) 

 

         sum2=0.0d0 

         sum3=0.0d0        

 

         do n1=1, ii  

            rhbtermAa(n1)=(r(n1)**2)*rho(n1) 

            if (n1.eq.1.or.n1.eq.ii) then 

               k=1 

               sum2=sum2+k*rhbtermAa(n1) 

            else if (n1.gt.1.and.n1.lt.ii) then 

               k=2 

               sum2=sum2+k*rhbtermAa(n1)        

            else  

               sum2=0.0d0 
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            end if 

         end do 

            

            if (tmax2.eq.0) then 

             rhbtermA(n)=0.0d0 

            else   

             rhbtermA(n)=(3.0d0/h0**3)*((b2-a2)/dble(2*tmax2))*sum2 

            end if            

 

 

         do n1=ii, j 

            rhbtermBb(n1)=((rho(n1)*r(n1))/(2*r(n)))* 

     .((2.0d0*r(n1)*r(n))-(-(h0**2)+r(n1)**2+r(n)**2)) 

            if (n1.eq.ii.or.n1.eq.j) then 

               k=1 

               sum3=sum3+k*rhbtermBb(n1) 

            else if (n1.gt.ii.or.n1.lt.j) then 

               k=2 

               sum3=sum3+k*rhbtermBb(n1) 

            else  

               sum3=0.0d0 

            end if  

         end do 

             

            if (n.eq.1) then 

            rhbtermB(n)=0.0d0 

            else 

            rhbtermB(n)=(3.0d0/(2.0d0*h0**3))*((b3-a3)/dble(2*tmax3)) 

     .*sum3 

            end if 

 

            rhobar(n)=rhbtermA(n)+rhbtermB(n) 

            rhobg(n)=exp(2.8d0*dlog(rhobar(n))) 

 

c         write (6, *) rhobar(n), r(n), rho(n), rhbtermA(n), rhbtermB(n) 

      end do 

 

 

c     rhobar(n) for values r > h  

 

 

c     tmax4 accounts for the 200 points within the coarse grain density sphere. 

r(n1) limits are  between  r-h and r+h 

c     a4 is the first r(n) coordinate at r-h 

c     b4 is the endpoint r(n) coordinate at r+h 

c     sum4 is the value of the function during the trap int. 

c     termZ(n1) defines the function. termZz(n1) is the intermediate to the 

expression of termZ(n1) 

       

c     define parameters 

     

          

      do n=102, 3061 
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         sum4=0.0d0 

         a4=r(i) 

         b4=r(j) 

         tmax4=200 

 

         ii=102-n 

         i=n-100 

         j=n+100 

 

         do n1=i, j 

          

         rhbtermCc(n1)=(rho(n1)*r(n1)**2) 

         

         rhbtermC(n1)=(1.0d0-((-h0**2+r(n1)**2+r(n)**2)/(2*r(n1)*r(n)))) 

     .*rhbtermCc(n1) 

          

         if (n1.eq.i.or.n1.eq.j) then 

          k=1 

          sum4=sum4+k*rhbtermC(n1) 

         else if (n1.gt.i.and.n1.lt.j) then 

          k=2 

          sum4=sum4+k*rhbtermC(n1) 

         else 

          sum4=0.0d0       

         end if 

       

         end do 

         

         rhobar(n)=(3.0d0/(2.0d0*h0**3))*((b4-a4)/dble(2*tmax4))*sum4 

        

         rhobg(n)=exp(2.8d0*dlog(rhobar(n))) 

 

c         write (6, *)  rhobar(n), r(n), rho(n) 

      end do   

  

c     once the density has decayed to zero, rhobar and rhobar^gamma do as well. 

here 

each is defined as zero for the last 100 points. 

      

      do n=3062, nmax 

         rhobar(n)=0.0d0          

         rhobg(n)=0.0d0 

c         write (6, *)  rhobar(n), r(n), rho(n) 

      end do 

  

 

ccccccccccccccccc      U(n) output    defining the mean-field function   

 

c    meanfield function for values r < h 

          

      do n=1, 101 

 

 

c    inside the inner sphere 
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         sumA1=0.0d0 

         sumA2=0.0d0 

 

c     define parameters 

         ii=102-n 

         i=n-100 

         j=n+100 

          

         aA=r(1) 

         bA=r(ii) 

         tmaxA=ii-1  

 

 

         do n1=1, ii 

 

        if (n.eq.1) then 

        termA1(n1)=2.0d0*rho(n1)*r(n1)**6 

        else  

        termA1(n1)=((r(n1)*rho(n1))/(6.0d0*r(n)))*(-((r(n1)**2)+ 

     .r(n)**2-(2.0d0*r(n1)*r(n)))**3+((r(n1)**2)+r(n)**2+(2.0d0* 

     .r(n1)*r(n)))**3)            

        end if          

 

        termA2(n1)=(r(n1)**2)*rho(n1)*rhobg(n1) 

        

         if (n1.eq.1.or.n1.eq.ii) then 

          k=1 

          sumA1=sumA1+k*termA1(n1) 

          sumA2=sumA2+k*termA2(n1) 

         else if (n1.gt.1.and.n1.lt.ii) then 

          k=2 

          sumA1=sumA1+k*termA1(n1) 

          sumA2=sumA2+k*termA2(n1) 

         else 

          sumA1=0.0d0 

          sumA2=0.0d0 

         end if 

 

c      write (6, *) r(n), r(n1), rho(n), rho(n1)  

c       write (6, *) r(n), termAa(n1), termA1(n1) 

