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ABSTRACT 
Purpose: The purpose of this study is to determine whether the left wrist cutpoints 

of Esliger et al., for the triaxial GENEA accelerometer, are accurate for predicting 

intensity categories during 14 different activities including; treadmill-based, home 

and office, and sport activities. Methods: 130 adults wore a GENEA accelerometer 

on their left wrist while performing various lifestyle activities. The Oxycon Mobile 

Portable Metabolic Unit was used to measure oxygen uptake during each activity. 

Statistical analysis used Spearman’s rank correlations to determine the relationship 

between measured and estimated intensity classifications. Cross tabulation tables 

were constructed to describe under or over estimation of misclassified activities, 

and one-way chi-squares were used to test whether the accuracy rate of each 

activity differed from 80%. Results: For all activities the GENEA accelerometer-

based physical activity monitor explained 41.1% of the energy expenditure. The 

GENEA correctly classified 52.8% of observations when all activities were 

combined. Five of the 14 activities showed no statistical difference in physical 

activity intensity classification estimation when compared to 80% accuracy, with 1 

activity (treadmill jogging at 9.6 km�hr-1 with 0% grade) showing statistically 

greater accuracy than 80%. For the remainder of the activities, the GENEA showed 

less than 80% accuracy for predicting intensity. Conclusion: Cross-validation of the 

proposed GENEA left wrist cutpoints classified the majority of activities performed 

significantly below the accuracy rate of 80%. Researchers should be cautious when 

applying the Esliger et al. cutpoints to a different population and activities not tested 

by those investigators.  
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CHAPTER 1 
INTRODUCTION 

 

Since the mid-1980’s there has been a steady increase in the evidence-based 

literature associating high physical activity levels with a low risk of developing 

chronic diseases such as type 2 diabetes, obesity, and cardiovascular disease (59). 

The integrity of physical activity monitoring studies, intervention studies, and 

epidemiology studies rely on valid and reliable assessment of physical activity (2). 

Doubly-labeled water, direct observation, and direct and indirect calorimetry are 

the most valid “criterion” measurements of physical activity (62). However, these 

methods are expensive, require trained professionals to administer, and are not 

practical for some applications (37). Movement sensors (pedometers and 

accelerometers) are small, inexpensive, and portable devices that allow researchers 

to objectively measure activity within the free-living environment (37). While 

pedometers were specifically designed to measure walking behaviors, such as total 

steps taken per day (34), accelerometer-based physical activity monitors allow 

researchers to track frequency, intensity, and duration of activity (45).  Prior to the 

development of triaxial accelerometers, uni-axial accelerometers restricted 

researchers to movement information strictly within the vertical plane (62). Tri-

axial accelerometers capture movement in the orthogonal planes, resulting in the 

ability to capture many more activities than the uni-axial accelerometer, and having 

an overall higher correlation with energy expenditure (8, 14, 29). This advancement 



 2 

in monitor technology has allowed tracking of both dynamic and static activity 

related to daily living (15).  

It has been common practice to place motion sensors on the waist of human 

subjects, but this position does have limitations. Placed near the center of mass, 

waist-mounted accelerometers may fail to detect upper body movement, which 

could lead to significant errors in measurement and physical activity level 

misclassification (14). Therefore, determining alternative sites for placement that 

would elicit improved results compared to the waist-worn sensors could enhance 

future research (14). Researchers have attempted to attenuate this error by placing 

accelerometers on the ankle, upper arm, wrist, or multiple sites of the body (5, 65). 

A newly introduced wrist-worn accelerometer-based physical activity monitor, 

Gravity Estimator of Normal Everyday Activity (GENEA), has shown high accuracy in 

classifying numerous activities, including sedentary time, walking, running, and 

household activities (20); and will potentially encourage higher rates of wear 

compliance, when compared to waist-worn accelerometers (60). The physical 

activity classification cutpoints for the GENEA accelerometer, which were developed 

by Esliger et al. (20), showed high levels of criterion validity across all tested 

activities (r=0.85). The authors also speculate that the tight clustering of their data 

within each activity will allow for an increased accuracy of activity classification 

(20). To date these cutpoints have not been cross-validated. The purpose of this 

study is to determine whether the method of Esliger and colleagues for the tri-axial 

wrist accelerometer is accurate for predicting intensity category during 14 different 

activities including; ambulatory activities (lab-controlled speeds and self-paced 
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speed), sedentary activities (computer work and filing papers), household activities 

(vacuuming and walking with a load), and sport activities (tennis, basketball, and 

cycling).  

We hypothesize the intensity category of the walking/running activities that 

do not involve additional energy expenditure, such as walking up a hill, carrying a 

load, or concurrent upper body movement, will be accurately predicted by the tri-

axial wrist accelerometer. Physical activity monitors have shown, over the last 12 

years, that they have been successful in providing valid measurements of 

ambulatory activities such as walking (38). On the other end of the spectrum, 

motion sensors have shown to be the most appropriate activity monitor to measure 

sedentary activity (58). We hypothesize the home/office activities, filing papers and 

computer work, will also be correctly classified. However, when additional obstacles 

are added, such as walking up a hill, carrying a load, or upper body movements, 

predicted intensity categories are significantly underestimated in a single-monitor 

device (37, 38), which is also an inevitable limitation of using cutpoints to determine 

intensities (49). Chen and Bassett (14) summarized in 2005 that accelerometers 

underestimate the energy expenditure of activities involving upper body activity, 

movement in the vertical direction, carrying an object, non-weight bearing 

exercises, or any activity that involves quick changes in acceleration. Therefore, we 

hypothesize walking on a treadmill with an increased grade, walking while carrying 

a load, vacuuming, and all sport activities will be classified at a lower intensity by 

the tri-axial wrist accelerometer-based physical activity monitor. 
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CHAPTER 2 
REVIEW OF LITERATURE 

 

INTRODUCTION 
 
 In order to accurately determine the presence or absence of a relationship 

between physical activity and health-related outcomes in research studies, robust 

objective measurements of physical activity are needed (25). More importantly, the 

accurate quantification of individuals’ daily activities is needed in order to fully 

understand total energy expenditure, beyond planned exercise (29). Motion sensors 

provide an objective alternative to self-report options (34). Accelerometers, a type 

of motion sensor, have been shown to accurately estimate intensity levels, time 

spent in varying intensities, breaks in sedentary periods, and body positioning, such 

as standing, sitting, or lying down (38). Accelerometers have shown to be valid in 

many populations including children, adults, and obese individuals, making the 

accelerometer a promising option for physical activity measurement (6). This 

review of literature will discuss the changes in accelerometer technology and 

advances in analysis of data obtained from accelerometers which over time have led 

to more accurate objective monitoring of physical activity.  

PHYSICAL ACTIVITY ASSESSMENT 
 

In 1962, Paffenbarger (47) began collecting data for the Harvard Alumni 

Health Study. Today, the Harvard Alumni Health Study has shed light on a number of 

correlates between physical activity and health outcomes, such as coronary heart 

disease (47), stroke risk (35), and mortality (36). Although a landmark study, their 
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assessment of physical activity is reliant upon self-reported physical activity 

questionnaires. Prior to the development of physical activity monitors (pedometers, 

accelerometers), most physical activity research used surveys (34). While 

questionnaires are a cost-effective option for assessment, most self-report 

measurements fail to encompass the full continuum of physical activity (58). 

Researchers need measures of physical activity that are equally as easy to use but 

result in more objective results and capture all aspects of nonbasal energy 

expenditure (58). Developing an accurate assessment of physical activity is 

extremely important when attempting to determine a relationship between physical 

activity and an outcome of interest (25). If physical activity is not accurately 

measured the relationship could be attenuated or even found to be non-significant 

(25). According to Plasqui et al. (46) the ideal assessment of physical activity would 

be over a long period of time and within the daily life of individuals, in order to 

capture their actual, habitual activity levels. The criterion measures of physical 

activity include the doubly-labeled water technique, direct observation, and direct 

and indirect calorimetry (34). However, these assessments are usually time 

consuming, expensive, require a trained individual to administer, and are lab-based 

therefore probably not a realistic measure of habitual physical activity, particularly 

in epidemiology studies or in many interventions (37).   

In 1960, using force platforms, Brouha (9) found a correlation between 

human movement and the acceleration of the body in the vertical plane. Two motion 

sensors that were developed as a direct result of Brouha’s finding and that meet the 

criteria stated above, are pedometers and accelerometers (26). The invention of the 
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first pedometer is often credited to Leonardo da Vinci almost 500 years ago (40), 

and pedometers are still used today for the main purpose of quantifying walking 

behavior (58). Pedometers place low burden on research participants, they can be 

cost-effective for the researcher, and they provide a reliable way to measure 

walking behavior; however, the steps given by a pedometer cannot distinguish 

between intensity levels (6).   

