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Abstract

As cyber attacks become increasingly sophisticated, the security measures used to

mitigate the risks must also increase in sophistication. One time password (OTP)

systems provide strong authentication because security credentials are not reusable,

thus thwarting credential replay attacks. The credential changes regularly, making

brute-force attacks significantly more difficult. In high performance computing, end

users may require access to resources housed at several different service provider

locations. The ability to share a strong token between multiple computing resources

reduces cost and complexity.

The National Science Foundation (NSF) Extreme Science and Engineering

Discovery Environment (XSEDE) provides access to digital resources, including

supercomputers, data resources, and software tools. XSEDE will offer centralized

strong authentication for services amongst service providers that leverage their own

user databases and security profiles. This work implements a scalable framework built

on standards to provide federated secure access to distributed cyberinfrastructure.
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Chapter 1

Introduction

To keep pace with evolving cyber attacks, security professionals must deploy new

innovative techniques to protect digital resources. One method for protecting

resources that has been gaining popularity is the use of strong authentication

technologies, such as two-factor authentication through the use of one time password

devices. Hazlewood et al. [6] describes a successful deployment of one time password

devices at the University of Tennessee’s National Institute for Computational

Sciences.

The National Science Foundation’s Extreme Science and Engineering Discovery

Environment (XSEDE [24]) consortium has plans to leverage existing investments

in strong authentication and make strategic centralized investments in security

infrastructure to optimally serve the user community. A set of services and software

will be assembled and developed to enable federated two-factor authentication. The

solution must be scalable, reliable, and secure while interoperating with existing
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XSEDE resources and cyberinfrastructure. All XSEDE users will be issued a single

credential that will be usable across all XSEDE services. This provides cost savings

by reducing credential management overhead and simplifies the user experience by

removing the need to manage multiple passwords or install special software on the

client.

This thesis describes an “Authentication Router” system that was developed to

take end-user authentication requests from resources at service providers and map

them to their unique authentication token. The router authenticates to the backend

one-time password (OTP) providers and returns the result to the original resource.

The Authentication Router provides flexibility and the ability to enforce security

policies across multiple authentication technologies. To the author’s knowledge, a

system like this has never been put into production. This project has the potential

to greatly improve the security of the XSEDE cyberinfrastructure while minimizing

costs.

Chapter 2 of this thesis provides the background information necessary for fully

understanding the work presented here. Chapter 3 describes the approach taken in

designing the federated authentication system. Specific implementation details are

given in Chapter 4, and information about testing is available in Chapter 5. Finally,

Chapter 6 summarizes and concludes the discussed research.

2



Chapter 2

Technology and Literature Review

2.1 Extreme Science and Engineering Discovery

Environment

The National Science Foundation (NSF [15]) funded the Extreme Science and

Engineering Discovery Environment (XSEDE [24]) in 2011 as a replacement for the

TeraGrid. XSEDE is a collection of integrated advanced digital resources designed

to allow scientists and researchers to collaborate and share scientific information.

As of 2012, XSEDE provides access to sixteen supercomputers and visualization

resources distributed throughout the United States. The XSEDE project includes

seventeen partner institutions with expertise in high performance computing, software

development, and scientific discovery. The Authentication Router service described

in this thesis is intended to be deployed within XSEDE’s infrastructure.
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2.2 Pluggable Authentication Modules

Authentication is the process of confirming one’s identity, and it is a central

component of computer security. Many different forms of authentication technology

are deployed in the field, and their complexity and effectiveness have a broad

range. This poses a challenge for application developers; how can software be

designed to support a seemingly endless collection of authentication methods? How

do system administrators ensure that all of their applications support consistent

authentication technologies? The Pluggable Authentication Modules (PAM [21])

framework abstracts these details and provides a common application programming

interface (API) for authentication. Application developers simply need to implement

the PAM API and authentication technologies can be “plugged in” to the application.

System administrators can configure PAM from a central location and all PAM-

enabled applications can inherit this configuration.

The authentication logic of the PAM framework is implemented as a set of

“stackable” modules. The PAM configuration lists the modules as well as the mode

for each module. Each module is queried in the order it appears in the configuration.

All “required” modules must succeed for the overall authentication to be considered

successful. If a required module fails, the other modules are still queried to avoid

revealing information about where the failure occurred. “Optional” modules may

pass or fail without affecting the overall authentication process. If a module listed as

“sufficient” succeeds, PAM will stop processing and immediately return success. A
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failure of a sufficient module is treated like a failure of an optional module. The PAM

framework exposes four interfaces that modules should implement: authentication

management, account management, session management, and password management.

PAM enables very complex authentication scenarios on a single system.

2.3 Remote Authentication Dial In User Service

The Remote Authentication Dial In User Service (RADIUS) protocol is a common

industry standard that handles Authentication, Authorization, and Accounting

(AAA) functions for network services. The standard is described in RFC2865 [18]

and described briefly below.

2.3.1 Protocol

RADIUS is a client/server protocol that uses the user datagram protocol (UDP) as a

transport mechanism. Packet delivery is unreliable because there is no guarantee

of arrival, so clients and servers must implement retransmission logic in case of

network faults. UDP was chosen for several technical reasons, including simplicity

of implementation and better control of retransmissions in case of network failure.

A RADIUS client is often called a Network Access Server (NAS). RADIUS servers

listen on port 1812 for RADIUS Authentication requests and port 1813 for RADIUS

Accounting requests.
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Table 2.1: RADIUS Codes

Code Assignment
1 Access-Request
2 Access-Accept
3 Access-Reject
4 Accounting-Request
5 Accounting-Response
11 Access-Challenge
12 Status-Server (experimental)
13 Status-Client (experimental)
255 Reserved

When an end user desires to access a resource, he will provide authentication

credentials to the NAS. The NAS will take this data and construct an Access-Request

packet to send to the RADIUS server. If no response is received in a specified amount

of time, the NAS can either retransmit the request or try sending the request to an

alternate server. When the RADIUS server receives the Access-Request packet, it

must first authenticate the client. It then authenticates the contents of the packet

by querying authentication databases or proxying the request to another RADIUS

server. The server must then reply to the client with Access-Accept or Access-Reject.

The client uses this response to determine if access should be granted or denied.

2.3.2 Packet Format

RADIUS packets are stored in the data field of the UDP datagram. The layout of a

RADIUS packet is shown in Figure 2.1. The data is transmitted left-to-right. The

packet consists of five fields.

6



Code Identifier Length

Authenticator

Attributes

0                               7 8                            15 16                                                              31

Figure 2.1: RADIUS Packet

Code

The code field occupies the first eight bits of the packet. Possible codes are

listed in Table 2.1. If an invalid code is specified, the packet is simply dropped.

Identifier

The identifier is an 8-bit number that is used to match requests and replies.

Packets can be recognized as duplicates if they contain identical IP addresses,

ports, and identifiers within a short timespan.

Length

Length is a 16-bit field that describes how many bits the entire packet contains.

The packet can be a maximum of 4096 bits.

Authenticator

The authenticator field is a 128-bit value used to authenticate the reply from

a RADIUS server. For a request packet, the authenticator should be a unique

7



random value. Protocol security mandates that an authenticator should not

be reused because replay attacks are possible. Additionally, the message

authenticator is used to obfuscate passwords in Access-Request messages. A

response packet contains an authenticator that is a hash of several fields.

Attributes

A RADIUS request can contain zero or more attributes. Some RADIUS codes

have both required and optional attributes.

2.3.3 Shared secrets

Every RADIUS client/server pair must share a secret password used to sign messages

and obfuscate user passwords sent in RADIUS packets. The shared secret is never sent

over the network, and it should be distributed in an out-of-band secure manner. The

Internet Engineering Task Force (IETF) Request for Comments (RFC) memorandum

recommends at least 16 characters for the secret, but additional length provides better

security. Uppercase and lowercase letters, numbers, and symbols should all be used.

If a RADIUS request originates from a client that does not have a shared secret

configured, or if the shared secret is incorrect, the packed should be dropped.

2.3.4 Realms and Proxying

The RADIUS protocol supports the idea of roaming using “realms.” A realm

typically corresponds to an administrative domain, defining a user base and set of
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policies. Changing from one realm to another may indicate that the request should be

authenticated in a different way. A RADIUS server may accept requests from clients

that it cannot verify itself. It would then proxy the request to an authoritative

server for the given realm and then resend the response to the client. This allows

for complicated setups to support heterogeneous user bases, identity federation, and

network sharing.

2.3.5 Security Extensions for RADIUS

Additional security for RADIUS has been proposed by the RADIUS Extensions

Working Group in an experimental internet draft entitled “Transport Layer Security

(TLS) encryption for RADIUS” [23]. This protocol extension, referred to as

RADSEC, attempts to overcome two major criticisms of the original RADIUS

protocol. The first issue is the use of the unreliable UDP transport for packet

transmission. RADSEC instead transmits RADIUS datagrams over the transmission

control protocol (TCP). A single port, 2083, is used for both authentication and

accounting requests. The second issue concerns the integrity and privacy of the

RADIUS datagram. Only certain fields are encrypted, and the encryption is based

on a hashing algorithm with known weaknesses. RADSEC overcomes this limitation

by support Transport Layer Security, or TLS.

Although RADSEC is just an experimental draft, it does have significant use in the

community. The eduroam consortium, described later in Section 2.6.1, uses RADIUS

over TLS in its production environment to improve security across untrusted internet
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connections. Additionally, the commercial “Radiator” RADIUS server and the open

source “radsecproxy” implement the RADSEC protocol [23].

