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Abstract 

Research has already shown that the extraction of a valuable hemicellulose-rich stream is a 

viable option for revenue generation in the pulp and paper industries.  Applying the value 

prior to pulping concept to the composite panel industry is a natural extension.  If a 

hemicellulose extraction is accomplished under the right conditions, a non-trivial amount of 

fine chemicals can be generated, while leaving the woody substrate structurally intact for 

production to traditional products, such as oriented strand board (OSB).  According to 

literature, the removal of hemicellulose can increase the dimensional stability while 

decreasing the degradability of OSB panels.  This research studied the effects of 

hemicellulose removal by hot water extraction on softwood OSB wood flakes.  Three 

reaction hold temperatures (120, 140, 160 deg C) and three isothermal hold times (20, 40, 60 

min) were investigated.  This research focuses on the changes that occurred in the physical 

and chemical properties of the wood flakes after extraction at each condition, while 

characterizing and classifying changes that occur in the liquid phase hydrolysates.  Results 

indicated the extraction of hemicellulose in quantifiable levels begins at 120 deg. C and 40 

mins and cellulose extraction begins at 140 deg C, 40 mins.  The level of extraction of 

lignocellulosic materials, the decrease of wood flake thickness, and the acidity of the 

recovered hydrolysates all increase with an increase in extraction severity.  The most 

promising results in regards to industrial implementation of OSB flake extraction occur at an 

extraction temperature of 140 deg C and 20 mins, coupled with hydrolysate conversion to 

high value chemicals.   
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1. Justification and Objectives 

There are currently many factors driving the utilization of renewable biomass for 

energy, fine chemical and polymeric applications.  These include economics, environmental 

concerns, and practical interests. 

Economically, the North American forest products industry is in desperate need of 

value added product lines.  Profit margins have been slashed in recent years as a result of 

global competition that utilizes low-cost labor, quicker growing equatorial biomass, and 

government subsidized large-scale manufacturing facilities [Canadian Forestry Innovation 

Council (2005)].  Despite these economic woes, forest industries provide important 

contributions to the economies of many countries, including those countries in North 

America.  Increasing efficiencies and revenues are vital to the health of these important 

industries, as they will continue to provide jobs and contribute to the gross national products 

of their respective countries [Duff (1996)]. 

Environmentally, governments are investing heavily in the search for “green” sources 

of fuel and chemical feedstocks [Canettieri (2007)].  Lignocellulosic materials can meet this 

demand in a carbon neutral manner, helping to relieve the carbon dioxide burden in the 

atmosphere [Amidon (2006)].  Interest is growing regarding the use of natural biomass-

derived polymers to replace the petroleum-derived polymers that are commonplace today 

[Methacanon (2003)].    According to Patel, “Approximately 107 billion pounds of plastics 

were produced from petroleum in North America during 2003. Worldwide, less than 1% of 

this amount was produced from renewable, bio-based feedstocks [Patel (2005)].”  Using 

lignocellulosic biomass, rather than starch based biomass, can provide the appropriate 
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chemical precursors for polymer production without competing with food and animal feed 

markets. [Parajo (1996), Schmidt (1997)]. 

Governments around the globe are mandating stringent standards on the levels of 

volatile organic compounds (VOC’s) that wood product industries can release.  Since these 

compounds are found naturally in wood, processing must be done to limit VOC emissions 

[Ingram (2000)].  Many processes that extract chemicals from biomass also extract VOC’s 

into the chosen solvent [Speaks (1999), Roffael (2006)].  Shifting VOC’s from flue gases 

into easier to clean solvents can save on the capital expenditures used currently for flue gas 

scrubbing, and allow for the recovery of valuable organic compounds [Seider (1998)]. 

Regarding practical interests, Keenan et al. suggest that “the hemicellulose fraction of 

woody biomass, typically 20%-35% on the dry weight mass is a currently underutilized 

resource, potentially utilized for bio-based fuels, chemicals and polymer material [Keenan 

(2004)].”   Utilizing this “wasted” lignocellulosic material efficiently can produce revenue-

generating streams for forest product manufacturing facilities [Duff (1996)].  For example, 

most biomass waste streams from processes are sent to generators, boilers or hog fuel units.  

Since the hemicellulose fraction of biomass has poor heating value, an economical advantage 

would be obtained from diverting hemicellulose into a higher return product stream [White 

(1987), Friedl (2005)].  Example high return products include furans and various organic 

acids.  These chemicals have been targeted by the United States Department of Energy as the 

most important building block chemicals derived from sugar sources [Werpy (2004)].  

Literature suggests that composite panel manufacturers may benefit from the extraction of 

hemicellulose from their raw material.  Hemicellulose is an amorphous, hygroscopic polymer 

[Sjostrom (1993)].  The extraction of hemicellulose from raw material should provide greater 
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dimensional stability in the final product, as in the Masonite process in the fiberboard 

industry [Mosier (2005)].  Removal of the hemicellulose polymer will lessen the number of 

sites for free moisture to bond to the wood particles and therefore lessen the shrinking and 

swelling associated with moisture bonding.  Because of the amorphous nature of the 

hemicellulose, careful extraction should have negligible effect on the strength of the wood 

material [Sjostrom (1993)].  Research has also indicated that extraction of hemicellulose 

increases the durability of woody substrates by decreasing the susceptibility of the substrate 

to mold biodegradation [Ye (2006)].  However, because mass is being removed from the 

flake, a decrease in the density of the flake is expected. 

Utilizing biomass for energy and chemical applications is nothing new, and has been 

carried out on a variety of substrates.  Great emphasis has already been placed on the 

recovery and synthesis of chemicals from biomass chips that will be pulped for use in the 

paper industry [Syverud (2002), Canadian Forest Innovation Council (2005), American 

Forest and Paper Association (2006)].  Research has already shown that the extraction of 

value from hemicellulose is a viable option for the pulp and paper industries [van Heiningen 

(2006)].  Research is focusing on utilizing waste streams from these industries as raw 

materials for integrated bio-refineries [Magdzinski (2006), van Heiningen (2006)].  Applying 

this concept to the composite panel industry is a natural extension.  

Studies have been completed regarding the derivation of sugar-derived chemicals 

from such diverse lignocellulosic materials as sugar cane bagasse, corn cobs, and rice straw, 

all of which have been milled or ground [Sun (2002), Sun (2004a)]. However, the goal of 

past research has been to maximize the yield of sugars, acids, or other valuable chemicals 

from lignocellulosic materials with no regard to the structural alterations incurred by the 
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woody substrate [Canettieri (2007)].  The natural extension of previous research would be to 

apply a carefully performed extraction to flaked raw material, which would remove non-

crystalline hemicellulose from the material while leaving the structure bearing elements of 

the wood (the lignin matrix and cellulose) intact.  This is possible because the amorphous 

hemicellulose polymer will be extracted under milder conditions than are necessary for the 

extraction of either the lignin or crystalline cellulose polymers [Eseghlalian (1997), Xiang 

(2003)]. The result of this extraction would be revenue-producing chemical streams derived 

from hemicellulose, operating concurrently with the production of standard engineered forest 

products such as oriented strand board (OSB). 

The specific goals of the research are as follows: extract hemicellulose under a 

variety of conditions, characterize and quantify the products (both sugar and co-products) 

released into the liquid phase hydrolysates during the reaction, characterize and quantify any 

chemical and physical changes that have occurred in the wood flake, develop rapid analysis 

techniques to aid future research in this area, perform a rough economic analysis to 

determine if the extraction process has potential to be a value added process, and  

recommend the optimal extraction condition for future, larger scale studies. 

Experimentation will define the conditions (i.e. temperature and reaction time) that 

will maximize the level of hemicellulose extraction from Pinus taeda (loblolly pine) flakes, 

while seeking to leave the cellulose and lignin polymers largely intact. Quantification of 

extract products will be carried out by high performance liquid chromatography (HPLC).  

Testing will be done to quantify any changes in the physical dimensions of the flake that may 

be detrimental to industrial implementation in the future.  Spectroscopy will be done to 

correlate time consuming analytical data to rapidly available infrared spectra. 
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2. Introduction 

A. Wood Components 

Woody biomass is a collection of cellulose, hemicellulose, and lignin polymers 

collectively known as lignocellulosic materials [Alen (2000)].  The amount of these polymers 

covers a wide range, dependent upon species environmental factors, and even location within 

the same tree [McMillin (1968), Sjostrom (1993), Jones (2006)]. 

Cellulose is the main polysaccharide in wood generally making up 33% to 42% of 

softwood species such as Pinus taeda on a dry mass basis [Sjostrom (1993)].  Cellulose is 

found most abundantly in the secondary cell wall.  The chemical composition is known, but 

structure (size and molecular weight) in both crystalline and fibril forms remain a debated 

topic [Laine (2005)].  Intermolecular hydrogen bonding forms bundles of cellulose which are 

known as microfibrils.  In these microfibrils, regions of highly ordered densely packed 

strands of cellulose give rise to crystallinity, while in other regions the cellulose is less 

ordered and gives rise to amorphous regions.  Microfibrils aggregate to form fibrils, which in 

turn aggregate to form bulk cellulose fibers [Sjostrom (1993)].  The degree of crystallinity 

varies for a variety of reasons, but the bulk of cellulose is generally crystalline in nature 

[Laine (2005)]. 

The repeating unit of cellulose is cellobiose with each repeated unit 180° from the 

previous, forming a chain lattice.  Cellobiose is a disaccharide composed of D-glucose units 

linked through β(1-4) glycosidic bonding [Sjostrom (1993)] (Figure 1).  Research indicates 

that cellulose from wood sources contains about 10,000 glucose units [Laine (2005)].  Co-

planar chains of cellulose are held together by a network of hydrogen bonds.  Parallel planes 

of chains are held together with Van der Waals forces which form a weaker layer lattice  
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Figure 1:  Cellobiose 

 

[Bjorkman (2002)].  The strength derived from such long range order provides much of the 

mechanical strength of the cell wall while also making the cellulose molecule resistant to 

hydrolysis until harsh conditions are encountered [Xiang (2003)].   

Hemicellulose generally composes 20-30% of the dry mass of wood and is also a 

constituent of the cell wall [Sjostrom (1993)].  Hemicellulose, unlike cellulose, is an 

amorphous polymer.  Lacking the crystalline structure of cellulose, hemicellulose is much 

easier to hydrolyze and provides relatively little strength and structure to the wood [Toget 

(1996), Sun (2005)].  Hemicellulose is a hygroscopic polymer as the non-structured 

(amorphous) OH groups present in the hemicellulose polymers provide hydrogen bonding 

sites for water [U.S. Department of Agriculture (1974)].  Although removal of any 

lignocellulosic component will result in a decrease in the amount of moisture that will be 

absorbed at saturation, loss of hemicellulose has the most dramatic affect on this quantity 

[Sun (2005)].  Theoretically, removal of hemicellulose from woody substrates is desirable 

because removal should decrease the equilibrium moisture content (fiber saturation point), 

which increases the dimensional stability of the wood, while having little impact on the 

strength of the material [Sjostrom (1993), Mosier (2005)]. 
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Hemicellulose, along with lignin, does form a protective “wrapper” around cellulose 

molecules, and the removal of hemicellulose will make the cellulose more susceptible to 

hydrolysis [Hsu (1996), Sun (2005)]. Unlike cellulose, hemicellulose is composed of more 

than one type of saccharide.  Decomposition of the hemicellulose polymer yields monomeric 

components including D-glucose, D-mannose, D-galactose, D-xylose and L-arabinose 

[Sjostrom (1993)].  Hemicellulose is generally synthesized from 200 monomer units, making 

hemicellulose much shorter than cellulose [Sun (2004a)]. 

Softwood hemicelluloses are predominantly galactoglucomannans (commonly 

referred to as glucomannans, Figure 2).  The backbone of this hemicellulose is composed of 

linked β-D-glucopyranose and β-D-mannopyranose units.  From this backbone, α-D-

galactopyranose molecules are linked as single units.  Galactoglucomannans are easily 

depolymerized by acids, with the bond between galactose and the polymer backbone being 

the most susceptible to chemical attack [Shimizu (2001), Laine (2005)]. 

Arabinoglucuronoxylan (commonly referred to as xylan) is another constituent of 

hemicellulose.  The backbone of this constituent is made up of linked β-D-xylopyranose  

 

 

Figure 2: Galactoglucomannan [Laine (2005)] 
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units, with branching of 4-O-methyl-α-D-glucuronic acid groups and arabinofuranose units.  

These later side chains are easily hydrolyzed by acids to yield arabinose.  Acetyl groups are 

also found as lateral chains on this polymer [Shimizu (2001), Laine (2005)]. 

A minor constituent of hemicellulose in most softwood species is arabinogalactan.  

The backbone of this polymer is made up of β-D-galactopyranose units, with other β-D-

galactopyranose and L-arabinose units branched from virtually every monomer [Shimizu 

(2001), Laine (2005)]. 