New physical activity guidelines and emerging research suggested that 

breaking up activity into shorter, accumulated bouts could increase overall physical 

activity time and could provide the same health benefits as longer activity bouts (33, 

43). In order to determine if the wearers are truly meeting the physical activity 

recommendations, a device is needed that is equally as cost-effective and low 

maintenance as the pedometer but provides the investigators with more 

information about time spent in differing intensities of activity. A motion sensor that 

fits this need is the accelerometer which provides physical activity assessment that 

can be segmented into discrete time periods to allow the researcher to assess 

different physical activity patterns, varying bouts, or overall total amount of 

physical activity (62). Accelerometers are motion sensors that measure 

accelerations and decelerations of the body part to which the device is attached 

(41). Advantages of using an accelerometer include not only that they are small, 

non-invasive, and non-obtrusive (14), but they are also able to measure time spent 

in differing activity intensities (6).  
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ACCELEROMETERS 
 

The accelerometer was originally developed for the aerospace and military 

community and then to measure automobile crash tests, which funded the 

accelerometer research budget for over 60 years (61). The next major sale 

opportunity for accelerometry was for consumer applications, which included 

physical activity measurement (61). The initial statements by Laporte et al. (34) and 

Montoye et al. (41) that lead up to using accelerometers to estimate physical activity 

and energy expenditure were simple but profound in setting the stage for 

accelerometer development: “More active people typically move more than less 

active people” (34) and “All human movement requires acceleration of a body 

part…these accelerations are responsible for the energy expenditure that movement 

requires” (41).  

In 1982, Henry Montoye surmised that using accelerometers to estimate 

energy expenditure was a promising avenue for exploration (41). Montoye and his 

colleagues developed a waist worn accelerometer that weighed 400 grams, was 

14x8x4 centimeters, and measured accelerations in the vertical direction. A 

Beckman Metabolic Cart measured the participants’ oxygen consumption (VO2) 

while they engaged in five different activities (walking on a treadmill, running on a 

treadmill, stepping up and down, half knee-bends, and floor touches) at varying 

speeds. Their analysis showed that there was a strong relationship between the 

accelerometer readings and the VO2 values (r=0.74). Using a scatterplot constructed 
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with the data, they were able to derive an equation to estimate VO2 based on the 

output of the accelerometer.  

Subsequently, studies began to assess the validity and reliability of using 

uniaxial accelerometers in relation to physical activity measurements. Heyman et al. 

(30) tested a uniaxial accelerometer using participants in free-living conditions. 

They used doubly-labeled water as their criterion measure of total energy 

expenditure. Following analysis, researchers found a correlation of 0.87 between 

the accelerometer output and the criterion method’s assessment of energy 

expenditure across a 10-day measurement period. Thus far, the uniaxial 

accelerometer had proven itself to be promising in both laboratory and free-living 

conditions. However, a limitation of the waist-mounted uniaxial accelerometer that 

Montoye and his colleagues (41) noted in their initial experiment, was the inability 

of the uniaxial accelerometer to detect changes in terrain or any upper body 

movement. A uniaxial accelerometer measures accelerations in a single direction 

and has shown to be reliable, valid, and provide stable measurements of some types 

of physical activity (37), but in Montoye’s discussion, his team’s solution to the 

uniaxial device’s measurement limitations was to develop a triaxial accelerometer 

that would measure accelerations in three separate directions (41).  

In 1994, four engineering researchers from the Netherlands experimented 

with the triaxial accelerometer idea by placing three uniaxial accelerometers 

perpendicular to one another (8). The accelerometers were cased in a small cube-

like structure that weighed 0.3 grams and was 4x4x3 millimeters. The cube was 

then mounted onto a belt for easy wear along the lower back of participants. For 
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testing, participants were asked to perform various seated activities (such as 

writing and reading), sitting down and standing up, and walking at multiple speeds. 

Following summation of the three orthogonal plane accelerations, the researchers 

found that while their triaxial accelerometer significantly underestimated energy 

expenditure during sedentary activities by almost 60%, the devices were able to 

come within 4% of the participants’ actual energy expenditure during walking 

activities.  

In 1997, the same group, using the same accelerometer, conducted a 

reliability study (7). To do so they affixed three separate triaxial accelerometers to a 

lever arm that rotated around a fixed radius. All three accelerometers rotated 

around the same axis, at the same time, in the same position. In other words, for the 

accelerometer to be deemed reliable all three accelerometers should yield the same 

output following rotation. The researchers found there were no significant 

differences between the three accelerometers. They also tested accuracy of energy 

expenditure estimation by having 13 young males perform various activity 

protocols (sedentary activities, household activities, walking, and stepping) inside of 

a respiration chamber that measured their actual energy expenditure. Investigators 

found a correlation of r = 0.89 between the energy expenditure and the 

accelerometer output when combining all activities to compute the correlation. In 

1997, Chen et al. (16) wanted to test the Tritrac activity monitor and its ability to 

improve energy expenditure estimation and physical activity monitoring. The 

Tritrac activity monitor is a triaxial accelerometer that weighs 170 grams and 

measures 11.1x6.7x3.2 centimeters. Activities were performed over two days in a 
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room calorimeter in order to measure actual energy expenditure. One day was 

considered a ‘normal’ activity day while the ‘exercise’ day was structured with 

specific activities provided to the participants by the investigators. Chen and 

colleagues (16) found that the Tritrac estimated energy expenditure values were 

highly correlated with the measured values for both the normal day (r=0.855; 

p<0.01) and the exercise day (r=0.925; p<0.001). In a summary of comparison 

studies by Trost et al. (57) in 2005, they found that the validity coefficients found in 

studies using multiaxis devices tend to be slightly higher (r = 0.59 – 0.93) than those 

for uniaxial studies (r = 0.48 – 0.90).  

It is important to understand that physical activity is any movement by the 

body that results in energy expenditure above resting levels, while exercise is a 

subset of physical activity, and refers to energy-expending activities that are 

planned and structured (11). Self-report questionnaires can underestimate total 

daily activity energy expenditure by either inaccurate recall or only assessing time 

spent exercising (34). In 1995, the Center for Disease Control and Prevention and 

the American College of Sports Medicine (43), acknowledged that moderate-

intensity daily activities, such as gardening, washing dishes, and house cleaning that 

are equivalent to the intensity levels reached during a bout of brisk walking can be 

important ways for individuals to build activity into their daily lives. Given the fact 

that many activitiesmake-up one’s daily energy expenditure and in recognition that 

the public routinely engages in many types of activities, it is important that 

researchers find ways to objectively accurately assess them. Overall, not only have 

triaxial accelerometers shown higher correlations with measured energy 
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expenditure (10), but they perform better across a wide array of daily activities, 

provide more information for the investigator, and show a better relationship with 

sole activity energy expenditure, when compared with the uniaxial accelerometer 

(46).  

ELEMENT SENSORS AND TRANSDUCERS 
 

Since the estimated intensity of physical activity from an accelerometer is 

based on the measured accelerations of the movement of the body, another 

important factor to consider is the types of accelerometers that record these 

accelerations (14). An accelerometer converts the physical movement into a 

quantitative measure that can be used by the researcher (15). Much like the change 

from uniaxial measurements to triaxial measurements, physical activity monitors 

have also evolved to be more reliable and research friendly. Early physical activity 

monitors housed sensors called piezoelectric accelerometers (14). These sensors 

consisted of a piezoelectric element that was easily deformed as a result of 

accelerations. When acceleration occurred and the mass was deformed, this 

deformation would be relative to the acceleration and would cause a build up of 

mechanical charge to the sensor. The amount of change in the charge would result in 

the recorded raw acceleration output (26). There are some limitations to these 

sensors. Since they are sensitive to dynamic accelerations they are not as valid at 

measuring static acceleration (body postures) (14). Also, these sensors were 

installed and calibrated by the manufacturer (15) and any re-calibration required 

experienced technicians, possibly imposing time constraints and study costs. The 

newest sensor type is the microelectromechanical accelerometer (15). These 
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accelerometers are extremely small, are highly sensitive, and do not require as 

much power to record activities resulting in the ability to increase measurement 

wear time periods (15). Within this system lies a capacitance system that measures 

change in capacitance distance (15); where dependent on the presence of 

acceleration, the two plates will either be moving closer together or further apart 

(15). With the decreasing size of the accelerometers, increasing memory 

capabilities, and increasing power capabilities, researchers are able to develop more 

rigorous study methodologies by increasing the amount of measurement time and 

decreasing invasiveness of the device (15). 

INTEGRATED ACCELEROMETER TECHNIQUES 
 

In 2000, Bassett (2) theorized that future directions for increased accuracy of 

objective measurement should focus around combining measures together. Since 

the best way to estimate physical activity variables is by sensing both physiological 

and mechanical reactions to different movements (4), researchers began attempting 

to increase validity of accelerometer measurement by pairing accelerometer output 

with physiological measures. Heart rate and VO2 show a linear relationship across a 

large range of activities, and heart rate has been considered an appropriate 

approach to indicate physical activity intensity (2). When using heart rate as a 

measure of exercise intensity, it is important to keep in mind that there are other 

factors that can affect heart rate such as temperature, emotions, and stress (26). 

