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ABSTRACT 

Kinematic analysis and field mapping of the Homestake shear zone (HSZ) and Slide 

Lake shear zone (SLSZ) in central Colorado provide new evidence for strain partitioning in the 

mid-crust at ~1.4 Ga. The northeast-striking, steeply dipping HSZ comprises a ~10-km-wide set 

of anastomosing ductile shear zones and pseudotachylyte-bearing faults. Approximately 3-km 

south of the HSZ, the north-northeast-striking, shallowly dipping mylonites of the SLSZ form 

three 1-10-m-thick shear zone splays. Both top-up-to-the-northwest and top-down-to-the-

southeast shear sense are recorded in the SLSZ and HSZ. Oblique stretching lineations in both 

shear zones show vertical (top-down-to-the-southeast and top-up-to-the-northwest) and dextral 

movement occurred during mylonite development. Quartz and feldspar deformation mechanisms 

and quartz [c] axis lattice preferred orientation (LPO) patterns are consistent with deformation 

temperatures ranging from ~280-500°C in the HSZ to ~280-600°C in the SLSZ. Mean kinematic 

vorticity and quartz [c] axis LPOs for parts of each shear zone suggest plane and non-plane strain 

general shear with contributions of 47-69% pure shear and 31-53% simple shear. Based on 

micro- and mesoscale kinematics along with mean kinematic vorticity values and deformation 

temperature estimates, we propose that HSZ and SLSZ formed during strain localization and 

partitioning within a mid-crustal transpressional shear zone system that involved subvertical 

shuffling at ~1.4 Ga.  
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CHAPTER 1 

INTRODUCTION 

 

 Continental tectonics can involve shortening and transpression during oblique 

convergence (e.g. Harland, 1971; Sanderson and Marchini, 1984; Tikoff and Teyssier, 1994), as 

well as crustal extension (e.g., Wernicke and Axen, 1988; Wheeler and Butler, 1994). 

Subvertical shear zones with steeply plunging stretching lineations are commonly associated 

with oblique convergence (Tikoff and Greene, 1997). Low-angle normal faults occur in active 

and exhumed convergent tectonic settings in the western U.S. (Lister and Davis, 1989), the 

Himalaya (Burchfiel et al., 1992; Murphy et al., 2002), the eastern Alps (Selverstone, 1988), and 

the Scandinavian Caledonides (Anderson et al., 1991). Systems of oblique convergence can be 

associated with wide orogenic zones with strike-slip shear zones (e.g. White Mountain shear 

zone, western Idaho shear zone in the North American Cordillera) that partition transpression 

into transtensional and transpressional structures  (Teyssier et al., 1995; Tikoff and Greene, 

1997; Giorgis et al., 2004; Sullivan and Law, 2007). This contribution focuses on the kinematic 

partitioning of transpressional strain into low-angle and steep shear zones at mid-crustal levels 

during intracontinental deformation of juvenile continental lithosphere. The work is relevant to 

strain partitioning in crust that contains inherited anisotropy related to continental assembly. 

 Proterozoic rocks throughout central Colorado record an early high-temperature foliation 

that was steepened into northeast-southwest trending upright folds during the Paleoproterozoic 

and was further steepened and reactivated a series of prominent subvertical shear zones in the 

Mesoproterozoic (Tweto and Sims, 1963; Karlstrom and Humphreys, 1998; Karlstrom and  
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Figure 1. (A) Regional tectonic map of Proterozoic assembly in the southwestern U.S. 
with Proterozoic boundaries from (Condie, 1986; Bennett and DePaolo, 1987; Karlstrom 
and Bowring, 1988; Wooden et al., 1988; Wooden and DeWitt, 1991; Jones et al., 
2010a). Other shear zones mentioned in this study: BCSZ, Black Canyon shear zone; 
GRSZ, Gore Range shear zone; SLLSZ, St. Louis Lake shear zone; ISRSZ, Idaho 
Springs-Ralston shear zone; MMSZ, Moose Mountain shear zone; PPSZ, Poncha Pass 
shear zone. (B) Inset generalized geologic map of the HSZ and SLSZ area (modified 
from Shaw and Allen, 2007) with the location of Figure 2.  
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Williams, 1998; Shaw et al., 2001; McCoy et al., 2005; Shaw and Allen, 2007). These structures 

comprise the crystalline core of the southern Rocky Mountains and provide an important location 

to study deformation associated with the growth of Laurentia during the Proterozoic (Figure 1) 

(e.g. Tweto and Sims, 1963; Karlstrom and Bowring, 1988; Hill and Bickford, 2001). Within this 

setting, Proterozoic through Phanerozoic deformation has left a record of polyphase deformation 

that marks the region’s assembly and unroofing - from Paleoproterozoic ductile movement at 

lower to middle crustal levels, to Late Cenozoic upper-crustal brittle fracturing (Figure 1) 

(Bickford et al., 1989; Bowring and Karlstrom, 1990; Shaw and Karlstrom, 1999; Shaw et al., 

2001; Tyson et al., 2002; Jessup et al., 2005; McCoy et al., 2005; Shaw et al., 2005; Jessup et al., 

2006; Shaw and Allen, 2007; Caine et al., 2010). Much of this northwest-directed deformation 

occurred during the Proterozoic and was concentrated along a series of northeast-striking shear 

zones that traverse the central portion of Colorado (Figure 1A). 

 The north-northeast striking Slide Lake shear zone (SLSZ) is a 1-km-wide, shallow to 

moderately dipping mylonite and ultramylonite shear zone that is exposed 3-km-south of the 

Homestake shear zone (HSZ) near the summit of Homestake Peak (4,023 m) (Figure 1B; 2). The 

10-km-wide, steeply dipping HSZ has been mapped as one of the dominant shear zones in the 

Colorado mineral belt (CMB) and has been mapped extensively (Tweto and Sims, 1963; Tweto, 

1974). Timing of regional metamorphism/thermal events (Shaw et al., 2001; Shaw et al., 2005), 

kinematics, and rheology (Shaw and Allen, 2007) are also well constrained. These studies 

suggest that the deformed gneiss, mylonite, ultramylonite, and pseudotachylyte of the HSZ 

record several distinct phases of strain associated with transpression in an exhumed seismogenic 

zone (Shaw and Allen, 2007). Shaw and others (2001) use monazite ages to suggest that the 

minor dextral component in D3 and D4 could record strike-slip motion associated at ~1
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The consistency of the strike-slip component within subvertical shear zones along the CMB has 

led other researchers to suggest that this vertical and horizontal movement is part of a system of 

transpressional shear zones (Nyman et al., 1994; McCoy et al., 2005; Siddoway et al., 2000; 

Shaw and Allen, 2007). Due to the spatial proximity between the HSZ and SLSZ (Figure 2), the 

well-established deformation history of the HSZ will be used to calibrate our new contribution to 

the deformational history and kinematics of SLSZ as it relates to tectonic-scale processes during 

the Proterozoic (Shaw et al., 2001; McCoy et al., 2005; Shaw and Allen, 2007). 

Due to the slightly less accessible location of Slide Lake and Homestake Peak, relatively 

little was known about the geometry of the SLSZ, the variability in rock types, consistency in 

shear-sense indicators, or deformation mechanisms prior to this investigation. To constrain these 

variables, we created a detailed (1:24,000) map of the SLSZ, (A-1), collected oriented samples 

from different structural levels, documented fabric relationships to characterize deformation, and 

quantified strain partitioning across both the HSZ and SLSZ. This project also builds on 

extensive data from previous investigations, including: (1) detailed structural mapping of the 

Holy Cross quadrangle (Tweto, 1974), (2) age dates from electron microprobe U-Th-Pb 

monazite and 40Ar/39Ar geochronology (Shaw et al., 2001; Shaw et al., 2005) that constrain 

Paleo- and Mesoproterozoic metamorphism in the HSZ, and (3) rheologic and kinematic studies 

of the HSZ (Allen, 1994; Shaw et al., 2001; Shaw and Allen, 2007), as well as the work of others 

within the Sawatch Range and neighboring shear zones (Figure 1A).  

We combine a detailed structural map of the SLSZ with mesoscale observations, 

microstructural analysis, quartz [c] axis lattice preferred orientation (LPO) patterns derived from 

electron backscatter diffraction (EBSD), and mean kinematic vorticity (Wm) analysis to constrain 

the kinematics of the SLSZ and HSZ. As the first major contribution to the SLSZ, this study 



6 

determines that the low-angle SLSZ records multiple stages of movement in a system that is 

kinematically linked to the HSZ. Our new data confirms that the HSZ and SLSZ are part of a 

transpressional system that involved the formation of low-angle shear zones in the mid-crust. 

Results also provide insights into how strain was partitioned during the ~1.4 Ga tectonism that 

others have postulated to be analogous to the interior of an orogenic plateau (Shaw et al., 2005). 
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CHAPTER 2 

BACKGROUND 

 

The evolution of a continental crust involves multiple pulses of tectonism, where new 

crust is assembled onto preexisting crust, and structures associated with shortening, extension, 

and transcurrent movements are created. Such structures can evolve into persistent 

intracontinental tectonic zones through repeated reactivation during continental deformation. 

(Harland, 1971; Molnar, 1988; Molnar and Tapponnier,1975; Bowring and Karlstrom, 1990; 

Teyssier et al., 1995). Major northeast-striking shear zones throughout the southwestern United 

States record deformation associated with the assembly and reactivation of structures within the 

North American continent (Tweto and Sims, 1963; Bowring and Karlstrom, 1990; Karlstrom and 

Humphreys, 1998; Shaw et al., 2001). Research over several decades has constrained the tectonic 

history of Colorado’s Proterozoic shear zones (Figure 3, 4) (Tweto and Sims, 1963; Tweto, 

1974; Shaw et al., 2001; McCoy et al., 2005; Jessup et al., 2005; Shaw and Allen, 2007). 

