
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

5-2017

On the Role of Genetic Algorithms in the Pattern
Recognition Task of Classification
Isaac Ben Sherman
University of Tennessee, Knoxville, isherman@vols.utk.edu

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Sherman, Isaac Ben, "On the Role of Genetic Algorithms in the Pattern Recognition Task of Classification. " Master's Thesis,
University of Tennessee, 2017.
https://trace.tennessee.edu/utk_gradthes/4780

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268804317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Isaac Ben Sherman entitled "On the Role of Genetic
Algorithms in the Pattern Recognition Task of Classification." I have examined the final electronic copy
of this thesis for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in Computer Science.

Bruce MacLennan, Major Professor

We have read this thesis and recommend its acceptance:

Hairong Qi, Catherine Schuman

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

On the Role of Genetic Algorithms

in the Pattern Recognition Task of

Classification

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Isaac Ben Sherman

May 2017

c© by Isaac Ben Sherman, 2017

All Rights Reserved.

ii

To Shannon, David, and Zach. You know what you did.

iii

Acknowledgements

I would like to thank my graduate committee for their support and help in this

project. I’d also like to thank Mark Slemp and Joe Vrba, without whom the necessary

research never would have taken place. I want to thank Dr. Catherine Schuman for

her inspiring me to pursue evolutionary computation. I would like to thank Dr.

Hairong Qi for her support and for teaching me everything I never wanted to know

about Bayes’ rule. I want to thank Dr. Bruce MacLennan for being a patient, great

advisor- he’s everything a professor should be.

I want to thank my graduate discussion group for their insights and patience with

my derailing of the meetings into weird philosophical tangents: Dr. Zahra Mahoor,

Alan McBride, Casey Miller, Aaron Mishtal, Todd Young, Jonathon Ferrell, Camille

Crumpton, and Andrew August. You were the highlight of my week for most of my

time as a graduate student, and without the public shaming of my peers I don’t know

how much of this work would have ever been completed.

I’d like to thank my family for their support of and patience with me. In general,

not just during grad school. Thank you Monica and Darlene LaVerdure for all

your help with everything in the past two years. Thank you Anna and Daniel

Fredette for helping keep my kid occupied on the weekends. Thanks to my Mom

and Sarah for listening to me complain about technical details you couldn’t have

possibly understood but for letting me work the problem out with you.

Lastly, but certainly not least, let me thank David and Zach for not being too terribly

difficult to parent, and thank you Shannon for being amazing in every way.

iv

I have called this principle, by which each slight variation, if useful, is preserved, by

the term of Natural Selection. Charles Darwin

v

Abstract

In this dissertation we ask, formulate an apparatus for answering, and answer the

following three questions: Where do Genetic Algorithms fit in the greater scheme

of pattern recognition? Given primitive mechanics, can Genetic Algorithms match

or exceed the performance of theoretically-based methods? Can we build a generic

universal Genetic Algorithm for classification? To answer these questions, we develop

a genetic algorithm which optimizes MATLAB classifiers and a variable length

genetic algorithm which does classification based entirely on boolean logic. We test

these algorithms on disparate datasets rooted in cellular biology, music theory, and

medicine. We then get results from these and compare their confusion matrices. For

those unfamiliar with Genetic Algorithms, we include a primer on the subject in

chapter 1, and include a literature review and our motivations. In Chapter 2, we

discuss the development of the algorithms necessary as well as explore other features

necessitated by their existence. In Chapter 3, we share and discuss our results and

conclusions. Finally, in Chapter 4, we discuss future directions for the corpus we have

developed.

All code and supporting results can be found at https://github.com/IsaacSherman/

Thesis.

vi

https://github.com/IsaacSherman/Thesis
https://github.com/IsaacSherman/Thesis

Table of Contents

1 Introduction 1

2 Methods and Implementations 18

2.1 Overview . 18

2.2 Preprocessing . 19

2.3 Hybrid Approach . 23

2.4 Purist Approach . 34

3 Results 46

3.1 Datasets . 47

3.2 Results . 51

3.2.1 Yeast . 51

3.2.2 Cardiotocography NSP . 55

3.2.3 Cardiotocography Morphology 57

3.2.4 Bach’s Chorales . 59

3.3 Final Thoughts . 66

4 Conclusions 68

Bibliography 71

Appendix 77

Vita 86

vii

List of Tables

2.1 Interpretation of Affinity Bits . 40

2.2 Merger Outcomes . 41

3.1 Yeast: Classification Tree without Feature Selection Confusion Matrix 52

3.2 Yeast: Classification Tree with Feature Selection Confusion Matrix . . 53

3.3 Yeast: Multiclass Näıve Bayes without Feature Selection Confusion

Matrix . 53

3.4 Yeast: Multiclass Näıve Bayes with Feature Selection Confusion Matrix 54

3.5 Yeast: Hunter . 54

3.6 Cardiotocography NSP: Classification Tree without Feature Selection

Confusion Matrix . 55

3.7 Cardiotocography NSP: Classification Tree with Feature Selection

Confusion Matrix . 56

3.8 Cardiotocography NSP: Multiclass Näıve Bayes without Feature Selec-

tion Confusion Matrix . 56

3.9 Cardiotocography NSP: Multiclass Näıve Bayes with Feature Selection

Confusion Matrix . 56

3.10 Cardiotocography NSP: Hunter Confusion Matrix 57

3.11 Cardiotocography Morphology: Classification Tree without Feature

Selection Confusion Matrix . 58

3.12 Cardiotocography Morphology: Classification Tree with Feature Selec-

tion Confusion Matrix . 58

viii

3.13 Cardiotocography Morphology: Näıve Bayes without Feature Selection

Confusion Matrix . 59

3.14 Cardiotocography Morphology: Näıve Bayes with Feature Selection

Confusion Matrix . 59

3.15 Cardiotocography Morphology: Hunter Confusion Matrix 61

ix

List of Figures

1.1 Basic GA . 2

1.2 Roullete Uniform Selection . 5

1.3 Mutation . 6

2.1 Overall Program Flow . 19

2.2 Cardio Config File . 20

2.3 Evolver Algorithm . 31

2.4 Purist Voting Algorithms . 36

2.5 Hunter Crossover . 37

2.6 Chromosome Crossover . 38

2.7 Daedalus Generate Next Generation 43

3.1 T-SNE visualization of Yeast dataset 49

3.2 T-SNE visualization of Cardio dataset, NSP 50

3.3 T-SNE visualization of Cardio dataset, morphology 51

3.4 T-SNE visualization of Bach dataset 52

3.5 Bach’s Chorales Classification Tree Without Feature Selection 60

3.6 Bach’s Chorales Classification Tree with Feature Selection 62

3.7 Bach’s Chorales Näıve Bayes without Feature Selection 63

3.8 Bach’s Chorales Näıve Bayes with Feature Selection 64

3.9 Bach’s Chorales Hunter . 65

3.10 Hunter Population Growth, CardioNSP 67

x

3.11 Multiclass Näıve Bayes Optimizer Growth, CardioNSP 67

xi

Chapter 1

Introduction

A Genetic Algorithm (GA) is a biologically inspired form of computing. GAs can

be used for many different purposes, from optimization to classification to design

and testing. They can be applied anywhere that a solution can be encoded and

then autonomously evaluated. However, they are most well understood as a general

solution to optimization as a form of stochastic gradient descent, similar conceptually

to simulated annealing. In this paper, I attempt to narrow the role of GAs as they

pertain to pattern recognition and classification. In the remainder of this chapter

I will describe GAs in general terms and discuss the motivations of this paper. In

chapter 2, I will discuss the specifics of the GAs which I use in this paper in detail.

In chapter 3 I will describe the experiments conducted and discuss the results. In

Chapter 4 I will describe future avenues of study which are available.

Genetic Algorithms Introduction Imagine a colony of rabbits. The rabbits

are quite content to munch on clovers and thistles and the like. Some rabbits are

much more content than others, and have significant girth. One day foxes find the

rabbits. There are many more rabbits than foxes, and the foxes can’t eat all of them.

The heaviest rabbits are both the slowest and the most appetizing to the foxes, and

they are the first to go, but many die. They have failed the evolutionary filtering

process. However, the rabbits that survive are thinner, and the most successful are

1

likely faster. These are the rabbits which survive to populate the next generation.

GAs encapsulate this process, though usually with much less mayhem. The algorithm

is as follows:

1.1: Basic GA

1 Population := RandomInitialization()

2 while True:

3 for each Solution in Population:

4 Evaluate Solution

5 Assign Fitness to Solution

6 newPopulation = SurviveAndBreed(Population)

7 Population = newPopulation

8 end while

Stopping Conditions This algorithm can run for a predetermined number

of generations, indefinitely, or until another specific criterion is met. Consider the

problem of finding a way of combining 4 operands with 3 operators to achieve a

particular value. There are often many ways to solve this problem. If one was to use

a GA to solve the equation, the algorithm could stop as soon as it had valid solution

values for a, b, c, d, and the 3 operators which satisfied the equation. For example:

a op1 b op2 c op3 d = x

3× 7× 3 + 5 = 68

9× 7 + 8− 3 = 68

Solution Encodings Now lets look specifically at what is meant by a solution.

First, GAs usually have some encoding based ultimately on a string of 0s and 1s, called

a bitstring1. Continuing with our example, we know that there are 4 operands which

1Other genetic alphabets are possible as well, though less common.

2

have a value between 0 and 9, or 10 values total. To encode that in a bitstring we use

the values 0000-1010. We could also include some error correcting code to randomly

reassign the bits if they go outside of the values, ensuring that any solution randomly

generated contains valid data (we could also use more bits and/or arbitrarily assign

values via modulo arithmetic, but this is the most instructive method for our current

purposes). Next, we have the operators, which can be +, −, ∗, or /. These fit nicely

within the 00-11 bit range, with no need of error correction. So we have a bitstring

with the form xxxx-xx-xxxx-xx-xxxx-xx-xxxx2, 22 bits which satisfy the constraints

of our problem. The second line of the above example would be 0011-10-0111-10-

0011-00-0101.

Fitness Functions Following along with the algorithm,

we need to assign fitness. In this case the closer one is to the solution, the better,

usually 3. There is research showing that a fitness function should be differentiable,

at least as far as the solution space. Point discontinuities aren’t an issue if they occur

outside of the solution space, which is important for us because we’re going to make

use of one. Specifically, the function

F (s) =
1

|E(s)− x|

Where E(s) is the result returned by evaluating s, the numeric string. So if we had

the string 3-6*6+2, then E(s)= -16. Assuming x is still 68, then the fitness for that

particular s would be 68
84

= 1.19E − 2, extremely low. When E(s) = x or F(s) = ∞

we break out of the infinite loop. This would be a discontinuity, but the function is

still differentiable across where we’re evaluating it.

2We use the hyphens here only for readability. The bitstrings contain only 1s and 0s.
3There are examples of x where this won’t work as well; in a shortened version of our example

problem, for instance, if the target is 25, 2 × 3 × 4 will quickly dominate the fitness landscape but
isn’t actually any closer to a valid solution than 5× 5 + 9.

3

Breeding and Survival Now that we have a fitness function, we can evaluate

the entire population and determine who has the highest fitness. With a random

seed, the first generation is usually not very fit. Regardless, the next step is to

see who survives and who breeds into the next generation. Survival is usually an

arbitrary matter of copying the best solution(s) in toto to the next generation. 4

This is typically referred to as elitism, and it is usually a percentage around 10% of

the population that is uncritically copied into the next generation. Properly done,

this guarantees monotonically non-decreasing fitness of the best solution from one

generation to the next.

The next step is to pick some fraction of the population as breeding stock. The

most fit are generally given preferential treatment, but not exclusive preference. This

is in large part because in GAs as in life, genetic diversity is a critical trait to the

overall fitness of a population. For GAs, it means that diversity speeds convergence

to ensure that even the less fit have a chance to propagate into the next generations.

The method we employ, a fairly standard one, is Roulette Uniform Selection. To get

an intuition for the algorithm, see 1.2. In it, you can see that RUS chooses markers

(represented by the arrows) equally spaced between the beginning of the population

and the end. Everywhere a marker falls means a copy of that solution gets passed

into the breeding population for the next generation. This is usually guaranteed to

get at least 1 copy of the most fit individual, but everything else is based on chance.

There is some discussion that suggests that proportional selection provides the

weakest selective pressure of several types of selection processes and thus that other

methods should be employed or that supplementary approaches be taken(Back, 1994).

While we have found this to be true to some extent selective pressure that is too strong

can cause premature convergence(Affenzeller and Wagner, 2003), we implemented

tournament selection, linear selection, and a Biased Random Key selection scheme

(Ruiz et al., 2015) before settling on RUS because in testing the GA would typically

4Some variations have ages, where all solutions will live a certain amount of time, and more
fit solutions have longer lifespans than less fit solutions. These will not be covered further in this
document.

4

Figure 1.2: An example of RUS. The bar represents the cumulative fitness of the
population. The arrows represent which members of the population go on to become
a breeding member. In this example, 3 gets skipped even though it has higher fitness
than 4 and 6, while 0 gets copied into the breeding population twice.

converge to minima prematurely. Thus we are actively choosing to preserve diversity

over rapid but premature convergence.

With a breeding population in place, we can begin the breeding process. This is

typically accomplished via an operation called crossover, which I will explain below.

A 1001 10 0011 11 1001 00 0111

B 0011 01 1000 01 0001 10 1001

We begin with two solutions. Crossover takes and returns 2 bitstrings. It also has

several subtypes, which I will illustrate in sequence. First is one-point crossover. This

means that before crossing, a crossover point is chosen and offspring are produced

as a copy, and when this point is reached, the offspring cross over and begin taking

material from the other parent.

A’ 1001 11 1000 01 0001 10 1001

B’ 0011 00 0011 11 1001 00 0111

Two point crossover is similar to one point, except that crossing happens twice.

A’ 1001 10 0000 01 0001 10 1111

B’ 0011 01 1011 11 1001 00 0001

Notice that here the final digit of A’ and the second digit of B’ become invalid

(1111 is not between 0000 and 1001). This case is not controlled for in Crossover, but

rather handled later by evaluating the offspring in the catch-all error function which

is invoked before evaluation.

5

The final standard type is uniform crossover, which makes a check at each bit to

crossover. It results in much more mixing, depending on the probability of a crossover

event. One advantage is that it treats the beginning and end as the same, which can’t

be said for either of the first two. Another is that it allows the designer to specify,

directly and exactly, how much gene mixing should occur on average.

One thing that might be noticed is that regardless of where the crossover point

is, with these methods if both A and B contain a particular bit in the same location,

it will appear in both offspring. This is one reason that diversity is important: if

the population becomes too homogeneous, it will be unable to change except through

random mutation, which we discuss shortly.

One other form of crossover we will deal with is one that counters this potential

vulnerability. It is a shifted crossover, so that one bitstring shifts forward a random

number of bits, and then crossover proceeds normally.

Other forms of crossover are possible, though they are not as widely represented in

the literature. One is a modified uniform crossover that checks to cross only at each

“word”, that is at each column representing a digit or operator in our example. This

gives the designer some control over how much contiguous information is exchanged

per crossover. Other variations with three or more parents, or even random asexual

reproduction are possible. Logical operations are viable, though again care must be

taken to not increase homogeneity overmuch.

