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ABSTRACT 

One of the limiting factors in the design of supersonic and hypersonic vehicles remains 

the prediction and control of the high aerodynamic, thermodynamic, acoustic, and 

structural loads generated by a shock wave/boundary layer interaction (SWBLI or SBLI). 

In conjunction with an experimental campaign produced within the research group, a 

numerical study was performed using a semi-infinite cylinder to generate a SWBLI at 

Mach 1.88 with both laminar and turbulent boundary layers. The goals were not only to 

better understand the complex flow surrounding the cylinder-induced turbulent interaction, 

but also to establish the interaction bounds of the limiting cases of a transitional interaction.  

Steady-state Reynolds-averaged Navier-Stokes (RANS) simulations were performed 

to predict the shock structures, separation and attachment points, and pressure profiles in 

the upstream region and on the cylinder leading edge. A variety of turbulence models were 

tested, namely the cubic k-epsilon (CKE), Menter’s shear-stress transport (SST), and 

Spalart-Allmaras (SA) with quadratic constitutive relations (QCR). Both the CKE and SA-

QCR turbulence models showed good agreement with in-house experimental data and 

literature, and are thus recommended for future use in these types of flow fields. 

Correlations between the vortex structures and peak and trough pressures were found, thus 

allowing for a steady-state flow characterization. The effect of varying the incoming 

boundary layer height was studied, when all other values were kept constant, and it was 

determined that an increased boundary layer height decreased both the interaction scale 

and the peak pressure. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

One of the limiting factors in the design of supersonic and hypersonic vehicles remains 

the prediction and control of shock wave/boundary layer interactions (SWBLIs or SBLIs) 

[1, 2]. These interactions generate high aerodynamic, thermal, acoustic, and structural 

loads and occur frequently on high-speed systems. Externally, they exist on control 

surfaces, where the interactions can significantly reduce the effectiveness of control 

surfaces and impair stability and control. Internally, they exist within engine inlets, where 

the interactions can lead to flow degradation and even unstart [1 - 3]. In order to design 

high-speed systems that are not prone to the impaired effectiveness or potential vehicle 

failure induced by SWBLIs, a fundamental understanding of the behavior and 

characteristics of these interactions is necessary. 

As a result, much research has been conducted on SWBLIs since the 1950s [3, 4]. Such 

interactions are defined by two characteristic components: the state of the incoming 

boundary layer (laminar, transitional, or turbulent), and the geometry acting as the shock 

generator. In regards to the state of the incoming boundary layer, shock wave/laminar 

boundary layer interactions (SWLBLIs) are fairly accurately predicted [5]. Their 

interactions are captured well with both experimental and computational methods. 

However, shock wave/turbulent boundary layer interactions (SWTBLIs or STBLIs) are 

inherently unsteady, and after over 65 years of research, the cause of this unsteadiness is 

still not fully understood [4]. Due to this lack of understanding and their common 

occurrence on high-speed systems, turbulent interactions remain the subject of the vast 

majority of SWBLI research. Lastly, shock wave/transitional boundary layer interactions 

(XSWBLIs), which are also inherently unsteady, have received comparatively little 

attention. There is increased emphasis on increasing surface area of laminar flow to reduce 

heat transfer in high-speed systems, and a growing interest towards natural laminar flow 

(NLF). As a result, boundary layer transition is pushed further aft on high-speed systems 

to the point where a transitional interaction may now occur on control surfaces. Since 
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reentry capsules also undergo boundary layer transition, a transitional interaction has the 

potential to occur on all high-speed systems. To explore the fundamental dynamic behavior 

of transitional interactions, recent research conducted at the University of Tennessee Space 

Institute (UTSI) has aimed to experimentally characterize these [6, 7]. Since the extent of 

a transitional interaction is bounded by those of a laminar and turbulent interaction [8], a 

useful step in characterizing this behavior is to understand the scales of the limiting cases. 

Prior efforts have strongly recommended that numerical studies are performed in 

collaboration with experimental studies [4, 9], and since the in-house work has been 

conducted for transitional and turbulent interactions thus far [6, 7], the current numerical 

work is focused on the turbulent regime, but explores a laminar interaction as well. 

In regards to the geometry acting as the shock-generator, the classifications of 

interactions include 2-D or 3-D, and open or closed interactions [10]. Examples of 

fundamental 2-D interactions are impinging shock waves or compression ramps, while 

examples of fundamental 3-D interactions are standing cylinders or swept compression 

ramps. 2-D interactions are inherently closed in the sense that the flow recirculates in an 

upstream region, while 3-D interactions can take on either an open or closed definition. 

Examples of open interactions are swept compression ramps and sharp fins, since the flow 

does not recirculate in an upstream region, but instead is continuously swept downstream. 

The standing cylinder and blunt fin are special cases in which a closed, 3-D interaction 

exists. For the recent work at UTSI, the geometry of interest was a standing cylinder. 

Many effective experimental and computational capabilities that are used to resolve the 

unsteady interactions, such as particle image velocimetry (PIV) and large eddy simulation 

(LES), have only recently become available in the measurement and prediction of turbulent 

interactions [4]. In terms of computational resources, LES remains too expensive for many 

applications and because of this, Reynolds-averaged Navier-Stokes (RANS) simulations 

remain the dominant simulation technique for high-Reynolds number flows. However, 

obtaining accurate RANS simulations for inherently unsteady flows, such as those 

involving turbulent or transitional interactions, can be difficult or even impossible. The 

limit to the effectiveness of steady-state RANS simulations should thus be kept in mind. 



 

3 

1.2 Objectives of Current Work 

The primary goal of the current study is to provide a better understanding of a cylinder-

induced SWTBLI. The secondary and underlying goal is to establish the boundaries from 

a laminar and turbulent interaction in order to define the limiting cases for a transitional 

interaction, and help guide experiments at UTSI. Computational methods are employed in 

order to characterize the flow. The following objectives are set in the current work: 

1. To determine the effectiveness of performing steady-state RANS simulations for the 

turbulent interaction, which is an inherently unsteady problem. 

With a drive to generate computationally inexpensive results for an otherwise 

expensive simulation, this study will compare RANS simulations with in-house 

experiments, experiments found in literature, and steady-state and time-accurate 

simulations found in literature. The findings determine the need for time-accurate 

simulations for this problem, and if a characterization can be made using only 

RANS simulations. 

2. To characterize the laminar interaction using RANS simulations. 

The results of a laminar and turbulent interaction characterization will provide the 

limiting cases for future studies involving a transitional interaction. The 

characterization of both types of interactions will consist of shock structure 

alignment with experimental values, analysis of pressure distribution and flow 

structure, and assessment of the peak pressure value and location. As before, these 

data will be compared to experiments reported in literature. 

3. To analyze the effect of incoming boundary layer height on the strength of the 

interaction. 

Although the Reynolds number has a larger effect on the interaction than the 

boundary layer height does [11, 12], it is important to analyze how the interaction 

changes when the Reynolds number is kept constant and the boundary layer height 

is changed. As this is a simple change to the boundary conditions of the simulation, 

computational methods excel at addressing parametric questions regarding the 

boundary layer dimension. This is in contrast to experimental work, which is 

constrained to a boundary layer of fluid scales.  
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CHAPTER 2 

LITERATURE REVIEW 

As mentioned in Chapter 1, the two classifications of SWBLIs are determined by the 

state of the incoming boundary layer and the geometry acting as the shock generator. An 

overview of prior work is presented for SWBLIs using either a cylinder or blunt fin, as 

these two geometries generate the same upstream interaction and can thus be considered 

equivalent and will be used interchangeably throughout [12, 13]. First, a general overview 

of the cylinder-induced interaction structure is presented. This structure varies in scale 

across the different boundary layer interactions, but not in its shape. Then, the details and 

special features of a turbulent and laminar interaction, respectively, are discussed. 

2.1 Cylinder-Induced Interaction Structure 

Experimental work in the past has primarily focused on the upstream region of a 

cylinder-induced interaction [14]. In particular, non-intrusive flow diagnostics, such as 

Schlieren and PIV, have typically been performed along the upstream centerline of the 

streamwise-transverse plane, as indicated by the green plane in Figure 2.1. Additionally, 

intrusive flow visualization techniques, such as oil flow visualization and pressure-

sensitive paint (PSP), have typically been performed in the streamwise-spanwise plane, on 

the surface that generates the boundary layer, as shown by the golden plane in Figure 2.1. 

 

 

 

Figure 2.1. Cylinder on a flat plate, indicating views of interest. Green plane in x-y, golden 

plane in x-z.  



 

5 

In the x-y plane, for so-called “semi-infinite” cylinder- and blunt-fin-induced 

interactions, a lambda shock structure exists in the upstream region on the horizontal 

centerline, as indicated by the schematic in Figure 2.2. The diameter of the cylinder, d, is 

one of the dominant factors of the interaction scale, and all other parameters are thus 

normalized by d. The height of the cylinder, h, is also of particular importance because it 

dictates whether the interaction is considered semi-infinite or a function of h/d [11, 12] and 

δ/d [12], where δ is the incoming boundary layer height. Dolling and Bogdonoff [12] 

identified this semi-infinite requirement as h/htp > 2-3, where htp denotes the triple point 

height, and also estimated a guide of h/d > 2.4. Özcan and Yüceil [14] reported that this 

should be at h/d > 2.5, but used larger increments in their tests. Once the semi-infinite 

height is met, increasing h no longer changes the interaction structure. The interactions 

considered in this work are semi-infinite. In Figure 2.2, flow separation occurs at the 

separation length, λ, and generates an oblique shock, known as the forward shock, with  

 

 

 

Figure 2.2. Front view schematic of a cylinder-induced shock wave/boundary layer 

interaction.  
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forward shock angle φ. This forward shock impinges upon the inviscid bow shock, which 

has stand-off distance B, at the triple point, where a bifurcation leads to the development 

of the trailing shock. Underneath the lambda shock, a separation bubble is formed, which 

consists of several vortices. The vortex structure varies depending on the state of the 

incoming boundary layer, and is discussed below for turbulent and laminar interactions. 

The trailing shock does not come into contact with the floor, but instead ends where it 

intersects with the separation bubble. 

In the x-z plane, the separation shock is seen to curve outboard, as shown in Figure 2.3. 

Note that this view only refers to the floor surface and does not include the trailing shock, 

as this ends at the separation bubble. The largest extent of the separation shock is on the 

centerline with length λ, and as horseshoe vortices wash outboard, the distance between the 

cylinder and separation shock line is reduced. Vortex shedding also occurs just downstream 

of the cylinder, but this is symmetric in a statistical sense. 

 

 

 

 

Figure 2.3. Top view schematic of a cylinder-induced shock wave/boundary layer 

interaction, indicating the surface interaction.  
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Sample Schlieren imaging and oil flow visualization from Lash et al. [6] for a turbulent 

interaction are shown in Figure 2.4a and b, respectively, and allow for a qualitative 

comparison to the schematics in Figure 2.2 and Figure 2.3, respectively. Note that all of 

the blue lines in the schematics are visible in the sample experimental results. 

2.2 Turbulent Cylinder-Induced Interaction 

As the turbulent interaction has the most practical applications, it is discussed first. The 

separation length is one of the key parameters of interest; Westkaemper [11] identified that 

λ/d remains constant at approximately λ/d = 2.65 for an interaction where h/d > 1.13 over 

M∞ = 2.0-21, where M∞ represents the freestream Mach number. This was also observed 

by Dolling and Bogdonoff [12] and Brusniak and Dolling [13]. However, experimental 

work by Lash et al. [6] and Combs et al. [7], and computational work by Yamamoto and 

Takasu [15], have all reported values closer to λ/d = 2.0-2.4. A distribution of separation 

lengths from the in-house work of Lash et al. [6] is shown in Figure 2.5, which indicated a  

 

 

 

Figure 2.4. Sample a) Schlieren imaging and b) oil flow visualization for a turbulent 

interaction. Figure from Lash et al. [6].  
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Figure 2.5. In-house experimental results indicating probability density function of 

separation length. Figure from Lash et al. [6]. 

 

mean value of around λ/d = 2.15. These discrepancies may have arisen due to differences 

in Reynolds number, Re, or δ, which both affect the scale of the interaction [12, 13, 16]. 

The effect of δ/d at a constant Re will be investigated more closely in this study. 

Westkaemper [11] also generated empirical equations for the remaining parameters of 

interest that are shown in Figure 2.2. The forward shock angle φ was determined by first 

finding the pressure coefficient, CP, through Equation (2-1) [17], where 5.61 is an empirical 

constant, M∞ is the freestream Mach number, Rex is the local freestream Reynolds number 

at location x, γ is the ratio of specific heats, and P is the static pressure, and then applying 

oblique shock relations via the pressure ratio [18]. This is used in conjunction with B, which 

is found via the empirical Equation (2-2) [11], in order to determine a geometric formula 

for htp, which is shown in Equation (2-3) [11]. 
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 𝐶𝑃 = 
5.61

√𝑀∞𝑅𝑒𝑥
5

=
2

𝛾𝑀1
2 (

𝑃2

𝑃1
− 1) (2-1) 

 𝐵/𝑑 =  0.19 +
1.2

𝑀∞
2 − 1

+
0.7

(𝑀∞
2 − 1)2

 (2-2) 

 ℎ𝑡𝑝/𝑑 = (𝜆/𝑑 − 𝐵/𝑑) tan (𝜑) (2-3) 

 

 

The separation length is directly linked to a pressure rise in the upstream region. 

Pressure ratios comparing the computational data from Hung and Buning [16] with 

experimental data from Dolling and Bogdonoff [19] for a blunt fin interaction at M∞ = 2.95, 

shown in Figure 2.6a, indicated an initial pressure rise near x/d = −3. However, Hung and 

Buning [16] calculated separation to occur around λ/d = 1.7 in 1985, as indicated by the 

streamlines in Figure 2.6b, at a point where the pressure ratio had already risen near its 

initial plateau. This pressure plateau was followed by a trough that retained P/P∞ > 1, where 

P∞ is the freestream pressure, which was then followed by the peak pressure just upstream 

of the blunt body. Computational results, which are able to resolve this near-wall region at 

a much greater ease than experiments, predicted the peak pressure location around x/d = 

−0.1 [15, 16]. There was a pressure decrease just downstream of the peak pressure that 

reached yet another trough around x/d = −0.05, followed by a small pressure increase [15, 

16]. This study will attempt to identify the reason for the peak pressure location, which 

would allow for mitigation of this critical parameter. 