Traceable from the Cheyenne belt of southern Wyoming (e.g. Karlstrom and Houston, 1984) 

southward to New Mexico, the Proterozoic mid-crust that is exposed in central Colorado is part 

of a ~1200-km-wide swath of juvenile lithosphere and blocks of older material that was 

assembled onto the southern margin of Laurentia at about 1.8-1.6 Ga (Figure 1A) (Tweto and 

Sims, 1963; Tweto, 1974; DePaolo, 1981; Karlstrom and Bowring, 1988; Bowring and 

Karlstrom, 1990; Shaw and Karlstrom, 1999; Hill and Bickford, 2001; Shaw et al., 2001; Tyson 

et al., 2002; Jessup et al., 2005; McCoy et al., 2005; Shaw and Allen, 2007). A variety of models 

for this 200-m.y. history of continental growth have been proposed, yet uncertainty remains in 

defining province boundaries and evidence for moderately dipping shear zones that 
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accommodated crustal shortening across the region (Bickford, 1988; Shaw and Karlstrom, 1999; 

Hill and Bickford, 2001; Tyson et al., 2002; McCoy et al., 2005). 

 The Cheyenne belt, Wyoming, defines the southernmost boundary of the Archean craton 

and the northern extent of a southeastward-younging series of accreted terranes associated with 

the amalgamation of Laurentia (Karlstrom and Houston, 1984; Duebendorfer et al., 1987; 

Karlstrom and Bowring, 1988; Bowring and Karlstrom, 1990; Bickford and Hill, 2007). The 

Yavapai province lies south of the Cheyenne belt and is composed of metamorphic and igneous 

rocks that are interpreted as a mosaic of arc-derived rocks and fragments of older continental 

crust that were assembled across a complex system of northeast- and southwest-striking 

subduction zones between 1.78-1.70 Ga (Duebendorfer et al., 1987; Shaw and Karlstrom, 1999; 

Hill and Bickford, 2001; Jessup et al., 2005, 2006). Another model suggests that the Cheyenne 

belt was not the exact suture and that juvenile terranes were reshuffled in a rifted suture zone 

(Karlstrom and Houston, 1984; Duebendorfer and Houston, 1986; Hill and Bickford, 2001; 

Tyson et al., 2002; Bickford and Hill, 2007). This model for juvenile crust is supported by Nd 

isotopic data that suggests the crust of Colorado is derived from ~1.8 Ga mantle differentiation 

(DePaolo, 1981). U-Pb studies have found Late Archean-Early Proterozoic ages in inherited 

zircons within plutons of central Colorado, suggesting that some material was derived from the 

recycling of previously accreted crust (Hill and Bickford, 2001).  

 The Mazatzal province south of the Yavapai, records deformation and metamorphism at 

1.68-1.65 Ga that involved southeastward accretion of terranes onto the Yavapai province along 

a northeast-striking zone (Figure 1A) (Shaw and Karlstrom, 1999). Shaw and Karlstrom (1999) 

described this transition zone as a mosaic of tectonostratigraphic terranes, with many sutures 

marking the progressive addition of material at the convergent margin.  
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Figure 3. (A) Cartoon cross section illustrating mid-crustal processes that existed in the 
southwestern U.S. during 1.4 Ga deformation. Figure shows spatial relationship between higher 
temperature metamorphism and advection in the lower crust and syntectonic emplacment of 
plutons with ~1.4 Ga mylonite development in major shear zones. Elevation in relation to present 
day sea level with the dashed line representing the position of the mid-crustal ductile-brittle 
transition during 1.4 Ga deformation (Modified from Shaw et al., 2005). (B) Box represents field 
area for HSZ and SLSZ. The two subhorizontal shear zones displayed include the SLSZ and the 
Poncha Pass shear zone (PPSZ, Figure 1A). 
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 Following the 1.7-1.62 Ga Mazatzal orogeny, a 200-m.y. period of continental stability 

ensued, with magmatism and the reactivation of earlier structures occurring between 1.47 and 

1.36 Ga (Figure 4) (Karlstrom and Bowring, 1988; Williams, 1991; Reed et al., 1993; Nyman et 

al., 1994; Duebendorfer and Christensen, 1995; Kirby et al., 1995; Karlstrom and Humphreys, 

1998; Williams et al., 1999; Jessup et al., 2005, 2006; Jones et al., 2010b). Magma emplacement 

at ~1.4 Ga was previously described as A-type, occurring in an anorogenic tectonic setting, and 

related to regional extension in the southwestern U.S. (Anderson, 1983; Hoffman, 1989; Frost et 

al., 2001). In contrast to anorogenic interpretations based on the geochemical data (Anderson, 

1983; Frost et al., 2001), field- and lab-based structural investigations of these granites suggest 

that emplacement (Figure 3) was accompanied by northwest-directed shortening and strike-slip 

deformation (Graubard and Mattinson, 1990; Shaw et al., 2001; Jessup et al., 2006; Jones et al., 

2010b). This deformation is attributed to far-field stresses invoked by distal subduction or 

transpression on the southeastern margin of Laurentia (Nyman et al., 1994; Duebendorfer and 

Christensen, 1995; Ferguson et al., 2004; Jones et al., 2010a).  

 Many granitic bodies are also associated with northeast-striking shear zones (Bickford, 

1988; Bowring and Karlstrom, 1990) that facilitated the emplacement of ~1.4 Ga granites 

(Figure 3). The 1.44 Ga Mt. Evans batholith is correlated with the reactivation of the Idaho-

Springs Ralston shear zone (ISRZ; Figure 1) (Aleinkoff et al., 1993; Nyman et al., 1994). Heat 

advection related to granite emplacement in the mid-crust may have caused thermal weakening, 

possibly decreasing the critical shear strength and reactivating the shear zones during the 

Mesoproterozoic (Figure 3) (Selverstone et al., 2000; Shaw et al., 2005). In central Colorado, the 

formation of shear zones created an anisotropy (i.e. pre-existing weakness) that possibly 

controlled the distribution of Mesoproterozoic deformation and the occurrence of granites (e.g. 
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Davidson et al., 1992; D’Lamos et al., 1997). Reactivation of the Moose Mountain shear zone 

(MMSZ, Figure 1A) and emplacement of the St. Vrain granite also occurred at 1.4 Ga 

(Selverstone et al., 2000). In the Northern Sawatch, the St. Kevin granite (1.396 Ga; Doe and 

Pearson, 1969) occurs in proximity to both the HSZ and SLSZ and has been suggested to be 

coeval with HSZ development (Shaw and Allen, 2007), however a correlation has yet to be made 

between 1.4 Ga granite emplacement and SLSZ development.  

 
 
 
 
 

 
 
Figure 4. Model for the progressive assembly of the terranes (A, B, C) in central Colorado 
during the Proterozoic. The first stage (1.73-1.66 Ga) regional shortening and sub-horizontal (S1) 
fabric development; oceanic terrane B thrust into large recumbent folds. Continued crustal 
shortening (1.65-1.63 Ga) steepened earlier folds into S2 domains. Steep domains accommodated 
far-field tectonic stresses during the 1.42-1.3 Ga event with mylonite and ultramylonite 
development. Modified from McCoy et al., 2005. 
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CHAPTER 3 

STRUCTURAL FRAMEWORK 

 

 Initial mapping and structural interpretation of the HSZ (Tweto, 1974; Allen, 1994; Shaw 

et al., 2001, McCoy et al., 2005; Allen, 2005; Shaw and Allen, 2007) defined a regional 

northeast-striking shear zone system consisting of mylonites, ultramylonites, and 

pseudotachylyte that cut ~1.8-1.6 Ga Proterozoic high-temperature transposed schist, gneiss, and 

migmatite. We will use the Proterozoic deformational history of the HSZ (Table 1) and other 

nearby shear zones (GRSZ, ISRSZ, SLLSZ, BCSZ; see Figure 1A) to calibrate our investigation 

into the evolution of the SLSZ. Although the chronology of deformation uses the terminology 

established by Shaw et al. (2001) (D1 -D4; Table 1) and associated foliation and lineation 

development during each phase of deformation, we recognize that these could represent a wide 

spectrum of timing sequences including distinct and/or protracted events. Shear sense indicators 

presented in this section are observed in the XZ plane (parallel to lineation and perpendicular to 

foliation) unless otherwise noted. 

 Fieldwork was conducted over two summers (2008-2009) and involved mapping and 

sampling of: (1) SLSZ in the vicinity of Homestake Peak and Slide Lake cirque, (2) a transect 

from the southeast ridge of Homestake Peak to the southeast ridgeline of Mount of the Holy 

Cross, and (3) the Continental Divide ridgeline from Homestake Peak to Camp Hale (Hwy 24). 

From that work, a geologic map (Figure 2 and A-1), lower hemisphere equal area stereonets 

(Figure 5; A-1), and a cross section (Figure 6; Plates 1 and 2) were compiled with structural data 

from Tweto (1974) and additional field observations, including lithology, structure, and 

mesoscale kinematic indicators (Appendix II, III). 
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Table 1 
Summary of deformation episodes for the Homestake shear zone 
Episode Age (Ga)* Fabric and deformation Temperature (°C)* Shear sense 
D1 > 1.7 S1 sub-horizontal flow > 500 - 
D2 1.7-1.62 S2/F2 NW-SE upright folds > 500  t-NW 
D3 1.42-1.38  S3 mylonite  300-500  t-SE, dextral 

D4 ~ 1.38 
S4 ultramylonite and 
pseudotachylyte 250-450  t-NW, dextral 

Abbreviations: t-NW, top-up-to-the-NW; t-SE, top-down-to-the-SE 
*Ages, temperature, and shear sense after Shaw et al. (2001); Shaw et al. (2005) 
 
 

 
 
3.1. Deformation history and mesoscale structural observations of the HSZ 
 
 HSZ (Figure 1B; 2) is exposed on glacially polished outcrops along Homestake Creek as 

well as above tree line at the old mining locale of Holy Cross City. The valley walls on either 

side of Homestake Creek are covered by dense vegetation, along with Pleistocene to Holocene 

glacial drift. HSZ consists of partially migmatized biotite gneiss and schist (bt+grt+sil+qtz+fsp+ 

ms) and calc-silicate gneiss (hbl+cal+qtz+fsp+ms), all cut by minor pegmatite veins and 

unclassified Precambrian granites (Figure 2; A-1). The overall northeast-striking shear zone 

(Figure 5A; 6) is exposed along Homestake Creek as a series of anastomosing splays (0.10 to 3-

m-thick) (Figure 2; A-1). Starting at the southwest end of the valley and trending toward the 

northeast, the shear zone thins and splits into smaller splays toward the northeastern part of 

Homestake Creek (Figure 7A). Mylonite was observed along Homestake Creek Road and 

Hornsilver Campground (Shaw et al., 2001), ultramylonite was observed at Holy Cross City, and 

pseudotachylyte was observed along the Holy Cross Jeep trail and along Homestake Creek 

(Allen, 2005) (Figure 2; A-1). 
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Paleoproterozoic deformation 

 The earliest stage of Paleoproterozoic deformation (D1) is characterized by high-

temperature, melt-present flow. The main foliation (S1) is subhorizontal and resulted from 

viscous flow near the granite solidus at ~1708 ± 6 Ma (Shaw et al., 2001). The presence of 

prismatic sillimanite, biotite, and garnet within HSZ samples implies conditions within the 

sillimanite isograd. This early foliation (S1) is present in the HSZ as well as the GRSZ, SLLSZ, 

and ISRSZ (McCoy et al., 2005). In HSZ, S1 is characterized by alternating bands of leucosomes 

and biotite-rich melanosomes in migmatitic gneiss (bt+grt+sil+qtz+fsp+ms) (Figure 7B).  

