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Abstract 
X-ray technology is widely used for airport luggage inspection nowadays. However, the 
ever-increasing sophistication of threat-concealment measures and types of threats, 
together with the natural complexity, inherent to the content of each individual luggage 
make x-ray raw images obtained directly from inspection systems unsuitable to clearly 
show various luggage and threat items, particularly low-density objects, which poses a 
great challenge for airport screeners. 
 
This thesis presents efforts spent in improving the rate of threat detection using image 
processing and visualization technologies. The principles of x-ray imaging for airport 
luggage inspection and the characteristics of single-energy and dual-energy x-ray data are 
first introduced. The image processing and visualization algorithms, selected and 
proposed for improving single energy and dual energy x-ray images, are then presented in 
four categories: (1) gray-level enhancement, (2) image segmentation, (3) pseudo 
coloring, and (4) image fusion. The major contributions of this research include 
identification of optimum combinations of common segmentation and enhancement 
methods, HSI based color-coding approaches and dual-energy image fusion algorithms 
—spatial information-based and wavelet-based image fusions. Experimental results 
generated with these image processing and visualization algorithms are shown and 
compared. Objective image quality measures are also explored in an effort to reduce the 
overhead of human subjective assessments and to provide more reliable evaluation 
results. 
 
Two application software are developed − an x-ray image processing application (XIP) 
and a wireless tablet PC-based remote supervision system (RSS). In XIP, we 
implemented in a user-friendly GUI the preceding image processing and visualization 
algorithms. In RSS, we ported available image processing and visualization methods to a 
wireless mobile supervisory station for screener assistance and supervision.  
 
Quantitative and on-site qualitative evaluations for various processed and fused x-ray 
luggage images demonstrate that using the proposed algorithms of image processing and 
visualization constitutes an effective and feasible means for improving airport luggage 
inspection. 
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1 Introduction 

Achieving higher detection rates of threat objects during airport luggage inspection is a 
pressing and sought-after goal for airport and airplane security personnel.  

1.1 Background 

Airport luggage inspection has always been a challenge because of (1) the complexity 
naturally present in knowing the content of each individual bag, (2) the constant increase 
in the level of sophistication and methods of device concealment by terrorists, and (3) the 
decrease in screeners’ alertness when constantly gazing at a screen and seeing almost the 
same type of objects over and over again. 
 
Traditionally, potential threats are thought of as metallic guns and knives; that is, objects 
made from high-density materials. After September 11, 2001, the Transportation Security 
Administration (TSA) made public a lot of newly prohibited threat items—among others, 
plastic, glass, and wooden sharp objects that can be used as knives. These objects are 
made of low-density materials. This increase in the types of potential threat objects 
significantly compounded luggage inspection problems. 
 
A number of techniques based on x-rays, gamma rays, electromagnetic field, and 
millimeter waves have been employed for detecting weapons and explosives [Singh and 
Singh, 2003]. X-ray based techniques are the most common means used in airports for 
luggage inspection for the following reasons: (1) x-ray technology can help provide 
information on the objects’ density and their effective atomic number (The “effective 
atomic number” is the estimate of a hypothetical single element that will give the same x-
ray attenuation as the substance being evaluated); (2) x-ray technology has been 
developed for over a century; (3) x-ray technology is safer to human beings and luggage 
contents than other radiations such as nuclear magnetic resonance; (4) x-ray physics is 
well understood; and (5) x-rays are less expensive and easy to operate [Singh and Singh, 
2003]. 
 
Different x-ray techniques are used in airports for the inspection of luggage. Among the 
most popular methods are conventional transmission imaging, dual energy x-ray imaging, 
scatter imaging and 3D imaging [Singh and Singh, 2003]. In this thesis, the focus will be 
on conventional single energy and dual energy x-ray luggage detection systems. 
Conventional x-ray systems are effective in detecting objects of metallic composition 
(knives and guns), while low-density weapons could easily go unchecked. Objects such 
as metallic guns and knives, which are characterized by high-density responses in x-ray 
images, are also easily spotted by screeners. However, objects like plastic, glass, and 
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wooden sharp items are characterized by very faint, low-density responses in x-ray 
projections and are very hard to distinguish by screeners. Commercial dual energy x-ray 
systems are used to identify materials in luggage by comparing two images of the 
luggage obtained at two different x-ray energy levels and estimating the atomic number 
of the materials.  However, the real density of objects is poorly known and only an 
estimate of atomic number can be generated, i.e. effective atomic number. As a result of 
these limitations, the false alarm rate of dual energy x-ray luggage detection systems 
reaches to roughly 30% [Singh and Singh, 2003].  

1.2 Motivation 

Our motivation for this research develops as a result of realizing the potential of image 
processing and visualization algorithms to clearly increase the rates of detecting 
concealed and low-density threat items in luggage inspection as compared to raw images.  
 
During the research and design of these algorithms, considerations were given to the 
following aspects: 
  

1. Increase operators’ alertness, without decreasing inspection speed or customer 
satisfaction. 

2. Minimize the role of human operators in monitoring and detection by automating 
or semi-automating the process of inspection at carry-on luggage stations. 

 
This research, as introduced in Section 1.1, focuses on processing x-ray luggage scans 
generated by using conventional transmission imaging, referred to as single-energy x-ray 
images, and x-ray luggage scans generated by using dual energy x-ray imaging, referred 
to as dual-energy x-ray images. Gray-level image enhancement, image segmentation, 
pseudo coloring and image fusion, shown in Figure 1.1, are the major techniques 
investigated to improve single-energy and dual-energy x-ray images.  
 
 

Figure 1.1 Image processing techniques involved in the improvement of raw x-ray luggage scans.

X-Ray
Images 

Image 
Enhancement

Pseudo 
Coloring 

Image Fusion Image 
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1.3 Contributions 

The primary contribution of our research, as shown in Figure 1.2, includes (1) optimized 
combinations of common segmentation and enhancement methods, (2) novel HSI based 
color coding methods, and (3) dual-energy image fusion algorithms—spatial information-
based and wavelet-based image fusion.  
 
Best combinations of common segmentation and enhancement methods: Several 
combinations of selected common image segmentation and enhancement methods were 
designed and applied to single-energy x-ray images. Two combinations, logarithm 
transform + contrast stretching and image negative + hdome + contrast stretching, are 
particularly effective in enhancing single-energy x-ray luggage images. 
 
HSI based color-coding methods: A color scale called “Springtime” is designed to 
reveal both value and shape information by decreasing the perceptual artifacts of the 
human visual system in general and simultaneous contrast in particular. Additionally, 
constant saturation and variable saturation schemes based on the HSI color space are 
proposed in order to apply color to preprocessed gray scale data. 
 
Dual-energy image fusion algorithms: 
Local spatial information-based image fusion: classify each pixel in a luggage scene into 
either background pixel or detail pixel, and then highlight detail pixels with the 
assumption that detail pixels carry the features of interest in the luggage scene. 
 
Wavelet based image fusion: One of the most important features of dual-energy x-ray 
images is used as a basis of the wavelet based image fusion − distinct objects in a given 
luggage scene show similar general contours in both the high-energy image and the low-
energy image. This algorithm have details, uniquely exhibited in the low-energy or high-
energy x-ray image, be incorporated into the fused version, and details existing in both 
low-energy and high-energy x-ray images be more visible in the fused version. 
 
For each of the preceding algorithms, qualitative and quantitative results demonstrate 
their effectiveness in improving x-ray luggage images. 

1.4 Outline of this Thesis 

The remainder of this thesis is organized as follows. Chapter 2 presents the state of the 
arts in x-ray carry-on luggage inspection systems, gray scale image enhancement, image 
segmentation, pseudo coloring and image fusion. Gray scale enhancement techniques 
applied to x-ray luggage scenes and experimental results are introduced in Chapter 3. 
Chapter 4 deals with image hashing algorithms and entropy-based image decluttering 
methods, their variations, and applications to single-energy x-ray luggage images. 
Chapter 5 describes a series of linear and non-linear pseudo-coloring maps designed and 
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Figure 1.2 Algorithms selected and proposed (in bold) for the improvement of raw x-ray luggage scans. 
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applied to single-energy x-ray luggage scans. Two image fusion algorithms, local spatial 
information-based and wavelet-based fusion methods are proposed to integrate dual-
energy x-ray images, and their experimental results are presented in Chapter 6. Chapter 6 
also discusses objective image quality measures used for the evaluation of fused x-ray 
images and shows their evaluation results. Two application software, (1) x-ray image 
processing (XIP) developed to integrate and apply various image processing and 
visualization algorithms to x-ray luggage images, and (2) wireless tablet PC-based remote 
supervision system (RSS) designed and developed to provide a mobile station in airport 
setting, are introduced in Chapter 7. This thesis is concluded with the merits of image 
processing and visualization algorithms, which are demonstrated by experimental results, 
on-site subjective and objective evaluations, major contributions and potential research 
extensions in Chapter 8. 
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2 Literature Review 

This chapter presents a review of the research literature and background on x-ray imaging. 
It begins with the principles of x-ray imaging for airport luggage inspection and the 
characteristics of single-energy and dual-energy x-ray images. The review then focuses 
on image processing and visualization techniques involved in our study. Sections 2.3 
through 2.6 present the state of arts in gray-level enhancement, image segmentation, 
pseudo coloring, image fusion, and image quality measure. This chapter is concluded 
with a summary that highlights key theories and methods, serving as the basis of our 
research, and our research direction. 

2.1 Physics of X-Ray Imaging 

As shown in Figure 2.1, x-rays are electromagnetic radiations ranging in wavelength 
from 10 -8 m to 10 -12 m. The energy, E of an x-ray is computed as:  
 

λ
chE =  , (2.1)

 
where c is the speed of light (2.998×108m/s), h Plank’s constant, and λ the wavelength of 
the x-ray radiation. The penetrability of x-ray is generally proportional to the power of its 
energy.  
 