Mutation Mutation is fairly straightforward. Usually after crossover and

before insertion in the next generation, that is, only affecting the offspring of breeding

and not elitism, each bit in the bitstring has a chance to change. The algorithm is

perhaps the most instructive:

1.3: Mutation

1 for (Solution s in Crossover(A,B)):

6

2 for each bit in s.Bits:

3 if(MutationChance > Random(0,1)) bit = !bit

4 end for

5 end for

There are some implementations that vary in that they will change random values

to 1 or 0 rather than flipping bits (in other words, values will change about half as

often). A standard value for mutation is small, about 1.0
Solution.Length

which means on

average 1 bit will change per solution per generation.

What is less straightforward are the effects of mutation over a population. While

values of 0 often stagnate in local minima, an upper correlate doesn’t seem to exist.

That is, one could set mutation high, say 25%, and turn off crossover entirely, and

proceed with elitism and mutation alone and arrive at solutions. In practice, this is

much slower than using crossover. A general rule of thumb is to keep mutation low,

and increase it even more slowly to combat stagnation.

Drawbacks While GAs have great versatility, there are some drawbacks which

significantly limit their utility.

Swiss-Army Chainsaw First, GAs are not the perfect solution for anything.

At their core, they are a biased-walk5. This means that while they will come to a

local optima, there is no guarantee they will achieve a global optimum. If there exists

a tailored solution for a problem, using that will probably work faster and better.

And Quick to Anger Second, GAs are subtle things. The fitness function,

not given its due in this writeup, can be the difference between a quickly converging

5With a random-walk on one side of the spectrum and a guided approach, such as gradient
descent, on the other.

7

solution and processors spinning their wheels for days or months coming to one sub-

satisfactory solution after another. A GA will optimize the fitness function, and that’s

all it will do. So if you want to maximize a metric, say accuracy for a classifier, be

aware that it might do exactly that by simply guessing the most prevalent answer in

the dataset. This will get it to a local optima, and it might be surprisingly difficult

to get it out of it.

Furthermore, there are hyperparameters which effect the GA directly but can be

difficult to tease out. What should the elitism percent be? It probably depends on

your other parameters. There are ways of optimizing these, and they themselves

might be amenable to a further GA, except that evaluating them is time consuming;

should your fitness function be speed of convergence? Or the best solution arrived

at within 100 generations? That might seem too long, but use fewer generations

and you run the risk of invoking too much sensitivity to starting conditions to draw

meaningful conclusions. There are some rules of thumb to assist with these situations,

but they only mitigate the problem, they don’t eliminate it entirely.

Toolset Finally, a GA is only as good as its toolbox. On Earth, that toolkit

was physics. All of physics, and massively, embarrassingly parallel at that. That’s

difficult to take advantage of digitally, where you not only have the responsibility of

developing an encoding but also defining the universe your population lives in. For

instance, the heart of this paper is whether to use a GA to optimize a classifier or

to use a GA to classify things. The classifier has theory underpinning its toolkit, the

GA has only whatever fitness function and encoding it is supplied. Or, to get back

to our example, it might speed convergence to increase mutation rates and restrict

crossover to occur only at the breakpoints of binary words. The downside of this is

that GAs are supposed to be able to solve any problem, and while they can, they also

require a certain amount of customization to not waste everyone’s time. The harder

the problem, the more customization that is usually required. And at that point, if

a tailored solution of some kind exists it’s probably easier to code up and implement

8

than an equivalent GA. At their core, the GA is a biased walk, but building in paths

will hopefully make that walk much quicker.

Theoretic Underpinnings Intuition is often insufficient for or even anathema to

scientific inquiry, and so far that is all we have relied upon to understand why GAs

work. The Fundamental Theorem of Genetic Algorithms is used to explain much of

it. First, where we explicitly represent populations as collections of bitstrings, we

may impose an additional ordering on them, the schema. Returning to our example,

consider the equations:

3× 7× 3 + 5 = 68

9× 7 + 8− 3 = 68

9× 7 + 6× 2 = 75

These translate to the bitstrings

0011-10-0111-10− 0011− 00− 0101

1001-10-0111-00− 1000− 01− 0011

1001-10-0111-00− 0110− 10− 0010

Let’s just assume that our x is close to, but is not 68. Let’s say it’s 71. This means

that each of these bitstrings will have a relatively high fitness. Specifically, the first

two have a fitness of 1
|71−68| = .3 and the third has a fitness of .25. However, a

close inspection of all bitstrings side-by-side shows that they have a considerable

amount of overlap. All begin with odd numbers multiplied by seven, etc. You can

see the overlapping sections in bold, but pay careful attention to the long contiguous

sequence. Schemata are a way of considering a population theoretically. A schema

introduces a third character into the alphabet of bitstrings: an * indicating either 1 or

0. Schemata are of any length, and may be defined by their offset and bitstring (their

9

length may be obtained from their bitstring). Thus, offset 0 and “***1-10-0111-**”

is a valid schema which describes both solutions. In fact, there is one schema that

describes both strings, which is already represented by retaining the symbols where

it is bold and replacing it with * where they don’t match.

It should be obvious that doing any calculations with schemata are infeasible, simply

because for even short bitstrings, the possible schemata to describe the population

increase exponentially. Let m be the length of a bitstring, and S be the set of schemata

which can describe the population. Then let

|S| =
m∑
i=1

3i(m− i+ 1) =
3

4
(−2m+ 3m+1 − 3)

While we could try to constrain this by only using the schemata that describe the

currently existing population, that problem is also exponential, and potentially worse

computationally, because any member of the population has

m∑
i=1

3(m− i+ 1) =
3

2
m(m+ 1)

schemata that describe it, but then these would need to be compared with the sets

generated by all 2n combinations of members of the population.

However, feasibility of computation aside, we can use this to gain a further and more

formal understanding of how GAs function.

Informally, if we assume that schemata describe our population, whatever they may

be specifically, we may also assume that short, more fit schemata will have a greater

than average fitness than is represented in the population, and as such these short, fit

schemata are likely to increase in representation throughout the population. Shorter

schemata will survive because longer schemata are more likely to be broken up by

crossover. Three more concepts need to be understood before the equation itself:

First, is the order of a schema H, which is the number of non-wildcard bits it contains.

Higher is more specific. Second is the defining length, which is the distance between

10

the first and last non-wildcard bits. If we return to our example, and let Ha= offset

0, “***1-10-0111” and Hb= offset 0, “*0*1-10-**11”, then o(Ha) = δ(Ha) = 7, while

o(Hb) = 6 and δ(Hb) = 8. Third is f(H), which describes the average fitness of a

schema. This is defined as

f(H) =
∑
sεH(P)

F (s)

|H(P)|

where H(P) is the schema H applied to the population P, which returns a subpopu-

lation of solutions, and where s is one such solution returned.

With these concepts understood, the Fundamental Theorem of Genetic Algorithms

is as follows:

r(H, t+ 1) ≥ r(H, t)
f(H)

Ft

[
1−

(
pc + o(H)pm

)]
(1.1)

Where Ft is the average fitness of the population at time t. pc and pm are probabilities

of crossover and mutation, respectively, and r(H, t) is the number of representations

of a schemata H at a time step t in a population. The type of crossover plays a

role, here. Depending on implementation, in single point crossover the probability of

crossover occurring is usually 16 . Instead, a random number from 1 to L is usually

chosen, with each index being equally likely, and crossover occurs at that index. Thus,

for single point crossover,

pSinglePointc =
δ(H)

L− 1

For two point crossover, the odds of breaking a given schema is much more likely,

because it is the outcome of 2 events not happening, that is

pTwoPointc = 1− L− δ(H)

L− 1

L− δ(H)

L− 2

6Often, at any rate. When it isn’t, it can be used as a sort of ersatz elitism, simply passing
copies of both parents into the next generation. However, if employing a significant level of elitism,
there’s a good chance at least one parent is already in the population, and doing this would create
a duplicate, which is a waste of a slot in the population.

11

from which we get the general

pNPointc = 1− (L− δ(H))n

(L−1)!
(L−1−n)!

for n point crossover.

Uniform crossover is implemented differently, and is generally done with a rate, which

we’ll call γ. Since this is the case, it makes calculating pc more straightforward.

pUniformc = 1− γo(H)

So, while representations for schema which are more fit than others will increase over

time, the particular type of crossover can have a significant impact on how much

representation they gain. It is worth noting that a uniform crossover with even a

moderate rate of crossover (say, .3) can rapidly lead to the eradication of all higher-

order schemata. Also worth noting is that when a schema applies to both solutions,

both offspring will also belong to that schema using standard crossover methods.

Finally, if an implementation includes a probability other than 1 for any of the forms

of n point crossover, that probability is simply multiplied to the appropriate pc.

A few observations about this function. As overall length of the bitstring increases,

the inhibition of single-point crossover decreases, but inhibition of n point crossover

generally increase, and if the mutation rate is linked inversely to length then it does as

well. Uniform crossover is less directly linked to length, though not independent: as

L increases, the numbers of higher order schemata increase exponentially. Survival of

a particular schema becomes very unlikely without a strong selective pressure toward

retention. Further, high order and fitness schemata with greater defining lengths

rapidly become unlikely to obtain except through elitism.

12

Motivations Over the course of researching how GAs were being used in recent

times a broad pattern emerged. With regards to classification, there were two basic

schools of thought: one in which GAs were used to optimize classifiers and one which

used GAs as classifiers directly. Both camps have prima facie impressive examples of

these approaches. Thus, this project was born: to attempt to answer which approach

is more generally applicable.

GA are widely used for numerous purposes, but we seek to ascertain their suitability

for pattern recognition, specifically classification. In this paper, we attempt to

determine how suitable GAs are for the task of classification. To determine credibility,

we propose 3 tests. First, we will run a GA on the datasets acting directly as a

classifier. Second, we will run two classifiers, a lone Decision Tree, and a Naive Bayes

classifier with default settings as a control. Finally, we will run the same classifiers

optimized through a GA which will run for a modest number of generations. We will

collect confusion matrices from the resulting classifiers and compare them.

To ensure that our approach is generally applicable, we propose datasets from

divergent fields of study and with data in different configurations. With minimal

adjustments, the program we have written is capable of automating this process over

almost any dataset, but we have chosen 3 from the UCI repository(Lichman, 2013) :

Yeast Dataset (Yeast)(Paul Horton, 1996), Bach’s Chorales Dataset (Bach)(Daniele

P. Radicioni and Roberto Esposito, 2014), and Cardiotocography Dataset (Cardio)(J.

P. Marques de S et al., 2010). This gives us 4 different configurations to use, as Cardio

has two modes that it runs in, with the pattern class code (1-10) or the fetal class

code (Normal, Suspect, Pathologic), which we refer to as Cardio and CardioNSP,

respectively. This gives us data from biology, music, and medicine, which serves as

a broad start. However, we are also making the code available in in its entirety for

anyone who wants to extend this to other domains of study.

13

Priors Going into this project, a case for either side could be made. On the case

for the Pure GA approach you have a few points. First and foremost, versatility: the

GA is only limited by the encoding, and a clever encoding could exploit nuances that

people wouldn’t be likely to notice in the data. Secondly, there’s something about

the simplicity of only having 1 component to debug: this could speed development

which would mean more effort could be spent developing the encoding and the fitness

function. One con is the inverse of the first pro, that encoding needs to exploit the

nature of the data, and so much time can be spent customizing the approach to the

data, but this is also antithetical to the idea of a generic solution to classification, so

whatever encoding we use must be good enough to apply to many problems.

For the Hybrid camp, the pros are primarily that the GA gets to leverage the

theoretical robustness of the external classifier. That is to say that there has been a

great deal of work to make classifiers extremely good at what they do and writing a

GA to compete with or exceed beyond that work is difficult. There are several cons,

though; the external classifier needs to be written and debugged separately and then

in conjunction. Also, there are now 2 or more entities to be maintained which means

much less time can be spent on any one project, unless you simply tie into some other

classification package, though that may have its own challenges.

Thus, before going into this project, we slightly favored the hybrid approach. But

we wanted to make sure that there was plenty of versatility for the GA to make use

of, so for the implementation of our pure GA we settled on CellNet (Kharma et al.,

2004), which is a variable length GA which has a new breeding operator. We discuss

this project in depth in Chapter 2.

Literature Review

Hybrid Approach In Schuman et al. (2014) they use classifiers to breed

numerous neural networks in parallel and test them against MNIST. In Ocak (2013)

the authors use a support vector machine (SVM) optimized by a GA to predict fetal

14

well-being, with considerable success. In Marchetti et al. (2013) GAs were used for

feature selection and then the features generated were passed to a logistic regression

classifier. In Wu et al. (2015) GAs were used in conjunction with particle swarms

to optimize a neural network for predicting rainfall. While GAs performed better in

conjunction with the particle swarms than alone, the idea of using a GA to build

a better classifier is present. Chou et al. (2014) and Duan et al. (2014) discuss

using a GA to optimize another SVM, this time emphasizing the mileage obtained

from leveraging the SVM for curve fitting while the GA handles the optimization of

the SVM itself. Devos et al. (2014) takes a similar approach, but instead focuses

on using the GA to determine which combination of preprocessing methods to use.

The GA is also used to determine two meta parameters for the SVM itself. Once

these are determined, the SVM is used to handle the classification. In Uysal and

Gunal (2014) they use GAs to focus their Latent Semantic Indexing approach on

promising semantic features. They use two different approaches and find that both

are much more effective on a wide range of tests than the approach without the GA

optimization. Salari et al. (2014) used an ensemble approach which is quite novel.

First, they use doctors to decide which features of the datasets in question to use.

Then, they give these features to a Feed Forward Neural Net(FFNN) on one hand

and a GA on the other. The GA generates several different arrays of features, and

then these arrays and the results from the FFNN are fed to a k nearest neighbor

to find fuzzy classes, then those classes are iteratively pared down until they are no

longer fuzzy. They apply their model to multiple datasets, and compare across a

wide variety of methods with a variety of metrics, over which they show statistically

significant gains on nearly every method, metric, and dataset. Alexandre et al. (2015)

hybridizes a GA with an Extreme Learning Machine, with considerable gains in both

binary and multiple class classification over several learning methods.

Purist Here, we look at papers where GAs act directly as the classifier. We

have included papers where rules for classification are generated. Dehuri et al. (2008)

15

uses two different GA approaches to classification rule generation, one a simple one

similar to the “canonical” approach and one a multi-objective optimizer. The multi-

objective GA performed well, though areas for improvement were discussed in the

conclusion. One area particularly limiting the GA was the number of attributes the

GA was working with. The interestingness of the discovered rules was quite high,

though sometimes the comprehensibility was lacking. Still, the rules were highly

predictive on the datasets employed. In Kozeny (2015) they used 3 GAs to calculate

credit scores, and compared their accuracies. While they achieved interesting results

with their methods, the most promising one scales at O(2L), which makes it unfeasible

for computation except on short feature sets. In Srikanth et al. (1995) variable length

GAs are used to draw fuzzy ellipses in a decision space, and thresholding is used to

make the borders crisp. This approach is shown to be comparable over their selected

dataset to a back-propagation neural net (BPNN).