 The second stage of deformation (D2) also occurred during the Paleoproterozoic at 

amphibolite facies conditions and involved northwest-directed shortening, forming northeast-

southwest-trending upright isoclinal folds (Table 1). Within the HSZ, this mid-crustal shortening 

event steepened and transposed S1, creating an S2 axial-surface foliation (Figure 7C) at ~1658 ± 

5 Ma (Shaw et al., 2001). The ~1675 Ma Cross Creek granite/granodiorite (Tweto and Lovering, 

1977) was emplaced to the northwest of HSZ (Figure 2) during this episode. The Cross Creek 

granite crosscuts an early foliation (S1) and follows the general northeast-trend of the HSZ. The 

steeply dipping foliation (S2) contains zones of high strain rocks that record general shear in the 

region at ~1.65 Ga (Shaw et al., 2001). Recumbent nappes (F1) are preserved in lower strain 

zones where refolded (F2), creating fold interference patterns (Shaw et al., 2001).  

 

Mesoproterozoic deformation 

Following ~200 m.y. of stability, Mesoproterozoic deformation represents a major shift 

in deformation style across the region from the distributed high-temperature, melt-present 

deformation during the Paleoproterozoic into moderate temperature greenschist facies conditions 
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and localized solid-state shear zone development (Table 1). The initial stage of deformation (D3) 

is recorded by mylonite development within the HSZ along anastomosing systems (S3) that 

reactivated and overprinted the steep foliation (S2) (Figure 4; 6). Near Hornsilver Campground 

and Holy Cross City areas (Figure 7D), narrow (1-3-m-thick) bands of quartzofeldspathic rocks 

that contain interspersed ribbon quartz and phyllosilicate-rich layers with rigid feldspar 

porphyroclasts make up the pervasive foliation (S3: 059, 79°SE) that contains an oblique 

stretching lineation (L3: 73° → 213) (Figure 5). Narrow (1-10 cm-thick) mylonitic quartz veins 

occur along some of the mylonite splays. Feldspar porphyroclasts and shear bands record top-

down-to-the-southeast sense of shear during mylonite development (D3) that occurred between 

1.45 to 1.38 Ga (Figure 5, 6) (Shaw et al., 2001).  

 The final stage of reactivation (D4) involved the development of mylonite and 

ultramylonite (S4: 059, 79°SE) that record top-up-to-the-northwest shear sense and 

pseudotachylyte that overprinted S3 (Table 1). Analysis of timing, kinematics, and deformation 

temperatures within both the HSZ (Shaw and Allen, 2007) and GRSZ (McCoy et al., 2005) 

suggest that mylonite and ultramylonite are spatially and temporally coincident. Pseudotachylyte, 

cataclasite, and brittle fractures are unique to D4. D4 ultramylonite contains a steeply plunging 

stretching lineation (L4: 78°  120) and records dextral and top-up-to-the-northwest (reverse) 

sense of shear (Figure 5) (Shaw and Allen, 2007). In situ monazite geochronology yields ages for 

the formation of ultramylonites (S4) at 1375 ± 14 Ma in the HSZ (Shaw et al., 2001), and more 

widely with D4 deformation across the HSZ at 1.38 Ga.  

 Pseudotachylyte (S4) occurs as black, discontinuous anastomosing veins in migmatite, 

biotite gneiss, and alongside ultramylonite (Figure 7E). In the HSZ, pseudotachylyte has been 

divided into eight northeast-striking, steeply dipping zones (0.2-2.3-km-wide and 1.5-7.3-km-
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long and varying in thickness 1-15 cm) (Allen, 2005), following and crosscutting the steep, 

northeast-striking foliation (S2: 059, 79°SE). The existence of coeval ductile ultramylonite with 

brittle-frictional pseudotachylyte points to unique conditions, suggesting local changes in 

temperature, grain size, fluid pressure, and strain rate that affected the prevalence of mid-crustal 

ductile vs. brittle deformation within an exhumed seismogenic zone (Allen, 2005; Shaw et al., 

2005; Shaw and Allen, 2007). 
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Figure 5: Lower hemisphere 
equal area stereonets showing 
foliation and lineation 
relationships in the field areas. 
Black planes represent average 
foliation plane and shaded 
contours represent poles to 
foliation for all measured planes. 
Stretching lineations from this 
study represented by dashed 
contour lines. Stretching 
lineations from Shaw and Allen 
(2007) denoted with “x” and “o”. 
(A) HSZ S3 (056, 79°SE), L3 (73° 
→  213), and L4 (78° → 120). (B) 
SLSZ low-angle splays, Sx (007, 
24°SE) and Lx (09° → 165). (C) 
SLSZ Bennett ridgeline 
moderately dipping splay, Sx 
(048, 60°SE) and Lx (60° → 121). 
 
 



18 

 
 
 
 
 
 
 
 



19 

 

 
 
Figure 7. Field observations from the HSZ. (A) View from Hornsilver Campground (Figure 2) 
towards the southwest along Homestake Creek; yellow bands represent the northeast-striking, 
subvertical HSZ and the red sliver at skyline represents the upper band of the SLSZ exposed at 
Homestake Peak. (B) High-temperature (bt+qtz+sil+fsp) migmatite (S1) characteristic of the 
region. (C) S1 fabric folded and transposed into steep S2 fabric at Hornsilver Campground. (D) 
Subvertical ultramylonite outcrop near Holy Cross City. (E) Image viewed towards the NE along 
strike; subvertical S2 fabric overprinted by pseudotachylyte bounding the feldspar leucosome in 
the center of the image. 
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3.2. Mesoscale structural observations of the SLSZ 
 

The shallow to moderately dipping SLSZ exists ~1200-m-above Homestake Valley at 

and above tree line, and spans two prominent ridges and glacially carved cirques (Figure 2; 8A; 

A-1). SLSZ occurs as three splays of mylonite and ultramylonite in an area composed of 

amphibolite facies biotite gneiss (bt+grt+sil+qtz+fsp+ms), quartzofeldspathic gneiss 

(qtz+fsp+ms+bt), calc-silicate gneiss (hbl+cal+qtz+chl), and migmatite (bt+grt+sil+qtz+fsp+ms), 

all cut by pegmatite and granite. The overall north-northeast-striking SLSZ occurs as two 

shallow dipping anastomosing slays that plunge toward the southeast (Figure 5B) and are joined 

by at least one moderately, southeast-dipping mylonite splay (Figure 5C). Based on field 

mapping, SLSZ exists as three major mylonite and ultramylonite splays that occur (1) ~10-m-

below the summit of Homestake Peak on the Continental Divide, (2) in Slide Lake 

cirque/Bennett Gulch cirque, and (3) along the Bennett Gulch/Slide Lake ridgeline (Figure 2; 

8A). We use the Proterozoic deformational events of the HSZ to calibrate our investigation of the 

SLSZ, and recognize that these may represent a wide range of timing sequences that include 

distinct and/or protracted deformational events. 

 

Paleoproterozoic deformation 

 High-temperature rocks from the first (D1) and second (D2) stages of Paleoproterozoic 

deformation are found in the hanging wall and footwall of the SLSZ. Migmatitic gneiss (bt+grt+ 

sil+qtz+fsp+ms) is the same as that observed in the HSZ area, with leucosomes and biotite 

melanosomes characterizing the high-temperature melt-present subhorizontal flow (S1). The mid-

crustal shortening event (D2) steepened and transposed S1, creating the axial surface foliation (S2: 

059, 79°SE) similar to that seen in the HSZ. Amphibolite facies gneiss (bt+gt+sil+qtz+fsp+ms) 
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with well-developed biotite foliation overprints older migmatite and are folded into northeast –

southwest trending upright folds (F2). 

 

Mesoproterozoic deformation 

~1.4 Ga deformation in the SLSZ represents a change in both metamorphic conditions 

and kinematics, from high-temperature amphibolite conditions and steep foliation development 

to moderate-temperature greenschist conditions and the development of a shallow foliation. 

SLSZ foliation (Sx) is associated with mylonite and ultramylonite development. As absolute 

timing was not performed in the SLSZ, we refer to 1.4 Ga foliation as Sx. Unlike the HSZ where 

1.4 Ga foliation (S3 and S4) reactivated and overprinted earlier steeply dipping foliation (S2), the 

shallowly dipping 1.4 Ga mylonite and ultramylonite (average low-angle Sx: 007, 24°SE) 

contains a stretching lineation (average shallow Lx: 011°  165) in the SLSZ and was found to 

both truncate and exist parallel to earlier S2 foliation (059, 79°SE).  

The SLSZ is exposed along Bennett ridgeline (Figure 8A; 9A,B) and consists of at least 

two, ~1-m-thick moderately dipping (048, 60°SE), upper greenschist facies mylonite 

(qtz+fsp+bt) bands (Sx) bound by high strain zones that consist of grain-size reduced biotite and 

quartz. Exposure of this splay is isolated to a narrow band of high-strain rock and mylonite 

interspersed with foliated quartzofeldspathic gneiss on the ridge that divides Bennett gulch from 

Slide Lake cirque. Moderately dipping mylonite (qtz+fsp+bt) contains rigid, pink feldspars that 

are set in a matrix of phyllosilicate (bt+ms) and quartz ribbons. Mylonitic foliation (Sx) in the 

hanging wall and footwall of this shear zone splay is parallel with the moderately dipping earlier 

high-temperature foliation (Figure 8B). A well-developed, shallow and oblique, southeast  
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Figure 8. Field observations of the SLSZ. (A)View towards the northeast along the Continental 
Divide; three major splays (highlighted red) of the SLSZ. (B) Bennett ridgeline outcrop, 
mylonite splay dashed and parallel to the surrounding foliation (C) Bennett ridgeline mylonite. 
(D) Fabric truncation between the steep fabric (S2) within the hanging wall of the upper splay 
and the subhorizontal fabric (Sx) of the SLSZ. (E) Porphyroclasts within quartz-calcite-biotite 
mylonite from the upper splay, top-down-to-the-southeast motion.  
 