       

       end do 

 

         if (tmaxA.gt.0) then  

         fxnA1=((bA-aA)/(2.0d0*tmaxA))*sumA1 

         fxnA2=((bA-aA)/(2.0d0*tmaxA))*sumA2 

         else  

         fxnA1=0.0d0 

         fxnA2=0.0d0 

         end if 

 

c    UtermA defines the meanfield function from boundaries 0 to h-r for r<h 
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      UtermA1=fxnA1*coeffA1 

      UtermA2=fxnA2*coeffA2 

      UtermA3=(c/2.0d0)*(rhobar(n)*rhobg(n)) 

 

c      write (6, *) UtermA1, UtermA2, UtermA3, r(n) 

 

 

c    inside the outer portion of the sphere defined by sum6 btw h-r and h+r 

c    outside the sphere but within the h-r and h+r boundaries defined by sum7 

        

         ii=102-n 

         j=n+100 

 

      sumB1=0.0d0 

      sumB2=0.0d0 

      sumC1=0.0d0 

      sumC2=0.0d0 

  

      aBC=r(ii) 

      bBC=r(j) 

      tmaxBC=j-ii 

       

         do n1=ii, j 

         termB1(n1)=((r(n1)*rho(n1))/r(n))*(-((r(n1)**2)+(r(n)**2) 

     .-(2.0d0*r(n1)*r(n)))**3+h0**6)   

 

         termB2(n1)=((rho(n1)*r(n1)*rhobg(n1))/(r(n))) 

     .*((2.0d0*r(n1)*r(n))-(-h0**2+r(n1)**2+r(n)**2))  

          

         termCc(n1)=(-(h0**2)+(r(n1)**2)+(r(n)**2)) 

 

         termC1(n1)=((rho(n1)*r(n1))/r(n))*((((r(n1)**2)+(r(n)**2)- 

     .termCc(n1))**-5)-(((r(n1)**2)+(r(n)**2)+(2.0d0*r(n1)*r(n)))**-5)) 

          

         termC2(n1)=((rho(n1)*r(n1))/r(n))*((((r(n1)**2)+(r(n)**2)- 

     .termCc(n1))**-2)-(((r(n1)**2)+(r(n)**2)+(2.0d0*r(n1)*r(n)))**-2)) 

    

          if (n1.eq.ii.or.n1.eq.j) then 

            k=1 

            sumB1=sumB1+k*termB1(n1) 

            sumB2=sumB2+k*termB2(n1) 

            sumC1=sumC1+k*termC1(n1) 

            sumC2=sumC2+k*termC2(n1) 

          else if (n1.gt.ii.and.n1.lt.j) then 

            k=2 

            sumB1=sumB1+k*termB1(n1) 

            sumB2=sumB2+k*termB2(n1) 

            sumC1=sumC1+k*termC1(n1) 

            sumC2=sumC2+k*termC2(n1) 

          else 

            sumB1=0.0d0 

            sumB2=0.0d0 

            sumC1=0.0d0 

            sumC2=0.0d0 
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          end if 

        end do 

 

          if (tmaxBC.gt.0) then  

           fxnB1=((bBC-aBC)/(2.0d0*tmaxBC))*sumB1 

           fxnB2=((bBC-aBC)/(2.0d0*tmaxBC))*sumB2 

           fxnC1=((bBC-aBC)/(2.0d0*tmaxBC))*sumC1 

           fxnC2=((bBC-aBC)/(2.0d0*tmaxBC))*sumC2 

          else if (n.eq.1) then 

           fxnB1=0.0d0 

           fxnB2=0.0d0 

           fxnC1=0.0d0 

           fxnC2=0.0d0 

          else 

           fxnB1=0.0d0 

           fxnB2=0.0d0 

           fxnC1=0.0d0 

           fxnC2=0.0d0 

          end if 

 

 

c     UtermB defines the meanfield between region  h-r and r+h for r<h 

    

      UtermB1=fxnB1*coeffB1 

      UtermB2=fxnB2*coeffB2 

      UtermC1=fxnC1*coeffC1 

      UtermC2=fxnC2*coeffC2 

 

c      region from r+h to infinity for r<h outside sphere 

         

         j=n+100 

    

         sumD1=0.0d0 

         sumD2=0.0d0 

          

         aD=r(j) 

         bD=r(nmax) 

         tmaxD=nmax-j 

  

       do n1=j, nmax 

        

       if (n.eq.1) then 

        termD1(n1)=(2.0d0*rho(n1))/(r(n1)**10) 

     

        termD2(n1)=(2.0d0*rho(n1))/(r(n1)**4) 

       else 

        termD1(n1)=((rho(n1)*r(n1))/(10.0d0*r(n)))*(((r(n1)**2+ 

     .r(n)**2-2.0d0*r(n1)*r(n))**-5)-((r(n1)**2+r(n)**2+2.0d0* 

     .r(n1)*r(n))**-5)) 

 

        termD2(n1)=((rho(n1)*r(n1))/(4.0d0*r(n)))*(((r(n1)**2+r(n)**2- 

     .2.0d0*r(n1)*r(n))**-2)-((r(n1)**2+r(n)**2+2.0d0*r(n1)*r(n))**-2)) 

       end if 
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         if (n1.eq.j.or.n1.eq.nmax) then 

          k=1 

          sumD1=sumD1+k*termD1(n1) 

          sumD2=sumD2+k*termD2(n1) 

         else if (n1.gt.j.and.n1.lt.nmax) then 

          k=2 

          sumD1=sumD1+k*termD1(n1) 

          sumD2=sumD2+k*termD2(n1) 

         else  

          sumD1=0.0d0 

          sumD2=0.0d0 

         end if 

       end do 

 

         if (tmaxD.gt.0) then  

           fxnD1=((bD-aD)/(2.0d0*tmaxD))*sumD1 

           fxnD2=((bD-aD)/(2.0d0*tmaxD))*sumD2 

         else  

           fxnD1=0.0d0 

           fxnD2=0.0d0 

         end if    

 