Streamlines, such as those shown in Figure 2.6b, provide a more in-depth 

understanding of the vortex structure and underlying flow physics, and will be used to 

characterize the flow. Note that there is a discrepancy between the steady-state 

computational result from Hung and Buning [16] and the time-accurate computational 

result from Yamamoto and Takasu [15]. The steady-state result [16] indicated a single, 

large, primary vortex, as shown in Figure 2.6b, but the time-accurate result [15] indicated 

a set of smaller, counter-rotating, primary vortices; this set varied between one and three 

vortices over time. The variation in the number of primary vortices was also observed by 

Sedney and Kitchens [20], and this variation for the steady-state result is likely attributed  



 

10 

 
Figure 2.6. a) Blunt fin pressure ratio comparing computational results from Hung and 

Buning [16] with experimental results from Dolling and Bogdonoff [19] at M∞ = 2.95, b) 

Streamlines of the computational results on the upstream centerline. Figures from Hung 

and Buning [16].  
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to the differences in the modeling approach. However, there may also be a factor due to 

the unsteadiness in the interaction, such as the combined low- and high-frequency 

oscillations within the lambda shock structure. Lash et al. [6], Clemens and 

Narayanaswamy [10], Brusniak and Dolling [13], and Dolling and Brusniak [21] have all 

investigated this behavior and concluded that the forward shock undergoes low-frequency 

oscillations (f < 1 kHz), whereas the separation bubble, and hence the trailing shock, 

undergoes high-frequency oscillations (f ≥ 1 kHz). As the present study focuses on steady-

state interactions, a characterization of the frequencies will not be made; however, it is 

important to remember that the flow is inherently unsteady, and that this affects the vortical 

structure, among other things, for a steady-state result. 

2.3 Laminar Cylinder-Induced Interaction 

As laminar boundary layers are generally more susceptible to flow separation than 

turbulent boundary layers [22, 23], the scales of the interactions are inherently greater. 

While the initial pressure rise and flow separation for a turbulent interaction occur near x/d 

= −3 and λ/d = 2.65, respectively, these values are approximately x/d = (−9)-(−6) for a 

laminar interaction [8]. Leidy et al. [24] found separation to occur closer to λ/d = 5.5-6 at 

M∞ = 6. Itoh and Mizoguchi [25] and Mortazavi and Knight [26] note that similar unsteady 

behavior exists for a laminar interaction as for a turbulent interaction, and have estimated 

Strouhal numbers from St = 0.032-0.113 through experiments [25] to St = 0.697 through 

computation [26], in contrast to St = 0.023-0.035 [27] for a turbulent interaction. A 

schematic of the vortex structures for a laminar interaction is shown in Figure 2.7, where 

N, F, S, and S’ represent nodes, foci, saddles, and half-saddles, respectively. Furthermore, 

AL represents an attachment line and SL represents a separation line. 

Present computational capabilities lend themselves well towards solving laminar 

interactions. Knight and Degrez [5] and Holden [28] state that aerodynamic and thermal 

loads are accurately predicted using RANS simulations given that the mesh is adequately 

resolved. Holden [28] notes that gridding and numerical issues, in particular, have taken a 

long time to address and overcome, but have now fully matured. Dolling [4] states that 

grid-adaptation is an essential tool in solving laminar interactions. 
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Figure 2.7. Schematic of streamlines indicating vortex structure for a laminar interaction. 

Figure from Itoh and Mizoguchi [25]. 

 

The empirical equations for a laminar interaction are very similar to those for a 

turbulent interaction. Since the bow shock is inviscid, Equation (2-2) does not depend on 

the state of the incoming boundary layer, and thus remains valid. Furthermore, Equation 

(2-3) is a geometric formula and is thus also valid. The difference occurs in φ, which was 

calculated through CP in Equation (2-1). Truitt [17] proposed an alternate version, shown 

in Equation (2-4), which was valid for a laminar boundary layer. Note that the constant of 

17 differs from that of a turbulent interaction and was found through an iterative process 

until the pressure ratio matched a guessed value. The constant was not proposed by Truitt 

[17] and not verified under other flow conditions, and may not hold valid in a different 

interaction. 
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2.4 Transitional Cylinder-Induced Interaction Bounds 

Addressing the scales of separation length and triple point height for the limiting cases 

of laminar and turbulent interactions paves the way for further research into transitional 

interactions. Kaufman et al. [8] have stated that the parameters of interest for a transitional 

interaction are confined to the values obtained by laminar and turbulent interactions. This 

is visible in Figure 2.8, which shows the separation length for each type of boundary layer 

using kerosene lampblack flow visualization at M∞ = 5, with flow from top to bottom. 

Moreover, Kaufman et al. [8], Lash et al. [27], and Murphree et al. [29] have shown that a 

transitional interaction exhibits traits closer to those of a laminar interaction near the 

centerline, and closer to those of a turbulent interaction near the outboard extents.  

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Kerosene lampblack flow visualization from top view of shock wave/ a) 

laminar, b) transitional, c) turbulent boundary layer interactions at M∞ = 5. Flow from top 

to bottom. Figure from Murphree et al. [29].  
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CHAPTER 3 

METHODOLOGY 

The simulations were run on two high-performance desktops that used the operating 

system Ubuntu 16.04 (64-bit) and contained 64 cores of the type AMD Opteron™ 

Processor 6376 at 2300 MHz each, along with 256 GB RAM. Furthermore, a cluster was 

available that ran the operating system Red Hat® Enterprise Linux® Server 7.2 and 

contained 11 nodes at 32 cores each (352 total) of the type Intel® Xeon® E5-2630 v3 at 

2400 MHz each, along with 64 GB RAM per node. This computing power was sufficient 

for the simulations performed. Mesh generation was performed using Pointwise, Inc., 

V17.3R4, and post-processing was conducted using Tecplot, Inc., 360 EX 2015 R2. 

3.1 Flow Modeling Assumptions 

This study assumed a continuum model for the supersonic flow. As such, the fluid 

could be modeled using scalars for density, ρ, temperature, T, and the velocity components 

u, v, and w. Air was the fluid of interest and was treated as a compressible, viscous, 

Newtonian fluid, and moreover as an ideal (or perfect) gas. The dynamic viscosity, μ, was 

determined via Sutherland’s law [30, 31]. Stagnation conditions were assumed to be 

constant; and since RANS provides a statistical mean flow, this flow was considered to be 

steady-state. 

Further physical assumptions that were made in this study include the use of smooth, 

adiabatic, no-slip walls on the boundaries of the wind tunnel walls, flat plate surface and 

strut, and on the cylinder. The cylinder was initially modeled at the same height in the 

experiment, but this was ultimately increased to ensure a semi-infinite behavior for an 

analysis concerning the height of the incoming boundary layer, which directly affects htp 

and thus h/htp. The flat plate leading edge, which was machined to be considered sharp, 

was modeled with a blunt leading edge of radius 127 μm (0.005 in) [32], which was 

representative of the machining tolerance. Lastly, the wind tunnel was assumed to provide 

flow with a freestream turbulence intensity of 3% and a turbulent-to-laminar viscosity ratio 

of 5. 
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3.2 Numerical Formulation 

3.2.1 Governing Equations 

Reynolds-averaged Navier-Stokes simulations were performed using Metacomp 

Technologies, Inc., (Metacomp) CFD++ v16.1 [33]. The compressible, perfect gas Navier-

Stokes equations were solved in dimensional, Cartesian coordinates, and are listed in 

Equation (3-1), where Q is the dependent variable vector, H is an inviscid flux vector, and 

G is a viscous flux vector, as respectively described by Equations (3-2), (3-3), and (3-4). 

In Equation (3-1), Ṡ is the source term vector, and is zero except near physics source terms. 

The only source terms used in this study were at the far-field and are described later. 

Additional transport equations are solved when a turbulence model is active, and alter the 

terms μ and κ, the thermal conductivity, to be μ+μt and κ+κt, respectively. These transport 

equations contribute to their own source term vectors. In Equation (3-3), E represents total 

energy. In Equation (3-4), 𝑞̇ represents the heat flux vector and τ represents the stress 

tensor.  

 

 

 
𝜕𝑄

𝜕𝑡
+

𝜕(𝐻𝑖 + 𝐺𝑖)

𝜕𝑥𝑖
= 𝑆̇ (3-1) 

 𝑄 = 

[
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𝜌
𝜌𝑢
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𝜌𝑤]

 
 
 
 

 (3-2) 

 𝐻𝑖 = 

[
 
 
 
 

(𝐸 + 𝑃)𝑢𝑖

𝜌𝑢𝑖

𝜌𝑢𝑢𝑖 + 𝑃𝑛̂𝑥

𝜌𝑣𝑢𝑖 + 𝑃𝑛̂𝑦
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 𝐺𝑖 =
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0
−𝜏𝑖𝑥

−𝜏𝑖𝑦

−𝜏𝑖𝑧 ]
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3.2.2 Turbulence Model Set-Up 

The turbulence models used in this study were Menter’s 2-equation shear-stress 

transport (SST) [34], the 1-equation Spalart-Allmaras (SA) [35] with quadratic constitutive 

relation (QCR) [36], simply referred to as SA-QCR here, and the 2-equation cubic k-ε 

(CKE) [37]. All turbulence models were turned on at the 11th global time step, allowing for 

initial start-up transients to settle. The SST and CKE turbulence models used a turbulence 

under-relaxation parameter of 1, whereas the SA-QCR turbulence model used 0.75. The 

minimum level of turbulence quantities was 10−12 for all models, and the maximum ratio 

of turbulent-to-laminar viscosity was 1010 for all models. The Prandtl number was not 

directly specified, but maintained a laminar-to-turbulent Prandtl ratio of 0.8 and a turbulent 

Schmidt number of 0.7 for all models. Wall-functions were not implemented here. None 

of the turbulence models included baroclinic effects on production. The initial values for 

each turbulence model were computed with Metacomp’s turbulence initialization tool. [33] 

3.2.2.1 SST 

The SST model solves for the turbulence kinetic energy, k, and specific dissipation rate, 

ω [38]. A wall-distance file was computed which was used to measure the distance from 

every cell to its closest wall [33]. Turbulence terms in the near-wall region were determined 

using Metacomp’s ε/ω boundary condition formulation v15.1 [33], but were also affected 

by the source terms, which depend on the wall-distance. Metacomp’s compressibility 

correction was implemented in combination with a wall-bounded flow type [33].  

3.2.2.2 SA-QCR 

The SA model solves for the kinematic eddy viscosity parameter, ν̃ [38]. Similar to the 

SST model, a wall-distance file was computed. The compressibility correction was 

implemented again for wall-bounded flows. The curvature correction was implemented to 

account for rotation and curvature effects [33], as these were strong factors in the 

interaction. These effects modified the calculation of ν̃ [33]. Also, the QRC option was 

enabled, which enhances stress predictions and improves performance in boundary layers. 

This option modified the Reynolds stress term [33]. 
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3.2.2.3 CKE 

The CKE model solves for k and turbulent dissipation, ε [38]. Metacomp’s 

compressibility correction for wall-bounded flows was active again. The dimensionless 

constant Cμ was formulated using the Goldberg formula [33], which is recommended for 

flows with impinging or stagnating regions. The realizability criterion used Bradshaw’s 

constant [33], which is recommended for high-speed flow and for impinging or stagnating 

flow. The CKE model was not only used for the cylinder-interaction, but also to determine 

the flow conditions downstream of the flat plate leading edge shock and the growth of the 

boundary layer. As such, a leading-edge transition model [39] was implemented for this 

non-cylinder-interaction flow, which creates laminar flow near the leading edge until 

laminar separation is detected, after which the standard CKE model is applied [33]. 

3.2.3 Time Integration Set-Up 

The steady-state solver was set to integrate the governing equations point-implicitly 

through the backward (or upwind) Euler method [38]. Simulations were run for 5000 global 

iterations to ensure that all residuals were flat-lined and no longer varied. The Courant-

Friedrichs-Lewy (CFL) number was ramped linearly from 1 to 10 over the course of the 

first 100 iterations. When a divergence is detected in the solver, an automatic CFL number 

adjustment procedure (ACAP) takes place, which cuts the current CFL number in half and 

implements a new ramping schedule with a maximum of 0.95 times the CFL number when 

divergence was detected. A multi-grid W-cycle was implemented with 4 cycles and 20 

levels. Non-strong agglomerations were allowed that were re-computed every 5 steps until 

the agglomeration had 1 group in its level. Time-step temporal smoothing was activated 

with a factor of 0.5. Time-step spatial smoothing was also turned on with 4 smoothing 

passes and a maximum time-step growth factor of 1.5. 

3.2.4 Spatial Discretization Set-Up 

The spatial discretization was 2nd order. A continuous total variation diminishing 

(TVD) flux limiter was applied with nodal base polynomial types and out-of-face viscous 

terms. A 1st to 2nd order blending function for the backward Euler scheme was applied 

between 1000 and 1100 global time-steps. This ensured that transients in the solution 
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settled with a 1st order scheme before switching the solver to a 2nd order scheme. Typically, 

the residuals of the 1st order solution had dropped 4-5 orders of magnitude by the time the 

blend from 1st to 2nd order occurred. 

3.2.5 Riemann Solver Set-Up 

The Harten-Lax-van Leer-Contact (HLLC) scheme was used for the upwind 

discretization of the inviscid fluxes in CFD++ [33]. This approximate scheme, along with 

the TVD flux limiter, avoided oscillations [33]. A supersonic pressure switch was active 

which detected strong pressure gradients, i.e. shocks, and added dissipation in this region. 