Figure 
7A 

Figure 
8D 

A 

 

SE 

up 

1 

D  

SE 

up E 

Sx 

 
S2 

Sx 

 

SE 

up SE NW 

S3 

C 

Sx 

 

Sx 

 

B 

Slide Lake cirque 

Homestake 
ridgeline 

Slide Lake 
cirque 

Bennett 
Ridgeline 
Figure 8B 

Bennett Gulch 

Bennett ridgeline Bennett ridgeline 

Homestake ridgeline Homestake ridgeline 



23 

          
 

        
  

        
 
Figure 9. Additional field observations from the Slide Lake shear zone. (A) Fabric relationships 
in Slide Lake cirque. (B) Grain-size reduced high strain domain in Bennett Gulch. (C) S-C fabric 
in Slide Lake cirque. (D) Pegmatite offset by high strain domains in Bennett Gulch. (E) 
Pegmatite cross-cutting steep S2 fabric. (F) Pegmatite incorporated into shallow Sx SLSZ fabric. 
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plunging stretching lineation (Lx: 60°  121) defined by of quartz and feldspar aggregates was 

observed on the moderately dipping foliation surface (Sx: 048, 60°SE) (Figure 5C). Mesoscale 

shear-sense indicators (e.g. asymmetric tails on porphyroclasts, shear bands, offset shear bands) 

reveal dominant top-down-to-the-southeast sense of shear.  

Homestake ridgeline (Figure 8A) is the most laterally extensive exposure of the SLSZ 

that we mapped along the Continental Divide from the saddle southwest of Homestake Peak to 

the unnamed peak that divides Bennett Gulch and Slide Lake cirque. On the southwestern saddle 

(southwest of the Homestake summit), the low-angle calc-silicate (cal+qtz+bt+ms+chl) 

ultramylonite is traceable along-dip for 100+ meters from the saddle down the southeastern side 

of the Continental Divide. On the northeastern side of Homestake summit, low-angle (Sx: 003, 

20°SE), greenschist facies ultramylonite (qtz+bt+fsp+ms ± cal+chl) is traceable along the 

Continental Divide. Ultramylonite is composed of small feldspar porphyroclasts and ribbon 

quartz with alternating layers of phyllosilicates (bt+ms+chl). Quartz and feldspar grains form a 

shallowly plunging lineation (Lx: 006° → 166). Foliation relationships (Figs. 5B; 6) at the 

northeast end of this splay (Figure 8D) reveal a sharp contact between the low-angle SLSZ splay 

(Sx: 003, 20°SE) and the overlying steep, high-temperature fabric (S2: 054, 78°SE). The shear 

zone appears to truncate the steeply dipping fabric (S2) that is pervasive across the HSZ (Figure 

8B). Mylonite and ultramylonite reveal mesoscopic shear sense indicators (e.g. porphyroclasts, 

S-C fabric, shear bands) that record both top-up-to-the-northwest and top-down-to-the-southeast 

(Figure 8E) sense of shear, possibly due to overprinting of earlier fabric.  

The structurally lowest splay of the SLSZ was mapped as low-angle (bt+qtz+fsp+ms) 

mylonite and ultramylonite that occurs on the glacially carved pavement in both Slide Lake 

cirque and Bennett Gulch (Figure 2; 8A; 9A-D). This splay consists of several thin (1-3-m-
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strands), shallowly dipping (Sx: 015, 29°SE) greenschist facies ultramylonite strands 

(bt+fsp+qtz-ms+sil) that display a shallowly plunging southeast-trending stretching lineation (Lx: 

16°  164) (Figure 5B). Ultramylonite contains rigid, pink feldspar, ribbon quartz, and 

phyllosilicates (bt+ms) in a matrix of bt+ms+chl. Thin strands of ultramylonite occurred as 

discontinuous, anastomosing splays, bound by sections of migmatitie and biotite gneiss and some 

high strain domains. High strain domains were extensive in the pavement, consisting of grain-

size reduced biotite and quartz that anastomose (i.e. follow and crosscut the foliation) throughout 

this outcrop. A variety of folds were mapped in the shallowly dipping gneiss that bound splays of 

the shear zone and included a steep southwest-plunging F1 (81°  256) and shallow northwest-

plunging fold axis F2 (41°  321). Mesoscale structural shear sense indicators (e.g. rigid feldspar 

porphyroclasts with tails, shear bands) record dominant top-down-to-the-southeast and minor 

top-up-to-the-northwest sense of shear, similar to the type of shear sense recorded in the 

Homestake ridgeline splay. 
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CHAPTER 4 

KINEMATICS, DEFORMATION TEMPERATURES, AND VORTICITY 

 

 To characterize deformation within the mid-crustal rocks of the SLSZ and HSZ, 

microscale structural analyses were performed on eleven HSZ samples and thirty-four SLSZ 

samples (Table 1, 2; Appendix I, IV). Quartz lattice-preferred orientation (LPO) analyses were 

performed on four samples from the two shear zones. Quartz and feldspar grain boundaries and 

mineral assemblages were used to estimate temperatures of deformation. Mean kinematic 

vorticity analyses (Wm) were also performed on four HSZ ultramylonites and six SLSZ 

mylonites to document the spatial and temporal variability of pure and simple shear across the 

two shear zones. Oriented samples were collected from Holy Cross City and Hornsilver 

Campground in the HSZ and from Homestake ridgeline, Bennett ridgeline, Slide Lake cirque, 

and Bennett Gulch in the SLSZ (Figure 2). The oriented samples were cut parallel to lineation 

and perpendicular to foliation (XZ), with orientation preserved throughout thin-section 

preparation.  

 

4.1. Kinematics 

Homestake shear zone  

 Mylonite from the Hornsilver Campground splay of the HSZ is characterized by aligned 

biotite and muscovite interlayered with quartz-rich domains that define a penetrative foliation 

(Sx: 059, 79°SE) (Table 2). The well-developed stretching lineation is defined by aggregates of 

quartz, feldspar, and muscovite (Lx: 73°  213). In many thin sections, quartz subgrains are 
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elongate into ribbons (S fabric) drawn into shear bands (C fabric) of the aligned biotite and 

muscovite (Figure 10A). This fabric (S3) contains σ-type feldspar porphyroclasts with tails of 

quartz subgrains and biotite mica fish that record top-down-to-the-southeast shear sense with 

minor top-down-to-the-southwest sense of shear. Varying shear sense indicators within the same 

sample may suggest different deformational episodes, with the more recent event partially 

overprinting the previous event (e.g. top-up-to-the-northwest overprints top-down-to-the-

southeast shear). 

 Mylonite and ultramylonite in the Holy Cross City splay of the HSZ contain aligned 

biotite and muscovite that are interlayered with quartz-rich layers. Rigid porphyroclasts are 

interspersed within mylonitic quartz veins (Figure 10B) composed of quartz subgrains with 

isolated muscovite and biotite grains. Two generations of well-developed stretching lineation are 

defined by quartz, feldspar, and muscovite (L3: 73°  213; L4: 78°  120). Most porphyroclasts 

in these mylonites appear as mono- and polycrystalline rounded feldspar porphyroclasts with and 

without tails. Thin sections of mylonite and ultramylonite from the Holy Cross City splay 

contain the greatest quantity and variety of shear-sense indicators; both δ- and σ-type 

porphyroclasts (Figure 10B), rhomboidal (Figure 10C) and lenticular (Figure 10D) mica fish, 

oblique grain-shape fabric in quartz (Figure 10C, D), C’-type shear bands, boudinage (Figure 

10E), and mylonitic textures (Figure 10F). Oblique grain-shape fabric created by quartz subgrain 

alignment exists at steep angles (32-53°) to foliation and mica fish orientation (Figure 10C, D). 

Shear sense indicators record top-down-to-the-southeast and top-up-to-the-northwest shear 

sense, evidence for both S3 and S4 deformation. 
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Table 2       
Summary of HSZ shear sense, vorticity, and temperature data     

Sample Rock type 
Shear 
sense Vorticity (Wm)  

% Pure 
shear 

Deformation  
Temperature (°C) 

Temperature 
indicatorb 

Homestake shear zone - Hornsilver Campground    
HS08-01 qtz my t-NW - - 300-400 q.d., m.a. 
       
Homestake shear zone - Holy Cross City transect    
HS08-07 qtz-fsp my t-NW 0.58-0.68 60-51 450-500 q.d., m.a. 
HS08-08 qtz-fsp my t-NW - - 400-500 q.d., m.a. 
HS08-09 qtz my t-NW - - 350-450 q.d., m.a. 
HS08-10 qtz my t-NW 0.45-0.70 60-50 450-500 q.d., m.a. 
HS08-11 qtz my t-NW - - 350-450 q.d., m.a. 
HS08-12 qv t-NW - - 450-500 q.d., m.a. 
HS08-13a qv t-NW  - 450-500 q.d., m.a. 
HS08-14a qtz my - - - 450-500 q.d., m.a. 
HS09-03 qtz my t-NW - - 400-500 q.d., m.a. 
HS09-04 qtz my t-NW - - 300-450 q.f.d, m.a. 
Abbreviations: qtz my, quartz mylonite; c.s. my, calc-silicate mylonite; fsp my, feldspar mylonite; gns, 
gneiss; mbl, marble; qv, quartz vein; t-SE, top-down-to-the-southeast; t-NW, top-up-to-the-northwest. 
     a Samples analyzed with EBSD  
       b Temperature indicators; all samples used q.d, quartz, and q.f.d quartz and feldspar deformation  
        textures, m.a. mineral assemblage 
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Figure 10. Photomicrographs of HSZ microstructures; crossed polars unless noted. (A) 
Ultramylonite with S-C fabric with top-up-to-the-SW shear. (B) Mylonite with feldspar 
porphyroclasts displaying top-down-to-the-SE shear sense. (C) Quartz vein containing oblique 
grain shape fabric in quartz and mica fish with top-up-to-the-NW shear. (D) Quartz vein with 
mica fish surrounded by quartz (qtz) subgrains display top-up-to-the-NW shear. (E) Mylonite 
with sillimanite boudins and shear bands display top-down-to-the-SE; plane light. (F) Mylonite 
with rigid feldspar porphyroclasts in quartz matrix displays top-up-to-the-NW shear; plane light.  
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Slide Lake shear zone  

 Mica fish, asymmetric tails on rigid feldspar porphyroclasts, C- and C’- type shear bands 

and oblique grain-shape fabric in quartz record both top-down-to-the-southeast and top-up-to-

the-northwest shear sense for three major splays of the SLSZ (Figure 11; Table 3; Appendix IV). 