2.4 Security Assertion Markup Language

Security Assertion Markup Language, or SAML, is a framework for authentication

and authorization built upon the Extensible Markup Language (XML). It aims to

allow the exchange of authentication and authorization details across security and

platform boundaries. SAML messages, called assertions, contain identity information

related to an authentication that has already taken place [14]. SAML itself does

not provide trust; the assertions must be signed or verified by another layer in the

software stack. Additionally, few non-web-based applications, like the bulk of those

used in XSEDE, support the use of SAML.

2.5 One Time Password Technology

Traditional passwords are static strings of varying length and complexity. If a

more secure password is required, the only option is to increase the length and

add additional characters to the character set. Additionally, static passwords are

vulnerable to interception at several layers. A hardware or software keylogger may

obtain the password as the user enters it into his terminal. A network sniffer or

man-in-the-middle attack may intercept the password as it moves across the network.

Faulty or compromised server software may also allow the password to be obtained by
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unauthorized users. Nothing exists to prevent unauthorized access once the attacker

has access to the static password.

RFC 2289 [5] describes the design for one system that uses a One Time Password

(OTP). The key difference here is that instead of a single static password, the user

provides a different password each time. If the authentication server is configured

to only accept each password once, this effectively eliminates replay attacks and

password sniffing vulnerabilities. OTP uses a secret passphrase along with a sequence

number that is run through a secure one-way hashing function to generate a set

of single-use passwords. Several commercial and non-commercial solutions exist to

implement two-factor authentication through the use of OTP technology.

2.5.1 RSA SecurID

RSA Laboratories, the security division of EMC Corporation, offers a commercial

product called RSA SecurID. SecurID uses a proprietary algorithm to calculate OTP

values. Several form factors are available depending on specific needs [20].

In March of 2011, RSA Laboratories was broken into as part of an advanced

persistent threat. Some of RSA’s proprietary information related to their SecurID

product was exfiltrated [19]. RSA subsequently offered free token replacement for

their clients. Despite this, RSA’s product is still the most widely deployed form of

two-factor authentication. For this reason, it is important for federated OTP solutions

to be interoperable with RSA SecurID.
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2.5.2 The Initiative for Open Authentication

The Initiative for Open Authentication (OATH) is a collaboration between several

security companies that aims to promote the use of universal strong authentication for

users and devices [16]. OATH members believe that strong authentication is central

to open, federated networks that can be safely and securely used. To realize the goal

of more pervasive strong authentication, both complexity and cost must be lowered

to provide a low barrier to entry. Thus, an open and royalty-free specification for

strong authentication is vital to realizing the goals of OATH’s members. To date,

OATH has proposed several open algorithms including HOTP, TOTP, and OCRA

(defined and described later).

Hash-based Message Authentication Code One Time Password Algorithm

Hash-based Message Authentication Code OTP (HOTP) is an open OTP algorithm

intended to be used for two-factor authentication that is described in M’Raihi et al.

[9]. It was designed to be economical, easy to implement, and easy to use. Thus, it

requires minimal processing power, battery capabilities, and display screen space. The

algorithm requires OTP values of at minimum six digits, although longer sequences

are also supported.

The HOTP algorithm is based on a shared secret as well as a monotonically

increasing sequence value. Equation 2.1 shows the basics of the HOTP operation

using the variables shown in Table 2.2. The secret key and counter are input to the

hash-based message authentication code with secure hash algorithm (HMAC-SHA-1)
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Table 2.2: Variables for the HOTP Algorithm

Variable Description
K Secret Key
C Counter

HMAC() A SHA-1 Hash-based Message Authentication Code Function
Truncate() A function that selects 4 bytes from the result

& A bitwise AND function
% The modulus operator
d The number of digits in the OTP

defined in [8]. The 160-bit output is truncated and the leftmost bit is masked out to

avoid confusion for signed versus unsigned calculations of the modulus function. The

value is then converted into a numeric string with the desired number of digits.

HOTP(K,C, d) = (Truncate(HMAC(K,C))&0x7FFFFFFF)%10d (2.1)

For proper authentication, the client token and the validation server must share

the same counter value. Every time the client token generates an OTP value, it

must increment its counter. The validation server will increment its counter with

every successful authentication. During a successful authentication process, both

the client token and the validation server will calculate the same value. If their

counters have diverged due to accidental OTP generation or brute-force attacks, the

validation server will typically initiate a resynchronization protocol to update the

server’s counter to the same value present on the client token.
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Table 2.3: Variables for the TOTP Algorithm

Variable Description
HOTP The HOTP algorithm

T The time step sequence
T0 The Unix epoch
Tc The current time
X The time step

floor Function to round down

Time-Based One Time Password Algorithm

Time-Based One Time Password (TOTP) is a time-based extension of the HOTP

algorithm described earlier. The RFC implementation [10] uses a time-based counter

instead of an event-based counter. Both the client token and the validation server

must know the current Unix time (the number of seconds since midnight on January

1, 1970). Equation 2.2 and Equation 2.3 show the basics of the TOTP operation

using the variables shown in Table 2.3.

TOTP(K, d) = HOTP(K,T, d) (2.2)

T = floor

(
Tc − T0

X

)
(2.3)

TOTP only generates a single OTP during every time step. Choosing an

appropriate time step size is important both for usability and security reasons. End

users may become frustrated if they have to wait a long time between being able to

generate OTP values. Conversely, values that change too frequently may be difficult
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to use. A successful brute force attack must be able to complete within the time

window, which is highly unlikely.

Because the counter is time-based, it is less likely for the client token and validation

server to get out of sync. However, network latency or inaccurate drifting clocks may

cause the client token and validation server to believe the current time is different.

Thus, sliding time windows and resynchronization protocols must be implemented at

the validation server.

OATH Challenge-Response Algorithm

The OATH Challenge-Response Algorithm (OCRA [11]) is a generalization of the

HOTP algorithm. Instead of a shared counter value, a challenge is issued from the

validation server to the user. The user would then input this challenge into the token

to receive the OTP value. Equation 2.4 shows the basics of the algorithm.

OCRA = CryptoFunction(K,DataInput) (2.4)

As with the other OATH algorithms, K is a key shared between the user token and

the validation server. The DataInput is a concatenation of several input values. The

CryptoFunction is a variation of HOTP, typically a six-digit HMAC-SHA1 function.
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2.6 Similar Authentication Federation Projects

2.6.1 eduroam

The eduroam project was originally created in Europe to develop an infrastructure

to allow roaming access to national research and educational networks. It provides

world-wide roaming access to wireless networks through participating research and

education institutions. It uses 801.2X for authentication and RADIUS servers

arranged in a hierarchal manner. Users authenticate with a user name in the form of

‘user@InstitutionA.edu’. If an authentication request for a user from InstitutionA

arrives at the servers for InstitutionB, it will proxy the request to the national

RADIUS proxy server. The national proxy server forwards the request to the home

institution where the password is checked for accuracy. The result is returned to the

original endpoint and access is granted or denied. Additional details are available in

Florio and Wierenga [3].

eduroam is an elegant solution for the problem the designers were attempting to

solve: provide network access to roaming users. As such, it is limited because it

only authorizes network access based on authentication performed at a user’s home

institution to prove affiliation; it provides no identity information. The institution

granting access to a guest may not even know the name of the user accessing the

network. To provide access to XSEDE cyberinfrastructure, each end user must be

mapped to a specific user account that is connected to an allocation. Thus, the ideas

provided by eduroam are valuable, but they must be extended.
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2.6.2 Project Moonshot

Project Moonshot is an effort spearheaded by JANET(UK), the United Kingdom’s

research and education network consortium that runs the UK Access Federation.

JANET(UK) currently provides a web-based SAML single-sign-on federation service

for its users. Project Moonshot aims to extend that service and standardize federated

identity among non-web applications. Their approach builds on the principles of

eduroam with a RADIUS fabric for authentication, authorization, and accounting.

Moonshot extends this by adding the Security Assertion Markup Language (SAML),

the Generic Security Services Application Program Interface (GSS-API), and the

Extensible Authentication Protocol (EAP). Many more details about the Project

Moonshot architecture are available in Howlett and Hartman [7].

The project is still fairly new and has several technological challenges before

widespread use would be feasible. Project Moonshot’s architecture requires source-

code changes for many of the client and server applications to interoperate with

the authentication mechanisms. Specifically, the clients would need to support the

GSS-API; even those that already support the GSS-API might need modification to

support Moonshot [7]. At this stage, significant client modification is not feasible for

the XSEDE cyberinfrastructure.
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2.6.3 Energy Sciences Network RADIUS Authentication

Fabric

Muruganantham et al. [13] describe a RADIUS Authentication Fabric (RAF) proto-

type developed by ESnet, the Energy Sciences Network that supports Department

of Energy national labs. ESnet proposed the RAF reduce vulnerability to external

hacking attempts by spreading the use of OTP technology. Several laboratories had

already implemented non-interoperable OTP systems, so a system to allow federated

use of existing tokens was desired.

The proposed architecture stationed RADIUS servers at each site and also

centrally. The “edge” RADIUS servers were able to service local requests and forward

remote requests to the central servers for proper routing. Additional topologies are

possible, where every edge RADIUS server talks directly with the edge RADIUS

servers at the other sites. This removes the central routers, but makes configuration

less straightforward.

One issue that the project group encountered was poor client support for realm-

based usernames. Similar to eduroam, the RAF supports usernames in the form of

‘user@InstitutionA.gov’. Client applications, like the OpenSSH web server, cannot

handle usernames of this form.

Although this project seemed quite mature and was also mentioned in another

paper about ESnet’s authentication services [12], the website listed (www.es.net/raf)

is no longer accessible. Attempts to contact the authors were unsuccessful, although
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communication with staff at Oak Ridge National Laboratory led the author to believe

that the project was never brought into production.