Lastly, the carbuncle control was activated, which was used to reduce the dissipation error 

ahead of the bow shock in the nose region of the cylinder. This error arises when the solver 

switched from a hyperbolic to an elliptic method. The carbuncle control adjusted the 

maximum pressure factor to be 0.25. 

3.3 UTSI Experiments 

Experimental runs for a turbulent interaction were conducted by Lash et al. [6] and 

Combs et al. [7] at UTSI in a planar, low-enthalpy, blowdown wind tunnel with a test 

section size of 203.2 mm × 203.2 mm. High-speed Schlieren imaging [6] and 2-component 

PIV [7] were the two techniques employed for data collection. A 3.175 mm diameter, 12.7 

mm tall brass cylinder was used to generate the interaction, resulting in an h/d = 4. The 

triple point was measured around htp/d = 1.4 [6], resulting in an h/htp = 2.85, which can be 

considered semi-infinite according to Dolling and Bogdonoff [12]. The cylinder was 

mounted on a flat plate of 304.8 mm length × 203.2 mm width at a distance of 25d 

downstream of the leading edge of the flat plate, as indicated by the schematic in Figure 

3.1. This location has been verified to generate a fully turbulent interaction [6, 7]. 

The flat plate was angled downward at α = −2.9° in the experiment in an attempt to 

generate a zero pressure gradient on the upper surface. This angle was also applied to the 

CFD model by applying trigonometric identities to the u and v-velocity components. The 

coordinate system thus remained as initially indicated by Figure 2.2 and Figure 2.3. This 

configuration simplifies mesh generation and post-processing. 
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Figure 3.1. Schematic of the cylinder located on the flat plate. 

 

The experiments have reported wind tunnel stagnation conditions, freestream velocity, 

and Mach number [6, 7], and have captured velocity and Mach number over the upper 

surface of the flat plate around x/d = −19.5 [7]. The wind tunnel stagnation conditions were 

used to calculate wind tunnel freestream conditions via isentropic relations [30], and 

oblique shock relations [18] were employed to determine the flow properties on the flat 

plate upper surface. The summary of these conditions, both reported and calculated, is 

provided in Table 3.1. As the coordinate system was angled, the wind tunnel freestream 

velocity of 507 m s−1 was decomposed such that u∞,WT = 506.8 m s−1 and v∞,WT = −25.67 m 

s−1. This was not necessary for the flat plate upper surface, as the flow became tangential. 

The primary comparisons made between in-house experiments and the current 

numerical work were against the Schlieren work of Lash et al. [6], as the Schlieren data 

were more statistically robust than the PIV data from Combs et al. [7]. The parameters of 

interest, namely λ and htp, from Lash et al. [6] were directly used for comparison. Recall 

from Figure 2.5 that a mean value of around λ/d = 2.15 was determined. Using B/d from 

Equation (2-2) along with the conditions in Table 3.1 and φ = 41°, obtained from Schlieren 

imaging [6], Equation (2-3) results in htp/d = 1.24, which was within 10% of the observed 

value of htp/d = 1.35 from Lash et al. [6]. 
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Table 3.1. Flow conditions captured by experiments from Lash et al. [6] and Combs et al. 

[7] for wind tunnel and Combs et al. [7] for flat plate. 

 Wind Tunnel Conditions Flat Plate Conditions at 

x/d = −19.5 

P0 [kPa] 210.0 209.9 

P∞ [kPa] 26.425 31.1 

T0 [K] 286.8 286.8 

T∞ [K] 158.6 166.2 

Rem [m−1] 2.72 × 107 2.84 × 107 

M∞ [-] 2.01 1.905 

v⃗∞ [m s−1] 507 493 

 

3.4 Domain Definition and Mesh Generation 

Described below is the process with which the final computational domain was 

determined, and the specific details of that domain. The first simulation that was performed 

included not only the cylinder, but also the entire flat plate and strut, as well as the full 

width and height of the wind tunnel test section, as shown in Figure 3.2. A structured, 

hexahedral mesh was used with non-dimensional wall distance y+ = 30 and growth rate GR 

= 1.2; therefore, wall functions were implemented to model the flow between the buffer 

layer and the surfaces. Note that this was the only simulation performed that used wall 

functions. The objective here was to determine whether or not the wind tunnel walls 

influenced the interaction, and the conclusion was that the walls were far enough away 

from the cylinder-interaction to allow for domain reductions. 

Next, the problem was split up into 2 domains: one that solved for the flow over the 

flat plate upper surface, and one that solved for the cylinder-interaction, as based on a 

method employed by Chaudhry et al. [40]. The flow over the 2-D flat plate without the 

cylinder was solved first in order to accurately capture the boundary layer growth on the 

centerline. Then, slices of the flow perpendicular to the flat plate surface were taken and  
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Figure 3.2. 3-D domain of the first simulation using full width and height of the test section. 

This was used to test for sidewall influence and identify possible domain size reduction. 
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used as an inlet profile to the cylinder-interaction, whose domain was then represented by 

a 3-D box. The advantages to using this method were two-fold: first, the domain for the 

cylinder-interaction was smaller, therefore allowing for a finer mesh and thus better 

resolution; second, the domain for the cylinder-interaction was no longer bounded by the 

flat plate in the sense that various δ/d could be tested. Also, this method allows for the 

cylinder to be tested at various locations downstream of the leading edge of the flat plate 

without re-meshing, which may be beneficial in the future. 

3.4.1 Flat Plate Flow 

3.4.1.1 Initial Domain Size Reduction 

As mentioned above, the full-test-section solution of the domain in Figure 3.2 indicated 

that a domain size reduction was possible, as there was no interference by the wind tunnel 

walls. Based on the freestream flow of the full-test-section solution, it was determined that 

the domain shown in Figure 3.3 would capture all of the flow physics, while also allowing 

for greater mesh refinement. The inlet boundary was extended to x/d = −30, or 5d (15.875 

mm) upstream of the flat plate leading edge, in order to ensure there were no disturbances 

from the leading edge bow shock. The boundary condition applied to the inlet was a Musker  

 

 

 

Figure 3.3. Medium 2-D flat plate domain with added forward section, reduced upper and 

lower flat plate surface extent, and reduced height.  
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turbulent boundary layer profile [41], which used the wind tunnel freestream conditions 

from Table 3.1 along with a specified boundary layer height of 12.7 mm on the wind tunnel 

walls in order to develop a turbulent inlet profile that extended across the entire boundary. 

The streamwise extent was shortened to x/d = 15, and a zero-gradient outflow was applied 

as the downstream boundary condition. The domain extent beneath the flat plate lower 

surface was significantly reduced, as this minimally factored into the flow over the upper 

surface. Nevertheless, a small domain section at the lower surface was maintained to allow 

for the bow shock to develop on both sides of the flat plate, and thus rule out any blockage. 

As before, the outlet boundary condition at the lower surface was a zero-gradient outflow. 

A comparison with the full-test-section solution indicated that there was no change to the 

flow on the upper surface, and so this reduction at the lower surface was deemed feasible. 

The upper height of the domain was reduced to y/d = 20 at the inlet and approximately y/d 

= 18 near the outlet. The far-field boundary conditions were set to a characteristics-based 

inflow/outflow, which is Metacomp’s far-field-type boundary condition. 

The final mesh for the domain of Figure 3.3 is shown in Figure 3.4. A first-pass was 

conducted with a structured, hexahedral mesh in order to more accurately determine the 

shock locations. Based on this, the final mesh was reconfigured for shock-alignment, as 

indicated by the green lines. A close-up of the flat plate leading edge, indicating the bow 

shock and two Mach waves emanating from the surface near the leading edge, is shown in 

Figure 3.5. This mesh consisted of hexahedral cells as well, but with the exception of a few 

unstructured, tetrahedral domains that can be identified in Figure 3.5 by the triangular 

domain zones. A total of 7 unstructured, tetrahedral domain zones (out of 83 total) were 

necessary to match the angled, shock-aligned domain zones with the surface. The walls 

were created with y+ = 1 and GR = 1.1, such that the entire mesh consisted of 1.2 million 

cells. 

3.4.1.2 Final Domain Size Reduction 

An attempt was made to further reduce the boundary height, since the freestream 

conditions downstream of the flat plate leading edge shock were relatively constant. Simply 

coarsening the mesh in this region was found to be inappropriate, as it under-resolved the  
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Figure 3.4. Medium 2-D flat plate mesh in x-y. Mesh domain zones are shown in grey, and 

shock-alignment is shown in green. 

 

 

 

 

Figure 3.5. Close-up of leading edge section of the medium 2-D flat plate mesh. Mesh 

domain zones are shown in grey and shock-alignment is shown in green.  
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shocks and smeared them over several cells. Therefore, the height of the upper domain was 

reduced to y/d = 10 at the inlet and approximately y/d = 8.7 at the outlet, with the goal that 

the cell count could be reduced while increasing the accuracy of the solution. This height-

shortened domain is shown in Figure 3.6. 

Since the flow above the upper surface becomes tangential to the surface, the upper 

boundary above the flat plate may follow suit. From the flow solution for the domain of 

Figure 3.3 it was determined that despite the far-field condition being implemented, the 

flat plate leading edge shock had not dissipated out by the time it reached the upper 

boundary, and was reflecting back into the domain. This reflection impinged onto the flat 

plate boundary layer. In order to mitigate this issue, far-field absorbing layers were applied 

to the upper boundary. These posed the only contribution (other than the turbulence model) 

to the source term vector, Ṡ, in the RHS of Equation (3-1). Physically, the absorbing layers 

acted as a sponge boundary, where the flow was damped to user-specified freestream 

values over the course of several layers. The shock dissipated within these damping layers 

and did not reflect back into the domain, thus allowing for the implementation of the 

domain in Figure 3.6. The walls here were created with y+ = 0.1 and GR = 1.1; the fineness 

was required to properly resolve the small boundary layer in the vicinity of the leading  

 

 

 

Figure 3.6. Smaller 2-D flat plate domain with reduced upper flat plate surface extent, and 

reduced height.  
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edge. A comparison between the solutions generated by the domains of Figure 3.3 and 

Figure 3.6 yielded no significant difference in the freestream or on the boundary layer. 

3.4.1.3 2-D and 3-D Comparison 

In order to assess the extent of the turbulent cylinder-interaction, and to provide a 

comparison between the 2-D and 3-D flows over the flat plate, a 3-D version of the domain 

in Figure 3.6 was generated. The domain for this 3-D version is shown in Figure 3.7 and 

used the same dimensions as those in Figure 3.6. The mesh for the domain in Figure 3.7 

was created in two directions: the flat plate flow remained in the x-y plane and the mesh 

from Figure 3.4 was extruded to z/d = 5. The cylinder-interaction section was created in a 

similar manner, where a base mesh in x-z was generated, as shown in Figure 3.8, and 

extruded first to match the height of the cylinder at y/d = 4. Then, the top of the cylinder 

was closed off and the mesh was extruded again to match the local domain height of 

approximately y/d = 8.7. The extrusion matched the cell spacing for each respective case. 

For the cylinder-interaction mesh in Figure 3.8, the same y+ = 1 and GR = 1.1 was applied. 

Furthermore, the radial section extended r/d = 3 outboard and had non-dimensional wall- 

distance of r+ = 1 with GR = 1.2 in the radial direction, and constant azimuthal spacing Δθ 

= 30, as normalized by y+. The total extent for the cylinder-interaction base mesh was from 

x/d = −5 to x/d = 10.5 and from z/d = 0 to z/d = 5, and the base domain contained a total of 

around 270 thousand cells. The full 3-D mesh with both the flat plate domain extruded 

along z and the cylinder-interaction domain extruded along y totaled approximately 19.8 

million cells. At the interface between the two meshes, a zonal interface was generated to 

connect the cell faces with one another. This was implemented as a zonal boundary 

condition in CFD++. Additionally, the use of a symmetry plane is visible in Figure 3.8, 

which cut the cell count in half. The use of the symmetry plane was tested by only running 

the cylinder-interaction mesh both with and without symmetry, and it was verified that the 

symmetry plane was a valid assumption. 

Simulations were performed with the CKE turbulence model. The reasons for this were 

two-fold: first, the CKE turbulence model contains a leading-edge transition model [33] 

that allows for a laminar section near the flat plate leading edge, thus providing a more  
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Figure 3.7. 3-D flat plate domain with cylinder, used to measure the extent of the 

interaction. 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Base mesh of cylinder-interaction in x-z. Grey lines indicate domain zones, 

black lines show actual cells.  
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accurate representation of the boundary layer development; second, the Musker turbulent 

boundary layer profile requires turbulence inputs of k and ε [33, 41], and rather than 

converting turbulence values, it was convenient to directly implement these values from 

the CKE model solution. As for the initial conditions, a two-box method was implemented. 

The first box encompassed the entire domain space and used the primitive values from 

Table 3.1; the second box was formed in the wake of the cylinder and used the same 

primitive variables, except that u∞ = 1 m s−1 in order to allow for the wake to develop by 

itself. A comparison between the 2-D and 3-D flat plate solutions yielded no significant 

differences along the centerline. The extent of the cylinder-interaction was measured, and 

initial upstream disturbances occurred around x/d = −3. As such, the radial extent of the 

base mesh in Figure 3.8 was deemed reasonable, as it fully encompassed the pressure onset 

of the interaction. This will be shown in a later section. 