Lignin content generally varies between 26-40% on a dry mass basis (with the higher 

value corresponding to lignin content in compression wood) and is the second most abundant 

natural polymer on earth [Bjorkman (2002)].  Lignin is partially dissolved during acid 

hydrolysis and the degrees of dissolution can be quantified using direct ultraviolet 

spectrophotometric methods [Sluiter (2007)].  The exact structure of lignin remains 

uncertain, although several have been suggested [Ralph (2005)].  Efforts to study the 

structure generally result in extensive alterations to the original lignin structure [Adler 

(1977), Mao (2006)].  Despite this, the major structural elements of lignin have been 

determined (Figure 3).  Lignin is a polymer found in the secondary cell wall and is built up 

with phenylpropane units joined by ether linkages, with coniferyl alcohol being the main 

precursor of lignin.  From this polymer backbone, methoxyl, phenolic hydroxyl and terminal 

aldehyde groups extend as side chains, with the phenolic hydroxyl groups functioning to link 

neighboring phenylpropane backbones [Alder (1977), Sjostrom (1993)].  The relative 

composition of these side chain functional groups varies widely, but the lignin matrix helps 

provide structure to the cell wall [Bjorkman (2002)].  The molecular weight of lignin can 

vary from 3,000 to 20,000 [Glasser (1993)]. 
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Figure 3:  Lignin [Brunow (1998)] 
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Although presently debated, it is generally accepted that lignin forms chemical bonds 

with the polysaccharide polymers of wood [Sjostrom (1993)].  Lignin forms definite bonds 

between each of the hemicellulose constituents through ester and ether linkages [Sun 

(2004b)].  Some research indicates that glycosidic bonding also bridges lignin and 

hemicellulose, as well as indicating that there is some bonding between lignin and cellulose 

[Laine (2005)].  When hydrolyzed, lignin produces a variety of compounds including 

phenols, alcohols, and aldehydes through various bond cleavage reactions [Mao (2006)].   

B. Extraction Techniques 

There are five main chemical methods used to extract lignocellulosic materials from 

biomass: acid hydrolysis, alkali hydrolysis, enzymatic hydrolysis, steam explosion, and hot 

water extraction [Fang (1999), Badger (2002), Methacanon (2003), Mosier (2005), Amidon 

(2006), Mishima (2006)].   

Acid hydrolysis is an attractive process because of its high product yields at relatively 

low reactor residence times [Xiang (2003), Mosier (2005)].  The glycosidic bond in both 

hemiceullulose and cellulose are cleaved, and the resulting oligomers are quickly 

depolymerized to carbohydrates [Saeman (1954)].  Near complete conversion of 

lignocellulosic materials have been reported for a variety of agricultural products [Tsao 

(1982)] but degradation of monosaccharides to aldehydes is also high [Garrote (2001)].  Acid 

hydrolysis is already a commercially viable process as acid catalyzed conversion of 

lignocellulosic materials to furfural has been done on an industrial scale for years [Sjostrom 

(1993)].  However, in regards to the goals of this research, acid hydrolysis is a poor choice 

for extraction.  Acid treatment, even in dilute quantities, solubilizes lignin and hemicellulose 

easily, leaving the cellulosic polymer susceptible to hydrolysis [Toget (1996)].  Lignin and 
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cellulose will need to remain intact to provide strength and structure to the cell wall of the 

extracted wood flake.  Acid hydrolysis is a capital intensive process [Schell (2004)] which is 

a serious concern in a cash-strapped industry.  The corrosive nature of the acid solution 

requires expensive materials of construction. Required acid neutralization steps or acid 

scrubbing processes add capital and utility costs to acid catalyzed hydrolysis.  There are also 

increased safety risks to personnel whenever acids are used in large quantities [Seider 

(1998)]. 

Alkali treatment has been used for years by the pulp and paper industry, as this 

method is very effective in delignifying woody material, as well as solubilizing some 

hemicelluloses [Pan (1998), Fang (1999)].  Cellulose will not be dissolved by alkali; however 

alkali can cause significant swelling of cellulose fibers [Sjostrom (1993)].  Under alkali 

conditions, side groups of the hemicellulose polymers are also cleaved, yielding a structure 

more susceptible to hydrolysis on the polymer backbones in some hemicelluloses [Chang 

(2000)].  However, the xylan backbone is stabilized against alkali catalyzed degradation, and 

the cleavage of glycosidic bonds in susceptible hemicelluloses is extremely slow [Sjostrom 

(1993)].  Large amounts of lignin can be dissolved in alkali solutions at temperatures as low 

as 170ºC, so appreciable amounts of lignin decomposition could be expected in the range of 

temperatures under investigation in this project [Sjostrom (1993)].  Many factors make alkali 

catalyzed hydrolysis unacceptable for this study.  The destruction of the lignin in the 

lignocellulosic matrix will result in the loss of strength in the cell wall [Olsson (1992)].  

Steric changes in crystalline cellulose as a result of swelling will lead to a destabilized lattice, 

thus further decreasing the strength of the cell wall [Xiang (2003)].  Since xylan is a major 

component of the softwood species under investigation in this study, yields using alkali 
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catalyzed hydrolysis would be very low, and the time frame required for hydrolysis with 

alkali solvents is longer than that of other processes. Whereas acid catalyzed hydrolysis 

occurs on the order of minutes, alkali catalyzed hydrolysis occurs on the order of hours 

[Mosier (2005)]. 

Enzymatic hydrolysis has emerged as an exciting method for hydrolyzing 

lignocellulosic material, as conversion efficiencies are high and controllable, and the mild 

process does not require expensive construction [Keller (2003)].  Enzymes such as 

hemicellulases have high selectivity to depolymerize hemicellulose into monosaccharides 

[Mosier (2005)].  However, enzymes have their downsides, too.  Enzymatic hydrolysis 

removes hemicellulose as oligomers.  Conversion to feedstocks such as monosaccharides 

requires further hydrolysate processesing, which increases the complexity of processing 

[Seider (1999), Palmqvist (2000), Mosier (2005)].  Although enzyme costs are rapidly 

decreasing, at present direct enzymatic hydrolysis to products such as ethanol is still 

prohibitively expensive for industrial implementation [Nagle (2002)].  Mass transfer 

limitations must also be taken into account.  Enzymatic conversion generally only occurs in 

an absorbed monolayer.  Because this study utilizes wood flakes, rather than ground or 

milled substrate, the ratio of surface area to volume is relatively low, and the level of 

conversion achieved in a reasonable time frame is severely limited [Chang (2000), Mosier 

(2005)].  Limitations of enzymatic conversion also occur because of the internal structure of 

woody substrates.  According to Badger, “for the enzymes to work, they must obtain access 

to the molecules to be hydrolyzed.  For enzymatic processes to be effective, some kind of 

pretreatment process is thus needed to break the crystalline structure of the lignocellulose and 

remove the lignin to expose the cellulose and hemicellulose molecules [Badger (2002)].”  
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Because of the low conversion of chip-like lignocellulosic material to valuable chemicals 

without destruction of the either the OSB flake macrostructure or the internal lignocellulosic 

matrix, enzyme hydrolysis is unacceptable in the current study. 

Steam explosion is commonly used as a pretreatment method for the extraction of 

hemicellulose from biomass [Hsu (1996), Mosier (2005)].  Steam is applied to a sealed vessel 

containing biomass and after an appropriate isothermal hold time the pressure is rapidly 

relieved [Hsu (1996)].  This process is used commercially in the manufacture of fiberboard to 

hydrolyze the hemicellulose fraction of woody raw material [Mosier (2005)].  At high 

temperature, steam acts as a weak acid and catalyzes the depolymerization of hemicellulose.  

Cleavage of acetyl side groups further catalyzes the conversion of hemicellulose into 

monosaccharides [Sjostrom (1993), Nabarlatz (2004)].  Extraction of hemicellulose with 

steam limits the amount of monosaccharide dilution, which can limit downstream energy 

requirements in product concentrating processes especially when compared to liquid phase 

extractions [Heitz (1991), Mosier (2005)].  While this method is effective in extracting 

hemicellulose, the rapid decompression used to terminate the reaction can disrupt the internal 

structure of the biomass while causing large scale breakage of solid substrate [Brownell 

(1986)].  This research seeks to limit the disruption and destruction of the lignocellulosic 

matrix with the removal of hemicellulose and therefore, steam explosion is not a suitable 

extraction method for this study. 

Hot water extraction methods are similar to steam treatment methods, but the pressure 

under which hemicellulose is extracted is raised to keep the water in the liquid phase [Mosier 

(2005)].  The extraction process is known by a variety of terms including hot compressed 

water, uncatalyzed solvolysis, hydrothermolysis, and aquasolv [Bobleter (1981), Mok (1992), 
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Bouchard (2005)].  Research has indicated at high severity conditions (200°C, 15 minutes 

residence time), significant amounts of lignocellulosic material is extracted (up to 22% 

available cellulose, 30% of lignin and all of the hemicellulose fraction) [Mok (1992)].  At 

low severity conditions, hot water extraction will not degrade lignin and cellulose as quickly 

as an acid or alkali treatment.  However, for conditions to be harsh enough for hydrolysis to 

occur in a reasonable length of time, the extraction usually occurs under heat and pressure 

[Mok (1992), Ohgren (2004)], which can lead to increased capital expenditures (thick walled 

vessels, heat exchangers, etc.) [Seider (1998)].   According to Amidon, water is an ideal 

extraction solvent because water is non-toxic, abundant, and technology is already in place to 

clean water of possible contaminants or impurities [Amidon (2006)].  Autocatalysis is more 

attractive than acid and alkali catalysis because water methods reduce the required chemical 

loads on solvents for neutralization prior to discharge.  However, valuable hydrolysis 

products are also diluted and therefore product concentration is generally required [Weil 

(1997)].  Research has indicated that product separation can be completed by membrane 

separation because of the chemically benign nature of the water solvent.  Utilizing 

membranes for separation can significantly lower energy costs over more conventional 

separation and concentration technologies [Amidon (2006)].  The advantages of this method 

make it the extraction method of choice for this study. 

C. Reaction Chemistry 

Research indicates that the extraction of lignocellulosic materials via hot water 

extraction is initiated by hydronium ions formed by water disassociation [Nabarlatz (2004)].  

The pKa of water has been demonstrated to reach a value of 5.0 at a temperature of 200°C 

[Weil (1998)].  Autohydrolysis commences when these hydronium ions promote cleavage 
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and conversion of acetyl and uronic side chain groups in hemicellulose to uronic and acetic 

acids [Maloney (1984), Li (2005)].  The concentration of these acids in the aqueous phase 

promotes acid catalyzed degradation of the lignocellulosic polymers [Mosier (2002)].  

Hemicellulose is much more susceptible to chemical attack than cellulose because of the 

amorphous nature of the hemicellulose polymer [Sjostrom (1993), Sun (2004b)].  Glycosidic 

bonds come under attack and the hemicellulose polymers fragment into soluble oligomers in 

the aqueous phase [Kumar (2008)].  Once these oligomers are solubilized, depolymerization 

occurs rapidly to yield the aldopentoses D-xylose and L-arabinose, the aldohexoses D-

mannose and D-galactose and small amounts of glucose [Sundqvist (2006)] (Figure 4). These 

liberated carbohydrates can be further broken down into a variety of other chemicals such as 

carboxylic acids and glycerol (Figure 5) depending on the severity of reaction conditions 

[Oefner (1992), Crabtree (2006)].  Under harsher conditions the β(1-4) glycosidic bond  

between glucose molecules are cleaved as cellulose is attacked [Xiang (2003)].  This 

cleavage results in the depolymerization of cellulose into glucose and cellobiose units 

[Saeman (1954)].  The amorphous regions of hemicellulose and cellulose are most prone to 

this attack, though if harsh enough conditions are encountered, crystalline cellulose could 

also be attacked [Mosier (2002)].  Most studies indicate that this de-polymerization is a first 

order Arrhenius reaction [Maloney (1985), Xiang (2003), Li (2005), Kumar (2008)]. 

The monosaccharides in the aqueous phase degrade under heat and acidic conditions. Xylose 

and arabinose are dehydrated to form furfural, and the six member sugars are dehydrated to 

form hydroxymethylfufral [Oefner, (1992), Montane (2002)] (Figure 5).  If conditions in the 

reactor are severe enough furfural and HMF are further degraded into levulinic and formic 

acids [Sjostrom (1993), Palmqvist (2000)].  Glycerol and carboxylic acid production can be 
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Figure 4:  Monosaccharides From Lignocellulosic Material 

 

 

        Acetic Acid                  HMF               Furfural                    Glycerol 

O

OHCH3       

O

O

OH

      

O

O

      OH

OH

OH

 

 

              Lactic Acid                            Levulinic Acid                    Formic Acid 

OH

OH

O

CH3

      

O

O

CH3

OH

      OH

O

 

Figure 5:  Carbohydrate Co-products 
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accomplished by cleavage of ring carbon bonds once monosaccharides have been liberated 

into solution.  Yields are generally low until extraction temperatures near 200°C [Oefner 

(1992)]. 