Fidelis et al. (2000) uses a GA to develop rules for diagnosing breast cancer and

dermatology. They achieve 95% accuracy on the dermatology but only 67% on the

breast cancer, which is, by the author’s own admission, a much more difficult dataset

with a great deal more noise. Beside the results, the rules themselves were of interest,

and evolved 3 separate times from different random seeds. The rules developed

seemed to hit the knowledge discovery trifecta of predictiveness, comprehensibility,

and interestingness.

In Hoque et al. (2012) and Li et al. (2012), GAs are used to solve an intrusion

detection problem. While both papers boasts a discovery rate of nearly 100%, if

one ignores the denial of service attacks their discovery plummets. Unfortunately, it

isn’t clear that the authors are entirely at fault for this; the data which might have

been used7 for the DARPA challenge contained 5,283 non-DoS attacks, but 391,000

DoS attacks (it also contained 97,000 non-attacks). Its small wonder that the GAs

would optimize according to capture the most numerous classes in the data. Tseng

et al. (2008) is another example of rule discovery, but this time applied to land-cover

7The authors don’t elaborate and there are several versions of the KDDCup data.

16

classification. They specifically use a GA as an alternative to other methods such as

a Neural Net(NN) or other Bayesian classifiers because the GA has shown that the

rules it discovers are more comprehensible, even if less predictive. In other words,

while NNs may be good at solving a problem, exactly how they solve it is not always

clear, and that can be problematic for many domains. Unfortunately, while they

get good accuracy they don’t do a head-to-head comparison. One possible reason is

because the database is very small, at only about 400 samples.

Finally, we will discuss the CellNet family of papers which inspired one prong of our

approach in much more detail in Chapter 2. In the original CellNET paper (Kharma

et al., 2004) , they used a variable length GA to classify the CEDAR (2002) database.

While they obtained modest results, the stated goal of CellNet was to develop a GA

which could approach any dataset with minimal intervention. They continued in

Kowaliw et al. (2004), where they employed two populations of competitive solutions

called hunters and prey, where hunters are trying to classify a handwritten digit

from the CEDAR database and prey are trying to obscure said image. The results

in this paper were much more impressive, and their overfitting problem diminished

significantly as well.

17

Chapter 2

Methods and Implementations

2.1 Overview

In this chapter we’ll discuss the design decisions we’ve made in detail. We have

3 distinct phases. The first phase, preprocessing, is converting the data files into a

unified dataset in memory and configuring for the following phases. The second phase

is the hybrid approach where we optimize external classifiers,followed by the purist

approach where we use our genetic algorithm (GA) to develop classification rules.

Each of these approaches generate confusion matrices which we analyze.

The general flow of the algorithm can be seen in 2.1. Loading and normalization gets

all algorithms on the same page, ensuring an apples-to-apples comparison. First we

have the hybrid approaches. Within a hybrid approach, we first see what optimizing

without including features yields; this is referred to in the code and in the program

as the baseline approach. It has all the same constraints as the parent approach.

After the baseline, we optimize a second time, this time including feature selection,

by which we mean that we characterize a dataset with n variables as either included

(1) or excluded (0) in a bitstring, and encode the same variables to the classifier as

in the baseline method. We have selected two distinct classifiers: a multiclass näıve

Bayes algorithm and a simple single decision tree. Each of these are run twice per

18

Figure 2.1: Birds-eye view of the flow of the program. Hybrid approaches are not
run in parallel, because at time of coding MATLAB doesn’t support multi-threading
via a COM server.

dataset, once with feature selection disabled (the baseline) and once with it enabled.

We will discuss those methods in more detail in their respective sections.

The purist approach is much more straightforward. There is only one mode which

it runs in, there’s no explicit feature selection. That is, there is feature selection,

but all features are available to the algorithm at any time, though some may not be

included. This portion of the algorithm is threaded.

2.2 Preprocessing

Dataset Preparation We do some preprocessing of the data. First and foremost,

there is a text file that is read which describes the dataset and points to where it is

on the filesystem. Below is an example which tells the program where it can find X

and Y and how to parse them.

19

2.2: Cardio Config File

1 #Dataset Name

2 CardioData

3 #Class Names File

4 ../../../Data/Cardio/classNames.txt

5 #TrainingSet X Path

6 ../../../Data/Cardio/trainingXY.csv

7 #TrainingSet Y Path

8 ../../../Data/Cardio/trainingXY.csv

9 #TestingSet X Path

10 ../../../Data/Cardio/testingXY.csv

11 #TestingSet Y Path

12 ../../../Data/Cardio/testingXY.csv

13 #X ignore list, comma separated and starting with w if it’s a whitelist

14 (otherwise, blacklist)

15 b, 29, 30

16 #Y ignore list, as above

17 w, 29

18 #Categorical Variables, white/blacklist, comma separated

19 w,

20 #Boolean Variables, as above

21 w,

For instance, in this case X(the data) and Y(the labels) are in the same file, but

represented as different columns. They could easily be stored as two files. After those

files are explained, the next uncommented line describes the columns to ignore or

include, specified with b for blacklist or w for whitelist respectively. In this example,

columns 29 and 30 are ignored for X, but only 29 is included for Y. This is because

for this dataset, there are two sets of labels and thus two separate description files

to use the file differently. Using the same notation, we can declare categorical and

20

boolean variables for X. Y is assumed to be categorical.

Categoricals After we read how to parse the file, we read the files themselves. At

this point we also convert booleans and categorical variables to doubles so that they

can fit in the same matrix. First, however, we want to normalize the Reals. First we

gather max, min and mean from each column in the dataset. Then we use a function

to squeeze the values down between .1 (b) and .9 (t) for reasons that will be seen

later in the section on the purist approach.

x′i = b+ (t− b) (xi − xmini)

xmaxi − xmini

Next, categorical variables are given the treatment motivated and described fully in

Zhang et al. (2015), the conclusion being that every category label is replaced with a

real number which maximizes Pearson’s Correlation Coefficient. That is,

X = XR ∪Xcat ∪Xbool

XR = {x1,x2, ...xn}

Xcat = {xn+1,xn+2, ...xc}

Xbool = {xc+1,xc+2,...xb}

1 ≤ i ≤ c− n

L = {xi|xiεXcat}

C` = {x, i|xεX ∧ xn+i = `εL}

Where X is the dataset, XR is the real portion of the dataset, andXcat and Xbool are

the categorical and boolean portions. The index i iterates over the columns of Xcat,

which lets us derive L, which is the set of all categories in the dataset. L in turn gives

us a means of devising C`, that is, the subset of X which consists of all members of x

21

which belong to the category `. Now it is possible to look at C` and determine which

values will maximize r2 for each label `, which we here call R(`).

R(`) =

∑
xεC`

∑n
j=1 xj

|C`|n
(2.1)

It can be seen as the mean of all the other values over C`. Calculating this in practice

is much more straightforward: simply step through X one sample at a time, and

maintain running sums and counts for each unique label, calculate the means at the

end and then extend XR with the newly calculated values. In the case of multiple

categorical columns, unless there is a perfect correlation between two category labels

each label will have its own value (though this can’t be proven to be unique, only

generated from a unique set of numbers).

Booleans and Miscellany Booleans are only given the treatment of being

converted to values .25 for false and .75 for true. Again, the reasons we don’t use 0

and 1.0 will be made clear in the section on our purist approach.

Now that the data has been modified, some additional bookkeeping is accomplished.

Conversions to numerics from string class labels and vice versa are computed and

stored, since mathematical approaches prefer integers while human-readable outputs

are in the terms given us by the dataset. Also, global values such as Elitism Percentage

and Population Size are modified at this point and are effectively constant for the rest

of the program. Variables that may be configured by the user are: Max Generations,

Record Interval, Population Size, and Complexity bounds. The Max Generations sets

the stopping condition of the algorithms, and defaults to 100. The Record Interval

determines how often to save data to the disk. Data is collected every generation,

but is only saved to disk in where G mod (I) = 0, and the default value of I is 25.

Complexity bounds are discussed in more detail in the purist approach, and have

no effect on the hybrid approach. Other modifications to semi-constants are made

22

at this point determining the length of chromosomes for both approaches based on

the characteristics of the datasets, particularly the number of features and number of

classes.

2.3 Hybrid Approach

As mentioned previously, the hybrid approach consists of 2 methods which each

consist of two different ways of running them. First we will discuss the multi-class

näıve Bayes (McNB) approach, followed by the decision tree (DTree) approach.

McNB Näıve Bayes is one of the most basic of classifiers, but it is powerful and

versatile. Without going into extreme detail, it generates probability distributions for

each class across every dimension in the feature set from the training data, and picks

the most likely class for a given sample point. Typically, the probability distributions

are Gaussian, however any density function can be used. We use this because it

should provide a fairly low bar to compete against; support vector machines (SVMs)

are much more complex, tend to be extremely reliable and robust, and are close to

something resembling the industry standard, but don’t perform well with multiple

classes. McNB is closer to statistical modeling and is not what we consider machine

learning, though no bright line distinction exists. It is a theoretically grounded but

simple statistical method well suited to being a first pass at the data or being used in

conjunction with other methods. Being simple, it is also relatively fast- only 2 passes

through the data are necessary to build the parameters for the PDFs, so building the

model can be done in linear time. Once built, checking a given variable can be done

in constant time.

Bayes’ Theorem

P (A|B) =
P (B|A) ∗ P (A)

P (B)
(2.2)

23

While that is the standard formulation of Bayes’ theorem, in our case it is more useful

to reframe it thus1:

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)
(2.3)

Here, P (ωj|x) is the likelihood of x belonging to a particular class. Upper case P s are

simple probabilities, lower case ps are more complex functions. So p(x|ωj) is the PDF,

and P (ωj) is the prior, which can be thought of as a priori how likely a particular

class is to present. To build the PDF, if we’re using a Gaussian, we need mean and

standard deviation for each class. The Gaussian PDF is built using the training set,

tested on the testing set, and the results are scored in a confusion matrix. This can

be determined from the dataset, in which case it uses the frequency in the Training

set to generate priors, or set manually. In either case, this can be seen to scale a

particular PDF. In fact, this is similar to what p(x) does except that where P (ωj)

scales a class, p(x) scales all classes, and it serves as a normalizing factor to constrain

values between 0 and 1. It could be established using the law of total probability,

or it could be some arbitrarily high constant2. Thus, the specifics of p(x) are largely

irrelevant for our purposes. Rather, we will focus on the parameters to the MATLAB

classifier we invoke.

MATLAB Parameters Our implementation, which we’ll refer to as the McNB

optimizer3 optimizes the fitcnb 4 function in MATLAB over the following parameters:

distribution, kernel, score transform, and priors. Further, it optimizes over the dataset

by choosing which features are included. It is entirely defined by its bitstring, the first

1Thanks to Dr. Hairong Qi for teaching this formulation.
2It doesn’t really make a difference, since the selected class will just be the one with the highest

score given x. Furthermore, if it affects all classes equally nothing is served by making complex
calculations every time the classifier is called. Simply calculate the highest value it could take
initially and use that in subsequent calls.

3To avoid confusion, our optimizers are optimizing classifiers, they are not classifiers but
optimizers. Later, we present our classifier.

4For much further detail on Mathworks’ implementation see http://www.mathworks.com/help/

stats/fitcnb.html.

24

http://www.mathworks.com/help/stats/fitcnb.html
http://www.mathworks.com/help/stats/fitcnb.html

several bits correspond one-to-one to the features in the dataset. An optimizer with

all 1s (or all 0s to avoid having no data) will include the entire dataset. Otherwise, a

1 indicates that the column is included, a 0 removed.

The distribution uses 2 bits and can be any of the following values:

• Kernel uses a smoothing function, described below.

• Multinomial represents every class as a single multinomial distribution.

• Multivariate multinomial characterizes each feature as an independent multino-

mial distribution based on the unique values found in the feature.

• Normal distributions behave as described above.

Kernel type uses two bits, though these go unused unless the distribution is kernel.

Then the variables are smoothed via various functions outlined below.

• Box uses a uniform, box-like smoothing window.

• Epanechnikov is a very efficient, rounded kernel. Minimizes Asymptotic Mean

Integrated Square Error (AMISE)(Stefanie Scheid, 2004) therefore optimal in

that sense.

• Gaussian is a standard normal function but used in this case for smoothing.

• Triangular is another form of smoothing, with a peak of 1 at 0 and zero at -1

and 1.

Regardless of which form of smoothing, the goal is the same: to create a distribution

of a random variable which can then be modeled. This is done using something like a

histogram, which is then smoothed into a continuous function using the kernel chosen

above. This becomes p(x|ωj) in the equation 2.3.

For priors, each class extends our optimizer’s bit length by 3 bits. Each class then

25

has a prior in the range 1 + [0, 8] = [1, 9] which is later summed and turned into a

probability distribution summing to unity. For instance, if a database has 2 classes,

and an optimizer has assigned one a prior of 3 and the other a prior of 7, these are

converted into percentages of 30% and 70%, respectively. These become the P (ωj) in

equation 2.3.

Finally, the score transform takes up 3 bits and can be any of eight values. This is

used internally in the MATLAB function. It can take on any of the following values:

• DoubleLogit transforms the score to 1
1+e−2x

• Invlogit log(x
1−x)

• Logit 1
1+e−x

• None x

• Sign x
|x| , or 0 when x = 0.

• Symmetric 2x− 1

• Symmetricismax 1 if max of class, 0 otherwise

• Symmetriclogit 2
1+e−x − 1

Evaluation of the Classifier Once these are determined, the optimizer is

evaluated. This means that the training set is passed to the optimizer, it is trained,

and then the testing set is passed to it, from which we get the fitness of the classifier.

Fitness is average accuracy. That is, suppose we have a confusion matrix C

C=

True: ω1 ω2 ω3 Total

Predicted ω1 4 6 5 15

Predicted ω2 2 2 9 13

Predicted ω3 8 2 110 120

Total 14 10 124 148

The dataset in this case has 3 classes, ω1, ω2, and ω3, and has 148 total samples.

26

Of those, 14 are class ω1, 10 are class ω2, and 124 are class ω3. Meanwhile, the

classifier predicted that 15 of the samples were ω1, 13 were ω2, and 120 were ω3. To

determine accuracy, the equation is
∑3

i=1 Cii

148
. This is a good metric for relatively evenly

distributed classes. However, in highly skewed cases as this one, this treats more rare

classes as less important. For instance, in this case, the accuracy is 116
148

= 0.784, which

might seem like it is doing a decent job, and maybe it is, if the concern is finding Cs.

Average accuracy is slightly more complicated to calculate, but still straightforward

enough. First, lets define the Total column more formally:

T (ωi) =
N∑
j=1

Cji

Where N is the number of classes. Thus, average accuracy, A can be defined as

A =

∑N
i=1

Cii

T (ωi)

N

In our example, A is .467, which seems more like the classifier is doing barely better

than chance. In fact, if it had just guessed everything was ω3, accuracy would be

higher (.833), but A would have been .333. Further, A is equivalent to accuracy if

all classes are equally distributed, thus there is no disadvantage to using it. Average

accuracy is a major factor to the fitness functions used in this project.

We will next discuss another type of optimizer, and then we will discuss what they

have in common.

CTree Decision Trees are an algorithm which take a dataset and make usually

boolean decisions from its features, which generates a hierarchy resembling a tree.

They are very easy to compute, but usually aren’t the most robust of classifier unless

used in ensembles. However, finding an optimum decision tree has been shown to

be NP complete (Hyafil and Rivest, 1976), so greedy approaches are often used to

approximate the perfect tree. Decision trees are referred to as Classifier Trees or

27

Regression Trees, depending on their task.