 

Figure 2.1 The electromagnetic spectrum.  
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X-rays can be seen as beams of x-ray photons. An x-ray photon moves in a straight line 
until it undergoes a collision with a nucleus. As the result of a collision, the x-ray photon 
may disappear (absorption) or change its velocity (scattering). Conventional x-ray 
luggage detection systems measure x-ray absorption. The absorption of x-ray radiation by 
a material is proportional to the degree of x-ray attenuation and is dependent on the 
energy of the x-ray radiation and the thickness, density and atomic number of the 
material. The intensity of the x-ray radiation after passing through a material can be 
described by (2.2). 
 

xeII µ−= 0 , (2.2)
 
where I is the intensity of the x-ray radiation after passing through a material; I0 the 
intensity of the narrow beam mono-energetic x-ray radiation before passing through a 
material; x  object thickness; and µ  object attenuation coefficient whose value depends 
strongly on the x-ray energy E, the atomic number Z, the density  ρ , and atomic mass A 
as given by (2.3). 
 

3

4

AE
Zρµ ≈ , (2.3)

 

2.2 X-Ray Carry-On Luggage Inspection Systems 

As mentioned in Section 1.2, this research concentrates on processing and visualizing x-
ray image scans generated by using conventional transmission x-ray imaging and dual 
energy x-ray imaging. In this section the two kinds of x-ray carry-on luggage inspection 
systems, conventional transmission x-ray imaging systems and dual energy x-ray imaging 
systems, commonly used in airports are introduced. 

2.2.1 Conventional Transmission X-Ray Imaging Systems 
A conventional transmission x-ray imaging system has a fan shaped or scanning x-ray 
beam that is transmitted through the luggage to be inspected. The absorption of the x-ray 
is measured by a line of detectors and a high-resolution image, derived from the degree of 
absorption of the x-ray, is generated. Figure 2.2 depicts a commercial conventional 
transmission x-ray carry-on luggage detection system from Siements-Heimann. Two 
example single-energy x-ray images generated by this type of detection systems are 
shown in Figure 2.3. Higher pixel intensities in the images in Figure 2.3 correspond to 
high-density material, whereas lower pixel intensities correspond to low-density material 
in luggage. 
 
As shown in the two examples of single-energy x-ray images, especially in Figure 2.3 (b), 
different objects in a luggage scene are hard to distinguish by just observing the raw 
images directly acquired from luggage detection systems. In addition, conventional  
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Figure 2.2 Siements-Heimann transmission x-ray imaging system [Heimann, 2004].  

 
 
 

 
(a) (b) 

Figure 2.3 Example single-energy x-ray images containing, (a) high-density potential threats, and 
(b) low-density potential threats.  
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transmission x-ray imaging systems cannot differentiate between a thin sheet of strong 
absorber and a thick slab of a weak absorber [Singh and Singh, 2003]. 

2.2.2 Dual Energy X-Ray Imaging Systems 
A dual energy x-ray imaging system uses two x-ray energy levels, one high and one low 
energy, for the detection of weapons. At higher energy levels, over 100 kV, the absorbed 
energy depends primarily on the density of the material. The higher the density, the more 
the energy absorbed by the object and therefore the darker the image. At lower energy 
levels, around 80 kV, the absorption depends primarily on the effective atomic number as 
well as the thickness of the material. While areas of heavy metal are dark in both low-
energy and high-energy images, areas of light elements are darker in the low-energy 
image. Light-elements such as carbon, nitrogen and oxygen can be detected by 
comparing both images [Singh and Singh, 2003]. Two pairs of example dual-energy x-
ray images are shown in Figure 2.4. 
 
Certain commercial dual energy x-ray luggage detection systems feature dual-energy 
analysis to estimate the atomic number of materials in luggage. The problem of 
differentiating between a thin sheet of strong absorber and a thick slab of a weak 
absorber, that faces conventional transmission x-ray imaging systems, is solved in dual 
energy x-ray luggage detection systems. However, dual energy x-ray luggage detection 
systems have a main limitation that the real density of objects is poorly known for real 
luggage items and the system only generates an estimate of atomic number, i.e. effective 
atomic number [Singh and Singh, 2003]. As a result of the limitation, the false alarm rate 
of dual energy x-ray luggage detection systems reaches to roughly 30%.  
 
The remaining sections of this chapter, Sections 2.3 through 2.6, introduce the image 
processing and visualization techniques reviewed in out research to improve single-
energy and dual-energy x-ray images using image processing and visualization 
techniques and thus increase the rates of detecting concealed and low-density threat items 
in luggage inspection.  

2.3 Image Enhancement and Segmentation 

2.3.1 Image Enhancement  
Image enhancement approaches can be grouped into three categories, point enhancement, 
spatial domain enhancement and frequency domain enhancement. 

2.3.1.1 Point Enhancement 
Most widely used techniques in point enhancement include contrast stretching and 
histogram modeling. A principal advantage of this kind of enhancement methods is that 
they are automatic methods. However, since in general they use global information of 
images to do enhancement, they are not able to differentiate between several areas of an 
image that might require different levels of contrast enhancement or special treatments 
[Munteanu and Rosa, 2004]. 
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Figure 2.4 Two pairs of example dual-energy x-ray images, low-energy x-ray images (left) and 
high-energy x-ray images (right). 
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2.3.1.2 Spatial Domain Enhancement 
Spatial domain enhancement techniques modify pixel values based on the values of their 
surrounding pixels. Several representative spatial enhancement methods proposed in the 
recent decade are presented as follows.  

1) Adaptive Enhancement Method Based on Human Visual Properties  
[Hadhoud, 2001] proposed an adaptive image enhancement system that implements the 
human visual properties for the contrast enhancement of x-ray images. The human visual 
properties that are considered to benefit contrast enhancement are the adaptive nature, 
multi-channel and highly non-linearity. Therefore, this enhancement method exhibits 
adaptive, multi-channel and non-linear properties. 
 
The simple imaging model stated below is the basis of Hadhoud’s enhancement method. 
This model assumes that the radiation from a scene is the product of a low spatial 
frequency illumination component and a high spatial frequency reflectance component 
from the objects in the scene. The mathematical form of the simple model is given in 
(2.4), in which i(m,n) represents the illumination and r(m,n) the reflectance. For x-ray 
imaging, i(m,n) can be considered as the incident x-ray energy and r(m,n) is the change in 
object absorption of the penetrating x-ray energy.  
 

),(),(),( nminmrnmf ×= , (2.4)
 
Performing the logarithm of (2.4) yields 
 

)),(log()),(log()),(log( nminmrnmf += , (2.5)
 
Thus, as shown in (2.6), low pass filtering of (LPF) f(m,n) will result in log(i(m,n)) which 
corresponds to the low varying part of an image while high pass filtering (HPF) of f(m,n) 
will result in log(r(m,n)) which corresponds to the high varying part of the image.  
 

)}),((ˆ{()}),((ˆ{()),((ˆ nmfgHnmfgHnmfg hplp βα += , (2.6)
 
Where 1<α  and 1>β  are used to enhance contrast. Figure 2.5 shows the block 
diagram of a spatial enhancement method called single HP channel and fixed image 
enhancement that are developed based on the imaging model above. 
 
Considering the adaptive and multiple channel properties of the human visual system, 
[Hadhoud, 2001] proposes using adaptive HPF and LPF instead of fixed ones and using 
multiple HP channels other than single HP channels for contrast enhancement of x-ray 
images. Figure 2.6 shows the block diagram of the proposed algorithm. 
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Figure 2.5  Block diagram of single HP channel and fixed image enhancement [Hadhoud, 2001]. 

 
 
 

 
Figure 2.6  Block diagram of multiple HP channels and adaptive image enhancement [Hadhoud, 

2001]. 
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Mathematically (2.7) expresses the use of multiple HP channels and adaptive image 
enhancement. 
 

)},((ˆ{()}),((ˆ{()}),((ˆ{(

)}),((ˆ{)(()),((ˆ

nmfgHnmfgHnmfgH

nmfgHnmfg

hphhphhpmhpmhplhpl

lphphhpmhpl

βββ

ααα

+++

++=

 
(2.7)

 
where α ’s and β ’s are adaptively adjusted according to the image local contrast 
information. Results in [Hadhoud, 2001] show that this adaptive spatial enhancement 
method outperforms its fixed counterpart.  

2) Enhancement Method Driven by Evolutionary Algorithm (EVOLEHA) 
Evolutionary algorithms (EAs) are search and optimization methods that use a fixed size 
population of individuals representing potential solutions to an optimization problem.  
 
In [Munteanu and Rosa, 2004], authors use a local enhancement technique based on a 
variation of a statistical scaling method [Jain, 1991, Pratt 2000]. The enhancement kernel 
applied to each pixel at location (x, y) is given by (2.8). 
 

)),((),( yxfTyxg =  

[ ] ayxmyxmcyxf
byx

Mk ),(),(.),(.
),(

+−



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


+

≡
σ

, (2.8)

 
where f(x,y) is an input image; g(x,y) is an output image; m(x,y) and ),( yxσ are the 
graylevel mean and standard deviation computed for pixels inside a neighborhood 
centered at (x,y) and having n×n pixels; a, b, c and k are parameters of the enhancement 
kernel whose values are the same for all pixels and are taken as positive real values. The 
task of the EA in EVOLEHA is to find the best combination of the four parameters 
according to an objective criterion describing the quality of the enhancement. 
 
The enhancement evaluation objective criterion proposed by [Munteanu and Rosa, 2004] 
is the one that maximizes )(),(),( IEIIH η  given in (2.9). 
 

)(),(),(~)( IEIIHIEval η , (2.9)
 
where I is a enhanced image being evaluated; H(I) is a entropic measure proportional to 
the number of gray levels present in the image; )(Iη represents the number of edge pixels 
in the image; and E(I) denotes the intensity values of the edges. Thus, the best-enhanced 
resulting image has the maximum number of edges, higher intensities of the edges and a 
histogram with an approximately uniform distribution. 
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Using EA, the enhancement process is automated and achieves a combined goal of 
robustness and wide applicability. But the drawback of EVOLEHA is its heavy load of 
computation, which makes the method unsuitable for real-time applications. This results 
from the fact that the method requires a series of trial enhancements until producing the 
final good solution. Therefore, how to decrease the computational complexity or reduce 
the population size of individuals and the maximum number of generations is a topic of 
continued research in this kind of enhancement methods. 

3) Fuzzy Theory Based Algorithms  
Fuzzy logic theory is applied for image enhancement mainly for the following two 
reasons [Hassanien and Bader, 2003]: 
 
� Fuzzy techniques are powerful tools for knowledge representation and processing 
� Fuzzy techniques can manage the vagueness and ambiguity efficiently. 
 