Lignin degradation is dominated by condensation reactions, freeing side chain groups, 

and cleavage of the ether bonds.  This cleavage fragments the lignin polymer [Laine (2005)].  

The breaking of ether bond will increase the hydrophobicity of the lignin because of the loss 

of phenolic hydroxyl groups [Sjostrom (1993)].  Lignin conversion should be relatively low, 

as there is no strong nucleophile in the reaction solution [Sjostrom (1993)]. 

D. Analytical Methods 

Near infrared (NIR) spectroscopy will be used to monitor chemical changes in the 

wood flake itself, as past research has shown spectroscopy to be a reliable source of 

information on the chemical make-up of wood and agriculture products [Garbutt (1992), 

Michell (1995), Sanderson (1996), Shenk (2001), Kelley (2004a)].  According to Kelley and 

collaborators, “correlations between NIR spectra and cellulose (composition) were generally 

very good, with r>0.90” [Kelley (2004b)].  Literature has shown that variations in wet 

chemistry results from laboratory to laboratory are usually greater than the error of NIR 

analysis [McLellan (1991)].  Furthermore, research has indicated that NIR technology can 

find use an industrial setting [Workman (2001)]. Near infrared spectroscopy utilizes the 

electromagnetic spectrum which lies between the wavelengths of 750 and 2500 nm 

[Workman (2001)].  This is the range between the visible range of light and the mid infrared 

range.  Absorption bands (spectral peaks) in the NIR spectrum occur because of the energy 

absorption required to produce a quantum change in any of three modes of chemical bond 

vibration; symmetric bond stretching, asymmetric bond stretching and bond bending.    
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Plotting the energy absorbed (or transmitted) at various frequencies produces the NIR spectra 

of a sample [Workman (1991)].  For C-H and O-H bonds, overtone and combination bands 

make up the bulk of the NIR spectra.  These are the bonds most prevalent in wood samples 

[Ciurczak (1991)].  Unfortunately, the super positioning of many different overtones in the 

NIR region means structural determination solely from NIR spectra is more difficult than 

when mid infrared and Raman spectroscopy are used [McCarthy (1991)].  However, rapid 

Raman and mid infrared techniques can only collect up to 10 samples per hour [Meder 

(1999)], while NIR techniques offer a ten-fold increase to 100 samples per hour [Kelley 

(2004b)].  For this reason, NIR lends itself more readily to industrial type applications, where 

fast measurement is required.  Vital to the accuracy of Raman and mid infrared spectroscopy 

is the homogeneity of the sample, which usually requires milling or grinding.  By contrast, 

NIR techniques can be used with whole samples of wood, such as chips and flakes [Raymond 

(2001)].  Because some chemical species are derived specifically from wood components, 

prediction of these species concentrations in liquid phase hydrolysates is possible from wood 

flake NIR spectra [Boysworth (2001), Kelley (2004a)].  NIR is the spectroscopy method of 

choice for solid phase analysis in this study for these reasons. 

Literature has shown that high performance liquid chromatography (HPLC) is a 

relatively fast and useful method for characterization of hydrolysates [Luzbetak (1982), 

Boussaid (2001), Agblevor (2004), Griffin (2004), Griffin (2004)].  Using the laboratory 

analytical procedure produced by the National Renewable Energy Laboratory (NREL) of 

Golden Colorado, “Determination of Sugars, Byproducts, and Degradation Products in 

Liquid Fraction Process Samples,” researchers can identify and quantify a variety of 

carbohydrates (cellobiose, glucose, xylose, galactose, arabinose, and mannose) as well as 
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products arising from carbohydrate degradation (xylitol, succinic acid, lactic acid, glycerol, 

acetic acid, HMF and furfural) [Sluiter (2005)].  Literature has shown the NREL procedure to 

be an effective HPLC method [Xiang (2003), Canettieri (2007)].  However, one must take 

care to recognize the limitations of HPLC characterizations.  When a refractive index (RI) 

detector is used, HPLC is not very sensitive to low carbohydrate concentrations and gradient 

elutions can not be used to enhance species separation [Ohgren (2007)].  Literature also 

indicates that baseline separation of HPLC chromatogram carbohydrate peaks is not achieved 

with virtually all currently used HPLC methods [Agblevor (2004)]. 

E. Multivariate Methods 

In this study, multivariate analysis (MVA) is the preferred method of statistical 

analysis. Chemical data gathered through NIR spectroscopy is especially suited for analysis 

through MVA techniques [Martens (1989), Boysworth (2001), Rodrigues (2001), Kelley 

(2004a, 2004b)].  Because the NIR spectrum is composed of overlapping and overtone bands, 

no single wavelength is sufficient for prediction or classification of a substance [Ciurczak 

(2001)]. MVA is a robust method that uses data from the entire NIR spectrum rather than 

peaks chosen a priori.  Using the entire NIR spectrum is beneficial to the researcher because 

the MVA results can be directly applied to the entire chemistry of the sample [Martens 

(1989)].  Coupling MVA with NIR can provide a much more rapid method of chemical 

analysis than the more time consuming HPLC method, and is similar to techniques which 

have already been reported in the literature [Kelley (2004a, 2004b), Jones (2006)].   

This research uses two MVA techniques in order to classify and predict the level of 

lignocellulosic extraction achieved.  Principal Component Analysis (PCA) is useful for data 

classification when large numbers of x variables are used to define the data.  Partial Least 
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Squares Regression (PLS) is used for prediction of a response from a large number of x 

variables [Martens (1989), Beebe (1998)].  Both of these methods are linear methods. 

The following is an introduction to PCA and PLS.  For a complete description of 

MVA techniques refer to Martens et al. and Beebe et al. [Martens (1989), Beebe (1998)].  It 

is from these sources that this introduction has been adapted.   

Principal component analysis is a statistical technique that seeks to reduce a large 

number of independent and dependant variables into a few new variables called principal 

components (PCs).  The goal of doing so is to represent variation in data points (or rather 

inter-point distances in terms of the original variables) in as few parameters (PCs) as 

possible.  These principal components are linear combinations of the original variables of 

study.  The recasting of the original variables in terms of PCs results in significant data 

compression. 

PCs are ranked in order of the amount of variation in the data set they explain, with 

PC 1 containing the greatest amount of variation.  This occurs because PC 1 is chosen to 

maximize the covariance between all x variables.  Commercially available software will 

generally report what percentage of the total original variation in the data is described by 

each PC.  One must be careful in selecting the number of PC’s to use to describe data 

variation.  As the number of the PC increases, the signal to noise ratio decreases.  Very high 

PC’s may describe nothing but random noise in the data.  When using PC’s for data analysis, 

it is important to ensure that the generated PC’s describe real variation in the data rather than 

noise.  Analysis of the loadings plot will help indicate if a PC is describing real variation or 

simply noise in the data.  
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The loadings plot of a PC indicates which of the original variables are important in 

characterizing the variation in the data captured by that PC.  Loadings are generally plotted 

against the original variables of the data set.  Loadings approaching 0 are unimportant in the 

construction of that PC, while loadings near 1 or -1 are most important in the construction of 

that PC because loadings are equal to the cosine of the angle created by the PC and the 

original variable axis.  In models with multiple PCs, the most important of the original 

variables will have large loadings in low numbered PCs.  If the loading of a PC is structured 

with characteristic and expected peaks, it is most likely a significant PC, assuming addition 

of that PC significantly increases the amount of described data variation.  However, if the 

loading of a PC resembles random noise, that PC is most likely not significant in describing 

real variation.  Analysis of the loading values of NIR spectra indicate which absorption bands 

are most important in the chemical variation of the samples.  The signs of these loadings 

have physical meaning.  If a loading in a particular PC has a positive value, samples that 

have a positive score in that PC space have higher than average values for that variable. 

Before recasting the data along principal component axes the data points are defined 

by coordinates in an n dimensional coordinate system, where n equals the number of x 

variables in the original data.  After recasting, the data points will have coordinates in a new 

coordinate system with the dimensionality of the new coordinate system equal to the number 

of significant PCs.  The new coordinate of each data point in principal component space is 

called the score. Plotting data point scores reveal how samples are related and can be used to 

determine characteristic grouping.  If samples are close on the scores plot, there is little 

variation that exists between them.  Scores are plotted against their values in the PCs which 
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are chosen to create the axes.  For NIR data, samples that cluster closely together exhibit 

similar absorption bands and thus similar chemistry. 

To protect against the skewing of PCA results by outliers, cross validation of the PCA 

model was implemented.  In cross validation, samples are removed, one by one, from the 

original data set (of n samples) until all the samples have been removed once.  PCs are 

constructed and residuals are calculated at each step with n-1 samples.  The residual variance 

(variance not described by the PCs) for the omitted sample is then calculated.  If this data 

point is an outlier, the residual variance for that point will be inflated and will be more 

readily detectable in a plot of the residuals.  

Partial Least Squares Regression (PLS) is a relative of PCA.  PLS is the regression of 

a response vector (or matrix) onto a few linear combinations of the x variables (PCs) that can 

be used to capture significant variation in the response (y) variables.  PLS is unique in that 

the PLS method uses information in both the x and y variable matrices to construct PCs 

(referred to as loading weights in PLS).  The advantage of this technique is that large 

variation in x variables that have no impact on response variables are ignored during 

modeling, and the resulting PCs will describe variation more relevant to response variable 

changes. 

The loading weight vector is calculated as the vector that maximizes the sum of the 

covariance between both x and y variables simultaneously.  In this manner, the loading 

weight vector is similar to the PC of PCA. 

The projection of the x variables onto the loading weight vector produces scores, and 

the regression of the original x variables onto these scores produce regression coefficients.  

The regression coefficients indicate which of the original x variables were important in 
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construction of the loading weight vector.  Thus, the regression coefficient vector is similar 

to the loading vector of PCA.  New loading weight vectors are added until the addition of 

more loading weights does not decrease the residual variance of the data.  PLS uses a certain 

portion of the data set, called the calibration data, to perform a least squares regression and 

estimate two important parameters in the PLS model; both loadings in terms of x and y 

variables.  Once these parameters are estimated, they are applied to the rest of the data set for 

validation. 

For a model to be valid, the structure of the regression coefficient and loading  

weight vectors should be similar, the root mean square error (RMSE, a measure of the 

precision of the model) should be relatively low, and the coefficient of determination (R2) 

should be sufficiently high.  Care must be taken in model construction to ensure that proper 

weighting is given to each response variable.  Disproportionate amounts of data at any single 

value for the response will bias results towards the response with the most data.   
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3. Experimental Methods 

A. Biomass Samples 

Pinus taeda flakes were obtained from The Georgia Pacific Corporation Research and 

Development Center in Atlanta, Georgia.  The flakes were obtained from a pilot scale flaker, 

providing more uniform dimensions than industrial scale flakers.  Average flake dimensions 

are 7.87 cm long, 2.61 cm wide and 0.095 cm thick. 

Wood extractives were removed via a 5 hour Soxhlet extraction utilizing toulene and 

ethanol in a 2:1 ratio (by volume).  Extractives free wood flakes were oven dried at 105oC for 

24 hours and divided into batches composed of nine flakes each, targeting a total mass of 5 

grams on a dry mass basis.  Extractives were removed so that all experimentally observed 

physical and chemical changes were related solely to the removal of lignocellulosic 

materials.   

Chemical composition was determined using the NREL laboratory analytical 

procedure “Determination of Structural Carbohydrates and Lignin in Biomass” (Table 1) 

[Sluiter (2007)].   

 

Table 1:  Pinus taeda composition analysis 

Wood Component % of Dry Mass 
Glucose 43.3% 
Lignin 26.1% 

Mannose 11.9% 
Xylose 6.1% 

Ash 0.2% 
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B. Extraction Process 

Hemicellulose extractions were carried out at three different hold temperatures (120, 

140, 160°C) and three different isothermal hold times (20, 40, 60 mins).  Each reaction was 

replicated 4 times, unless otherwise noted. 

Reactions were carried out in a 1 liter Parr series 4523 316 stainless steel reactor 

equipped with a 600 ml glass liner.  The reactor was controlled with a Parr model 4843 

controller, which was capable of holding a setpoint temperature to ± 3 degrees Celsius.  

Heating was accomplished with an internal aluminum block heater executing a linear 

temperature ramp from room temperature to setpoint temperature at a rate of 1.8oC per 

minute.  The actual required residence time of the substrate in the reactor was much greater 

than the isothermal hold time because of this rate of heating (Table 2).   