      UtermD1=fxnD1*coeffD1 

      UtermD2=fxnD2*coeffD2 

  

      U(n)=UtermA1+UtermB1+UtermC1+UtermC2+UtermA3+ 

     .UtermA2+UtermB2+UtermD1+UtermD2 

 

c      write (6, *) U(n), r(n) 

c      write (6, *) UtermA1+UtermB1+UtermC1+UtermC2+ 

c     .UtermA3+UtermA2+UtermB2+UtermD1+UtermD2, r(n) 

c      write (6, *) UtermA1+UtermB1, r(n) 

c      write (6, *) UtermA2+UtermB2, r(n) 

c      write (6, *) UtermC1+UtermC2, r(n) 

c      write (6, *) UtermD2+UtermD1, r(n) 

c      write (6, *) UtermA3, r(n) 

c      write (6, *) UtermA1, r(n) 

      end do 

 

       

      do n=102, 3062 

       

      i=n-100 

       

      tmaxE=i 

      aE=r(1) 

      bE=r(i)      

 

      sumE1=0.0d0 

      sumE2=0.0d0 

 

 

        do n1=1, i 
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           termE1(n1)=((rho(n1)*r(n1))/r(n))*(((r(n1)**2+r(n)**2-2.0d0* 

     .r(n1)*r(n))**-5)-((r(n1)**2+r(n)**2+2.0d0*r(n1)*r(n))**-5)) 

 

           termE2(n1)=((rho(n1)*r(n1))/r(n))*(((r(n1)**2+r(n)**2-2.0d0* 

     .r(n1)*r(n))**-2)-((r(n1)**2+r(n)**2+2.0d0*r(n1)*r(n))**-2)) 

 

 

         

        if (n1.eq.1.or.n1.eq.i) then 

           k=1 

           sumE1=sumE1+k*termE1(n1) 

           sumE2=sumE2+k*termE2(n1) 

        else if (n1.gt.1.and.n1.lt.i) then 

           k=2 

           sumE1=sumE1+k*termE1(n1) 

           sumE2=sumE2+k*termE2(n1) 

        else 

           sumE1=0.0d0 

           sumE2=0.0d0 

        end if 

        end do 

 

 

         if (tmaxE.gt.0) then  

         fxnE1=((bE-aE)/(2.0d0*tmaxE))*sumE1 

         fxnE2=((bE-aE)/(2.0d0*tmaxE))*sumE2 

         else  

         fxnE1=0.0d0 

         fxnE2=0.0d0 

         end if    

 

      UtermE1=fxnE1*coeffE1 

 

      UtermE2=fxnE2*coeffE2 

 

      UtermA3=(c*rhobg(n)*rhobar(n))/2.0d0 

 

      i=n-100 

      j=n+100 

 

      tmaxF=200 

      aF=r(i) 

      bF=r(j) 

       

      sumF1=0.0d0 

      sumF2=0.0d0 

      sumF3=0.0d0 

      sumF4=0.0d0 

 

        do n1=i, j 

          termF1(n1)=((r(n1)*rho(n1)*rhobg(n1))/r(n))*(2.0d0*r(n)* 

     .r(n1)-(-h0**2+r(n1)**2+r(n)**2)) 

 

          termF2(n1)=((rho(n1)*r(n1))/r(n))*(h0**6-(r(n1)**2+ 
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     .r(n)**2-2.0d0*r(n1)*r(n))**3) 

 

          termFf(n1)=(-(h0**2)+(r(n1)**2)+(r(n)**2)) 

 

          termF3(n1)=((rho(n1)*r(n1))/r(n))*((((r(n1)**2)+(r(n)**2)- 

     .termFf(n1))**-5)-(((r(n1)**2)+(r(n)**2)+(2.0d0*r(n1)*r(n)))**-5)) 

 

          termF4(n1)=((rho(n1)*r(n1))/r(n))*((((r(n1)**2)+(r(n)**2)- 

     .termFf(n1))**-2)-(((r(n1)**2)+(r(n)**2)+(2.0d0*r(n1)*r(n)))**-2)) 

 

 

       if (n1.eq.i.or.n1.eq.j) then 

          k=1 

          sumF1=sumF1+k*termF1(n1) 

          sumF2=sumF2+k*termF2(n1) 

          sumF3=sumF3+k*termF3(n1) 

          sumF4=sumF4+k*termF4(n1) 

       else if (n1.gt.i.and.n1.lt.j) then 

          k=2 

          sumF1=sumF1+k*termF1(n1) 

          sumF2=sumF2+k*termF2(n1) 

          sumF3=sumF3+k*termF3(n1) 

          sumF4=sumF4+k*termF4(n1) 

       else 

          sumF1=0.0d0 

          sumF2=0.0d0 

          sumF3=0.0d0 

          sumF4=0.0d0 

       end if 

       end do 

 

         if (tmaxF.gt.0) then  

         fxnF1=((bF-aF)/(2.0d0*tmaxF))*sumF1 

         fxnF2=((bF-aF)/(2.0d0*tmaxF))*sumF2 

         fxnF3=((bF-aF)/(2.0d0*tmaxF))*sumF3 

         fxnF4=((bF-aF)/(2.0d0*tmaxF))*sumF4 

         else  

         fxnF1=0.0d0 

         fxnF2=0.0d0 

         fxnF3=0.0d0 

         fxnF4=0.0d0 

         end if    

 