Decision trees are typically generated using a greedy algorithm to maximize the split

criterion at each of several splits. The Gini impurity is 1 −
∑

i p
2(i), where p(i) is

the fraction of samples belonging to ωi which reach the node. It is distinct from the

Bayesian prior because it doesn’t apply equally to all samples. For instance, there

might be 10 classes in a dataset, but if only one class would reach a node, then the

sum of p(i) would equal 1, and the Gini impurity would be 0. Thus, it can also be

seen as the probability of misclassifying a sample based on the distribution at that

node. Gini impurity is maximized at every decision, insuring that nodes are diverse.

Gini impurity is closely related to entropy, and some decision trees are implemented

using information gain instead; the difference in output is minimal, while Gini is

marginally easier to compute. For completeness, entropy of a node may be defined as

E = −
∑

i p(i) log(p(i)) and it is possible to use entropy gain as the split criterion. A

third criterion is twoing, which is quite different. It tries to find a division of samples

whose class makeups are as homogeneous as possible and also make close to 50%

of the samples at the node the node, and then it tries to find a split to make that

grouping possible. For instance, if 4 classes were at a node, and two of the classes

made up 50% of the samples at the node, the algorithm would try to find a split that

would maximally separate those two classes from the others. To ensure meaningful

decisions, there is usually some cap on the depth of the tree.

MATLAB Parameters The next optimizer we’ll discuss optimizes the Classifier

Tree (CTree) optimizer. This is optimizing MATLAB’s fitctree5 function over the

following fields: Merge Leaves, Maximum Splits, Min Leaf Size and Split Criterion.

Each CTree optimizer is completely defined by their bitstring, which are typically

much shorter than for McNB. It too begins with a representation of the features in

5See https://www.mathworks.com/help/stats/fitctree.html for examples and further
details.

28

https://www.mathworks.com/help/stats/fitctree.html

the dataset, 1s for included, 0s for excluded, and either all 1s or zeros mean the entire

dataset is included.

• Merge Leaves takes 1 bit and is either on or off. Merge leaves looks at leaves

from a parent node and if the amount of their risk (a term which we believe

corresponds to Gini impurity, but we can’t find sources backing that up) and

that of their offspring is at or greater than that of a parent. In our CTree

optimizers, this takes up one bit of the bitstring.

• Maximum Splits defines how many splits a tree can have. The tree is built

iteratively, layer by layer, splitting as needed until it hits this number. In our

optimizers, 6 bits are reserved for it, yielding values of 3-66.

• Min Leaf Size This is the minimum number of samples that need to reach

this node to be considered a standalone leaf. Beyond this number (specifically,

at twice this number) a leaf become a parent node split into two children. Five

bits are reserved for it, yielding values between 1 and 32.

• Split Criterion can take on 3 values. Gini’s diversity index as discussed above,

twoing, and deviance. When deviance is selected, the rule is maximally reducing

deviance with every split (effectively using entropy rather than impurity). With

Twoing, it will try to make an optimally balanced tree, erring toward balance

rather than composition (in practice, these tend to be similar to entropy based

trees). These take up 2 bits of the CTree optimizer’s bitstring.

Optimizers Our optimizers use inheritance to share common code. So both

CTree and McNB use many of the same mechanisms when it comes to evaluation

and evolution. First, both of them use MATLAB as their engine. Unfortunately,

while support is planned for a future release, evaluations done through the COM

server (as opposed to done through the MATLAB SDK and compiler) do not support

multi-threading, so even if multiple threads were used in the native code, there would

29

be no performance gains to speak of. In fact, while we don’t have metrics any longer,

execution was considerably slower when we were using the multi-threaded model. We

did at one point make use of the MATLAB SDK to compile the MATLAB code into

native, and this was indeed faster, but there’s considerable overhead involved and

unless you have a MATLAB educational license, considerable cost. Thus we have

opted for the sub-optimal but considerably more cost effective implementation.

There are many commonalities. For instance, initialization of a new Optimizer is

really only dependent on the length of that class. The core mechanism is the same in

both of these classes (and several others that we have implemented outside the scope

of this thesis). Also, once an Optimizer is initialized, there may be errors. While

the concrete classes can handle the details, in the abstract the general principle holds

that once an Optimizer is initialized, it needs to be prepared for evaluation. For

instance, if CTree’s split criterion is 3, when only 0-2 are allowed, then those bits

need to be rerolled. The rerolling itself is common Optimizer code as are several

utility functions, such as logical operators between two Optimizers.

Scoring binary or multi-class Optimizers, saving them, much of the file IO, most of

the life-cycle of an Optimizer, and memory management is handled in the common

Optimizer code, meaning that implementing a new type of Optimizer can take a

tiny fraction of the time implementing a new optimizer can and even the MATLAB

dependence is optional. The relevant code is actually in the Globals file and the Eval

functions in the concrete subclasses. Optimizer does provide a virtual convenience

method of ComEvalFunc which handles common cases, but there’s no requirement for

that to be called in a subclass. The upshot is that this could be used with an entirely

different sort of function which wouldn’t necessarily need to be a classifier at all6. It

could easily be sub-classed and modified to optimize different criteria altogether. The

other heavy lifter, in terms of inheritance, is done by Evolver.

6We plan on using this framework to experiment with integer Linear Programming in the future,
for instance.

30

Evolver Evolver is the class which makes up the bulk of the evolutionary algorithm.

Where Optimizer provides a framework for the finer details, Evolver handles the broad

strokes of evolution. It maintains a population of Optimizers and handles their life

cycles in a way that is both extensible and straightforward.

This is in large part due to the fact that the evolution is entirely class-independent,

implemented using templates. While it requires that the class being optimized is a

subclass of Optimizer, that’s really the only requirement; simply sub-classing Evolver

and adding a new interface would allow dramatic changes to the function being

optimized.

First, let’s look at our modified algorithm, as this will provide more details.

2.3: Evolver Algorithm

1 AdvanceGeneration():

2 //P is the population and a class variable

3 EvaluateAllOptimizers(P)

4 GetMetrics()

5 P.ReverseSort()

6 P = GenerateNextGeneration(P)

7 RemoveDuplicates(P)

8

9 GenerateNextGeneration(P):

10 BreedingPop := StochasticRUS(P)

11 NextGen := Elitism(P)

12 FillListFromBreedingPop(NextGen, BreedingPop, P.Count, UniformXOver)

13 MutateNonElites(NextGen)

14 return NextGen

15

16 FillListFromBreedingPop(N, B, size, Func):

17 E := B.Count * ElitePercent

18 while(N.Count < size):

31

19 k := j := RNG.Next(0, E)

20 while(j==k)

21 k = RNG.Next(0, B.Count)

22 for each offspring in Func(B[j], B[k])

23 N.Add(offspring)

24

25 while (N.Count > size)

26 N.pop()

So lets examine the high-points of these algorithms. While EvaluateAllOptimizers

might seem straightforward, in the details of that function we can either use multi-

threading or not (we do not if we are using the COM interface to MATLAB), and we

maintain a hash table of all tested Optimizers and their fitness, along with secondary

characteristics if those are important. This is from an earlier instantiation of our

system where evaluation was extremely costly and so the extra overhead was worth

it to save cycles. This is only possible because performance is entirely defined by

the bitstring, this lets us test each string once and never test it again. Finally, in

FillListFromBreedingPop, Func is UniformCrossover, but that’s just one of several

modules supplied. In fact, as the signature is written7, it could easily take any sort of

two-parent breeding function, with any number of offspring. Three or more parents

could also be implemented if that was desired, though this would require minimal

sub-classing.

RemoveDuplicates is also important, because any Optimizers that are removed are

replaced with randomly generated new ones whose bitstrings are checked to be unique

before replacement is finished, so the population size is maintained. The reason this is

important is because the breeding selection we’re using in FillListFromBreedingPop

is a variation of the Biased Random Key model (Ruiz et al., 2015) which provides

great selective pressure but makes duplicates more likely as the elites become more

7The signature is Optimizer[] BreedingFunction(Optimizer A, Optimizer B)- however, there is
also a related function template provided which takes a variable number of parents.

32

homogeneous. It is a modification because the model in the paper guarantees that

every offspring will have at least 1 elite parent. Our implementation doesn’t, because

we’re drawing both parents from the breeding population and because of RUS there’s

no guarantee that any Optimizer other than the one at B[0] will be elite. Instead,

they are very likely to be elite.

The metrics we capture in GetMetrics are simply best and average fitness, but this

provides an entry point to capture population metrics in a subclass or modification

of the code. In GenerateNextGeneration, we use RUS and Elitism as discussed

in Chapter 1. We also mutate the non-elites after our next generation has been

determined.

OptimizerProgram There’s only one more major component to the hybrid

approach, and that is the OptimizerProgram class, which handles hyperparameters to

Evolver. How often to write data to disk, whether or not to multi-thread, population

size, how many generations to run and file IO, as well as insuring all the directories

for file IO exist are among the duties handled in this class. Incidentally, we employ

what we refer to as a baseline mode, which means running Evolver two different

ways. The baseline method runs Evolver with all columns turned on; in other words,

it restricts the evolutionary process from functioning as a feature selector and only

optimizes parameters to the classifier itself. Then it runs again, this time without

the restriction. This provides a baseline comparison to see how much performance

changed when feature selection is included in the optimization. There are of course

many, many more details in the code itself, which is available in the appendix, and

comments provide motivation for much of the detail in situ. This writeup should

cover the high points, however, and give a reader an idea of what they are looking at

in the code.

33

2.4 Purist Approach

In this section, we will discuss the implementation of a pure approach to classification.

Classification is executed by the evolutionary algorithm itself. To understand all the

parts working together, a bottom-up approach is instructive. However, to guide that

discussion, let us begin by motivating the algorithm. For an evolutionary algorithm,

we need a population of solutions to evolve. In this case, we borrow the terminology

and much of the methodology from Kharma et al. (2004) and say the population

comprises Hunters, which are the form our solution will take. While this paper may

not be a perfect reimplementation of theirs, it is strongly inspired. These hunters

each have one or more chromosomes, which each have one or more cells. Now we

shall look in each component in detail.

Cells The cells are the fundamental building block of the hunter. Each cell codes

for a function, an upper and a lower limit, and a not flag. Each cell has the ability

to vote on a sample, which is an array of some number of doubles, each of which

must be ε[0, 1). When a cell votes on a sample, it is equivalent to saying, “feature f is

[not] between lower limit and upper limit”. Where not is the not flag, and feature f

is a particular entry in the sample. Lower and upper limits are each binary encoded

reals, which use 8 bits each. The encoding is straightforward: the bits have all been

shifted so that rather than the least significant bit being the 20 power, it is the 2−9,

allowing the most significant bit to be the 2−1, giving each limit the ability to code

for 0 to 511
512

= 1 − 2−9 u .998. This is why in preprocessing we squeeze values down

so that they are attainable by Cells. The limits take 8 bits each, then the not flag

takes another, and the feature bits take dlog2(Features)e bits

There is some error checking here, the lower limit bits cannot be greater than the

upper limit bits, and so they’ll be swapped if that occurs. Also, the feature bits,

unless there are a power of 2 features in the dataset will have illegal values. If these

occur, all of the feature bits are rerolled randomly until compliant.

34

Finally, there is also a join bit whose purpose is simply whether or not to include

the next cell in the vote. If the join bit is false, even if there are other cells to vote,

then voting ends. This illustrates a breach in the chain, and is analogous to a form

of gene regulation. More importantly, it allows genetic information to accumulate

without affecting a particular Hunter’s vote. This sort of functionality, that is the

ability to turn off a gene while it mutates and changes, has been shown in Zhang

(2003) to be a critical component in gene duplication’s role in increasing informational

complexity, and we hope to take advantage of a very powerful evolutionary mechanism

by providing a means of doing so.

One other thing worth noting: as written, cells functions are one-to-one mappings as

an index to a sample, but this doesn’t need to be the case. If a function can take an

array of doubles and return a sensible value between 0 and 1, then it would fit into this

piece of the puzzle. Most obviously, neural networks can fit this criteria; it would be

possible to, say, use an auto-encoder for feature extraction to get down to a certain

number of features, and then use the feature index to extract one of those. This,

however, would require a somewhat less generic approach than our thesis requires,

as neural nets require extensive training and most of the datasets we’re using are far

too small. Coupling a simple neural net or two might to this algorithm might be one

means of significantly increasing performance.

Chromosome Next, we have the chromosome, which is simply a sequence of one

or more cells, with a few bits added. First are the class bits, which make up the first

dlog2(Classes)e bits, and these mean that votes from cells in that chromosome count

toward that class. Next are 2 affinity bits, which we will discuss in detail in Merger.

In brief, they describe how the chromosome will behave with other chromosomes.

Finally, a not flag, which inverts the votes of their cells.

Cells vote in sequence. Each vote is logically ANDed with the next. If at any point

a vote is false, voting stops and false is returned. The Chromosome then takes this

35

vote and passes it up to the Hunter which called it after inverting it if the not flag so

dictates.

Hunter At the highest level of the critter hierarchy is the Hunter. Here, there are

no additional bits, they simply aggregate the votes of their on or more chromosomes.

We can now discuss explicitly the voting process.

2.4: Purist Voting Algorithms

1 Hunter.Vote(Sample x):

2 Counts[] := new Int[Classes]

3 for each Chromosome c in Chromosomes:

4 if Chromosome.Vote(x) == TRUE:

5 Counts[c.ClassBits.ToInt()]+=1

6 MaxIndex = HighestIndexOf(Counts)

7 return Counts[MaxIndex]

8

9 Chromosome.Vote(Sample x):

10 Result = TRUE

11 for each Cell c in Cells:

12 Result &= c.Vote(x)

13 if (Result == FALSE or c.JoinBit == FALSE)

14 break

15 return Result^NotFlag //Where ^ is Exclusive Or

16

17 Cell.Vote(Sample x):

18 Value = Functions[FunctionBits](x)

19 Result = Value > lowerLimit & Value < upperLimit

20 return Result ^ NotFlag

In case of a tie, Hunter returns the lowest index, and in case of no votes returns a -1,

which represents uncertainty. Thus, as written voting is deterministic, and as such a

36

Hunter’s performance is determined entirely by its bitstring. This enables the cheap

storage and recall of even very complicated Hunters.

Complexity is certainly an issue, but before we can discuss it we need to discuss how

breeding operators can handle this new complexity. Either because with variable

length genonmes crossover can’t work unmodified, or because complexity wouldn’t

increase past whatever was assigned at generation 0. Both of these cases could be

true without modification of the typical GA.

First, we will discuss our modifications to the classical crossover operators. Here

we differ from our inspiration for this portion of our paper (Kharma et al., 2004).

While their crossover operator is modified to accommodate different length genes,

our crossover treats each collection of genetic material distinctly.

Crossover Our crossover is invoked at the hunter level. Any two hunters may

be crossed. Crossover may occur at the level of swapping Chromosomes, or may go

deeper, so that two Chromosomes can swap cells, or it can go deeper still, such that

two cells can crossover as normal, since all cells are the same length. In the highest

level case, the operation can be thought of as crossover with chromosomes laid out

contiguously. In the event that hunters have a different number of chromosomes, the

remainder are allocated randomly according to the crossover rate.