3.4.1.4 Inlet Profiles 

A final comparison was done between freestream results from the PIV experiment of 

Combs et al. [7] and the 3-D flat plate with cylinder CFD result at x/d = −19.5, as 

summarized in Table 3.2. There was excellent agreement among all primitive variables, as 

they were within 1% of the experiment. Due to this agreement, the slice profiles at x/d = 

−19.5 and x/d = −5 were used as inlet profiles for the laminar and turbulent interactions, 

respectively. Note that PIV data from Combs et al. [7] does not exist at x/d = −5, so a direct 

comparison could not be made. Also note that the boundary layer height was not captured 

by PIV data, but was estimated in collaboration with Schlieren images by Lash et al. [6] 

around δ = 0.32-0.48 mm (0.1d-0.15d). This is in good agreement with flat plate boundary 

layer theory by Schlichting [31]. As the numerical values fall within this range, the absolute 

value of the relative difference is assumed to be 0%. Since the PIV data considered the 

mean flow field, the CFD slices also averaged the freestream values from y/d = 1 to y/d = 

2. Due to a non-zero pressure gradient being present on the flat plate, the primitive values 

still changed slightly, and this averaging was necessary; additionally, this explains the 

variation at the further downstream location of x/d = −5. 
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Table 3.2. Comparison between flat plate freestream conditions from CFD and PIV by 

Combs et al. [7] at x/d = −19.5, along with CFD data from x/d = −5. 

 x/d = −19.5 

Experiment 

x/d = −19.5 

CFD 

|Relative 

Difference| 

x/d = −5 

CFD 

P∞ [kPa] 31.1 31.409 0.99% 31.837 

T∞ [K] 166.2 167.2 0.60% 168.0 

u∞ [m s−1] 493 490.2 0.57% 488.5 

M∞ [-] 1.905 1.891 0.73% 1.880 

δ [mm] (0.32-0.48) 0.407 (0.00%) 1.15 

 

3.4.2 Turbulent Interaction 

Similar to the flat plate domain, the domain for the turbulent interaction was also 

progressively reduced. The first iteration used the same domain as the base mesh shown in 

Figure 3.8, where a box was considered with extents x/d = −5 to x/d = 10.5, y/d = 0 to y/d 

= 10, and z/d = 0 to z/d = 10. The second iteration decreased the height to y/d = 5 in order 

to reduce the cell count, and no significant differences were encountered in any of the 

parameters of interest. The third iteration decreased the height to y/d = 4, such that the 

upper boundary of the domain ended at the height of the cylinder. This method was also 

employed by Yamamoto and Takasu [15] and Hung and Buning [16], as it simplifies mesh 

generation. However, the scale of the interaction was decreased, as λ, and thus htp, were 

both smaller for this iteration, and so this iteration was invalid. The fourth iteration 

decreased the downstream extent to x/d = 8; again, no significant differences were 

encountered in any of the parameters of interest. It was ensured that the entirety of the 

subsonic region generated by the wake of the cylinder remained upstream of this outlet, 

and was found to extend downstream to about x/d = 6. A large set of results was gathered 

with the fourth iteration, where x/d = −5 to x/d = 8, y/d = 0 to y/d = 5, and z/d = 0 to z/d = 

5, and is presented in Chapter 4. As will be discussed later, the semi-infinite consideration 

for these results was questionable for large δ/d, which led to a fifth domain being generated, 

where a cylinder of height y/d = 10 was simulated, and the upper boundary extended to the 
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height of the cylinder. Both the fourth and fifth iterations used the base mesh, as shown in 

Figure 3.9, and extruded this to their respective boundary heights. Similar to the mesh 

shown in Figure 3.8, this mesh contained only structured, hexahedral cells. The actual cells 

are not shown here because a grid independence study altered these for each iteration. The 

values used to generate each mesh iteration in the grid independence study are presented 

in Table 3.3. The values of Δy and Δr were held constant once the boundary layer growth 

reached the intended maximum value of Δymax or Δrmax. This ensured that the grid did not 

become too coarse away from the wall. Other boundary conditions for this domain were 

similar to those for the flat plate domain. A Musker turbulent boundary layer profile [41] 

was implemented at the inlet with the freestream conditions from Table 3.2, including δ = 

1.15 mm (0.3622d). A zero-gradient outflow was present at the outlet. The far-field for 

both the fourth and fifth iterations was once again a characteristics-based inflow/outflow, 

using the same freestream conditions as in Table 3.2, but only the fourth iteration used the 

far-field absorbing layers. Initial conditions were similar to the 3-D flat plate flow, where 

the same near-zero velocity box was established in the cylinder wake. Note that the cell 

count is lower for the cylinder with height y/d = 10, despite containing a larger domain. 

This is because a y+ = 30 with GR = 1.2 was applied to the top of the cylinder with height 

y/d = 4, and thus required a higher cell count. 

 

 

 

Figure 3.9. Base mesh for turbulent interactions in x-z. Grey lines indicate domain zones.  
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Table 3.3. Characteristics of the turbulent interaction grid independence study with 

cylinders of height y/d = 4 and y/d = 10. 

 y+ Δymax r+ Δrmax Δθ Approximate 

Cell Count 

for height  

y/d = 4 

Approximate 

Cell Count 

for height  

y/d = 10 

Coarse 2 800 2 800 200 190,000 160,000 

Medium 1 400 1 400 100 910,000 700,000 

Fine 0.5 200 0.5 200 50 5,670,000 3,790,000 

Extra 

Fine 

0.25 100 0.25 100 25 - 23,780,000 

 

3.4.3 Laminar Interaction 

As the extent of the laminar interaction is much larger, a domain similar to that of the 

turbulent interaction was used, but with additions. The extent of this domain was from x/d 

= −19.5 to x/d = 15.5, y/d = 0 to y/d = 10, and z/d = 0 to z/d = 10. Note that the cylinder of 

height y/d = 10 was used here as well, such that the upper boundary ended with the top of 

the cylinder. Furthermore, note that the cylinder was still located at 25d downstream of the 

flat plate leading edge. At x/d = −19.5, Lash et al. [6] and Combs et al. [7] reported a 

transitional boundary layer, as the boundary layer was tripped immediately downstream of 

the flat plate leading edge, and a laminar boundary layer did not develop. In order to 

simulate a laminar interaction here, a non-physical assumption had to be made: the 

freestream pressure was reduced to P∞ = 3110 Pa, or one-tenth of the physical freestream 

pressure, in order establish a more traditionally laminar unit Reynolds number of 

approximately Rem = 2.83 × 106 m−1, while all other primitive variables were maintained 

as the experimental values described in Table 3.2. Due to convergence issues with a fully 

laminar solution, the SA-QCR turbulence model was used to simulate the flow. In order to 

maintain as much laminar domain as possible, an inactive source-term region was 

implemented from x/d = −19.5 to x/d = −13. This disabled any modification to ν̃ within that 
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region. It was verified that at stations downstream of this region, a laminar boundary layer 

still existed. Since CFD++ does not have an option for a laminar boundary layer inlet, a 

Blasius laminar boundary layer profile [42] was developed in MATLAB® R2015b with 

Prandtl number Pr = 0.744. This resulted in a velocity profile of height δ = 0.649 mm 

(0.2045d), and a temperature profile of height δth = 0.717 mm (0.2257d). Together with the 

remaining primitive variables, which were treated as constants, this Blasius profile was set 

at the inlet using a pressure-velocity-temperature-based 1-D inflow profile boundary 

condition. Note that a constant ν̃ = μ (8ρ)−1 was also set in the Blasius profile in order to 

establish a small, non-zero turbulence value that would maintain laminar conditions. 

Similar to the other simulations performed, a zero-gradient outflow was set at the outlet, 

and a characteristics-based inflow/outflow was defined at the far-field boundaries. As with 

the fifth iteration of the turbulent interaction, the far-field absorbing layers were not 

activated. Initial conditions were the same as before, where a two-box method was 

employed that initialized the cylinder wake to a near-zero velocity. A mesh indicating the 

extended domain zones is shown in Figure 3.10. A grid independence study similar to that 

performed for the turbulent interaction was also conducted, and its characteristics are 

outlined in Table 3.4. Note that the characteristics imposed on the laminar interaction 

meshes were the same as those for the turbulent interaction, and the only variation exists 

in the total cell count, thus enabling a direct comparison. 

 

 

 

 

 

Figure 3.10. Base mesh for laminar interactions in x-z. Grey lines indicate domain zones.  
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Table 3.4. Characteristics of the laminar interaction grid independence study. 

 y+ Δymax r+ Δrmax Δθ Approximate 

Cell Count 

Coarse 2 800 2 800 200 360,000 

Medium 1 400 1 400 100 1,800,000 

Fine 0.5 200 0.5 200 50 10,040,000 

Extra 

Fine 

0.25 100 0.25 100 25 64,140,000 
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CHAPTER 4 

STEADY-STATE RESULTS & ANALYSIS 

The results presented here were taken at the centerline plane of z/d = 0 and along the 

flat plate surface at y/d = 0. An initial convergence criterion of 10−5 for normalized residuals 

was set; however, due to the y-momentum term being consistently above this, the 

convergence criterion was relaxed to 10−4. With this criterion in place, all laminar and 

turbulent interactions with a cylinder height of y/d = 10 converged, as did the coarse and 

medium mesh results for the turbulent interactions with a cylinder height of y/d = 4. The 

fine mesh result for the interaction with a cylinder height of y/d = 4 did not converge, and 

residuals failed to drop below 10−3 while continuously oscillating. The fine mesh solution 

indicated that the lambda shock structure moved upstream and downstream unpredictably 

over several iterations. As such, the fine mesh results were not reported. These oscillations 

were not encountered in the results with the cylinder of height y/d = 10, because time-step 

spatial smoothing had been activated for those runs, and this alleviated the problem. 

4.1 Turbulent Interaction 

The results for the turbulent cylinder-interaction with differing heights (and domains) 

are discussed separately below. A comparison between the 3 turbulence models was made 

first alongside a grid independence study. Specific parameters of interest were then used 

to determine whether or not a mesh was well-converged, and if the turbulence model 

provided an accurate representation of the flow. The empirical/theoretical target parameters 

for a turbulent interaction were used, and a comparison to experimental results from Lash 

et al. [6] was described. Recall that for a turbulent interaction, the separation length is 

approximately λ/d = 2.65 [11]. The separation length was determined numerically by 

analyzing the first cell off the flat plate surface and determining when reversed flow was 

present, i.e. u < 0 m s−1. Using Equation (2-2), an empirical bow shock stand-off distance 

of B/d = 0.77 was calculated, which was determined in the post-processor by analyzing the 

streamwise extent of the sonic line in the bow shock region. Using Equation (2-1), a wave 

angle of φ = 41.7° was calculated, and combined with λ/d and B/d, resulted in a triple point 

height htp/d = 1.68 using Equation (2-3). 
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4.1.1 Cylinder with Height y/d = 4 

4.1.1.1 Grid Independence Study 

As mentioned above, a grid independent solution was not achieved for the cylinder 

with height y/d = 4. Therefore, only the medium mesh results for this interaction are 

discussed, as they were representative of the geometry. Note that results for the cylinder of 

height y/d = 10 did converge, and were qualitatively similar to the results reported for the 

cylinder of height y/d = 4. 

4.1.1.2 Turbulence Model Comparison 

A result on the centerline plane with the CKE turbulence model is shown in Figure 4.1a 

and b, where Figure 4.1a shows the Mach number contours, including the black sonic line, 

and Figure 4.1b shows numerical Schlieren contours as the magnitude of the first derivative 

of density in the x-direction, representing an equivalent vertical knife edge. Note that the 

upper boundary of the domain appears unphysical; this is due to the far-field absorbing 

layer boundary conditions, where the inviscid bow shock and the expansion waves 

generated by the top of the cylinder were damped out in the last 3 cells to the freestream 

values. The subsonic portion of the cylinder wake, as seen in Figure 4.1a, was longest at 

the centerline, and this subsonic extent was captured in all simulations. 

A comparison between the three turbulence models is shown in Figure 4.2a-f, where 

Figure 4.2a-c shows Mach number contours and Figure 4.2d-f shows numerical Schlieren 

contours of the CKE, SST, and SA-QCR turbulence models, respectively. Note that Figure 

4.2a- c uses the same contour levels as those in Figure 4.1a, and Figure 4.2d-f uses the 

same contour levels as those in Figure 4.1b. The sonic line is shown as the pink solid line 

within the Mach number contours, and as the orange solid line within the numerical 

Schlieren contours. The empirical values for B and htp were superimposed in black and 

pink dashed lines between the Mach number and numerical Schlieren contours, 

respectively. Qualitatively, all structures of the lambda shock are visible. Flow separation 

induces bifurcation of the inviscid shock into the forward and trailing shock. There is good 

qualitative agreement between the CKE and SA-QCR turbulence model results and the 

empirical values of B/d and htp/d, as well as the separation length. For the SST turbulence  
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Figure 4.1. a) Mach number and b) numerical Schlieren contours of medium mesh result 

with cylinder of height y/d = 4 with CKE turbulence model at z/d = 0. Black line in a) is 

sonic line. 
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Figure 4.2. Medium mesh results for cylinder of height y/d = 4. a) - c) Mach number 

contours for CKE, SST, and SA-QCR turbulence models, respectively, where pink line 

represents sonic line, black lines represent empirical values for B and htp. d) - f) Numerical 

Schlieren contours for CKE, SST, and SA-QCR turbulence models, respectively, where 

orange line represents sonic line, pink lines represent empirical values for B and htp. 
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model result, the bow shock stand-off distance appears to have been calculated accurately. 

However, flow separation occurred too far upstream, and thus induced a higher triple point. 

Note that a supersonic jet downstream of the triple point, as described by many in literature 

[13, 15, 16, 19, 21, 23, 29], was not present for any turbulence model result. There was, 

however, a supersonic region located on the cylinder wall at around y/d = 0.3, directly 

downstream of the trailing shock foot for all turbulence model results. The size of this 

varied with the choice of turbulence model, but did not appear to impact the size of the 

supersonic region in the separation bubble. The SA-QCR turbulence model generated the 

largest supersonic region at the cylinder wall and also the smallest supersonic region in the 

separation bubble; however, the results from the SST turbulence model seem to invalidate 

a correlation. The results with the SST turbulence model indicated a smaller supersonic 

region at the cylinder wall than those for the SA-QCR turbulence model, but also the largest 

supersonic region in the separation bubble. Both the CKE and SST turbulence model 

results reached a plateau for the height of the separation bubble, where an expansion fan 

was induced. This expansion fan impinged upon the trailing shock and added curvature to 

the shape of the shock. This fan was not visible in the SA-QCR turbulence model result. It 

can also be seen that the separation bubble for all turbulence model results intersected with 

the trailing shock; it appears that the trailing shock foot is located at this intersection. 