      UtermF1=fxnF1*coeffF1 

            

      UtermF2=fxnF2*coeffF2 

 

      UtermF3=fxnF3*coeffF3 

 

      UtermF4=fxnF4*coeffF4  

 

 

         i=n-100 

         j=n+100 
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         aG=r(j) 

         bG=r(nmax) 

         tmaxG=nmax-j 

  

         sumG1=0.0d0 

         sumG2=0.0d0     

 

         do n1=j, nmax 

 

           termG1(n1)=((rho(n1)*r(n1))/r(n))*(((r(n1)**2+r(n)**2-2.0d0* 

     .r(n1)*r(n))**-5)-((r(n1)**2+r(n)**2+2.0d0*r(n1)*r(n))**-5)) 

 

           termG2(n1)=((rho(n1)*r(n1))/r(n))*(((r(n1)**2+r(n)**2-2.0d0* 

     .r(n1)*r(n))**-2)-((r(n1)**2+r(n)**2+2.0d0*r(n1)*r(n))**-2)) 

 

         

        if (n1.eq.j.or.n1.eq.nmax) then 

           k=1 

           sumG1=sumG1+k*termG1(n1) 

           sumG2=sumG2+k*termG2(n1) 

        else if (n1.gt.j.and.n1.lt.nmax) then 

           k=2 

           sumG1=sumG1+k*termG1(n1) 

           sumG2=sumG2+k*termG2(n1) 

        else 

           sumG1=0.0d0 

           sumG2=0.0d0 

        end if 

        end do 

 

 

         if (tmaxG.gt.0) then  

         fxnG1=((bG-aG)/(2.0d0*tmaxG))*sumG1 

         fxnG2=((bG-aG)/(2.0d0*tmaxG))*sumG2 

         else  

         fxnG1=0.0d0 

         fxnG2=0.0d0 

         end if    

 

      UtermG1=fxnG1*coeffG1 

 

      UtermG2=fxnG2*coeffG2 

 

 

      U(n)=UtermE1+UtermE2+UtermF1+UtermF2+UtermF3+UtermF4+UtermG1+ 

     .UtermG2+UtermA3    

 

c      write (6, *) UtermF1, r(n) 

c      write (6, *) UtermF3+UtermF4, r(n) 

c      write (6, *) UtermF2, r(n) 

c      write (6, *) UtermE1+UtermE2, r(n) 

c      write (6, *) UtermG1+UtermG2, r(n) 

c      write (6, *) UtermA3, r(n) 
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c      write (6, *) U(n), r(n) 

      end do 

 

      do n=3063, nmax 

 

         U(n)=0.0d0 

   

c      write (6, *) U(n), r(n) 

      end do      

 

ccccccccccccccc     Tmat and Vmat INITIATE VALUES   ccccccccccccccccccc 

 

cc special case of r=0 use x, y, z for kinetic energy operator 

 

      do n=1, 1 

      do o=1, 2 

         if (o.eq.1) then 

            vmat(n, o)=U(n)+dopant(n) 

            tmat(n, o)=((3.0d0*hbar**2)/(boltz*mass*dr**2)) 

         else if (o.eq.2) then 

            tmat(n, o)=-((3.0d0*hbar**2)/(boltz*mass*dr**2)) 

         end if 

      end do 

      end do 

 

cc      kinetic energy operator in all other cases 

 

      do n=2, nmax 

      do o=1, nmax 

         if (n.eq.o) then 

            vmat(n, o)=U(n)+dopant(n) 

            tmat(n, o)=(hbar**2/(mass*boltz*dr**2)) 

         else if (o.eq.(n+1)) then  

            tmat(n, o)=-(hbar**2/(2.0d0*mass*boltz*dr**2))-(hbar**2/( 

     .mass*boltz*2.0d0*dr*r(n))) 

         else if (o.eq.(n-1)) then 

            tmat(n, o)=-(hbar**2/(2.0d0*mass*boltz*dr**2))+(hbar**2/( 

     .mass*boltz*2.0d0*dr*r(n))) 

         end if  

      end do  

      end do 

 

      do n=1, nmax 

      do o=1, nmax 

         hmat(n, o)=vmat(n, o) + tmat(n, o) 

 

c        if (n.lt.5.and.o.lt.5) then 

       

c        write (6, *) n, o, tmat(n, o), vmat(n, o), hmat(n, o) 

            

c        end if 

 

      end do    

      end do 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc   

 

cc       sum5 to normalize psinew 

 

      call calcpsi(hmat, psinew, eval) 

 

      sum5=0.0d0 

      do n=1, nmax 

         sum5=sum5+(psinew(n)*4.0d0*pi*r(n)**2)   

      end do 

      

      do n=1, nmax  

         psinew(n)=psinew(n)/sum5     

      end do 

 

      do n=1, nmax 

         rhonew(n)=psinew(n)**2 

c         write (6, *)  psinew(n), r(n), rhonew(n) 

      end do 

 

 

c     initiate summ to zero 

cccccccccccccccc     trapezoidal rule integration of rhonew to rescale density   

cccccccccccccc 

 

       

      sum8=0.0d0 

      a8=r(1) 

      b8=r(nmax) 

      tmax8=nmax-1      

 

      do n=1, nmax 

         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         sum8=sum8+(k*4.0d0*pi*rhonew(n)*r(n)**2) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         sum8=sum8+(k*4.0d0*pi*rhonew(n)*r(n)**2) 

         end if 

      end do 

         fxn8=((b8-a8)/(2.0d0*tmax8))*sum8 

c         write (6, *) fxn8 

    

      do n=1, nmax 

         rhonew(n)=fxn1*(rhonew(n)/fxn8) 

      end do 

 