 

Table 2:  Average Total Reactor Residence Times 

 Extraction Conditions   
Temp, Hold Time, Total Reactor Residence Time (mins) 

oC Minutes Avg                   
(Std Dev) N 

120 20 65 
(10) (4) 

120 40 84 
(17) (4) 

120 60 106 
(4) (4) 

140 20 82 
(5) (4) 

140 40 111 
(8) (4) 

140 60 120 
(14) (4) 

160 20 92 
(6) (4) 

160 40 116 
(14) (4) 

160 60 148 
(17) (4) 
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The relative severity of an aqueous extraction can be quantified according to a 

severity factor, S0 [Overend (1987)].  The severity factor is useful in that the factor can be 

used for comparison of reaction conditions with those of literature [Glasser (1998)].  For 

aqueous treatments, the severity of the reaction is related to the time and temperature of the 

extraction [Overend (1987)].  The equation for calculating the severity factor can be found in 

Appendix B.  Because heating is executed as a linear ramp of 1.8ºC, the severity factor can 

be calculated to include the residence time during the heating cycle in which the contents are 

greater than 100ºC.  The severity factor ranges from a value of 3.20 (120ºC, 20 mins) to 6.27 

(160ºC, 60 mins) in this research (Table 3).  The dominate factor in determining the severity 

factor is extraction temperature, so that extractions occurring at 120ºC, 60 mins (S0 = 3.68) 

are more severe than those occurring at 140ºC, 20 mins (S0 = 4.52). 

When the substrate was at the desired reaction temperature, continual agitation was 

accomplished by controlling an internal blade type impeller to 200 revolutions per minute.  

Cooling was accomplished via pressure relief after the appropriate residence time has been  

 

Table 3:  Severity Factors for Extraction 

Extraction Conditions  
Temp, Hold Time,  

oC Minutes S0, Including Heat-Up 
120 20 3.20 
120 40 3.49 
120 60 3.68 
140 20 4.52 
140 40 4.88 
140 60 4.99 
160 20 5.71 
160 40 6.03 
160 60 6.27 
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met.  During pressure relief cooling water (city supply) flowed through a cooling jacket 

surrounding the reaction vessel in order to provide additional cooling.  The reactor was 

dismantled once excess pressure had been bled off, and then the wood was separated from 

the hydrolysate via filtration (P5 qualitative filter paper), and the wood flakes were washed 

with deionized water to remove deposited products or precipitates.  Solid wood flakes and 

hydrolysates were completely separated on the order of minutes.  The pressure relief line was 

routed through a 500 mL filter flask, which acted as an air cooled condenser.  The condensate 

was collected, combined with the hydrolysate, the entire liquid fraction filtered through a 30-

F filter crucible and then frozen at -20°C until liquid phase characterization.  Reactor 

geometry necessitated that a 40:1 ratio of water to dry wood be used (on a mass basis).  The 

percent mass loss of the sample was calculated as the difference in dry mass before and after 

extraction divided by the dry mass before extraction. 

C. Chemical Composition Analysis 

A hydrolysate concentration step was necessary before characterization because of 

the insensitivity of refractive index HPLC detectors and the large amount of water used in 

this study.  Samples were concentrated in a CentriVap® centrifuge heated at 60°C and under 

200 millibar of vacuum.  40 mL aliquots of liquid hydrolysate were condensed down to 4 mL 

aliquots prior to characterization with HPLC.  The pH of these concentrated aliquots was 

recorded.  pH data was collected with an  accumet® Basic AB15/15+ pH meter.  Aliquots 

were neutralized through the addition of calcium carbonate prior to HPLC analysis as per the 

NREL procedure, “Determination of Sugars, Byproducts, and Degradation Products in 

Liquid Fraction Process Samples” [Sluiter (2005)]. 
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HPLC analysis was carried out on a Waters 2695 Alliance Separations Module 

coupled with a Waters 2414 Refractive Index Detector, with external column heater.  

Carbohydrate (cellobiose, glucose, xylose, galactose, mannose, and arabinose) 

characterization utilized a Biorad Aminex HPX-87P column.  Co-product (xylitol, succinic 

acid, acetic acid, lactic acid, glycerol, hydroxymethylfurfural (HMF), and furfural) 

characterization utilized a Biorad Aminex HPX-87H column.  Both columns were equipped 

with a Biorad H+/CO3
- deashing guard column located upstream from the column.  The 

NREL procedure, “Determination of Sugars, Byproducts, and Degradation Products in 

Liquid Fraction Process Samples” was used as the HPLC protocol [Sluiter (2005)].  Highly 

convoluted mannose and arabinose peaks prevent quantification of the species that occurs in 

the lesser concentration (arabinose in the case of this research).  Because of non-baseline 

chromatogram resolution quantification was accomplished using peak intensity (height) 

rather than the tradition area bound by the detector response curve.  HPLC analysis was done 

in two distinct batches because of sample aging concerns.  Four concentrations (calibration 

points) were used to create calibration curves for each species.  Calibration curve details can 

be found in Appendix A.   

Acid soluble lignin content in the liquid fractions was determined by ultraviolet (UV) 

absorption as per the NREL Laboratory Analytical Procedure, “Determination of Structural 

Carbohydrates and Lignin in Biomass” [Sluiter (2007)].  Absorption data were collected on 2 

mL aliquots at a wavelength of 240 nm to minimize interference between UV absorption by 

extraction products.  UV data were collected in quartz cuvettes in a BioMate 3 spectrometer, 

with 0.01 normal sulfuric acid as reference (blank).  UV absorption data were collected on 
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unfiltered, unconcentrated aliquots to limit soluble lignin losses that may occur during 

hydrolysate processing.  

D. Wood Flake Analysis 

Visible/NIR spectral data were collected on the substrate flakes with a Labspec Pro® 

fiber optic probe produced by Analytical Spectral Devices, INC., over wavelengths 350 to 

2500 nm.  Spectra were taken in a darkened room with wood flakes illuminated by a DC light 

source.  The samples were placed in a 10 cm cup and rotated at 45 revolutions per minute to 

provide sample homogeneity.  Eight spectra were collected on each set of nine flakes, with 

each spectrum being composed of the average of 30 sample scans.  For sets of flakes scanned 

prior to extraction (control samples), the eight spectra collected were averaged to produce 

one spectrum per sample set in order to prevent statistical biasing issues. 

Wood flakes were scanned before and after extraction using an Epson optical scanner 

to obtai of thickness distributions before extraction n the 2-dimensional projected surface 

area of the individual flakes.  The resulting image files were processed using ImageJ version 

1.38x from the National Institute of Health.  After setting the appropriate pixel/length ratio, 

images were converted to binary masks and the surface area of the nine largest flake masks 

was calculated (Figure 6). Flake thickness measurements were accomplished with TESA 

digit-cal® digital calipers accurate to 0.01 millimeters.  Four thickness measurements were 

taken per individual wood flake across the axial direction of the flake.  Nonparametric 

(Wilcox Rank- Sum) tests were performed on the samples in order to determine if average 

values before and after extraction were equal.  Analysis of the flake thickness distributions 

before extraction indicates that the sub-population at each condition are not the same as  
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Figure 6:  Example of Image Processing 

 

the parent population of thicknesses before extraction for all flakes in this study (Table 4, 

Figure 7).  Nonparametric methods were chosen for analysis accordingly.  All tests were 

performed at the 95% confidence level (α = 0.05) 

Equilibrium moisture content data were measured by equilibrating small samples of 

flakes for 45 days in closed vessels held at a constant temperature of 22°C at various relative 

humidities.  Mass measurements were recorded at fifteen day intervals to ensure samples 

reached equilibrium.  Each vessel contained different saturated salt solutions to produce 

environments of varying relative humidities (RH).  Water (100% RH), potassium chloride 

(85% RH), sodium nitrate (65% RH), and lithium chloride (12% RH) were used in this study. 

E. Multivariate Analysis 

Two multivariate techniques were used in this study.  Principal component analysis 

(PCA) was done in order to determine if chemical changes in the samples could be used to 

classify specimens according to extraction conditions.  PCA treatment was applied to NIR  
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Figure 7:  Flake Thickness Distributions Before Extraction 

 

 

 

Table 4:  Flake Distribution Parameters Before Extraction 

Extraction Conditions Sub 
populations   

Temp, Hold Time, Thickness Before Extraction, cm 
oC Minutes Avg                  

(Std Dev) N 

0.094 All Samples, All 
Conditions (0.016) 

(1152) 

0.099 140 20 
(0.018) 

(144) 

0.089 140 40 
(0.020) 

(144) 

0.096 140 60 
(0.016) 

(144) 
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spectra collected on the extracted wood flakes, as well as the hydrolysate HPLC 

chromatograms.  

NIR data were preprocessed through conversion from reflectance spectra to 

absorbance spectra and mean normalized.  Data were also corrected for multiplicative 

scatterusing a full MSC model.  The resulting 538 x variables were further reduced when 

only data from 1000 nm to 3500 nm were used, leaving 375 x variables with a spectral 

resolution of 4nm.   

PCA on HPLC data was completed only in the residence time range in which 

quantified chemicals elute for the appropriate separations column.  This was done in order to 

ensure that classification was occurring based on the chemical composition of the 

hydrolysate only in regards to the species investigated in this study.  All principal 

components were validated using cross validation. 

Partial least squares regression (PLS) was completed in order to determine if the 

observed flake changes and hydrolysate chemical properties could be calculated through 

coupling rapid NIR (collected on the wood flakes) techniques with predictive models rather 

than utilizing comparatively time consuming analytical procedure.  PLS-1 models (1 

independent response variable) were built with the percent change in dry mass after 

extraction, hydrolysate pH, percent lignin solubilized by extraction and each chemical 

species concentration as response variables. X variables were defined by wood flake NIR 

data with the proper number of individual samples used in model construction to prevent 

biasing.  If a chemical species was not present in the hydrolysate at a certain extraction 

condition, that condition was not used in the construction of the model.  Two thirds of the 

appropriate data points were selected at random and used for creation of calibration models, 
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with the remaining one third of the data points used for model validation.  All PLS-1 

calibration models were cross validated. 

In addition to the PLS-1 model, a PLS-2 model (2 dependant variables) was 

constructed for prediction of glucose and cellobiose concentrations in the hydrolysate.  The 

PLS-2 model was used for these species as the concentrations of glucose and cellobiose 

should be related to each other.  X variables were again composed of wood flake NIR data, 

with two thirds of the data used for calibration and one third of the data used for validation. 

The PLS-2 model was also cross validated. 

 PCA and PLS was carried out on Unscrambler® version 9.0 from CAMO Processes 

Software of Oslo, Norway. 
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4. Results and Discussion 

A. Solid Phase – Wood Flakes 

As the extraction temperature increases, the absolute value of the percent change in 

dry mass of the samples increases (Table 5).  The average percent change in dry mass of the 

wood flake ranged from -6.74% (120ºC, 20 mins) to -27.29% (160ºC, 60 mins).  Within 

constant temperatures, absolute value of the percent change in dry mass of the samples 

increases with isothermal hold times.  The increase in the absolute value of the percent 

change in dry mass corresponds directly to an increase in the severity of the reaction.   There 

is considerable overlap in the percent change in dry mass achieved at 120 and 140oC.  

However, little overlap exists between extractions occurring at 140 and 160oC.  This overlap 

is also visible during principal component analysis of both NIR spectra collected on the wood 

flakes and on the HPLC chromatography. 

The extraction process results in changes in some physical dimensions of the flakes 

(Table 4).  The average thickness of the flakes is decreased after extraction, as is the average 

flake surface area.  Low severity extraction conditions generally produce low percent 

changes in average thickness (-8.13% at 120oC, 40 mins) while high severity conditions 

generally produce higher percent changes in average thickness (-14.48% at 160oC, 60 mins), 

though there are some conditions which violate this trend (-15.25% at 120ºC, 20 mins).  The 

percent change in the average flake surface area ranges from -0.23% (120oC, 40 mins) to -

15.44% (160oC, 60 mins).  Little correlation exists between the extraction condition and the 

percent change in surface area.  This may occur because the majority of flake damage occurs 

through random encounters with the mixing apparatus or some other factor that can not be 

modeled based on the data collected in this study.
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Table 5:  Properties of Wood Flakes After Extraction 

Extraction Conditions   Individual Flake Surface Area (SA), cm2 Individual Flake Thickness, cm Equilibrium Moisture Content 

% Change 
in Before After % 

Change Before After % 
Change % Change in mass at Saturation 

Dry Mass Extraction Extraction In Extraction Extraction In Avg 100% 85% 65% 12% Temp, 
oC 

Hold 
Time, 

Minutes 
S0 

Avg        
(Std Dev) 

N 

Avg          
(Std Dev) 

Avg         
(Std Dev) Avg.SA 

N 

Avg           
(Std Dev) 

Avg         
(Std Dev) Thkns 

N 

RH RH RH RH 

16.15 0.094 
Control NA NA 

(2.12 
NA NA (288) 

(0.016) 
NA NA (1152) 23.86% 16.35% 11.64% 3.66% 

-6.74% 16.26 14.52 0.096 0.081 
120 20 3.20 

(1.62%) 
(3) 

(2.12) (2.71) 
-10.72%, 

b (27) 
(0.014) (0.009) 

-15.25%, 
b (108) 21.58% 15.57% 12.72% 2.66% 

-7.68% 15.32 15.28 0.096 0.088 
120 40 3.49 

(1.49%) 
(3) 

(2.39) (1.79) 
-0.23%, a (27) 

