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Abstract

The formal derivation of the linear response of time-dependent density-functional

theory as shown by E. K. U. Gross is presented. The transformation of formal theory

to the working linear response equations in the form of Casida’s eigenvalue equation is

demonstrated, and the results are applied to small monatomic, diatomic and triatomic

systems. The application of different operators to the perturbed density is discussed,

with the most attention being given to the dynamic polarizabilities. The dynamic

polarizabilities and excitation spectra for N2 [nitrogen gas] are then analyzed. The

first excitation energy is noted to be in line with Koopmans’ theorem. Finally

three orbital localization algorithms and their implementation are detailed, with

comparisons between the one-sided and two-sided Jacobi implementations present.

The performance of a serial and then a parallel algorithm are shown. The poor

performance of parallel algorithm is explained.
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Introduction

The overarching theme of this document is evident as the basics of linear response

under the umbrella of time-dependent density-functional theory. However, this work

is simply the beginning, not the end. The machinery of linear response developed here

is the necessary link between current work and the desired goal of calculating forces on

excited states. Forces of the excited states will allow access to the calculation of the

excited state geometries as well as measurable properties of these excited states. These

lofty goals require a firm grounding, and since this grounding is in time-dependent

density-functional theory, that is where attention was initially focused.

By its very nature, the time-independent Schrödinger equation is not analytically

solvable for molecular systems due to many-body effects such as electron-electron

correlation. This led to the development of numerous approximations in order

to solve the Schrödinger equation, including Hartree-Fock [1] theory and Density-

Functional theory [2]. Hartree-Fock theory reduces the many-body problem into

a single-body problem in which a particle interacts with an averaged field that is

created by the remaining particles. However Hartree-Fock theory does not include

electron correlation by construction, which leads to poor results for strongly correlated

systems. Electron correlation is the long range interaction in which every electron

instantaneously feels the exact potential from every other electron present in the

system, which will be different from the mean field experienced in Hartree-Fock.

Extensions to Hartree-Fock theory have been made to include aspects missed in

the original theory, including Møller-Plesset perturbation theory [3] or configuration
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interaction methods [4] or, if your system is small enough, coupled cluster methods

[5].

Density-Functional theory (DFT) takes a different approach to electronic structure.

DFT focuses on the electronic density as the fundamental quantity as opposed to the

wavefunction. By focusing on the density, DFT reduces the 4n degrees of freedom

(three spatial variables and a spin variable) of an n electron system to the four

degrees of freedom needed to specify the spin-density [6]. DFT also explicitly includes

electron-electron correlation through its use of the exchange-correlation potential.

The exchange-correlation potential is a mysterious and unknown functional of the

electronic density that, if known exactly, would allow for exact results to be obtained

through the use of DFT. DFT relies on the two Hohenberg-Kohn theorems [2] and

the Kohn-Sham formula to arrive at a working set of equations.

DFT is strictly for ground state properties. In order to extend DFT to an excited

state, the time-dependent Schrödinger equation must be solved. Doing so using

DFT will yield the time-dependent density-functional theory equations (TD-DFT).

TD-DFT has its own version of the Hohenberg-Kohn theorems that rigorously

prove its validity. These theorems are detailed in subsequent chapters, and their

implementation in another. The results are detailed and discussed in yet another

chapter.

The final chapter explores the separate but related issue of orbital localization and

the parallelization of the localization algorithms. SCF methods generate delocalized

molecular orbitals that can be spread over an entire molecule, which is a non-

physical distribution. Physically molecular orbitals are atom centered, and spatially

spanning only a small number of near neighbor atomic centers. To turn a delocalized

orbital spread throughout the molecule into an atom centered, spatially concentrated

and hence physically relevant molecular orbital an orbital localization algorithm

must be used. The common localization algorithms are discussed, along with their

implementation. The implementation is derived from the Jacobi plane rotation

eigenvalue algorithm, which is also discussed. The creation of a parallel code is then

2



explored, with communication patterns among processors and the difficulties therein

commanding most of the attention.
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Chapter 1

Time Dependent

Density-Functional Theory

Time-dependent density functional theory is a many-body approach to evolve a

wavefunction in time based only on the electronic particle density. There are two

main components to the theory: the first is the Runge-Gross Theorem [7], which

establishes for a fixed initial state a one-to-one mapping between the density and

the external potential. A large consequence of this is that physical observables can

be written as functionals of this density [8]. The second component is the Kohn-

Sham formalism that is also present in the ground state theory. The Kohn-Sham

formalism states that the density of an interacting system of electrons can be found

from a similar but non-interacting system in which the particles interact only with

an effective local multiplicative single-particle potential.

1.1 The Runge-Gross Theorem

Time-dependent density functional theory is directly related to the time-dependent

Schrödinger equation

i
∂

∂t
Ψ(t) = Ĥ(t)Ψ(t) (1.1)
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where Ψ(t) has an fixed, arbitrary initial condition Ψ(t0) = Ψ0. The Hamiltonian is

known to be

Ĥ(t) = T̂ + V̂ee(t) + V̂ext(t). (1.2)

These operators describe the interactions of electrons. The operator T̂ is simply the

kinetic energy operator

T̂ =
N∑
j=1

−
∇2
j

2
. (1.3)

The operator V̂ee is the Coulomb operator

V̂ee(t) =
1

2

N∑
i 6=j

1

|ri − rj|
. (1.4)

The V̂ext operator is the external potential operator and for this discussion will always

be of the form

V̂ext(t) =
N∑
i=1

v(ri, t). (1.5)

The functions V̂ext(t) will be assumed to be Taylor expandable around initial time t0.

If the external potential is thus constructed then the theorem of Runge and Gross [7]

is applicable:

Two solutions Ψ(t) and Ψ′(t) of the Schrödinger equation which evolve from a fixed

common initial state Ψ0 under the influence of the potentials v(r, t) and v′(r, t),

respectively, always lead to different electron densities ρ(r, t) and ρ′(r, t), provided

the two potentials v(r, t) and v′(r, t) differ by more than a purely time-dependent

function, i.e.

v′(r, t) 6= v(r, t) + c(t) (1.6)

The proof of this theorem is accomplished in two steps. The first step demonstrates a

one-to-one correspondence between an external potential and a current density while

the second step demonstrates a one-to-one correspondence between a current density
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and an electronic density. Modus ponens then produces the desired result of a one-

to-one correspondence between an external potential and an electronic density.

The first step is accomplished by considering the two potentials defined above, v(r, t)

and v′(r, t), which differ by more than a time-dependent function [9]. Because both

of these potentials can be expanded in a Taylor series about t0, there exists some

non-negative integer k such that

∂k

∂tk
[v(r, t)− v′(r, t)]

∣∣∣∣
t=t0

6= constant. (1.7)

Now consider the current densities arising from each potential. The current density

j(r, t) is given by

j(r, t) = N

∫
d3r2 . . .

∫
d3 rN Im(Ψ(r, r2, . . . , rN, t)∇Ψ∗(r, r2, . . . , rN, t)). (1.8)

The system corresponding to each potential differs from the other only in their single-

body potential, and hence the equation of motion for the difference of the two current

densities is

∂

∂t
{j(r, t)− j′(r, t)}t=0 = −i

〈
Ψ0

∣∣∣[̂j(r, t),{Ĥ(0)− Ĥ ′(0)
}]∣∣∣Ψ0

〉
= −i

〈
Ψ0

∣∣∣[̂j(r, t), {v(r, 0)− v′(r, 0)}
]∣∣∣Ψ0

〉
= −n(r, 0)∇{v(r, 0)− v′(r, 0)} (1.9)

where n(r, 0) is the initial electronic density. Thus it is shown that if at time t0 the

potentials differ by more than just a constant, then the first derivative of each of

the currents must differ. This will cause the currents to differ at some time t > t0.