 

cccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c     OUTPUT original density=rho, new density=rhonew,  

c       hybrid density=rhohybrid 

c       bigdiff to see difference of densities btw iterations 
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      bigdiff=0.0d0 

 

      do n=1, nmax 

         rhohybrid(n)=(0.999d0*rho(n))+(0.001d0*rhonew(n)) 

         differ(n)=abs(rhohybrid(n)-rhonew(n)) 

         if (differ(n).gt.bigdiff) then 

             bigdiff=differ(n) 

         else  

             bigdiff=bigdiff 

         end if 

c         write (6, *) rhohybrid(n), rho(n), U(n), r(n) 

      end do 

 

      write (6, *) bigdiff, eval 

 

      write (70, *) bigdiff, eval, fxn1, fxn8 

 

      call flush(70) 

 

 

      open (76, file='dopedoutput.txt') 

 

c ccccccccc     meanfield output U(n)    ccccccccccccc 

     

      do n=1, nmax 

          

         write (6, *) U(n), rho(n), rhohybrid(n), psinew(n), r(n) 

         write (76, *) U(n), rho(n), rhohybrid(n), psinew(n), r(n) 

       

      end do  

      

      close (76) 

 

cccccc     define rhohybrid as rhomir for the next loop. continues cycle ccccccccc 

      do n=1, nmax 

         rho(n)=rhohybrid(n) 

c         write (6, *) rho(n), r(n) 

      end do 

 

ccc   end iteration loop 

      end do 

 

 

 

      stop  

      end 
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Program 5:  Orsay-Trento Collaboration 

Planar Symmetry 

 

 
implicit real*8 (a-h, o-z) 

      real*8 mass 

 

      dimension rho(4001), z(4001), U(4001), fxnI(4001), fxnF(4001) 

      dimension rhobar(4001), rhowtave(4001), hmat(4001, 4001)  

      dimension vmat(4001, 4001), differ(4001), psinew(4001), fxnH(4001) 

      dimension rhonew(4001), rhb(4001), rhowta(4001), tmat(4001, 4001) 

      dimension rhohybrid(4001), fxnIi(4001), drho(4001), fxnG(4001) 

      dimension UtermG(4001), UtermE(4001), UtermD(4001), UtermA(4001) 

      dimension UtermH(4001), UtermB(4001), UtermF1(4001), UtermF2(4001) 

      dimension UtermC(4001), fxnF1(4001), fxnF2(4001), fxnA(4001) 

      dimension fxnB(4001), fxnC(4001), fxnD(4001), fxnE(4001) 

      dimension dfxnI(4001), dfxnH(4001), Utemp(4001) 

 

 

c     initial parameters 

 

      nmax=4001 

      dz=0.02190323d0 

      rho0=0.02184d0 

 

c     z coordinate system 

 

      z(1)=-43.806d0 

 

      do n=2, nmax 

         z(n)=z(n-1)+dz 

      end do 

 

c    IMPORT initial density profile 

 

      open (22, file='temp.txt') 

      do n=1, nmax 

          

         read (22, *) Utemp(n), rho(n)     

          

      end do 

 

      close (22) 

 

 

c    fxn1 is the normalization of the system size 

       

      sum1=0.0d0 

      a1=z(1) 

      b1=z(nmax) 
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      tmax1=nmax-1 

 

      do n=1, nmax  

          

         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         sum1=sum1+k*rho(n) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         sum1=sum1+k*rho(n) 

         end if 

       

      end do 

 

         fxn1=((b1-a1)/(2.0d0*tmax1))*sum1 

c         write (6, *) fxn1 

 

cccc here alpha corresponds to the Lennard-Jones parameter sigma given in  

cccccccc representative equations and alphas corresponds to alpha0s  

 

 

c     CONSTANTS 

 

      h=2.190323d0 

      pi=3.1415926535d0 

      epsilom=10.22d0 

      alpha=2.556d0 

      alphs=54.31d0 

      c1=-2.411857d4 

      c11=1.858496d6 

      rho0s=0.04d0 

       

      mass=4.002602*1.6605402d-27 

      hbar=(1.05457266d-34)*1.0d20 

      boltz=(1.380658d-23)*1.0d20 

 

c     COEFFICIENTs 

 

 

      coeffA=4.0d0*pi*epsilom*alpha**2 

      coeffB=4.0d0*pi*epsilom*alpha**2 

      coeffC=4.0d0*pi*epsilom*alpha**2 

 

      coeffD=c1/2.0d0 

      coeffE=c11/3.0d0 

     

      coeffF1=(3.0d0/(4.0d0*h))*c1 

      coeffF2=(3.0d0/(4.0d0*h))*c11 

 

      coeffG=(alphs*hbar**2)/(2.0d0*mass*boltz*rho0s) 

 

      coeffH=(alphs*hbar**2)/(2.0d0*mass*boltz) 

 

ccccccccccccc     Tmat and Vmat INITIATE WITH ZEROES cccccccccccccc 
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      do n=1, nmax 

      do o=1, nmax 

         tmat(n, o)=0.0d0 

         vmat(n, o)=0.0d0 

      end do 

      end do    

 

 

c     open file for bigdiff  

 

      open (16, file='summary.out') 

 

 

c     BEGIN ITERATION LOOP 

 

      do iteration=1, 50000 

 

 

 

c    rhowtave  =  weighted average density. close to actual density value, however, 

intended to be c    important at denisties near the liquid-solid interface 

c    fxnF = Gaussian 1D weight function 

 

      do n=1, nmax 

 

        sumrhwta=0.0d0 

        nmaxrhwta=nmax-1 

        arhwta=z(1) 

        brhwta=z(nmax) 