2.7 Background Summary

This chapter described several existing technologies related to authentication, OTP

systems, security, and federated identity management. While these technologies

are valuable solutions for the problems they were designed to solve, none alone

are capable of solving XSEDE’s federated two-factor authentication needs. Thus,

the “Authentication Router” system in this thesis was designed to manage strong

authentication requests for XSEDE.
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Chapter 3

Authentication Router Design

Approach

3.1 Overview

This project is designed to leverage existing software where possible to take advantage

of existing security and bug testing. Custom software has been developed to

implement the username mapping service and other routing services as necessary.

This technology is intended to be deployed throughout the XSEDE network, bringing

strong authentication to participating cyberinfrastructure resources. All technologies

developed in the project are intended to be open and shared with other similar

consortia, encouraging strong authentication across the internet.
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Figure 3.1: System Overview

Figure 3.1 shows the general framework for the interactions between the Authenti-

cation Router and the clients, username mapping service, password service, and OTP

service. The basic request flow can be described with eight steps for authentication.

1. An authentication request originates at a resource. The original username is

sent to the Authentication Router along with the password and OTP code.

2. The original username is sent to the username mapper.

3. The XSEDE canonical username is returned to the Authentication Router along

with details about the password service and OTP service to which the user has

been assigned.
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4. The XSEDE canonical username and supplied password is sent to the password

service. For most users in XSEDE, this will likely be the XSEDE Kerberos

realm used to authenticate to the XSEDE User Portal.

5. The password service returns success or failure for the authentication request.

6. The XSEDE canonical username and supplied OTP code is sent to an OTP

service.

7. The OTP service returns success or failure for the authentication request.

8. A success or failure message is returned to the original client based on the results

of the previous steps.

3.2 Authentication Router

The Authentication Router service is the central hub that integrates the individual

pieces of this project. Its job is to accept authentication requests from client endpoints

and coordinate the rest of the authentication process. It must integrate with a

username mapping service, a password service, and an OTP service. These individual

pieces are meant to be pluggable and interchangeable, allowing both service providers

and end users to take advantage of different authentication technologies.

The RADIUS protocol described in Section 2.3 appears to be best-suited to

handle the requirements of the Authentication Router. Many existing authentication

technologies are already interoperable with RADIUS, making integration more
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straightforward. Additionally, the built-in ability to proxy and forward requests maps

well to the requirements of this project.

Service providers have multiple choices for integrating with the Authentication

Routers. Figure 3.2 shows two options. A site may choose to deploy local

RADIUS servers if it desires to enforce local policy or have more control over the

configuration. Local clients would talk to the local RADIUS servers that would

proxy the authentication requests to the central RADIUS servers. For simplicity or

cost savings, other sites may not want to deploy local RADIUS servers. The clients

can talk directly to the central RADIUS servers. RADIUS software typically allows

multiple servers to be defined, enabling high-availability setups.

Site BSite A

Client

Client

Client

Local 
RADIUS

Local 
RADIUS

Client

Client

Client

Central 
RADIUS

Central 
RADIUS

Figure 3.2: RADIUS Hierarchy
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3.3 Username Mapping Service

Every service provider maintains its own unique user accounting systems. They

integrate with the XSEDE central user accounting system through a protocol called

Account Management Information Exchange (AMIE). When a new account is created

in XSEDE, an AMIE packet is distributed to all the appropriate XSEDE service

providers that contains all the information necessary to create the account locally.

Username suggestions are transmitted, and the service providers will choose a

username that does not already exist in their local accounting database. The central

XSEDE accounting system does not know what “local” accounts exist at each site,

and thus cannot ensure that username conflicts will not emerge. It is possible, and

even likely, that a user will end up with different usernames at each service provider.

Once the account is created, an AMIE packet is generated at the service provider and

sent back to the XSEDE central database.

The purpose of the username mapping service is to translate the endpoint

usernames into the canonical XSEDE username and then into the authentication

target username (if a non-central token is used). The XSEDE central database

contains all the information required to do the lookup.

3.4 Password Service

Passwords are typically used as the authentication credential for single-factor

authentication, but passwords can also be used as the “first factor” in two-factor
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authentication. All XSEDE users have a password credential stored in the XSEDE

Kerberos Realm that is used to login to the XSEDE user portal. It makes sense

to leverage this password as part of the strong authentication project, assuming the

OTP service does not already require its own static password element.

3.5 OTP Service

The OTP service is meant to be pluggable, to allow integration with existing and

future OTP service deployments. Existing systems include the NICS RSA servers and

the Blue Waters OTP servers. Future work will deploy a central XSEDE OTP server.

Additionally, service providers may choose to deploy their own OTP service that can

be integrated into the Authentication Router. Each OTP authentication system may

need custom interface code that allows it to integrate with the Authentication Router,

although systems that implement the RADIUS protocol or support PAM would be

trivial to integrate.

3.6 Client Support

Since the Authentication Router is based on the standard RADIUS protocol, many

clients already exist that should seamlessly interoperate without any modification.

Server programs such as the secure shell daemon (sshd) can use PAM (see Section

2.2) to connect to the Authentication Router. Additionally, RADIUS client code

exists in Perl, Python, Java, and many other common programming languages.
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With these design principles in place, a system can be implemented by extending

open source software and building XSEDE-specific management code.
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Chapter 4

Authentication Router

Implementation

4.1 XSEDE Central Database

The XSEDE Central Database is a pre-existing data store that contains information

about all the users, resources, organizations, and other information related to XSEDE.

It has quite a few tables that hold all the information that XSEDE knows about its

users and resources. It is served by a redundant PostgreSQL database designed for

high reliability.

For this project to integrate with the XSEDE database, a few new tables are

required for information storage. The relevant existing tables, along with the proposed

new tables, are described below and also shown graphically in Figure 4.1.
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acct.people

Each person known to XSEDE has an entry in the “people” table. This stores

basic information, such as name, organization, and title.

acct.system accounts

Every time an account on a resource is created, an entry is added to the

“system accounts” table. This ties a person to a resource, giving their specific

username at that resource.

acct.resources

Each computing resource in XSEDE is described in the “resources” table. A

resource has a name as well as an organization that indicates the XSEDE partner

site that manages the resource.

acct.organizations

XSEDE partner institutions are described in the “organizations” table. The

organization ID is most important for SQL “join” statements.

acct.otp tokens

The “otp tokens” table is a new table used to describe each token deployed in

the field. The table ties a specific token to a specific person. It also stores

a username (in case the specific token type uses different usernames) and a

reference to the token type table.
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acct.otp token types

The “otp tokens types” table is a new table used to describe each type of OTP

token deployed within XSEDE. It points to the XSEDE partner organization

that manages the OTP resource. Currently, it does not store information

about the specific OTP implementation, such as digit length, algorithm, or

authentication server hostnames. This could be added in the future if desired.

acct.radius clients

The “radius clients” table is a new table used to describe client hosts that

would use the Authentication Router service. It stores the client’s hostname, IP

address, shared secret (described in 2.3.3), and the XSEDE partner organization

where the client lives. The organization code helps map usernames in case an

organization code is not supplied in the authentication request.

4.2 RADIUS Framework

Several open source RADIUS implementations were evaluated for their maturity,

stability, scalability, extensibility, and ease of use. Initially, a prototype RADIUS

framework was built using pyrad [1], a RADIUS framework coded in the Python

scripting language. It was highly configurable and customizable, but it lacked

stability and some of the features present in a more mature product. At the time of

writing, the last commit to the pyrad project was over eight months ago. Thus, a

more full-featured and mature RADIUS framework was chosen to move this project
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Figure 4.1: Database Schema
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forward. The current iteration of the Authentication Router leverages the open source

FreeRADIUS package [4] as a base on which the rest of the service is built.

FreeRADIUS’ own website [4] claims that it is “the most widely deployed RADIUS

server in the world” and asserts that it is “fast, feature-rich, modular, and scalable.”

Indeed, initial testing showed that the server was immediately functional with minimal

configuration and was relatively easy to customize to the specific needs of this project.

The FreeRADIUS server supports both simple and complex configurations. The

configuration used in the Authentication Router is included in Appendix A.

4.2.1 Modules

The FreeRADIUS server is built with support for many modules that can be plugged

into the framework to extend the base functionality. The base distribution comes with

modules to implement various authentication types as well as modules that allow easy

integration with external systems.

A module called “rlm perl” allows developers and server administrators to write

extensions in the Perl scripting language. FreeRADIUS and rlm perl use a threaded

embedded Perl interpreter to execute the code. This means that the Perl code is

compiled once at startup and is persistent for the life of the FreeRADIUS server

process. Additionally, each FreeRADIUS thread houses its own copy of the Perl

interpreter, allowing for both thread-local and global thread-shared variables. The

majority of the code for the Authentication Router was implemented in Perl. The

code is available in Appendix B.
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4.2.2 Virtual and Home Servers

The concepts of realms and proxying was discussed in Section 2.3.4. FreeRADIUS

supports these concepts through virtual servers and home servers. A virtual server

acts like a completely separate RADIUS server that runs within the main server

process. This enables complex configurations to be split up into logical pieces

maintained separately within the configuration. Home servers allow FreeRADIUS

to proxy requests to external RADIUS servers. It supports the concept of defining

multiple remote servers for a given realm and load balancing between them for high

availability and performance reasons.

In this project, both virtual servers and home servers are used extensively. The

Authentication Router lives within the main FreeRADIUS server and accepts all

incoming authentication requests. Once the request has been processed, the server

knows if the authentication should be handled locally or passed off to a remote server.

If the server can handle the authentication request, it is proxied to a virtual server.

If the authentication request must be handled remotely, it is proxied to one of the

home servers defined for that realm.