In the middle case, Chromosomes perform a similar function with cells. Cells are left

untouched but are swapped back and forth, functioning similarly to bits in a standard

crossover operation.

In the lowest case (which we call Uniform), the case we have implemented, there’s

crossing over at all levels. It is probably most easily seen in algorithm form.

2.5: Hunter Crossover

37

1 Hunter.Crossover(Hunter a, Hunter b):

2 target = new Hunter(), notTarget = new Hunter()//Empty hunters for

receiving genetic code

3 least = min(a.Chromosomes, b.Chromosomes)

4 most = max(a.Chromosomes, b.Chromosomes)

5 if(max = a.Chromosomes) MaxHunter = a

6 else MaxHunter = b

7 for i = 0 to least:

8 newChromosomes = Chromosome.CrossOver(a[i], b[i])

9 if (RNG.Next < CrossoverChance)

10 switchTargets(target, notTarget)

11 target.AddChromosome(newChromosomes[0])

12 notTarget.AddChromosome(newChromosomes[1])

13 for i = least to most:

14 if (RNG.Next < CrossoverChance)

15 switchTargets(target, notTarget)

16 target.AddChromosome(MaxHunter[i])

17 return target,notTarget;

One minor addition here is that target and notTarget are actually pointers to hunters

(and below to Chromosomes), though it obfuscates the algorithm unnecessarily to

spell that out in pseudocode, particularly because switch targets is intuitive even

if not explicit. As you can see, this allows us to cross hunters of any length. The

algorithm for Chromosomes is similar, except that unlike hunters they have genetic

material of their own to cross. However, what should also be clear is that while

different lengths of chromosomes and hunters might arise, there is no mechanism here

to increase those lengths.

2.6: Chromosome Crossover

1 Chromosome.Crossover(Hunter a, Hunter b):

38

2 target = new Chromosome(), notTarget = new Chromosome()least =

min(a.Cells, b.Cells)

3 most = max(a.Cells, b.Cells)

4 if(max = a.Chromosomes) MaxChromosome = a

5 else MaxChromosome = b

6

7 for i = 0 to ChromosomeBitLength:

8 target.bits[i] = a.bits[i];

9 notTarget.bits[i] = b.bits[i];

10 if (RNG.Next < CrossoverChance)

11 switchTargets(target, notTarget)

12 //Now that the chromosome specific bits are crossed, we may proceed

13 for i = 0 to least:

14 newChromosomes = Chromosome.CrossOver(a[i], b[i])

15 if (RNG.Next < CrossoverChance)

16 switchTargets(target, notTarget)

17 target.AddChromosome(newChromosomes[0])

18 notTarget.AddChromosome(newChromosomes[1])

19 for i = least to most:

20 if (RNG.Next < CrossoverChance)

21 switchTargets(target, notTarget)

22 target.AddCell(MaxChromosome[i])

23 return target,notTarget;

Cell.Crossover is the usual implementation of uniform crossover. The lengths of

Hunters and Chromosomes is something we refer to as complexity. Specifically,

complexity is the number of Cells in a Hunter. So a Hunter with 2 Chromosomes with

1 Cell each and a Hunter with 1 Chromosome with 2 Cells have the same complexity

for our purposes. With crossover and mutation, the complexity of a population will

never increase beyond what is injected at the beginning. The combined complexity

39

Table 2.1: Interpretation of Affinity Bits

a b Meaning
0 0 No preference.
0 1 Prefers to be at the rear.
1 0 Prefers to be at the front.
1 1 Considers itself complete.

of a pair’s offspring, further, can never increase with this method, it must remain the

same.

To allow our algorithm to manipulate complexity on its own, we use the genetic

operator Merger, first introduced in Kharma et al. (2004). When two Hunters merge,

the result is a single Hunter with the sum of their complexities. To accomplish this,

the Chromosomes of the Hunters need to be merged in some way. This is where the

Affinity bits on the Chromosome come into play.

Merger In the broadest sense, Merger can be seen as combining the Chromosomes

of two Hunters. One option would simply be to append the Chromosomes in one list

to the other. But this would eventually yield many short Chromosomes, each with

few cells. Instead, Merger uses Chromosomes’ affinity to control how the merging

is accomplished. First, recall that there are 2 affinity bits, resulting in 4 possible

combinations. See table 2.1 for details.

When two chromosomes are merged, two outcomes are possible. First, both

Chromosomes merge vertically, that is, they are both copied into the new Hunter

next to each other in the list, retaining all distinguishing characteristics. Second,

the Chromosomes merge horizontally, with one chromosome being the front and the

other being the rear. The front Chromosome carries the class and affinity bits, the

ones in the rear are destroyed. To determine which, compare the affinity bits of

the 2 with an AND. This reveals where conflicts are: if the result is not 00, then

the Chromosomes merge vertically. If the result is 00, the Chromosomes merge

40

Table 2.2: Merger Outcomes

A B Result
00 00
00 01
10 00
10 01 Laid out Horizontally with A in front
00 10
01 00
01 10 Laid out Horizontally with B in front
11 **
** 11
10 10
01 01 Laid out Vertically

horizontally, with one exception: Chromosomes which consider themselves complete

will always merge vertically. To determine which Chromosome goes in the front, we

see which one has a preference. If there is none and there are no conflicts, Chromosome

A goes to the front. To be more explicit, see table 2.2.

This allows for the growth of complexity in a nuanced way. However, in any of these

cases, we have doubling complexity. This will easily lead to an explosion of complexity,

since there is no mechanism which explicitly reduces complexity. Crossover serves to

move complexity toward the average, and mutation ignores complexity altogether.

The only one we have is implicit, that is, if complex individuals are less fit they will

be removed from the breeding pool eventually. However, if they are more fit, then

they are likely to double in complexity, etc. Because this is exponential growth, we

must be careful to curb it. Exactly how we do this requires discussion of our fitness

function.

Fitness At the outset, our fitness function is the same as the one which we have

discussed for our Optimizers, average accuracy, or A. We reduce this with complexity,

41

such that:

FHunter = A

(
CMax − C
CMax

)
where CMax is the complexity cap and C is the Hunter’s complexity. CMax is quite

high, 2000, and we haven’t seen it reach the point where fitness become negative,

however we still set negative fitness to 0. So this has a modest impact on fitness;

most of the time it is multiplying by something fairly close to unity. Two Hunters

with identical A are likely to have different complexities, meaning the simpler one

will get the edge when sorting. The other reason we adjust the fitness function goes

all the way back to the mid-eighteenth century.

Specifically, all the way to Bach. Bach wrote many chorales, 4 part harmonies which

each have a key. There are many possible keys, 103 in fact. In the formulation of the

dataset as a classification problem, each key becomes a class and that means that we

have a very sparse matrix of 103*103 to score. The problem is that chances of getting

any particular class correct is so unlikely that there’s not much pressure to find new

ways of doing it. So here, we tweak our fitness function again.

FHunter = A

(
CMax − C
CMax

)(
E − Z
E

)

In this last portion, E is the number of classes in the dataset, where Z is the number

of classes for which the Hunter has made 0 predictions. Thus, if all of the predictions

are in one or two classes, we are left with a high factor reducing the fitness of the

Hunter. Likewise, hunters which make predictions in more classes will realize a bonus

compared to their peers. This modification doesn’t hurt convergence in datasets with

smaller numbers of classes, and does help with Bach’s chorales. We will discuss results

in more detail in chapter 3. Earlier modifications were more stepwise and could even

result in negative fitness, but these had little positive impact.

42

Daedalus All that remains for the purist approach is to discuss Daedalus8 , the

functional equivalent to Evolver for the Optimizers. Daedalus handles local constants

and file IO. Unlike in Evolver, it is solely responsible for IO. Like Evolver, it captures

metrics and runs a version of the standard GA which is pretty close to the canonical

interpretation. Logically, it is almost identical to 2.3. We instead will focus on how

the next generation is generated.

2.7: Daedalus Generate Next Generation

1 Daedalus.GenerateNextGeneration():

2 BreedingPop = StochasticUniformSample(P)

3 nextGen = Elitism(P)

4 FillListFromBreedingPop(nextGen, BreedingPop)

5 for i from P.Count*ElitePercent to P.Count:

6 nextGen[i].Mutate()

7 P = nextGen

8

9 Daedalus.FillListFromBreedingPop(nextGen, BreedingPool):

10 mergeList = List

11 for i from 0 to BreedingPool.Count:

12 if(RNG.NextDouble() < MergePercent) mergeList.Append(i)

13 used = mergeList.Set()//Don’t want to pick other mergees

14 for each target in mergeList:

15 k = GetUnpickedInt(BreedingPop.Count, used)

16 used.Append(k)

17 nextGen.Add(Hunter.Merge(BreedingPop[target],

BreedingPop[k]))

18 while nextGen.Count < P.Count:

19 j = RNG.NextInt(0, ElitismPercent*BreedingPop.Count)

20 k = RNG.NextInt(0, BreedingPop.Count))

8The initial idea was to have Daedalus as the trainer and Icarus as the Validator, but this was
deemed unnecessary and validation was rolled into Daedalus.

43

21 for each Hunter x in (Hunter.Crossover(BreedingPop[j],

BreedingPop[k])):

22 nextGen.Add(x)

23 while nextGen.Count > P.Count:

24 nextGen.Pop()

25

26 GetUnpickedInt(Max, picked):

27 if(picked.Count >= Max) return -1

28 unpicked = RNG.Next(0, Max)

29 while picked.Contains(unpicked):

30 unpicked = RNG.Next(0, Max)

31 return unpicked

A few things worth noticing in this algorithm: Merge is executed first, and all

Hunters in the breeding pool get a chance at merging, and an effort is made to

prevent any particular Hunter from merging more than once. Used (and picked in

GetUnpickedInt()) are Sets, which only retain the first copy of any element added

to them. While not strictly necessary for this algorithm, there are other cases where

duplicate entries are more likely and GetUnpickedInt was already implemented with

Sets. Also, breeding takes place until the next generation is the same size as the

original population, so this method is resilient to changes to Crossover and Merge,

and errors in case there were inviable offspring, which is not an issue with our

implementation but a cautionary design principle to keep that as a possible change.

One major difference between Daedalus and Evolver’s mode of advancing generation

is that Daedalus incorporates validation into its algorithm. That is, every time time

data will be written to disk (in our case, every 25 generations), the entire population

is evaluated, sorted, and bred based on the validation dataset, which is identical to

the testing set for the Optimizers. The idea is to drive evolution using the training

set, and occasionally course-correct with the validation set. Where classifiers have a

distinct, defined method for doing this (for instance, Bayes building a model from

44

the training set), with GAs the evolution is the method of learning. Similarly,

because this additional time is necessary, the Purist Approach takes 10 times as

many generations, and has a larger population by a similar factor, to the Optimizers.

Also, because Daedalus is native, we can make use of multi-threading to improve

processor efficiency.

The last thing worth noting about Daedalus is that its starting condition has a few

criteria that are different to it than the Optimizers. First, each Hunter is given E

(where E is the number of classes in the data) Chromosomes to begin with, at 1 cell

each. The class bits are then initialized to count from 0 to E, so that it is guaranteed to

have a Chromosome voting for each of the classes. While we recognize that this might

be seen as ad hoc tweaking9, it is rooted in strong intuitions about this algorithm

and its shortcomings. While we don’t have the data any longer, it managed to get

the Hunters working on the Bach dataset over a considerable hump.

Conclusion In this chapter, we have discussed in detail how our algorithms work.

We explained how to configure a dataset to work with our methods. We described the

changes we need to make to the dataset before we pass it to the programs responsible

for them, whether they are external or internal. We then discussed the theoretical

underpinnings of two different classifiers which we then optimize 2 ways each, and

finally discussed our own purist approach. Next, we will discuss the results of our

implementations.

9Or Alchemy.

45

Chapter 3

Results

In this chapter, we will briefly describe the datasets tested and the results of our

experiments. We will then discuss our findings, looking at the confusion matrices and

focusing on four metrics: Accuracy, Average Accuracy (A), Matthew’s Correlation

Coefficient (MCC) and Confusion Entropy. We came to MCC and CEN later in the

project, but they provide some insight into multidimensional confusion matrices. A

brief introduction to the two metrics follows.

MCC is a real valued number between -1 and 1, and is equivalent to

cov(X, Y)√
cov(X,X) · cov(Y, Y)

The magnitude measures the amount of information not attributable to random

chance. A 1 is a perfect correlation with the data, only achievable when accuracy

is also equal to 1. A -1 is a perfect anti-correlation, though generating it is not as

simple as merely getting everything wrong. Finally, a 0 means that the prediction is

performing no better than chance. For further information, we recommend Jurman

et al. (2012).

Wei et al. (2010) contains the full detail and motivation regarding CEN, which ranges

from 0 to 1. In this case, 0 indicates a perfect matrix, and 1 virtually no self-

information. To be crude but generally accurate, CEN is a measure of the probability

46

of misclassification of classes by the classifier. Thus, lower is better. We calculate it as

CEN = −
N+1∑
j

Pj

N+1∑
k

P j
j,k logN(P j

j,k) + P j
k,j logN(P j

k,j)

P i
i,j =

Ci,j∑N+1
k=1 Ci,k + Ck,i

P j
i,j =

Ci,j∑N+1
k=1 Cj,k + Ck,j

Pj =

∑N+1
k=1 Cj,k + Ck,j

2
∑N+1

k,l Ck,l

Where C is the confusion matrix. Pj is the probability of misclassifying a particular

class, P i
i,j is the probability of misclassifying ωi as ωj subject to class i, and P j

i,j

is the same, but subject to class j. To understand this, pay particular attention

to the denominators where the classes sum over different ”crosses”, centered at the

superscripted variable which is fixed, while k iterates both horizontally and vertically

across the matrix. Also, for calculation purposes, P i
i,i = 0, and logs of 0 in the density

function may also be treated as 0.

3.1 Datasets

All of our datasets were acquired from the UCI database (Lichman, 2013). We

used 3 different datasets, trying to span multiple fields of study. To that end we

used Yeast (Paul Horton, 1996), which is a relatively simple biological dataset,

47

Cardioctocography (J. P. Marques de S et al., 2010) (Cardio) which is a medical

dataset, and Bach’s Chorales (Daniele P. Radicioni and Roberto Esposito, 2014)

which is a musical dataset. With minimal configuration, described in Chapter 2, our

program can handle virtually any dataset in the standard matrix form. We will first

describe the makeup of the dataset, provide a visualization of the data through a

method called t-distributed stochastic neighbor embedding(T-SNE) first developed

in Maaten and Hinton (2008).

T-SNE is conceptually similar to K-Nearest Neighbors, in that it is unsupervised

and assumes that things which are similar will be nearby in whatever n-dimensional

space they are embedded in. Indeed, T-SNE takes the distances of each point to

all other points and converts them to probabilities, then builds probability density

functions maximizing their likelihood. The density functions in this case are student-

T distributions, which are similar to Gaussian distributions but their tails are much

fatter; that is, they don’t go to zero nearly as quickly. Once these distributions are

built T-SNE iteratively performs a form of gradient descent minimizing the error of

the predictions of the T distributions. It is very good at maintaining separability

found at high dimensions into lower-dimensional spaces, which makes it good for

plotting. However, there are concerns that it may not be particularly good at doing

dimensional reduction, which often means a reliance on Principal Component Analysis

or some similar method to handle that portion(Maaten and Hinton, 2008).