  

        do n1=1, nmax 

         

        fxnF(n1)=(1.0d0/sqrt(pi))*(exp(-(z(n)-z(n1))**2)) 

         

        rhowta(n1)=fxnF(n1)*rho(n1) 

 

        if (n1.eq.1.or.n1.eq.nmax) then 

         k=1 

         sumrhwta=sumrhwta+k*rhowta(n1) 

        else if (n1.gt.1.and.n1.lt.nmax) then 

         k=2 

         sumrhwta=sumrhwta+k*rhowta(n1) 

        else 

         sumrhwta=0.0d0       

        end if 

        end do 

        rhowtave(n)=((brhwta-arhwta)/dble(2*nmaxrhwta))*sumrhwta 

 

c      write (6, *) rhowtave(n), z(n), rho(n) 

 

      end do 

 

c    rhobar   coarse-grained density 
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      do n=1, 101 

   

        rhobar(n)=0.0d0 

    

c        write (6, *) rhobar(n), z(n) 

 

      end do 

 

      do n=102, 3901 

 

        i=n-100 

        j=n+100 

        nmaxrhb=200 

        sumrhb=0.0d0 

        arhb=z(i) 

        brhb=z(j) 

  

 

        do n1=i, j 

         

        rhb(n1)=(1.0d0-((z(n)-z(n1))/h)**2)*rho(n1) 

         

        if (n1.eq.i.or.n1.eq.j) then 

         k=1 

         sumrhb=sumrhb+k*rhb(n1) 

        else if (n1.gt.i.and.n1.lt.j) then 

         k=2 

         sumrhb=sumrhb+k*rhb(n1) 

        else 

         sumrhb=0.0d0       

      end if 

      end do 

       rhobar(n)=(3.0d0/(4.0d0*h))*((brhb-arhb)/(2.0d0*nmaxrhb))*sumrhb 

 

c        write (6, *) rhobar(n), z(n) 

    

      end do 

 

 

      do n=3902, 4001 

 

        rhobar(n)=0.0d0 

 

c        write (6, *) rhobar(n), z(n) 

 

      end do 

 

 

c    first derivative fxn of rho 

 

      do n=1, nmax 
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         if (n.eq.1.or.n.eq.nmax) then 

         drho(n)=0.0d0 

         else  

         drho(n)=(rho(n+1)-rho(n-1))/(2.0d0*dz)          

         end if 

  

      end do 

 

c    fxnI 

    

 

      do n=1, nmax 

 

         sumfxnI=0.0d0 

         nmaxfxnI=nmax-1 

         afxnI=z(1) 

         bfxnI=z(nmax) 

 

         do n1=1, nmax 

 

         fxnF(n1)=(1.0d0/sqrt(pi))*(exp(-(z(n)-z(n1))**2)) 

          

         fxnIi(n1)=(1.0d0-(rhowtave(n1)/rho0s))*fxnF(n1)*drho(n1) 

         

        if (n1.eq.1.or.n1.eq.nmax) then 

         k=1 

         sumfxnI=sumfxnI+k*fxnIi(n1) 

        else if (n1.gt.1.and.n1.lt.nmax) then 

         k=2 

         sumfxnI=sumfxnI+k*fxnIi(n1) 

        else 

         sumfxnI=0.0d0       

        end if 

        end do 

        fxnI(n)=((bfxnI-afxnI)/(2.0d0*nmaxfxnI))*sumfxnI 

 

c      write (6, *) fxnI(n), z(n) 

 

      end do 

 

 

c      UtermG   meanfield term 7 with limits of  -inf to +inf 

 

      do n=1, nmax 

 

      nmaxG=nmax-1 

      sumG=0.0d0 

      aG=z(1) 

      bG=z(nmax) 

 

         do n1=1, nmax 

    

         fxnF(n1)=(1.0d0/sqrt(pi))*(exp(-(z(n)-z(n1))**2)) 
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         fxnG(n1)=fxnF(n1)*fxnI(n1)*drho(n1) 

          

        if (n1.eq.1.or.n1.eq.nmax) then 

         k=1 

         sumG=sumG+k*fxnG(n1) 

        else if (n1.gt.1.and.n1.lt.nmax) then 

         k=2 

         sumG=sumG+k*fxnG(n1) 

        else  

         sumG=0.0d0 

        end if 

        end do 

 

        UtermG(n)=coeffG*((bG-aG)/(2.0d0*nmaxG))*sumG 

 

        UtermD(n)=coeffD*(rhobar(n)**2) 

        UtermE(n)=coeffE*(rhobar(n)**3) 

 

c       write (6, *) UtermG(n), UtermE(n), UtermD(n), rho(n), z(n) 

 

      end do 

 

 

c      UtermH    

 

      do n=1, nmax 

 

         fxnH(n)=(fxnI(n)*rhowtave(n))/rho0s 

 

c        write (6, *) fxnH(n), z(n) 

   

      end do 

 

      do n=1, nmax 

 

         if (n.eq.1.or.n.eq.nmax) then 

          dfxnI(n)=0.0d0 

          dfxnH(n)=0.0d0 

         else  

          dfxnI(n)=(fxnI(n+1)-fxnI(n-1))/(2.0d0*dz)    

          dfxnH(n)=(fxnH(n+1)-fxnH(n-1))/(2.0d0*dz)    

         end if 

           

        UtermH(n)=coeffH*(dfxnI(n)-dfxnH(n)) 

     

c        write (6, *) UtermH(n), z(n) 

 

      end do 

 

c     remainder of Uterms and calculation of U(n) 