Twenty-three out of twenty-eight mylonite and ultramylonite samples from the SLSZ record top-

down-to-the-southeast shear sense.  

 The Bennett ridgeline splay of moderately dipping quartzofeldspathic mylonite contains 

well-defined asymmetric feldspar porphyroclasts (Figure11 A, B), mica fish, and C-type shear 

bands. This suite of samples from the steeper-dipping mylonite records similar top-down-to-the-

southeast shear sense as the other two SLSZ splays, but the mineral assemblage and fabric within 

the suite is dramatically different. Where the other two splays display qtz+fsp+bt+ms (± cal) 

mylonite, the Bennett ridgeline splay contains ~80% qtz+fsp with minor bt+ms in the mylonite. 

The pervasive foliation is defined by bands of quartz and feldspar that alternate with interlayered 

large white mica laths and biotite grains (Figure 11B) (Sx: 048, 60°SE). Lenticular mica fish are 

set in a matrix of quartz with polygonal grain boundaries that record high-temperature grain-

boundary area reduction. Smaller feldspar and biotite domains also exist with asymmetric-tailed 

feldspar porphyroclasts domains that pin the high-temperature quartz domains (Figure 11B). In 

each thin section, the most feldspar porphyroclasts record top-down-to-the-southeast shear sense 

and a minority of the porphyroclasts record top-up-to-the-northwest sense of shear. 

 The upper ~100-m-thick Homestake Peak – Continental Divide splay records a large 

contribution of top-up-to-the-northwest motion along the shallowly dipping shear zone. The 

pervasive foliation is defined by white mica fish and biotite laths interlayered with quartz and 

feldspar grains (Figure 11C) (Sx: 003, 20°SE). Quartz and muscovite make up shallowly 
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plunging and weakly developed stretching lineation (Lx: 016°  166). Between mica-rich 

domains, quartz and feldspar grains exist in a matrix of calcite, quartz, and biotite. Narrow 

lenticular mica fish (Figure 11C), C’-type shear bands, and polycrystalline porphyroclasts 

(Figure 11D) record top-up-to-the-northwest shear sense and a lesser top-down-to-the-SE shear 

sense component in the upper splay. Sillimanite was also observed in samples from this splay, 

both in the cores of mica fish and as northwest-southeast oriented boudins. A weak oblique 

grain-shape fabric in quartz-rich regions developed at a steep angle to foliation (~57°) and 

records top-up-to-the-northwest shear sense.  

 The Slide Lake cirque splay is located to the southeast of the ridgeline. Shear sense 

within the 11 out of the 12 mylonite samples from this part of the shear zone records dominant 

top-down-to-the-southeast motion. The pervasive foliation in the mylonite is defined by white 

mica and biotite domains interlayered with quartz and feldspar grains (Sx: 015, 29°SE). A 

combination of quartz, feldspar, and muscovite make up a weak- to well-developed stretching 

lineation (Lx: 16°  164). Mylonite samples display mica fish, S-C’ fabric, sillimanite boudins, 

and δ-type porphyroclasts bound by retrograde muscovite (Figure 11E). Boudins are oriented 

northwest-southeast. C’-type shear bands record top-down-to-the-southeast sense of shear 

(Figure 11F). Other samples contain lenticular and rhomboidal mica fish that are set in a matrix 

of dynamically recrystallized quartz that record top-down-to-the-southeast and minor top-up-to-

the-NW shear sense.  
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Figure 11. Photomicrographs of SLSZ mylonites; crossed polars unless noted. (A) Quartz-
feldspar mylonite with porphyroclasts with asymmetric quartz and biotite tails, top-down-to-the-
SE shear; plane light. (B) Mylonite with quartz domains pinned by muscovite laths and biotite, 
top-down-to-the-SE shear. (C) Ms-bt mylonite with mica fish displaying top-down-to-the-SE 
shear. (D) Ultramylonite with polycrystalline quartz porphyroclasts displaying top-up-to-the-NW 
shear. (E) Mylonite showing δ-type sil-porphyroclasts recording top-down-to-the-SE shear. (F) 
Mylonite with C’- type shear band showing top-down-to-the-SE shear sense.  
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Table 3       
Summary of SLSZ shear sense, vorticity, and deformation temperature data  

Sample Rock type 
Shear 
sense Vorticity (Wm)  

% Pure 
shear 

Deformation 
Temperature (°C) 

Temperature 
indicatorb 

Slide Lake shear zone - Homestake ridgeline splay  
SL08-08 c.s. my t-S - - 450-550 q.d., m.a. 
SL08-07 c.s. my t-NW - - 400-500 m.a.. 
SL08-06 c.s. my t-SE - - 400-450 q.d., m.a. 
SL08-05 mbl - - - 400-450 c.d., m.a. 
SL08-04a qv t-SE  - 350-450 q.d., m.a. 
SL08-03 c.s. my t-SE - - 300-400 q.d., m.a. 
SL08-02 c.s. my t-SE - - 300-400 q.d., m.a. 
SL08-01 c.s. my t-NW - - 300-400 q.d., m.a. 
HS09-54 qtz my t-SE - - 350-400 q.d., m.a. 
HS09-31 calc my t-SE - - 500-650 m.a.. 
HS09-32 qtz my t-NW - - 500-650 m.a.. 
HS09-33 qtz my t-SE - - 650+ q.d., m.a. 
HS09-34 qtz my t-SE - - 650+ m.a. 
HS09-35 qtz my t-SE - - 450-650 q.d., m.a. 
HS09-36 qtz my t-NW - - 650+ q.d., m.a. 
HS09-37 gns t-NW - - 300-400 q.d., m.a. 
       
Slide Lake shear zone - Slide Lake cirque splay    
HS09-21 qtz my t-SE - - 350-450 q.d., m.a. 
HS09-22 qtz my  t-SE - - 300-400 q.d., m.a. 
HS09-23 qtz my t-SE - - 450-550 q.d., m.a. 
HS09-24 qtz my t-SE - - 450-550 q.d.., m.a. 
HS09-25 c.s.my t-SE - - 450-550 q.d., m.a. 
HS09-27 qtz my t-SE - - 350-400 q.d., m.a. 
HS09-29 qtz my t-NW - - 450-550 q.d., m.a. 
HS09-30 qtz my t-SE - - 500-600 q.d., m.a. 
HS90-39 qtz my t-SE - - 500-650 q.d., m.a. 
HS09-40 qtz my t-S - - 450-500 q.d., m.a. 
HS09-41 qtz my t-SE - - 450-500 q.d., m.a. 
       
Slide Lake shear zone - Bennett ridgeline splay    
HS09-17 c.s. my - - - 300-350 q.d, m.a. 
HS09-42a qtz-fsp my t-SE - - 450-600 q.d, m.a. 
HS09-43 qtz-fsp my t-SE - - 450-600 q.d, m.a. 
HS09-44 qtz-fsp my t-SE 0.65-0.73 47-55 450-600 q.d, m.a. 
HS09-45 qtz-fsp my t-SE 0.67-0.73 47-53 450-600 q.d, m.a. 
HS09-46 qtz-fsp my t-SE 0.63-0.65 55-68 450-600 q.d, m.a. 
HS09-47 qtz-fsp my t-SE 0.58-0.65 55-58 400-600 q.d, m.a. 
Abbreviations: qtz my, quartz mylonite; c.s. my, calc-silicate mylonite; fsp my, feldspar mylonite; gns, 
gneiss; mbl, marble; qv, quartz vein; t-SE, top-down-to-the-SE; t-NW, top-up-to-the-NW. 
      a Samples analyzed with EBSD  
      b Temperature indicators; all samples used q.d, (quartz) and q.f.d. (quartz and feldspar) deformation  
        temperatures, and m.a. (mineral assemblage). 
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4.2. Deformation temperatures 

 Deformation temperatures in the HSZ and SLSZ were assessed using a combination of 

quartz deformation textures (Hirth and Tullis, 1992; Stipp et al., 2002a; Stipp et al., 2002b), 

feldspar deformation textures (Pryer, 1993), mineral assemblages, and quartz LPOs (Mainprice 

et al., 1986; Tullis and Yund, 1992). Quartz boundaries deform as temperature is increased 

during dynamic recrystallization, and assuming constant strain rate and fluid composition, can be 

used as a proxy for relative temperature conditions during deformation (Figure 12A). The phases 

of grain-boundary mobility are defined by bulging (BLG, ~280-400°C), subgrain rotation (SGR, 

~400-500°C), and grain-boundary migration (GBM, >500°C) (Stipp et al., 2002a; Stipp et al., 

2002b). These stages represent the dynamic recrystallization of quartz from dislocation glide and 

creep (BLG) to climb-accommodated dislocation creep (SGR) and into high-temperature grain 

boundary migration (GBM), where recrystallization-accommodated creep reduces internal strain 

energy, and decreases dislocation density. Grain-boundary straightening results in polygonal 

grain boundaries that allow for the lattice to progress toward a dislocation free lattice (i.e. 

annealing) and Grain Boundary Area Reduction (GBAR) (Bons and Urai, 1992; Kruhl, 2001; 

Stipp et al., 2002a).  

 Quartz LPOs were used to estimate temperature. At lower temperature conditions slip 

occurs as basal <a> slip associated with 280-400°C, progressing into moderate temperatures 

(400-500°) where dislocation creep involves prism <a> slip, and lastly into high temperatures 

(>500 °C), where prism <c> slip dominates deformation (Figure 12A) (Wilson, 1975; Lister and 

Dorsiepen, 1982; Mainprice et al., 1986; Law, 1990; Tullis and Yund, 1992; Kruhl, 1998). 