Fuzzy image enhancement is based on mapping intensity values into a fuzzy plane, using 
a membership transformation function. The goal is to generate an image of higher 
contrast than the original image by giving a larger weight to the intensity values that are 
closer to the mean value of the image. 
 
Five classes of fuzzy theory based algorithms are introduced in [Hassanien and Bader, 
2003]. They are possibility distribution algorithm, contrast improvement with 
intensification operator, contrast improvement with fuzzy histogram hyperbolization, 
contrast improvement based on fuzzy if-then rules, and locally adaptive contrast 
enhancement. Five specific methods separately corresponding to the above five classes of 
fuzzy theory based algorithms are implemented and applied to mammogram images to 
increase their contrast in [Hassanien and Bader, 2003].  The effect of the decrease in 
grayness ambiguity for the five specific methods is shown in Table 2.1. 
 
 
Table 2.1 Effects of the Decrease of Grayness Ambiguity of five fuzzy theory based algorithms. 
 
Algorithm Conclusion 

Algorithm 1 
Decreases both the index of fuzziness and the entropy, and the resulting 
image is appropriate for visual perception and future tacking. 

Algorithm 2 
Increased both grayness ambiguity, and therefore the resulting image is not 
appropriate for visual perception. 

Algorithm 3 
Compared to other algorithms, it gives the lowest grayness ambiguity, and 
its results are appropriate for visual perception. 

Algorithm 4 
Gives lower grayness ambiguity than the first algorithm, although the later 
are more appropriate for visual perception. 

Algorithm 5 Does not decrease the grayness ambiguity much, and the resulting image is 
not appropriate for visual perception nor future tracking. 
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4) Wavelet-based Enhancement Algorithms  
In general, wavelet-based enhancement techniques use a reversible wavelet 
decomposition, which may be redundant or not and then perform enhancement by 
selective modification (amplification) of certain wavelet coefficients prior to 
reconstruction [Unser and Aldrouri, 1996]. That is, accentuate useful weak image 
features. Wavelet-based enhancement techniques have been extensively used in medical 
applications, especially in mammography. In mammography many researchers report that 
the improvement in performance obtained by wavelet-based enhancement techniques is 
superior to that of the standard enhancement techniques. 
 
Many enhancement techniques suffer from the tendency to increase the visibility of noise 
at the same time as they enhance the visibility of the underlying signal. Therefore some 
researchers are focused on noise reduction. [Brown] proposed an adaptive strategy for 
wavelet-based image enhancement. The method processes wavelet coefficients 
individually and treats the correlation between wavelet planes as providing an indication 
of the likelihood that noise is present. The indication is then used to control the 
application of gain so as to suppress noise and enhance other wavelet coefficients. 

2.3.1.3 Frequency Domain Enhancement 
The frequency domain image enhancement is based on Fourier theory. Image information 
can be divided into high frequency information and low frequency information. Low-
frequency information in an image represents background and high-frequency 
information in the image represents detail. Image enhancement methods in the frequency 
domain are based on changing the ratio of the high frequency and the low frequency 
components.  
 
Images processed using frequency domain techniques are first transformed to the 
frequency domain by performing a Fourier transform. Different weights can then be 
chosen for the high frequency and low frequency parts to smooth or sharpen 
background(s) or/and detail(s). After performing the processing in the frequency domain, 
the images must be transformed back into the spatial domain by applying the inverse 
Fourier transform for display. Analogous to spatial domain approaches, frequency 
domain techniques can process frequency information of images globally or locally, thus 
various global frequency filters and adaptive frequency filters are proposed for image 
enhancement. 

2.3.2 Image Segmentation 
Image segmentation is performed in many applications of image processing to either 
separate an image into its constituent regions/objects or to extract objects/features of 
interest. The application of image segmentation in our research aims at easing the 
screeners’ task by reducing the interference of harmless items and making potential 
threats more visible.  
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Image thresholding enjoys a central position in image segmentation due to its simplicity 
and effectiviness. Based on the information exploited, image thresholding techniques can 
be categorized into six groups, histogram based methods, clustering-based methods, 
entropy-based methods, object attribute-based methods, spatial methods, and local 
methods [Sankur and Sezgin, 2001].  
 
Thresholding based on information theory has received considerable interest in recent 
years as many well-known entropy-based thresholding methods have been proposed over 
the past two decades. In our study, we emphasize entropy-based thresholding. Two key 
concepts of information theory, Shannon’s entropy and Kullback-Leibler information 
distance are widely used in defining image entropies. Based on the two concepts, image 
entropies are computed using either the histogram of an image or the co-occurrence 
matrix of an image. Several important image entropies, global entropy [Pun, 1980; Kapur 
and Wong, 1985], local entropy [Pal and Pal, 1989], joint entropy [Pal and Pal, 1989], 
and relative entropy [Chang, 1994] are consecutively proposed. Desired threshold(s) can 
be obtained when the image entropy of a thresholded image is maximized, such as global 
entropy, local entropy and joint entropy, or when the image entropy between the original 
image and its thresholded version is minimized, such as relative entropy, in entropy-
based threshoding techniques. Nowadays, many researchers [Chang et al, 2002; Luo and 
Tian, 2000] put their efforts on exploring fast entropy-based multilevel thresholding since 
most existing entropy-based thresholding methods were proposed in the bi-level case.  
Although these methods can directly be extended to the multilevel case, the 
computational load becomes a major limitation to their application in practical situations. 
 
Taking into account the speed requirements in carry-on luggage inspection at airports, 
different thresholding algorithms, particularly timesaving entropy-based multilevel 
thresholding algorithms, are selected, improved and applied to x-ray luggage scans. We 
will elaborate more on their main technical aspects in Chapter 4. 

2.4 Pseudo Coloring 

Pseudo coloring of gray scale images is a typical process used as a means of 
supplementing the information in various fields such as medicine, inspection, military, 
and several other data visualization applications. This process can significantly improve 
the detectability of weak features, structures, and patterns in an image by providing 
image details that otherwise would not be noticed [Czerwinski et al., 1999].   
 
The main purpose of color-coding is to harness the perceptual capabilities of the human 
visual system, that of airport screeners in this case, to extract more information from the 
image. This will provide a better qualitative overview of complex data sets and will assist 
in identifying regions of interest for more focused quantitative analysis by making 
similarly joined areas in the scene more distinguishable [Dai and Zhou, 1996]. By 
helping in differentiating objects of various densities, color-coding also minimizes the 
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role of human operators in monitoring and detection, reduces the time required to 
perform inspection, and lessens the probability of error due to fatigue. 
Most visualization techniques generally contain a step in which data values are mapped 
to color to make the overall range of data visible. Given the fact that the human eye is 
more sensitive to some parts of the visible spectrum of light than to others and that the 
brain may interpret color patterns differently, the interpretation of results produced by 
these visualization techniques depends crucially on the color mapping (color scale) 
applied. 
 
Traditionally, color scales were designed by having the hue sequence range from violet, 
via indigo, blue, green, yellow and orange, to red, following the color order of the visible 
spectrum. Since the human visual system has different sensitivities to different 
wavelengths, researchers such as Clarke and Leonard [Clarke and Leonard, 1989] 
indicated that spectrum-based color scales were not perceived to possess a color order 
that corresponds to the natural order of the gray scale in the image.  
 
Many research efforts in pseudo coloring have been made over the past several decades. 
Based on the primary aspects researchers have focused on for the design of color scales, 
the various available pseudo-coloring techniques can be grouped as follows: (a) A 
number of researchers attempted to develop natural-order color scale preserving the order 
of gray levels by defining a particular path traversing the RGB color space under certain 
predefined constrains. The heated-object scale is achieved by bringing the RGB 
intensities up in the order of red, green and blue and limiting the path to 060  clockwise 
from the red axis. This selection is based on the claim that natural color scales seem to be 
produced when the intensities of the three primary colors rise monotonically with the 
same order of magnitude of intensities throughout the entire scale [Pizer et al., 1982]. To 
construct a natural color scale, Lehmann et al. [Lehmann et al., 1997] defined a spiral-
like color scale in the RGB model keeping the original brightness progression of gray 
scale images. Specifically speaking, their color scale follows a spiral-like path along the 
diagonal of the RGB model. Lehmann et al. formularized such scale to allow the 
determination of the resulting number of colors. They demonstrated such scale’s 
effectiveness by applying it to medical x-ray images, and they also pointed out that better 
results could be obtained if other color models were used such as HSI as the lightness is 
directly represented by one of the axes in HSI. (b) Several studies [Levkowitz and 
Herman, 1992; Rudaz et al., 1997; Shi et al., 2002] focused on constructing a uniform 
color scale where adjacent colors are equally spaced in terms of Just Noticeable 
Differences (JNDs) and maintain a natural order along this color scale. Levkowitz and 
Herman’s research [Levkowitz and Herman, 1992] provided a scale with the maximum 
uniform resolution. They were hoping that their optimal color scale outperformed the 
gray scale, but evaluation results did not confirm that, at least for their particular 
application. They presented several reasons that might have caused the unexpected results. 
One particular reason was that they used the CIELUV model to adjust the final colors, 
which might not have been appropriate to model the perceived uniformity; another reason 
was that the perceived change in color due to its surroundings was not considered. Shi et 



Chapter 2: Literature Review 
 

 

18

al. [Shi et al., 2002] designed a uniform color scale by visually setting up its color series 
to run from inherently dark colors to inherently light colors, i.e. from black through blue, 
magenta, red, yellow to white, then further adjusting the colors to make them equally 
spaced. Their color scale was evaluated by comparing it to the gray scale. The authors 
indicated that the contrast sensitivity has been improved after applying their uniform 
scale, but they failed to demonstrate any significant outcome. (c) Some researchers 
focused on decreasing the perceptual artifacts of the human visual system such as the 
simultaneous contrast, to convey value and shape information accurately and effectively. 
Ware [Ware, 1988] divided the information available in images into metric or value 
information and form information. He proposed theoretical principles to predict which 
color scale would be effective in conveying both metric and form information.  Through 
a series of psychophysical experiments, Ware demonstrated that simultaneous contrast 
was a major source of error when reading metric information, but only partially verified 
his form hypothesis. (d) Other researchers utilized common mathematical functions such 
as the sine function to construct desired mappings or color scales. Gonzalez and Wood 
[Gonzalez and Woods, 2002] described an approach where three independent 
mathematical transforms were performed on the gray level data, and the three output 
images fed into the R, G and B channels to produce a specific color mapping. The nature 
of these mathematical functions would determine the characteristics of the color scale.  
 