A similar approach to all subsequent derivatives is possible, yielding the following

relation

∂k+1

∂tk+1
{j (r, t)− j′(r, t)}t=0 = −n(r, 0)∇ ∂k

∂tk
{v(r, t)− v′(r, t)}t=0 . (1.10)
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Since equation (1.7) is valid and the potentials are both able to be Taylor expanded

about t0, then there exists a positive integer k such that the right hand side of (1.9)

does not equal zero, i.e.

j(r, t) 6= j′(r, t). (1.11)

The above establishes a one-to-one correspondence between potentials and current

densities. The final step is to show the one-to-one correspondence between current

densities and electronic densities. To make this connection, take the gradient of

equation (1.10), along with the continuity of the Schrödinger equation, which gives

∂k+2

∂tk+2
{n (r, t)− n′(r, t)}t=0 = ∇ ·

[
−n(r, 0)∇ ∂k

∂tk
{v(r, t)− v′(r, t)}t=0

]
. (1.12)

The last step is to prove the right hand side of (1.12) is non-zero for some k, which

would mean that the density difference is non-zero. The proof is accomplished through

contradiction. Let f(r) = ∂k

∂tk
{vext(r, t)− v′ext(r, t)}|t=0. Now consider

∫
d3r f(r)∇ · [n0(r)∇f(r)] =

∫
d3r
{
∇ · [f(r)n0(r)∇f(r)]− n0(r) |∇f(r)|2

}
. (1.13)

The first term on the right hand side is recognizable as a surface integral at r = ∞.

This surface integral decays rapidly enough for realistic potentials, that is at least as

fast as −1/r, such that it can be concluded that the integral vanishes. The second

term in equation (1.13) will be less than zero, which causes the left hand side of to

be non-zero somewhere. If ∇f(r) is non-zero somewhere, then it is impossible for

∇(n0∇f(r) to vanish everywhere. Therefor the densities n(r, t) and n′(r, t) differ

in at least one term in their Taylor series, and as such differ by more than a time

dependent phase factor. This completes the proof.

The wavefunction can be written as a functional of the density, which means

Ψ(t) = e−iα(t)Ψ̃ [ρ] (t) (1.14)
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and that observables will take the form

O [ρ] (t) =
〈

Ψ̃ [ρ] (t)
∣∣∣Ô(t)

∣∣∣ Ψ̃ [ρ] (t)
〉

(1.15)

taking note that the phase factor cancels.

1.2 The Time-Dependent Kohn-Sham Equation

The Runge-Gross theorem is valid for an arbitrary time-dependent potential, even

for the potential V̂ (t) = 0. This allows for the comparison between the physical,

interacting system and the fictitious non-interacting system of particles with equal

time-dependent densities. That is, consider a system with interacting particles and

a time dependent density ρ(r, t) and a system with non-interacting particles but

the same time dependent density ρ(r, t). The one-to-one mapping between densities

and potentials guarantees a unique local effective potential vKS[ρ](r, t) for the non-

interacting system which generates the same density as the interacting system. The

existence of this v -representable potential was not included in the Runge and Gross

paper, but was later proved by van Leeuwen [8].

The time-dependent KS equation, as defined in [9], has the form

i
∂ϕj(r, t)

∂t
=

[
−∇

2

2
+ vKS[n](r, t)

]
ϕj(r, t) (1.16)

where n(r, t) is the density of both the fictitious system and and the physical system

and is

n(r, t) =
N∑
j=1

|ϕj(r, t)|2 . (1.17)

Because of the proof above, the potential vKS(r, t) is uniquely determined from this

density. It can then be defined as

vKS = vext(r, t) + vH(r, t) + fxc(r, t). (1.18)

8



Here vH(r, t) is the time-dependent Hartree potential

vH [ρ] (r, t) =

∫
ρ(r′, t)

|r− r′|
(1.19)

and fxc(r, t) is the exchange-correlation kernel. Just like the exchange-correlation

potential in ground state DFT, the exchange-correlation kernel is unknown, and

in the limit that it becomes exactly known, the TDDFT equation will yield exact

results. Unlike the exchange-correlation potential in ground state DFT the exchange-

correlation kernel is a function of the entire history of the density, along with both

the initial wavefunction Ψ(0) and the initial KS wavefunction Φ(0).

1.3 Linear Response Formalism

Even with the improved locality of the time-dependent density-functional theory over

other theories such as time-dependent Hartree-Fock or configuration interaction, full

solutions to the time-dependent Kohn-Sham equation can be expensive to calculate

for even moderately sized systems. To alleviate this cost the linear response of the

system can be taken as a first approximation to the full solution. Linear response

also possesses the allure of producing exact excitation energies [10], in the limit of

the exact exchange-correlation kernel. Properties that are formally the derivative of

the energy with respect to a perturbation can be calculated within the framework

of linear response theory. Calculating the linear response can be accomplished using

perturbation theory. Following the work of [11], this can be shown as follows.

Consider a small perturbation v1(r, t) turned on at time t0. The system will respond

to this perturbation, and the response can be written as a Taylor series

ρ(r, t)− ρ0(r, t) = ρ1(r, t) + ρ2(r, t) + ρ3(r, t) + · · · (1.20)

9



where the subscripts indicate the order of the external perturbation and ρ0(r, t) is the

ground-state density of the unperturbed system. Then the first order response can

be written as

ρ1(r, t) =

∫ ∫
χ(r, t, r′, t)v1(r

′, t)d3r′dt (1.21)

where χ is the density response of the interacting system

χ(r, t, r′, t′) =
δρ [vext] (r, t)

δvext(r′, t)

∣∣∣∣
v0

. (1.22)

Applying the chain rule for the functional gives

χ(r, t, r′, t′) =

∫ ∫
δρ(r, t)

δvKS(y, τ)

δvKS(y, τ)

δvext(r′, t′)

∣∣∣∣
v0

d3ydτ. (1.23)

Next, take the functional derivative of equation (1.18) with respect to the external

potential

δvKS(r, t)

δvext(r′, t′)
= δ(r− r′)δ(t− t′) +

∫ ∫ (
δ(t− τ)

|r− y|
+
δvxc(r, t)

δρ(y, τ)

)
δρ(y, τ)

δvext(r′, t′)
d3ydτ.

(1.24)

Inserting equation (1.24) into equation (1.23) gives

χ(r, t, r′, t′) = χKS(r, t, r′, t′) +

∫
d3y

∫
dτ

∫
d3y′

∫
dτ ′χKS(r, t, r′, t′)

×
(
δ(τ − τ ′)
|y − y′|

+ fxc[ρ0](y, τ,y
′, τ ′)

)
χ(y′, τ ′, r′, t′)

(1.25)

where χKS(r, t, r′, t) is the Kohn-Sham response function

χKS(r, t, r′, t) :=
δρ[vKS](r, t)

δvKS(r′, t′)

∣∣∣∣
vKS[ρ0]

(1.26)
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and fxc[ρ0](r, t, r
′, t′) is the exchange-correlation kernal

fxc[ρ0](r, t, r
′, t′) :=

δvxc[ρ](r, t)

δρ(r′, t′)

∣∣∣∣
ρ0

. (1.27)

Equation (1.25) is the key equation in time-dependent density-functional theory, as

it relates the fictitious non-interacting system to the physically relevant interacting

system. If you insert equation (1.25) into equation (1.21) then the linear response of

the density can be equated as

ρ1(r, t) =

∫ ∫
χKS(r, t, r′, t])vKS,1(r′, t)d3r′dt′ (1.28)

where the effective potential

vKS,1(r′, t) = v1(r, t) +

∫
ρ1(r

′, t)

|r− r′|
d3r′ +

∫ ∫
fxc[ρ0](r, t, r

′, t′)ρ1(r;, t)d
3r′dt′ (1.29)

holds the external perturbation v1(r, t), the Hartree Coulomb potential and the

unknown exchange-correlation potential.

To this point all work has been done in real-space. It is advantageous to consider

the same equations in frequency space, especially for calculating properties such as

polarizabilities or excitation energies. To transition into frequency space, a Fourier

transform of equations (1.28) and (1.29) must be performed, yielding the frequency-

dependent linear response equation

ρ1(r, ω) =

∫
χKS(r,y;ω)v1(y, ω)d3y (1.30)

+

∫ ∫
χKS(r,y;ω)

(
1

|y − y′|
+ fxc[ρ0](y,y

′;ω)

)
ρ1(y

′, ω)d3y d3y′.