A quantitative analysis of the results is presented in Table 4.1, where the parameters of 

interest were directly compared to the empirical values [11]. Note that the spatial accuracy 

of the CFD values was ±1.7% for λ/d, ±2.4% for B/d, and ±1.6% for htp/d, assuming that 

the finite volume solution can be determined accurately across half a cell size. From this 

comparison, it can be seen that the CKE and SA-QCR turbulence models were in good 

agreement with empirical values, since the absolute values of their relative differences were 

within 10%. The results from the SST turbulence model, however, indicated a large 

difference in both separation length and triple point height, exceeding 15% in both 

instances. The SST turbulence model is known to predict early boundary layer separation, 

despite being a recommended turbulence model for SWBLIs [43-45]. However, based on 

the information gathered, the SST turbulence model does not appear suitable for this type 

of flow. 
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Table 4.1. Comparison of parameters of interest between empirical values [11] and medium 

mesh results for all turbulence models with cylinder of height y/d = 4. 

  CKE SST SA-QCR 

 Empirical 

Value 

CFD 

Value 

|Relative 

Difference| 

CFD 

Value 

|Relative 

Difference| 

CFD 

Value 

|Relative 

Difference| 

λ/d 2.65 2.64 0.4% 3.06 15.5% 2.55 3.8% 

B/d 0.77 0.74 3.9% 0.72 6.5% 0.73 5.2% 

htp/d 1.68 1.72 2.4% 1.99 18.5% 1.63 3.0% 

 

A comparison with the CKE turbulence model results and in-house experimental work 

of Lash et al. [6] and Combs et al. [7] indicated further discrepancy than the empirical 

values [11]. The mean location of the separation length from Schlieren data from Figure 

2.5 was λ/d = 2.15 [6], and from PIV data was λ/d = 2.79 [7]. Taking these values and 

comparing them with the empirical value of λ/d = 2.65 [11] yields an absolute relative 

difference of 23.3% for Schlieren results and 5.3% for PIV results. Note that the Schlieren 

results had a lower standard deviation of σ/d = 0.1 [6], as opposed to the higher standard 

deviation of σ/d = 1.68 obtained from the PIV data [7]. As it stands, the SA-QCR turbulence 

model generated results closer to the experimental data, but the results with the CKE 

turbulence model were better aligned with the empirical values. However, the experimental 

data are still consistent with results from literature [23, 46]. 

Further qualitative and quantitative analyses were performed by analyzing the 

streamlines in the centerline plane using only u and v. These are shown for all of the 

turbulence models in Figure 4.3a-f. Note that the Mach number contour levels are again 

the same as in Figure 4.1a. A single, large, primary vortex was visible in the separation 

bubble for all results, with characteristics similar to those reported by Hung and Buning 

[16]. These results differ, however, from those obtained by Yamamoto and Takasu [15], 

where the separation bubble contained two co-rotating vortices. The choice of scheme may 

factor in here, as Hung and Buning [16], similar to this study, generated a steady-state 

solution, and Yamamoto and Takasu [15] generated a time-accurate solution.  
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Figure 4.3. Streamlines on medium mesh results for cylinder of height y/d = 4. a) - c) With 

and d) - f) without Mach number contours, for CKE, SST, and SA-QCR turbulence models, 

respectively. 
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An initial study that was performed, which is not presented here, used hybrid 

RANS/LES to model the problem using the fine mesh [47]. In the hybrid RANS/LES 

results, a number of co-rotating primary vortices, varying between 3 and 6, were observed 

in the separation bubble. Therefore, the occurrence of only a single large vortex may be an 

artifact of Reynolds-averaging, and the presence of multiple co-rotating vortices may be 

more physical, but this requires future investigation. 

A closer look at the streamlines near the corner region around x/d = 0 and y/d = 0 is 

shown in Figure 4.4a-c. The Mach number contours have been altered here to view the 

subsonic portion of the flow. Despite the red contour level in Figure 4.4b, the flow 

remained entirely subsonic. A secondary and tertiary vortex are visible here. For the CKE 

and SST turbulence model results, a quaternary vortex, which was contained within 0.002d 

in both the streamwise and transverse directions, was present directly at the corner. For the 

SA-QCR turbulence model, this quaternary vortex was not present. Due to its extremely 

small size, on the order of μm, this quaternary vortex is not further discussed. The 

secondary vortex was formed in a similar manner as shown in Figure 2.7, where SL1 

corresponds to the half-saddle, and F4 corresponds to the node. At the flat plate surface, 

the primary and secondary vortex diverged, at what corresponds to the half-saddle AL1 in 

Figure 2.7. This impingement upon the flat plate surface induced a stagnation point, which 

is likely a source of high pressure. 

4.1.1.3 Surface Pressure Analysis 

Two important characteristics of the flow field are the pressure rise just upstream of 

separation and the pressure on the flat plate surface directly underneath the separation 

bubble. The flat plate surface pressure ratio is shown in Figure 4.5. The interaction 

exhibited the classical shape of an initial rise, plateau, drop, and final rise characteristic of 

other interactions reported in the literature [12-16]. Differences in the location of the initial 

pressure rise were directly proportional to the flow separation length: the further upstream 

the initial pressure rise occurred, the further upstream the separation point was. This was 

evident in the fact that the result with the SST turbulence model, which over-predicted 

separation compared to both the empirical values and the results of the other turbulence 
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Figure 4.4. Streamlines on zoomed-in corner region of medium mesh results for cylinder 

of height y/d = 4. a) - c) Mach number contours for CKE, SST, and SA-QCR turbulence 

models, respectively.  
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Figure 4.5. Medium mesh results with indicated turbulence models, showing normalized 

pressure on the flat plate surface, upstream of the cylinder with height y/d = 4. 
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models, had an initial pressure rise well upstream of the results with the other turbulence 

models. This early separation with the SST turbulence model result also affected the 

pressure plateau, which was lower than that for the other turbulence model results. 

Comparing the CKE and SA-QCR turbulence model results, they were relatively consistent 

for the initial pressure rise and plateau. However, in the region directly underneath the node 

of the primary vortex, the CKE turbulence model result experienced a sharp drop, whereas 

this drop was more gradual with the SA-QCR turbulence model result. Around x/d = −0.5, 

a trough with P/P∞ > 1 was experienced for all turbulence model results, followed by the 

final rise in pressure that led to the peak pressure. This was then followed by a small drop 

in pressure directly at the cylinder leading edge. Determining the peak pressure magnitude 

and location on the flat plate surface is a key factor in the design of high-speed systems, as 

it drives the structural requirements. While experimental work is unable to resolve the near-

cylinder-wall region in the way that a computation could, both experimental and 

computational work in literature has agreed upon the pressure peak being located near the 

cylinder leading edge [12-14, 15, 16, 19], and this is further visible in the blunt-fin-

interaction results of both Hung and Buning [16] and Dolling and Bogdonoff [19] in Figure 

2.6a. A peak pressure of P/P∞ ≈ 4.8 was calculated for all turbulence model results. Hung 

and Buning [16] reported a peak pressure of P/P∞ ≈ 6 at M∞ = 2.95, and Yamamoto and 

Takasu [15] reported a peak pressure of P/P∞ ≈ 19 at M∞ = 3.92. The plateau and peak 

pressure values were lower than other computational [15, 16] and experimental [12, 14, 

19] results in literature, but that may simply be due to the lower freestream Mach number. 

Additionally, Dolling and Bogdonoff [12] described a weak dependence on δ/d on the scale 

of the interaction, which may further factor into the lower pressure ratio. 

4.1.1.4 Effect of Incoming Boundary Layer Height 

As a result of this dependence, a study was performed where the incoming boundary 

layer height δ/d was varied, but all other constraints were maintained constant. As such, 

the only variation was in the formulation of the Musker turbulent boundary layer profile 

[41] as an inlet condition, where a different boundary layer height was input. The variation 

was from δ/d = 0.25 to δ/d = 2.50 in increments of 0.25. Only the CKE turbulence model 

was used here since it provided the most accurate results compared to empirical values. 
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The results from above with δ/d = 0.3622 were not included in the discussion below in 

order to provide an assessment using a constant incremental value. Numerical Schlieren 

contours with contour levels similar to those in Figure 4.2d-f are shown in Figure 4.6a-j, 

where Figure 4.6a represents δ/d = 0.25, each successive letter represents an increment by 

0.25 from the previous letter, and the final value of δ/d = 2.50 is shown in Figure 4.6j. From 

a qualitative perspective, as δ was increased, so was the scale of the lambda shock structure. 

The forward shock shifted further upstream as δ/d was increased, and as a result, htp shifted 

upwards. Note that for the case of δ/d = 1.25, h/htp < 2, and so the semi-infinite height 

consideration [12], where h/htp > 2-3, was no longer valid. Results with the cylinder of 

height y/d = 10 ensured that this issue was mitigated. The strength of the interaction seemed 

to have decreased with increasing δ, as the near-wall supersonic regions, indicated by the 

orange sonic line, continuously decreased in size and eventually were no longer present. 

This may have been due to the larger separation bubble, where the flow was not as 

compressed, thus allowing for lower-velocity expansions. Furthermore, the decreasing 

strength of the interaction as δ was increased was visible in the greater dissipation and 

curvature of the forward shock, as well as in the straightening of the trailing shock. It 

appears as though the trailing shock tended towards a normal shock for the highest δ/d, 

which was where htp was fully submersed within the boundary layer. A correlation still 

existed between the trailing shock foot and separation bubble height as δ was increased; 

however, as δ/d ≥ 1.25, the highest point in the separation bubble was no longer at the 

trailing shock foot. 

A quantitative analysis of the parameters of interest is shown in Figure 4.7a-c, where 

the parameters were compared to the empirical values [11], including a ±10% error 

threshold. It can be seen in Figure 4.7b that B was nearly constant for any given value of 

δ. From Figure 4.7a it can be seen that λ did begin to increase as δ was increased; however, 

λ decreased for δ/d ≥ 1.25, which was contrary to what was observed in the numerical 

Schlieren contours from Figure 4.6e-j. This discrepancy factored into the calculation of htp, 

and therefore, Figure 4.7c includes both the values that were calculated using Equation 

(2-3), as well as those obtained via visual inspection of the numerical Schlieren contours. 
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Figure 4.6. Medium mesh results with varied incoming boundary layer height δ/d for 

cylinder with height y/d = 4. a) - j) δ/d = 0.25 to δ/d = 2.50 with constant increment of 0.25. 

Orange line represents sonic line. 
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Figure 4.7. Comparison of parameters of interest between empirical values [11] and 

medium mesh results for varied δ/d with cylinder of height y/d = 4. a) λ/d, b) B/d, c) htp/d.  
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The visual inspection indicates an expected trend, where htp linearly increased as δ was 

increased. It can also be seen here that for δ/d ≥ 1.25, htp/h < 2, and the semi-infinite height 

consideration was no longer valid. This contributed to the decision to perform simulations 

with a cylinder of height y/d = 10. 

For completeness, the pressure ratio on the flat plate surface is shown in Figure 4.8. 

The initial pressure rise that is known to induce flow separation consistently shifted further 

upstream with an increase in δ. This agrees well with the observations from numerical 

Schlieren contours in Figure 4.6a-j. Strangely, the actual separation length did not also 

increase for the values where δ/d ≥ 1.25, as shown in Figure 4.7a. In correlation with the 

upstream shift in the initial pressure rise, the magnitude of the pressure plateau region was 

reduced. In all cases, the pressure trough following the pressure plateau region gathered at 

around x/d = −0.8, which approximately coincided with the center of the supersonic region 

in the separation bubble. The peak pressure location for all cases was at the stagnation point 

where the primary and secondary vortices split, at an equivalent of AL1 in Figure 2.7. The 

peak pressure magnitude decreased with increasing δ, which is a promising observation. 

Further study with a true semi-infinite cylinder is necessary to verify this observation, and 

so the cylinder with height y/d = 10 underwent a similar analysis. 

Apart from the pressure ratio on the flat plate surface, the pressure ratio on the cylinder 

leading edge was also analyzed, as shown in Figure 4.9. The trend agrees well with both 

Westkaemper [11] and Hung and Buning [16]. First, an initial pressure decrease was 

observed along the height of the cylinder. This generated a trough pressure, followed by a 

pressure rise in a shear region that was induced by the primary vortex, until a peak pressure 

was observed. This was followed by a pressure decrease until the inviscid region, where 

P/P0,2 = 1 remained constant. As δ was increased, the magnitudes of both the trough and 

peak pressure decreased, similar to what Hung and Buning [16] reported. The peak pressure 

location here correlated well with the observed triple point height, as indicated by Figure 

4.7c, and the differences between the two were consistently within 15%. The trough 

pressure location did not appear to have a similar correlation with any parameter of interest; 

however, this location was just upwards of the separation line of the secondary vortex, 
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Figure 4.8. Medium mesh results with varied δ/d, showing normalized pressure on the flat 

plate surface, upstream of the cylinder with height y/d = 4. 
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Figure 4.9. Medium mesh results with varied δ/d, showing normalized pressure on the 

cylinder leading edge of the cylinder with height y/d = 4. 
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corresponding to SL1 in Figure 2.7. Furthermore, the trough pressure appeared to have 

settled to a minimum magnitude around P/P0,2 ≈ 0.43 and location around y/d ≈ 0.35. The 

pressure fluctuations downwards of this trough pressure were only observed for low δ/d. 

These straightened out for the cases where δ/d ≥ 1.25, so further investigation was required 

before drawing any conclusions. 