(0.011) (0.007) 
-8.13%, b (108) 20.21% 14.24% 10.38% 2.89% 

-10.59% 16.15 14.97 0.094 0.083 
120 60 3.68 

(3.24%) 
(4) 

(2.01) (2.54) 
-7.30%, b (36) 

(0.015) (0.010) 
-11.64%, 

b (144) 19.94% 13.98% 11.37% 3.37% 

-11.04% 17.32 15.38 0.099 0.087 
140 20 4.52 

(0.36%) 
(4) 

(2.40) (2.71) 
-11.18%, 

b (36) 
(0.018) (0.015) 

-12.27%, 
b (144) 15.88% 12.66% 10.73% 2.37% 

-15.51% 15.53 14.51 0.090 0.080 
140 40 4.88 

(2.03%) 
(4) 

(1.46) (1.80) 
-6.57%, b (36) 

(0.020) (0.018) 
-10.33%, 

b (144) 16.75% 13.06% 9.58% 2.98% 

-16.83% 16.89 15.40 0.096 0.083 
140 60 4.99 

(2.43%) 
(4) 

(1.59) (2.19) 
-8.81%, b (36) 

(0.016) (0.015) 
-13.66%, 

b (144) 16.31% 12.38% 10.60% 2.04% 

-23.15% 16.45 14.89 0.091 0.078 
160 20 5.71 

(1.20%) 
(3) 

(2.09) (2.47) 
-9.94%, b (27) 

(0.020) (0.015) 
-14.39%, 

b (108) 17.11% 11.93% 7.83% 1.36% 

-25.03% 15.89 14.29 0.096 0.086 
160 40 6.03 

(3.11%) 
(3) 

(2.46) (2.45) 
-10.12%, 

b (27) 
(0.015) (0.012) 

-10.51%, 
b (108) 14.68% 12.42% 9.67% 0.92% 

-27.29% 16.14 13.65 0.094 0.080 
160 60 6.27 

(2.58%) 
(4) 

(2.14) (3.03) 
-15.44%, 

b (36) 
(0.012) (0.008) 

-14.48%, 
b (144) 16.01% 11.18% 9.72% 0.68% 

 
 
a – avg. equal before and after extraction            
b – avg. not equal before and after extraction
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In terms of equilibrium moisture content, the percent change in mass at saturation at 

100% relative humidity ranges from a maximum of 23.66% (Control samples) to 14.68% 

(160ºC, 40 mins) (Table 5).  Data indicate a general decrease in the percent change in mass at 

saturation with an increase in reaction severity.  This trend is also visible in data collected at 

other relative humidities.  The decrease in the equilibrium moisture content occurs because of 

the removal of hygroscopic lignocellulosic material and indicates a greater level of 

dimensional stability should be observed in the wood flake after extraction [Sjostrom 

(1993)].  Standard OSB is generally pressed with production line moisture contents near 8% 

[Wolcott (1994)].  All samples indicate that 8% moisture content is achievable after the 

extraction process. 

The chemical changes that occur to the wood flakes during the extraction process 

were investigated by NIR coupled with MVA.  Typical wood flake NIR spectra at various 

extraction conditions are presented in Figure 8.  Absorption peaks are visible near 

wavelengths of 1440 (C-H combination band), 1930 (O-H stretch/H-O-H deformation 

combination band), 2090 (O-H combination band), 2335 (C-H stretch/C-H deformation 

combination band) and 2352 nm (CH2 bend, 2nd overtone) and correspond to peaks 

commonly present in spectra collected on lignocellulosic materials [Shenk (2001)].  All NIR 

samples are measured by reflection of energy rather than direct measurement of energy 

absorption.  Reflectance measurements penetrate only one to four nanometers into the 

exposed sample surface [Workman (2001)].  The energy of higher frequency will penetrate 

more deeply in a sample.  At high frequencies, the amount of energy absorbed will therefore 

be higher.  The result of this is that, because of Beer’s law (which relates absorbance and the 

concentration of the absorbing species through a direct proportionality) the baseline in the  
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Figure 8:  Characteristic NIR Chromatograms of Extracted Wood Flakes 
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NIR spectra will shift upwards at higher wavelengths.  Visible inspection indicates shifts in 

peak intensities at some characteristic wavelengths, but shifts in peak intensity are more 

ambiguous for other peaks.  PCA will remove this ambiguity. 

A decrease in peak intensities at 1440 nm as extraction temperature increases at is 

visible in the NIR spectra.  This change corresponds to a decrease in the amount of C-H 

bonds present in the solid samples.  Decreases in peak intensities with at 1930 nm and 2335 

nm is apparent when comparing control (unextracted) samples with samples, but peak 

intensity changes less evident between the three extracted conditions.  Multivariate (PCA) 

results will indicate if these peak intensities are changing with extraction condition. 

Results from the PCA of the wood flake spectra are contained in Figure 9.  Figure 9 is 

a plot of the two principal components of the spectral data.  Principal Component 1 contains 

96% of the observed variation in the spectra, while Principal Component 2 contains 1% of 

the observed spectral variation. 

It can be observed from the data that the majority of the chemical variation in the 

wood flakes (PC 1) is related to the extraction condition, while variation observed in PC 2 is 

related to natural variation in the raw material itself.  Clustering of the data is visible in 

regards to extraction condition, with increasing reaction severity moving generally right to 

left along the PC 1 axis.  This clustering indicates unique chemical identities of the wood 

flake at each extraction condition.  These results agree with literature in that the experimental 

conditions produce distinct levels of extraction [Eseghlalian (1997)].  As suggested by the 

mass loss data, there is significant overlap in the chemical identity of wood flakes extracted 

at the lower temperatures (120 and 140°C) with less data overlap in the 160°C extraction 

conditions. 
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Figure 9:  Principal Component Scores for Wood Flake NIR Analysis 
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The x-loading vector indicates which NIR peaks were important for classification 

(Figure 10).  Loading peaks indicate that the important wavelengths for classification occur 

at 1440 (C-H combination band), 1930 (O-H stretch/HOH deformation combination band), 

2090 (O-H combination band), 2335 (C-H stretch/C-H deformation combination band) and 

2352 nm (CH2 bend, 2nd overtone), which are appropriate wavelengths for the substrate under 

investigation.  Interpretation of the positive sign of the loadings, when related to the PCA 

scores, indicates that samples with negative scores have lower than average values at the 

important loading peaks.  All extractions occurring at 160ºC and the more severe conditions 

at 140ºC (140ºC, 60 and some at 140ºC, 40 mins) have negative score values on the PC 1 

axis (Figure 9).  These conditions exhibit the greatest percent change in dry mass, and are 

therefore expected to contain less than the average amounts of cellulose and hemicellulose.   
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Figure 10:  Loading Vector for NIR Wood Flake PCA, PC 1 
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B. Liquid Phase - Hydrolysates 

The product concentrations and hydrolysate pH values are consistent with proposed 

chemistry and kinetic studies for hot water extraction [Nabarlatz (2004), Li (2005)] (Table 

6).  Hot water cleaves acetyl groups from hemicellulose side chains to yield acetic and uronic 

acid.  The acid concentrates in the reaction solvent and catalyses the hydrolysis of 

hemicellulose and, if conditions become harsh enough, cellulose.  Carbohydrate degradation 

to carboxylic acids can also occur as the reaction conditions become more severe [Larsson 

(1999)].  This concentration of acid is evident in the data with the decrease in pH with 

increasing reaction severity (Figure 11). 

The overall trend in predicting the hydrolysate pH from the percent change in dry 

mass is appropriate in regards to the known chemistry of the process (Table 6, Figure 11), 

though the coefficient of determination is relatively low (R2 = 0.79).  The maximum 

hydrolysate pH, with a value of 3.73 corresponds to the least severe extraction conditions 

(120ºC, 20 mins, Table 6).  The minimum hydrolysate pH, with a value of 3.09, corresponds 

to the most severe extraction conditions studied (160ºC, 60 mins, Figure 11).  Further testing 

should be done to see if the pH of the hydrolysate could be used as an appropriate variable to 

control the level of extraction in future work. 

Literature indicates small amounts of lignin should be hydrolyzed at the studied 

conditions [Sjostrom (1993)].  This is indeed the case, as the percent solubilized lignin ranges 

from 0.77% (120ºC, 20 mins) to 1.35% (160ºC, 60 mins) of the total initial lignin content 

(Table 5).  The data indicate an increase in lignin content in the hydrolysate with increasing 

reaction severity, however the R2 value.is relatively low (R2 = 0.80, Figure 12). 
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Table 6:  Properties of Recovered Liquid Hydrolysates 

Extraction Conditions             

Hydrolysate % 
Solubilized Hydrolysate Component Concentrations, grams/Liter  

pH Lignin Cellobiose Glucose Xylose Galactose Mannose Lactic 
Acid Glycerol Acetic 

Acid HMF Temp, 
oC 

Hold 
Time, 

Minutes 
S0 

Avg (Stdev) 

N 

Avg 
(Stdev) 

N 

Avg   
(Stdev) 

Avg 
(Stdev) 

Avg 
(Stdev) 

Avg   
(Stdev) 

Avg 
(Stdev) 

Avg 
(Stdev) 

Avg 
(Stdev) 

Avg 
(Stdev) 

Avg 
(Stdev) 

N 

3.73 0.78% trace trace trace trace trace trace trace trace 0 
120 20 3.20 

(0.02) 
(3) 

-0.04% 
(2) 

NA NA NA NA NA NA NA NA NA 
(3) 

3.66 0.80% trace trace trace trace 0.11 trace trace trace 0 
120 40 3.49 

(0.04) 
(3) 

-0.01% 
(2) 

NA NA NA NA (0.01) NA NA NA NA 
(3) 

3.57 0.88% trace trace trace trace 0.16 trace trace 0.04 0 
120 60 3.68 

(0.07) 
(4) 

-0.02% 
(2) 

NA NA NA NA (0.02) NA NA (0.04) NA 
(4) 

3.55 0.87% trace trace trace trace 0.22 trace trace 0.03 0 
140 20 4.52 

(0.19) 
(4) 

-0.07% 
(2) 

NA NA NA NA (0.04) NA NA (0.04) NA 
(4) 

3.42 0.93% 0.18 0.16 0.07 0.07 0.27 trace trace 0.07 0 
140 40 4.88 

(0.15) 
(4) 

-0.13% 
(2) 

(0.11) (0.11) (0.05) (0.05) (0.05) NA NA (0.05) NA 
(4) 

3.32 1.10% 0.24 0.23 0.13 0.11 0.35 trace trace 0.1 0 
140 60 4.99 

(0.18) 
(4) 

-0.05% 
(2) 

(0.13) (0.14) (0.06) (0.03) (0.10) NA NA (0.07) NA 
(4) 

3.2 1.25% 0.46 0.57 0.4 0.29 0.5 trace 0.11 0.18 0 
160 20 5.71 

(0.01) 
(3) 

-0.11% 
(2) 

(0.18) (0.26) (0.07) (0.08) (0.11) NA (0.10) (0.03) NA 
(3) 

3.2 1.35% 0.5 0.71 0.62 0.41 0.55 trace 0.08 0.21 trace 
160 40 6.03 

(0.05) 
(3) 

-0.01% 
(2) 

(0.17) (0.33) (0.09) (0.16) (0.07) NA (0.07) (0.04) NA 
(3) 

3.09 1.24% 0.43 0.69 0.82 0.54 0.63 trace 0.07 0.15 0.02 
160 60 6.27 

(0.12) 
(4) 

-0.15% 
(2) 

(0.11) (0.27) (0.24) (0.29) (0.12) NA (0.08) (0.14) (0.04) 
(4) 
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Figure 11:  Hydrolysate pH and % Lignin Solubilized versus % Change in Dry Mass 
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Figure 12:  Hydrolysate pH and % Lignin Solubilized Versus Severity 
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The HPLC hydrolysate chromatograms do exhibit the characteristic peak widening 

cited in literature (Figure 13).  The area under the peaks can not be integrated with 

substantial data processing to de-convolute the peaks.  According to literature, the large 

peaks occurring with an approximate retention time of 7.15 minutes likely correspond to 

hemicellulose oligomers [Kumar (2008)].  In hydrolysis reactions oligomeric “chunks” of 

hemicellulose polymers are solubilzed in the solution before they are depolymerized to 

monomeric sugars [Sjostrom (1993)].  These oligomeric peaks have greatest intensities at 

low severity conditions because conditions are not harsh enough to fully depolymerize the 

oligomers.  As reaction severity increases, the peak becomes less distinct, indicating that 

oligomers are being further broken down into smaller and smaller oligomeric chains [Kumar 

(1998)].  Conversion of these oligomers to monomeric constituents would be required for 

quantification of total carbohydrate content in the hydrolysates. Decomposition of the 

oligomers was not accomplished in this study because the goal of this project was to recover 

value added products with minimal hydrolysate processing (and thus minimal capital 

expenditure).  The number of chromatogram peaks increases with reaction severity which 

indicates an increase in reaction severity leads to an increase in the number of carbohydrate 

species present in the hydrolysate (Table 7). 