11



The frequency-dependent Kohn-Sham response function χKS can also be expressed

in terms of its sum over states form, which is

χKS(r, r′;ω) =
∑
j,k

(fk − fj)
ψj(r)ψ

∗
k(r)ψ

∗
k(r)ψj(r

′)

ω − (εj − εk) + iη
(1.31)

where fk is the occupation number of groundstate Kohn-Sham orbital ψk(r) with

orbital energy εk. Inspection of the sum over states formula shows that as ω → (εj−εk)

(i.e. the exact excitation energy) the right hand side will approach a pole.

1.4 Matrix Formulation of the Response Equa-

tions

Following the work of Casida [12] equation (1.31) can be transformed into a matrix

representation. To see this, expand equation (1.31) as

χKS(r, r′;ω) =
∑
j,k

(fk − fj)
ψj(r)ψk(r

′)ψ∗k(r)ψ
∗
j (r
′)

ω − (εj − εk) + iη

=
N∑
k=1

∞∑
j=1

ψj(r)ψk(r
′)ψ∗k(r)ψ

∗
j (r
′)

ω − (εj − εk)
−

N∑
k=1

∞∑
j=1

ψk(r)ψj(r
′)ψ∗j (r)ψ

∗
k(r
′)

ω + (εj − εk)

=
∑
i,a

(
ψa(r)ψi(r

′)ψ∗i (r)ψ
∗
a(r
′)

ω − (εa − εi)
− ψi(r)ψa(r

′)ψ∗a(r)ψi(r
′)

ω + (εa − εi)

)
(1.32)

where the subscript i takes values 1 through N , representing the occupied orbitals,

and a takes values N + 1 through ∞, representing the virtual orbitals of a complete

basis set. Now let

Pai(ω) =

∫
ψi(r

′)ψ∗a(r
′)vKS,1(r′, ω)d3r′

ω − (εa − εi)
(1.33)

and

Pia(ω) =

∫
ψa(r

′)ψ∗i (r
′)vKS,1(r′, ω)d3r′

−(ω + (εa − εi))
(1.34)
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then the linear density response can be shown to be

ρ1(r, ω) =
∑
i,a

ψa(r)ψ
∗
i (r)Pai(ω) + ψi(r)ψ

∗
a(r)Pia(ω). (1.35)

A small rearrangement of equations (1.33) and (1.34) gives

(ω − (εa − εi))Pai(ω) =

∫
ψi(r

′)ψ∗a(r
′)vKS,1(r′, ω)d3r′ (1.36)

and

(ω + (εa − εi))Pia(ω) = −
∫
ψa(r

′)ψ∗i (r
′)vKS,1(r′, ω)d3r′. (1.37)

Letting the Hartree and exchange-correlation potentials be written as

fHxc(r, r
′, ω) =

1

|r− r′|
+ fxc(r, r

′, ω) (1.38)

then matrix elements vai(ω) can be defined as

vai(ω) :=

∫
ψi(r)v1(r, ω)ψ∗a(r)d

3r (1.39)

and

Kkl,mn(ω) =

∫ ∫
ψk(r)ψ

∗
l (r)fHxc(r, r

′, ω)ψm(r′)ψ∗n(r′)d3rd3r′. (1.40)

These, along with equations (1.35) and (1.36) gives the matrix form of the frequency

dependent linear response of the density as

(ω − (εa − εi))Pai(ω) = vai(ω) +
∑
j,b

(Pbj(ω)Kai,bj(ω) + Pjb(ω)Kai,bj(ω)) (1.41)

which is equivalent to

∑
j,b

{[δijδab(εa − εi − ω) +Kai,bj(ω)]Pbj(ω) +Kai,bj(ω)Pjb(ω)} = −vai(ω). (1.42)
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Using equation (1.37) instead of equation (1.36) will give

∑
j,b

{[δijδab(εa − εi + ω) +Kai,jb(ω)]Pjb(ω) +Kai,bj(ω)Pbj(ω)} = −via(ω). (1.43)

Defining

Xjb(ω) = Pjb(ω) (1.44)

Yjb(ω) = Pbj(ω) (1.45)

Aia,jb(ω) = δijδab(εa − εi) +Kai,jb(ω) (1.46)

Bia,jb(ω) = Kia,bj(ω) (1.47)

Qia(ω) = −vai(ω) (1.48)

Ria(ω) = −via(ω) (1.49)

allows the construction of a very compact notation of equations (1.42) and (1.43) in

matrix form  A(ω) B(ω)

B∗(ω) A∗(ω)

− ω
−1 0

0 1

X(ω)

Y (ω)

 =

Q(ω)

R(ω)

 . (1.50)

If the orbitals are real valued and fxc is independent of the incident frequency, then

equation (1.50) can be turned into a pseudo-eigenvalue problem. To see this, first

take the sum and difference respectively of each of the equations presented in (1.50).

Doing so gives

(A+B)(Y +X)q = Ωq(Y −X)q (1.51)

(A−B)(Y −X)q = Ωq(Y +X)q (1.52)

where the q index indicates which eigenvector is being considered. Solving equation

(1.52) for (X − Y )q and putting that into equation (1.51) gives

(A−B)(A+B)(X + Y )q = Ω2
q(X + Y )q. (1.53)
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Since the matrix (A−B) has only positive values on its diagonal it is positive definite

which means (1.53) can be written as

(A−B)1/2(A+B)(A−B)1/2(A−B)−1/2(X +Y )q = Ω2
q(A−B)−1/2(X +Y )q (1.54)

which is usually denoted as

WFq = Ω2
qFq (1.55)

where

Fq = (A−B)−1/2(X + Y )q (1.56)

and

W = (A−B)1/2(A+B)(A−B)1/2. (1.57)

As noted by Casida [12] the eigenvalues of W are going to be the squares of the

excitation energies. The value of the matrix B in equation (1.50) gives rise to different

approximations that all fit within this linear response framework. If B = 0, then the

Tamm-Dancoff approximation [13] is being employed and the matrix equation reduces

to the simpler Configuration-Interaction (singles) equation of

AX = ωX (1.58)

where A and X have the same definitions as above. If the potential fHxc in (1.40)

contains only an exchange term and no electron correlation, then these equations are

better known as Random Phase Approximation (RPA) equations.
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Chapter 2

Generality of Response Theory and

Implementation

Response theory is limited to the calculation of properties that can be formally

written as a derivative of the ground state energy with respect to a parameter λ

[14]. Fortunately there are many forms of λ leading to many different interesting

properties that may be calculated. The focus of this work is on the polarizability,

and by extension the excitation energies, of molecules. Other well known properties

such as NMR shielding tensors or magnetizabilities can also be derived from response

theory.

2.1 Generality

Following the discussion of Autschbach and Ziegler [14], consider property B of a

molecule. The expectation value is then written as

B0 =
〈

Ψ0

∣∣∣B̂∣∣∣Ψ0

〉
(2.1)

where B̂ is the expected notation of the operator for the observable B and subscripts of

0 refer to the ground state. The expectation value of 〈B〉 and the physical property
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will share the same notation of B for simplicity. Note that because the physical

properties are derivatives of the energy of the molecule with respect to an external

perturbation λ what is actually being calculated is

B0 = E
(1)
0 =

∂E0

∂λ

∣∣∣∣
λ=0

=
〈

Ψ0

∣∣∣Ĥ(1)
∣∣∣Ψ0

〉
. (2.2)

This relation makes use of the Hellmann-Feynman theorem to remove the terms

containing derivatives of the wavefunction [15]. Comparison of equation (2.1) with

(2.2) gives the relation B̂ = Ĥ(1). The properties of interest, such as the transition

energies, are actually derivatives ofB with respect to the perturbation. Differentiation

of equation (2.2) with respect to the perturbation gives

B(1) =
∂B

∂λ

∣∣∣∣
λ=0

= E(2) =
∂2E

∂λ2

∣∣∣∣
λ=0

=
〈

Ψ0

∣∣∣Ĥ(1)
∣∣∣Ψ(1)