Another limitation to using heart rate as an objective measure is that heart rate 

responses vary depending on whether the work done is primarily in the upper body 

or in the lower body (26). In 2001, Strath et al. (51) developed the arm-leg heart 
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rate-motion sensor technique in order to differentiate between which half of the 

body is predominantly at work. The investigators attempted to determine the 

difference in the estimated energy expenditure using only a motion sensor, only 

heart rate, or integrating both heart rate and the motion sensor (53). A Computer 

Science and Application, Inc. (CSA) accelerometer was placed on the dominant wrist, 

the right hip, and the right thigh. Participants participated in various activities 

under three categories: yardwork, housework, and conditioning. Following analysis 

the investigators found the accelerometer underestimated the actual energy 

expenditure by 29.5% (p<0.001). The heart rate approach overestimated the energy 

expenditure by 11.1% (p<0.001). However, when the proposed heart rate-motion 

sensor technique was implemented, the estimation of energy expenditure was not 

significantly different from the criterion (p=0.341). Welk and colleagues (65) 

studied the validity of the Sensewear Pro II (SP2) armband monitor, which is a 

monitor that is worn over the right upper arm. This is a non-invasive monitor that 

continually measures different physical changes, such as, heat, galvanic skin 

response, skin temperature, and body temperature, along with body motion from 

the accelerometer. Participants were instructed to wear the monitor for a day and to 

participate in all their normal activities. Energy expenditure was measured using 

the IDEEA monitor, which is a device that uses a set of electrodes combined with a 

neural network to determine an individuals posture and motion. The results of the 

correlation between physical activity estimation and measured physical activity was 

as high as r=0.94 during different types of lying postures, such as lying on the back 

or side, and the lowest correlation value was r=0.42 during sitting (65).  
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When ambulatory movement is excluded, accelerometers, mounted on the 

waist, often underestimate activity concentrated in the upper body (57). 

Researchers have recently attempted to quantify the significant amount of time 

spent in daily activities involving upper body movements (38). A few studies have 

attempted to address this issue by placing multiple monitors on the body in order to 

better capture total body motion. Swartz et al. (55) placed a CSA accelerometer on 

the right side of the waist and one on the dominant wrist. The investigators’ aim was 

to develop a prediction model for each site individually and also to see whether 

using both sites together would improve the estimation equations. Participants 

performed an array of lifestyle activities within the categories of yardwork, 

occupation, housework, family care, conditioning, and recreation. The results 

showed that the developed equations accounted for 3.3% (p=0.003) of the variance 

of the estimated energy expenditure at the wrist site, 31.7% (p<0.001) of the 

variance of the estimated energy expenditure at the hip site, and 34.3% (p<0.001) of 

the variance of the estimated energy expenditure using both the wrist and hip sites. 

Swartz et al. (55) concluded the addition of the wrist only added a slight (2.6%) 

improvement in energy expenditure prediction.  

In 2003, Chen et al. (13) designed a study with a similar objective. They used 

the Tritrac-R3D triaxial accelerometer to measure waist acceleration and the 

Actiwatch uniaxial wrist-worn accelerometer in an attempt to increase measured 

energy expenditure accuracy. Walking and stepping activities were performed at 

varying speeds for 10 minutes within a room calorimeter in order to measure actual 

energy expenditure. By combining the two accelerometers accuracy of the total 
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estimated energy expenditure was 97.7 ± 3.2% of the actual value (p = 0.781). When 

the monitors are used individually to estimate energy expenditure the Tritrac-R3D 

waist worn accelerometer estimated 90.0 ± 4.6% of the actual value (p < 0.001) and 

the ActiWatch estimated 86.0 ± 4.7% of the actual value (p < 0.001). Their analysis 

showed that by combining the two accelerometers significantly improved the 

estimation of actual energy expenditure (97.7 ± 3.2%). It is important to know that 

the type of activities tested by Chen et al. (13) were walking and stepping; thus 

helping explain the high observed correlation. 

Melanson and Freedson (39) also developed estimate equations using hip, 

wrist, and ankle sites. These investigators used the CSA accelerometer to measure 

physical activity while walking and running at different speeds on the treadmill. In 

this study, the use of multiple accelerometer placements resulted in a slightly 

stronger relationship between energy expenditure and acceleration values 

(R2=0.95) than a single placement (R2=0.86). Again, these are high correlations for 

walking and running activities. When the activities become more complex it 

becomes more difficult to try and assess. Although there may be a slight increase in 

ability to estimate energy expenditure when measuring at multiple sites, attaching 

multiple devices may inhibit daily activities, may decrease compliance, and may not 

always be feasible for long-term studies (27). These are issues that need to be 

weighed when deciding on monitoring devices, especially when activity may be 

concentrated in a specific region of the body (i.e. lower body versus upper body 

activity).  
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ACCELEROMETER WEAR SITES 
 

The location of accelerometers on various body sites is another avenue that 

has been explored in increasing accelerometer measurement accuracy (57). 

Although the hip/waist has been considered the ideal measurement location 

because it approximates the center of mass of an individual, new technologies have 

allowed other positioning, such as arm, ankle, and wrist to be used (38). An 

interesting study by Stec and Rawson (50) aimed to compare the accuracy of energy 

expenditure measurement by a waist-placed and wrist-placed triaxial accelerometer 

(ActiGraph GT3X) while resistance training. Accelerometer estimates were 

compared to the energy expenditure measured by the Cosmed K4b2 portable 

metabolic unit. Thirty college-aged participants performed eight routine resistance 

exercises (Smith machine bench press, Smith machine shoulder press, Smith 

machine squat, leg extension, leg curl, lat pull-down, triceps pushdown, barbell 

biceps curl). Analysis showed that the sum of the counts at the wrist-placed 

accelerometer did not significantly correlate with energy expenditure (r = -0.25; p = 

0.18) but the waist-placed accelerometer did significantly correlate with energy 

expenditure (r = 0.50; p= 0.005).  

The Stepwatch dual-axis accelerometer is an ankle worn motion sensor that 

counts steps taken and can estimate energy expenditure (22). Foster et al. (22) 

found that when compared to direct observation, the Stepwatch is able to provide 

an accurate measure of the number of steps taken over a specific amount of time. 

Proof of the accuracy of the Stepwatch in free-living conditions is seen in a study by 

Feito et al. (21) where the Stepwatch was the criterion measure of steps taken, 
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which were compared to Actigraph accelerometers  in order to determine accuracy 

in both controlled and free-living conditions. These studies show sites other than 

the waist have the potential to be accurate alternatives to waist worn 

accelerometers.  

The GENEA accelerometer is a wrist-worn accelerometer that has been 

proven valid and reliable at all manufacturer specified wear sites (right/left wrists 

and waist)(20). In a validation study of the device by Esliger et al. (20) participants 

performed 12 activities (walking, running, and household activities) while wearing a 

GENEA accelerometer on their left and right wrist and one on their right hip. VO2 

was measured by the Cosmed K4b2 portable metabolic gas analysis system. Results 

indicated the hip positioning provided the greatest classification accuracy at 0.95, 

with the left wrist accuracy at 0.93 and the right wrist correctly classifying 0.90 of 

the activities.  

The GENEA accelerometer has been proven effective in predicting energy 

expenditure in pregnant and non-pregnant women, in a study by van Hees et al. 

(60). The pregnant and non-pregnant women wore a GENEA accelerometer on their 

wrist and around their waist for 10 days while actual energy expenditure was being 

measured by doubly labeled water. Upon analysis investigators found no significant 

correlations between measured energy expenditure and accelerometer estimated 

energy expenditure (R2 = 0.24). When this population was cross validated using the 

leave-one-out cross-validation technique, variance explained by the accelerometer 

dropped to 19% of the actual energy expenditure. Since this accelerometer is water-

resistant and can be worn on the wrist, researchers have also found that participant 
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compliance and satisfaction while wearing the device was greater for the GENEA 

accelerometer attached to the wrist than when compared with the waist attachment 

(60). Continuing to create more and more sophisticated accelerometers will not be 

beneficial unless participants are compliant with wearing the device (57). Being 

able to show increased compliance at a specific wear site with a accelerometer that 

has proved valid in a free-living environment, such as the GENEA accelerometer (20, 

60), increases the validity of the physical activity assessment (57). However, the 

question remains whether this device (GENEA) can be used as a device to accurately 

measure physical activity. 

ACCELEROMETER DATA ANALYSIS TECHNIQUES 
 

The accelerometer has evolved to be a more comprehensive, reliable, and 

valid measure of physical activity by including all three axes, as explained above. In 

addition, a change has also been seen in value calibration techniques, the processes 

of converting the raw accelerations into outputs that are useful in research or for 

the consumer (4). The goal of these studies is to determine a relationship between 

the accelerometer signal and the physical activity actually performed (54). 

Accelerometers record accelerations and decelerations so the raw signal is 

bidirectional (14). The bidirectional signals are then converted to an absolute value, 

essentially making all the signals positive (14). These raw signal numbers, which are 

averaged over a user specified time period (epoch) are the output received from the 

accelerometer when the data are initially uploaded from the accelerometer’s 

memory (14). In order to interpret these numbers, activity counts, which 

correspond with specified activity intensity levels, are developed for use with each 
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accelerometer (38). Activity counts are a dimensionless unit that are unique to a 

specific accelerometer, activity performed, and epoch setting (6). These activity 

counts are derived from an acceleration-versus-time curve (4). The area under the 

curve of the absolute values of the observed waves for a specific time length are 

used to determine the activity counts (4). The epoch length set by the instrument 

user can dramatically effect these activity count results (14).  Short epochs can 

result in a more precise measurement, but measuring one-second of activity is of no 

physiological importance unless summed into larger time periods (14). In contrast, 

longer epochs, such as one minute, may not be able to differentiate all types of 

activity performed during that minute (14), this is especially important when 

measuring physical activity in children whose natural play is sporadic (24).   