Extractions at 120ºC and 20 mins produce only trace amounts of carbohydrates which 

indicate little hydrolysis of the lignocellulosic material is occurring (Table 6).  The 

amorphous nature of hemicellulose leads to this being the first of the lignocellulosic material 

to be hydrolyzed.  Data indicate this is indeed the case as mannose, a monosaccharide 

derived from hemicellulose, is the first component present in detectable quantities at 120ºC 

and 40 mins. Mannose is the carbohydrate present at detectable levels at the greatest number 
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Figure 13:  Characteristic Hydrolysate Carbohydrate HPLC Chromatograms 

 

Table 7:  Maximum Number of Quantifiable Chemical Species in Hydrolysates 

Extraction Conditions    

Temp, Hold 
Time, 

Max. # of Quantifiable Chemical Species in 
Hydrolysates 

oC Minutes 
S0 

Carbohydrates Co-
Products Total 

120 20 3.20 0 0 0 
120 40 3.49 1 0 1 
120 60 3.68 1 1 2 
140 20 4.52 1 1 2 
140 40 4.88 4 1 5 
140 60 4.99 4 1 5 
160 20 5.71 4 2 6 
160 40 6.03 4 2 6 
160 60 6.27 4 3 7 
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of reaction conditions (from 120ºC, 40 mins to 160ºC, 60 mins), with concentrations ranging 

from 0.11 g/L (120ºC, 40 mins) to 0.63 g/L (160ºC, 60 mins).  This is expected because 

mannose is the most prevalent hemicellulose carbohydrate (Table 1).  The relatively high 

concentrations of mannose at low severity conditions indicate the hydrolysis of hemicellulose 

is indeed occurring before that of cellulose.  Although mannose is the predominate 

carbohydrate in hemicellulose, the carbohydrate found in greatest concentration was xylose 

with a maximum value of 0.82 g/L (160ºC, 60 mins).  The concentration of xylose is less 

than the concentration of mannose until higher severity conditions (160ºC, 40 mins), when 

HMF is first detected in trace quantities.  It is likely that mannose is being converted to 

HMF, while conditions are not yet severe enough to convert xylose to furfural. 

The presence of cellobiose in detectable quantities at 140°C and 20 mins indicates 

conditions are harsh enough to begin the hydrolysis of cellulose.  Conversion of cellulose 

increases with reaction severity and is indicated by the increase in cellobiose concentration 

from a minimum value of 0.18 g/L (140°C, 20 mins) to a maximum value of 0.50 g/L 

(160°C, 40 mins). 

As with the carbohydrate HPLC chromatograms, the co-product chromatograms also 

display characteristic peak spreading (Figure 14) which make calibration based on the area 

bound by the chromatogram curve without data processing impossible.  The large peaks 

occurring with an approximate residence time of 6.90 minutes correspond to elution of 

carbohydrates, as verified by laboratory experiments. The negative peak exhibited in the 

chromatogram corresponds to water, also as verified by laboratory experiments.  The water 

peak is present in the co-product chromatograms because 0.01 normal sulfuric acid is the 

mobile phase in carbohydrate characterization. 
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Figure 14:  Characteristic Hydrolysate Co-product HPLC Chromatograms 

Based on retention times alone, the peak with a retention time 11.5 minutes appears to 

indicate the presence of xyltiol.  Literature indicates that xylitol is produced by the 

hydrogenation of xylose, but conditions in the reactor do not seem to permit a reduction 

reaction [Sjostrom (1993)].  Literature makes no mention of the production of xylitol through 

auto or acid catalyzed hydrolysis, and it seems suspicious that xylitol would be detectable in 

the hydrolysate before the sugar from which it is derived.  Because of this lack of certainty in 

characterization of this peak, it is conservatively hypothesized that the component eluting 

from the column at 11.5 minutes is not xylitol.  Regardless, the number of co-product species 

increases with increasing reaction severity, which agrees with literature [Mosier (2005)] 

(Table 7).   
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In regards to reaction co-products, acetic acid is the most prevalent.  It is found in 

detectable quantities at most reaction severities, with a minimum concentration of 0.04 g/L 

(120ºC, 60 mins) and a maximum concentration of 0.22 g/L (160ºC, 40 mins, Table 6).  

Analysis of the reaction co-products is a bit more difficult, as the variation in the number of 

observed chemical species at each condition is considerable.  This is especially noticeable in 

the data at 160°C and 60 mins.  Of the four replicates characterized at this condition, only 

two replicates have quantifiable levels of glycerol, and only one replicate has quantifiable 

levels of HMF (Figure 15). 

HMF is first detected in appreciable quantities at 160°C and 60 mins, with a 

concentration of 0.02 g/L.  Reaction conditions are harsh enough to dehydrate hexoses into 

HMF.  Conditions are never severe enough to degrade pentoses to furfural, as furfural is 

never found at detectable levels.  These results coincide with previous studies completed on 
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Figure 15:  Co-product Concentration Replicates at 160ºC, 60 mins 
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the required reaction severity for the production of these chemicals [Li (2005), Sundqvist 

(2006)]. 

The standard deviation of all products is high and can be attributed to several factors.  

Natural variability in the woody substrate leads to variation in the composition of the 

hydrolysate.  Previous research has quantified this variation [McMillin (1968), Schimleck 

(1998), Ingram (2000), Jones (2006)].  This study is especially sensitive to this natural 

variability because of the relatively small charges of woody substrate (approx. 5 grams) used 

for each extraction.  The variation tends to be highest towards low concentrations of products 

as the RI detector used for HPLC characterization nears its detection limit.  The actual 

conditions under which extraction occurred are also a source of variation.  Residence time in 

the reactor varied from run to run depending on the mass of wood and water charged to the 

reactor and the initial temperature of the reactor.  The extraction hold temperature could only 

be held to ± 3ºC.  As a result, extractions reported at the same condition could have been 

extracted at temperatures separated by six degrees Celsius.  Because the de-polymerization is 

an Arrhenius type reaction, this difference in temperature could lead to different levels of 

extraction and therefore different chemistries of the hydrolysates. 

Results from the principal component analysis of the hydrolysate HPLC 

chromatograms are presented in Figures 16 and 17.  These are the PCAs for carbohydrate and 

co-product chromatograms respectively.  Each PCA was accomplished with 17 data points.  

HPLC data were collected in two separate batches many months apart.  This was done in 

order to protect HPLC samples from aging.  In order to remove the variation that occurs 

because samples were characterized through two separate HPLC runs, data were taken from 

only one run.  Carbohydrate peaks appear between retention times of 9.5 to 15.75 minutes  
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Figure 16:  Principal Component Scores for Carbohydrate HPLC Chromatograms 
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Figure 17:  Principal Component Scores for Co-product HPLC Chromatograms 
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and co-product peaks appear between retention times of 11 to 50 minutes.  PCA was 

accomplished over these respective ranges. Data segregation is observed in both PCAs in 

regards to extraction condition, indicating the carbohydrate and co-product chemical 

identities are unique to the extraction condition, and most notably, extraction temperature.  

This reinforces earlier findings that distinct levels of extraction are achieved at the conditions 

in this study.  Clustering is evident when only reaction temperature is considered, indicating 

that this is the dominant factor in determining the chemical composition of liquid phase 

hydrolysates.  Data overlap is visible for carbohydrate scores at 120 and 140°C and indicates 

similar carbohydrate chemistries in hydrolysates at these conditions.  This reinforces data 

previously presented that these conditions produce similar levels of extraction. 

Important peaks for hydrolysate characterization occur at 10.02, 11.22, 13.25, 13.92 

and 15.25 minutes in the carbohydrate chromatogram (Figure 18).  These peaks correspond 

to cellobiose, glucose, xylose, galactose, and mannose respectively. Important peaks for 

hydrolysate characterization occur at 13.73, 14.78, 16.53, 22.13 and 32.58 minutes in the co-

products chromatogram (Figure 19).  These peaks correspond to lactic acid, glycerol, acetic 

acid, water and HMF respectively.  These loadings indicate that characterization of the 

hydrolysates occurs because of chemical changes appropriate to this study.  
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Figure 18:  Loading Vector for HPLC Carbohydrate PCA, PC 1 
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Figure 19:  Loading Vector for HPLC Co-products PCA, PC 1 
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C. Response Prediction 

With the industrial scale up of the extraction in mind, it would be beneficial if some 

of the response variables measured in this study could be predicted by rapid NIR scanning of 

the extracted flakes.  PLS-1 models were generated from NIR wood flake spectra for the 

percent change in dry mass, percent solubilized lignin, hydrolysate pH, and the chemical 

concentrations in the hydrolysate.  Models could not be generated for glycerol and HMF as 

not enough samples contained quantifiable levels of these species. 

Based on R2 values, valid NIR correlated models can be formulated for the percent 

solubilized lignin (R2=0.97), percent change in dry mass (R2=0.95), xylose hydrolysate 

concentration (R2=0.92), and mannose hydrolysate concentration (R2=0.91) (Table 8).  

Models produced for the other response variables have unacceptable coefficients of 

determination for normal industrial applications (R2>0.90) [Vining (1998)]. 

Low R2 values indicate that valid calibration models cannot be constructed for the 

hydrolysate pH (R2 = 0.79) and the hydrolysate concentrations of galactose (R2 = 0.83), 

cellobiose (R2 = 0.83), acetic acid (R2 = 0.81), and glucose (R2 = 0.76) (Table 8).  The  

 

Table 8:  Summary of PLS-1 Models From NIR Wood Flakes 

 Calibration Validation 
Response Variable R2 RMSEC PCS N R2 RMSEV N 

% Solubilized Lignin 0.97 0.0003 2 (9) 0.63 0.002 (5) 
% Change in Dry Mass 0.95 0.02 2 (24) 0.90 0.02 (12) 

[Xylose] 0.92 0.08 2 (14) 0.86 0.14 (8) 
[Mannose] 0.91 0.06 1 (24) 0.70 0.10 (12) 
[Galactose] 0.83 0.09 2 (14) 0.80 0.12 (8) 
[Cellobiose] 0.83 0.09 2 (14) 0.70 0.11 (7) 

[Acetic Acid] 0.81 0.04 2 (20) 0.66 0.05 (10) 
Hydrolysate pH 0.79 0.11 1 (22) 0.65 0.13 (10) 

[Glucose] 0.76 0.17 1 (14) 0.66 0.22 (8) 
 



 54

reasons for the shortcomings of these models are easily explained.  The hydrolysate pH may 

not exhibit sufficient linearity for a linear model to accurately predict responses.  The low R2 

value for the linear model generated to correlate the absolute value in the percent change in 

mass loss to the hydrolysate pH demonstrates this (Figure 10).  Perhaps non-linear methods 

would produce a more acceptable model.  The hydrolysate galactose concentration may be 

hard to predict from NIR data because of relatively small amounts of galactose in the 

hemicellulose polymers in solid wood.  More large scale changes in the wood chemistry may 

dominate the variation in the wood flake NIR spectra.  Acetic acid is derived from two 

sources; the cleavage of acetyl side groups, which can be quantified by changes in the wood 

flake chemistry, and degradation of monosaccharides in the hydrolysate, which would not 

necessarily have an impact on chemistry in the wood flakes.  Models are difficult to generate 

for cellulose and cellobiose for a similar reason.  Both components are derived from cellulose 

polymers.  NIR scans of the wood flake can quantify changes in cellulose, but not necessarily 

the distribution of products from cellulose degradation, because conversion to glucose from 

cellobiose can occur in the liquid phase. 

Examination of the RMSE of both calibration and validation for the acceptable 

models indicate the models are appropriate in relation to the natural variability observed in 

the data.  Comparison with the average standard deviation of each variable indicates that the 

root mean square error of calibration (RMSEC) values generally lie in the observed range of 

data variation (Table 9).  The root mean square error of validation (RMSEV) values tend to 

be higher than the average standard deviation, but only the RMSEV of the percent 

solubilized lignin is cause for concern (0.0016 RMSEV versus 0.0007 average value of 

standard deviation). 
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Table 9:  RMSE and Standard Deviation Comparisons, PLS-1 

Response Variable Avg St Dev RMSEC RMSEV 
% Solubilized Lignin 0.0007 0.0003 0.0016 

% Change in Dry Mass 0.02 0.020 0.024 
[Xylose] 0.10 0.081 0.14 

[Mannose] 0.07 0.06 0.10 
 
 

  For a PLS model to be validly constructed, the loading weight vector and the 

regression coefficients should exhibit similar peaks.  This is true for the four models that 

provide acceptable fits to the data.  Figures 20 through 23 display the loading weight vectors 

and regression coefficients for the percent solubilized lignin, percent change in dry mass, 

hydrolysate xylose concentration, and hydrolysate mannose concentration respectively.  