Yeast Dataset This dataset is used to predict the localizations of proteins in

a yeast’s cell. Its meanings and usage are fully motivated in Nakai and Kanehisa

(1992). For our purposes, each sample (of 1484) belong to one of 10 classes, which

correlate to their function within the cell. The original paper used an expert system

which boasted 59% accuracy. For a visualization of Yeast, see figure 3.1. This should

be the best case scenario. There are very few features, and a handful of classes, so

48

Figure 3.1: T-SNE visualization of Yeast dataset. Viewing in color is highly
recommended.

barring inseparable data (which the visualization demonstrates to not be the case)

there should be little trouble for a classifier to find some signal in the data.

Cardiotocography Dataset Cardiotocography is the practice of monitoring fetal

heartbeats during pregnancy. The Cardiotocograph (CTG) is the machine used

to monitor, and it produces cardiotocograms. The dataset is based on Ayres-de

campos et al. (2000) and was also used, in limited form, in Ocak (2013), where

the researchers achieved an impressive 100% specificity (in this case, the correct

classification of pathologic cardiotocograms). Their sensitivity was also very high:

99.3% on the training set. Clearly here specificity is more important than sensitivity!

Unfortunately, these researchers left out approximately 200 samples of suspicious

cardiotocograms, which confound things considerably. There are good methodological

reasons for doing this, of course. SVMs don’t work as well with more than 2 classes,

and culturally medicine is very concerned with sensitivity and specificity, which don’t

apply to non-binary problems in general. We certainly aren’t criticizing the good

work medical researchers do, nor the lives they save.

We do include the suspect cardiotocograms, so we don’t expect our results to be quite

49

Figure 3.2: T-SNE visualization of Cardio dataset, following the NSP classification
schema.

as clean. Further, there are two classification modes in this dataset, not 1. The first is

what we’ve mentioned already, the Normal, Suspect, Pathologic (NSP) classifications.

The second is the morphologic patterns 1-10. These may or may not overlap with

the NSP, but they provide a second way of looking at the data and evaluating it. We

have provided T-SNE visualizations with both colorings below in 3.2 and 3.3.

Bach’s Chorales Bach composed all manner of music, but this dataset comprises

58 of his 4 part harmonies, called Chorales. Originally made a dataset in Radicioni

and Esposito (2010) the music of 58 chorales are painstakingly broken into 5665

musical moments, such that every time there are 3 or more distinct notes being played

it their proper key is classified, but there are confounding factors. Primarily, there

might be added notes, which means a note must always be taken in context, which

makes the problem much more difficult. What was a fairly modest 36 classes (12

notes × 3 modes) becomes 108 when added notes are taken into account. Originally

the authors used a perceptron which scored 75% accuracy, which is certainly much

better than chance because, while there are 108 possible classes, only 102 can actually

be found in the dataset.

50

Figure 3.3: T-SNE visualization of Cardio dataset, following the 10-class
morphology schema. Viewing in color is highly recommended.

We should note that we modified this dataset slightly. Initially they were published

in the order in which they occurred. We added an additional feature including the

key of the previous event and then randomized the order of the file before splitting

it into training and testing sets. The hopes were that our algorithms would be able

to take advantage of the temporal information in their models, even if they weren’t

explicitly instructed that it was temporal. The visualization (3.4) is difficult to read

because of the many classes, but clearly delineates several inherent clusters.

3.2 Results

3.2.1 Yeast

CTree Baseline : As we can see, the baseline did fairly well regarding the 3 most

common classes, but its ability to distinguish the less frequent classifications suffered

giving it a final A of 64.1%, or an overall accuracy of 74.6%. See table 3.1 for more

detail.

51

Figure 3.4: T-SNE visualization of 102 class Bach dataset. Classes are incredibly
difficult to distinguish, but instead focus on the overall shapes and distinct clusters.

Table 3.1: Yeast Dataset, Classification Tree with all features included, Accuracy
= 74.6%, MCC: 0.674 CEN: 0.273

Class MIT NUC CYT ME1 EXC ME2 ME3 VAC POX ERL Total
MIT 151 14 24 0 0 5 2 1 1 1 199
NUC 8 145 36 0 1 0 4 1 3 0 198
CYT 19 30 133 0 3 4 1 2 5 1 198
ME1 1 0 0 14 2 1 0 0 0 0 18
EXC 0 0 0 0 12 0 0 0 0 0 12
ME2 0 1 1 2 1 21 0 0 0 0 26
ME3 1 4 3 1 0 2 67 0 0 0 78
VAC 0 1 0 0 0 0 0 1 0 0 2
POX 0 0 1 0 0 0 0 0 5 0 6
ERL 0 0 0 0 0 0 0 0 0 3 3
Total: 180 195 198 17 19 33 74 5 14 5 740
TPR: 0.839 0.744 0.672 0.824 0.632 0.636 0.905 0.2 0.357 0.6 0.641

CTree w/ feature selection : With feature selection A increased modestly to

65.8%, but accuracy declined to 68.4%. See table 3.2.

McNB Baseline With all features, A was quite good: 85.9%. However, overall

accuracy was 72.8%. See table 3.3 for confusion matrix and other details.

52

Table 3.2: Yeast Dataset, Classification Tree with feature selection, Accuracy =
68.4%, MCC: 0.607 CEN: 0.290

Class MIT NUC CYT ME1 EXC ME2 ME3 VAC POX ERL Total
MIT 131 13 9 0 0 1 2 0 2 0 158
NUC 8 87 26 0 1 0 1 2 0 0 125
CYT 33 87 158 0 3 2 4 2 4 0 293
ME1 1 0 0 13 2 1 0 0 0 0 17
EXC 1 0 0 1 11 1 0 0 0 0 14
ME2 5 2 1 2 2 26 0 0 0 1 39
ME3 1 5 3 1 0 2 67 0 0 0 79
VAC 0 1 0 0 0 0 0 1 0 0 2
POX 0 0 1 0 0 0 0 0 8 0 9
ERL 0 0 0 0 0 0 0 0 0 4 4
Total: 180 195 198 17 19 33 74 5 14 5 740
TPR: 0.728 0.446 0.798 0.765 0.579 0.788 0.905 0.2 0.571 0.8 0.658

Table 3.3: Yeast Dataset, Multiclass Näıve Bayes with all features included,
Accuracy = 72.8%, MCC: 0.671 CEN: 0.293

Class MIT NUC CYT ME1 EXC ME2 ME3 VAC POX ERL Total
MIT 119 10 10 0 0 0 1 0 1 0 141
NUC 9 108 17 0 0 1 0 0 0 0 135
CYT 18 35 152 0 1 0 0 1 0 0 207
ME1 4 4 2 17 0 0 0 0 0 0 27
EXC 4 6 2 0 18 0 0 0 0 0 30
ME2 12 9 5 0 0 32 2 0 0 0 60
ME3 8 10 5 0 0 0 71 0 0 0 94
VAC 1 5 0 0 0 0 0 4 0 0 10
POX 5 8 5 0 0 0 0 0 13 0 31
ERL 0 0 0 0 0 0 0 0 0 5 5
Total: 180 195 198 17 19 33 74 5 14 5 740
TPR: 0.661 0.554 0.768 1 0.947 0.97 0.959 0.8 0.929 1 0.859

McNB w/ feature selection: With feature selection, Multiclass Näıve Bayes

had the highest A of 87%, though with an accuracy of only 72.8%. The disparity is

accounted for in the accuracy across the first 3 classes, which make up more than 3
4

of the dataset. On them, accuracy ranged between abysmal and mediocre. We can

clearly see the danger of a highly skewed dataset and the dangers of metrics than are

do not take this sufficiently into account. See table 3.1 for details.

53

Table 3.4: Yeast Dataset, Multiclass Näıve Bayes with feature selection included,
Accuracy = 72.8%, MCC: 0.630 CEN: 0.310

Class MIT NUC CYT ME1 EXC ME2 ME3 VAC POX ERL Total
MIT 124 22 17 0 0 0 0 0 1 0 164
NUC 8 90 21 0 0 0 0 0 0 0 119
CYT 13 36 134 0 1 0 0 0 0 0 184
ME1 3 1 1 17 0 0 0 0 0 0 22
EXC 2 3 1 0 18 0 0 0 0 0 24
ME2 9 8 4 0 0 33 0 0 0 0 54
ME3 15 20 12 0 0 0 74 0 0 0 121
VAC 2 9 3 0 0 0 0 5 0 0 19
POX 4 5 5 0 0 0 0 0 13 0 27
ERL 0 1 0 0 0 0 0 0 0 5 6
Total: 180 195 198 17 19 33 74 5 14 5 740
TPR: 0.689 0.462 0.677 1 0.947 1 1 1 0.929 1 0.87

Hunter The Hunter underperformed the four other methods by any measure, and

took a great deal (more than 100 times) more processor time to do it. This was

supposed to be the best case for the Hunters, and early indications say that it is. A

= .473%, while accuracy is 51.1%. Table 3.5.

Table 3.5: Yeast Dataset, Hunter Accuracy = 51.1%, MCC: 0.413 CEN: 0.409

Class MIT NUC CYT ME1 EXC ME2 ME3 VAC POX ERL Total
MIT 105 17 12 0 0 0 0 0 0 0 134
NUC 2 37 10 1 0 1 3 0 0 0 54
CYT 43 94 142 0 5 3 2 1 10 0 300
ME1 4 1 0 8 1 3 7 0 0 0 24
EXC 9 2 3 0 9 7 0 0 2 0 32
ME2 1 9 6 6 4 12 1 1 0 2 42
ME3 14 5 11 2 0 6 58 1 0 0 97
VAC 2 28 13 0 0 1 3 2 0 0 49
POX 0 0 1 0 0 0 0 0 2 0 3
ERL 0 2 0 0 0 0 0 0 0 3 5
Total: 180 195 198 17 19 33 74 5 14 5 740
TPR: 0.583 0.19 0.717 0.471 0.474 0.364 0.784 0.4 0.143 0.6 0.473

Which classifier performed best is open for debate, both CTree and McNB are

promising in their own ways. CTree seems to do a better job with the bulk classes,

and perhaps if you’re optimizing average accuracy that’s a good way to go; optimize a

method for something it is less suited for, resulting in a kind of check on optimization

54

gone awry. Alternatively, perhaps the status of the major classes aren’t as important,

and the focus instead is on discriminating between the outlying classes. In that

case, McNB clearly wins. In any case, the Hunter didn’t do well, exactly, and with

more time it might have done better, but that applies to any of these methods. The

difference is that the Hunter already had 10 times as many generations and still didn’t

manage to get anywhere even close to competitive.

3.2.2 Cardiotocography NSP

CTree Baseline A classification tree handily gets 94% accuracy on this dataset,

but that will prove to be a fairly unsurprising given this dataset. See table 3.6 for

more details.

Table 3.6: Cardio Dataset, NSP Labels Classification Tree without feature selection
included, Accuracy=94.1%, MCC: 0.967 CEN: 0.043

Class Normal Suspect Pathologic Total
Normal 519 31 9 559
Suspect 12 408 0 420

Pathologic 10 0 74 84
Total: 541 439 83 1063
TPR: 0.959 0.929 0.892 0.927

CTree w/ Feature Selection With feature selection, we see a similar pattern

to yeast. Overall accuracy drops slightly, but the smaller classes get more accurate.

What’s interesting here is that MCC and CEN both decrease; see table 3.7 for more

details.

McNB Baseline We get an accuracy of 90.2%, which is low compared to the

previous classifiers, and the supporting metrics of MCC and CEN are much worse as

well. See table 3.8 for details.

55

Table 3.7: Cardio Dataset, NSP Labels Classification Tree with feature selection
included, Accuracy: 93.9% MCC: 0.962 CEN: 0.051

Class Normal Suspect Pathologic Total
Normal 514 34 3 551
Suspect 12 405 0 417

Pathologic 15 0 80 95
Total: 541 439 83 1063
TPR: 0.95 0.923 0.964 0.946

Table 3.8: Cardio Dataset, NSP Labels Multiclass Näıve Bayes without feature
selection included, Accuracy = 90.2% MCC: 0.797 CEN: 0.186

Class Normal Suspect Pathologic Total
Normal 476 24 6 506
Suspect 37 408 2 447

Pathologic 28 7 75 110
Total: 541 439 83 1063
TPR: 0.88 0.929 0.904 0.904

McNB w/ Feature Selection Here, McNB manages to redeem itself somewhat.

A is the highest for any of the classifiers, and accuracy is only slightly lower than the

baseline CTree. However, MCC and CEN are considerably worse than that tree, so

take this classifiers’ predictions with a grain of salt.

Table 3.9: Cardio Dataset, NSP Labels Multiclass Näıve Bayes with feature selection
included, Accuracy = 94%, MCC: 0.889 CEN: 0.116

Class Normal Suspect Pathologic Total
Normal 490 11 1 502
Suspect 28 427 0 455

Pathologic 23 1 82 106
Total: 541 439 83 1063
TPR: 0.906 0.973 0.988 0.956

Hunter This is probably the best we will see from the Hunter. That said, it didn’t

do very well for the purpose of the dataset, which is distinguishing pathologic patterns

from safe ones. See table 3.10 for further discussion.

56

Table 3.10: Cardio Dataset, NSP Labels Hunter, Accuracy = 55%, MCC: 0.333
CEN: 0.568

Class Normal Suspect Pathologic Total
Normal 197 77 10 284
Suspect 183 322 4 509

Pathologic 161 40 69 270
Total: 541 439 83 1063
TPR: 0.364 0.733 0.831 0.643

As we can see, the CTree without feature selection performed best on this dataset.

For one thing, the dataset was developed by experts and they selected features that

would be most indicative of problems. Also, it might seem strange that MCC and

CEN were so much lower on the Bayesian classifiers. In examining the tables, pay

close attention to how well the total in the right column matches the total in the row,

and that should give an idea of why. In some sense, MCC and CEN are measures of

the useful information from the classifier. In this case, when it makes a prediction

of a particular class it’s extremely confident. That’s much more useful than what

the Bayesian classifiers discern, even though they get more of the pathological cases

correct. Because even though the McNB with feature selection gets 82 of the 83

pathological cases, it also misclassified them about 20% of the time.

3.2.3 Cardiotocography Morphology

CTree Baseline Again, this dataset proves to be highly separable, and CTree

continues to do quite well. See table 3.11 for details.

CTree w/ Feature Selection Compared to the baseline, accuracy increased

marginally but MCC got slightly worse. CEN stayed the same to 3 significant figures.

See table 3.12.