Through interactions with various types of color scales under different circumstances, 
most researchers agree that color is useful to reveal more information in images, and for 
certain applications some types of color scales are superior to others. In that regard, 
Levkowitz and Herman [Levkowitz and Herman, 1992] concluded that several easily 
interchangeable color scales could substantially increase the perception of information in 
images over the use of a single scale. 
 
The only widely known coloring scheme [Heimann, 2004], in use since the introduction 
of color in x-ray luggage inspection, requires two x-ray images, one at low energy and 
the second at high energy, resulting in the need for a more costly system. The atomic 
number of the material is determined using the two images and color is assigned based on 
atomic number values. There was no perceptual or cognitive basis - psychological or 
physiological - on which color combinations were selected.  In an effort to address the 
relatively new problem of visualizing low density threat items in luggage scenes, while 
incorporating considerations of the perceptual and cognitive characteristics of the human 
operator, a set of RGB and HSI-based color transforms, which will be presented in 
Chapter 5, were designed and applied to single energy x-ray luggage scans. 

2.5 Image Fusion 

Image fusion is defined as a process of combining information or features of interest from 
multiple source images to generate a single grayscale or color image that can convey 
more useful information than any of the individual source image used alone.  
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Many common and advanced image fusion approaches share the same fundamental 
mathematical tools. Based on the mathematical tools used in these image fusion methods, 
they can be classified into three groups: (1) Statistical and numerical methods, (2) Multi-
resolution based methods, and (3) Color fusion methods. Grayscale image fusion (Groups 
1 and 2) is commonly performed at the pixel and feature levels.  At the pixel level, the 
images are combined by considering individual pixel values or a small set of pixel values 
of the source images. At the feature level, an image is initially segmented in some way to 
produce a set of regions. Various properties of these regions can be calculated and used to 
determine which features from which images are included in the fused image [Lewis et 
al, 2004].  
 
Here we briefly introduce a number of representative approaches of the statistical and 
numerical fusion methods and the multi-resolution based fusion methods, which were the 
two approaches used in this research. 

2.5.1 Statistical and Numerical Fusion Methods 
A simple approach to image fusion is to compute the weighted average of corresponding 
pixels of the source images. The principal component analysis (PCA) proposed in 
[Rockinger and Fechner, 1998] is a typical pixel-level weighted fusion method. The 
weights for each source image in the PCA method are computed from the eigenvector 
corresponding to the largest eigenvalue of the covariance matrix of the source images 
[Xue et al, 2002]. Variations of the PCA method and other arithmetic signal 
combinations are numerous [Piella, 2003]. In some research, a fusion task was expressed 
as an optimization problem. In Bayesian optimization, the goal is to find the fused image 
which maximizes a posterior probability. In the Markov random field approach, the input 
images are modeled as Markov random fields to define a cost function which describes 
the fusion goal. A global optimization strategy such as simulated annealing is employed 
to minimize this cost function [Piella, 2003]. 

2.5.2 Multi-Resolution Fusion Methods 
Multiresolution decomposition-based fusion methods are motivated by the fact that the 
human visual system is primarily sensitive to local contrast changes. i.e. edges. 
Multiresolution decompositions provide a convenient spatial-scale localization of these 
local changes [Piella, 2003]. Three major steps are involved in multi-resolution fusion 
methods: (1) Decompose the source images into a multi-resolution representation using a 
selected transform, (2) Construct the multi-resolution representation of the fused image 
using a particular fusion rule and the multi-resolution representations of the source 
images, and (3) Compute the inverse multi-resolution transform to the multi-resolution 
representation of the fused image to obtain the fused result. The difference between 
various multi-resolution fusion methods is in the multi-resolution transform and fusion 
rules employed. The pyramid transform, discrete wavelet transform and discrete wavelet 
frame are the most commonly used multi-resolution decomposition methods for multi-
resolution image fusion. Recently, wavelet based fusion methods have received great 
attention as a number of successful wavelet based fusion methods have been reported [Li 
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et al, 1995; Zhang and Blum, 1997; Lewis et al, 2004]. [Li et al, 1995] used an area-based 
maximum selection rule and a consistency verification step. [Zhang and Blum, 1997; 
Lewis et al, 2004] segmented source images into constituent regions and extracted region 
features as selection rules to guide the fusion process. [Lewis et al, 2004] pointed out the 
advantages of feature-level fusion over pixel-level. More intelligent semantic fusion rules 
can be considered based on actual features in the image, rather than on single or a group 
of pixels. However, since the quality of a feature-level fused image significantly depends 
on the image segmentation algorithm used, a powerful segmentation algorithm, usually 
not available for many applications, is required to produce satisfactory fused images. 
Much research on image fusion is currently focused on pixel level; Feature-level fusion 
will require the development of robust image segmentation algorithms. 
 
So far, image fusion techniques have not been widely applied to airport luggage 
inspection although they are extensively harnessed in a variety of domains, such as 
defense systems, medical imaging, robotics and industrial engineering. By analyzing the 
characteristics of dual-energy x-ray luggage scans and referring to existing fusion 
methods, we proposed two new dual-energy image fusion techniques. Detailed 
descriptions of the two dual-energy image fusion methods will be given in Chapter 6.  

2.6 Image Quality Measures 

Approaches to image quality evaluation can be classified as objective and subjective 
measures. For the objective measures parameters are computed to indicate the quality of 
the captured and processed images, while for subjective measures viewers read the 
images directly to determine their quality. The ultimate research goal in image quality 
evaluation is to develop a quantitative measure that can be used as a substitute for the 
subjective measures in a given application domain.  
 
In this thesis, our discussion on the state of the art in image quality measures is limited to 
the image enhancement, visualization and fusion domain. In these areas, image quality 
methods can be grouped into non-reference methods and reference methods, according to 
whether or not one or more reference images are required for the computation of the 
quality measures.  
 
Reference image quality measures (RIQM) require using one or more images as 
references to compute the indexes indicating the quality of the processed images. RIQM 
associates quality with the deviation from the reference image(s) such as the original or 
the ideal image. There are several commonly used RIQM, including root mean square 
error (RMSE), cross correlation, and power signal to noise ratio (PSNR) [Kinape and 
Amorim, 2003]. Many other metrics such as the ones described in [Lee and Wang, 1999; 
Elbadawy et al, 1998] were proposed by extending these common measures. More 
recently, with the rapid growth of image fusion techniques, a variety of reference image 
quality measures emerged [Xydeas and Petrovic, 2000; Piella, 2004]. [Xydeas and 
Petrovic, 2000] proposed a measure that evaluates the relative amount of edge 
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information that is transferred from the input images to the composite image. [Piella, 
2004] utilizes local measurements to estimate how well the salient information contained 
within the sources is represented by the composite image. As in many real-world 
applications, available good reference images can not be guaranteed. Some researchers 
concentrate on non-reference image quality measures (NRIQM). NRIQM are calculated 
by only using information from the images evaluated. Several well-known NRIQM 
include standard deviation, histogram, and entropy [Xue et al, 2002].  Based on image 
power spectrum, [Nill and Bouzas, 1992] developed an NRIQM primarily applied for the 
evaluation of aerial images. They demonstrated a good correlation of their measure with 
the visual quality of aerial images assessed for their informative value (detection, 
recognition and identification of man-made objects). In either case, RIQM or NRIQM, 
the desire is to develop objective image quality measures that correlate well with human 
evaluations. Although many new metrics have been reported, powerful and robust image 
quality measures are still lacking in the imaging community. Reasons for this are (1) no 
enough knowledge on human visual characteristics is available to establish an accurate 
visual model and (2) the difficulty in using objective measures to describe the process of 
the human visual evaluation.  
 
Our objective is to identify efficient metrics from various existing IQMs, by comparing 
their results to airport screeners’ evaluations for original and processed x-ray luggage 
images. These identified metrics will then be used to judge the effectiveness of the image 
enhancement, visualization and fusion algorithms developed. Objective quality measures 
selected for the evaluation of the fused versions of dual-energy x-ray images will be 
discussed in the section on image quality measures in Chapter 6.  

2.7 Summary 

An extensive literature review for each of the topics investigated in this research has been 
presented. First, x-ray imaging principles and x-ray luggage inspection systems most 
commonly used at airports are introduced as the foundation for later analysis of the 
characteristics of x-ray luggage scans. The exploration of the state of art in image 
enhancement, image segmentation, pseudo coloring, image fusion and image quality 
measures, presented in preceding sections, lays a theoretical and practical foundation for 
our research and aids us in establishing our research direction. For clarity, the key 
theories and methods that serve as the basis of our research are highlighted as follows: 
 
Image Segmentation: After investigating a variety of theories of image segmentation and 
available algorithms, taking into account several essential requirements during the 
process of carry-on luggage inspection, fast entropy-based multilevel thresholding 
techniques are first determined as our major exploration direction for this topic. Based on 
[Chang et al., 2002] and [Luo and Tian, 2000], a timesaving multi-thresholding method 
called Valley method is proposed.  
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Pseudo Coloring: Theories, experiments and principles proposed in these literatures, 
[Ware, 1988; Levkowitz and Herman, 1992; Shi et al., 2002; Gonzalez and Woods, 
2002], incorporating a series of guidelines on color use derived based on the human 
perceptual or cognitive characteristics of color, was used as the foundation for the design 
and development of color scales or color transforms. Our contribution was in the design 
and development of a set of RGB and HSI-based color transforms that effectively 
visualize low density threat items in luggage scenes. 
 
Image Fusion: Many successful image fusion algorithms applied in various applications 
demonstrated that multi-resolution transforms in general, and the wavelet transform in 
particular, are powerful tools for image fusion. Therefore, we put more of our efforts in 
the investigation and development of a wavelet-based fusion algorithm suited for dual-
energy x-ray scans. Two dual-energy x-ray image fusion algorithms, one is based on 
local statistical information of the source images and the other is based on wavelet 
transform have been developed. 
 