4.2.3 Logging

The FreeRADIUS server can be setup to log information in various ways depending

on the verbosity required. By default, important events are written to a central file

located on the file system at /var/log/radius/radiusd.log. Modules can also add
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Table 4.1: FreeRADIUS Logging Codes

Code Constant Log Level Description
1 L DBG Debug
2 L AUTH Authentication
3 L INFO Informational
4 L ERR Error
5 L PROXY Proxy
6 L ACCT Accounting

events to the system log. In “rlm perl”, messages can be added to the log with the

following code:

&rad iusd : : rad log ( � l o g l e v e l , ‘ message ’ ) ;

The possible log levels, shown in Table 4.1, are available to flag messages with

the appropriate category and severity. The message field is a string that includes the

relevant information.

The server can also be configured to store authentication requests in a structured

query language (SQL) database. This would allow easy report generation to answer

questions like how many successful and failed authentication attempts occurred over a

given timeframe. Currently, this project is not utilizing this feature due to scalability

concerns.

4.3 Managing Clients

Every client that should interact with an Authentication Router must be setup in

the configuration files. The server must be aware of the hostname, IP address, and

shared secret (see Section 2.3.3) to be able to properly interpret the incoming RADIUS
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packets. This configuration is stored in a file called clients.conf that is generated

from the XSEDE database. A scheduled task could be setup to automatically generate

this configuration file at a regular interval. A sample clients.conf is available in

Appendix A.2.

FreeRADIUS only reads and processes its configuration at startup; this poses a

problem when system administrators wish to add an additional client authorized to

talk to the server. Instead of requiring all the Authentication Routers to be restarted

each time a new client is added, the concept of dynamic clients was implemented.

When authentication requests come in from clients statically defined in the

configuration, they are immediately processed. Unrecognized clients cause an internal

request to be generated that gets handled by the XSEDE Perl module. The module

attempts to query the XSEDE database for a match and authorizes the request if one

is found. This client is then added into the server’s running configuration so future

requests can be served without querying the database. In case the client is not found

in the database, the request is denied and the client is added to a time-decaying

“bad cache” so that future requests from unauthorized clients can be denied without

having to consult the database.

4.4 XSEDE FreeRADIUS Module

As mentioned in Section 4.2.1, the bulk of the code that implements the XSEDE-

specific functions is located in a series of Perl files that are loaded into persistent
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Table 4.2: XSEDE Module Command Line Arguments

Argument Type Function
conf Boolean Create clients.conf
verify Boolean Verify a client

client site Boolean Map the default site for a client
client String IP address of the client to lookup
token Boolean Map a user/site to a token
portal Boolean Map a user/site to a portal user
user String The username to map
site String The site to map

Perl interpreters housed within the FreeRADIUS process. Multiple threads of the

interpreter are started, allowing concurrent processing of incoming requests. Each

thread has its own connection to the XSEDE database, as Perl’s database interface

is not thread-safe. Each thread uses the “prepare” method to preload queries within

the database for faster searches later.

The main integration script named xsede.pl is the central entry point for the

XSEDE module. If run from the command line, it will process the command line

options to determine what function to perform. This gives system administrators

the ability to query the same information that the Authentication Router has access

to. Manually running commands can also help diagnose problems. The accepted

command line options are shown in Table 4.2. If the code is instantiated from within

FreeRADIUS, it will setup several data structures and connect to the database in

preparation to service authentication requests. The code for xsede.pl is available in

Appendix B.1.

A Perl file named XSEDE::Common.pm contains constant values, configuration

information, logging functions, and common code. It includes functions for connecting
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to and interacting with the XSEDE database. The source for this is included in

Appendix B.2.

XSEDE::Clients.pm contains the code related to managing clients. It implements

the functions described above in Section 4.3, including creating the clients.conf file,

mapping a client to a default site with cache, and authorizing new client connections

with a cache of “bad” clients. This source for this is included in Appendix B.3.

The code handling users is stored in XSEDE::Users.pm and also included in

Appendix B.4. The most commonly used function maps a user and site to an OTP

token type and a token username. The module will have to do a database query to

determine this information, but caching has been implemented to speed this up for

common users. The module also contains a function to map a given username at a

site to the canonical portal username.

XSEDE::Cache.pm is a custom module derived from Jesse Vincent’s Perl module

Cache::Simple::TimedExpiry [22]. The XSEDE version, available in Appendix B.5,

adds the ability to share cache objects between threads.

4.5 Operational Issues

Interacting with the the Authentication Router is a mandatory step whenever an

end-user desires to connect to a resource that uses the Authentication Router as an

authentication source. Thus, performance, scalability, reliability, and security are
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important and necessary factors to consider. FreeRADIUS has been developed since

1999, and it has been deployed by thousands of sites worldwide [4].

FreeRADIUS performance depends on many factors, including database usage,

server hardware, and the complexity of the configuration. The FreeRADIUS server

is designed to be highly-threaded, allowing it to take advantage of modern multi-core

processors. Furthermore, the code has been optimized and improved over the years.

The FreeRADIUS website [4] claims that the most computationally-intense part of the

server is the security hash generation. The XSEDE-specific code has been optimized

by implementing cache everywhere possible. The Perl interpreters stay in memory,

allowing the Perl code to executed multiple times after being interpreted only once.

The RADIUS protocol supports multiple servers, improving scalability by allowing

the load to be spread in a scale-out fashion. Additional hardware can be added

whenever bottlenecks are found. Simple domain name service (DNS) round-robin

techniques will spread multiple clients to different servers, helping to prevent many

clients from overwhelming a single server. Additionally, hierarchies of RADIUS

servers, as described in Section 3.2, can be built to “funnel” the requests and allow

fair-share quality of service.

Configuring multiple servers not only improves performance, it also adds reliability

and fault tolerance in case of failure. Clients can specify multiple servers (or pools

of servers) so that they can failover in case a server does not respond within a

configurable amount of time.
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The code is open for inspection, allowing any interested party to audit the code for

security vulnerabilities. The Authentication Router code has been designed to “fail

open” such that any error condition would cause the request to fail. It is preferable

to fail a legitimate request rather than allow an illegitimate request to succeed.

The security of authentication-related functions is extremely important; close

attention must be paid to the Authentication Router. A compromise of the

Authentication Router could allow an attacker to intercept authentication credentials.

This is somewhat mitigated by the use of OTPs, but an attacker could block the

original authentication request and use the acquired credentials to pose as the original

user. The servers that hosts the Authentication Routers should be single-purpose

and hardened against attacks. Best practices in security should be followed when

possible. The list of users allowed to login directly to the machine should be limited

to only a few system administrators. The operating system and all installed software

should be regularly patched to ensure all the latest security vulnerabilities are fixed.

Additionally, a firewall should be configured to further protect the machine.

4.6 Cost

The Authentication Router system is completely built around free and open source

software. Thus, the only cost associated with the Authentication Router service is

the hardware on which it runs. OTP services typically have hardware or license

fees, which may be non-trivial. The flexibility of pluggable OTP services within the
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Authentication Router makes it easy to leverage existing OTP solutions where the

costs have already been borne.
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Chapter 5

Authentication Router Testing

5.1 Test Setup

The Authentication Router is designed to be lightweight and streamlined, requiring

very little system resources. Development and initial testing was performed on a

simple desktop machine with a dual-core AMD Athlon processor. The machine was

installed with the CentOS 6.2 Linux operating system, a free variant of the Red

Hat Enterprise Linux operating system. FreeRADIUS 2.1.10 was installed from the

operating system repository with the following command:

yum install freeradius freeradius-utils freeradius-perl

To simulate multiple clients, virtual machines (VMs) were created with the Kernel-

based Virtual Machine (KVM) software that is built into the operating system. Each

VM had its own IP address so that it would appropriately exercise the code dealing
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with authorizing new and existing clients. Several tests were run on the prototype

using the open source tools described in Section 5.2.

To facilitate further testing, the National Institute for Computational Sciences at

the University of Tennessee setup a virtual machine with client access to their RSA

servers. This VM had four virtual processors and four gigabytes of memory. The

entire prototype was also implemented in this environment and tested in a similar

manner.

5.2 Test Tools

5.2.1 Radtest

Radtest is a simple utility that comes with the freeradius-utils package in Red Hat

Enterprise Linux. It is designed to directly query RADIUS servers for simple testing.

The important parameters are the username, password, RADIUS server hostname,

and the shared secret. A “NAS port number” should also be specified, which can be

a random integer. Simply call radtest with the appropriate parameters:

radtest username password radius-server nas-port-number secret

Radtest will show the server’s reply, which will be an Access-Accept or Access-Reject

RADIUS packet.

A simple script can be written to generate a test workload to validate the server’s

operation. For full test coverage, authentication as both existing and non-existing

users should be attempted.
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5.2.2 Radclient

Radclient is another utility that comes with freeradius-utils. It can read a file with

a collection of RADIUS requests, including their attributes, and query the RADIUS

server. It also has the capability to send multiple requests in parallel to take advantage

of the multi-threaded server. Unfortunately, the tool itself is not multi-threaded.

For extremely rapid request rates, the performance is likely limited to the tool’s

performance on a single core. The syntax for calling Radclient is fairly simple:

radclient -f input file -p num parallel requests server auth secret

This tool can be wrapped with the time utility to calculate the number of requests

processed per second.

5.2.3 Pamtester

Pamtester [17] is an open source utility designed to test PAM module and

configurations. A PAM configuration file should be setup to implement the “auth”

method. Optionally, a “client id” can be supplied to indicate which site the request

originates from. A sample PAM configuration file could be as simple as:

auth required pam radius auth.so client id=NICS

To test that PAM is properly configured, Pamtester should be invoked with the

name of the PAM configuration file pointing to the RADIUS module, a username,

and an operation such as authenticate.

pamtester service username operation
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This will prompt for a password prior to sending the authentication request to

the server. The response will indicate if the request was successful or not.