REGRESSION EQUATION ANALYSIS 
 

Predictive validity research is based on the established relationship between 

activity counts and measured energy expenditure. Knowledge of this relationship 

has led to the development of regression equations that can estimate activities into 

intensity classifications (25, 29, 40). In 1998, Freedson et al. (25) developed a 

regression equation to determine specific MET values, for the CSA accelerometer, so 

each activity performed could be placed into an intensity category. The investigators 

had each participant slow walk (4.8 km/h), fast walk (6.4 km/h), and jog (9.7 km/h) 

on a treadmill for six minutes. Along with the CSA accelerometer, positioned on the 

participants’ right hip, VO2 was measured by open circuit spirometry. A linear 

regression was used to determine the relationship between the MET values and the 

activity counts output by the CSA. The regression equation was arranged to solve for 
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METs (METs = 1.439008 + (0.000795 * cnt/min)). An equation was also developed 

for the case when energy expenditure is a more important outcome measure 

(kcal/min = (0.00094*counts/min) + (0.1346*mass in kg) – 7.37418). This equation 

provided a means for other researchers also using the CSA accelerometer to 

determine counts per minute or energy expenditure values for their sample. It is 

important to note in this equation and in all equations that have been developed, 

they are specific to the activities being performed, the population being tested, as 

well as the accelerometer used to measure the activities (4, 63).  

A supplemental issue of Medicine & Science in Sport & Exercise published in 

2000 focused on the objective monitoring of physical activity, and within the 

supplement some of the articles targeted the theme of energy expenditure 

regression equations (3, 29, 55). The main purpose of Hendelman and colleagues 

(29) was similar to Freedson et al. (25), which was to understand the relationship 

between accelerometer counts per minute and actual energy expenditure. However, 

Hendelman et al. (29) were interested in non-lab based activities. Activities in this 

study included walking at a self-selected pace on an indoor track, playing golf, and 

household tasks, such as washing windows, vacuuming, and lawn mowing. 

Investigators used a portable metabolic measurement system to measure VO2 and 

participants wore a hip-mounted CSA accelerometer and Tritrac monitor. Following 

regression analysis using all activities combined, a regression equation for each 

accelerometer was developed to calculate corresponding MET values following 

determination of counts per minute (CSA METs = 2.922 + 0.000409*CSA) (Tritrac 

METs = 2.817 + 0.00110*TRI).  
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Using their own sample of CSA measured activities, Bassett et al. (3) 

compared the Freedson et al. equation (25), the Hendelman et al. equation (29), and 

the CSA manual equation (17) to determine the accuracy of each. Participants in this 

sample performed activities that fell within six general categories: yardwork, 

occupation, housework, family care, conditioning, and recreation. Each activity was 

performed for 15 minutes. VO2 was measured using the Cosmed K4b2 portable 

indirect calorimetry system and participants wore the CSA accelerometer (model 

7164) placed at the waist. Following data collection the accelerometer output was 

run through each of the algorithms being studied. Correlations were then 

determined between the motion sensor algorithm output and the indirect 

calorimetry output. They found that the strongest relationships between actual 

energy expenditure and estimated energy expenditure were found when using the 

CSA manual (17) equation (r=0.620) and the Hendelman et al. (29) equation 

(r=0.620). Both accelerometers underestimated the intensity of each activity, 

ranging from 30.5 – 56.8% underestimation. The household activities had the 

largest difference between actual MET level and accelerometer estimated MET level, 

with four out of the five activities being underpredicted by over 50%, with the one 

exception being lawn mowing.  

Although the results of the previous single regression equations showed 

reasonable correlations with the actual energy expenditure, Bassett et al. (3) found 

the motion sensor algorithms were overpredicting walking energy cost by up to 1.5 

METs and underpredicting lifestyle activities (3). In 2005, Crouter et al. (18) 

theorized it was not possible for a single regression line to capture all activities 
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throughout a range of intensities. Therefore, he proposed the development of two 

separate regression equations, one to be used when either walking or running, and 

one to be used for all other activities. In order to develop these equations, Crouter et 

al. (18) monitored 48 participants performing three separate routines involving 

office work, conditioning activities, and housework. Activity was measured using the 

Actigraph accelerometer on the right hip, and VO2 was measured by the K4b2 

portable indirect calorimetry system. The authors found that using an exponential 

curve (instead of a straight line) to develop the regression equation was most 

appropriate for the walking and running activities, and using a cubic curve was most 

appropriate when developing the equation for all other activities. When this two-

regression model was compared with the actual VO2 values, the new model was 

within 0.75 METs for all activities performed and there were no significant 

differences for any of the 17 activities. The authors concluded that by using this new 

approach, the estimate of lifestyle activities improved beyond walking and running. 

In 2010 Crouter et al. (19) sought to refine the 2-regression model following 

evidence showing the equation can misclassify activities when activities are not 

started at the start of a minute of the ActiGraph clock. The same instruments were 

used to measure MET values (actual and estimated) as in the previous study. This 

refined equation estimated MET values every 10-seconds instead of every minute. 

Upon cross-validation of the updated method, no significant differences were seen 

between the estimated MET values and the measured MET values other than for 

stationary cycling.   
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OTHER ESTIMATION TECHNIQUES 
 

Developing regression equations for use in predicting energy expenditure 

from activity counts has thus far been the most commonly used method of analysis 

(10). An alternative approach to establish cutpoints is to use a receiver operating 

characteristic (ROC) curve. ROC curves are most frequently used in the diagnosis of 

disease by providing thresholds to determine either “positive” or “negative” results 

(44). In physical activity research, ROC curves have most commonly been used to 

check the sensitivity and specificity, but not always to generate the cutpoints (63). 

An added advantage to using ROC curves to generate cutpoints, instead of 

regression techniques, is researchers are able to develop cutpoints that maximize 

sensitivity and specificity, therefore reducing the risk of false positives and false 

negatives (4). A ROC curve is constructed by plotting the test sensitivity on the y-

axis and one minus the test specificity on the x-axis (32). Optimal cutpoints are set 

at the point where the two distributions cross (63). Ultimately, having the maximal 

amount of area under your curve (i.e. a value of 1.0 is considered a perfect ROC 

curve) (32). Other than Esliger et al. (20), no other study has used the ROC curve 

technique to generate cutpoints in adult calibration studies.  

Cutpoints can also be determined by regression equations. Strath et al. (52) 

compared the results between five different sets of proposed cutpoints (Freedson et 

al. (25), Hendelman and colleagues (29) equation for walking and for all activities, 

Swartz et al. (55), and Nichols et al. (42)) for the Manufacturing Technology, Inc. 

(MTI) accelerometer. Ten participants performed a variety of activities ranging from 

television watching, to resistance training, to yard work, for a five-to-six hour 
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period. During this period participants wore a Cosmed K4b2 unit to measure oxygen 

uptake and an MTI accelerometer placed on the waist. Investigators found that the 

equations  differed statistically (p<0.001) between one another for all light and 

moderate activities. Results showed that the only intensity cutpoints that did not 

differ at the group level when compared to the criterion measure were the cutpoints 

developed by Swartz et al. (55). Investigators concluded this equation may have 

been more applicable because it was developed based on 28 different activities. 

One huge disadvantage of using either of the two prior approaches, 

regression equations or ROC curves, to estimate intensity categories or energy 

expenditure is that the cutpoints developed are specific to the device used, the 

population tested, and the activities performed (4, 63). In a recent (2012) 

supplement of Medicine & Science in Sport & Exercise, Freedson et al. (23) urged 

researchers to discontinue the development of cutpoints to categorize physical 

activity when using accelerometers. They cited the proliferation of different 

cutpoints as hindering comparisons between studies or devices (23).  

Staudenmayer et al. (49) demonstrated that METs are not a function of 

counts per minute. This means that every x value does not correspond to a specific y 

value. Therefore, across a variety of activities (such as daily activities) using counts 

per minute poses inherent limitations (49). A new technology that is emerging is the 

use of pattern recognition techniques. Also known as artificial neural networks, this 

technique is used to directly identify activities (28). An example of a motion sensor 

utilizing this new technology is the IDEEA monitor mentioned previously. The 

IDEEA monitor is a “smart” device that is able to take the information received by 
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the motion sensors and provides direct results of the type, duration, and intensity of 

activity. Zhang et al. (66) tested the accuracy of the IDEEA monitor to correctly 

identify activities from basic posture activities to walking and running. Researchers 

observed movements and recorded observations were matched with the IDEEA 

output. For posture activities such as standing, sitting, and reclining the IDEEA was 

on average 99% accurate. For walking and running activities the IDEEA was 99.7% 

and 99.4% accurate, respectively. While the research on this type of monitoring is 

still in its infancy, this method shows promise as a way to reach beyond the counts 

per minute analysis (48). 