 

 

      do n=1, 100 
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        U(n)=UtermD(n)+UtermE(n)+UtermG(n)+UtermH(n) 

 

c        write (6, *) U(n), rho(n), z(n) 

 

      end do 

 

 

      do n=101, 3900 

 

      i=n-100 

      j=n+100 

       

      sumA=0.0d0 

      nmaxA=i 

      aA=z(1) 

      bA=z(i) 

 

 

c       limits -inf to z-h 

 

         do n1=1, i 

 

         fxnA(n1)=rho(n1)*((alpha/(z(n)-z(n1)))**4)*((0.2d0* 

     .   ((alpha/(z(n)-z(n1)))**6))-0.5d0) 

 

        if (n1.eq.1.or.n1.eq.i) then 

         k=1 

         sumA=sumA+k*fxnA(n1) 

        else if (n1.gt.1.and.n1.lt.i) then 

         k=2 

         sumA=sumA+k*fxnA(n1) 

        else  

         sumA=0.0d0 

        end if 

        end do 

 

         UtermA(n)=coeffA*((bA-aA)/(2.0d0*nmaxA))*sumA 

 

         

c       limits z-h to z+h 

 

        sumC=0.0d0 

        nmaxC=200 

        aC=z(i) 

        bC=z(j) 

 

        sumF1=0.0d0 

        sumF2=0.0d0 

        nmaxF=200 

        aF=z(i) 

        bF=z(j) 

 

         do n1=i, j 
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         fxnC(n1)=(rho(n1)*((alpha/h)**4))*(0.2d0*((alpha/h)**6)-0.5d0) 

 

         fxnF1(n1)=(rho(n1)*rhobar(n1))* 

     .   (1.0d0-(((z(n)-z(n1))/h)**2)) 

 

         fxnF2(n1)=(rho(n1)*(rhobar(n1)**2))* 

     .   (1.0d0-(((z(n)-z(n1))/h)**2)) 

           

        if (n1.eq.i.or.n1.eq.j) then 

         k=1 

         sumC=sumC+k*fxnC(n1) 

         sumF1=sumF1+k*fxnF1(n1) 

         sumF2=sumF2+k*fxnF2(n1) 

        else if (n1.gt.i.and.n1.lt.j) then 

         k=2 

         sumC=sumC+k*fxnC(n1) 

         sumF1=sumF1+k*fxnF1(n1) 

         sumF2=sumF2+k*fxnF2(n1) 

        else  

         sumC=0.0d0 

         sumF1=0.0d0 

         sumF2=0.0d0 

        end if 

        end do 

          

 

         UtermC(n)=coeffC*((bC-aC)/(2.0d0*nmaxC))*sumC 

 

         UtermF1(n)=coeffF1*((bF-aF)/(2.0d0*nmaxF))*sumF1 

  

         UtermF2(n)=coeffF2*((bF-aF)/(2.0d0*nmaxF))*sumF2 

 

 

c       limits z+h to +inf 

 

         sumB=0.0d0 

         nmaxB=nmax-j 

         aB=z(j) 

         bB=z(nmax) 

 

         do n1=j, nmax 

 

         fxnB(n1)=rho(n1)*((alpha/(z(n)-z(n1)))**4)*((0.2d0* 

     .   ((alpha/(z(n)-z(n1)))**6))-0.5d0) 

 

        if (n1.eq.j.or.n1.eq.nmax) then 

         k=1 

         sumB=sumB+k*fxnB(n1) 

        else if (n1.gt.j.and.n1.lt.nmax) then 

         k=2 

         sumB=sumB+k*fxnB(n1) 

        else  

         sumB=0.0d0 

        end if 
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        end do 

 

        UtermB(n)=coeffB*((bB-aB)/(2.0d0*nmaxB))*sumB 

       

 

        U(n)=UtermA(n)+UtermB(n)+UtermC(n)+UtermE(n)+UtermF1(n)+ 

     .  UtermF2(n)+UtermG(n)+UtermH(n)+UtermD(n) 

 

c      write (6, *) UtermH(n), UtermA(n), UtermB(n), UtermC(n), z(n) 

c      write (6, *) UtermG(n), UtermE(n), UtermF1(n), UtermF2(n), z(n) 

 

c       write (6, *) U(n), rho(n), z(n) 

 

      end do 

 

 

      do n=3901 , nmax 

   

        U(n)=UtermD(n)+UtermE(n)+UtermG(n)+UtermH(n) 

 

c        write (6, *) U(n), rho(n), z(n) 

  

      end do 

 

 

ccccccccccccccc     Tmat and Vmat INITIATE VALUES   ccccccccccccccccccc 

 

      do n=1, nmax 

      do o=1, nmax 

         if (n.eq.o) then 

            vmat(n, o)=U(n) 

            tmat(n, o)=(hbar**2/(mass*boltz*dz**2)) 

         else if (o.eq.(n+1).or.o.eq.(n-1)) then  

            tmat(n, o)=-(hbar**2/(2.0d0*mass*boltz*dz**2)) 

         end if  

      end do  

      end do 

 

      do n=1, nmax 

      do o=1, nmax 

         hmat(n, o)=vmat(n, o) + tmat(n, o) 

      end do    

      end do 

 

 

 

      call calcpsi(hmat, psinew, eval) 

 

      sumpsi=0.0d0 

 

      do n=1, nmax 

         sumpsi=sumpsi+psinew(n)   

      end do 
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      do n=1, nmax  

         psinew(n)=psinew(n)/sumpsi     

      end do 

 

      do n=1, nmax 

         rhonew(n)=psinew(n)**2 

c         write (6, *)  psinew(n), z(n), rhonew(n) 

      end do 

 