Image Quality Measures: To judge the effectiveness of the image enhancement, 
visualization and fusion algorithms used and developed in this research using objective 
quality measures, we conducted a comparative study of some chosen IQMs by applying 
them to original and fused dual-energy x-ray luggage images.  
 
The next few chapters will give detailed discussion and descriptions on the theories and 
algorithms applied and developed in this research.  
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3 Gray Level Enhancement 

Gray-level enhancement techniques modify the pixel intensity distribution of an input 
image to generate richer, brighter, clearer, and cleaner versions of the image. This section 
presents a number of common image enhancement methods for the purpose of increasing 
contrast and adjusting brightness to make the various components of the luggage scene 
more distinct in the image.  

3.1 Common Gray-Level Enhancement Techniques 

In this research, some common image enhancement methods are applied to raw single-
energy x-ray images of luggage scenes containing low density threat items.  

3.1.1 Linear Contrast Enhancement 
The first basic procedure applied to x-ray luggage data is linear contrast enhancement 
which provides for the “stretching” of the pixel range within a given image so that the 
pixel values cover a wider dynamic range (or the entire range), providing an enhanced 
image from the original. Linear contrast enhancement can be mathematically formulated 
by equation (3.1) 
 

,),(),( byxfayxg +×=  (3.1)
 
where ),( yxf is the value of the original image at pixel location ),( yx  and ),( yxg the 
resulting enhanced image value at the same location; a and b are coefficients to be 
computed according to the desired range of the output images. Figure 3.1 shows 
examples of a synthetic and an x-ray luggage scene before and after linear regression. 
The synthetic image used for illustration of the techniques implemented consists of a 
simple grouping of very low density geometric shapes of different gray values, most of 
which are barely apparent to the naked eye. 

3.1.2 Gamma Intensity Adjustment 
This is a non-linear enhancement method based on the relationship given in equation 
(3.2), where if 0<γ<1, then the transformation can be seen as a log transformation 
brightening an image; on the other hand, if γ >1, then the transformation can be viewed as 
an exponential transformation darkening an image. I and I’ are the original and enhanced 
images, c a scaling factor. 
 

.' γcII =  (3.2)
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(a) (b) 

 

 

(c) (d) 

Figure 3.1 Linear contrast enhancement. (a) Synthetic original scene, (b) linearly regressed 
image of (a), (c) original x-ray luggage scan containing low density threat items, and (d) linearly 
regressed image of (c). 
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Results of the gamma adjustment using synthetic data and x-ray luggage image data for 
gamma values less than 1 are given in Figures 3.2. 

3.1.3 Logarithmic Intensity Adjustment 
Logarithmic intensity adjustment can take several forms but may typically be expressed 
as: 

).1ln(' +×= IsI  (3.3)
 
I’ and I are the output and input gray scale images and s is a scaling factor. This type of 
logarithmic intensity adjustment can produce an enhanced image as shown in Figure 3.3.  
The left image in each set represents the raw data while the right images show the 
logarithmically enhanced results. 

3.1.4 Standard Measure Technique 
Another form of intensity adjustment studied and applied to x-ray images of luggage was 
the σ-norm or standard measure as expressed in equation (3.4), 
 

,'
s

sII
I

σ
−

=  (3.4)

 
where I is the gray level value of a pixel ),( yx in the original image, sI the mean gray 
value in a neighborhood s of image I around pixel ),( yx  , sσ  the standard deviation of s, 
and I’ is the output value at pixel ),( yx . After the initial values are computed, the resulting 
image is obtained by linearly scaling initial results to be between 0 and 255. This 
accounts for potential negative values obtained from equation (3.4). Figure 3.4 illustrates 
the results from the application of a standard measure technique to an x-ray image of low 
density knives (soft wood, hard wood, glass of different thickness and color, ceramic, and 
plastic). 

3.1.5 Histogram Equalization 
This is a well-known image enhancement technique based on the alteration of the 
image’s histogram characteristics to provide as close to a uniform distribution as 
possible. Enhancement of an x-ray image obtained by this process is shown in Figure 3.5 
(d). A synthetic image in Figure 3.5 (a) and its equalized version in Figure 3.5 (b) are also 
shown. 

3.2 Screener Performance Evaluations 

A fully automatic and interactive computer evaluation was designed. A snapshot of one 
screen of this application is shown in Figure 3.6. A set of 40 x-ray scans containing 
various low density threat items in different configurations and levels of clutter (see  
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              (a) (b) 

      
(c) (d) 

Figure 3.2 Gamma correction. (a) and (c) Synthetic image and original x-ray image, (b) and (d) 
enhanced versions of (a) and (c), respectively. 

 
 

 
(a) (b) 

 
(c) (d) 

Figure 3.3 Logarithmically enhanced synthetic and x-ray scenes. (a) and (c) original scenes, (b) 
and (d) logarithmically enhanced versions. 
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(a) (b) 

Figure 3.4 Standard measure technique. (a) Original scan and (b) its standard measure enhanced 
version.  

 
 

  
(a) (b) 

 

 

(c) (d) 

Figure 3.5 Histogram equalization performed on (a) synthetic data and (c) x-ray data with 
corresponding resulting images shown in (b) and in (d), respectively. 
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(a) (b) 

Figure 3.6 (a) Snapshot of screener evaluation application, (b) binary mask of threat object in 
image (a) used for confirmation of threat detection.  

 
 
Section 4.1 of Chapter 4 for more information) were selected. Common image 
enhancement algorithms as described in Section 3.1 were applied to all original images. 
All images, raw and processed, were shown to screeners in random order selected using a 
random number generator. The screeners were asked not only to affirm seeing a threat 
but to also point and click on the threat to ensure they saw the actual threat. The screeners 
were also asked to rank the images in terms of their visual clarity and ease of 
interpretation, which is an important fact in relieving boredom and keeping the screener’s 
level of concentration relatively high. The evaluation sessions were conducted at McGhee 
Tyson Airport in Knoxville, Tennessee and involved a total of 40, Transportation 
Security Administration (TSA) luggage screeners.  Figure 3.6(a) shows an example of a 
typical image used in this evaluation.  This particular image contains a low density, glass 
knife at the center of the luggage and was enhanced by the logarithm transform. 
 
Five types of information were collected for each image shown: (1) did the screener see 
the threat object in the image? (2) if so, how many (1 or 2) threat items were seen, (3) 
could the screener click on the location of the first threat item correctly? (4) if two threat 
items were indicated, could the screener correctly click on the location of the second 
threat object, (5) a rating (from 1 to 10, with 10 being best) of “how helpful” the screener 
believed the displayed image was in detecting the threat object. The ability of the 
screener to correctly click on the threat item location within the luggage was determined 
through use of a binary mask image.  Figure 3.6(b) shows the mask image for the glass 
knife of Figure 3.6 (a).  When the screener clicks on a specific ),( yx location in the image 



Chapter 3: Gray Level Enhancement 
 

 

29

being evaluated, the program checks the same location in the corresponding mask image. 
If this pixel location has a value of 1, the answer is recorded as being correct. 
 
The information indicated in the previous paragraph was recorded in spreadsheet format 
and compiled as graphical representations for the entire set of data collected.  A number 
of graphics were generated. Figure 3.7 shows the mean visual rating for each 
enhancement procedure and the original image. A significant increase of the screeners’ 
rating values between the original image and the processed data is revealed. An average 
of 170% visual improvement was reported by screeners. All the enhancements were rated 
considerably higher than the original. A more quantifiable variable is shown in Figure 
3.8. This graph illustrates the percent of correctly detected threat objects seen in the 
original and various types of enhancement methods tested. An increase in threat detection 
rate of 40 to 62%, as compared to the detection rate from the raw images, was achieved. 

3.3 Summary 

Some common image enhancement techniques are selected as candidates to enhance 
single-energy x-ray images of carry-on luggage. These techniques are introduced and 
analyzed and their features are underscored. In addition, through visual interpretation, 
and more importantly through testing on TSA airport screeners, it is shown that common 
image enhancement techniques are very valuable tools in increasing the rate of low 
density threat detection in x-ray luggage scans. A significant increase of up to 62%, as 
compared to the original image, in the rate of threat detection was obtained when 
enhanced/decluttered data was used by screeners. Feedback from screeners also rated the 
processed data, on the average, as 170% more helpful in detecting threats than the raw 
data.  
 
Furthermore, we believe that if an appropriate series of methods consisting of several 
gray-level image enhancement approaches is applied to x-ray luggage images, the 
possibility that threat items are highlighted or differentiated in the output image will be 
greater compared with applying individual method only. Pseudo coloring of the 
processed gray scale data is also pursued for better data visualization, increased 
screeners’ alertness, and longer attention retention. Chapter 5 will detail the efforts on 
pseudo coloring of the processed gray scale data 



Chapter 3: Gray Level Enhancement 
 

 

30

 
Figure 3.7 Mean opinion scores (10 being best) by screeners of original image and each of the 
differently-processed images 

 
 

 
Figure 3.8 Percent of screeners who actually detected the right threat, sorted by image type. 
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4 Image Segmentation 

Image segmentation techniques are applied to extract objects of interest from a given 
luggage scene. Through the use of image segmentation techniques, a relatively complex 
luggage scene can be separated into several simple sub-scenes, which help bring up items 
that are invisible or unclear in the original scene for the scene to be easily and accurately 
interpreted by screeners. Because of the reasons presented in Section 2.3.2, the focus has 
been on multilevel image thresholding techniques. In this chapter, we first study and 
apply image hashing algorithms to x-ray luggage images. Entropy-based multilevel 
thresholding is then presented. A selected fast entropy-based multilevel thresholding 
algorithm, iterated conditional modes (ICM), and a developed entropy-based multilevel 
thresholding algorithm, Valley method, are emphasized. 

4.1 Image Hashing Algorithms 

Image hashing is performed via intensity slicing and involves selecting some portion of 
the range of pixel values of an original image and producing image slices containing only 
the selected portion of that pixel range. The objective is to progressively de-clutter an 
image scene and produce in separate image slices objects of different intensity values. 
Intensity slicing can be performed in varying manners. The following introduces several 
methods we chose and applied for the decluttering of x-ray luggage scenes. 