Important peaks in PC 1 for the prediction of all response variables can be found at 1443 nm, 

1927 nm, 2091 nm, 2331 nm and 2367nm (Figures 18-21).  The chemistry related to these 

peaks has already been illustrated as appropriate to softwood NIR spectra (C-H combination, 

O-H stretch/H-O-H deformation combination, O-H combination, C-H stretch/C-H 

deformation combination, and CH2 bend 2nd overtone respectively).  PC 1 describes 

anywhere from 97% of the variation in the x data and 78% of the variation in the y data 

(percent change in dry mass) to 98% of the variation in the x data and 78% of the variation in 

the y data (hydrolysate xylose concentration). 

PLS-2 models do not provide better predictions of cellobiose and glucose 

concentrations in the hydrolysate.  The R2 value for both components are unacceptably low 

(R2
cellobiose = 0.77, R2

glucose = 0.76, Table 10).  Comparing the hydrolysate cellobiose 

concentration PLS-2 model with the corresponding PLS-1 model indicates that the PLS-1  
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Figure 20:  Loading Weight and Regression Coefficient Vectors for % Solubilized 
Lignin PLS 
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Figure 21:  Loading Weight and Regression Coefficient Vectors for Percent Change in 

Dry Mass PLS 
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Figure 22:  Loading Weight and Regression Coefficient Vectors for Hydrolysate Xylose 

Concentration PLS 

Wavelength (nm)
1000 1500 2000 2500

Lo
ad

in
g 

W
ei

gh
t

-0.12

-0.08

-0.04

0.00

R
eg

re
ss

io
n 

C
oe

ff
ic

ie
nt

-0.006

-0.004

-0.002

0.000Loading Weight Vector
Regression Coefficient Vector

[Mannose]
PC 1 (97%, 91%)

1443 nm

1927 nm

2091 nm

2331 nm

2367 nm

 

Figure 23:  Loading Weight and Regression Coefficient Vectors for Hydrolysate 

Mannose Concentration PLS 
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Table 10:  Summary of PLS-2 Models from NIR Wood Flakes 

 Calibration Validation 
Response Variable R2 RMSEC PCS N R2 RMSEV N 

[Cellobiose] 0.77 0.11 0.62 0.13 
[Glucose] 0.76 0.17 

1 (14) 
0.66 0.22 

(8) 

 
 
 
model has a higher R2 and a lower RMSE for calibration data (PLS-1; R2 = 0.83 RMSEC = 

0.09, PLS-2; R2 = 0.77 RMSEC = 0.11).  The R2 and RMSE values for the calibration data in 

regards to prediction of glucose concentration in the hydrolysate indicate that the PLS-1 and 

PLS-2 models are comparable (PLS-1; R2 = 0.76 RMSEC = 0.17, PLS-2; R2 = 0.76 RMSEC 

= 0.17).  Poor PLS-2 modeling may again be attributed to the relatively low number of 

samples in the analysis.  According to ASTM guidelines, calibration should require at least 

18 samples [ASTM (2005)].  More data should be collected before the PLS-2 model is 

considered unacceptable. 

Analysis of R2 and RMSE values of calibration model indicates that the percent 

solubilized lignin, percent change in dry mass, hydrolysate xylose concentration and 

hydrolysate mannose composition could be predicted from coupling NIR data collected on 

extracted flakes with PLS-1 models.  Poor validation models suggest otherwise (with the 

exception of the percent change in dry mass, R2 = 0.90).  Literature indicates that more 

validation data is required for construction of accurate validation models [ASTM (2005)]. 

D. Economic Analysis 
 

One of the goals of this project was to determine if the extraction process could add a 

value added chemical stream to an OSB manufacturing facility.  As such, a basic economic 

analysis has been carried out to determine if the hot water extraction process is even 
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economically viable in the most basic of terms.  Is the value of raw material the process 

consumes greater than the value chemicals produced or of chemicals that can be produced?  

As the results of this study indicate, the extraction process produced various percent changes 

in dry mass of the wood flake substrates as well as producing non-trivial amounts of wood 

flake breakage as indicated by the percent change in flake surface area.  Manufacturers 

would likely be forced to feed more raw wood flakes into their processes to target the same 

final product density because of these wood losses.  Because the change in flake surface area 

is hypothesized to be a function of random encounters with the mixing apparatus, the average 

value in the percent change in surface area for all conditions, -8.92%, was used in this 

analysis and was coupled with the observed percent change in dry mass at each discrete 

reaction condition.  These additional wood requirements (from mass loss and breakage) 

result in an incremental increase in the wood costs to the OSB manufacturer.   Costs based on 

capital investment and process operation are nearly impossible to estimate at this point in 

time, therefore in order for the proposed extraction process to be a candidate for further 

research the revenue generated from the sale of extracted chemicals must be significantly 

greater than the cost incurred to the manufacturer because of increased wood usage.  A more 

detailed economic analysis would have to be completed after more detailed study to 

determine true economic return.  

Wood usage and mill production figures are based on values for a new OSB 

manufacturing facility built by Louisiana Pacific (LP) in Clarke County Alabama which is 

scheduled for a late 2007 start-up.  According to LP press releases, the plant will consume an 

estimated 1.1 million tons of wood and produce 700 million square feet (¾ inch thickness 

basis) (MMSF¾) annually [Louisiana Pacific Corporation (2004)].  These values are similar 
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to many OSB plants in the Southeastern region of the United States [Harris (2007)].  The cost 

of raw wood is estimated from Timber-Mart researched values for the Southeast in 2007.  

Timber-Mart quotes a delivered market price of $26-$33 per ton on pine pulpwood [Harris 

(2007)].  For economic analysis, the higher of these values will be used for raw material 

costs.  It is assumed that the delivered wood averages 30% moisture content by mass and 

contains 5% extractives by mass (similar to that observed in this study).  Wood usage will be 

corrected based on these values. 

A review of the literature indicates that the economic value of the chemicals produced 

directly through the extraction process is too low to justify direct sale [Paster (2003), Werpy 

(2004)].  As such, exploration of products that can be derived from the chemicals produced 

from the extraction process must be explored. 

For a variety of reasons, the conversion of lignocellulosic materials into bio-based 

ethanol for fuel sources is an attractive option.  For ethanol production, the carbohydrates 

produced from hydrolysis are isolated via separation.  These carbohydrates are fermented by 

bacteria, enzymes, or yeasts into ethanol [Duff (1996)].  Ethanol is an attractive value added 

product because there is a large, pre-established market.  Ethanol is being blended into fuels 

as an eco-friendly option to gasoline itself and is currently used as a gasoline additive to 

replace methyl tertiary butyl ether [Sun (2002)].  Previous research has indicated that the 

hydrolysis byproducts HMF and furfural, even in dilute quantities, act as inhibitors to the 

conversion of carbohydrates to ethanol by microorganisms [Palmqvist (2000)].  Extraction 

under the most severe conditions of this study produce only small amounts of HMF (and no 

detectable levels of furfural) in the hydrolysate.  Ethanol yields will approach a maximum 

without the presence of these inhibitors [Palmqvist (2000)].  Literature indicates that for 
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softwood derived carbohydrates, ethanol conversions from both cellulose and hemicellulose 

derived carbohydrates average near 40% by mass [Olssen (1996)].  This conversion value 

will be used for economic analysis.  Literature also indicates that a reasonable market price 

for corn-derived ethanol is $1.25 per US gallon, or $0.67 per pound of ethanol [Kaylen 

(2000)].  Because lignocellulosic ethanol will compete economically with corn based 

ethanol, it is assumed that market price for lignocellulosic ethanol will have to be near that of 

the corn-derived ethanol.  Equations for economic calculations can be found in Appendix B.   

 The revenue generated from the volume of ethanol that could be produced through 

low and mid temperature extraction is less than the incremental cost increase incurred due to 

breakage and mass loss (Table 11).  At 120ºC and 20 mins only trace amounts of 

carbohydrates are produced by the extraction processes, and therefore little to no ethanol 

could be produced from hydrolysates produced at this extraction condition.  The resulting 

damage and mass loss would require an additional input of 5.9 million dollars worth of raw 

wood annually to ensure product densities remain unchanged when OSB is manufactured  

 

Table 11:  Revenue Generation From Ethanol Production 

Extraction 
Conditions     

Temp, 
Hold 
Time, 

Incremental  Wood 
Cost Increase Ethanol Conversion Ethanol Revenue Net Revenue 

oC Mins $/year Ton ethanol/ton raw wood $/year $/year 
120 20 $5,900,000 0.00% $0 -$5,900,000 
120 40 $6,300,000 0.15% $550,000 -$5,800,000 
120 60 $7,400,000 0.21% $790,000 -$6,600,000 
140 20 $7,600,000 0.29% $1,100,000 -$6,500,000 
140 40 $9,400,000 1.02% $3,900,000 -$5,500,000 
140 60 $9,900,000 1.45% $5,600,000 -$4,300,000 
160 20 $12,000,000 2.95% $12,000,000 $0 
160 40 $13,000,000 3.72% $15,000,000 $2,000,000 
160 60 $14,000,000 4.09% $17,000,000 $3,000,000 
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with extracted flakes.  At 120ºC and 40 mins and 120ºC and 60 mins, ethanol can be 

produced, however ethanol is produced in too small of quantities to counteract the increase in 

incremental wood costs incurred through damage and mass loss.  Extractions at 120ºC and 40 

mins and 120ºC and 60 minutes result in annual revenue losses of 5.8 and 6.6 million dollars 

respectively.  Ethanol yields would increase with increasing severity.  Extractions at 140ºC 

produce higher ethanol yields than 120ºC extractions, but ethanol production at 140 ºC 

cannot counteract the incremental increase in wood cost. 

This analysis indicates that extracting at 160ºC may yield enough raw material to 

make ethanol production economically viable.  Annual revenue ranges from 2 million dollars 

(160ºC, 40 mins) to 3 million dollars (160ºC, 60 mins).  Operation here is not practical 

relative to the goal of the project, and returns are most likely too low to counteract capital, 

utility, and operating expenses [Seider (1998)].  The levels of cellobiose present in the 

hydrolysate indicate cellulose has been hydrolyzed and that the mechanical strength of the 

cell wall may be negatively impacted as a result.  Hydrolysates produced at an extraction 

temperature of 160°C contain far more chemical species than hydrolysates produced at 

milder conditions.  Product separation would be more complex and costly as a result 

[Kochergin (2006)], and the presence of HMF at this extraction temperature would inhibit the 

conversion of carbohydrates to ethanol [Palmqvist (2002)].  From these data, ethanol does 

not seem to be a viable candidate as a value added product. 

 A review of the literature indicates that levulinic acid is a high return chemical that 

can be derived from biomass.  Levulinic acid is generally used as a building block chemical 

for fuel additives, polymers, resins, and herbicides [Paster (2003), Werpy (2004)].  This 
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compound is currently derived from petroleum feedstocks and has a market value of $4-6 per 

pound [Werpy (2004), Paster (2003)].  Levulinic acid is produced from an acid catalyzed 

degradation of HMF, which itself is derived from the dehydration of lignocellulosic hexoses 

[Sjostrom (1993)].  Literature indicates that reasonable conversions from hexoses to levulinic 

acid are 65% [Fitzpatrick (1996)]. 

 Levulinic acid provides a much higher economic return than ethanol (Table 12).  The 

only condition that does not generate net revenue is 120°C and 20 mins, with a net loss of 5.9 

million dollars annually.  Economic returns are even higher for hydrolysates produced at an 

extraction temperature of 140°C.  Net revenue ranges from 29 million dollars annually 

(140°C, 20 mins) to 160 million dollars annually (140°C, 60 mins).  These higher returns 

could help offset the additional capital, utility and operating expenses that would be required 

for the separation and conversion of hexoses to high purity levulinic acid. 

Economic returns on levulinic acid reach a maximum value at 160°C and 60 mins 

(430 million dollars annually).  Again, the levels of cellobiose present in the hydrolysate 

 

Table 12:  Revenue Generated From Levulinic Acid Production 

Extraction 
Conditions     

Temp, Hold 
Time, 

Incremental  Wood 
Cost Increase 

Levulinic Acid 
Conversion 

Levulinic Acid 
Revenue Net Revenue 

oC Mins $/year ton LA/ton raw wood $/year $/year 
120 20 $5,900,000 0.00% $0 -$5,900,000 
120 40 $6,300,000 0.15% $19,000,000 $13,000,000 
120 60 $7,400,000 0.21% $27,000,000 $20,000,000 
140 20 $7,600,000 0.29% $37,000,000 $29,000,000 
140 40 $9,400,000 1.02% $120,000,000 $110,000,000 
140 60 $9,900,000 1.45% $170,000,000 $160,000,000 
160 20 $12,000,000 2.95% $340,000,000 $330,000,000 
160 40 $13,000,000 3.72% $410,000,000 $400,000,000 
160 60 $14,000,000 4.09% $440,000,000 $430,000,000 
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produce concerns that the strength of the cell wall has been compromised at this extraction 

temperature.  Although the yield is high, so too is the number of components present in the 

hydrolysate.  This would likely result in the required product separations being both costly 

and complex [Kochergin (2006)]. 