 

 

 

cccccccccccccccc     trapezoidal rule integration of rhonew to rescale density   

cccccccccccccc 

 

       

      sum8=0.0d0 

      a8=z(1) 

      b8=z(nmax) 

      tmax8=nmax-1      

 

      do n=1, nmax 

         if (n.eq.1.or.n.eq.nmax) then 

         k=1 

         sum8=sum8+(k*rhonew(n)) 

         else if (n.gt.1.and.n.lt.nmax) then 

         k=2 

         sum8=sum8+(k*rhonew(n)) 

         end if 

      end do 

         fxn8=((b8-a8)/(2.0d0*tmax8))*sum8 

c         write (6, *) fxn8 

    

      do n=1, nmax 

         rhonew(n)=fxn1*(rhonew(n)/fxn8) 

      end do 

 

 

 

 

c     OUTPUT original density=rhomirror, new dens=rhonew,  

c       hybrid dens=rhohybrid 

c       bigdiff to see difference of densities btw iterations 

 

      bigdiff=0.0d0 

 

      do n=1, nmax 

         rhohybrid(n)=(0.9985d0*rho(n))+(0.0015d0*rhonew(n)) 

         differ(n)=abs(rhohybrid(n)-rhonew(n)) 

         if (differ(n).gt.bigdiff) then 

             bigdiff=differ(n) 

         else  

             bigdiff=bigdiff 

         end if 
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c         write (6, *) rhohybrid(n), rho(n), U(n), z(n) 

      end do 

 

      write (6, *) bigdiff, eval 

 

      write (16, *) bigdiff, eval, fxn1, fxn8 

 

      call flush(16) 

 

 

      open (18, file='output.txt') 

 

c ccccccccc     meanfield output U(n)    ccccccccccccc 

     

      do n=1, nmax 

 

         write (6, *) U(n), rho(n), rhohybrid(n), psinew(n), z(n) 

         write (18, *) U(n), rho(n), rhohybrid(n), psinew(n), z(n) 

       

      end do  

      

      close (18) 

 

cccccc     define rhohybrid as rhomir for the next loop. continues cycle ccccccccc 

      do n=1, nmax 

         rho(n)=rhohybrid(n) 

c         write (6, *) rho(n), z(n) 

      end do 

 

 

 

c     END ITERATION LOOP 

 

      end do 

 

      stop 

      end 
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Appendix B 

Orsay-Trento Mean Field Equations for Spherical Symmetry 

 

 

 

For r = 0, the coarse-grained density is defined by equation (B1) and the mean field by 

equation (B2).   

             (B1) 

𝜌 𝑟 =
3

𝑕3
 𝑑𝑟′(𝑟′)2𝜌 𝑟′ 

𝑕

0

 

 

             (B2)

  

𝑈 𝑟 = 16𝜋𝜀 𝑑𝑟′  𝜌 𝑟′ 

∞

𝑕

  
𝜍12

( 𝑟′)10
 −  

𝜍6

( 𝑟′)4
  +

𝑐2

2
(𝜌 𝒓)2 +

3𝑐2

𝑕3
 𝑑𝑟′

𝑕

0

 𝑟′ 2𝜌 𝑟′  𝜌 𝑟 ′ +
𝑐3

3
(𝜌 𝒓)3

+
3𝑐3

𝑕3
 𝑑𝑟′

𝑕

0

 𝑟′ 2𝜌(𝑟′)( 𝜌 𝑟 ′ )
2 +

ℏ2

𝑚  𝜋
 𝛼𝑠  1 −

𝜌 𝑟 

𝜌0𝑠

  𝑑𝑟′

∞

0

 
𝑑𝜌 𝑟′ 

𝑑𝑟′
  1 −

𝜌 𝑟′ 

𝜌0𝑠

  

×  
1

2
 
−𝑒−(𝑟+𝑟 ′ )2

− 2 𝑟 𝑟′𝑒−(𝑟+𝑟 ′ )2
− 2 𝑟2(𝑟′)2𝑒− 𝑟+𝑟 ′  

2

+ 𝑒− 𝑟−𝑟
′  

2

− 2 𝑟 𝑟′𝑒− 𝑟−𝑟
′  

2

+ 2 𝑟2(𝑟′)2𝑒− 𝑟−𝑟
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2

𝑟3
 

− 2 
𝑒 − 𝑟

′  
2
− 𝑟2− 𝑟 𝑟 ′  + 𝑟 𝑟′𝑒 − 𝑟

′  
2
− 𝑟2− 𝑟 𝑟 ′  − 𝑒 − 𝑟

′  
2
− 𝑟2+ 𝑟 𝑟 ′  + 𝑟 𝑟′𝑒 − 𝑟

′  
2
− 𝑟2+ 𝑟 𝑟 ′  

𝑟
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For limits of r less than or equal to the value of h, the coarse-grained density becomes 

equation (B3). 

  

                     (B3) 

𝜌 𝑟 =
3

𝑕3
 𝑑𝑟′(𝑟′)2𝜌 𝑟′ +   

3

2𝑕3
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𝑕−𝑟

 1 −
−𝑕2 + 𝑟2 + (𝑟′)2

2 𝑟 𝑟′
 

𝑕−𝑟

0

 

 

 

The mean field in the region of r ≤ h is given by equation (B4). 

  

             (B4) 
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𝑕−𝑟

0
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×  
1

2
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For values of r greater than h, the coarse-grained density and mean field are defined by 

equation (B5) and (B6), respectively.   
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             (B6) 
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+ 8𝜋𝜀  𝑑𝑟′
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