Electron backscatter diffraction (EBSD) was used to obtain LPO diagrams. Diffraction patterns 

were collected using a Zeiss Supra 55 VP scanning electron microscope coupled with a HKL 
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Channel 5 EBSD camera at Montana State University. HKL Channel 5 Flamenco software was 

used to index diffraction patterns. 

 Feldspar deformation mechanisms were also used to constrain deformation temperatures 

in the shear zones. Feldspar starts to deform via internal micro-fracturing and dislocation glide 

beginning at 400-500°C (Pryer, 1993), where feldspar grain boundaries develop core and mantle 

structures characteristic of bulging and dislocation climb (BLG, 450-600°C) (Borges and White, 

1980; Gapais, 1989; Gates and Glover, 1989; Tullis and Yund, 1991; Shigematsu, 1999). Above 

600°C feldspar grains deform via SGR and BLG recrystallization that may involve the growth of 

myrmekite (Vidal et al., 1980; Olsen and Kohlstedt, 1985; Tullis and Yund, 1987; Simpson and 

Wintsch, 1989; Pryer 1993; Kruse and Stünitz, 1999; Altenberger and Wilhelm, 2000).  
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Figure 12. (A) Pole diagrams showing quartz LPO patterns for the [c] axes and <a> axes with 
increasing temperature for non-coaxial, plane strain deformation (after Stipp et al., 2002b; 
Passchier and Trouw, 2005; Langille et al., 2010a). (B) EBSD generated lattice-preferred 
orientations for HSZ (qtz+fsp) mylonite (HS08-12, HS08-13) displaying patterns characteristic 
of plane strain and prism <a> slip and (C) SLSZ sample SL08-04 displaying prism <a> slip and 
plane strain patterns and HS09-42 displaying non-plane strain conditions with possible prism 
<a> and rhomb <a> slip.  
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Homestake shear zone 

 Quartz deformation textures within HSZ mylonite and ultramylonite are dominated by 

subgrains that occur as small, individual grains and elongated ribbon grains, both are evidence 

for subgrain rotation (SGR, 400-500°C). The mineral assemblage contains minor sillimanite, 

cordierite, and garnet (Figure 13A) that are legacy to the earlier Paleoproterozoic (D1) high-

temperature, GBAR-dominated flow found throughout the HSZ (Figure 13B). Quartz subgrain 

development (Figure 13 C, D) varies from the Hornsilver Campground splay into the Holy Cross 

City splay of the HSZ. Quartz grain boundaries in the Hornsilver Campground (Figure 13D) 

mylonite contain elongate quartz ribbons with bulging grain boundaries (BLG, 280-400°C) and 

undulose extinction in the interior of the grain. Holy Cross City mylonite contains ribbon quartz 

grains and smaller, (Figure 13C) well-defined subgrains (SGR, 400-500°C) that align to form an 

oblique grain-shape fabric that was used as a shear sense indicator. Feldspar in the Hornsilver 

Campground mylonite lacks evidence for dynamic recrystallization, however in the Holy Cross 

City mylonite, some feldspar porphyroclasts display core and mantle structures that are evidence 

for bulging (BLG, 450-600°C) dynamic recrystallization (Pryer, 1993) and may be part of 

earlier, high temperature deformation. Feldspar was also observed as fractured porphyroclasts 

filled with phyllosilicates (Figure 13E) and surrounded by quartz subgrains. 

Chlorite, biotite, sillimanite, and muscovite appear within HSZ mylonite and 

ultramylonite and can be used to interpret metamorphic conditions during deformation. 

Amphibolite facies migmatite and biotite gneiss (D1 and D2) were overprinted by greenschist 

facies mylonite (D3) and ultramylonite (D4). Both fibrous and prismatic sillimanite occur in 

many of the HSZ sections as shear sense indicators (Figure 13F) and within shear bands. In most 
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sections, sillimanite was fractured or boudinaged and filled with muscovite. This association 

might record a retrograde reaction (Equation 1, Spear, 1993): 

 

K-feldspar + Al2SiO5 + H2O = muscovite + quartz,                               (1) 

 

where quartz subgrains and muscovite encapsulate sillimanite around fibers and between 

fractures. This sillimanite is likely the product of earlier, high-temperature deformation (D1/D2) 

and during retrogression (D3 and D4) subgrains were created (SGR, 400-500°C), sillimanite 

retrogressed to muscovite, and feldspar porphyroclasts remained rigid (<450°C). Garnet, 

sillimanite, and minor cordierite are present in some samples outside the main shear band (Figure 

13A). 

 In the Holy Cross City splay (e.g. Figure 13C), quartz subgrains in mylonite can be used 

as evidence for shear-band development associated with D3 in the HSZ. Quartz [c] axes plot in 

the center of the LPOs (Figure 12A), with <a> axes plotting along the primitive circle for two 

samples analyzed using the EBSD (Figure 12B). One of the Holy Cross City mylonitic quartz 

veins, HS08-13, contains a well-developed quartz subgrain texture with oblique grain-shape 

fabric and mica fish that record top-up-to-the-northwest shear sense. LPO plots derived from the 

(XZ) plane suggest that the [c] axes of quartz subgrains were aligned during plane strain 

deformation. LPO patterns can also be used to estimate deformation temperature during quartz 

recrystallization (Stipp et al., 2002b; Langille et al., 2010a, b). Both LPO plots suggest prism 

<a> slip (>500°C) as the dominant mechanism for deformation, suggesting the possibility of 

even higher temperatures than the (Figure 12B) quartz textures observed (SGR, 400-500°C). 
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Figure 13. Deformation temperatures within HSZ; crossed polars unless otherwise noted. (A) 
Undeformed host gneiss; gar, garnet; bt, biotite; sill, sillimanite; qtz, quartz. (B) Grain 
boundaries displaying high-temperature quartz texture. (C) Quartz mylonite shows well-
developed quartz subgrains with top-down-to-the-SE oblique grain-shape fabric. (D) Quartz 
mylonite boundary with elongated, ribbon quartz subgrains displaying S-C fabric, top-up-to-the-
SW shear. (E) Ultramylonite showing quartz subgrains and rigid and fractured feldspar, top-
down-to-the-SE. (F) Mylonite with sillimanite porphyroclasts rimmed by muscovite. 
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Figure 14. Deformation temperatures within SLSZ; crossed polars unless noted. (A) Annealed 
quartz (GBAR) in mylonite. (B) Lobate quartz (GBM) domains pinned by micas in mylonite, 
top-down-to-the-SE shear sense. (C) Core and mantle structures (BLG) in feldspar within 
mylonite. (D) Aligned quartz subgrains in the mylonite, top-up-to-the-NW shear sense. (E) 
Bulging quartz grain boundaries in a quartz vein within ultramylonite. (F) Sillimanite boudins 
from ultramylonite. 
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Slide Lake shear zone 
 

Bennett ridgeline quartzofeldspathic mylonites contain interlobate quartz-rich domains 

(5-20 microns thick) that indicate higher-temperature GBM textures (>500°C) (Figure 14A) and 

are pinned on the foliation plane in some samples (Figure 14B) by aligned biotite and muscovite. 

Rigid feldspar porphyroclasts, some with asymmetric tails, are set within the quartz matrix 

composed of quartz grains with polygonal grain boundaries that record semi-annealed fabric. 

Where the majority of feldspar grains display undulatory extinction, a minority display core and 

mantle structures (Figure 14C), suggesting the onset of higher temperature (BLG; 450-600°C) 

feldspar textures (Pryer, 1993). Feldspar subgrains (BLG) only occur as haloes around larger, 

rigid porphyroclasts and were not found in all the samples, implying either a transition from 

medium- to higher-grade feldspar textures or legacy to earlier D1 and D2 high-temperature 

deformation.  

Mylonite (qtz+fsp+bt+ms+chl) and ultramylonite (qtz+fsp+cal+bt+ ms+chl) from the 

Homestake ridgeline splay of the SLSZ contain quartz grains that are segregated into narrow 

bands of alternating feldspar- and calcite-rich domains. Quartz grain boundaries contain small 

strain free grains with undulose extinction in the interior of grain boundaries that are interpreted 

to record core and mantle structures (BLG, 280-400°C) (Figure 14 D, E). Similar to the Bennett 

ridgeline mylonites, earlier (D1 and D2) high-temperature deformation is recorded by polygonal 

quartz grains that display GBAR. Brittle fractures were observed offsetting large quartz grains 

that displayed high-temperature GBM and are interpreted to be associated with later stage brittle 

deformation (post 1.4 Ga). Feldspars lack evidence for internal deformation (<450°C), with 

quartz deformation indicating temperatures ranging from 300-450°C (Pryer, 1993; Stipp et al., 



42 

2002a). Similar to sillimanite found within the HSZ, sillimanite retrograded to muscovite was 

also found in this splay of SLSZ.  

Slide Lake cirque ultramylonite and mylonite (qtz+fsp+bt+ms+sil) display well-

developed boundaries that record GBM (500-650°C). Phyllosilicates pin quartz grains (Figure 

14F), causing the quartz grain boundaries to have migrated within a fixed area and resulting in 

elongate grain boundaries. The presence of boudinaged sillimanite that is partially retrogressed 

to white mica is indicative of the older D1 fabric that was subsequently deformed in late stage 

~1.4 Ga deformation (Figure 14F). Similar to feldspar grains observed in the Homestake 

ridgeline splay, feldspar grain boundaries in Slide Lake cirque also appeared as rigid (<450°C) 

(Pryer, 1993). 

  In the two upper splays (Bennett and Homestake ridgeline) of the SLSZ, quartz subgrains 

can be used as evidence for shear-band development associated with the mylonitic foliation (Sx). 

Quartz [c] axes LPO data plot in the center of the LPO with <a> axes plotting around the 

primitive circle for SL08-04, representative of the Homestake ridgeline splay (Figure 12C). This 

[c] axis pattern is indicative of plane strain deformation conditions. This LPO pattern also 

suggests rhomb to upper prism <a> slip (~500°C) as the dominant mechanism for deformation, 

corresponding with the upper end of temperature estimates for quartz subgrain development 

(SGR; 400-500°C) and feldspar grain boundary immobility (<450°C) (Pryer, 1993; Stipp et al., 

2002b; Langille et al., 2010a, b). The other quartz [c] axis LPO plot, HS09-42 (Figure 12C), 

representative of the Bennett ridgeline mylonite, displays LPO patterns that occur as two distinct 

groupings of [c] axes data near the middle of the plot, with <a> axes scattered around the outer 

rim. This pattern may suggest upper prism <a> slip (~500°C) in an undefined strain regime, 
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possibly due to multiple phases of activation within the shear zone splay, with one of the [c] axes 

partially overprinting [c] axes from an earlier event. 