5.3 Test Plan

Extensive testing with both manual and automated test suites has shown that

the Authentication Router framework is capable of working quickly, efficiently, and

correctly. Setting up database indexes should enable the queries to be served much

faster. Enabling the module’s cache is expected to significantly improve performance

when the same user and site combination attempts repeated authentications. It is

believed that the virtual machine overhead may skew the numbers, but the results

can be compared relatively to examine the effects of database indexing, caching, and

parallelism.

The database was loaded with fake authentication tokens for the 3820 users defined

with username mappings at NICS. These tokens were setup to automatically accept

any password provided. The first test should iterate through each of these users and

attempt an authentication. The second test should choose a single user and attempt

to authenticate many times. The Radclient software was configured to handle both

of these scenarios.

The Authentication Router should be tested with database indexing both on and

off and caching both on and off. Then, increasing numbers of parallel requests should

be tested to determine the scalability of the Authentication Router.
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5.4 Problems Experienced

Testing revealed an issue with the way FreeRADIUS handled server threads. With

a spike in traffic, FreeRADIUS would spawn new threads up to a configurable limit.

When the increased traffic level subsided, FreeRADIUS failed to reduce the number

of active threads. The author reported this issue to the developers along with a

proposed patch. The developers addressed the problem, and they committed a fix to

the issue that will be present in a future release of FreeRADIUS. Though this issue

may result in extra threads remaining in the idle state instead of exiting, it is not

believed that this will negatively impact the Authentication Router.

Additionally, a problem was discovered when multiple threads of rlm perl were

spawned in quick succession. An internal FreeRADIUS variable was not properly

protected from concurrent access. This could cause the FreeRADIUS process to crash

and exit. The fix to this issue is to serialize the access with a mutex, and this fix has

been committed to the project’s version control system. The patch was extracted and

FreeRADIUS was recompiled to include the fix. The problem was not experienced

with the patch applied. A request has been opened with RedHat to include this patch

in future versions of RedHat Enterprise Linux.
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5.5 Test Results

5.5.1 Authenticating Each User Once

The performance results from attempting to authenticate as each user one time is

shown in Table 5.1 and graphed in Figure 5.1. With no database indexing or caching,

almost fifty requests per second can be achieved with only eight concurrent requests.

Enabling database indexes greatly improves performance, up to eight threads where

it tops out likely due to constrained resources. With both indexing and caching, over

three thousand requests per second can be achieved with eight concurrent requests.

The site caching is helpful here because only a single client is tested, but the user

caching adds overhead for no gain. Unfortunately, adding additional concurrent

requests actually lowers performance due to overhead in adding users to the cache.

5.5.2 Authenticating One User Many Times

Authenticating the same user many times should greatly benefit from server caching.

The results are shown in Table 5.2 and Figure 5.2. As was seen in the previous

test case, the lack of indexing and caching results in approximately fifty requests per

second. Turning on indexing improves the performance up to a point. That point is

slightly higher due to caching in the database layer. Turning on application caching

greatly improves performance, achieving over five thousand requests per second

at eight client threads. Unfortunately, performance significantly drops over eight

concurrent requests. Reasons for this performance issue are described in Section 5.6.
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Table 5.1: Test Results Authenticating Each User Once

Indexes Cache Par. Req. # Req Time (sec) Req/sec

X X 1 3820 280.53 13.62
X X 2 3820 139.17 27.45
X X 4 3820 88.49 43.17
X X 8 3820 76.48 49.95
X X 16 3820 71.74 53.25
X X 32 3820 69.57 54.91
X � 1 3820 281.31 13.58
X � 2 3820 139.04 27.47
X � 4 3820 89.57 42.65
X � 8 3820 77.18 49.49
X � 16 3820 71.48 53.44
X � 32 3820 70.01 54.56
� X 1 3820 4.43 862.30
� X 2 3820 2.94 1299.32
� X 4 3820 1.87 2042.78
� X 8 3820 1.36 2808.82
� X 16 3820 1.37 2788.32
� X 32 3820 1.40 2728.57
� � 1 3820 2.87 1331.01
� � 2 3820 2.23 1713.00
� � 4 3820 1.45 2634.48
� � 8 3820 1.13 3380.53
� � 16 3820 1.30 2938.46
� � 32 3820 1.48 2581.08
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Table 5.2: Test Results Authenticating One User Many Times

Indexes Cache Par. Req. # Req Time (sec) Req/sec

X X 1 3820 281.88 13.55
X X 2 3820 141.59 26.98
X X 4 3820 87.56 43.63
X X 8 3820 76.57 49.89
X X 16 3820 70.97 53.83
X X 32 3820 69.81 54.72
X � 1 3820 2.58 1480.62
X � 2 3820 1.53 2496.73
X � 4 3820 1.02 3745.10
X � 8 3820 0.78 4897.44
X � 16 3820 0.98 3897.96
X � 32 3820 1.67 2287.43
� X 1 3820 3.84 994.79
� X 2 3820 2.66 1436.09
� X 4 3820 1.87 2042.78
� X 8 3820 1.34 2850.75
� X 16 3820 1.28 2984.38
� X 32 3820 1.43 2671.33
� � 1 3820 2.40 1591.67
� � 2 3820 1.35 2829.63
� � 4 3820 0.87 4390.80
� � 8 3820 0.73 5232.88
� � 16 3820 0.84 4547.62
� � 32 3820 1.12 3410.71
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Figure 5.1: Test Results Authenticating Each User Once

5.6 Testing Summary

Two main factors contribute to decreased performance when many threads are used

concurrently. The first is an artifact of the test setup. FreeRADIUS does not spawn

additional threads until a load spike warrants additional threads. Each time a new

thread spawns, it must instantiate a new Perl interpreter, copy the non-shared data

from another thread, and connect to the database. For short-running tests, the

time required to spawn threads is non-trivial. The second factor that appears to

decrease performance is Perl’s implementation of thread-shared variables. A single

thread “owns” each variable and access to it from other threads requires cooperation
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Figure 5.2: Test Results Authenticating One User Many Times

from this master thread. With lots of threads, contention around access to these

variables slows performance. Though cache appears to improve performance, there

are tradeoffs.

In June of 2011, NICS recorded logins from 851 distinct users throughout the

entire month[6]. Even if every user attempted to login at exactly the same time, a

single Authentication Router could easily handle the load. The performance achieved

in testing greatly exceeds the requirements expected in a production deployment for

XSEDE, especially if multiple Authentication Routers are deployed.
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Chapter 6

Conclusions

6.1 Thesis Summary

Many standards exist for authentication, ranging from simple static passwords stored

on a single machine to complicated distributed systems. Organizations concerned

about protecting their digital assets from sophisticated cyber attacks have begun

relying on two-factor authentication as a defense against unauthorized access.

The concepts presented in this thesis provide an extensible framework that allows

multiple institutions to federate their strong two-factor authentication services across

distributed cyberinfrastructure, providing potentially enormous cost savings. A fully-

functional prototype was created for the National Science Foundation’s XSEDE

cyberinfrastructure consortium. This Authentication Router service, built upon

industry standards and open source software, is designed to be high performance,

scalable, and secure.
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6.2 Future Work

The obvious next step in this research area is to work with XSEDE staff to implement

the Authentication Router as a production resource within the XSEDE infrastructure.

The author is in close contact with several key members of the XSEDE operations

team, and implementation seems likely in the future. XSEDE staff would want to

audit the service to verify the findings presented here and test at a larger scale.

Publications describing the specific implementation details would be appropriate for

the XSEDE conference as well as various security and grid-related conferences.

For the Authentication Router concept to achieve more adoption within the

community, the details presented here should be generalized and made available

to other consortia with similar organizational structures as XSEDE. Specifically, it

would be useful to reach out to the original authors of the RADIUS Authentication

Fabric papers [12] [13] to determine if this concept could be implemented across the

Department of Energy National Laboratories. To further extend this framework, it

would be beneficial to evaluate additional features to extend the functionality.

In National Science Foundation supercomputing, some users write scientific

workflows based on the Globus grid toolkit. Globus uses X.509 certificates for

authentication. Direct integration with MyProxy [2], an X.509 certificate credential

repository, could help extend strong authentication to grid software. Hazlewood et al.

[6] present an example of using an OTP backend with MyProxy; it would be trivial to

substitute the Authentication Router. Additionally, it should be feasible to modify
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the PAM RADIUS module to fetch an X.509 certificate when a user authenticates.

This would allow an end user to obtain a grid certificate “for free” upon login.

This could allow “single sign-on” or more complex scenarios where a single login

corresponds to a single job.

In distributed cyberinfrastructure where a single user can have accounts at many

service providers, it can be difficult to remember which username corresponds to which

site. Currently, most of the generic client tools that would use the Authentication

Router require end users to know their username at the site they are attempting

to login to. Contrasted with systems like eduroam that only care about a user’s

association, most of the systems in XSEDE require that connections correspond to

a specific username. This situation could be improved by modifying client tools to

accept realm-specific usernames, such as “user1@site1.” The Authentication Router

would then handle mapping the remote realm username to the site username and

sending this back to the client. This has been achieved in a prototype by modifying

the code for the RADIUS PAM module as well as the OpenSSH secure shell daemon.

Having these patches pushed upstream would make this idea feasible.