4.1.2 Cylinder with Height y/d = 10 

4.1.2.1 Grid Independence Study 

As previously discussed, the results generated with a cylinder of height y/d = 4, 

although considered semi-infinite for the experimental conditions, could not be considered 

semi-infinite for large δ/d. Therefore, an analysis with a cylinder of height y/d = 10 was 

also performed. Furthermore, as this analysis was performed, increased insight into the 

requirements for simulations of this type of interaction allowed for a better numerical 

formulation, and thus convergence. In particular, the activation of time-step spatial-

smoothing and the decrease of the temporal smoothing (under-relaxation) parameter from 

0.75 to 0.5 significantly improved stability and convergence. As such, the grid 

independence study, outlined in Table 3.3, could be completed successfully, and results are 

shown in Figure 4.10a-c. It can be seen that B in Figure 4.10b was nearly constant for all 

turbulence models at all mesh sizes. Figure 4.10a shows that λ was nearly identical between 

the fine and extra fine meshes for all turbulence models, and similarly, htp was very similar 

between the fine and extra fine meshes. A small discrepancy exists here because of 

measurement error from the forward shock angle. However, as previously mentioned, htp 

was not as accurately determined as λ or B, and the consistency observed with the other 

parameters for the fine and extra fine meshes led to the conclusion that the fine mesh 

sufficed. Therefore, all successive simulations were performed with the fine mesh. 

4.1.2.2 Turbulence Model Comparison 

The entire domain with the SA-QCR turbulence model is shown in Figure 4.11a and b, 

where, similar to Figure 4.1a and b, Figure 4.11a shows the Mach number contours, and 

Figure 4.11b shows numerical Schlieren contours. For this, and the other simulations 
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Figure 4.10. Grid independence study comparing the parameters of interest for various 

turbulence models with cylinder of height y/d = 10. a) λ/d, b) B/d, c) htp/d.  
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performed with the cylinder of height y/d = 10, the far-field absorbing layers were not 

active, as they did not impact the flow field. As a result, there was some shear stress at the 

upper boundary causing an extended wake. However, the area of interest was still near the 

flat plate surface, and this error was therefore not a concern. As before with the cylinder of 

height y/d = 4, the entire subsonic extent of the wake was captured. 

A comparison between the three turbulence models, similar to that presented in Figure 

4.2a-f, is shown in Figure 4.12a-f, again in the order of CKE, SST, and SA-QCR turbulence 

models, respectively. Figure 4.12a-c shows the Mach number contours and Figure 4.12d-f 

shows the numerical Schlieren contours. The sonic line is shown as the pink solid line in 

the Mach number contours, and as the orange solid line in the numerical Schlieren 

contours. Again, the empirical values for B and htp are superimposed in the black and pink 

dashed lines for the Mach number and numerical Schlieren contours, respectively. 

Qualitatively, the results were very similar to those observed for the cylinder with 

height y/d = 4. There is, again, good agreement between the CKE and SA-QCR turbulence 

model results and the empirical values, although the bow shock was simulated further 

upstream than for the cases with the cylinder of height y/d = 4. The results with the SST 

turbulence model again seemed to have properly simulated the bow shock stand-off 

distance, but over-predicted the separation length, and therefore produced a higher triple 

point. The supersonic jet downstream of the triple point was again not visible for any of 

the turbulence model results. Instead, the supersonic region directly at the cylinder wall 

and downstream of the trailing shock foot was again present, and its size varied depending 

on the turbulence model selected. The largest extent of this was seen for the SA-QCR 

turbulence model in Figure 4.12c and f. Furthermore, the smallest supersonic region within 

the separation bubble at the flat plate surface was also observed with the SA-QCR 

turbulence model. However, a correlation still did not exist, as the results with the SST 

turbulence model indicated supersonic regions that were both larger in size than those for 

the results with the CKE turbulence model. Similar to the results with a cylinder of height 

y/d = 4, the results with the CKE and SST turbulence models reached a plateau for the 

height of the separation bubble that induced a Prandtl-Meyer expansion fan. A very weak 

expansion fan was visible for the results with the SA-QCR turbulence model.  
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Figure 4.11. a) Mach number and b) numerical Schlieren contours of fine mesh result with 

cylinder of height y/d = 10 with SA-QCR turbulence model at z/d = 0. Black line in a) is 

sonic line.  
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Figure 4.12. Fine mesh results for cylinder of height y/d = 10. a) - c) Mach number contours 

for CKE, SST, and SA-QCR turbulence models, respectively, where pink line represents 

sonic line, black lines represent empirical values for B and htp. d) - f) Numerical Schlieren 

contours for CKE, SST, and SA-QCR turbulence models, respectively, where orange line 

represents sonic line, pink lines represent empirical values for B and htp. 
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A quantitative analysis of the results is presented visually through the grid 

independence study in Figure 4.10a-c and numerically in Table 4.2. In all cases, B/d was 

calculated to be in the same location, although this was upstream of the expected value. 

Compared with the results from Table 4.1 for the cylinder with height y/d = 4, it can be 

seen that λ had shifted upstream and, as a result, htp shifted upwards for the CKE and SA-

QCR turbulence model results. The SA-QCR turbulence model results were now in better 

agreement with the empirical values than the CKE turbulence model results were. The 

absolute relative difference of the empirical values and the SST turbulence model results 

for λ/d and htp/d still exceeded 15% in both instances. Based on these results and those with 

a cylinder of height y/d = 4, the SST turbulence model is not recommended for this type of 

flow, as flow separation is induced too far upstream. 

A comparison with the in-house experimental work of Lash et al. [6] and Combs et al. 

[7] yielded a greater error than for the results with a cylinder of height y/d = 4 when 

compared to Schlieren data, but less error when compared to PIV data. The SA-QCR 

turbulence model results generated the closest values to the empirical values [11], with an 

absolute relative difference in 4.2% for λ/d. The absolute relative difference to the mean 

location from Schlieren data, with λ/d = 2.15 [6], was 29.8%; however, the absolute relative 

difference to the PIV data, with λ/d = 2.79 [7], was only 1.1%. In both cases the SA-QCR 

turbulence model results were greater in magnitude, and based on the results in 

 

 

Table 4.2. Comparison of parameters of interest between empirical values [11] and fine 

mesh results for all turbulence models with cylinder of height y/d = 10. 

  CKE SST SA-QCR 

 Empirical 

Value 

CFD 

Value 

|Relative 

Difference| 

CFD 

Value 

|Relative 

Difference| 

CFD 

Value 

|Relative 

Difference| 

λ/d 2.65 2.83 6.8% 3.06 15.5% 2.76 4.2% 

B/d 0.77 0.84 9.1% 0.84 9.1% 0.84 9.1% 

htp/d 1.68 1.80 7.1% 1.94 15.5% 1.69 0.6% 

  



 

57 

Figure 4.10 and Table 4.2, this makes the case that all of the CFD predictions in this study 

for λ in a turbulent interaction were too far upstream. Overall, the differences in λ/d and 

htp/d, as parameter of interest between the cylinder of height y/d = 4 and y/d = 10, were 

within 10% of one another, as indicated by the differences between Table 4.1 and Table 

4.2. Therefore, the discrepancies between experiments and CFD results are not severe, and 

the data are in good quantitative agreement. 

The centerline streamlines were analyzed again using only u and v, and are shown in 

Figure 4.13a-f, with Figure 4.13a-c showing Mach number contours with the same contour 

levels as in Figure 4.11a, and Figure 4.13d-f only showing the streamlines with no contour. 

Many similarities were observed when compared to the results with a cylinder of height 

y/d = 4. The single, large, primary vortex was still present, with smaller-scale vortices 

located in the corner region. The flow separation and attachment lines, corresponding to 

SL and AL in Figure 2.7, respectively are also visible. The streamlines near the corner 

region, similar to those shown in Figure 4.4a-c, are provided in Figure 4.14a-c. Again, the 

Mach number contours were altered to show the subsonic portion of the flow. These 

contours indicate a lower-velocity flow in this region for all turbulence model results when 

compared to the results with the cylinder of height y/d = 4. Furthermore, the attachment 

line corresponding to AL1 in Figure 2.7 had shifted downstream for all turbulence model 

results, with the smallest shift occurring for the SA-QCR turbulence model result. This 

shift decreased the size of both the secondary and tertiary vortices; therefore, it appears 

that the secondary and tertiary are correlated in size. All in all, the further separation is 

induced upstream, the larger the separation bubble becomes; a larger separation bubble 

induces a slower velocity about the secondary vortex and drives it further downstream, thus 

decreasing the size of this secondary vortex. It follows then that the size of the tertiary 

vortex is decreased, along with the sizes of any potential smaller vortices. 

4.1.2.3 Surface Pressure Analysis 

Similar to the analysis performed on the cylinder with height y/d = 4, the surface 

pressure ratio upstream of the cylinder was assessed. This normalized pressure ratio is 

shown in Figure 4.15 for all turbulence models, and is very similar in both shape and  
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Figure 4.13. Streamlines on fine mesh results for cylinder of height y/d = 10. a) - c) With 

d) - f) and without Mach number contours, for CKE, SST, and SA-QCR turbulence models, 

respectively. 
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Figure 4.14. Streamlines on zoomed-in corner region of fine mesh results for cylinder of 

height y/d = 10. a) - c) Mach number contours for CKE, SST, and SA-QCR turbulence 

models, respectively. 
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Figure 4.15. Fine mesh results with indicated turbulence models, showing normalized 

pressure on the flat plate surface, upstream of the cylinder with height y/d = 10. 
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magnitude as the results shown in Figure 4.5 for the cylinder with height y/d = 4. The 

largest differences between the two was that the initial pressure rise had shifted upstream 

by approximately 0.2d for the SST and SA-QCR turbulence model results, that the trough 

pressure had shifted upstream by approximately 0.05d for all turbulence model results, and 

that the surface pressure downstream of the peak pressure had increased from P/P∞ ≈ 3.4 

for the cylinder with height y/d = 4 to P/P∞ ≈ 3.8. It is likely that this increase in pressure 

was in correlation with the reduced size of the secondary vortex, but further investigation 

is required to ascertain this. 

The normalized surface pressure ratio on the cylinder leading edge is shown in Figure 

4.16 for all turbulence models. Starting at the base of the cylinder and moving upwards, 

some initial fluctuations were observed for all turbulence model results, followed by a 

decrease that led to the trough pressure around y/d = 0.3. The lowest trough pressure was 

observed with the SA-QCR turbulence model at around P/P0,2 ≈ 0.5. This was followed by 

a pressure rise until the peak pressure around y/d = 1.6 for the CKE and SA-QCR 

turbulence models, and y/d = 1.8 for the SST turbulence model, with P/P0,2 ≈ 1.2. Upwards 

of this peak pressure, the triple point occurred, and above this, the inviscid bow shock was 

present, where P/P0,2 = 1. 

Based on the quantitative and qualitative results gathered, either the CKE or SA-QCR 

turbulence models were deemed appropriate choices for this type of flow. However, 

comparisons with the in-house experiments [6, 7] and Yamamoto and Takasu [15] make it 

clear that an unsteady analysis must be performed to fully characterize the flow. As 

previously mentioned, an initial study was conducted using hybrid RANS/LES that used 

the CKE turbulence model in the near-wall region [47]. However, the results were not as 

promising as expected, and therefore, a future study will be conducted with an improved 

delayed detached eddy simulation (IDDES) that uses the SA turbulence model in the near-

wall region [48]. In preparation for this, the results with the SA-QCR turbulence model 

were more closely analyzed, although the results with the CKE turbulence model provided 

equally feasible results. 
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Figure 4.16. Fine mesh results with indicated turbulence models, showing normalized 

pressure on the leading edge of the cylinder with height y/d = 10. 
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Similar to the results shown by Özcan and Yüceil [14], Figure 4.17a and b presents a 

top view of the flat plate surface in the x-z plane, with flow moving from bottom to top. 

Here, Figure 4.17a shows the skin friction coefficient, Cf, multiplied by a factor of 1000, 

with the contour levels cut off below Cf = 0.001 and above Cf = 0.01. Figure 4.17b shows 

the normalized pressure ratio, and the contour levels were cut off below P/P∞ = 0.6 and 

above P/P∞ = 2. These cut-offs were done to provide clarity in the figures. It can be seen 

in both Figure 4.17a and b that the initial pressure rise was correlated with a friction value 

below the freestream condition. The pressure plateau, indicated by the contour line P/P∞ = 

1.7 in Figure 4.17b, decreased in magnitude as the flow moved outboard from the 

centerline. Similarly, the surface peak pressure also decreased in magnitude as the flow 

moved outboard, but at a steeper rate and sharper angle. It was discovered in Figure 4.17a 

that the lowest Cf upstream of the cylinder corresponded to the separation point between 

the secondary and tertiary vortices, as shown in Figure 4.14. Furthermore, the diverging 

streamlines of the primary and secondary vortices also corresponded to a region of low 

friction. These correlations are physical, as the low subsonic flow in these regions will 

generate less shear stress along the flat plate surface than a higher-speed flow would. From 

both Figure 4.17a and b it can be seen that the bulk of the interaction was within z/d = ±2 

off the centerline, and although the effects of the protuberance were still visible further 

outboard, they were relatively weak in magnitude. This indicates that in addition to the 

interaction behaving in a closed sense, as described by Clemens and Narayanaswamy [10], 

it also behaves in an open sense away from the centerline, since the horseshoe vortices 

sweep outboard and continuously decrease the strength and scale of the interaction. 

4.1.2.4 Effect of Incoming Boundary Layer Height 

Because the SA-QCR turbulence model was selected as the most accurate, the effect of 

δ/d was studied using this turbulence model as well. The same variation of δ/d was imposed 

here as for the cylinder with height y/d = 4, such that the smallest boundary layer had δ/d 

= 0.25 and the largest boundary layer had δ/d = 2.50, and the increment remained at 0.25. 

As before, the result that compared to the experiment, where δ/d = 0.3622, was excluded 

to allow for a constant increment analysis. In a similar manner to Figure 4.6a-j, numerical  
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Figure 4.17. a) Skin friction coefficient × 103 and b) normalized surface pressure ratio lines 

and contours at y/d = 0 with SA-QCR turbulence model for cylinder of height y/d = 10. 