  Temperature estimates from deformation mechanisms in both the HSZ and SLSZ are in 

agreement with broad constraints on ca. 1.4 Ga temperatures for the Homestake Valley and 

northern Sawatch Range based on 40Ar/39Ar thermochronology (Shaw et al., 2005). 

 

4.3. Mean kinematic vorticity 

Mean kinematic vorticity (Wm) was used to quantify relative contributions of pure and 

simple shear within the HSZ and SLSZ. This analysis is important as it allowed us to test models 

for the HSZ that invoke a combination of pure and simple shear within a transpressional setting 

(Shaw et al., 2001; Shaw and Allen, 2007) and characterize mylonite development in the SLSZ. 

A large component of pure shear would indicate a greater percentage of shortening across the 

shear zone as compared to flow by simple shear. The kinematic vorticity number (Wk) is a 

measure of the contribution of pure shear (Wk= 0) and simple shear (Wk= 1), where pure and 

simple components are equal at Wk=0.71 (Figure 15A) (Tikoff and Fossen, 1995; Law et al., 

2004). Because vorticity can vary during deformation (non-steady state), we use the mean 

kinematic vorticity number (Wm) to establish a time-averaged deformation history that assumes 

plane strain conditions (Fossen and Tikoff, 1997, 1998; Jiang and Williams, 1998). Plane strain 

is supported by LPO data (also from XZ plane) from samples within both the HSZ and SLSZ. 

Vorticity (i.e. non-coaxiality) is a parameter for characterizing flow paths (Means et al., 1980; 

Robin and Cruden, 1994; Fossen and Tikoff, 1997). In an oblique transpressional setting, where 

fabric may or may not be symmetrical, it is important to note that vorticity, represented by the 

vorticity vector, can change orientation within the shear zone (Robin and Cruden, 1994). To 
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characterize oblique motion with the SLSZ, micro-scale kinematic analysis within the XY plane 

would need to be performed to compliment the analyses in the XZ plane in this study 

(Hudleston, 1999; Giorgis and Tikoff, 2004; Sullivan and Law, 2007). 

  We applied the rigid-grain technique (Passchier, 1987; Wallis, 1995) to estimate mean 

kinematic vorticity within four samples from HSZ and six samples from SLSZ. The rigid grain 

technique involves measuring the rotational component of flow using the aspect ratio of rigid 

porphyroclasts (e.g. feldspar, garnet, hornblende) as well as the angle between the long axis of 

the grain and foliation. We used the Rigid Grain Net (RGN), which plots the aspect ratio (R) or 

shape factor (B*) and the angle (θ) between the long axis of the porphyroclasts with the foliation 

(Figure 15B) on a net (Figure 15 C, D) constructed using a series of semi-hyperbolas (Jessup et 

al., 2007).  

The necessary conditions for this analysis are: (1) fabric is assumed to be deformed by 

homogeneous plane-strain, (2) grain size within the matrix is smaller than the porphyroclasts, (3) 

flow was sufficient for the porphyroclasts to reach stable orientation, (4) measured objects shape 

is regular and near orthorhombic, (5) porphyroclasts within the sample must contain a wide 

range of aspect ratios, (6) porphyroclasts must predate the fabric, and (7) measured grains did not 

interact mechanically (Passchier, 1987; Jessup et al., 2007; Jessup and Cottle, 2010). For a 

specific combination of Wm and B*, porphyroclasts are predicted to rotate to a range of angles 

from the foliation. A transition occurs between two areas on the RGN that is defined by the 

critical aspect ratio (Rc), a unique combination of Wm, B*, and θ. Above the Rc, porphyroclasts 

will have limited rotation due to pure shear limiting rotation, and below this value, 

porphyroclasts have the potential to rotate infinitely. From the Rc values, mean kinematic 

vorticity (Wm) (Wallis et al., 1993): 
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Alternatively, the shape factor (B*) for each grain can be used to estimate Wm, where Mx is the 

long axis and Mn is the short axis as calculated (Passchier, 1987): 
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Results from vorticity analyses were plotted on the RGN, and an upper and lower limit of the Rc 

were used to estimate a range of Wm (Appendix I). Wm values were then plotted to determine 

percent pure and simple shear for each sample (Figure 15A). Vorticity analyses were performed 

using a Nikon DS-Fi with Nikon Imaging Systems – Elements 2.3 software that permits 

measurements to be made on a monitor along with high-resolution image of the thin section. 

  LPO diagrams (Figure 12 B, C) were used to determine if the strain regime was 

appropriate for vorticity analysis using the RGN. Quartz (e.g. Mainprice et al., 1986; Tullis and 

Yund, 1992) [c] and <a> axes patterns were plotted with respect to the lineation and foliation (SA 

in Figure 12A). Quartz [c] axis LPOs for the HSZ reveal plane strain, non-coaxial deformation 

(Figure 12B), and for the SLSZ show patterns for both plane (SL08-04) and potentially non-

plane strain (HS09-42) conditions (Figure 12C). 

 

 

(2) 

(3) 

Wm  = 

B*  = 
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Homestake shear zone  

  Samples HS08-07 and HS08-08 are ultramylonites that contain rigid feldspar 

porphyroclasts in a matrix of dynamically recrystallized quartz, and HS08-10 and HS08-13 are 

mylonitic quartz veins (Table 2; Appendix IV). All samples were collected along a <10-m-thick 

steeply dipping splay of the HSZ (Figure 16A; Table 2). Of the four samples, only two yielded 

reliable vorticity estimates. The ultramylonite yielded mean kinematic vorticity estimates of 0.58 

to 0.68 (51-58% pure shear). Wm estimates for the mylonitic quartz vein ranged from 0.45 to 

0.70 (50-69% pure shear). Quartz LPO patterns (Figure 12B) for HS08-13 show that the 

mylonite accommodated plane strain, supporting vorticity analyses for pure shear estimates in 

the Holy Cross City splay of the HSZ. Steep, oblique stretching lineations in the HSZ suggest 

dextral and vertical movement, which may also suggest a subvertical vorticity vector, parallel to 

the foliation plane and stretching lineation. If this is the case, measurements to quantify flow 

would need to be viewed from the plane normal to the vorticity vector, the XY plane. This 

investigation only extracted data from the XZ plane. 

 

Slide Lake shear zone  

  The moderately dipping samples from the Bennett ridgeline transect (Figure 16B; Table 

3) contain a matrix of dynamically recrystallized quartz, muscovite, and biotite interspersed with 

rigid feldspar porphyroclasts. Samples were interspersed along 0.5- to 1-m-thick mylonite splays 

that span ~60 meters of the northeast ridge of the Slide Lake cirque. In the SLSZ, shallowly 

dipping foliation and shallowly plunging (oblique down-dip) stretching lineations with vertical 

and minor dextral movement display an along-strike vorticity vector, which would suggest that 
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measurements to quantify flow would need to be viewed in the plane normal to the vorticity 

vector, the XZ plane, as all of our samples were collected within this study. Mean kinematic 

vorticity values for these samples range from 0.58 to 0.73 (HS09-44, 0.65-0.73; HS09-45, 0.67-

0.73; HS09-46, 0.63-0.65; HS09-47, 0.58-0.65). These results suggest that the Slide Lake shear 

zone records pure shear (47-59% pure shear), but values are less than those for the HSZ (50-69% 

pure shear).  

  Quartz LPO patterns (Figure 12C) for the Bennett ridgeline splay (HS09-42) display two 

distinct populations of [c] axes, possibly due the sample recording more than one deformational 

event (i.e. partial overprinting of an earlier fabric), which makes interpreting vorticity results 

from that particular sample problematic. Sample SL08-04 (Figure 12C) revealed one distinct [c] 

axis population in the middle of the LPO plot, supporting plane strain conditions in the 

Homestake ridgeline splay. Based on these findings, Wm data implies that the HSZ records a 

higher contribution of pure shear within a plane strain dominated system. 
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Figure 15. (A) Graph showing the relationship between the vorticity number and pure and 
simple shear; values are equal when Wm=0.71. After Law et al. (2004). (B) Photomicrograph 
showing grain axis and angle measurements for vorticity analysis (Mx, long axis; Mn, short axis; 
θ, angle between the long axis and foliation); top-down-to-the-SE; the clast in the lower right is a 
back rotator and will thus have a -θ value (see text for details); plane light. (C) Example RGN 
from HSZ; n = number of grains; B* is the shape factor, y-axis is the angle between the clast 
long axis and the mesoscopic foliation (refer to text). (D) Example RGN for the SLSZ. Dark 
vertical marker lines represent the range in Wm for both (C) and (D). See Appendix I for all 
plots. 
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Figure 16. Deformation temperature and vorticity results from (A) HSZ Holy Cross City transect 
and (B) SLSZ Bennett ridgeline transect. Each rectangle and ellipse represents one sample. Data 
can be found in Appendix I and IV. 
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CHAPTER 5 

DISCUSSION AND IMPLICATIONS 

 

5.1. Comparison of SLSZ and HSZ deformation history and kinematics 

Meso- and microstructural observations of kinematic indicators and fabric relationships 

in HSZ and SLSZ mylonite and ultramylonite demonstrate that mid-crustal Paleo- and 

Mesoproterozoic deformation involved shared structural (e.g. shear sense, lineations, strike) and 

deformational (e.g. pure shear, temperatures, shear sense) components (Table 2; 3). Within the 

HSZ, 1.4 Ga deformation is subdivided into two events that are characterized by an 

anastomosing system of steeply dipping (059, 79°SE) mylonite, ultramylonite, and 

pseudotachylyte that record two stages of movement: (1) D3 is associated with S3 mylonite 

development and a steeply plunging lineation (L3: 73°→ 213) that records dextral, top-down-to-

the-southeast sense of shear and (2) D4 ultramylonite and pseudotachylyte development and a 

steeply plunging lineation (L4: 78° → 120) that records dextral, top-up-to-the-northwest sense of 

shear (Figure 5A). Comparatively, the SLSZ is a shear system composed of at least two low 

angle (Sx: 007, 24°SE) splays with a shallow southeast-plunging lineation (Lx: 009°→ 165) 

(Figure 5B), and one moderate angle (048, 60°SE) mylonite splay with a steeper southeast-

plunging lineation (Lx: 60°→ 121) (Figure 5C). All three splays record dextral, top-down-to-the-

southeast sense of shear and minor dextral, top-up-to-the-northwest sense of shear. Field 

mapping at the northeastern part of Homestake ridgeline (Figure 2) found the upper contact of 

the Homestake ridgeline splay, where the shallowly dipping, north-northeast-striking SLSZ 

foliation (Sx) truncates the steep high-temperature foliation (S2) in the hanging wall. In the 
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Bennett ridgeline splay, the shear zone fabric (Sx) was found to be parallel to the steep, high-

temperature fabric (S2) in the hanging wall and footwall. Consequently, the shear zones splays 

were interpreted (Figure 2, 6, 17; A-1, 2) to represent two different components of the HSZ and 

SLSZ system. The oblique steeply plunging HSZ lineations and oblique shallowly plunging 

SLSZ lineations record right-lateral strike-slip motion that was associated with both the top-

down-to-the-southeast and the top-up-to-the-northwest event, respectively (Figure 17). 