0

〉
+
〈

Ψ
(1)
0

∣∣∣Ĥ(1)
∣∣∣Ψ0

〉
+
〈

Ψ0

∣∣∣Ĥ(2)
∣∣∣Ψ0

〉
=
〈

Ψ0

∣∣∣B̂∣∣∣Ψ(1)
0

〉
+
〈

Ψ
(1)
0

∣∣∣B̂∣∣∣Ψ0

〉
+
〈

Ψ0

∣∣∣B̂(1)
∣∣∣Ψ0

〉
. (2.3)

Similarly if one wished to consider two different perturbations λ1 and λ2 simultane-

ously, then the energy in a ”perturbative series expansion” as created in [16] is

E = E(0,0) + E(1,0)λ1 + E(0,1)λ2 + E(1,1)λ1λ2 + E(2,0)λ21 + · · · . (2.4)

Then differentiation of (2.4) with respect to both parameters gives

B(0,1) =
∂B

∂λ2

∣∣∣∣
λ2=0

= E(1,1) =
∂2E

∂λ1λ2

∣∣∣∣
λ1=0,λ2=0

=
〈

Ψ
(0,0)
0

∣∣∣Ĥ(1,0)
∣∣∣Ψ(0,1)

0

〉
+
〈

Ψ
(0,1)
0

∣∣∣Ĥ(1,0)
∣∣∣Ψ(0,0)

0

〉
+
〈

Ψ
(0,0)
0

∣∣∣Ĥ(1,1)
∣∣∣Ψ(0,0)

0

〉
=
〈

Ψ
(0,0)
0

∣∣∣B̂(0,0)
∣∣∣Ψ(0,1)

0

〉
+
〈

Ψ
(0,1)
0

∣∣∣B̂(0,0)
∣∣∣Ψ(0,0)

0

〉
+
〈

Ψ
(0,0)
0

∣∣∣B̂(0,1)
∣∣∣Ψ(0,0)

0

〉
(2.5)

It is this response property B(1) or B(0,1) that is the main point of interest. There

are two classifications of response properties: static and dynamic. Dynamic response
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properties are those that depend on a time-dependent perturbation. Static response

properties are those that arise from time-independent perturbations. Static properties

can be viewed as a limiting case of the dynamic response when the frequency of the

perturbing potential is reduced to zero (ω → 0). For some applications, the term

containing B(0,1) is negligibly small or even non-existent [14]. In cases where this

is not applicable, such as when investigating the NMR shielding tensor, the term is

easy to compute since it is only the expectation value of the known reference state

wavefunction. The method for determining B(1) has been presented previously, with

the ultimate equation being (1.50).

2.2 Static Properties

An examples of a static property is the nuclear magnetic resonance (NMR) shielding

tensor. This can be seen by first considering the classical interaction between a nuclear

magnetic moment and an external magnetic field B which is known to be

E = −µA ·B (2.6)

where µA is the spin magnetic moment of the respective nucleus. Atoms and molecules

in experiments exhibit different behavior as the electrons shield the nucleus from the

full effects of the field B, or more precisely

E = −µA · (1− σ)B (2.7)

with σ representing the nuclear shielding tensor for nucleus A in the given chemical

environment. This tensor is more formally defined as

σA =
∂2E

∂B∂µA

∣∣∣∣
B=0,µA=0

(2.8)
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which fits the form of (2.5), and thus can be calculated using Response Theory. As

stated above, for this property the diamagnetic term
〈

Ψ
(0,0)
0

∣∣∣B̂(0,1)
∣∣∣Ψ(0,0)

0

〉
is not

negligible and must be explicitly included.

2.3 Dynamic Properties

A prime example of a dynamic response property is the polarizability, which relates

the perturbation of a molecule’s electron cloud by an applied external electric field

E. This relation is

D(1) = αE (2.9)

where α is the polarizability tensor and D(1) is the derivative of the molecular dipole

with respect to the electric field E. The dipole is itself the first-order energy change

of a molecule in response to a perturbing electric field

D =
∂E

∂E

∣∣∣∣
E=0

. (2.10)

This means that the polarizability tensor α can be written as

α = − ∂2E

∂E∂E′

∣∣∣∣
E=E′=0

(2.11)

Polarizabilities are intricately related to excitation energies. Excitation energies are

located at the poles of the polarizability tensor, and the solution to Casida’s eigenvalue

problem yields these excitation energies. To determine the polarizabilities from these

energies, the relationship derived by Kauzmann [17] is relevant

α(ω) =
2

3

∑
j

(Ej − E0)
∣∣∣〈Ψ0

∣∣∣D̂∣∣∣Ψj

〉∣∣∣2
(Ej − E0)2 − ω2

=
∑
j

f0j
(Ej − E0)2 − ω2

(2.12)
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where the spectroscopic oscillator strengths f0j are

f0j =
2

3
(Ej − E0)

∣∣∣〈Ψ0

∣∣∣D̂∣∣∣Ψj

〉∣∣∣2 (2.13)

with D̂ being the transition dipole moment operator and (Ej−E0) being the vertical

electronic transition energy from state 0→ j. The spectroscopic oscillator strengths

observe the Thomas-Reiche-Kuhn (TRK) rule of

∑
j 6=0

f0j = N (2.14)

where N is the number of electrons.

2.4 Implementation

The solution to Casida’s eigenvalue problem was implemented in a C++ programming

language environment through heavy use of the C++ interface of the Intel Math

Kernel Library (MKL). The implementation was constructed serially, however the

MKL is a multi-threaded library. This allows for some small measure of parallelism

to be exhibited at run time. No quadrature routines were created in this project,

instead the quadrature of NWChem [18] was used to evaluate the required integrals

and then fed into this implementation. Only light atoms and small diatomic or

triatomic molecules were considered.

The ground state energy and wavefunction of an optimized geometry were first

determined using the variational Hartree-Fock method with the overlap, kinetic,

and potential energy integrals needed being evaluated in NWChem. Diagonalization

of the overlap matrix was done using the symmetric eigensolver of the MKL and

all matrix multiplications were accomplished using the MKL version of LAPACK’s

famous dgemm function. Diagonalization of the Fock matrix was accomplished using

the general eigensolver of the MKL.
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From there, along with molecular dipole integrals of this ground state which

were also evaluated in NWChem, the transition energies and perturbed electronic

density were determined according to Casida’s equations. The transformation of the

dipole molecular integrals from the atomic basis set to the molecular basis set was

accomplished using the four quarter transformation algorithm developed by Elbert

[19]. With these quantities the perturbed electronic density and transition energies

were calculated. From the transition energies and perturbed density, the dynamic

polarizability was found.
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Chapter 3

Results

The results of solving Casida’s eigenvalue problem are the square of the transition

energies as the eigenvalues and the perturbed electronic density as the eigenvectors.

From these quantities numerous properties of chemical significance can be derived,

as shown above. To demonstrate the functionality of the TDDFT response code,

the dynamic polarizability was calculated in addition to the transition energies and

oscillator strengths. Here the results of such a calculation on the molecule N2 are

shared.

3.1 SCF Energy

The solutions to the TDDFT equations are sensitive to the ground state energy,

as the excited state determination is only relative to the ground state [20]. For this

reason, it is worth while to the examine the ground state energies obtained through an

SCF procedure. The ground state energies of various small molecules were calculated

using the Hartree-Fock method, with integral values being generated by the NWChem

software package. Close agreement between NWChem’s calculated orbital energies

and the TDDFT program’s orbital energies is evident with inspection. Differences

between NWChem and the TDDFT response code were less than milli-Hartree in
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nearly all cases. Appendix A contains the results for the other small molecules that

were investigated.
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Table 3.1: SCF energy of N2

SCF Energy of N2

Basis: 6-31G

Orbital Energy (a.u.)