For XSEDE’s initial implementation of the Authentication Router, all authen-

tication traffic should occur between trusted hosts over XSEDE’s private network,

a trusted network link. Additional security could be added to the Authentication

Router by implementing RADSEC (described in Section 2.3.5). Additional work

would be required to replace shared secret management with client certificate

management.
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Appendix A

FreeRADIUS Configuration Listing

A.1 radiusd.conf

1 p r e f i x = /usr
2 e x e c p r e f i x = /usr
3 s y s c on f d i r = / etc
4 l o c a l s t a t e d i r = /var
5 s b i nd i r = /usr / sb in
6 l o g d i r = �{ l o c a l s t a t e d i r }/ log / rad iu s
7 raddbdir = �{ s y s c on f d i r }/ raddb
8 r adac c td i r = �{ l o g d i r }/ radacct
9 name = radiusd

10 c on f d i r = �{ raddbdir }
11 run d i r = �{ l o c a l s t a t e d i r }/ run/�{name}
12 db d i r = �{ raddbdir }
13 l i b d i r = / usr / l i b 6 4 / f r e e r a d i u s
14 p i d f i l e = �{ run d i r }/�{name } . pid
15 user = rad iusd
16 group = rad iusd
17 max request t ime = 30
18 c l eanup de lay = 5
19 max requests = 1024
20

21 # Main s e r v e r
22 l i s t e n {
23 type = auth
24 ipaddr = �

25 port = 0
26 }
27

28 # Control Socket
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29 l i s t e n {
30 type = con t r o l
31 socke t = �{ run d i r }/�{name } . sock
32 uid = root
33 g id = root
34 mode = rw
35 }
36

37 hostname lookups = no
38 al low core dumps = no
39 r e g u l a r e x p r e s s i o n s = yes
40 ex t ended expr e s s i on s = yes
41

42 l og {
43 de s t i n a t i on = f i l e s
44 f i l e = �{ l o g d i r }/ rad iu s . l og
45 s y s l o g f a c i l i t y = daemon
46 str ipped names = no
47 auth = no
48 auth badpass = no
49 auth goodpass = no
50 }
51

52 checkrad = �{ s b i nd i r }/ checkrad
53

54 s e c u r i t y {
55 max att r ibute s = 200
56 r e j e c t d e l a y = 1
57 s t a t u s s e r v e r = yes
58 }
59 proxy reque s t s = yes
60

61 �INCLUDE c l i e n t s /
62

63 thread pool {
64 s t a r t s e r v e r s = 5
65 max servers = 32
66 min spa r e s e r v e r s = 3
67 max spare s e rve r s = 10
68 max reque s t s p e r s e rv e r = 0
69 }
70

71 modules {
72 pe r l xsede {
73 module = �{ c on f d i r }/ p e r l / xsede . p l
74 }
75 dynamic c l i en t s {
76 # No con f i g f o r t h i s
77 }
78 }
79
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80 autho r i z e {
81 xsede
82 }
83 authen t i ca t e {
84 #
85 }
86

87 # Dynamic c l i e n t s e r v e r
88 s e r v e r dynam i c c l i e n t s e r v e r {
89 autho r i z e {
90 update c on t r o l {
91 FreeRADIUS−Cl ient−IP−Address = ”%{Packet−Src−IP−Address}”
92 }
93 xsede
94 }
95 }

A.2 Sample clients.conf

1 c l i e n t l o c a l h o s t {
2 ipaddr =127 .0 .0 .1
3 s e c r e t=t e s t i ng123
4 }
5 c l i e n t ber t {
6 ipaddr =192 .168 .1 .9
7 s e c r e t=t e s t i ng123
8 }
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Appendix B

Source Code Listing

B.1 Main Integration Script

1 #!/ usr / bin / p e r l
2 # Int eg r a t i on f un c t i on s f o r the XSEDE Authent i cat ion Routers
3 # Designed to run standa lone OR with in FreeRADIUS
4 # Or i g i n a l l y wr i t t en by Matt Ez e l l <matt@mattezel l . com>
5

6 use s t r i c t ;
7 use DBI ;
8 use Switch ;
9

10 # Pul l in common va r i a b l e s and cons tant s
11 use l i b � / e t c / raddb xsede / p e r l � ;
12 use XSEDE: : Common;
13 use XSEDE: : C l i e n t s ;
14 use XSEDE: : Users ;
15

16 # Check to see i f we are with in FreeRADIUS
17 i f ( de f i n ed (&rad iusd : : rad log ) ) {
18 x s ede l og (L INFO , ” xsede module i n i t i a l i z i n g . . . ” ) ;
19 } e l s e {
20 # Read command l i n e arguments
21 use Getopt : : Long ;
22 my( �dump cl i ent conf , � v e r i f y c l i e n t , � g e t c l i e n t s i t e , � c l i e n t i p ) ;
23 my( �map token , �map portal , �user , � s i t e ) ;
24 my � r e s u l t = GetOptions ( ” conf ” => \ �dump cl i ent conf ,
25 ” v e r i f y ” => \ � v e r i f y c l i e n t ,
26 ” c l i e n t s i t e ” => \ � g e t c l i e n t s i t e ,
27 ” c l i e n t=s ” => \ � c l i e n t i p ,
28 ” token” => \�map token ,
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29 ” po r t a l ” => \�map portal ,
30 ” user=s ” => \ �user ,
31 ” s i t e=s ” => \ � s i t e
32 ) ;
33 i f ( �dump c l i ent con f ) {
34 xsede db connect ( ) ;
35 dump c l i en t con f ( ) ;
36 } e l s i f ( � v e r i f y c l i e n t && � c l i e n t i p ) {
37 xsede db connect ( ) ;
38 p r epa r e c l i e n t qu e r y ( ) ;
39 i f ( c l i e n t a u t h o r i z e ( � c l i e n t i p )==2) {
40 pr in t ”Authorized \n” ;
41 e x i t 0 ;
42 } e l s e {
43 pr in t ”Not Authorized \n” ;
44 e x i t 1 ;
45 }
46 } e l s i f ( � g e t c l i e n t s i t e && � c l i e n t i p ) {
47 xsede db connect ( ) ;
48 p r epa r e c l i e n t qu e r y ( ) ;
49 my � s i t e=f i n d d e f a u l t s i t e ( � c l i e n t i p ) ;
50 i f ( � s i t e ) {
51 pr in t ” � c l i e n t i p i s at � s i t e \n” ;
52 } e l s e {
53 pr in t ”Unknown\n” ;
54 }
55 } e l s i f ( �map token && �user && � s i t e ) {
56 xsede db connect ( ) ;
57 prepare tokenquery ( ) ;
58 my( �token type , �token username )=map user to token ( �user , � s i t e ) ;
59 pr in t ” �user at � s i t e has a � token type token with username

�token username \n” ;
60 } e l s e {
61 pr in t ”Unknown opt ions \n” ;
62 }
63 }
64

65 # Function to handle au tho r i z a t i on
66 # This could be e i t h e r a c l i e n t or a user
67 sub autho r i z e {
68 i f ( de f i n ed (�RAD CHECK{ �FreeRADIUS−Cl ient−IP−Address � }) ) {
69 # Authorize C l i en t
70 x s ede l og (L INFO , � Author iz ing c l i e n t � . �RAD CHECK{ �FreeRADIUS−

Cl ient−IP−Address � }) ;
71 r e turn c l i e n t a u t h o r i z e (�RAD CHECK{ �FreeRADIUS−Cl ient−IP−Address � }) ;
72 } e l s e {
73 # Authorize User
74 my �user = �RAD REQUEST{ �User−Name � } ;
75 i f ( ! �user ) {
76 x s ede l og (L ERR, ” xsede : : Dropping reque s t because no user was

s p e c i f i e d ” ) ;
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77 r e turn RAD FAIL ;
78 }
79 my � s i t e ;
80 i f ( de f i n ed (�RAD REQUEST{ �NAS−I d e n t i f i e r � }) ) {
81 � s i t e = �RAD REQUEST{ �NAS−I d e n t i f i e r � } ;
82 } e l s e {
83 � s i t e = f i n d d e f a u l t s i t e (�RAD REQUEST{ �FreeRADIUS−Cl ient−IP−

Address � }) ;
84 }
85 i f ( ! � s i t e ) {
86 x s ede l og (L ERR, ” xsede : : no s i t e de f i n ed ” ) ;
87 r e turn RAD FAIL ;
88 }
89 x s ede l og (L DBG, ” xsede : : s i t e i s � s i t e ” ) ;
90 my( �ttype , � tu s e r )=map user to token ( �user , � s i t e ) ;
91 i f ( �ttype && � tu s e r ) {
92 x s ede l og (L INFO , ” xsede : : sending �user at � s i t e to �ttype as

� tu s e r ” ) ;
93 �RAD REQUEST{ �User−Name �}=� tu s e r ;
94 �RAD CHECK{ �Proxy−to−realm �}=�ttype ;
95 } e l s e {
96 x s ede l og (L ERR, ” xsede : : Not mapped , user : �user , s i t e : � s i t e ,

token : �ttype tu s e r : � tu s e r ” ) ;
97 r e turn RAD FAIL ;
98 }
99 r e turn RADOK;

100 }
101 }
102

103 # Function f o r au then t i c a t i on
104 # Not cu r r en t l y used , but c e r t a i n token types may in the fu tu r e
105 sub authen t i ca t e {
106 # Always f a i l
107 r e turn RAD FAIL ;
108 }
109

110 # This i s c a l l e d when a new thread i s spawned
111 sub CLONE {
112 x s ede l og (L INFO , ” xsede : : Spawning a new i n t e r p r e t e r thread . . . ” ) ;
113 xsede db connect ( ) or d i e ( ”Can � t connect to XSEDE Centra l DB” ) ;
114 p r epa r e c l i e n t qu e r y ( ) ;
115 prepare tokenquery ( ) ;
116 prepa r e po r ta l que ry ( ) ;
117 }
118