McNB Baseline Here, we again see the discriminative power of the Bayesian

method: accuracy is up to 96% and CEN is down a full 3.5 points and MCC is up by

57

Table 3.11: Cardio Dataset, Morphological Labels Classification Tree without
feature selection included, Accuracy = 94.3% MCC: 0.933, CEN: 0.086

Class J F A H G B D I E C Total
J 97 0 2 0 0 0 0 0 2 0 101
F 0 159 0 1 5 6 0 0 0 0 171
A 4 0 183 0 0 5 0 0 1 1 194
H 0 0 0 42 2 0 1 0 0 2 47
G 0 1 1 0 120 1 0 0 0 0 123
B 0 0 1 0 0 286 3 0 3 1 294
D 0 1 0 0 0 1 38 0 0 0 40
I 3 0 1 0 0 0 0 28 0 0 32
E 2 0 5 0 0 1 0 0 31 1 40
C 0 0 2 0 0 0 0 0 0 19 21

Total: 106 161 195 43 127 300 42 28 37 24 1063
TPR: 0.915 0.988 0.938 0.977 0.945 0.953 0.905 1 0.838 0.792 0.925

Table 3.12: Cardio Dataset, Morphological Labels Classification Tree with feature
selection included accuracy: 94.3% MCC: 0.931, CEN: 0.086

Class J F A H G B D I E C Total
J 98 0 0 0 0 0 0 0 2 1 101
F 0 161 1 1 1 7 0 0 0 0 171
A 6 0 178 0 0 4 0 1 3 2 194
H 0 0 2 44 0 0 1 0 0 0 47
G 0 4 1 0 118 0 0 0 0 0 123
B 0 1 3 0 0 283 3 0 4 0 294
D 0 1 0 0 0 0 39 0 0 0 40
I 3 0 0 0 0 0 0 29 0 0 32
E 1 0 5 0 0 0 0 0 33 1 40
C 0 0 2 0 0 0 0 0 0 19 21

Total: 108 167 192 45 119 294 43 30 42 23 1063
TPR: 0.907 0.964 0.927 0.978 0.992 0.963 0.907 0.967 0.786 0.826 0.922

almost the same. There’s one class, I, where 100% of the cases were caught, that is,

one perfect column, though there’s no corresponding perfect row. See table 3.13.

McNB w/ Feature Selection This is the best we’ll likely see from McNB: there

are 3 perfect columns and 3 rows, and they overlap on 2 of the classes (I and H).

Accuracy and A are 98.3 and 98.1%, respectively, MCC is 0.980 and CEN is 0.030.

See table 3.14 for further details.

Hunter This hunter actually manages a negative MCC, which represents it

performing worse than chance. In some sense, this means that if this classifier says

58

Table 3.13: Cardio Dataset Morphological Labels Multiclass Näıve Bayes without
feature selection, Accuracy= 96.9% MCC: 0.963, CEN: 0.05

Class J F A H G B D I E C Total
J 99 0 2 0 0 0 0 0 0 0 101
F 0 169 0 0 0 1 0 0 0 1 171
A 2 0 189 0 0 2 0 0 0 1 194
H 0 0 0 47 0 0 0 0 0 0 47
G 0 1 0 1 121 0 0 0 0 0 123
B 0 5 9 0 2 276 1 0 1 0 294
D 0 0 0 0 0 0 40 0 0 0 40
I 2 0 0 0 0 0 0 30 0 0 32
E 2 0 0 0 0 0 0 0 38 0 40
C 0 0 0 0 0 0 0 0 0 21 21

Total: 105 175 200 48 123 279 41 30 39 23 1063
TPR: 0.943 0.966 0.945 0.979 0.984 0.989 0.976 1 0.974 0.913 0.967

Table 3.14: Cardio Dataset Morphological Labels Multiclass Näıve Bayes with
feature selection, Accuracy = 98.3%, MCC: 0.98, CEN: 0.03

Class J F A H G B D I E C Total
J 100 0 1 0 0 0 0 0 0 0 101
F 0 171 0 0 0 0 0 0 0 0 171
A 0 0 187 0 1 4 0 0 1 1 194
H 0 0 0 47 0 0 0 0 0 0 47
G 0 1 0 0 122 0 0 0 0 0 123
B 0 4 2 0 1 285 1 0 1 0 294
D 0 0 0 0 0 0 40 0 0 0 40
I 0 0 0 0 0 0 0 32 0 0 32
E 0 0 0 0 0 0 0 0 40 0 40
C 0 0 0 0 0 0 0 0 0 21 21

Total: 100 176 190 47 124 289 41 32 42 22 1063
TPR: 1 0.972 0.984 1 0.984 0.986 0.976 1 0.952 0.955 0.981

something you’re better off picking anything else at random. See table 3.15 for details

of its lackluster performance.

3.2.4 Bach’s Chorales

Unfortunately, there’s not a good way of fitting a 103 index square confusion matrix

on a single page that preserves readability. Thus, we have included instead heatmaps

of the classifiers instead. We will discuss them as normal.

59

Figure 3.5: Bach’s, CTree Baseline. Accuracy = 70.9%, A = 24.4%, MCC = 0.694
CEN =0.18.

60

Table 3.15: Cardio Dataset Morphological Labels Multiclass Näıve Bayes with
feature selection, Accuracy = 41.7%, MCC: -0.078, CEN: 0.49

Class J F A H G B D I E C Total
J 28 19 0 1 21 0 3 2 27 0 101
F 0 5 0 0 2 163 1 0 0 0 171
A 16 86 10 0 33 5 1 40 1 2 194
H 0 1 0 38 4 3 0 1 0 0 47
G 0 43 0 1 65 3 10 1 0 0 123
B 2 3 0 0 2 284 1 2 0 0 294
D 0 0 0 0 0 40 0 0 0 0 40
I 0 6 0 16 0 0 0 10 0 0 32
E 9 7 0 0 12 0 0 8 4 0 40
C 0 11 0 0 3 0 1 6 0 0 21

Total: 55 181 10 56 142 498 17 70 32 2 1063
TPR: 0.509 0.028 1 0.679 0.458 0.57 0 0.143 0.125 0 0.351

CTree Baseline CTree had some difficulty with this dataset. MCC was decent

at 0.694, CEN seemed to be relatively good at 0.18. However, accuracy was 70.9%,

which seems like decent performance (the perceptron in the original paper got 75%,

after all), and the MCC seems to indicate this result is from some consolidation of

signal rather than chance. A is very low at 24.4%, but with so many classes that is

not particularly surprising.

CTree w/ Feature Selection Unusually, performance decreased by most metrics

here. That might be indicative that all dimensions are important to this set, which

makes sense for music; it would be hard to discern the difference between two chords

if you ignore a single key which contributes to one and not the other. This pattern

doesn’t hold with the Bayesian classifier. Accuracy is 67.9%, while A is 27.0%. MCC

was 0.662, and CEN was 0.192.

McNB Baseline Here, we see a marked difference in performance between CTree

and McNB. MCC at 0.785 is noticeably higher, and CEN at 0.139 is lower by about

the same margin, and accuracy beats the original paper at 79.4%. A is the biggest

difference, though, and nearly triples the baseline CTree’s result at 66.2%.

61

Figure 3.6: Bach’s, CTree. Accuracy = 67.9%, A = 27.0%, MCC = 0.662 CEN
=0.192.

62

Figure 3.7: Bach’s, McNB Baseline. Accuracy = 79.4%, A = 66.2%, MCC = 0.785
CEN =0.139.

63

Figure 3.8: Bach’s, McNB. Accuracy = 80.3%, A = 65.3%, MCC = 0.794 CEN
=0.136.

64

Figure 3.9: Bach’s, Hunter. MCC = 0.196 CEN =0.307.

McNB w/ Feature Selection This optimizer performs comparably to the

baseline, being slightly better in MCC (0.794), CEN(0.136) and Accuracy(80.3%),

but coming in slightly under in A at 65.3%.

Hunter Due to numerous troubles getting the Hunters to run on this dataset, we

still don’t have results from more than a few dozen generations. To be added as

we get them. Our 1,925 generation run, which took 3 weeks, resulted in an MCC

of 0.196, and a CEN of 0.307, which is better than random. However, because the

training set was missing a handful of the more rare classes, it isn’t an apples-to-apples

comparison.

65

3.3 Final Thoughts

It is clear that theoretically based algorithms are better at solving problems than

trying to co-opt a GA to do it on its own. As for whether we should use

McNB or CTree, the answer is clear: neither. We’ve already written far better

performing algorithms elsewhere, including aggregate trees and support vector

machine optimizers. The purpose of those algorithms was to give Hunters competition

that wouldn’t completely outclass them, and they failed in that regard. This is at

least partially because Näıve Bayes is such a robust first pass, and there are good

reasons to use it in ensemble methods because it does such a good job extracting

signal from messy data. Further, it does a decent job differentiating classes with few

samples.

The most surprising performance was from CTree; while we have used trees in

aggregate before, they performed far better alone than expected, in some regards

holding their own up against Näıve Bayes, though mostly in terms of overall accuracy

and only if we’re being accommodating. Still, their performance was better than we

would have expected going into the project.

Hunters performed poorly. There might be some way of improving their performance,

which we’ve noted as we’ve gone through the document. However, there should be

a case made that such an endeavor is worthwhile, and one would need significant

data contradicting this paper to say that there remains a compelling reason to do so.

When we began this project, we believed that they had a decent chance to at least

hold their own with our methods. This has been proven to be false across numerous

comparisons. Further, we “cheated” on behalf of the Hunter, giving it vast additional

resources, time, and modified starting conditions. We gave it every advantage, and it

failed to deliver. The evidence is not conclusive for genetic algorithms in general, but

this GA specifically is vastly inferior to even modest hybrid classification methods

and should be retired.

66

Figure 3.10: This figure demonstrates Hunter fitness, average and best, over the
lifespan of a trial, in this case 300 generations. Where there seems to be lacking
monotonicity is actually the result of validation fitness, which has the best Hunters
seemingly scoring much better on the testing set.

Figure 3.11: Population fitness of the McNB Optimizer on the CardioNSP dataset.
This overall shape is typical of most Optimizers.

67

Chapter 4

Conclusions

Genetic Algorithms should probably be used to optimize rather than classify. Without

considerably more work developing a better algorithm to create an extensible generic

universal genetic classifier, there’s simply too much theoretical ground to make up.

GAs still do a good job optimizing, and can get the same or better performance out

of them, which is very similar to the real evolution. This project felt like forcing a

speedboat to race against kittens piloting a bucket, and then being shocked as even

without any other advantages the speedboat won every time.

In the end, evolutionary algorithms are a swiss-army knife. Certainly, a GA would

be able to solve linear programming problems better than a support vector machine,

but that isn’t even in the realm of a fair comparison. GAs are good at what they

do, that is, optimizing a fitness function over time in a way that resembles evolution.

They can easily be overwhelmed with genomes of great length, which is one area

where real evolution has a huge edge. First, it is massively and embarrassingly

parallel. Second, developmental biology is great at branch and bound. In other

words, genomes that will have trouble producing viable solutions will themselves be

less likely to exist because of many pass or fail tests along the way. Oh, and it

also has a billion years or more to come up with solutions. If there were a way

for GAs to take advantage of additional parallelism or checkpoints that might be

68

a place for further research. Another place might be in finding similarly generic

tools which we could leverage, like, perhaps, neural nets to take a first pass at

a dataset and then using a Hunter-like approach to distinguish results, though, if

neural nets are already involved, there would need to be a good reason to invoke a

Hunter when some other neural net would likely get better results, especially given

their lackluster performance here. One possible reason for using Hunters despite

their mediocre performance: they are extremely transparent. A Hunter will distill its

decision making into unambiguous rules (even if it is a slew of them), where a neural

net by its nature relies on numerous hidden calculations. This transparency was a

major motivating factor for this approach to begin with.

Some other direction that might be worth pursuing is finding a way to combine more

theoretical underpinnings with a GA. For instance, here the mechanics available to

the Hunter were somewhat lackluster. All they could do were make boolean decisions

based on the absolute values of features. That’s simply not enough for modern

datasets. As mentioned, GAs are extremely good at leveraging tools given to them

and combining them in interesting ways, so one might consider improving the quality

of the toolbox a useful avenue for further research. This could be branching on any

number of concepts, including statistical ones or neural network inspired, or perhaps

abandoning ensemble voting altogether and coming to some conclusion more akin

to maximum likelihood estimation. An example of that might be building different

PDFs for each class from an arbitrary number of Gaussian functions and evaluating

based on the resulting metrics.

A has proved to be a flawed metric, as to some degree all metrics are. We would still

argue that it is less flawed than anything simpler. Until this result, our findings with

A is that it was usually u to accuracy. Here, however, whether because of the skew

of the datasets or some other confounding factor, A was often very different from raw

accuracy, which is a place for either further research or a reason to find a new metric.

In hindsight, and even from an a priori standpoint, it seems obvious that if you only

consider the diagonal of a confusion matrix you’re losing useful information. Jurman

69

et al. (2012) includes a few methods which might be valuable for multi-class confusion

matrices. Matthew’s Correlation Coefficient and Confusion Entropy seem promising,

and implementing them as a fitness function would be fairly straightforward. We

calculate these metrics for the classifications we have already gathered, however future

work might include using one or a weighted combination of both as better metrics for

scoring multi-class classifiers.

The optimizers performed well, given relatively very few generations. The next area of

research for them is combining them and connecting their outputs back into another

optimizer for a difficult or intractable dataset, combining them in novel ways to get the

maximum signal from a dataset, perhaps even a meta-optimizer that will optimize an

ensemble of disparate optimizers, themselves optimizing primitive classifiers. That

seems like a promising way of limiting the search length for each population of

optimizers while still searching a much larger space, though more research would

be needed to show that it is viable. For instance, the meta-optimizer could have a

few bits for each subordinate optimizer, probably of different types. The first section

of the bits would encode two numbers, the first for how many optimizers to train

and the second for how many features to include. Then, the subordinate optimizers

would operate under the constraint of including no more than the number of features,

and would separately and quickly evolve an ensemble of different classifiers. These

classifiers in turn would provide their output to the meta-optimizer who would then

optimize a classifier of its own using all the features and the classifications made by

its ensemble of classifiers as a new table. This might be feasible given the speed with

which many of the classifiers were able to evolve, and the robustness of the classifiers

generated in such a manner.

70

Bibliography

71

Affenzeller, M. and Wagner, S. (2003). A self-adaptive model for selective pressure

handling within the theory of genetic algorithms. In International Conference on

Computer Aided Systems Theory, pages 384–393. Springer. 4

Alexandre, E., Cuadra, L., Salcedo-Sanz, S., Pastor-Snchez, A., and Casanova-

Mateo, C. (2015). Hybridizing Extreme Learning Machines and Genetic Algorithms

to select acoustic features in vehicle classification applications. Neurocomputing,

152:58–68. 15

Ayres-de campos, D., Bernardes, J., Garrido, A., Marques-de s, J., and Pereira-leite,

L. (2000). SisPorto 2.0: A Program for Automated Analysis of Cardiotocograms.

Journal of Maternal-Fetal Medicine, 9(5):311–318. 49

Back, T. (1994). Selective pressure in evolutionary algorithms: a characterization of

selection mechanisms. In Proceedings of the First IEEE Conference on Evolutionary

Computation. IEEE World Congress on Computational Intelligence, pages 57–62

vol.1. 4

CEDAR (2002). CEDAR Databases. 17

Chou, J.-S., Cheng, M.-Y., Wu, Y.-W., and Pham, A.-D. (2014). Optimizing

parameters of support vector machine using fast messy genetic algorithm for dispute

classification. Expert Systems with Applications, 41(8):3955–3964. 15

72

Daniele P. Radicioni and Roberto Esposito (2014). UCI Machine Learning Repository:

Bach Choral Harmony Data Set. 13, 48

Dehuri, S., Patnaik, S., Ghosh, A., and Mall, R. (2008). Application of elitist

multi-objective genetic algorithm for classification rule generation. Applied Soft

Computing, 8(1):477–487. 15

Duan, L., Guo, L., Liu, K., Liu, E. H., and Li, P. (2014). Characterization and

classification of seven Citrus herbs by liquid chromatographyquadrupole time-of-

flight mass spectrometry and genetic algorithm optimized support vector machines.