CONCLUSION 
 
 In the last 30 years, researchers have adapted accelerometers to be an 

objective measurement of physical activity (41), have developed a number of 

different avenues to interpret the raw accelerometer outputs (18, 25), and have 

envisioned increasingly intelligent uses for the accelerometer-based physical 

activity monitor (48, 65). Accelerometer-based physical activity monitors have 

become highly relevant being applied in the field setting, still one of the most 

practical means of physical activity measurement in small-scale intervention studies 

through large-scale population studies (38, 56). With the new era of pattern 

recognition and improved sensor technologies, these new developments will be 

extremely beneficial to ongoing research (31).  
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CHAPTER 3 
MANUSCRIPT 

Classification Accuracy of the Wrist-Worn GENEA 

Accelerometer During Structured Activity Bouts: A Cross-

Validation Study 

 

 

INTRODUCTION  

Since the mid-1980’s there has been a steady increase in the evidence-based 

literature associating high physical activity levels with a low risk of developing 

chronic diseases such as type 2 diabetes, obesity, and cardiovascular disease (59). 

The integrity of physical activity monitoring studies, intervention studies, and 

epidemiology studies rely on valid and reliable assessment of physical activity (2). 

Doubly-labeled water, direct observation, and direct and indirect calorimetry are 

the most valid “criterion” measurements of physical activity (62). However, these 

methods are expensive, require trained professionals to administer, and are not 

practical for some applications (37). Movement sensors (pedometers and 

accelerometers) are small, inexpensive, and portable devices that allow researchers 

to objectively measure activity within the free-living environment (37). While 

pedometers were specifically designed to measure walking behaviors such as total 

steps taken per day (34), accelerometer-based physical activity monitors allow 

researchers to track frequency, intensity, and duration of activity (45).  Prior to the 

development of triaxial accelerometers, uniaxial accelerometers restricted the 

researchers to movement information strictly within the vertical plane (62). Triaxial 
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accelerometers capture movement in the orthogonal planes. As a result, these 

devices provide the opportunity to capture many more activities than uniaxial 

accelerometers; thus, in comparison with uniaxial instruments, the output from 

triaxial devices has an overall higher correlation with energy expenditure (8, 14, 

29). This advancement in monitor technology has allowed tracking of both dynamic 

and static accelerations related to daily living (15).  

It has been common practice to place motion sensors on the waist of human 

subjects, but this site has limitations. Placed near the center of mass, the waist-

mounted accelerometers can fail to detect arm movements, which leads to 

significant errors in measurement and physical activity level misclassification (14). 

Therefore, determining alternative sites for placement that would elicit improved 

results compared to the waist-worn sensors could enhance future research (14). 

Researchers have attempted to attenuate this error by placing accelerometers on 

the ankle, upper arm, wrist, or multiple sites of the body (5, 65). A newly introduced 

wrist-worn accelerometer-based physical activity monitor, Gravity Estimator of 

Normal Everyday Activity (GENEA), has shown high accuracy in classifying 

numerous activities, including sedentary time, walking, running, and household 

activities (20); and, due to its wristwatch-like characteristics and size, will 

potentially encourage higher rates of wear compliance, when compared to waist-

worn accelerometers (60).  

The physical activity intensity cutpoints for the GENEA accelerometer 

developed by Esliger et al. (20) showed high levels of criterion validity across a 

range of activities (r=0.85) (20). The authors speculate that the tight clustering of 
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their data within each activity will allow for an increased accuracy of activity 

classification. To date, however, these cutpoints have not been cross-validated in a 

separate study. Thus, the purpose of this study is to examine the accuracy of the left 

wrist GENEA cutpoints developed by Esliger and colleagues are accurate for 

predicting intensity categories. Fourteen different activities falling under the 

general categories of ambulatory activities, home/office activities, and sport 

activities were examined.  

 
METHODS 

 
Participants 

139 participants were recruited from on-campus and the surrounding 

community of the University of Tennessee, Knoxville and the University of 

Massachusetts, Amherst. Nine people from the total sample who were left hand 

dominant were excluded in order to have a standardized sample of right hand 

dominant individuals; thus the number of subjects in this analysis was 130. 

Participants were 20 – 60 years of age, were apparently healthy, and free from 

chronic disease or any joint or musculoskeletal injuries that might affect gait. Prior 

to testing all participants signed an informed consent (Appendix A) approved by the 

Institutional Review Boards at the University of Tennessee, Knoxville and the 

University of Massachusetts, Amherst.  

 

Data Collection  

Participants reported to the laboratory having fasted for four hours, having 

abstained from nicotine, caffeine, or other stimulants for four hours, and having 
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refrained from exercise for 24 hours. Each participant filled out a Physical Activity 

Readiness Questionnaire (Appendix B), Health History Questionnaire (Appendix C), 

and Physical Activity Status questionnaire (Appendix D) in order to determine 

his/her ability to participate in the study. Height was measured using a stadiometer 

and weight was measured by the Tanita BC-418 scale (Tanita Corporation of 

America, Inc., Arlingtion Heights, Illinois). Body mass index was calculated from 

these measurements.  

Participants completed a series of seven activities from one of two routines 

(Table 1). Each activity was performed for seven minutes with a 4-minute break 

between activities. Participants wore the Oxycon Mobile portable metabolic unit 

2008 model (CareFusion, San Diego, CA), which measured oxygen uptake (VO2) 

during testing. The GENEA was worn on the non-dominant wrist (left wrist), 

positioned between the radial and ulnar styloid process, and was secured by a 

Velcro strap. This study was part of a larger study that used another device worn on 

the dominant wrist, therefore the GENEA was placed on the non-dominant wrist.  

The GENEA (Activinsights Limited, Colworth, United Kingdom) is a triaxial 

accelerometer weighing 16 g, measuring 36x30x12 mm, and can be worn on the 

wrist, waist, or ankle. Accelerometers were initialized to sample data at 80 Hz (67). 

After each test, data were downloaded and stored on a laboratory computer.  

 

Analysis 

Breath-by-breath VO2 data collected by the Oxycon were averaged over three 

minutes (minutes 4-6) of each activity. Because of variations between the Oxycon 
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systems at the two testing sites, averaged VO2 values were increased by 7.8% at The 

University of Tennessee, Knoxville, and decreased by 7.8% at The University of 

Massachusetts Amherst. This was done because relative to the ACSM-predicted 

VO2’s for fixed work rates on the cycle ergometer, the University of Tennessee, 

Knoxville data were higher than expected and the University of Massachusetts, 

Amherst data were lower than expected, making it necessary to align the data from 

the two sites. Corrected VO2 values were converted to METs using 1 MET = 3.5 

ml�kg-1�min-1. The MET values obtained for each activity were classified into an 

intensity category (sedentary (<1.5), light (1.5 -3.99), moderate (4.0 - 6.99), or 

vigorous (7+)) following the same thresholds used by Esliger et al. (20).  

Using precisely the same methods as Esliger et al. (20), the GENEA post 

processing software (version 1.2.1) was used to analyze the accelerometer data to 

provide a Signal Magnitude Vector (gravity-subtracted) (SVMgs) for each minute.  

This value represents a one-second average for that minute of the activity. These 

SVMgs averages were multiplied by 60 to determine the one-minute SVMgs sums.  

Three minutes (minutes 4-6) of each activity were used to get the average SVMgs for 

each activity. Using the left wrist cutpoints of Esliger et al. (20), each activity was 

classified into an intensity category: sedentary (<217 counts/min), light (217-644 

counts/min), moderate (645-1810 counts/min), or vigorous (>1810 counts/min).  

Statistical analysis was performed using SPSS version 19 for Windows 

(Armonk, New York). Spearman’s rank correlation coefficients were used to 

determine whether there was a linear relationship between the obtained MET levels 

and the GENEA SVMgs. This test was chosen due to a non-normal distribution of the 
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GENEA data. Crosstabs were used to identify the accuracy of the device to predict 

intensity classifications within each activity performed. One-way chi-squares were 

used to test whether the accuracy rate differed from 80%. Eighty percent was 

chosen as an acceptable accuracy rate based on accuracy rates seen in the validation 

studies of accelerometers based on pattern recognition (48, 68).  

 

RESULTS 

Of the 130 adult participants, 48.5% were male and 51.5% were female. The 

majority of this sample was Caucasian (71.5%), followed by African American 

(13.1%), Asian (10.8%), and Hispanic/Latino (4.6%). On average, participants were 

41.2 ± 10.9 years of age, 170.4 ± 9.0 cm tall, weighed 74.9 ± 15.2 kg, and had a BMI 

of 25.7 ± 4.7 kg�m-2.  

Table 2 gives the mean and standard deviation for the METs obtained for 

each activity by the Oxycon, the MET values estimated from the compendium of 

physical activity (1), as well as the mean and standard deviation for the GENEA 

estimated SVMgs (g�min) for each activity. The correlation between GENEA SVMgs 

and METs was ρ=0.641 (p < 0.001), when all activities are combined. 

Table 3 shows the results of the cross tabulations and one-way chi-square. 

When combining all activities, the GENEA correctly classified the intensity category 

in 52.8% of the observations. Individually, most of the activities were significantly 

worse than our predetermined acceptable accuracy rate of 80%. Vacuuming, 

basketball, computer work, and walking on a treadmill at 4.8 km�hr-1 on a 5% grade 

were estimated with an accuracy rate that did not differ from 80% while jogging on 
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the treadmill at 9.7 km�hr-1 with 0% grade shows statistically greater accuracy than 

80%. All other activities were estimated with less than 80% accuracy. 