Mesoscale observations are supported by estimates of deformation temperatures using 

quartz and feldspar microstructures, quartz [c] axis LPOs, shear sense, and estimates of mean 

kinematic vorticity. Deformation temperatures derived from quartz and feldspar grain 

boundaries, metamorphic mineral assemblages, and quartz LPO-derived slip systems range from 

280-500°C in the HSZ to 280- >500°C in the SLSZ (Table 2; 3). Temperature estimates in the 

HSZ are similar to Regime 2 (Hirth and Tullis, 1992) (BLG-SGR transition at ~400°C; Stipp et 

al., 2002b) estimates from Shaw et al. (2001) for quartz deformation textures. The overwhelming 

development of quartz subgrains and LPO data from our samples supports a higher temperature 

range (400-500°C). Assuming an average geothermal gradient of ~25°C/km, constant strain rate 

and fluids would imply that deformation occurred at similar mid-crustal positions (~12-24 km). 

47-69% pure shear estimates from representative splays of the HSZ and SLSZ demonstrate that 

components of coaxial  (50-69% in HSZ and 47-59% in SLSZ) as well as non-coaxial (31-50% 

HSZ and 41-53% in SLSZ) strain were associated with deformation at ~1.4 Ga. Quartz LPO 

plots (Figure 12B) (Lister et al., 1978; Law, 1990) indicate that the Holy Cross City 

ultramylonites within the HSZ experienced 50-69% pure shear during plane strain-dominated 

flow associated with top-up-to-the-northwest sense of shear. Quartz [c] axis LPO patterns within 

the SLSZ Homestake ridgeline mylonites (Figure 12C) yield plane strain conditions, whereas [c] 



52 

axes in the Bennett ridgeline splay experienced non-plane strain. Therefore the estimates of Wm 

(47-59% pure shear) from our analyses in a single plane (XZ) are likely to be modestly in 

uncertainty for describing the overall deformation because the lack of a plane strain state may 

lead to overestimates of up to 0.05 (Tikoff and Fossen, 1995); a relatively minor amount when 

compared with the errors associated with the technique (Langille et al, 2010a, b; Jessup and 

Cottle, 2010).  

 

5.2. Relative age of the SLSZ  

 Although it is impossible to directly establish a relative chronology of HSZ/SLSZ 

deformation, the physical proximity, kinematic compatibility, and similarity in deformation 

mechanisms indicate that the two systems formed at similar crustal levels. 40Ar/39Ar data for the 

area (Shaw et al., 2005) suggests that temperatures were 400-550°C at ~1.4 Ga. Monazite ages 

from HSZ mylonite (Shaw et al., 2001; Shaw et al., 2005) and field-derived fabric relationships 

provide a proxy for the age of the onset of mylonite development within the SLSZ to be ~1.4 Ga. 

Monazite ages from both top-down-to-the-southeast mylonite and top-up-to-the-northwest 

ultramylonite within the HSZ are indistinguishable, although morphology and microstructures 

suggest that they were formed either during two separate events (D3/D4) or as phases of a single 

tectonic event involving a reversal of dip-slip shear sense – with the same strike-slip shear (Shaw 

et al., 2001). Because D3 mylonite (top-down-to-the-southeast) and D4 ultramylonite (top-up-to-

the-northwest) development within SLSZ cannot be uniquely related to the D3/D4 (1.42-1.38 Ga) 

chronology and kinematics of the HSZ, we group these into a ~1.4 Ga event based on similarity 

of inferred temperatures and kinematics.
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5.3. Mid-crustal heterogeneity and anisotropy  

1.4 Ga shear zone development and magmatism in intracontinental Laurentia is inferred 

to represent an inboard response to far-field shortening between southern Laurentia and a 

continental landmass farther south (Nyman et al., 1994; Duebendorfer and Christensen, 1995; 

Karlstrom and Humphreys, 1998; Jones et al., 2010a). Thermal structure beneath an orogenic 

plateau (e.g. modern Tibet, Andean Antiplano) at 1.4 Ga may explain magma emplacement near 

the brittle-ductile transition as well as reshuffling of thermally weakened blocks via oblique and 

dip slip motion (Andronicos, et al., 2003; Shaw et al., 2005). In the northern Sawatch Range, 1.4 

Ga mid-crustal deformation is recorded by the shuffling of crustal blocks within the HSZ and 

SLSZ as well as the emplacement of the St. Kevin granite (Figure 18) (Doe and Pearson, 1969; 

Shaw and Allen, 2007). Shear zone development is attributed to a varied ductile-brittle transition 

(12-24-km-depth) that acted as a barrier for magma ascent and accommodated crustal 

oscillations (Shaw et al., 2001; Shaw et al., 2005) caused by gravitationally driven extension and 

tectonic contraction that we relate to top-down-to-the-southeast and top-up-to-the-northwest, 

respectively (Figure 3).  

Anisotropy may have also contributed to shear zone development. Low-angle structures 

similar to the SLSZ have been documented in modern collisional settings where strain is 

partitioned in an unstable middle crust (Yin, 1989; Wernicke, 1992). Studies from the Tibetan 

Plateau show low-angle shear zones that cut across anisotropic structures that developed during 

shortening, suggesting that low-angle structures can develop without preexisting features (Kapp 

et al., 2008) and may provide a modern analog to SLSZ development.
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Figure 18. (Previous page) Geologic cross section of the boxed HSZ and SLSZ in color with 
interpretation in gray scale. (see A-1 for larger version). Red and blue dashed lines represent two 
possible models for 1.4 Ga HSZ and SLSZ interaction. Note position of the St. Kevin granite 
(su) in the lower right. Refer to Figure 3 for mid-crustal position. Explanation of units and 
symbols found in A-1.  
 

5.4. ~1.4 Ga transpression  

 Stretching lineations can be used to determine flow movement, but should be used with 

caution in transpressional (i.e. 3D) systems (Tikoff and Greene, 1997; Tessyier and Tikoff, 

1999). Subvertical stretching lineations will ultimately form in high-strain transpressional shear 

zones that are dominated by pure shear, and have, in many studies, been found to occur with a 

subvertical foliation (e.g. Hudleston, 1999; Robin and Cruden, 1994; Tikoff and Greene, 1997; 

Tessyier and Tikoff, 1999). The oblique stretching lineations occur as steeply plunging (HSZ: L3, 

73° → 213, top-down-to-the-southeast shear sense; L4, 78° → 120, top-up-to-the-northwest 

shear sense) and shallowly plunging (SLSZ: Lx, 9° → 165, top-down-to-the-southeast and top-

up-to-the-northwest shear sense) (Figure 17; 19). Variation in the orientation of stretching 

lineations across two shear zones (Figure 19) has been documented in other transpressional 

models (Tikoff and Greene, 1997) where fabric symmetry has been attributed to cause the 

differences in the plunge of lineations and vorticity across a shear system (Lister and Williams, 

1983; Robin and Cruden, 1999).
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 Based on relative timing constraints, we are unable to determine whether or not the HSZ 

and the SLSZ were active during the same transpressional event. Kinematic investigations 

presented herein have defined the meso- and microstructural components of the SLSZ and HSZ 

(Figure 17; 19), independent of timing. Vorticity and shear sense analyses (Figure 19A) from the 

Bennett ridgeline splay of the SLSZ and Holy Cross City splay of the HSZ suggest one possible 

model for similar contributions (50-69% in HSZ; 47-59% in SLSZ) of pure shear associated with 

two types of shear zone movement: 1) top-down-to-the-southeast, dextral general shear (Figure 

19B) and 2) top-up-to-the-northwest, dextral general shear (Figure 19C) at similar mid-crustal 

positions (12-24 km) (Figure 19). Our model supports suggestions by other workers that 

instability in the middle crust influenced the development of discrete shear zones at around 1.4 

Ga and may be associated with transpression (e.g. Nyman et al., 1994; Duebendorfer and 

Christensen, 1995; Shaw et al., 2001; McCoy et al., 2005, Shaw et al., 2005).   

 

5.5. Implications 

 SLSZ is a low-to-moderate-angled structure that accommodated normal (top-down-to-

the-southeast), reverse (top-up-to-the-northwest), and dextral movement. This study documents 

the north-northeast-striking SLSZ as sharing similar deformational styles as the subvertical, 

northeast-striking HSZ. Mylonite and ultramylonite from both shear zones record top-down-to-

the-southeast, top-up-to-the-northwest, and dextral movement at similar mid-crustal ductile 

deformation temperatures (HSZ: ~280-500°C; SLSZ ~280-600°C) and Wm values (47-69% pure 

shear) in both plane and non-plane strain conditions. General shear deformation occurred along 

discrete mylonite and ultramylonite bands in both the shallow SLSZ and steep HSZ that suggests 

mid-crustal heterogeneity, possibly influenced by anisotropic D1/D2 foliation, may have 
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partitioned transpression into the ~1.4 Ga shear zones of central Colorado. This data contributes 

towards previous work (McCoy et al., 2005; Shaw et al., 2005) performed on shear zones within 

on the Colorado mineral belt that suggests Mesoproterozoic deformation was associated with the 

transpressional reshuffling of blocks to accommodate far-field deformation along the evolving 

margin of Laurentia.  
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