Journal of Chromatography A, 1339:118–127. 15

Fidelis, M. V., Lopes, H. S., and Freitas, A. A. (2000). Discovering comprehensible

classification rules with a genetic algorithm. In Proceedings of the 2000 Congress on

Evolutionary Computation. CEC00 (Cat. No.00TH8512), volume 1, pages 805–810

vol.1. 16

Hoque, M. S., Mukit, M. A., and Bikas, M. A. N. (2012). An Implementation of

Intrusion Detection System Using Genetic Algorithm. International Journal of

Network Security & Its Applications, 4(2):109–120. arXiv: 1204.1336. 16

Hyafil, L. and Rivest, R. L. (1976). Constructing optimal binary decision trees is

NP-complete. Information processing letters, 5(1):15–17. 27

J. P. Marques de S, J. Bernardes, and D. Ayres de Campos (2010). UCI Machine

Learning Repository: Cardiotocography Data Set. 13, 48

Devos, O., Downey, G., and Duponchel, L. (2014). Simultaneous data pre-processing

and SVM classification model selection based on a parallel genetic algorithm applied

to spectroscopic data of olive oils. Food Chemistry, 148:124–130. 15

Jurman, G., Riccadonna, S., and Furlanello, C. (2012). A Comparison of MCC and

CEN Error Measures in Multi-Class Prediction. PLOS ONE, 7(8):e41882. 46, 69

73

Kharma, N., Kowaliw, T., Clement, E., Jensen, C., Youssef, A., and Yao, J.

(2004). PROJECT CellNet: EVOLVING AN AUTONOMOUS PATTERN

RECOGNIZER. International Journal of Pattern Recognition and Artificial

Intelligence, 18(06):1039–1056. 14, 17, 34, 37, 40

Kowaliw, T., Kharma, N., Jensen, C., Moghnieh, H., and Yao, J. (2004). CellNet

Co-Ev: Evolving Better Pattern Recognizers Using Competitive Co-evolution. In

Genetic and Evolutionary Computation GECCO 2004, pages 1090–1101. Springer,

Berlin, Heidelberg. DOI: 10.1007/978-3-540-24855-2 119. 17

Kozeny, V. (2015). Genetic algorithms for credit scoring: Alternative fitness function

performance comparison. Expert Systems with Applications, 42(6):2998–3004. 16

Li, L., Zhang, G., Nie, J., Niu, Y., and Yao, A. (2012). The Application of Genetic

Algorithm to Intrusion Detection in MP2p Network. In Advances in Swarm

Intelligence, pages 390–397. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-

30976-2 47. 16

Lichman, M. (2013). UCI Machine Learning Repository. University of California,

Irvine, School of Information and Computer Sciences. 13, 47

Maaten, L. v. d. and Hinton, G. (2008). Visualizing Data using t-SNE. Journal of

Machine Learning Research, 9(Nov):2579–2605. 48

Marchetti, M., Onorati, F., Matteucci, M., Mainardi, L., Piccione, F., Silvoni,

S., and Priftis, K. (2013). Improving the Efficacy of ERP-Based BCIs Using

Different Modalities of Covert Visuospatial Attention and a Genetic Algorithm-

Based Classifier. PLOS ONE, 8(1):e53946. 15

Nakai, K. and Kanehisa, M. (1992). A knowledge base for predicting protein

localization sites in eukaryotic cells. Genomics, 14(4):897–911. 48

74

Ocak, H. (2013). A Medical Decision Support System Based on Support Vector

Machines and the Genetic Algorithm for the Evaluation of Fetal Well-Being.

Journal of Medical Systems, 37(2):9913. 14, 49

Paul Horton (1996). UCI Machine Learning Repository: Yeast Data Set. 13, 47

Radicioni, D. P. and Esposito, R. (2010). BREVE: An HMPerceptron-Based Chord

Recognition System. In Ra, Z. W. and Wieczorkowska, A. A., editors, Advances in

Music Information Retrieval, number 274 in Studies in Computational Intelligence,

pages 143–164. Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-11674-2 7. 50

Ruiz, E., Albareda-Sambola, M., Fernndez, E., and Resende, M. G. C. (2015). A

biased random-key genetic algorithm for the capacitated minimum spanning tree

problem. Computers & Operations Research, 57:95–108. 4, 32

Salari, N., Shohaimi, S., Najafi, F., Nallappan, M., and Karishnarajah, I.

(2014). A Novel Hybrid Classification Model of Genetic Algorithms, Modified k-

Nearest Neighbor and Developed Backpropagation Neural Network. PLOS ONE,

9(11):e112987. 15

Schuman, C. D., Birdwell, J. D., and Dean, M. E. (2014). Spatiotemporal

classification using neuroscience-inspired dynamic architectures. Procedia

Computer Science, 41:89–97. 14

Srikanth, R., George, R., Warsi, N., Prabhu, D., Petry, F. E., and Buckles, B. P.

(1995). A variable-length genetic algorithm for clustering and classification. Pattern

Recognition Letters, 16(8):789–800. 16

Stefanie Scheid (2004). Introduction to Kernel Smoothing | Kernel (Operating

System) | Probability Density Function. 25

Tseng, M.-H., Chen, S.-J., Hwang, G.-H., and Shen, M.-Y. (2008). A genetic

algorithm rule-based approach for land-cover classification. ISPRS Journal of

Photogrammetry and Remote Sensing, 63(2):202–212. 16

75

Uysal, A. K. and Gunal, S. (2014). Text classification using genetic algorithm oriented

latent semantic features. Expert Systems with Applications, 41(13):5938–5947. 15

Wei, J.-M., Yuan, X.-J., Hu, Q.-H., and Wang, S.-Q. (2010). A novel measure for

evaluating classifiers. Expert Systems with Applications, 37(5):3799–3809. 46

Wu, J., Long, J., and Liu, M. (2015). Evolving RBF neural networks for

rainfall prediction using hybrid particle swarm optimization and genetic algorithm.

Neurocomputing, 148:136–142. 15

Zhang, J. (2003). Evolution by gene duplication: an update. Trends in Ecology &

Evolution, 18(6):292–298. 35

Zhang, Z., McDonnell, K. T., Zadok, E., and Mueller, K. (2015). Visual Correlation

Analysis of Numerical and Categorical Data on the Correlation Map. IEEE

Transactions on Visualization and Computer Graphics, 21(2):289–303. 21

76

Appendix

77

Example of Hunter Genome and

Explanation

Yeast

Aff Cla Not Cell 1 Cell 2

01 0111 1 100000000110010111011

11 0101 1 111011011100111100001

11 0001 0 010001100101111101011

10 0011 1 001001100110111010100

11 0000 1 110110101001110001001

10 0010 1 001101100010111101110

11 0101 1 000000101001110111000 110100101110001110100

00 0110 0 101001101001111001101 011000001011011101010

11 0100 1 000000011000101010111

11 1000 1 000010101001110110011

11 0001 0 011101101011111010011

cont’d

78

Aff Cla Not Cell 1 Cell 2

10 1000 0 010101011011101011101 110010011111101111101

01 1001 0 100000101110100110111

00 0000 0 001101011000110010110

01 1001 1 000100111111101101111

11 0001 1 001100011001101010100

01 0111 0 000100001000010010110

11 0101 0 100000110011101111101

01 0100 0 011110110001111111001

10 0011 1 000100110000101101001

01 0011 0 011101011101110101010

11 0100 1 111001100000110101010

01 0001 0 011101011001110000101

01 0111 1 011001100101110111001

79

1: Best Hunter, Yeast

1 This hunter has the following 24 chromosomes:

2 This chromosome prefers the rear

3 It focuses on problems in the following class:

4 VAC

5 By aggregating the nay votes from the following 1 cell:

6 This cell looks at feature 0

7 whose return value is between 0.0234375 and 0.36328125

8

9 This chromosome considers itself complete

10 It focuses on problems in the following class:

11 ME2

12 By aggregating the nay votes from the following 1 cell:

13 This cell looks at feature 6

14 whose return value is between 0.859375 and 0.9375

15

16 This chromosome considers itself complete

17 It focuses on problems in the following class:

18 NUC

19 By aggregating the yes votes from the following 1 cell:

20 This cell looks at feature 4

21 whose return value is not between 0.39453125 and 0.95703125

22

23 This chromosome prefers the front

24 It focuses on problems in the following class:

25 ME1

26 By aggregating the nay votes from the following 1 cell:

27 This cell looks at feature 2

28 whose return value is not between 0.3984375 and 0.9140625

29

80

30 This chromosome considers itself complete

31 It focuses on problems in the following class:

32 MIT

33 By aggregating the nay votes from the following 1 cell:

34 This cell looks at feature 5

35 whose return value is between 0.66015625 and 0.765625

36

37 This chromosome prefers the front

38 It focuses on problems in the following class:

39 CYT

40 By aggregating the nay votes from the following 1 cell:

41 This cell looks at feature 3

42 whose return value is not between 0.3828125 and 0.96484375

43

44 This chromosome considers itself complete

45 It focuses on problems in the following class:

46 ME2

47 By aggregating the nay votes from the following 2 cells:

48 This cell looks at feature 0

49 whose return value is not between 0.16015625 and 0.859375

50

51 This cell looks at feature 5

52 whose return value is between 0.1796875 and 0.2265625

53

54 This chromosome has no preference

55 It focuses on problems in the following class:

56 ME3

57 By aggregating the yes votes from the following 2 cells:

58 This cell looks at feature 2

59 whose return value is between 0.41015625 and 0.8984375

81

60

61 This cell looks at feature 6

62 whose return value is not between 0.04296875 and 0.45703125

63

64 This chromosome considers itself complete

65 It focuses on problems in the following class:

66 EXC

67 By aggregating the nay votes from the following 1 cell:

68 This cell looks at feature 0

69 whose return value is not between 0.09375 and 0.66796875

70

71 This chromosome considers itself complete

72 It focuses on problems in the following class:

73 POX

74 By aggregating the nay votes from the following 1 cell:

75 This cell looks at feature 0

76 whose return value is not between 0.66015625 and 0.84765625

77

78 This chromosome considers itself complete

79 It focuses on problems in the following class:

80 NUC

81 By aggregating the yes votes from the following 1 cell:

82 This cell looks at feature 7

83 whose return value is not between 0.41796875 and 0.91015625

84

85 This chromosome prefers the front

86 It focuses on problems in the following class:

87 POX

88 By aggregating the yes votes from the following 2 cells:

89 This cell looks at feature 5

82

90 whose return value is not between 0.35546875 and 0.6796875

91

92 This cell looks at feature 4

93 whose return value is between 0.62109375 and 0.7421875

94

95 This chromosome prefers the rear

96 It focuses on problems in the following class:

97 ERL

98 By aggregating the yes votes from the following 1 cell:

99 This cell looks at feature 0

100 whose return value is between 0.1796875 and 0.60546875

101

102 This chromosome has no preference

103 It focuses on problems in the following class:

104 MIT

105 By aggregating the yes votes from the following 1 cell:

106 This cell looks at feature 3

107 whose return value is not between 0.34375 and 0.79296875

108

109 This chromosome prefers the rear

110 It focuses on problems in the following class:

111 ERL

112 By aggregating the nay votes from the following 1 cell:

113 This cell looks at feature 1

114 whose return value is not between 0.24609375 and 0.71484375

115

116 This chromosome considers itself complete

117 It focuses on problems in the following class:

118 NUC

119 By aggregating the nay votes from the following 1 cell:

83

120 This cell looks at feature 3

121 whose return value is not between 0.09765625 and 0.6640625

122

123 This chromosome prefers the rear

124 It focuses on problems in the following class:

125 VAC

126 By aggregating the yes votes from the following 1 cell:

127 This cell looks at feature 1

128 whose return value is not between 0.03125 and 0.29296875

129

130 This chromosome considers itself complete

131 It focuses on problems in the following class:

132 ME2

133 By aggregating the yes votes from the following 1 cell:

134 This cell looks at feature 0

135 whose return value is between 0.19921875 and 0.7421875

136

137 This chromosome prefers the rear

138 It focuses on problems in the following class:

139 EXC

140 By aggregating the yes votes from the following 1 cell:

141 This cell looks at feature 7

142 whose return value is not between 0.69140625 and 0.984375

143

144 This chromosome prefers the front

145 It focuses on problems in the following class:

146 ME1

147 By aggregating the nay votes from the following 1 cell:

148 This cell looks at feature 1

149 whose return value is not between 0.1875 and 0.703125

84

150

151 This chromosome prefers the rear

152 It focuses on problems in the following class:

153 ME1

154 By aggregating the yes votes from the following 1 cell:

155 This cell looks at feature 7

156 whose return value is not between 0.36328125 and 0.83203125

157

158 This chromosome considers itself complete

159 It focuses on problems in the following class:

160 EXC

161 By aggregating the nay votes from the following 1 cell:

162 This cell looks at feature 6

163 whose return value is between 0.375 and 0.83203125

164

165 This chromosome prefers the rear

166 It focuses on problems in the following class:

167 NUC

168 By aggregating the yes votes from the following 1 cell:

169 This cell looks at feature 7

170 whose return value is not between 0.34765625 and 0.7578125

171

172 This chromosome prefers the rear

173 It focuses on problems in the following class:

174 VAC

175 By aggregating the nay votes from the following 1 cell:

176 This cell looks at feature 6

177 whose return value is not between 0.39453125 and 0.859375

85

Vita

Isaac Sherman was born in California in 1983. Home-schooled, he received his GED

in 2005, in part to join the United States Air Force. When a GED wasn’t sufficient, he

spent a semester at Pellissippi taking classes that would do nothing to help him with

his degree later. In 2006, he joined the Air Force with the goal of being an Airborne

Linguist. Due to a medical condition, he was incapable of continuing his training

as an Airborne Linguist and subsequently retrained to Security Forces. Stationed

in the small Midwestern community of Altus Air Force Base, Oklahoma as Security

Forces, he spent an unfortunate amount of time waiting for people to commit crimes

in his presence, and would eventually develop a fascination for evolutionary biology to

ward off the boredom. He began seeking a commission in the Air Force and attended

classes in pursuit of a Computer Science degree. While the commissioning package

went unfunded in 2010, after separating in 2012 he enrolled at the University of

Tennessee and finished both his Bachelor’s and Master’s degrees. At this time, he

has no plans to continue his education, but a strong desire to at some point do so.

Mostly so he can force people he is arguing with to call him doctor when they’re

wrong. He is and will continue residing in Knoxville, Tennessee for the foreseeable

future.

86

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2017

	On the Role of Genetic Algorithms in the Pattern Recognition Task of Classification
	Isaac Ben Sherman
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	1 Introduction
	2 Methods and Implementations
	2.1 Overview
	2.2 Preprocessing
	2.3 Hybrid Approach
	2.4 Purist Approach

	3 Results
	3.1 Datasets
	3.2 Results
	3.2.1 Yeast
	3.2.2 Cardiotocography NSP
	3.2.3 Cardiotocography Morphology
	3.2.4 Bach's Chorales

	3.3 Final Thoughts

	4 Conclusions
	Bibliography
	Appendix
	Vita