A cross tabulation table for all activities combined is shown in table 4, with 

correct intensity classification category denoted by the shaded blocks. Since the two 

cycling activities recorded high misclassification, removing cycling from the rest of 

the activities slightly increased our accuracy rate (61.5% accurate) (table 5). Tables 

6, 7, and 8 report the individual cross tabulations for the activities falling within 

each category; home/office activities, walking/running, and sport activities, 

respectively. Figure 1 depicts the relationship between the MET value and GENEA 

SVMgs for each observation. Vertical lines are placed at each Esliger et al. (20) left 

wrist cutpoint and horizontal lines are placed at each MET level cutpoint creating a 

block of space showing agreement between the MET value and GENEA SVMgs values. 

The observation circles that fall outside these regions for each intensity level show 

misclassifications of the different activities. 

 

DISCUSSION 

Based on our analysis, the left wrist GENEA cutpoints of Esliger et al. (20) for 

intensity category have a classification accuracy of less than 80% accurate for a 

number of activities. Overall, the GENEA correctly classified 52.8% of the 

observations, which is better than chance alone (25%). Since the inclusion of cycling 

in the present study may have increased our misclassification error, we also 

removed the cycling activities, and this increased the classification accuracy to 

61.6%.  
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Using the proposed cutpoints, the wrist-borne GENEA, classified 5 out of our 

14 activities (basketball, jogging on a treadmill at 9.6 km�hr-1 with 0% grade, 

computer work, vacuuming, and walking on a treadmill at 4.8 km�hr-1 with 0% 

grade) with an accuracy rate that did not differ from 80%. Most of the other 

activities were misclassified. Misclassification of intensity categories can lead to a 

misrepresentation of population-level estimates of meeting national physical 

activity recommendations. For example, activities that are actually performed at a 

moderate intensity but are being classified by the monitoring device as a light 

intensity activity, would contribute to an underestimate of time spent in moderate 

or vigorous physical activity (MVPA), a common outcome measure for physical 

activity research and physical activity guidelines (38, 56).  

In our analysis of the GENEA device, the Rho-square combining all 14 

activities explained 41.1% of the variance in energy expenditure. Although our data 

violated the normality assumption, we also calculated the Pearson’s product 

moment correlation coefficient for the sake of comparison with other studies. Using 

Pearson’s R2, the GENEA worn on the left wrist explained 54.1% of the variance in 

energy expenditure. Esliger et al. (20) reported that the GENEA worn on the left 

wrist explained 73.9% of the variance in energy expenditure. Swartz et al. (55) 

placed a uniaxial CSA accelerometer (now the Actigraph GT1M) on the wrist while 

participants performed 28 different lifestyle activities. In their study, the wrist-worn 

CSA accelerometer explained only 3.3% of the variance in energy expenditure. 

Therefore, a triaxial accelerometer results in a stronger relationship with energy 

expenditure at the wrist site than a uniaxial accelerometer.  
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It is important for researchers to understand whether the wrist site is an 

acceptable alternative compared to the waist for physical activity measurements. In 

2011, the National Health and Nutrition Examination Survey began using wrist-

worn accelerometers to measure physical activity in their large population-based 

study (12). Esliger et al. (20) reported that a GENEA accelerometer worn at the 

waist yielded a nearly identical correlation with energy expenditure (R2 = 0.757) as 

one worn at the left wrist (R2 = 0.739), suggesting that either site can be used to 

predict energy expenditure. However, Swartz et al. (55) placed CSA accelerometers 

on the dominant wrist and right hip of participants while they performed 28 

lifestyle activities. Upon analysis, the waist-worn accelerometer explained 31.7% of 

the variance in energy expenditure, while the wrist-worn accelerometer accounted 

for 3.3% of the variance. It appears that the ability of accelerometers to predict 

energy expenditure may be influence by such factors as: (a) where the 

accelerometer is worn on the body, (b) the types of activity performed, (c) whether 

a single-axis or tri-axial accelerometer is used.  

Esliger et al. (20) found the left wrist placement of the GENEA to be 93% 

accurate in classifying physical activity intensity. Our analysis showed an average 

accuracy of 52.8% for all activities performed. However, it is important to note that 

Esliger et al. (20) did not cross-validate their cutpoints. They determined the 

accuracy of their developed cutpoints using the same data sets; thus the accuracy 

may be artificially inflated.  

In the present study, the wrist-borne GENEA correctly identified the intensity 

category between 23.6% and 93.6% of the time for treadmill walking and running. 
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When speed is increased, both accelerometer activity counts and energy 

expenditure increases, however, when grade is increased and speed is kept constant 

energy expenditure increases without a subsequent increase in accelerometer 

activity counts (25, 41). Interestingly, at 4.8 km�hr-1 classification accuracy was 

significantly lower with no incline than at a 5% incline. Referring to the MET 

cutpoints used, the average MET values for walking at 4.8 km�hr-1 with no grade 

was 3.5 METs which is close to the moderate intensity cutpoint. However, adding 

the 5% grade increased the average MET value to 5.17 METs, which falls clearly 

within the moderate intensity category, without a notable change in the GENEA 

SVMgs value. At 6.4 km�hr-1, adding the 5% grade to the walking activity actually 

decreased classification accuracy by 15.3%. Similar to the slower speed, 6.4 km�hr-1 

with no incline had an average MET value of 5.41 METs, which falls in the middle of 

the moderate intensity cutpoints. At 6.4 km�hr-1 (5% grade), the average MET value 

was 7.07 METs, straddling the moderate to vigorous intensity cutpoint. These 

factors likely contributed to our wide range of classification accuracy during 

treadmill walking and running activities. 

While half of our sports activities (basketball and tennis) had classification 

accuracy rates of more than 80%, the two cycling bouts were both below 25% 

classification accuracy. During cycling at 49 watts and 98 watts, over 60% of 

individuals were classified by the GENEA as sedentary even though their actual 

energy expenditure were clearly elevated. Similarly, the wrist-borne GENEA had 

difficulty in correctly classifying the intensity of inclined treadmill walking due to an 

inability to detect the increased metabolic cost associated with vertical work. Other 
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activities where the GENEA cutpoints resulted in a high rate of misclassification 

were moving a box (54.4% classification accuracy) and tennis (56.3% classification 

accuracy).  

One reason for the high classification accuracy reported by Esliger et al. (20) 

may be that most of their activities were tightly clustered, and fell between the 1.5, 

4, 7 MET cutpoints. In contrast, many of the actual MET values of activities in the 

current investigation averaged within one MET of the cutpoints, contributing to a 

higher rate of misclassification. For example, treadmill walking at 6.4 km�hr-1 (5%) 

grade had an average MET value of 7.07 ± 0.87 METs. 29% of subjects had values of 

7 METs or higher, while 71% had values under 7 METs.  Similarly, tennis had an 

average MET value of 7.35 ± 1.63 METs. Both of these activities had mean MET 

values that fell into the vigorous-intensity range, but for many of the subjects these 

activities were, in fact, moderate-intensity. Self-paced walking is an example of an 

activity that fell near the cutpoint distinguishing light versus moderate physical 

activity.  Self-paced walking had an average MET value of 3.68 ± 0.66 METs. With 

MET values so close to the cutpoints, there is a greater likelihood that these 

activities will be misclassified.  

As Bassett et al. (4) stated, when activity monitors are validated, they 

generally have good validity for the specific activities that were included in the 

accelerometer calibration study. It is interesting that two of our most accurate 

activities, computer work (81.8% accuracy rate) and jogging on a treadmill at 9.7 

km�hr-1 (93.6% accuracy rate), were activities used by Esliger et al. (20) in 

developing the intensity cutpoints. Emerging evidence suggests that new 
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techniques, such as pattern recognition technology, will help improve physical 

activity monitoring estimation (31). One other GENEA wrist-worn classification 

study by Zhang et al. examined pattern recognition algorithms to predict activity 

type. Our study focused on intensity classification not activity type, so we did not 

examine Zhang and colleagues’ algorithms because it was outside the scope of the 

current investigation. However, the more advanced approaches they used may be an 

improvement for correctly classifying a wide range of activities. In our study, the 

low classification accuracy of intensity categories across all 14 activities suggests 

that the cutpoints developed for the GENEA left wrist placement are not 

generalizable to other populations and activities different from those used in the 

original study of Esliger et al. (20).   

This study has several strengths. We had a large sample size (N = 130) with 

approximately equal numbers of men and women, a heterogeneous age range, and 

considerable racial/ethnic diversity. Our activities represented a wide range of MET 

levels and included ambulatory, household, office, and sport activities, as is 

appropriate for an activity monitor calibration study (23, 64). We used a criterion 

measure of VO2 and approximated steady-state values by analyzing three minutes of 

breath-by-breath analysis for each activity. The values we obtained were in close 

agreement with values predicted by the compendium of physical activity (1) (see 

table 2). Another important strength of this study is that we examined classification 

accuracy for intensity categories, which are highly used outcome measures in 

physical activity research. Few studies have examined classification accuracy based 
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on cutpoint; most other studies look at measurement error using a continuous scale 

of energy expenditure. 

The present study also has some limitations. We only examined the validity 

of the wrist-worn GENEA cutpoints, and we did not determine whether a waist-

worn accelerometer would yield greater classification accuracy. Wrist placement of 

the accelerometer could lead to an underestimation of physical activity when lower 

body movement occurs without concurrent arm movements (e.g. in bicycling). We 

were unable to examine the right-wrist cutpoints, which may have higher validity, 

given that 90% of the population is right-hand dominant and some activities have 

greater involvement of the dominant arm.  