4.1.1 Equal Interval Image Slicing 
With this method of slicing, equal width slices are used generally covering the entire 
dynamic range of the image.  Figure 4.1 (a) depicts a simple graphical representation of 
this process. Each one of the slices produced can also be stretched to reveal items 
previously hidden by the lack of dynamic range. An example of six-slice image hashing 
at equal intervals is given in Figure 4.1 (b).  

4.1.2 Cumulative Image Slicing 
This method of intensity slicing is similar to equal interval slicing in that a number of 
equal intervals are selected first.  Here however, the slices are cumulative. For example, 
if the original image is divided into six sub-images, the first image slice shows all pixels 
in sub-image 1, the second slice all pixels in sub-images 1-2, and so on. An example of 
result obtained from this technique is shown in Figure 4.2. Original image is the same as 
seen at the top of Figure 4.1 (b). 
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(a) 

 
 

 
 

 

 

 
(b) 

Figure 4.1 Equal interval image slicing. (a) Illustrative schematic for the equal interval image 
hashing algorithm, (b) result of a six-slice equal interval image hashing applied to the original 
image shown on top. 
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Figure 4.2 Result of six-slice cumulative image hashing of original images shown in Figure 4.1. 
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4.1.3 H-Domes Image Slicing  
H-domes slicing [Vincent, 1993; Shao and Chen, 2001] is slightly different from the two 
previous hashing techniques and involves the use of the original image as a mask. 
Markers are constructed by subtracting a fixed value h from the mask.  The mask is 
morphologically reconstructed using the marker and the reconstructed image is subtracted 
from the mask, providing h domes of the original image.  Lastly, the h domes are 
structurally opened to remove small grains. Figure 4.3 shows a graphical representation 
of the h-domes concept and Figure 4.4 illustrates the algorithm application to an 8-bit 
original x-ray image (top left) with 50 gray levels for the domes. 

4.2 Entropy-Based Multilevel Thresholding Approaches 

Most existing entropy-based thresholding methods are able to automatically search 
thresholds using a particular entropy criterion. Pun [Pun, 1980], Kapur et al [Kapur, 
1985], Pal and Pal [Pal and Pal, 1989], and Chang et al [Chang et al., 1994] thresholding 
methods were proposed for the bilievel case and all of them can automatically generate a 
single desired threshold.  Pun [Pun, 1980] and Kapur et al [Kapur, 1985] methods 
maximize global entropies to obtain the desired threshold; Pal and Pal [Pal and Pal, 1989] 
approach finds the optimal threshold that maximizes the local or joint entropy. The basic 
idea behind these methods is to maximize the entropies derived from Shannon’s formula 
such that the image after thresholding preserves the maximum information. Chang et al 
[Chang et al., 1994] thresholding method minimizes relative entropies to get the desired 
threshold. That is, the threshold segments an image such that the resulting thresholded 
image best matches the original image. All these methods can be easily extended to the 
multilevel thresholding case; however, computational load increases exponentially due to 
an exhaustive search. To deal with the problem, many researchers have been exploring 
fast multilevel thresholding approaches. Several fast methods, for instance, were 
proposed in [Luo and Tian, 2000; Chang et al., 2002; Lin, 2001]. Extending [Luo and 
Tian, 2000; Chang et al., 2002], we suggest a timesaving multi-thresholding method 
called Valley method that will be described in Section 4.2.2.  

4.2.1 The ICM Method 
The ICM method proposed by [Luo and Tian, 2000], is one of the existing timesaving 
entropy-based multi-thresholding methods we selected and extended for the segmentation 
of single-energy x-ray luggage scans.   

4.2.1.1 Maximum Entropy Criterion 
The ICM method uses the global entropy proposed by Kapur et al [Kapur, 1985] as a 
criterion to find thresholds. The Kapur’s global entropy in the multilevel case is given in 
(4.1). 
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Figure 4.3 Graphical representation of the h-domes methodology. 

 

 
 

 
(a) 

 
(b) 

Figure 4.4 Result (b) of the H-domes algorithm applied to the negative of an 8-bit original x-ray 
image (a) with 50 gray levels for the domes. 

 

 
 
 
 
 
 
 
 

mask 

marker 

Reconstructed 

H-dome 



Chapter 4: Image Segmentation 
 

 

36

)log(...)log()log(),...,,(
1

110
21

2

1

1

∑∑∑
−

+=+==

+++=
L

si
i

s

si
i

s

i
ik

k

pppsssH  

∑

∑

∑

∑
−

+=

−

+=

=

= −−− 1

1

1

1

0

0

log
...

log

1

1

L

si
i

i

L

si
i

s

i
i

i

s

i
i

k

k

p

pp

p

pp
, 

(4.1)

 
where ksss ,...,, 21  are thresholds to be found to satisfy  
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ksssk sssHsss =  (4.2)

 

4.2.1.2 ICM Algorithm 
The ICM is a statistical iterative method developed based on Bayes’ theorem and Markov 
random field [Besag, 1986]. It converges rapidly although it generally does not converge 
to the global optimal state [Luo and Tian, 2000]. The initial state of ICM method is of 
critical importance to the final state converged to. If the initial state is close to the global 
optimal state, it is very likely that ICM will converge to the global optimal state.  
 
Let n be the number of classes needed; mini and maxi be the parameters of the ith class. 
The following conditions are satisfied, grayn max_max,0min1 == and ii minmax 1 =−  
for any i between 2 and n. The algorithm proceeds as follows: 
 

1. Initialize the value of mini, inter1i, inter2i and maxi by using the initialization 
algorithm stated below. 

2. For each class i from 1 to n-1, change the value of maxi between mini and max i+1 
to find the maxi maximizing (4.1). 

3. Repeat step 2 until there are no changes (experiments showed the algorithm 
converged to the stable state after 3 to 5 iterations, irrespective of the number of 
classes and the number of gray levels). 

4. Set threshold values to be max1,……, maxn-1. 

4.2.1.3 Initialization Algorithm 
Since the final state of a system depends strongly on the initial state, the determination of 
the initial state is an important step for the ICM method. Luo et al [Luo and Tian, 2000] 
proposed an initialization algorithm to get good initial values.  
 

1. Find the gray levels that correspond to local minima and local maxima (valleys 
and peaks) from the histogram of the image in a single scan and store them into 
two arrays, loc_min and loc_max. The entries in loc_min and loc_max 
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satisfy ]min[_]max[_]1min[_ ilocilociloc <<− . Gray levels between two 
adjacent local minima are called a threshold component. 

 
2. Merge some of the adjacent threshold components that have the form of “N” and 

“И”, as shown in Figure 4.5, and meet the following conditions:  
 

• Conditions to merge for the form of “N”:  
hist(loc_max(i))-hist(loc_min(i)) < hist(loc_max(i+1))-hist(loc_max(i))  
and   loc_max(i+1)-loc_max(i)<max_inter  max_inter=max_hist/(2*classnum)  
• Similar conditions can be set for the form “И”.  
• Repeat the process until no merge can be made. 

 
3. If the number of threshold components is still greater than the number of classes 

needed, proceed to further merges by finding the threshold component with the 
smallest probability and merge it with the adjacent threshold component that has 
smaller probability. 

4.2.2 The Valley Method 
A timesaving multi-thresholding method, Valley method is proposed as an extension to 
[Luo and Tian, 2000] and [Chang et al., 2002] algorithms. Assume N is the number of 
classes in a segmented image. The theoretical base of this method is that the maximum 
entropy of a segmented image is obtained when N classes have the same probabilities of 

N
1  [Chang et al., 2002]. 

4.2.2.1 Optimal Thresholds 
The entropy of a segmented image is the sum of the entropies of the N classes. The 
general form to calculate the entropy of the segmented image is given in (4.3).  
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Figure 4.5 Form “N” on the left and form “И” on the right. 
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where NnPn ,...,2,1* =  is the sum of probabilities of gray levels falling into the nth class 

and 1
1

* =∑
=

N

n
nP . According to the derivation of [Chang et al., 2002], the maximum value 

of (4.3) is obtained when Nn
N

Pn ,...,2,11* == . Thus, the maximum entropy of a 

segmented image is obtained when N classes have the same probability
N
1 ; that is, the 

optimal thresholds are found when they result in the N classes having the same 

probabilities of 
N
1 . 

4.2.2.2 Valley Algorithm 
Based on the preceding theory, the Valley method is developed as follows: 
 
1. Find the gray levels corresponding to the local minima and local maxima (valleys 

and peaks) of the histogram of an image in a single scan and store local minima and 
local maxima into two separate arrays, loc_min and loc_max. The entries in loc_min 
and loc_max satisfy ]min[_]max[_]1min[_ ilocilociloc <<−  (This step is the 
same as the first step in the initialization of the ICM method). 

 
2. Calculate the cumulative probability function, FT, by using the histogram of the 

image. Select the gray-levels loc_min(i) and loc_min(i+1), 

for )1min)_((1 −≤≤ loclengthi , that meet  FT(loc_min(i))<=
N

n 1*  and   

FT(loc_min(i+1) >=
N

n 1*  for the nth class (1<=n<=N-1) as threshold candidates. 

Thus there are two threshold candidates to determine each class n, 1<=n<=N-1. 
 
3. Combine the candidate thresholds and calculate the entropy for each combination 

using (4.3).  
 
4. Choose the combination that produces the maximum entropy as the desired threshold 

set. 

4.3 Experimental Results 

The ICM method [Luo and Tian, 2000] and the Valley method were applied to segment 
single-energy x-ray carry-on luggage scans. Three representative single-energy x-ray 
luggage scans (8-bit images), containing low-density and high-density threats, were 
segmented with the two methods. Figures 4.6 (a), (b) and (c) show the three images. 
Their corresponding histograms are shown in Figures 4.7 (a), (c) and (e).  
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(a) 

 
(b) 

 
(c) 

Figure 4.6 Three representative x-ray luggage scans used for segmentation. (a) Scan containing a 
low-density threat, a narrow soft wood knife, (b) scan containing high-density threats, gun and 
grenade, and (c) scan containing various low-density knives. 
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gray level  gray level 

(a) (b) 

 
gray level  gray level 

(c) (d) 

gray level 
 

gray level 
(e) (f) 

Figure 4.7 Histograms of x-ray scans. (a), (c) and (e) corresponding histograms of the three x-ray 
scans shown in Figures 4.9 (a), (b) and (c), (b) (d) and (f) the counterparts of (a) (c) and (e) 
without the components of gray level 0.  
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Since the background (gray level 0) accounts for a large percentage of 60-70% in the 
three x-ray luggage scans, to show the shape of the histogram clearly, the component of 
gray level 0 is removed. The histograms of Figures 4.7 (b), (d) and (f) reflect that 
operation. Based on our experiments, the number of classes was set to 5, 6 or 7 to 
segment single-energy x-ray luggage scans. 