NWChem Mine |∆|

1 -15.7156 -15.7157 0.0001

2 -15.7120 -15.7121 0.0001

3 -1.5338 -1.5338 0.0000

4 -0.7721 -0.7721 0.0000

5 -0.6304 -0.6304 0.0000

6 -0.6259 -0.6259 0.0000

7 -0.6259 -0.6259 0.0000

8 0.1556 0.1556 0.0000

9 0.1556 0.1556 0.0000

10 0.5929 0.5926 0.0003

11 0.7823 0.7823 0.0000

12 0.8456 0.8455 0.0001

13 0.8456 0.8455 0.0001

14 0.9453 0.9454 0.0001

15 1.0126 1.0126 0.0000

16 1.0126 1.0126 0.0000

17 1.1667 1.1666 0.0001

18 1.5860 1.5856 0.0004
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3.2 Response Theory

The following transition energies and oscillator strengths were obtained through the

use of the TDDFT linear response code. These values were compared with the

transition energies and oscillator strengths of NWChem’s linear response module.

Table 3.2: Transition energies and oscillator strengths of N2

Transition Energies of N2

Basis: 6-31G, Hfexch

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

1 0.2882 0.2882 0.0000 0.0000 0.0000 0.0000

2 0.3259 0.3259 0.0000 0.0000 0.0000 0.0000

3 0.3259 0.3259 0.0000 0.0000 0.0000 0.0000

4 0.3448 0.3448 0.0000 0.0000 0.0000 0.0000

5 0.3448 0.3448 0.0000 0.0000 0.0000 0.0000

6 0.5705 0.5704 0.0000 0.2847 0.2847 0.0000

7 0.5705 0.5704 0.0000 0.2847 0.2847 0.0000

8 0.5860 0.5860 0.0000 0.8648 0.8644 0.0004

9 0.8778 0.8775 0.0003 1.3516 1.3518 0.0002

10 0.8787 0.8784 0.0003 0.0000 0.0000 0.0000

11 0.8787 0.8784 0.0003 0.0000 0.0000 0.0000

12 1.0010 1.0008 0.0002 0.0000 0.0000 0.0000

13 1.0391 1.0392 0.0000 0.0953 0.0946 0.0006

14 1.0391 1.0392 0.0000 0.0953 0.0945 0.0008

15 1.0507 1.0507 0.0000 0.0000 0.0000 0.0000

Continued on next page
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Table 3.2 – continued from previous page

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

16 1.0532 1.0531 0.0000 0.4635 0.4643 0.0008

17 1.0532 1.0531 0.0000 0.4635 0.4642 0.0007

18 1.0534 1.0534 0.0000 0.0000 0.0000 0.0000

19 1.0534 1.0534 0.0000 0.0000 0.0000 0.0000

20 1.0717 1.0716 0.0001 0.0000 0.0000 0.0000

21 1.1371 1.1371 0.0000 0.0000 0.0000 0.0000

22 1.1371 1.1371 0.0000 0.0000 0.0000 0.0000

23 1.1765 1.1766 0.0001 0.2622 0.2621 0.0000

24 1.1765 1.1766 0.0001 0.2622 0.2621 0.0001

25 1.1791 1.1790 0.0001 0.0000 0.0000 0.0000

26 1.1810 1.1810 0.0000 0.0750 0.0751 0.0001

27 1.1984 1.1984 0.0000 0.0000 0.0000 0.0000

28 1.1984 1.1984 0.0000 0.0000 0.0000 0.0000

29 1.2242 1.2243 0.0000 0.0000 0.0000 0.0000

30 1.2252 1.2253 0.0000 0.0000 0.0000 0.0000

31 1.2252 1.2253 0.0000 0.0000 0.0000 0.0000

32 1.2591 1.2592 0.0000 0.2593 0.2590 0.0003

33 1.2989 1.2990 0.0001 0.0000 0.0000 0.0000

34 1.2989 1.2990 0.0001 0.0000 0.0000 0.0000

35 1.3110 1.3110 0.0000 0.0000 0.0000 0.0000

36 1.3276 1.3276 0.0000 0.0000 0.0000 0.0000

37 1.3276 1.3276 0.0000 0.0000 0.0000 0.0000

38 1.3923 1.3923 0.0000 0.0689 0.0690 0.0001

39 1.4143 1.4143 0.0000 0.0874 0.0874 0.0000

Continued on next page
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Table 3.2 – continued from previous page

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

40 1.4143 1.4143 0.0000 0.0874 0.0874 0.0000

41 1.5328 1.5327 0.0001 0.0468 0.0466 0.0003

42 1.5352 1.5353 0.0000 0.0000 0.0000 0.0000

43 1.7663 1.7656 0.0006 0.0000 0.0000 0.0000

44 1.7663 1.7657 0.0006 0.0000 0.0000 0.0000

45 1.7970 1.7965 0.0005 0.0003 0.0003 0.0001

46 1.8305 1.8302 0.0003 0.2006 0.2009 0.0003

47 1.9263 1.9263 0.0000 0.0263 0.0263 0.0000

48 1.9263 1.9263 0.0000 0.0263 0.0263 0.0000

49 1.9324 1.9324 0.0000 0.0000 0.0000 0.0000

50 1.9657 1.9652 0.0005 0.0000 0.0000 0.0000

51 2.0599 2.0600 0.0001 0.0000 0.0000 0.0000

52 2.1041 2.1042 0.0000 0.0000 0.0000 0.0000

53 2.1041 2.1042 0.0000 0.0000 0.0000 0.0000

54 2.2059 2.2059 0.0000 0.2405 0.2403 0.0003

55 2.6861 2.6857 0.0004 0.1079 0.1081 0.0002

56 15.1713 15.1714 0.0001 0.1903 0.1903 0.0000

57 15.1713 15.1714 0.0001 0.1903 0.1903 0.0000

58 15.1725 15.1726 0.0001 0.0000 0.0000 0.0000

59 15.1725 15.1726 0.0001 0.0000 0.0000 0.0000

60 15.8372 15.8370 0.0002 0.0000 0.0000 0.0000

61 15.8399 15.8398 0.0001 0.0506 0.0505 0.0001

62 15.9238 15.9238 0.0000 0.1866 0.1867 0.0001

63 15.9286 15.9287 0.0001 0.0000 0.0000 0.0000

Continued on next page
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Table 3.2 – continued from previous page

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

64 15.9380 15.9380 0.0000 0.0000 0.0000 0.0000

65 15.9380 15.9380 0.0000 0.0000 0.0000 0.0000

66 15.9405 15.9406 0.0001 0.1187 0.1187 0.0000

67 15.9405 15.9406 0.0001 0.1187 0.1187 0.0000

68 16.0596 16.0597 0.0001 0.0057 0.0057 0.0000

69 16.0626 16.0627 0.0001 0.0000 0.0000 0.0000

70 16.3035 16.3035 0.0000 0.0086 0.0086 0.0000

71 16.3035 16.3035 0.0000 0.0086 0.0086 0.0000

72 16.3050 16.3051 0.0001 0.0000 0.0000 0.0000

73 16.3050 16.3051 0.0001 0.0000 0.0000 0.0000

74 16.3425 16.3426 0.0001 0.0000 0.0000 0.0000

75 16.3426 16.3427 0.0001 0.0240 0.0241 0.0000

76 16.7553 16.7548 0.0005 0.0000 0.0000 0.0000

77 16.7585 16.7582 0.0003 0.0091 0.0091 0.0000

The differences between NWChem’s transition energies and the TDDFT linear

response code’s transition energies are negligible in most cases, with differences

on the order of 10’s of micro-Hartrees. The oscillator strengths also showed close

agreement between NWChem’s calculated value and the TDDFT linear response

code’s calculated value. The differences were once again of the order of 10−5. The

remaining small molecule’s data is presented in the Appendix. Using these transition

energies and oscillator strengths, a theoretical excitation spectra can be constructed
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with a simple plot of frequency versus transition strength. A plot of this is presented

here.

Figure 3.1: Calculated excitation spectra of N2.

Also from the above transition energies and oscillator strengths, the frequency

dependent polarizability can be calculated according to equation (2.12). The

polarizability calculated here is for an infinite lifetime excitation. In order to

simulate a finite lifetime, in each excitation, an energy-broadening term unique to

that transition must be included [21]. Plotting the polarizability as a function of

frequency of radiation gives the following plot.
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Figure 3.2: Calculated polarizability of N2.