Flow from bottom to top. 
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Schlieren contours in the x-y plane are shown in Figure 4.18a-j, where Figure 4.18a 

represents δ/d = 0.25, each successive letter represents an increment by 0.25 from the 

previous letter, and the final value of δ/d = 2.50 is shown in Figure 4.18j. Similar qualitative 

trends as observed with the cylinder of height y/d = 4 are visible here for increasing δ: the 

forward shock shifted upstream, the triple point shifted upward, the separation bubble 

increased in size, and the supersonic regions at the wall near the corner decreased in size 

until they eventually disappeared. The strength of the interaction decreased with increasing 

δ, as did the strength of the forward shock. Furthermore, both the forward and trailing 

shocks curved more strongly inward. Visually, it appears as though the separation length 

remained at about λ/d = 3.0, while the onset of separation continued to shift upstream. The 

separation bubble plateaued in height for δ/d ≥ 1.25, and the trailing shock foot remained 

relatively constant at about y/d = 0.7 for these cases. Note that even for the largest value of 

δ/d, htp/d ≈ 2.5, resulting in h/htp ≈ 4, which ensured that the semi-infinite height condition 

of h/htp > 2-3 [12] was met. 

A quantitative analysis of the parameters of interest is shown in Figure 4.19a-c, where, 

similar to Figure 4.7a-c for the cylinder of height y/d = 4, the parameters of interest were 

again compared to the empirical values [11], including a ±10% error threshold. From 

Figure 4.19a it can be seen that the separation length remained relatively constant at λ/d ≈ 

2.84 for δ/d ≥ 0.75, with a slightly decreasing trend; the exact values for the δ/d = 0.75 and 

δ/d = 2.50 cases were λ/d = 2.85 and λ/d = 2.82, respectively. This relatively constant value 

for λ implies that the curvature of the forward shock becomes very strong in the near-wall 

region for δ/d ≥ 0.75, considering that the numerical Schlieren contours in Figure 4.18c-j 

indicate λ/d > 3. The bow shock stand-off distance in Figure 4.19b also remained relatively 

constant around B/d = 0.84, with a small increasing trend, such that B/d = 0.83 for δ/d = 

0.25, and B/d = 0.85 for δ/d ≥ 1.75. The combination of a decreasing λ and increasing B 

further verified the observation that an increased δ resulted in a decreased streamwise 

distance between the forward and trailing shocks for the same y, and thus a decreased scale 

of the interaction. The curvature of the forward shock also impacted the calculated height 

of htp, as indicated by Figure 4.19c. Due to φ being measured near the triple point, this  
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Figure 4.18. Fine mesh results with varied incoming boundary layer height δ/d for cylinder 

with height y/d = 10. a) - j) δ/d = 0.25 to δ/d = 2.50 with constant increment of 0.25. Orange 

line represents sonic line.  
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Figure 4.19. Comparison of parameters of interest between empirical values [11] and fine 

mesh results for varied δ/d with cylinder of height y/d = 10. a) λ/d, b) B/d, c) htp/d.  
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curvature was not accounted for. However, the values for htp/d obtained via Equation (2-3) 

provided a stronger argument for a decreased distance between the forward and trailing 

shock, as the equation takes into account the difference between the two. Nevertheless, this 

analysis showed that Equation (2-3) is only valid for small values of δ, where the forward 

shock foot is relatively straight; this occurred only for δ/d ≤ 0.50. The observed values for 

htp/d in Figure 4.19c were taken from the numerical Schlieren contours in Figure 4.18a-j, 

and indicated a positive linear trend with increasing δ. 

The pressure ratio on the flat plate surface is shown in Figure 4.20. The initial pressure 

rise shifted further upstream with increasing δ, as expected. There was a larger jump in the 

shift from δ/d = 0.25 to δ/d = 0.50 than for any other adjacent pair. For the larger values, 

where δ/d ≥ 2, the shift became very small, such that this was within 0.01d. The magnitude 

of the pressure plateau decreased with increasing δ. A uniform pressure decrease for all 

cases, except δ/d = 0.25, occurred after the pressure plateau, until around x/d = −0.9. The 

trough pressure here varied in both magnitude and location, with a lower magnitude and 

further downstream location occurring for smaller δ. An opposite trend was present for the 

peak pressure, where a smaller δ correlated with a higher peak pressure at a slightly further 

upstream location. These results are in good agreement with those for the cylinder of height 

y/d = 4, although there was an offset for the case where δ/d = 0.25. Based on the results 

gathered, a conclusion drawn is that a larger δ/d, and thus a larger δ/htp, is desirable for a 

SWTBLI generated by a cylinder (or blunt fin), as this decreases the scale of the interaction 

and drives down the peak pressure that can cause excess aerothermal and structural loading. 

Therefore, a recommendation is to conduct a future study that identifies the effects of δ/htp. 

The pressure ratio on the cylinder leading edge is shown in Figure 4.21. The general 

shape and trends were again in good agreement with literature [11, 16], but differed slightly 

from the results with a cylinder of height y/d = 4. The largest differences observed were at 

the base of the cylinder, where small values of δ induced seemingly large fluctuations for 

the cylinder of height y/d = 4. This was not the case for the cylinder of height y/d = 10, 

where only minor fluctuations were observed at the base for any δ, although the magnitude 

of these fluctuations was larger for smaller δ. The trough pressure also varied in both  
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Figure 4.20. Fine mesh results with varied δ/d, showing normalized pressure on the flat 

plate surface, upstream of the cylinder with height y/d = 10. 
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Figure 4.21. Fine mesh results with varied δ/d, showing normalized pressure on the 

cylinder leading edge of the cylinder with height y/d = 10. 
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magnitude and location. As for the location, the trough pressure was around y/d = 0.3 for 

δ/d = 0.25 and monotonically increased to around y/d = 0.35 for δ/d = 2.50. The magnitude 

was largest for δ/d = 0.25, resulting in P/P0,2 ≈ 0.52. The magnitude continued to decrease 

until δ/d = 1.00, where P/P0,2 ≈ 0.42. As δ/d was increased from 1.00 to 2.50, the magnitude 

increased again until about P/P0,2 ≈ 0.44. This initial decrease and sudden increase in trough 

pressure magnitude with increased δ/d is unexpected, but it did not seem to have any effect 

on the remainder of the pressure distribution. The peak pressure for each case was located 

again just downwards of the triple point, and within the range of P/P0,2 ≈ 1.18 for δ/d = 

0.25 to P/P0,2 ≈ 1.12 for δ/d = 2.50, with a seemingly linear decreasing trend. Upwards of 

this peak pressure location, all pressure ratios returned to the inviscid value of P/P0,2 = 1. 

4.1.3 SWTBLI Topology Characterization with RANS 

The streamlines for both cylinder heights, shown in Figure 4.3 for the cylinder of height 

y/d = 4 and in Figure 4.13 for the cylinder of height y/d = 10, were identical in both trend 

and behavior. Therefore, a graphic similar to that produced in Figure 2.7 was created using 

the method of Hunt et al. [49], and is shown in Figure 4.22 for the SA-QCR turbulence 

model result. The nodes and half-saddles were found using the Jacobian of the shear stress 

tensor τ. As required by Hunt et al. [49], the 2 nodes subtracted by the 4 half-saddles yielded 

0, since each node was associated with 1 separation line and 1 attachment line. A few 

correlations were found: SL1 corresponds to λ, AL1 corresponds to the peak pressure 

location on the cylinder leading edge, AL2 corresponds to the peak pressure location on the 

flat plate surface, and SL2 is loosely correlated to the trough pressure on the cylinder 

leading edge. It can be seen in Figure 4.22 that the streamlines turn with the oblique forward 

shock, and again with the oblique trailing shock. Near AL1, the streamlines were almost 

tangential again to the flat plate surface. Note that AL1 was at a slightly lower height than 

the triple point. Furthermore, SL2 was located downwards of the trough pressure location 

on the cylinder leading edge. This topological characterization aligns with the experimental 

characterization of Sedney and Kitchens [20] and with the computational steady-state 

results reported by Hung and Buning [16], but not with the unsteady results from  
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Figure 4.22. Topological model of SWTBLI using streamlines at z/d = 0 for SA-QCR 

turbulence model with fine mesh and cylinder of height y/d = 10. 

 

Yamamoto and Takasu [15], and it must be noted that this characterization is thus only 

valid for steady-state RANS simulations of a semi-infinite-cylinder-induced SWTBLI. The 

dimensions and scales of the interactions will vary depending on the choice of turbulence 

model and flow conditions, but dimensions were still provided here for reference. 

4.2 Laminar Interactions 

As with the turbulent interaction cases, a grid independence study was performed first. 

Again, λ/d, B/d, and htp/d were selected as the parameters of interest, and were used to 

determine whether or not a mesh was well-converged. Furthermore, a mesh-converged 

result was compared with empirical/theoretical parameters from literature. Recall that for 

a laminar interaction, the experimental separation length was approximately λ/d = 5.5-6 

[24]. As an estimate, a target value of λ/d = 5.75 was selected. The separation length was 

numerically determined in a similar manner as for the turbulent interaction results, that is, 

by analyzing the furthest upstream location where reversed flow was present. The empirical 

stand-off distance remained the same as for the turbulent interaction, such that B/d = 0.77, 
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and was numerically determined through the largest streamwise extent of the sonic line in 

the inviscid region. Using Equation (2-4), a wave angle of φ = 35.4° was calculated, and 

this resulted in an empirical triple point height of htp/d = 3.59. 

4.2.1 Grid Independence Study 

The grid independence study for the laminar interaction, as outlined in Table 3.4, was 

completed successfully, and results are summarized in Figure 4.23a-c. It can be seen that 

for the medium through extra fine mesh results, little variation existed for all parameters 

of interest. The bow shock stand-off distance in Figure 4.23b was modeled closer to the 

empirical value than for the turbulent interaction, shown in Figure 4.10b. The separation 

length in Figure 4.23a was in good agreement with the λ/d = 5.5-6 range reported by Leidy 

et al. [24], but further downstream than the older reported values of λ/d = 6-9 by Kaufman 

et al. [8]. Leidy et al. [24] found that a higher Rem decreased λ; the results here were 

obtained with Rem = 2.83 × 106 m−1, which was close to, but lower than the Rem = 3.0 × 106 

m−1 reported by Leidy et al. [24]. Therefore, values closer to, or exceeding λ/d = 6 were 

expected. Since the triple point height was determined with the same uncertainty as the 

separation length, the empirical value of htp/d in Figure 4.23c could be considered within 

the ±10% bounds. Despite the medium mesh producing parameters of interest that were 

sufficiently accurate and similar to those of the more resolved meshes, the results reported 

here will be for the extra fine mesh. Note that this is simply because the extra fine mesh 

provided cleaner shock resolution, and that the medium mesh results provide an equally 

valid analysis. 

4.2.2 Comparison to Empirical Values 

The centerline plane of the laminar interaction is shown in Figure 4.24a and b, where 

Figure 4.24a shows the Mach number contours, and Figure 4.24b shows the numerical 

Schlieren contours. The black solid line in the Mach number contour represents the sonic 

line. Note that the numerical Schlieren here is the summation of the density gradient in 

each of the 3 Cartesian coordinates, rather than a single vertical or horizontal knife edge 

representation; this was done to properly view the bow shock and separation bubble at the  
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Figure 4.23. Grid independence study comparing the parameters of interest for laminar 

interaction. a) λ/d, b) B/d, c) htp/d.  
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Figure 4.24. a) Mach number and b) numerical Schlieren contours of extra fine mesh result 

at z/d = 0. Black line in a) is sonic line. 
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same time, which were only clear with either a vertical or horizontal knife edge 

representation, respectively. Also note that the maximum contour level for the numerical 

Schlieren was an order of magnitude lower than for the turbulent interaction, indicating 

that the strength of the laminar interaction was much weaker than that of the turbulent 

interaction. It can be seen in both the Mach number contour of Figure 4.24a and the 

numerical Schlieren contour of Figure 4.24b that a Mach wave emanated from the surface, 

reflected off the upper boundary domain, and impinged upon the bow shock. The origin of 

this is likely due to a misalignment of the second coordinate in the Blasius laminar 

boundary layer profile and the y+ cell height in the mesh, or due to a cell-centered versus 

node-centered misalignment. Nevertheless, the impingement of the Mach wave upon the 

bow shock occurred far away from the region of interest and did not affect the interaction. 

The wake extended only about 4d downstream of the cylinder for the extra fine mesh result; 

however, this extension was around 12d for the medium mesh result. A variation in the 

upstream interaction was not observed, and so this difference was not of any particular 

concern. The separation bubble grew at a much shallower slope than for the turbulent 

interaction, and this small deflection angle resulted in a very weak forward shock. This is 

slightly visible in the Mach number contour in Figure 4.24a, but not at the given contour 

levels for the numerical Schlieren in Figure 4.24b. In order to examine the overall flow 

structure while also observing the more subtle variations in the flow, Figure 4.25a-d shows 

a comparison between the full contour levels, as shown in Figure 4.25a and d, and reduced 

contour levels, as shown in Figure 4.25b and c. For the Mach number contours in Figure 

4.25a and b, the pink solid line represents the sonic line. Similarly, for the numerical 

Schlieren contours in Figure 4.25c and d, the orange solid line represents the sonic line. 