4.3.1 The ICM Method 
Tables 4.1, 4.2 and 4.3 show the initial and final states obtained to segment the images 
shown in Figures 4.6 (a), (b) and (c) for the case of 5 classes, respectively. Corresponding 
resulting slices are shown in Figures 4.8, 4.9 and 4.10. 

4.3.2 The Valley Method 
A simulated image containing 5-graylevel objects, as shown in Figure 4.11, was 
segmented by using the Valley method and the ICM method. Resulting slices of the 
Valley method and the ICM method are shown in Figures 4.12 and 4.13, respectively. 
The results clearly demonstrate that the Valley method is more successful in segmenting 
the image. Specifically, the Valley method differentiated all five objects, including the 
background of the image.  
 
The Valley method was also examined by segmenting the three representative images 
given in Figure 4.6. Classes were set to 5 for this experiment. Because the background 
(gray level 0) takes a large percentage of 60-70% in each of the images, the probability of 

gray level 0 was subtracted when NnPn ,...,2,1* =  were computed. That is, 

5,...,2,15/)1( 0
* =−= npPn  for the case of 5 classes, where 0p  is the probability of gray 

level 0 in an input image. The thresholds found for the three representative images shown 
in Figures 4.6 (a), (b) and (c) for the case of 5 classes are given in Table 4.4. The 
corresponding resulting slices are shown in Figures 4.14, 4.15 and 4.16.  
 
The Valley method provides faster computation speed compared to the ICM method, 
giving acceptable results. Results shown in Figures 4.15 and 4.16 demonstrate that the 
Valley method efficiently differentiates the different contents in the x-ray scans. From the 
result shown in Figure 4.14, however, it seems that the shape of the histogram of an input 
image affects the result of the Valley method more than the result of ICM. Therefore, in 
order to obtain satisfactory results for different input images using the valley method, 
there are two possible solutions (1) preprocessing the input image before the use of the 
Valley method; (2) improving Step 2 of the Valley method (see Section 4.2.2.2). That is, 
improving the searching method of threshold candidates from Valleys.  
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Table 4.1 Initial and final states obtained for the image shown in Figure 4.6 (a) for the case of 5 
classes. 

Thresholds 1 2 3 4 

Initial State 1 61 107 147 

Final State 48 98 146 203  
 
 
 

  
Original Image 

 
(1) 

  
(2) 

 
(3) 

 
(4) 

 
(5) 

Figure 4.8 Resulting slices generated by using the resulting thresholds shown in Table 4.1 for 
the case of 5 classes. 
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Table 4.2 Initial and final states obtained for the image shown in Figure 4.6 (b) for the case of 5 
classes. 

Thresholds 1 2 3 4 

Initial State 1 30 83 114 

Final State 26 64 113 177  
 
 
 

 
Original Image 

 
(1) 

  
 (2) 

 
(3) 

  
(4) 

  
(5) 

Figure 4.9 Resulting slices per class generated using the resulting thresholds shown in Table 4.2 
for the case of 5 classes. 
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Table 4.3 Initial and final states obtained for the image shown in Figure 4.6 (c) for the case of 5 
classes. 

Thresholds 1 2 3 4 

Initial State 1 64 91 180 

Final State 1 75 89 206  
 
 
 

 
Original Image 

 
(2) 

 
(4) 

 
(5) 

Figure 4.10 Resulting slices generated by using the final state of the thresholds shown in Table 
4.3 for the case of 5 classes. 

 
 
 
Table 4.4 Thresholds obtained by using the Valley method to segment (a) the image shown in 
Figure 4.6 (a), (b) the image shown in Figure 4.6 (b), (c) the image shown in Figure 4.6 (c), for 
the case of 5 classes. 

 Thresholds 
(a) 8 21 35 100 
(b) 30 46 114 198 
(c) 43 104 154 205 
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Figure 4.11 Simulated image with 5 gray level objects, 0,128, 166, 192 and 255. 

 
 

   
(1) (2) (3) 

 
(4) 

 
(5) 

Figure 4.12 Resulting slices per class produced by using the valley method. 

 
 

   
(1) (3) (5) 

Figure 4.13 Resulting slices produced by using the ICM method. 
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(2) 
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(5) 

Figure 4.14 Resulting slices per class generated by using the thresholds shown in Table 4.4(a) for 
the case of 5 classes. 
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(1) 

    
(2) 

 
(3) 

 
(4) 

 
(5) 

Figure 4.15 Resulting slices per class generated by using the thresholds shown in Table 4.4(b) for 
the case of 5 classes. 
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(1) 

   
(2) 

 
(3) 

 
(4) 

 
(5) 

Figure 4.16 Resulting slices per class generated by using the thresholds shown in Table 4.4(c) for 
the case of 5 classes. 
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4.3.3 Integration of the Resulting Slices 
Image slices corresponding to the classes, generated from the application of entropy-
based multilevel thresholding methods such as ICM or Valley method, are combined in a 
single image, which is then color coded for better visualization. 
 
Integration Method: 
The HSI color model is used to compose the resulting slices into a single color image as 
following: 
 
1 Assign one color to each class. For any two adjacent classes set complementary 

colors.  
2 Apply contrast stretching to each of the resulting slices such that the content of each 

class is of the same color (hue) but encompass a wider range of intensities. 
 
Color images, as shown in Figures 4.17, 4.18 and 4.19, are produced by using this 
integration method. Figures 4.17 (a) and (b) show the original image containing a low-
density threat, a narrow soft wood knife, and its color counterpart composed using the 5 
slices shown in Figure 4.8, respectively. Figures 4.18 (a) and (b) show the original image 
and its color counterpart composed using the 5 slices shown in Figure 4.9, respectively. 
The original image containing various low-density knives and its two color counterparts 
composed by using the 5 slices shown in Figure 4.10 and 7 slices are illustrated in 
Figures 4.19 (a), (b) and (c).  

4.4 Summary 

In this chapter, we showed through visual interpretation of segmented results, that 
common and newly developed image decluttering techniques are very valuable tools in 
revealing threats in single-energy x-ray luggage scans. 
 
 

  
(a) 

 
(b) 

Figure 4.17 (a) Original image containing a low-density threat, a narrow soft wood knife, (b) 
color counterpart composed by using the 5 slices shown in Figure 4.8 and applying a selected 
color map. 
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(a) 

 
(b) 

Figure 4.18 (a) Original image containing high-density threats, gun and grenade, (b) color 
counterpart composed by using the 5 slices shown in Figure 4.9 and applying a selected color 
map. 
 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4.19 (a) Original image containing various low-density knives, (b) color counterpart 
composed by using the 5 slices shown in Figure 4.10, (c) color counterpart composed by using 7 
slices and applying a selected color map. 
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Several image hashing methods applied to single-energy x-ray luggage scans are first 
introduced. Entropy-based multilevel thresholding techniques are then presented. An 
existing time-saving multilevel thresholding method, ICM method, was chosen and 
applied to x-ray carry-on luggage scans. As the results show in the previous section, this 
method gives a satisfactory solution to our x-ray images in short time. An extension to 
the methods of [Luo and Tian, 2000] and [Chang et al., 2002], an entropy-based 
multilevel thresholding method, Valley method was proposed and tested by applying it to 
simulated images and real-world x-ray carry-on luggage images. The solution obtained 
by this method depends on the histogram shape of the input image. For images whose 
distribution of intensity values is not concentrated in a narrow graylevel range the 
proposed method is effective.  
 
From the results obtained, it is clear that image segmentation is a useful preprocessing 
means to reveal various objects in carry-on luggage images. However, because of the 
uncertainty and diversity of contents in carry-on luggage, entropy-based multilevel 
thresholding methods, which provide solution independent of the shape of the image 
histogram, are desirable. Moreover, the automatic selection of the optimum number of 
classes in the image segmentation algorithms can be a potential extension to this effort. 
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5 Pseudo Coloring 

The use of color in this study is motivated by the following reasons: (1) Color could 
improve the number of objects being distinguished as human beings can distinguish 
thousands of colors compared to a few dozen gray levels; and (2) Color adds vivacity to 
images, which in turn decreases boredom and improves the attention span of screeners.  
 
This chapter describes a series of linear and non-linear pseudo-coloring maps designed 
and applied to single-energy x-ray luggage scans, in an effort to assist airport screeners in 
identifying and detecting threat items, particularly hard to see low-density weapons in 
luggage. Considerations of the psychological and physiological processing involved in 
the human perception of color as well as the effects of using various color models, such 
as the RGB and HSI models, are explored. Original gray scale data, various enhanced 
images, and segmented scenes are used as inputs to the various color mapping schemes 
designed in this research.  

5.1 Aspects of Human Visual Perception  

Color is a sensation created in the brain, caused when the light radiation of a certain 
wavelength reaches our eyes. It is a psychophysical phenomenon relating to both 
physiological (how the eyes detect light and color) and psychological (how the mind 
processes the sensation of color) processing. A brief background on each of these two 
aspects is given in Subsections 5.1.1 and 5.1.2. Recommendations for optimum color 
assignment are drawn in Subsection 5.1.3.  