119 # This i s c a l l e d when threads e x i t
120 sub detach {
121 x s ede l og (L INFO , ” xsede : : shut t ing down an i n t e r p r e t e r thread ” ) ;
122 xsede db d i s connec t ( ) ;
123 }
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B.2 Common Settings and Functions

1 #!/ usr / bin / p e r l
2

3 package XSEDE: : Common;
4 use s t r i c t ;
5 use DBI ;
6 use threads ;
7 use threads : : shared ;
8

9 # S i t e s to make User maps f o r
10 our @s i t e s=qw(NICS TACC NCSA SDSC) ;
11

12 # Se t t i n g s f o r Database Connection
13 our %DB;
14 �DB{HOST} = � l o c a l h o s t � ;
15 �DB{PORT} = 5432 ;
16 �DB{NAME} = � xsede � ;
17 �DB{USER} = � xsede � ;
18 �DB{PASS} = � xsede � ;
19 �DB{HANDLE} = undef ;
20 �DB{ connected } = 0 ;
21 �DB{ f a i l t im e } = 0 ;
22

23 # Se t t i n g s f o r Cache
24 our %CACHE;
25 �CACHE{ s i t e s e n a b l e } = 1 ;
26 �CACHE{ c l i e n t s e n a b l e } = 1 ;
27 �CACHE{ c l i e n t s d u r a t i o n } = 60�10 ;
28 �CACHE{ token enab le } = 1 ;
29 �CACHE{ token durat ion } = 60�10 ;
30

31 # Return codes , as de f i n ed by FreeRADIUS
32 use constant {
33 RAD REJECT => 0 ,# /� Immediately r e j e c t �/
34 RAD FAIL => 1 ,# /� Module f a i l e d , don � t r ep ly �/
35 RADOK => 2 ,# /� Module i s OK, cont inue �/
36 RADHANDLED => 3 ,# /� Handled the request , stop �/
37 RAD INVALID => 4 ,# /� Request i s i n v a l i d �/
38 RADUSERLOCK=> 5 ,# /� User i s locked , r e j e c t �/
39 RADNOTFOUND=> 6 ,# /� User not found , r e j e c t �/
40 RADNOOP => 7 ,# /� Succeeded , but did nothing �/
41 RADUPDATED => 8 ,# /� OK ( pa i r s modi f i ed ) �/
42 RADNUMCODES=> 9 # /� Number o f re turn codes �/
43 } ;
44

45 # Log Leve l s
46 use constant {
47 L DBG => 1 , # Debug
48 L AUTH => 2 , # Authent i cat ion
49 L INFO => 3 , # In fo rmat i ona l
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50 L ERR => 4 , # Error
51 L PROXY=> 5 , # Proxying
52 L ACCT => 6 # Accounting
53 } ;
54

55 # Pul l v a r i a b l e s from main FreeRADIUS , i f they are the re
56 use vars qw(%RADREQUEST %RAD REPLY %RADCHECK) ;
57

58 # Our own logg ing func t i on to handle i n s i d e and out s id e FR
59 sub x s ede l og {
60 my( � l e v e l , �message ) = @ ;
61 my @leve l s = qw(Debug Auth Proxy In f o Error ) ;
62 i f ( de f i n ed (&rad iusd : : rad log ) ) {
63 &radiusd : : rad log ( � l e v e l , �message ) ;
64 } e l s e {
65 pr in t ”Message from out s i d e ! ! \ n” ;
66 pr in t � l e v e l s [ � l e v e l ] . �message . ”\n” ;
67 }
68 }
69

70 # Connect to the XSEDE Database
71 # Args : None
72 # Returns : None
73 sub xsede db connect {
74 #my %at t r = ( Pr intError => 0 , RaiseError => 0 ) ;
75 my %at t r = ( Pr intError => 1 , RaiseError => 1 ) ;
76 #my %at t r ;
77 �DB{HANDLE} = DBI−>connect (
78 ”dbi : Pg : dbname=�DB{NAME} ; host=�DB{HOST} ; port=�DB{PORT}” ,
79 �DB{USER} , �DB{PASS} , \%at t r ) ;
80 }
81

82 # Disconnect from the XSEDE Database
83 # Args : None
84 # Returns : r e turn code from d i s connec t ( )
85 sub xsede db d i s connec t {
86 r e turn �DB{HANDLE}−>d i s connec t ( ) ;
87 }
88

89 # Allow everyth ing above to be exported
90 r e qu i r e Exporter ;
91 our @ISA = � Exporter � ;
92 our @EXPORT = qw(RAD REJECT RAD FAIL RADOK RADHANDLED RAD INVALID
93 RADUSERLOCK RADNOTFOUND RADNOOP RADUPDATED
94 L DBG L AUTH L INFO L ERR L PROXY L ACCT
95 %RADREQUEST %RAD REPLY %RADCHECK
96 @s i t e s %DB %CACHE
97 x s ede l og
98 xsede db connect
99 xsede db d i s connec t

100 ) ;
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101

102 # Always re turn true
103 1 ;
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B.3 RADIUS Clients Functions

1 #!/ usr / bin / p e r l −w
2 # This implements f unc t i on s and data s t r u c t u r e s to handle c l i e n t s
3 # Or i g i n a l l y wr i t t en by Matt Ez e l l <matt@mattezel l . com>
4

5 use s t r i c t ;
6 use DBI ;
7 use Cache : : Simple : : TimedExpiry ;
8 use threads ;
9 use threads : : shared ;

10

11 package XSEDE: : C l i e n t s ;
12

13 # Pul l in common va r i a b l e s and cons tant s
14 use XSEDE: : Common;
15

16 # Create a f a i l e d c l i e n t cache
17 my � f a i l e d c l i e n t s = Cache : : Simple : : TimedExpiry−>new ;
18 � f a i l e d c l i e n t s −>e x p i r e a f t e r (�CACHE{ c l i e n t s d u r a t i o n }) ;
19

20 # Cache ” d e f au l t s i t e ” f o r c l i e n t s
21 # Only need to cache i f c l i e n t didn � t s p e c i f y a s i t e
22 # Assume that c l i e n t s don � t t y p i c a l l y change d e f au l t s i t e s ,
23 # So cache t h i s f o r e v e r . We can j u s t use a s imple hash
24 my %site map : shared ;
25

26 # Prepared statement to look up a s i n g l e c l i e n t
27 my � c l i e n t que ry ;
28 sub p r epa r e c l i e n t qu e r y {
29 � c l i e n t que ry = �DB{HANDLE}−>prepare ( q{ s e l e c t hostname , ip , s e c r e t ,

amie name
30 from acct . r a d i u s c l i e n t s rc , acc t . o r g an i z a t i on s o
31 where rc . o r g an i z a t i o n i d = o . o r g an i z a t i o n i d
32 AND ip=? }) ;
33 }
34

35 # Authorize a new c l i e n t
36 # Note , e x i s t i n g c l i e n t s should be in the c l i e n t s . conf
37 # Args : c l i e n t i p
38 # Sets : RADIUS values
39 # Returns : RAD return code
40 sub c l i e n t a u t h o r i z e {
41 my � c l i e n t = s h i f t ;
42

43 # Check to see i f the c l i e n t has r e c en t l y f a i l e d
44 i f (�CACHE{ c l i e n t s e n a b l e } && � f a i l e d c l i e n t s −>has key ( � c l i e n t ) ) {
45 x s ede l og (L DBG, ” x s e d e c l i e n t s : � c l i e n t a l r eady in f a i l e d cache ,

i gno r i ng ” ) ;
46 r e turn RADNOTFOUND;
47 }
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48

49 # Run the query ( prepared e a r l i e r )
50 � c l i en tque ry−>execute ( � c l i e n t ) ;
51 i f ( my( �hostname , � ip , � s e c r e t , � s i t e ) = � c l i en tque ry−>

f e t ch row ar ray ( ) ) {
52 �RAD CHECK{ �FreeRADIUS−Cl ient−IP−Address � } = � ip ;
53 �RAD CHECK{ �FreeRADIUS−Cl ient−Shortname � } = �hostname ;
54 �RAD CHECK{ �FreeRADIUS−Cl ient−Sec r e t � } = � s e c r e t ;
55 x s ede l og (L INFO , ” x s e d e c l i e n t s : Author iz ing c l i e n t

�hostname , � ip ” ) ;
56 r e turn RADOK;
57 } e l s e {
58 x s ede l og (L INFO , ” x s e d e c l i e n t s : Refus ing to add c l i e n t

� c l i e n t ” ) ;
59 � f a i l e d c l i e n t s −>s e t ( � c l i e n t , 1 ) ;
60 r e turn RADNOTFOUND;
61 }
62 }
63

64 # Find de f au l t s i t e
65 # Args : c l i e n t i p
66 # Returns : d e f a u l t s i t e
67 sub f i n d d e f a u l t s i t e {
68 my � c l i e n t = s h i f t ;
69 i f (�CACHE{ s i t e s e n a b l e } && de f ined ( �s i te map { � c l i e n t }) ) {
70 x s ede l og (L DBG, ” xsede : : cache h i t f o r d e f au l t s i t e ( � c l i e n t ,

�s i te map { � c l i e n t }) ” ) ;
71 r e turn �s i te map { � c l i e n t } ;
72 } e l s e {
73 # Look up s i t e
74 � c l i en tque ry−>execute ( � c l i e n t ) ;
75 my ( �hostname , � ip , � s e c r e t , � s i t e ) = � c l i en tque ry−>f e t ch row ar ray ( ) ;
76 �s i te map { � c l i e n t } = � s i t e i f (�CACHE{ s i t e s e n a b l e }) ;
77 r e turn � s i t e ;
78 }
79 }
80