The empirical values are superimposed as the dashed lines in black and pink for the Mach 

number and numerical Schlieren contours, respectively. A forward shock is more clearly 

visible in these reduced contour levels, as is the Prandtl-Meyer expansion fan near x/d = 

−1. Furthermore, a good qualitative agreement between the empirical values and the 

parameters of interest is visible. 
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Figure 4.25. a) - b) Mach number contours where pink line represents sonic line, black 

lines represent empirical values for B and htp. c) - d) numerical Schlieren contours where 

orange line is sonic line and pink lines represent empirical values for B and htp. Reduced 

contour levels for b) and c).  
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At this point, it should be verified that the interaction was in fact laminar, considering 

that a turbulence model was used to simulate the flow; this was necessary to generate a 

converged solution. The ratio of turbulent-to-laminar viscosity is thus shown in Figure 4.26 

for the region of interest, where the orange solid line represents a ratio of unity. The only 

space where turbulence was dominant was in the near-corner region. Throughout most of 

the remainder of the domain, the turbulent-to-laminar viscosity ratio was around 10−6, 

except downstream of the bow shock, where it was around 10−4. This verifies that the 

majority of the interaction (and freestream) space was in a laminar state, and that turbulence 

only began to affect the flow in the near-corner region. 

A quantitative summary of the extra fine mesh results is visually shown through the 

grid independence study in Figure 4.23a-c and numerically in Table 4.3. Because there was 

no concrete empirical value for λ/d or htp/d in the literature, these were kept in parentheses 

for reference. Note again that the value of λ/d = 5.75 was selected as the median of the 

expected range. The CFD values were either within the anticipated range or within 5% of 

the empirical values, and thus indicated a good quantitative agreement as well. 

The streamlines in the centerline plane were analyzed to provide further insight into the 

flow structure. As with the turbulent interaction cases, only u and v were used in the  

 

 

 

Figure 4.26. Turbulent-to-laminar viscosity for laminar interaction. Orange solid line is a 

ratio of unity.  
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Table 4.3. Comparison of parameters of interest between empirical values [11, 24] and 

extra fine mesh results for laminar interaction. 

 Empirical Value CFD Value |Relative Difference| 

λ/d (5.75) 5.69 (1.0%) 

B/d 0.77 0.78 1.3% 

htp/d (3.59) 3.47 (3.3%) 

 

 

analysis. The streamlines are shown in Figure 4.27a and b. The vortex structures show very 

primary vortex is visible in the separation bubble, and the smaller secondary and tertiary 

vortices are located in the near-corner region. The plateau of the separation bubble similar 

characteristics to those found in a turbulent interaction [8, 16], where a single, large, 

occurred at a similar height of y/d = 0.6 when compared to the turbulent interaction. At this 

location, just upstream of the trailing shock foot, a Prandtl-Meyer expansion fan was 

located, which turned the flow tangential to the flat plate surface. 

A more detailed examination of the streamlines in the corner region was performed and 

is shown in Figure 4.28. This was done to assess the locations of the separation and 

attachment lines, and possibly determine peak and trough pressure locations. Again, the 

Mach number contours in Figure 4.28a were altered to view the subsonic portion of the 

flow, and it can be seen that the flow remained entirely subsonic in this portion of the 

domain. As with the laminar interaction characterization from Figure 2.7 and the turbulent 

interaction characterization from Figure 4.22, the flow separation and attachment lines 

corresponding to SL1 and AL1 of Figure 4.22 were visible in Figure 4.27a and b for the 

primary vortex, and SL2 and AL2 were visible in Figure 4.27a and b and Figure 4.28a and 

b, respectively. Compared to the SA-QCR turbulent interaction results with the cylinder of 

height y/d = 10, SL1 for the laminar interaction increased by roughly a factor of 2, AL1 

shifted upstream from y/d = 1.5 to y/d = 2.3, and SL2 shifted upstream from x/d = −0.1 to 

x/d = −0.15. Surprisingly, however, AL2 remained nearly constant, with a small shift 

downwards from y/d = 0.21 for the turbulent interaction to y/d = 0.20 for the laminar 

interaction.  
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Figure 4.27. Streamlines for laminar interaction, a) with and b) without Mach number 

contours. 
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Figure 4.28. Streamlines on zoomed-in corner region for laminar interaction, a) with and 

b) without Mach number contour.  



 

82 

4.2.3 Surface Pressure Analysis 

In order to complete the present analysis of the laminar interaction, the surface pressure 

upstream of the cylinder was assessed. The normalized pressure ratio on the flat plate 

surface is shown in Figure 4.29, and exhibited a similar trend as compared to the turbulent 

interaction. The initial pressure rise occurred at around x/d = −8, followed by a very shallow 

pressure rise that remained below P/P∞ < 1.2. Around x/d = −2, the pressure drop occurred, 

which led to the trough pressure at x/d = −0.6; this trough pressure was also at the same 

location for all turbulent simulations. Note also that the trough pressure was below the 

freestream pressure around P/P∞ ≈ 0.9. The trough pressure was followed by the steep 

pressure rise, until the peak pressure of around P/P∞ ≈ 4.6 occurred at x/d = −0.16. This 

location correlated again with the attachment line AL2 in Figure 4.22. The peak pressure 

was slightly lower than the P/P∞ ≈ 4.8 for the turbulent interaction. The pressure 

downstream of the peak pressure was around P/P∞ ≈ 3.6, which was similar to the P/P∞ ≈ 

3.8 for the turbulent interaction with a cylinder of height y/d = 10. 

The pressure ratio on the cylinder leading edge is shown in Figure 4.30, and had similar 

trends as for a turbulent interaction. Starting at the base of the cylinder and moving 

upwards, some initial fluctuations were observed, followed by a decrease that led to the 

trough pressure of P/P0,2 ≈ 0.55 at y/d = 0.3. This was also observed for a turbulent 

interaction with the SA-QCR turbulence model and a cylinder of height y/d = 10, which 

yielded P/P0,2 ≈ 0.5 at the same location of y/d = 0.3. The pressure rise for the laminar 

interaction remained below P/P0,2 < 1.1 with a peak pressure of P/P0,2 ≈ 1.07 around y/d ≈ 

1.4, followed by a gradual decrease to the inviscid bow shock region with y/d > 4.6, where 

P/P0,2 = 1. This last trend was inverted when compared to the turbulent interaction, where 

a steep pressure rise from the trough pressure occurred, followed by a shallower rise after 

crossing P/P0,2 = 1, until the peak pressure value occurred in the vicinity of the triple point. 

This was then followed by a steeper decrease to the inviscid value of P/P0,2 = 1 in the 

turbulent interaction. No correlation was found when trying to determine what caused this 

discrepancy, or what the reason for the lower location of the peak pressure was in the 

laminar interaction, but it is suspected that the weaker interaction caused this. 
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Figure 4.29. Normalized pressure ratio on the flat plate surface for laminar interaction. 
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Figure 4.30. Normalized pressure on the leading edge of the cylinder for laminar interaction 
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Lastly, Figure 4.31a and b shows the skin friction coefficient, multiplied by 1000, and the 

normalized pressure ratio on the flat plate surface, respectively. Similar to the turbulent 

interaction, the contour levels were cut off below Cf = 0.001 and above Cf = 0.02, as well 

as below P/P∞ = 0.6 and above P/P∞ = 2, in order to provide clarity in the figures. The 

initial disturbance can be seen in Figure 4.31a around x/d = −9, but this is not visible in the 

pressure contour of Figure 4.31b due to the gradual pressure rise. The upstream pressure 

plateau can be seen in Figure 4.31b where P/P∞ < 1.2. An area of low Cf ≈ 0.004 was 

observed around x/d = −0.16, coinciding with the peak pressure. However, the lowest Cf in 

the upstream region was still near the leading edge where the tertiary vortex was formed. 

At this location, Cf ≈ 0.0003. Since the laminar interaction has greater length-scales 

associated with it compared to a turbulent interaction, the outboard extent was also 

expected to be greater. It can be seen in Figure 4.31a and b that the bulk of the interaction 

was within z/d = ±3. The effects that were further outboard than this were relatively weak 

in magnitude. This further indicates that the interaction behaves in a closed sense at the 

centerline, and in an open sense away from the centerline, since the horseshoe vortices 

sweep outboard and continuously decrease the strength and scale of the interaction. 

4.2.4 SWLBLI Topology Characterization with RANS 

The streamlines for the laminar interaction in Figure 4.27 were similar in both trend 

and behavior to those of the turbulent interactions in Figure 4.3 and Figure 4.13. Therefore, 

the method of Hunt et al. [49] was employed again to generate a topological model similar 

to that of Figure 4.22, and is shown in Figure 4.32 As required, the 2 nodes subtracted by 

the 4 half-saddles yielded 0, since each node was again associated with 1 separation line 

and 1 attachment line. Similar correlations exist as for the turbulent interaction: SL1 

corresponds to λ, AL2 corresponds to the peak pressure location on the flat plate surface, 

and SL2 is loosely correlated to the trough pressure on the cylinder leading edge, although 

SL2 was again located downwards of the trough pressure on the cylinder leading edge. A 

correlation between AL1 and other parameters was not found. Note, though, that AL1 was 

much lower than htp. This topological characterization does not agree with the experimental 
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Figure 4.31. a) Skin friction coefficient × 103 and b) normalized surface pressure ratio lines 

and contours at y/d = 0 for laminar interaction. Flow from bottom to top. 
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Figure 4.32. Topological model of SWLBLI using streamlines at z/d = 0 for SA-QCR 

turbulence model with laminar inputs. 

 

characterization obtained by Itoh and Mizoguchi [25], because, as seen in Figure 2.7, Itoh 

and Mizoguchi [25] derived 4 nodes with 2 larger counter-rotating vortices in the 

separation bubble, as opposed to 1 primary vortex. Based on the similar discrepancy that 

arose for a turbulent interaction, it must be noted that this characterization is thus also only 

valid for steady-state RANS simulations of a semi-infinite-cylinder-induced SWLBLI. As 

with the turbulent interaction, the dimensions and scales of the laminar interactions will 

vary depending on the choice of turbulence model and flow conditions, and dimensions 

were provided simply for reference. 
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CHAPTER 5 

CONCLUSIONS 

To establish the bounds of a cylinder-induced shock wave/boundary layer interaction 

in a transitional boundary layer, a numerical study was performed of the limiting laminar 

and turbulent cases at M∞ = 1.88. In the process, a goal was to provide a better 

understanding of the laminar and turbulent interactions. The parameters of interest were 

the separation length, λ, the bow shock stand-off distance, B, and the lambda shock triple 

point height, htp. Steady-state RANS simulations were carried out to analyze the limiting 

states of the flow, although these interactions are known to be inherently unsteady. 

For the turbulent interaction, two cylinder heights were simulated; both were 

considered “semi-infinite” based on correlations from prior reported experimental data. 

Initially, convergence issues led to the selection of a taller cylinder, but these were 

mitigated by decreasing the time-step temporal smoothing factor (under-relaxation) from 

0.75 to 0.5 and activating time-step spatial smoothing in the solver. A comparison was 

made with in-house experiments and literature regarding the shock structures, parameters 

of interest (as noted above), and surface pressures. Furthermore, three turbulence models, 

namely Menter’s shear-stress transport (SST), the Spalart-Allmaras (SA) with quadratic 

constitutive relations (QCR), collectively SA-QCR, and the cubic k-ε (CKE) were 

evaluated. It was determined that the CKE and SA-QCR turbulence model results aligned 

within 10% of reported empirical data and thus indicated good agreement, but the SST 

turbulence model over-predicted separation, and the difference exceeded 15% from 

empirical values. 

For the laminar interaction, the SA-QCR turbulence model was used after imposing a 

Blasius laminar boundary layer profile as an inflow boundary condition, and it was verified 

that this generated laminar flow throughout the vast majority of the domain and the 

interaction. A comparison with the parameters of interest reported in literature yielded 

agreement within 5%. 

By analyzing the vortex structures for both the laminar and turbulent interactions, it 

was determined that steady-state RANS results only produced one large, primary vortex 
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upstream of the cylinder. For turbulent interactions, Hung and Buning [16] achieved a 

similar result with steady-state computational results, but Yamamoto and Takasu [15] 

found a pair of counter-rotating primary vortices in their unsteady numerical work. Sedney 

and Kitchens [20] experimentally observed variations in the number of primary vortices, 

such that the single primary vortex remains a valid solution, in addition to being a 

numerical steady-state artifact. 

Combining the vortex structure analyses with pressure data on the flat plate surface and 

cylinder leading edge yielded an identification of the peak pressure location on the flat 

plate surface and a loose correlation of the trough pressure location on the cylinder leading 

edge. The two locations corresponded to attachment and separation lines, respectively, of 

the secondary vortex in the near-corner region. A topological model was established for 

both the laminar and turbulent interactions describing the nodes and half-saddles in the 

flow, and how the half-saddles correlated to the flow phenomena. Although this analysis 

characterized the flow for a laminar and turbulent interaction, it should be noted that it is 

only valid in cases where a single, large, primary vortex occurs. Future work should focus 

on generating a characterization with unsteady numerical methods, and identifying if the 

number of vortices can be controlled, and what their impact is on the dynamic flow field. 

A study analyzing the effect of the incoming boundary layer height on the scale of the 

interaction was performed for the turbulent case. By keeping all values constant and only 

varying δ/d, this was a simply change to the boundary conditions. It was found that as δ 

was increased, so was htp and the height of the separation bubble. This allowed for less 

shear to occur on the flat plate surface and cylinder leading edge, thus reducing the peak 

pressure magnitude. As δ was increased beyond δ/d ≥ 1, λ remained constant despite the 

initial pressure rise shifting upstream, suggesting that the forward shock foot curved 

significantly. Furthermore, the trailing shock curved more with increased δ, such that the 

horizontal extent of the lambda shock continuously decreased. Based on these effects, 

future work should study the effects of δ/htp in order to reduce the peak pressures of the 

interaction. 

Lastly, the extent of the laminar and turbulent interactions at the given flow conditions 

was established. The upstream streamwise extent should be within λ/d = 2.2-6.8, 
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considering a 20% safety margin, and the spanwise extent should be within z/d = ±(4-8.4), 

considering the same 20% safety margin. The bow shock stand-off distance was calculated 

consistently for both the laminar and turbulent interaction, and was found to be within B/d 

= 0.7-0.92, considering a 10% safety margin. These limits will guide on-going and future 

in-house experiments concerning a transitional interaction, including the design of 

experimental models, and the selection and location of instrumentation. 
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