The large increase in polarizability at 0.570 a.u. corresponds to the lowest level

electronic excitation. This excitation energy is in fair agreement with Koopmans’

theorem [22], which states that the first ionization energy of a molecule can

be approximated as the energy of the highest occupied molecular orbital. Of

course, inspection of the polarizability relation of equation (2.12) also shows that

polarizability will have poles at the excitation energies.
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Chapter 4

Parallelization of the Orbital

Localization Algorithm

The barrier to applying correlated ab initio methods to large molecular systems is

tied to the prohibitive scaling costs of these methods [23]. Some of this cost can be

alleviated by applying an orbital localization algorithm to the occupied orbitals. This

reduces the space that the orbitals span, hence reducing the inter -orbital correlation

and making the intra-orbital correlation the leading correctional term [24]. The

goal of all localization algorithms is to apply a series of unitary transformations

to an occupied orbital until that orbital satisfies the given criteria for localization.

This can be done because single determinant wavefunctions are invariant to unitary

transformations among their occupied orbitals. The details of three widely used

algorithms [25] are presented here, as well as the one-sided Jacobi algorithm on

which the localization algorithms are based, followed by a modern description of

the implementation of these algorithms.
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4.1 Algorithms

4.1.1 The One-Sided Jacobi Algorithm

The one-sided Jacobi algorithm takes an m× n matrix A and generates a matrix V

such that

AV = H (4.1)

where the columns of matrix H are orthogonal. The matrix H is generated through

consecutive plane rotations of pairs of columns of the matrix A. Each rotation will

have the form (
ai aj

)c −s
s c

 =
(
a′i a′j

)
(4.2)

where ai and aj are columns of matrix A with i 6= j and c = cos(θ) and s = sin(θ).

The matrix

c −s
s c

 is the rotation matrix, of which there are n(n−1)
2

unique pairs

of columns that can be done for a matrix with length n. Completing all n(n−1)
2

unique rotations is known as completing a sweep. Sweeps are performed until all

the columns of the matrix are orthogonal throughout a single sweep, within some

convergence criterion. Assuming a reasonable selection of the rotation angles, the

convergence of this algorithm is quadratic [26].

The selection of this angle α has been algebraically determined in the literature [27],

and has values

sin(4α) =
Bst

(A2
st +B2

st)
(1/2)

(4.3)

cos(4α) =
−Ast

(A2
st +B2

st)
(1/2)

(4.4)

0 ≤ α ≤ π

2
. (4.5)
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The restriction on α is to keep the rotation angle between 0 and 2π. The general

forms of Ast and Bst are

Ast = 〈st |Ω| st〉 − 1

4
[〈ss |Ω| ss〉+ 〈tt |Ω| tt〉 − 2 〈ss |Ω| tt〉] (4.6)

Bst = 〈ss |Ω| st〉 − 〈tt |Ω| st〉 (4.7)

The functional Ω is algorithm specific, and defined in the appropriate sections below.

The proper selection of α will determine if the functional Ω that generated the vectors

ai and aj is to be maximized or minimized, also algorithm specific . Letting the

rotation angle θ be

θ = α +
kπ

2
(4.8)

will maximize Ω and

θ = α +
(2k + 1)π

4
(4.9)

will minimize Ω for arbitrary integer k.

4.1.2 Foster and Boys

Boys [28] algorithm was chronologically the first of the three methods to be conceived.

The Boys algorithm minimizes the spatial extent of the molecular orbitals, hence

concentrating the orbital density into a local area about atomic centers. The only

additional required information for the algorithm not already obtained from a ground-

state theory are the dipole integrals. The algorithm scales as N3, where N is a scaling

factor related to either the number of electrons or basis functions, but the resulting

orbitals are less local [25]. This algorithm does not separate σ and π bonds, but

instead produces two τ or “banana orbitals” [29], which are similar in shape to σ+ π

and σ − π. The localization criteria is summarized as

B{ϕi} =
N∑
i=1

〈
ii
∣∣ΩB

∣∣ ii〉 (4.10)
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where

ΩB(r1, r2) = (r1 − r2)2 (4.11)

4.1.3 Edmiston and Ruedenberg

Edmiston and Ruedenberg created an algorithm that localizes molecular orbitals by

maximizing the self-repulsion energy [24]. The algorithm scales as N5, due to the fact

that it requires two electron integrals in the molecular orbital basis. This means that

the atomic integrals must be transformed, a procedure that scales as N5. The σ and

π bond characteristics are kept separate. The localization criteria is summarized as

ER{ϕi} =
N∑
i=1

〈
ii
∣∣ΩER

∣∣ ii〉 (4.12)

where

ΩER(r1, r2) = |r1 − r2|2 (4.13)

4.1.4 Pipek and Mezey

The Pipek-Mezey algorithm localizes molecular orbitals by maximizing the sum

of squares of the Mulliken charges on atomic centers [29]. This algorithm scales

as N3, with only knowledge of the overlap matrix and dipole integrals required.

This algorithm does maintain separate σ and π bonds. The localization criteria

is summarized as

D =
N∑
i=1

∑
A

(QA
ii)

2 (4.14)
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with

QA
ii =

∑
µ∈A

〈i |Pµ| i〉 (4.15)

where QA
ii is the gross atomic Mulliken populations of the orbital |i〉 and the projection

operator PM
µ projects out atomic basis function µ according to

PM
µ =

1

2
(|µ̄〉〈µ|+ |µ〉〈µ̄|) (4.16)

and finally

|µ̄〉 =
∑
v

(S−1)vµ |v〉 (4.17)

with S being the overlap matrix used in the ground state theory to generate the

molecular orbitals.

4.2 Parallelization

One efficient implementation of these one-sided Jacobi like algorithms on a distributed

memory machine involves the use of systolic arrays in order to minimize commu-

nication costs and maximize performance through parallelization. A basic systolic

array can be thought of as a linear array of processors, each with its own memory,

that communicate by passing information to their nearest neighbor. Communication

can occur with either the left or right neighbor or even both, as needed. The

communication pattern is entirely algorithm dependent. For the implementation

of these localization algorithms, a bi-directional communication pattern is useful.

Consider a single sweep of one of the above algorithms in which there are six

orbitals (i.e.. six columns in the matrix) to be localized on a machine with three

processors dedicated to this task. The orbitals are distributed evenly pairwise over

the processors, as illustrated in Figure 4.1.

The algorithm will commence with each processor performing its part of the current

sweep with the two orbitals it currently possesses. Once finished with the first step,
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Processor 0 Processor 1 Processor 2

0 2

1 3

4

5

Figure 4.1: Initial distrubtion of matrix columns among processors.

the processors will interchange their orbitals according to the communication pattern

in Figure 4.2. This communication pattern will continue until all the pairings of the

Processor 0 Processor 1 Processor 2

0 2

1 3

4

5

Figure 4.2: Communication pattern after first pair of orbitals have had the algorithm
applied.

sweep have been realized. For a matrix with n columns, there are 1
2
(n− 1) rotations

to be done per sweep. As outlined by Zhou [30], a full sweep can be accomplished

with (n− 1) steps with this communication pattern. After (n− 1) steps, the orbitals

will be back in their original positions and can easily be checked for convergence. To
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accomplish this type of communication, the Message Passing Interface (MPI) API is

ideally suited. Using MPI, the orbitals themselves can be passed among processors

at each step with minimal communication cost. Each orbital is sent directly from one

processor to its destination by specifying a few parameters such as destination ID, the

type and number of elements to be sent, and the message handle. Another method of

parallelization involves the use of the OpenMP API. OpenMP requires only a set of

directives to be specified by the user, and then creates an internal list of commands

that will handle all communication and parallelization.