81 # Dump c l i e n t conf
82 sub dump c l i en t con f {
83 # Prepare SQL to f i nd a l l c l i e n t s
84 my � c l i e n t s qu e r y ;
85 � c l i e n t s qu e r y = �DB{HANDLE}−>prepare ( q{ s e l e c t hostname , ip ,

s e c r e t , amie name
86 from acct . r a d i u s c l i e n t s rc , acc t . o r g an i z a t i on s o
87 where rc . o r g an i z a t i o n i d = o . o r g an i z a t i o n i d }) ;
88 � c l i en t sque ry−>execute ( ) ;
89 open CLIENTS, ”>” , ”/ e t c / raddb xsede / c l i e n t s / c l i e n t s . conf ” or d i e � ! ;
90 whi le ( my ( �hostname , � ip , � s e c r e t , � s i t e ) = � c l i en t sque ry−>

f e t ch row ar ray ( ) ) {
91 pr in t CLIENTS ” c l i e n t �hostname {\n” ;
92 pr in t CLIENTS ”\ t ipaddr=� ip \n” ;
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93 pr in t CLIENTS ”\ t s e c r e t=� s e c r e t \n}\n” ;
94 }
95 c l o s e CLIENTS;
96 }
97

98 # Allow everyth ing above to be exported
99 r e qu i r e Exporter ;

100 our @ISA = � Exporter � ;
101 our @EXPORT = qw( f i n d d e f a u l t s i t e
102 p r epa r e c l i e n t qu e r y
103 c l i e n t a u t h o r i z e
104 dump c l i en t con f
105 ) ;
106

107 # Always re turn true
108 1 ;
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B.4 RADIUS Users Functions

1 #!/ usr / bin / p e r l
2 # This implements f unc t i on s and data s t r u c t u r e s to handle Users
3 # Or i g i n a l l y wr i t t en by Matt Ez e l l <matt@mattezel l . com>
4

5 use s t r i c t ;
6 use Switch ;
7 use Cache : : Simple : : TimedExpiry ;
8

9 package XSEDE: : Users ;
10

11 # Pul l in common va r i a b l e s and cons tant s
12 use XSEDE: : Common;
13 use XSEDE: : C l i e n t s ;
14 use XSEDE: : Cache ;
15 use threads : : shared ;
16

17 # Create a user to token map
18 # This �might� change , so only remember f o r a c on f i gu r ab l e per iod
19 #my �user token map = Cache : : Simple : : TimedExpiry−>new ;
20 #�user token map−>e x p i r e a f t e r (�CACHE{ token durat ion }) ;
21 my �user token map = XSEDE: : Cache−>new(�CACHE{ token durat ion }) ;
22

23 # Create a po r t a l user map
24 # This i s un l i k e l y to change , so we can keep a hash
25 my %user porta l map ;
26

27 # A prepared statement to look up a user token
28 my �tokenquery ;
29 sub prepare tokenquery {
30 �tokenquery = �DB{HANDLE}−>prepare ( q{
31 s e l e c t d i s t i n c t saa . username as l o c a l u s e r ,
32 t t . otp token name as token type ,
33 t . token username as token username
34 from
35 acct . system accounts saa ,
36 acct . r e s ou r c e s r ,
37 acct . o r g an i z a t i on s o ,
38 acct . o tp tokens t ,
39 acct . o tp token type s t t
40 where saa . username=?
41 and o . amie name=?
42 and saa . pe r s on id = t . pe r s on id
43 and saa . r e s o u r c e i d = r . r e s o u r c e i d
44 and r . o r g an i z a t i o n i d = o . o r g an i z a t i o n i d
45 and t . o tp token type id = t t . o tp token type id }) ;
46 }
47

48

49 # Map a user / s i t e to a token
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50 # Args : username
51 # site name
52 # Returns : @( token type , token username )
53 sub map user to token {
54 my �username = s h i f t ;
55 my � s i t e = s h i f t ;
56

57 i f (�CACHE{ token enab le } && �user token map−>has key ( ” � s i t e , �username”
) ) {

58 my � cache r e f = �user token map−>get ( ” � s i t e , �username” ) ;
59 x s ede l og (L INFO , ” xsede : : map user to token : � s i t e , �username a l ready

in cache ” ) ;
60 r e turn ( s p l i t ( / , / , �� cache r e f ) ) ;
61 }
62

63 # Run the query ( prepared e a r l i e r )
64 �tokenquery−>execute ( �username , � s i t e ) ;
65 i f (my( �user , �token type , �token username ) = �tokenquery−>

f e t ch row ar ray ( ) ) {
66 i f (�CACHE{ token enab le }) {
67 my �value = ” �token type , �token username” ;
68 �user token map−>s e t ( ” � s i t e , �username” , share ( �value ) ) ;
69 x s ede l og (L INFO , ” xsede : : map user to token : Adding � s i t e ,

�username to cache ” ) ;
70 }
71 r e turn ( �token type , �token username ) ;
72 } e l s e {
73 r e turn undef ;
74 }
75 }
76

77 # A prepared statement to look up a po r t a l username
78 my �porta lquery ;
79 sub prepa r e po r ta l que ry {
80 �porta lquery = �DB{HANDLE}−>prepare ( q{
81 s e l e c t d i s t i n c t saa . username as l o c a l u s e r ,
82 sab . username as xduser
83 from
84 acct . system accounts saa ,
85 acct . system accounts sab ,
86 acct . r e s ou r c e s r ,
87 acct . o r g an i z a t i on s o
88 where saa . username=?
89 and o . amie name=?
90 and saa . pe r s on id = sab . pe r s on id
91 and sab . r e s o u r c e i d =2013
92 and saa . r e s o u r c e i d = r . r e s o u r c e i d
93 and r . o r g an i z a t i o n i d = o . o r g an i z a t i o n i d ; } ) ;
94 }
95

96 # Map a user / s i t e to a po r t a l username
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97 # Args : username
98 # site name
99 # Returns : porta l username

100 sub map use r to po r ta l {
101 my �username = s h i f t ;
102 my � s i t e = s h i f t ;
103

104 # Run the query ( prepared e a r l i e r )
105 �porta lquery−>execute ( �username , � s i t e ) ;
106 i f (my( �user , �porta l username ) = �tokenquery−>f e t ch row ar ray ( ) )

{
107 r e turn �porta l username ;
108 } e l s e {
109 r e turn undef ;
110 }
111 }
112

113 # Allow everyth ing above to be exported
114 r e qu i r e Exporter ;
115 our @ISA = � Exporter � ;
116 our @EXPORT = qw( prepare tokenquery
117 map user to token
118 prepa r e po r ta l que ry
119 map use r to po r ta l
120 ) ;
121 # Always re turn true
122 1 ;
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B.5 Multi-Threaded Caching Functions

1 #!/ usr / bin / p e r l
2 # This implements thread−s a f e caching
3 # Derived from Cache : : Simple : : TimedExpiry by Je s s e Vincent <

j e s s e@b e s t p r a c t i c a l . com>
4 use s t r i c t ;
5

6 package XSEDE: : Cache ;
7

8 use threads ;
9 use threads : : shared ;

10

11 sub new {
12 my � c l a s s = s h i f t ;
13 share (my @se l f ) ;
14 my �durat ion = s h i f t ;
15 �durat ion = de f ined ( �durat ion ) ? �durat ion : 600 ;
16 � s e l f [ 0 ] = �durat ion ;
17 � s e l f [ 1 ] = &share ({} ) ;
18 � s e l f [ 2 ] = &share ( [ ] ) ;
19 � s e l f [ 3 ] = 0 ;
20 r e turn ( b l e s s (\@sel f , � c l a s s ) ) ;
21 }
22

23 sub has key ( �� ) {
24 my ( � s e l f , �key ) = @ ;
25 my �time = time ;
26 � s e l f−>exp i r e ( �time ) i f ( �time > � s e l f −>[3]) ;
27 r e turn 1 i f de f i n ed �key && e x i s t s � s e l f −>[1]−>{�key } ;
28 r e turn 0 ;
29 }
30

31 sub get ( �� ) {
32 my ( � s e l f , �key ) = @ ;
33 un l e s s ( � s e l f−>has key ( �key ) ) {
34 r e turn undef ;
35 }
36 r e turn � s e l f −>[1]−>{�key } ;
37 }
38

39 � s e t = \&s to r e ;
40 sub s t o r e ( ��� ) {
41 my ( � s e l f , �key , �value ) = @ ;
42 r e turn undef un l e s s de f i ned ( �key ) ;
43 my �time = time ;
44 � s e l f−>exp i r e ( �time ) i f ( �time > � s e l f −>[3]) ;
45 � s e l f −>[1]−>{�key} = �value ;
46 my @value : shared = ( time , �key ) ;
47 push @{ � s e l f −>[2]} , \@value ;
48 }

74



49

50 sub exp i r e ( �� ) {
51 my ( � s e l f , �time ) = @ ;
52 � s e l f −>[3] = �time ;
53 my �o ld e s t nonexp i r ed en t ry = ( �time − � s e l f −>[0]) ;
54 r e turn un l e s s de f i ned � s e l f −>[2]−>[0]; # do we have an element in the

array ?
55 r e turn un l e s s � s e l f −>[2]−>[0]−>[0] < �o ld e s t nonexp i r ed en t ry ; # i s i t

exp i r ed ?
56 whi le ( @{ � s e l f −>[2]} && � s e l f −>[2]−>[0]−>[0] <

�o ld e s t nonexp i r ed en t ry ) {
57 my �key = � s e l f −>[2]−>[0]−>[1];
58 de l e t e � s e l f −>[1]−>{ �key } ;
59 s h i f t @{ � s e l f −> [2]} ;
60 }
61 }
62

63 1 ;
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