 

CONCLUSION 

The GENEA accelerometer has previously been reported to be a valid 

measurement of physical activity intensity categories across a range of activities 

(20). Upon cross-validation of the left wrist cutpoints proposed by Esliger et al. (20), 

the majority of activities performed were found to be significantly below the 

proposed accuracy rate of 80%. When all activities were combined the average 

accuracy rate was 52.8%, which suggests the device is able to predict intensity 

category better than by chance alone, but does not yield acceptable levels of 

classification accuracy for intensity categories. Thus, researchers should be cautious 

when using the cutpoints of Esliger et al. (20) when testing different populations 

and activities other than those on which the cutpoints were determined. More 

research should be done to determine the most effective placement of the GENEA 
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accelerometer (wrist, waist, ankle), and to explore pattern recognition techniques, 

in order to yield the most valid results.  
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Table 1. Activity list 

    

Routine 1 (n = 70):   

 Filing Papers   

 Vacuuming   

 Self-Paced Walking   

 Treadmill Walking at 6.4 km�hr
-1

 0% grade 

 Cycle 49 watts   

 Basketball Practice   

 Treadmill Running at 9.6 km�hr
-1

 0% grade 

     

Routine 2 (n = 68):   

 Computer Work    

 Treadmill Walking at 4.8 km�hr
-1

 0% grade 

 Cycle 98 watts   

 Moving a Box   

 Treadmill Walking at 4.8 km�hr
-1

 5% grade 

 Treadmill Walking at 6.4 km�hr
-1

 5% grade 

  Tennis       
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Table 2. Average intensity values (METs and GENEA SVMgs) 
 

    n 
Compendium 

METs* 

METs                                  

Mean(SD) 

GENEA SVMgs                 

Mean(SD) 

Home/Office     

 Filing Papers 69 3.0 1.49 (0.29) 310.19 (125.45) 

 Vacuuming 70 3.3 3.23 (0.58) 470.75 (175.66) 

 Computer Work 56 1.3 1.17 (0.27) 134.94 (60.0) 

 Moving a Box 58 4.5 4.52 (0.90) 756.39 (282.96) 

 Self-Paced Walking 69 NA 3.68 (0.66) 1017.13 (440.51) 

Walking/Running on TM     

 TM 4.8 km�hr
-1

 0% grade 56 3.5 3.70 (0.52) 980.63 (435.64) 

 TM 4.8 km�hr
-1

 5% grade 55 5.3 5.17 (0.60) 961.93 (370.92) 

 TM 6.4 km�hr
-1

 0% grade 69 5 5.41 (0.65) 1735.88 (882.84) 

 TM 6.4 km�hr
-1

 5% grade 46 NA 7.07 (0.87) 1553.07 (1006.52) 

 TM 9.6 km�hr
-1

 0% grade 48 9.8 9.66 (1.21) 4644.55 (1682.40) 

Sports     

 Cycle 48 watts 54 3.5 3.76 (0.63) 203.72 (103.67) 

 Cycle 98 watts 68 6.8 5.94 (1.15) 252.85 (189.38) 

 Basketball Practice 57 9.3 8.25 (2.51) 2988.63 (1346.21) 

  Tennis 47 7.3 7.35 (1.63) 1742.82 (667.86) 

TM = Treadmill 

NA = not available in compendium  

* (1) 
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Table 3. Accuracy of the GENEA left wrist intensity classifications by activity 

 

    

% Correct by 

observation 80% Accuracy 

  Variable   p-value 

Home/Office     

 Filing Paper 62.9% <0.001* 

 Vacuuming 81.7% 0.722 

 Computer Work 81.8% 0.736 

 Moving a box 54.4% <0.001* 

 Self-Paced Walking 22.9% <0.001* 

Walking/Running 

on TM 
      

 TM 4.8 km�hr
-1

 0% grade 23.6% <0.001* 

 TM 4.8 km�hr
-1

 5% grade 68.9% 0.062 

 TM 6.4 km�hr
-1

 0% grade 48.6% <0.001* 

 TM 6.4 km�hr
-1

 5% grade 33.3% <0.001* 

 TM 9.6 km�hr
-1

 0% grade 93.6% 0.020 

Sports       

 Cycle 48 watts 10.1% <0.001* 

 Cycle 98 watts 24.0% <0.001* 

 Basketball 77.6% 0.646 

 Tennis 56.3% <0.001* 

  

Average for Combined 

Activities 
52.8%   

* classification accuracy is significantly less than 80% accuracy rate  

 

 

 

    

 

Table 4. Cross tabulation of all activities combined 

     

   GENEA cutpoint method 

   Sedentary Light Moderate Vigorous 

A
c
tu
a
l

Sedentary 60 26 0 0 

Light 40 118 101 4 

Moderate 56 64 146 50 

Vigorous 9 8 29 111 
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Table 5. Cross tabulation of all activities with cycling removed 

 

   GENEA cutpoint method 

   Sedentary Light Moderate Vigorous 

A
c
tu
a
l 

Sedentary 60 0 0 0 

Light 15 105 101 4 

Moderate 8 46 139 50 

Vigorous 0 6 29 111 

 

 

 

 
Table 6. Cross tabulation of home/office activities 

  

   GENEA cutpoint method 

   Sedentary Light Moderate Vigorous 

A
c
tu
a
l

Sedentary 60 26 0 0 

Light 14 97 61 3 

Moderate 4 19 37 1 

Vigorous 0 0 0 0 
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Table 7. Cross tabulation of walking/running activities 

  

   GENEA cutpoint method 

   Sedentary Light Moderate Vigorous 

A
c
tu
a
l 

Sedentary 0 0 0 0 

Light 1 8 37 1 

Moderate 4 26 87 36 

Vigorous 0 4 13 54 

 

 

 

 

 
Table 8. Cross tabulation of sport activities 

   

   GENEA cutpoint method 

   Sedentary Light Moderate Vigorous 

A
c
tu
a
l 

Sedentary 0 0 0 0 

Light 25 13 3 0 

Moderate 48 19 22 13 

Vigorous 9 4 15 57 
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Figure 1. Relationship between METs and GENEA SVMgs 
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APPENDIX A 

UNIVERSITY OF TENNESSEE, KNOXVILLE INFORMED CONSENT 

 
University of Tennessee 

Department of Exercise, Sport, and Leisure Studies 

 

ADULT CONSENT FORM 

 
Study Title: Development of an Integrated Measurement System to Assess Physical 

Activity 

 

Principal Investigator: David R. Bassett, Jr. 

 

Institution: The University of Tennessee, Knoxville 

 

This information is provided to tell you about the research project. Please read this 

form carefully and ask any questions you may have about this study. Your questions 

will be answered before we ask you to sign it.  Also, you will be given a copy of this 

consent form to take home. 

 
INTRODUCTION  
The purpose of this study is to test a new device that measures breathing, motion, and 
environmental light intensity to improve the assessment of the physical activity in a daily 
living situation.  The improved accuracy will be useful to researchers who study physical 
activity.  
 
ELIGIBILITY 

To be in this study, you must be between 18 and 60 years of age, in good physical health (no 
diagnosed cardiovascular, pulmonary, metabolic, joint, or chronic diseases). 
 
GENERAL TESTING SCHEDULE 

Visit 1, Informed Consent Document (30 minutes) 

During today’s visit to the Applied Physiology Laboratory, you will be asked to review this 
informed consent document.  In addition to the written details provided in this document, 
you will be given a verbal explanation of the study.  You will be given ample time to review 
this informed consent form and to inquire about the study and the procedures.  You will be 
provided with a copy of the informed consent form, and your blood pressure will be 
measured during this visit.  You will also be given a health and physical activity 
questionnaire to complete.   
 
If you have never walked on a treadmill or have limited experience walking on a treadmill, 
you will be asked to complete a short treadmill test before enrolling in the study.  We will 
provide instructions and then you will be given time to walk on the treadmill.  You will 
begin at a slow speed and progress to a moderate pace (2.5-3.5 mph). If you are either 
uncomfortable with walking on the treadmill or if it is determined that you cannot complete 
the protocol(s) satisfactorily, you will not be asked to continue with the study. 
 
Visit 2, Activities (2.0-3.0 hours) 
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You should not eat or drink (anything but water) for 3 hours before coming to the lab.  
Before any exercise testing takes place, your height and weight will be measured and your 
resting metabolic rate and resting blood pressure will be assessed.  We will measure your 
resting metabolic rate using the MedGem analyzer.  The MedGem is a portable device that 
will provide an estimate of your  
resting energy expenditure based on the difference in the volume of oxygen between the air 
that you inhale and exhale.  You will be asked to lie motionless on your back on a dormitory 
bed.  After 10-15 minutes a nose clip will be placed on your nose and you will breathe into 
the mouthpiece of the MedGem analyzer for approximately 10 minutes. 
 
Next, you will be asked to complete approximately 6-8 activities and each activity will be 
performed continuously for approximately 7 minutes.  These activities will be chosen from 
a broad range of behaviors in the sport, leisure, recreation, occupation, and household 
areas.  Activities may include tasks such as walking or jogging on a flat or inclined treadmill, 
walking carrying a box, climbing and descending stairs, playing tennis or basketball, doing 
household tasks such as laundry, sweeping, vacuuming, dusting, lawn mowing, raking, and 
gardening, or other common activities of daily living. You will be given a 3-5 minute rest 
period between activities.   
 