E. Process Scale-Up 
 

The basic economic analysis indicates that further, more detailed research should be 

carried out on this process to determine if large scale implementation is possible.  However, 

some changes in experimentation and instrumentation should occur to ensure future research 

is more practical for industrial scale processes. 

This research investigated extractions at a 40:1 mass ratio of solvent (water) to 

substrate (dry, extractives free wood flakes).  This ratio was necessitated by the geometry of 

the Parr reactor in which extractions occurred.  Wood flakes could only align in one direction 

in the reaction chamber, as the length of the wood flake was near the diameter of the reaction 

chamber (length of average wood flake = 7.87 cm, diameter of reaction chamber = 9 cm).  

Flakes had to be stacked one on top of the other inside of the reaction chamber.  The 

clearance between the temperature probe and mixing apparatus and the bottom of the reactor 

chamber allowed a maximum of 9 flakes inside the reactor during each extraction.  For 

proper temperature control of the extraction, the temperature probe had to be sufficiently 

submerged in liquid phase inside of the reactor.  This necessitated roughly 200 mL of water.  

These geometric constraints set the solvent to substrate ratio for the research, however, a 40:1 

ratio is hardly practical in an industrial environment [Kubikova (2000)].  Capital investment 

for large volume reactors, piping and transfer pumps for high volumes of water would be 
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prohibitively expensive [Seider (1998)].  As such, future research should focus on extractions 

using less water.  A 10:1 ratio appears to provide total wetting of the wood flake surface area 

and would be an appropriate ratio for further studies. 

The amount of dry mass charged for each extraction should be increased.  Research in 

this study was limited by the amount of wood that could physically fit in the reactor (9 flakes, 

approximately 5 grams).  It is hypothesized that some of the variation in the chemical 

component concentration data is high because of this.  In this study, inter-batch flakes were 

chosen at random, and likely came from different trees and different areas within the same 

trees.  These flakes could contain different chemistries and may have had profound impact on 

the chemistry of the hydrolysates [McMillin (1968), Jones (2006)].  The recommendation for 

future research is to use 1 kg batches of wood to minimize the effect flake to flake variation 

has on the hydrolysate compositions.  A 10:1 ratio of solvent to substrate would require 10 

Liters of reactor volume. 

Wood losses due to breakage have a considerable impact on the economic returns of 

the process.  In this study, mechanical agitation was achieved with a blade impeller.  Mixing 

via agitation was provided to aid both mass and heat transfer during extraction and should be 

considered a requirement for batch processes [Mosier (2005)].  However, mixing can be 

achieved in methods that would most likely lead to less damaging of the flake.  A circulation 

of the liquid phase during the extraction via pumping should provide adequate mixing 

without the possibility of physical interactions between wood flakes and the mixing 

apparatus [Hu, (2008)]. 

 As noted previously noted, deficiencies exist in the method utilized for HPLC 

hydrolysate characterization.  Current HPLC methodologies result in substantial peak 
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widening.  This peak widening prevents baseline separation of carbohydrate peaks and 

required the researcher to use peak intensity, rather than the traditional area under the peak, 

for carbohydrate quantification.  Literature reports other HPLC characterizations methods 

have been used with greater success in achieving near baseline separation of carbohydrates 

[Agblevor (2004)].  Methods in literature also utilize different detectors for characterization 

in order to overcome the shortcomings of refractive index detectors (i.e. weak sensitivity and 

incompatibility with gradient elution) [Nogueira (2005)].  Pulsed amperometric, evaporative 

light scattering and electrochemical detectors have been cited in literature as viable 

alternatives to refractive index detection [Torimura (1997), Cheng (2001), Li (2007)].  These 

methods were not chosen for this study because they are not as widely used as the NREL 

characterization method.  Future research may benefit from utilizing a different hydrolysate 

HPLC method.   

The results of these proposed experiments and characterizations could be used for 

more detailed economic analysis.  If the economics of levulinic acid prove marginal, further 

hydrolysate processing may provide a chemical species with a higher economic return. 

Investigation of the mechanical property changes undergone by the substrate would 

also be beneficial.  Prior research has indicated that the polymeric properties of wood are 

heavily influenced by chemical processing [Kelley (1987), Dave (1992), Hon (1992), Olsson 

(1992), Wolcott (1994), Sugiyama (1998), Bjorkman (2000), Olsson (2004)].  Changes in the 

viscoeleastic properties of the wood flake may have profound influence on the behavior of 

the wood under heat and pressure, and undesirable consequences may arise from industrial 

pressing of extracted flakes [Wolcott (1994)].  Tensile testing could also be performed to 



 67

determine with certainty whether the removal of small amounts of cellulose is detrimental to 

the strength of the flake. 
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5. Conclusions 
 

Various levels of extraction of lignocellulosic material can be accomplished over the 

range of reactor temperatures and isothermal hold times investigated, although there is 

significant overlap at 120 and 140°C.  This level of extraction can have a profound impact on 

the chemical identity of the woody biomass, as extraction hydrolyzes cellulose and 

hemicellulose polymers while solubilizing small quantities of lignin.  The changes in the 

chemical composition of the wood flake can be used to classify the flake by the condition 

through which it was extracted.  Reaction conditions also have a profound effect on the 

chemical composition of the liquid phase hydrolysates, as hydrolysis of biomass samples 

yield carbohydrates which can react further to produce co-products.  The changes in the 

chemical composition of the hydrolysates can be used to classify the hydrolysate by the 

condition through which it was extracted.  These chemical changes are also manifested 

through changes in the physical characteristics of the substrate.  Extraction can produce 

significant levels of breakage when reactor agitation is accomplished through mechanical 

means.  The fiber saturation point of extracted flakes is also reduced as extraction severity 

increases. 

Results seem promising that rapid NIR techniques can be used to predict the physical 

changes the extraction process would have on wood flakes (percent change in dry mass).  

Prediction of hydrolysate chemical yields seems a bit less accurate, but some components can 

be modeled (hydrolysate concentrations of xlose and mannose, and the percent lignin 

solubilized).  

HPLC data indicate that only small amounts of hemicellulose are extracted at a 

temperature of 120ºC, as only trace amounts of hemicellulose derived monosaccharides are 
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present in the hydrolysates.  The concentrations of chemicals produced at this temperature 

are not high enough to be economically viable as value added products.  At an extraction 

condition of 140ºC and 40 mins, cellulose is extracted and may indicate the strength of the 

cell wall has been compromised.  Extraction of cellulose increases with reaction severity 

causing greater and greater concern about cell wall strength of wood flakes subjected to 

extraction at 160ºC.  Also, the number of chemical species present in the hydrolysate at 

160ºC indicates a higher degree of energy and capital expenditure would be required for 

product separation.  In regards to the goal of this product, further studies should focus around 

extraction that occurs at a temperature of 140ºC with a residence time of 20 minutes.  

Hydrolysates produced at these extraction conditions have the highest potential as value 

added processes to the manufacture of OSB because of a better balance between the number 

of components, component quantities, and relatively small levels of physical changes in the 

substrate wood flake. 
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Appendix A 
 
Summary of HPLC Calibrations 
 

The R2 value for the linear fits to the calibration data ranged from 0.9999 (mannose, 

Run #2) to 0.9887 (acetic acid, Run #2) (Table 12).  The error of prediction of the 

concentration of the standards solution with the calibration curve ranged from 0.53% (xyltiol, 

Run #2) to 9.75% (cellobiose, Run #2).  The highest prediction errors occur at the lowest 

product concentrations as the detector limit is approached. 
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Table 13:  Summary of HPLC Calibration Runs 

 Calibration Concentrations, g/L   
 Cal Pt. 1 Cal Pt. 2 Cal Pt. 3 Cal Pt. 4 R2 Max Prediction Error 

 Run #1 
Run #2 

Run #1 
Run #2 

Run #1 
Run #2 

Run #1 
Run #2 

Run #1 
Run #2 

Run #1                
Run #2 

20.04 13.73 7.31 0.97 0.9993 6.96% Cellobiose 
15.00 12.22 4.34 0.52 0.9940 9.75% 
20.44 14.00 7.46 0.99 0.9931 5.71% Glucose 
14.96 12.18 4.32 0.05 0.9953 6.00% 
20.12 13.78 7.34 0.98 0.9993 3.82% Xylose 
14.88 12.12 4.30 0.51 0.9958 5.05% 
20.60 14.11 7.52 1.00 0.9992 7.07% Galactose 
15.12 12.31 4.37 0.05 0.9954 5.90% 
19.98 13.68 7.29 0.97 0.9996 6.74% Mannose 
15.23 11.58 4.57 1.07 0.9999 1.88% 
5.92 5.65 2.00 0.45 0.9998 7.72% Xyltiol 
6.00 4.50 1.56 0.06 0.9994 0.53% 
11.68 9.93 3.50 0.98 0.9941 4.40% Lactic Acid 
12.00 9.00 3.12 1.20 0.9950 1.39% 
9.06 7.70 2.75 0.84 0.9954 5.31% Glycerol 
8.00 6.00 2.08 0.80 0.9991 0.77% 
12.92 10.98 4.00 1.24 0.9990 5.77% Acetic Acid 
12.00 9.00 3.12 1.20 0.9887 2.00% 
5.50 4.68 1.38 0.50 0.9977 9.38% HMF 
5.00 3.75 1.30 0.50 0.9951 1.34% 
4.92 4.45 1.60 0.43 0.9992 5.09% Furfural 
5.00 3.75 1.30 0.50 0.9953 1.65% 
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Appendix B 
 
Calculations 
Determination of reaction severity [Overend (1987)] 

⎭
⎬
⎫

⎩
⎨
⎧

×⎥⎦
⎤

⎢⎣
⎡ −

= tTS
75.14
100explog0  

Where 
S0 = Severity Factor 
T = Temperature (ºC) 
t = Residence Time (mins) 
 
Determination of percent change in dry mass 

%100% ×
−

=
Before

BeforeAfter

DM
DMDM

CDM  

Where 
%CDM = Percent Change in Dry Mass (%) 
DMAfter = Mass of Dry Wood Flakes After Extraction (g) 
DMBefore = Mass of Dry Wood Flakes After Extraction (g)  
 
Determination of percent change in mass at saturation 

%100% ×
−

=
After

AfterEquil

DM
DMSM

CMS  

Where 
%CMS = Percent Change in Mass at Saturation (%) 
SMEquil = Mass of Saturated Wood Flakes After Equilibration (g) 
DMAfter = Mass of Dry Wood Flakes After Extraction (g) 
 
Determination of percent lignin solubilized 

BeforeAnalComp

HydrolAbs

DMLignin

VolUV

LS
×

×
×

×

=
%

%100
1000% ε  

Where 
%LS = Percent Lignin Solubilized (%) 
UVAbs = Ultra Violet Absorption at 240 nm 
VolHydrol = Recovered Hydrolysate Volume After Extraction (mL) 
ε = Absorptivity constant, a Value of 12 for Pine Species 
%LigninComp Anal = % of Dry Mass of Lignin in Compositional Analysis (%) 
DMBefore = Dry Mass of Wood Flakes Before Extraction (g) 
 
Determination of Hydrolysate Component Compositions 

10
SlopePkComp

Conc

CCIntens
Comp

×
=  
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Where  
CompConc = Component Composition (g/L)  
IntensComp Pk = Intensity of Component Peak on Chromatogram (RIU) 
CCSlope = Slope of Component Calibration Curve (g/L per RIU) 
 
Economic Calculations 
Incremental Wood Cost Increase 

( )( )[ ]1%1%1 −−−×= CDMCSAWUWCIWCI ANN  
Where 
IWCI = Incremental Wood Cost Increase (USD/year) 
WC = Wood Cost (USD/ton) 
WUANN = Annual Wood Usage (tons/year) 
%CSA = Percent Change in Average Surface Area (%) 
%CDM= Percent Change in Dry Mass (%) 
 
Component Conversion 

R
DEBefore

HydrolConc
Conv Y

ECMCDM
VolComp

Comp ×
×

×
×

×
=

1
1000

 

Where 
CompConv = Component Conversion (%) 
CompConc = Component Composition (g/L) 
VolHydrol = Recovered Hydrolysate Volume After Extraction (mL) 
DMBefore = Dry Mass of Wood Flakes Before Extraction (g) 
MCDE = Estimated Delivered Wood Moisture Content (30%) 
EC = Average Extractives Content (5%) 
YR = Final Reaction Yields (%)  
 
Component Revenue 

( )( )[ ]1%1%1Re −−−××= CDMCSAWUCompCompComp ANNConvValv  
Where 
CompRev = Component Revenue (USD/year) 
CompVal = Component Market Value (USD/ton) 
WUANN = Annual Wood Usage (tons/year) 
%CSA = Percent Change in Average Surface Area (%) 
%CDM= Percent Change in Dry Mass (%) 
 
Net Revenue 

IWCICompNR v −= Re  
Where 
NR = Net Revenue (USD/year) 
CompRev = Component Revenue (USD/year) 
IWCI = Incremental Wood Cost Increase (USD/year) 
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