The one sided Jacobi algorithm lends itself well to parallelization, as opposed to the

two sided Jacobi algorithm. The rotations of the one sided Jacobi algorithm only

affect two columns, leaving the rest unchanged. This allows for the columns to be

distributed across a machine without penalty. The two sided Jacobi algorithm affects

pairs of both rows and columns. To see this, take note that the two sided Jacobi

algorithm completes a rotation of matrix A by doing the multiplication of

RART = A′ (4.18)

where R is the identity with a sub-matrix of the same rotation matrix as in the

one sided Jacobi, and RT is its transpose. It is this transpose that causes the

rows of the matrix to be linked in such a way as to render the simple column

distribution inapplicable. That is not to say that the two sided Jacobi algorithm

cannot be parallelized, but rather that the simple distribution is not usable. Instead

of distributing the columns pairwise across a machine, the algorithm calls for a block

distribution to be used along with a complicated communication pattern for updating

the

As a first step towards the creation of a working localization code, a symmetric

Jacobi eigensolver was created in a C++ coding environment following the algorithm

developed by Sameh [31]. In this algorithm, a number of different rotations of a

sweep were combined into a single rotation matrix. The rotations were then applied
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simultaneously using the parallel directive of the OpenMP API around a matrix

matrix multiplication routine. Unfortunately the created code suffered from rotations

that combined in unexpected ways to effectively undo each other. This occurrence

prevented the algorithm from converging to a diagonal matrix with the eigenvalues

of the starting matrix as its entries. The following is a performance graph of FLOPS

(floating point operations per second) versus length of initial square matrix of a serial

Jacobi eigenvalue algorithm.

As is easily seen, there is a quickly reached performance maximum for a serial

Figure 4.3: Performance graph of a serial Jacobi eigenvalue algorithm

algorithm. To demonstrate accuracy a graph of the residue of the algorithm is now

presented. The reside is calculated as the two norm of the matrix of the result of

(A− λ ∗ I) ∗ V where A is the matrix, λ are the eigenvalues, I is the identity matrix,

and V are the eigenvectors. This value should analytically be zero, and numerically

within a tolerance of zero. The answer could also be compared to a known answer

38



from an established API, such as LAPACK [32].

Figure 4.4: Residue graph of a serial Jacobi eigenvalue algorithm

With a correctly implemented parallel Jacobi algorithm, the maximum perfor-

mance will be greatly raised while maintaining the same level of accuracy. As is

demonstrated by the following graphs, the current implementation of the parallel

code leaves much to be desired. An as of yet undiscovered bug is thought to be the

cause.
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Figure 4.5: Performance graph of a parallel Jacobi eigenvalue algorithm
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Figure 4.6: Residue graph of a parallel Jacobi eigenvalue algorithm

Currently, the simultaneous multiple rotations scheme seems to cause many

rotations to effectively undo each other, leading to lots of wasted computed time

(which affects performance) and keeping the system from converging (which affects

accuracy). Thus both metrics of import are impacted negatively in this parallel

implementation. The following performance and residue graphs echo these sentiments.
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Conclusion

In this text the validity of the TDDFT equations was shown through the one-to-

one correspondence between an external potential and an electronic current density

and the one-to-one correspondence between the same electronic current density

and the electronic density. Then the origin of the time-dependent Kohn-Sham

equations was discussed. The linear response formalism was then explored and the

quintessential equation (1.25) derived. The final transformation was that of Casida’s

matrix formulation and subsequent casting of a psuedo-eigenvalue problem into the

form presented by equation (1.55). This eigenvalue problem is the working form

implemented in the TDDFT-LR code created here.

The generality of the machinery developed in the creation of a TDDFT-LR code

was demonstrated here. The ability to describe chemically important concepts as

the second derivative of the energy with respect to some perturbation allows for the

evaluation of these properties within the linear response framework. Some specific

examples were demonstrated, including the NMR shielding tensor and the dynamic

polarizability. The implementation of the above mentioned machinery was then

detailed.

The results of the TDDFT-LR code when applied to a small diatomic molecule were

explored. The agreement between the large software package NWChem and the

TDDFT-LR code was established. The resulting excitation spectra and polarizability

plots were displayed.

The separate but related problem of orbital localization was discussed. The
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motivation for such an algorithm was developed. The Jacobi plane rotation algorithm,

on which the three most used orbital localization methods are based on, was explored.

The three localization algorithms were then displayed, followed by comments on an

the parallelization of these algorithms.

With the final goal of calculating forces on excited states firmly fixed, the path

forward includes creating an algorithm to take the derivatives of the excited states

calculated from the linear response time-dependent density-functional theory. Using

these derivatives, the potential energy surfaces can be constructed and the excited

state geometry can be optimized. Then excited state properties can be calculated

with an accurate excited state wavefunction. These next steps must also be translated

into the numerical environment of MADNESS [33], making use of the accuracy and

parallelism provided in the MADNESS framework.
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Appendix

A SCF Energies

The remaining data of ground state energies from from all of the small molecules

investigated are presented here.

Table A.1: SCF energy of He

SCF Energy of He

Basis: aug-cc-pVDZ

Orbital Energy (a.u.)

NWChem Mine |∆|

1 -0.9171 -0.9170 0.0001

2 0.1744 0.1744 0.0000

3 0.5304 0.5305 0.0001

4 0.5304 0.5305 0.0001

5 0.5304 0.5305 0.0001

6 1.7135 1.7137 0.0002

7 3.0249 3.0251 0.0002

8 3.0249 3.0251 0.0002

9 3.0249 3.0251 0.0002
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Table A.2: SCF energy of H2

SCF Energy of H2

Basis: 6-31++G**

Orbital Energy (a.u.)

NWChem Mine |∆|

1 -0.5978 -0.5978 0.0000

2 0.0751 0.0752 0.0001

3 0.0884 0.0884 0.0000

4 0.3071 0.3072 0.0001

5 0.9363 0.9363 0.0000

6 1.3908 1.3908 0.0000

7 1.9577 1.9577 0.0000

8 1.9577 1.9577 0.0000

9 2.7366 2.7366 0.0000

10 2.9378 2.9378 0.0000

11 2.9378 2.9378 0.0000

12 4.5737 4.5737 0.0000
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Table A.3: SCF energy of H2O

SCF Energy of H2O

Basis: 6-31+G*

Orbital Energy (a.u.)

NWChem Mine |∆|

1 -20.5782 -20.5765 0.0017

2 -1.3609 -1.3604 0.0005

3 -0.7318 -0.7314 0.0004

4 -0.5828 -0.5823 0.0005

5 -0.5094 -0.5089 0.0005

6 0.1466 0.1467 0.0001

7 0.2190 0.2191 0.0001

8 0.2508 0.2509 0.0001

9 0.2525 0.2526 0.0001

10 0.3595 0.3597 0.0001

11 0.3876 0.3877 0.0001

12 1.2478 1.2480 0.0002

13 1.3477 1.3479 0.0002

14 1.3898 1.3903 0.0005

15 1.4046 1.4051 0.0005

16 1.4089 1.4093 0.0004

17 1.4737 1.4740 0.0003

18 2.0099 2.0104 0.0005

19 2.0148 2.0152 0.0004

20 2.0541 2.0546 0.0005

21 2.6365 2.6369 0.0004

22 3.0386 3.0390 0.0004

23 4.1078 4.1084 0.0006
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B Transition Energies and Oscillator Strengths

Here the tables of transition energies and oscillator strengths of the remaining

investigated small molecules are presented.

Table B.1: Transition energies and oscillator strengths of He

Transition Energies of He

Basis: aug-cc-pVDZ, Hfexch

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

1 0.8221 0.8219 0.0002 0.0000 0.0000 0.0000

2 1.0325 1.0324 0.0001 0.4414 0.4411 0.0003

3 1.0325 1.0324 0.0001 0.4414 0.4411 0.0003

4 1.0325 1.0324 0.0001 0.4414 0.4411 0.0003

5 2.1944 2.1944 0.0000 0.0000 0.0000 0.0000

6 3.3234 3.3235 0.0001 0.2279 0.2281 0.0002

7 3.3234 3.3235 0.0001 0.2279 0.2281 0.0002

8 3.3234 3.3235 0.0001 0.2279 0.2281 0.0002
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Table B.2: Transition energies and oscillator strengths of H2