Prior to performing the activities, you will be fitted with the Integrated Measurement 

System (IMS) which comprises a chest strap aimed to measure your breathing frequency, a 
hip strap with a device that measures your physical motion, and a wrist strap with a light 
intensity sensor designed to detect if the activity is taking place indoor or outdoor. Thin 
wires will connect these 3 straps to each other and they should not bother you while you 
are performing the activities.  You will also wear several different activity monitors and a 
heart rate monitor and transmitter belt when you perform the activities. The activity 
monitors will be worn on the hip and the wrist and fastened with elastic belts.  The heart 
rate transmitter will be fastened around the chest with an elastic belt, and the monitor will 
be worn on the wrist. 
 
In addition, you will be fitted with a respiratory gas analysis system, which will be used to 
measure calorie expenditure.  You will be also fitted with a facemask to allow collection of 
expired air. Instructions on how to complete the activities will be provided as you become 
accustomed to breathing while wearing the facemask.  At the end of the testing session, all 
the devices will be removed.  Attempts will be made to try to fit in all of the 6-8 activities 
during the same visit.  If they cannot be completed during the same visit, a second visit will 
be scheduled to complete the protocol.   
 
RISKS  
During any type of exercise, especially strenuous exercise, there are health risks, including 
abnormal blood pressures, fainting, muscle or skeletal injuries, and heart attack, but the risk 
of these things happening is remote.  However, the possibility of serious events is low in 
people who have no prior history of heart, respiratory, or muscular diseases or injuries. In 
order to minimize the risks, we will attempt to screen out individuals with pre-existing 
health problems.  In addition, in the unlikely event of an injury, laboratory personnel 
trained in CPR will be available to assist you. 
 
BENEFITS 
Participation in this study will give scientists insights into improved methods of measuring 
physical activity and this may lead to new knowledge about physical activity that would 
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benefit many individuals.  
 
CONFIDENTIALITY 

The information obtained from this study will be treated as confidential. Confidentiality will 
be maintained in the analysis and presentation of the data.  You will be assigned an ID 
number, and this is this is the only way you will be identified in published reports.  Your 
name and ID number will be recorded at the beginning of the study and this information 
will be placed in a file cabinet that will be locked and only accessible to study investigators. 
 
COMPENSATION  

Compensation for completing the study will be $75. Full payment will be received only if 
participants complete the designated protocol.  However, if an individual completes part of 
the study, he or she will receive partial payment that reflects the number of activities 
performed.  Full payment will be received only if you finish the protocol that you are asked 
to complete for the study.  However, if you finish part of the study, you will still receive 
partial payment that reflects the number of activities you performed.  Payment will be 
received by check within 6-8 weeks of completing all testing.  
 
 
EMERGENCY MEDICAL TREATMENT  
The University of Tennessee does not have a program for automatically compensating 
subjects for injury or complications related to human subject research, but in the unlikely 
event of injury resulting directly from participation in this study, investigators will assist 
you in every way to ensure that you get proper medical treatment.  Medical treatment will 
be available to you through the University of Tennessee Medical Center for a fee. 
 
CONTACT INFORMATION  
If you have questions at any time about the study or the procedures, (or you experience an 
adverse event while participating in this study,) you may contact the researcher, Dr. David 
R. Bassett, Jr., at 1914 Andy Holt Ave., 325 HPER Bldg., Knoxville, TN, and (865) 974-8766. If 
you have questions about your rights as a participant, contact the Office of Research 
Compliance Officer at (865) 974-3466.  

PARTICIPATION  
Your participation in this study is voluntary; you may decline to participate. If you decide to 

participate, you may withdraw from the study at anytime without penalty and without loss of 

benefits to which you are otherwise entitled. 

______________________________________________________________________________

_____ 

CONSENT  

I have read the above information, and I have received a copy of this form. I agree to participate 

in this study.  

 

Participant's signature ______________________________ Date __________  

 

Investigator's signature _____________________________ Date __________  
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APPENDIX B 
 

Physical Activity Readiness Questionnaire (PAR-Q) 

 
 

Name ______________________________   Date of Birth ______________________ 
 
Home Phone _________________________ Work Phone _______________________   
 
For most people physical activity should not pose any problem or hazard.  The PAR-
Q has been designed to identify the small number of adults for whom physical 
activity might be inappropriate or those who should have medical advice concerning 
the type of activity most suitable for them. 
 

Common sense is your best guide in answering these questions.  Please read them 
carefully and check YES or NO opposite the question if it applies to you.  If a 
question is answered YES, please use the available space to explain your answer and 
give additional details. 
 

1) Has a doctor ever said that you have a heart condition and that              � YES   

� NO 

    you should only do physical activity recommended by a doctor? 
 

2) Do you feel pain in your chest when you do physical activity?          � YES   � NO 

 

3) In the past month, have you had chest pain when you were not � YES   � NO 

    doing physical activity? 
 

4) Do you lose your balance because of dizziness or do you ever lose � YES   � NO 

    consciousness? 
 

5) Do you have a bone or joint problem that could be made worse by � YES   � NO 

    a change in your physical activity? 
 

6) Is your doctor currently prescribing drugs (for example, water pills) � YES   

� NO 

    for your blood pressure or heart condition? 
 

7) Do you know of any other reason why you should not do physical � YES   � NO 

    activity? 
 
 



 59

8) Do you currently participate in any regular activity program � YES   � NO 

    designed to improve or maintain your physical fitness?   
    If yes, what activity program do you participate in?____________________________ 
 
      ____________________________________________________________________ 
 
 
 
Signature ______________________________ Date _________________________ 
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APPENDIX C 

HEALTH HISTORY QUESTIONNAIRE 

 

Personal Health History 
 
      

Name:  _______________________         Age: _____________  Date: _______________ 
 
(if under 18) 

Mother’s Name:  __________________________ Father’s Name: _________________________ 
 
Race:  _______________________   Ethnicity:  Hisp/Latino     Non-
Hisp/Latino 
(White, Black, Asian, Hawaiian/Pacific Islander, Alaskan/Native American, Other) 

 

Street Address:  __________________________________________________________________ 
 
City:  __________________________ State:  _______________ ZIP:  _______________ 
 
Phones:  Home ______________  Work  ________________   Cell _____________________ 
 
E-mail Address:  _________________________________________________________________ 
 
Emergency Contact Name:  _____________________________ Phone: ______________________ 
 
1) Has a physician ever told you that you have any of the following: (Check YES 

or NO) 
 

YES  NO    If yes, explain: 
 

____ ____ High Blood Pressure  
 __________________________________________________ 
 
____ ____ Diabetes    __________________________________________________ 
 
____ ____ Epilepsy  __________________________________________________ 
 
____ ____ Asthma  __________________________________________________ 
  
____ ____ Heart Disease  
 __________________________________________________ 
 
____ ____ Other   __________________________________________________ 
 
       

Any recent surgery? (circle one)           YES  NO 
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 If yes, please explain:  _______________________________________________________ 
 
2)  Are you currently taking any medications? (circle one)  YES 

 NO 
 

(include vitamins, herbal remedies, over-the-counter medicine, prescriptions 
medicine, etc.) 

Medication Purpose How Much How Often 
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APPENDIX D 

PHYSICAL ACTIVITY STATUS 

Physical Activity Status 

 
Using the descriptions below, record the highest number (0 to 7) which best 
describes your general activity level during the previous month.  You did more 
than section 1 then move on to section 2, and so on.  You want to pick the highest 
number in this list to represent your activity level. 
 
Section 1:  Did not participate regularly in programmed recreational sport or heavy 
physical activity. 

0 Avoided walking or exertion, e.g. always used the elevator, drove 
whenever possible instead of walking. 

 

1 Walked for pleasure, routinely used the stairs, occasionally exercised 
sufficiently to cause heavy breathing or perspiration. 

 
Section 2:  Participated regularly in recreation or work requiring modest physical 
activity, such as golf, horseback riding, calisthenics, gymnastics, table tennis, 
bowling, weight lifting, yard work. 

2 10 to 60 minutes per week. 
 

3 Over 1 hour per week. 
 
Section 3:  Participated regularly in heavy physical exercise such as running or 
jogging, swimming, cycling, rowing, skipping rope, running in place or engaged in 
vigorous aerobic activity type of exercise such as tennis, basketball, or handball. 

4 Ran less than 1 mile per week or spent less than 30 minutes per week in 
comparable physical activity. 

 

5 Ran 1 to 5 miles per week or spent 30 to 60 minutes per week in 
comparable physical activity. 

 

6 Ran 5 to 10 miles per week or spent 1 to 3 hours per week in comparable 
physical activity. 

 

7 Ran more than 10 miles per week or spent over 3 hours per week in 
comparable physical activity. 

 

Physical Activity Status during the previous month (highest score):  _____________  
 
 

 

 

 

 

Have you ever played any of the following: 
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      Once or Twice      For Recreation   

Competitively 
 

• Tennis     ________            _________      _________ 

• Basketball     ________            _________      _________ 

 

 

Office Use Only:   Estimated VO2max:  _________________________ ml/kg/min 

 

 
 

 

Yes / No 

Yes / No 
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