Transition Energies of H2

Basis: 6-31++G**, Hfexch

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

1 0.4709 0.4709 0.0000 0.2927 0.2927 0.0000

2 0.4919 0.4919 0.0000 0.0000 0.0000 0.0000

3 0.6453 0.6453 0.0000 0.3536 0.3536 0.0000

4 1.2080 1.2080 0.0000 0.0000 0.0000 0.0000

5 1.5956 1.5956 0.0000 0.0434 0.0434 0.0000

6 2.0981 2.0979 0.0002 0.8283 0.8286 0.0003

7 2.0981 2.0984 0.0002 0.8283 0.8281 0.0003

8 2.8117 2.8117 0.0000 0.0000 0.0000 0.0000

9 2.9967 2.9584 0.0383 0.0000 0.0000 0.0000

10 2.9967 3.0350 0.0383 0.0000 0.0000 0.0000

11 4.5882 4.5882 0.0000 0.0052 0.0052 0.0000
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Table B.3: Transition energies and oscillator strengths of H2O

Transition Energies of H2O

Basis: 6-31+G*, Hfexch

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

1 0.3440 0.3436 0.0004 0.0661 0.0661 0.0000

2 0.4211 0.4207 0.0004 0.0000 0.0000 0.0000

3 0.4312 0.4308 0.0004 0.1311 0.1310 0.0001

4 0.4837 0.4832 0.0005 0.0273 0.0272 0.0000

5 0.5015 0.5010 0.0005 0.0039 0.0039 0.0000

6 0.5086 0.5082 0.0004 0.0388 0.0387 0.0001

7 0.5326 0.5321 0.0004 0.0000 0.0000 0.0000

8 0.5514 0.5510 0.0005 0.0010 0.0010 0.0000

9 0.5676 0.5673 0.0003 0.1718 0.1716 0.0002

10 0.5744 0.5730 0.0014 0.0422 0.0421 0.0001

11 0.5815 0.5811 0.0004 0.1500 0.1499 0.0000

12 0.6285 0.6281 0.0004 0.2355 0.2356 0.0001

13 0.6560 0.6556 0.0004 0.0013 0.0013 0.0000

14 0.7050 0.7047 0.0004 0.0000 0.0000 0.0000

15 0.7190 0.7186 0.0004 0.0021 0.0020 0.0000

16 0.7198 0.7194 0.0004 0.0304 0.0304 0.0000

17 0.7979 0.7976 0.0003 0.3113 0.3113 0.0000

18 0.8163 0.8159 0.0004 0.3632 0.3632 0.0001

19 1.2067 1.2063 0.0004 0.0168 0.0168 0.0000

20 1.2870 1.2868 0.0002 0.0000 0.0213 0.0213

21 1.2872 1.2868 0.0004 0.0214 0.0000 0.0214

22 1.3350 1.3345 0.0005 0.0292 0.0292 0.0000

Continued on next page
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Table B.3 – continued from previous page

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

23 1.3465 1.3460 0.0005 0.0075 0.0074 0.0000

24 1.3594 1.3593 0.0001 0.0276 0.0277 0.0001

25 1.3854 1.3852 0.0002 0.0000 0.0000 0.0000

26 1.3859 1.3855 0.0004 0.0011 0.0011 0.0000

27 1.3990 1.3988 0.0002 0.0001 0.0001 0.0000

28 1.4080 1.4078 0.0002 0.0001 0.0001 0.0000

29 1.4279 1.4275 0.0004 0.0068 0.0067 0.0000

30 1.4583 1.4581 0.0003 0.0026 0.0023 0.0002

31 1.4631 1.4630 0.0002 0.0155 0.0157 0.0003

32 1.4795 1.4792 0.0002 0.1449 0.1449 0.0000

33 1.5087 1.5085 0.0002 0.0028 0.0029 0.0001

34 1.5319 1.5317 0.0002 0.0323 0.0322 0.0001

35 1.5480 1.5477 0.0003 0.3254 0.3254 0.0001

36 1.6029 1.6029 0.0001 0.0000 0.0000 0.0000

37 1.6072 1.6070 0.0002 0.1068 0.1068 0.0000

38 1.6223 1.6222 0.0002 0.0430 0.0431 0.0001

39 1.6318 1.6319 0.0000 0.0000 0.0000 0.0000

40 1.7054 1.7052 0.0002 0.1911 0.1913 0.0002

41 1.7834 1.7833 0.0001 0.0033 0.0032 0.0000

42 1.8908 1.8907 0.0000 0.0239 0.0239 0.0000

43 1.9565 1.9565 0.0000 0.0639 0.0639 0.0000

44 2.0027 2.0026 0.0000 0.0123 0.0123 0.0000

45 2.0304 2.0304 0.0000 0.0000 0.0000 0.0000

46 2.0418 2.0418 0.0001 0.7001 0.7003 0.0003

Continued on next page
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Table B.3 – continued from previous page

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

47 2.1191 2.1191 0.0000 0.2020 0.2022 0.0003

48 2.1505 2.1502 0.0002 0.2077 0.0275 0.1802

49 2.2064 2.2064 0.0001 1.6516 1.6512 0.0004

50 2.2237 2.2236 0.0000 0.5049 0.5037 0.0012

51 2.2304 2.2303 0.0001 0.4573 0.4565 0.0009

52 2.2396 2.2397 0.0001 0.0000 0.0000 0.0000

53 2.2710 2.2709 0.0001 0.2471 0.2476 0.0004

54 2.2720 2.2719 0.0001 0.0835 0.0844 0.0009

55 2.3069 2.3065 0.0004 0.0004 0.0004 0.0000

56 2.3246 2.3246 0.0000 0.8061 0.8064 0.0003

57 2.4161 2.4158 0.0003 0.0104 0.0104 0.0000

58 2.6918 2.6917 0.0001 0.5987 0.5990 0.0003

59 2.6972 2.6970 0.0001 0.0010 0.0010 0.0000

60 2.8316 2.8315 0.0001 0.0000 0.0000 0.0000

61 2.8359 2.8358 0.0001 0.0540 0.0541 0.0001

62 2.8754 2.8754 0.0000 0.0582 0.0582 0.0000

63 2.8772 2.8772 0.0001 0.0928 0.0929 0.0001

64 3.0082 3.0080 0.0002 0.0000 0.0000 0.0000

65 3.1391 3.1389 0.0001 0.1089 0.1089 0.0000

66 3.2775 3.2775 0.0000 0.0556 0.0556 0.0000

67 3.4658 3.4657 0.0002 0.0045 0.0045 0.0000

68 3.8628 3.8627 0.0002 0.0012 0.0012 0.0000

69 4.0239 4.0240 0.0001 0.0001 0.0001 0.0000

70 4.1179 4.1180 0.0001 0.0018 0.0018 0.0000

Continued on next page
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Table B.3 – continued from previous page

Root Energy (a.u.) Oscillator Strength

NWChem Mine |∆| NWChem Mine |∆|

71 4.2844 4.2846 0.0002 0.0011 0.0011 0.0000

72 4.9210 4.9210 0.0000 0.0012 0.0012 0.0000

73 20.2781 20.2766 0.0015 0.0382 0.0381 0.0000

74 20.3042 20.3028 0.0014 0.0732 0.0732 0.0000

75 20.4587 20.4570 0.0017 0.0344 0.0344 0.0000

76 20.4835 20.4819 0.0016 0.0167 0.0167 0.0000

77 20.5740 20.5723 0.0017 0.0009 0.0009 0.0000

78 20.5978 20.5962 0.0016 0.0035 0.0035 0.0000

79 21.1272 21.1258 0.0014 0.0695 0.0695 0.0000

80 21.1693 21.1680 0.0013 0.0847 0.0847 0.0000

81 21.1700 21.1686 0.0014 0.0757 0.0757 0.0000

82 21.3410 21.3396 0.0014 0.0039 0.0039 0.0000

83 21.3907 21.3892 0.0015 0.0011 0.0011 0.0000

84 21.4787 21.4773 0.0014 0.0004 0.0004 0.0000

85 21.8316 21.8304 0.0012 0.0001 0.0000 0.0000

86 21.8327 21.8315 0.0012 0.0000 0.0000 0.0000

87 21.8727 21.8715 0.0012 0.0000 0.0000 0.0000

88 22.5279 22.5266 0.0013 0.0000 0.0000 0.0000

89 22.9182 22.9169 0.0013 0.0000 0.0000 0.0000

90 23.8086 23.8074 0.0012 0.0002 0.0002 0.0000
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