5.1.1 Physiological Processing of Color  
The eye lens, retina, and color-processing unit along the optic nerve play the main role in 
the physiological processing of light. The function of the lens is to focus the incoming 
light on the retina. Different wavelength lights require different focal lengths. Therefore, 
for pure hues the lens must change its shape so that the light is focused correctly. If short 
wavelengths and long wavelengths, pure blue and pure red for instance, are intermixed 
the lens has to constantly change shape and the eye will become tired. A related effect 
called chromostereopsis is the appearance of pure colors located at the same distance 
from the eye to be at different distances, e.g. reds appear closer and blues more distant. 
Sometimes, pure blue focuses in front of the retina and appears unfocused. The lens also 
absorbs light about twice as much in the blue region as in the red region, meaning that 
people are more sensitive to longer wavelengths (yellows and oranges) than to shorter 
wavelengths (cyans and blues). The retina contains light sensitive cells (rods and cones), 
which absorb photons and transmit chemical signals to the brain. Cones are responsible 
for color vision and are divided into red, green and blue cones that are sensitive to long, 
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middle, and short wavelengths, respectively. Colors can be seen as variable combinations 
of red, green, and blue as all three types of cones are partially activated when light 
reaches the retina. The percentages of the number of the three types of cones present in 
the retina are as follows: blue at 4%, green at 32%, and red at 64%. All cones are 
differentially distributed in the retina with a dense cone concentration in the center of the 
retina. The distribution of the three types of cones themselves is also asymmetrical. The 
center of the retina is primarily made of green cones, surrounded by red cones, with the 
blue cones being mainly on the periphery. A minimum intensity level, function of the 
wavelength, is required for the photoreceptors to respond to a given color. The highest 
sensitivity, being in the center of the spectrum, requires blues and reds to have a higher 
intensity than greens or yellows to be equally perceived [Murch, 1984]. 
 
The optic nerve connects the retina to the brain and color-processing unit along the optic 
nerve transforms cone signals into the composite signals red + green, red - green, and 
blue - yellow ( 2/)( GRyellow += ) [Ouerhani et al., 2004], then transmits them to the 
brain using three corresponding channels called opponent processing channels.  

5.1.2 Psychological Processing of Color 
Psychological processing of color is a vast field of study and not as well understood as 
the physiological processing. In this field, simultaneous contrast, color-constancy and the 
effects of various backgrounds on color perception are the main aspects usually 
examined. Simultaneous contrast is the effect caused when the color of a patch is shifted 
perceptually by the color of adjacent patches [Ware, 1988]. For example, colors tend to 
look darker and corresponding objects look smaller against white, and lighter and larger 
against black as shown in Figure 5.1. Color surroundings cause chromatic induction (a 
color region appears tinged with the complementary hue of the surround) which can 
make the same colors look different or different colors look the same as shown in Figure 
5.2. Many other factors such as field size and viewing conditions also affect the 
appearance of the color perceived.  
 
 

 

Figure 5.1 Simultaneous contrast: colors look darker and corresponding objects smaller against a 
white background and lighter and larger against a dark background [MacDonald, 1999]. 
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(a) (b) 

Figure 5.2 Simultaneous contrast can make (a) the same colors look different, or (b) different 
colors look the same [Taylor and Murch, 1986].  

 
 

5.1.3 General Recommendations for Optimum Color Assignment  
The effective use of color can be a very powerful tool, while the ineffective use of color 
can degrade an application's performance and lessen the user’s satisfaction [Taylor and 
Murch, 1986; Wright, 1997]. In order to create an application where colors are used 
optimally, the following questions have to be answered [Healey, 1996]: 
 
• How effectively can colors be selected to provide good differentiation between 

different objects?  
• How many colors can be displayed at the same time?  
• Which color space should be used?  
• What factors determine target element color relative to non-target elements?  
 
Color is usually used in a qualitative rather than a quantitative fashion, that is, to show 
that one item is different from another and not simply to display a relationship of degree. 
In general, for a set of colors to work well in a design, some unifying attribute should tie 
them together, following the Gestalt law of closure (completeness) [Moore and Fitz, 
1993]. This could be a particular hue or range of saturations or lightness that appear 
throughout the composition to designate a given aspect or function, relieved by small 
areas of a contrasting accent color. Key issues to consider in finalizing a color scheme are 
clarity, comprehensibility, and how well the user will be able to pick out the desired 
information and understand its significance. Contributory factors include: (1) 
Discernibility — how easy it is to distinguish an item from its background; (2) 
Conspicuity — how obvious the item is relative to its neighbors; and (3) Salience — how 
well the item “pops out” from the display as a whole. 

5.1.3.1 Physiologically-Based Guidelines 
Based on the physiology of the human visual system as described in Subsection 5.1.1, the 
following guidelines for the use of color were drawn using Murch’s principles [Murch, 
1984]: 
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• The simultaneous display of extreme spectrum colors should be avoided. This causes 
the lens to rapidly change shape and thus tires the eyes. De-saturate the colors or use 
colors that are close together in the spectrum. 

• Pure blue should be avoided for fine details such as text, thin lines, and small shapes. 
Since there are no blue cones in the center of the retina, fine details are difficult to 
see. 

• Red and green should be avoided in the periphery of large displays.  
• Adjacent colors that differ only in the amount of blue should be avoided. Since blue 

does not contribute to brightness, this creates fuzzy edges.  
• Adjacent areas of strong blue and strong red should be avoided to prevent unwanted 

depth effects [MacDonald, 1999]. 
• Opponent colors go well together.  
• Older operators need higher brightness levels to distinguish colors. 
• The use of hue alone to encode information should be avoided in applications where 

serious consequences might ensue if a color-deficient user were to make an incorrect 
selection. 

5.1.3.2 Psychologically-Based Guidelines 
The following recommendations are based on the considerations given in Subsection 
5.1.2: 
• The number of colors used should be reasonable. If the user is overwhelmed or 

confused by too many colors vying for his/her attention, he/she is unlikely to develop 
an effective mental model [Wright, 1997]. 

• Consistency is vital when meanings are assigned to colors. The intuitive ordering of 
colors helps establish intuitive consistency in a design. The spectral and perceptual 
order of red, green, yellow, and blue can guide the order of the concepts attached to 
color. For instance, red is first in the spectral order and focuses in the foreground, 
green and yellow focus in the middle, while blue focuses in the background. 

• If the color of a kind of items is known ahead of time or if a color only applies to a 
particular type of items, the search time for finding an item decreases.  

• Where accurate visual judgment of a color is necessary, the surrounding should be a 
neutral mid-gray to avoid unwanted perceptual color changes.  

• Color can be described more meaningfully in terms of the perceptual dimensions of 
lightness, hue, and colorfulness than in terms of the measured dimensions.  

5.2 Theoretical Aspects of Pseudo-Coloring  

The two main aspects that influence the appearance of pseudo colored objects are the 
color space used and the color transform applied within that space. The following is an 
analysis on how each of these can affect the perceived colored scene. 

5.2.1 Color Spaces 
A color space (or model) is a specification of a coordinate system and a subspace within 
that system where each color is represented by a single point [Gonzalez and Woods, 
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2002]. Color spaces provide a rational method to specify, order, manipulate, and 
effectively display an object’s colors. Color spaces may be used to define colors, 
discriminate between colors, judge similarity between colors, or identify color categories 
for a number of applications [Plataniotis et al., 2000]. The process of selecting the proper 
color space involves knowing how the color signals are generated and what information 
is needed from these signals.  
 
RGB and HSI are two widely used color spaces referred to in the design of the color 
transforms introduced and discussed in this chapter.  

5.2.1.1 The RGB Color Model 
The RGB color model is normally used on monitors, namely for display. In this model 
each color is expressed using its primary spectral components of red, green, and blue. 
This color model is device-dependent and easy to implement, but is non intuitive for 
interpretation. 

5.2.1.2 The HSI Color Model  
The HSI model is defined based on how humans describe color. It is a user-oriented 
model that is suited for human interpretation. Each color in the HSI model is represented 
by a hue, saturation, and intensity component.  
 
Hue is a color attribute that describes true color. It refers to the degree of red, green, blue, 
yellow, purple, etc., in a given color. Another way to think of hue is as a description of a 
particular wavelength in the spectrum. A coding scheme for hue might follow the 
spectrum, starting with red at 0, green at 0.33, blue at 0.66, and wrapping around back to 
red at 1.0.  Saturation is the purity of the color, or the measure of the degree to which a 
pure color is diluted by a white light [Thompson, 1995]. Saturated colors have 
comparatively higher degrees of hue whereas de-saturated colors are comparatively 
closer to gray.  One important property of saturation is that if the saturation of all the 
pixel values is set to 0, all the colors are washed out of the image and the only component 
of the HSI specification that is visible is the value component. In other words, you can 
change an image to display only gray values by setting the saturation for all pixels to 0, 
and you can tint all the pixels by setting saturation to some larger value. Intensity of the 
color represents how little black has been added to the color. A low value means the color 
is approaching black; a high value means little black has been added and the hue shines 
through clearly. The intensity component is decoupled from the color information in the 
image and the hue and saturation components are intimately related to how humans 
perceive color. These features make the HSI model suitable for developing image 
processing algorithms for human interpretation.  

5.2.2 Color Transforms 
The main objective of pseudo coloring is to obtain an ergonomic color representation of 
the data that can be easily recognized by a human with normal sight. A variety of  
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 Figure 5.3 General approach for color mapping of gray level images. 

 
mapping schemes can be used to achieve this task. Pseudo colored images are all 
obtained using the basic technical approach shown in Figure 5.3. Pseudo-color mappings 
are non-unique and extensively interactive trials have to be performed to determine an 
optimum mapping for displaying a given set of data.  
 
One of the basic techniques for pseudo coloring is performed by directly applying a 
single color hue to replace a particular gray scale. For example, the color range from 

2550−C  can be used to code the gray scale range 2550−I . Another approach [Dai and Zhou, 
1996] is based on the desired tri-stimulus value of the output color image, where analysis 
of the tri-stimulus value of the required output image is performed and a function []P is 
defined, which maps the original gray scale data ),( yxI to the primary color 
values ),(),,(),,( yxBandyxGyxR . This process can be represented as follows: 
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where the transforms [][],[], BGR PPP  could be either linear or non-linear functions, based 
on the desired output image. The complete color-coding process can be described as 
follows: 
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),( yxC is the final pseudo colored image. By varying the functions []P , different color 

coded images can be obtained. 
 
To accurately represent gray values using color, the following properties are desirable in 
a color scale [Levkowitz and Herman, 1992; Levkowitz, 1988]. Given a sequence of 
numerical gray values }...{ 1 Nvv ≤≤ represented by the colors }...{ 1 Ncc ≤≤ , respectively: 
(1) Color should perceivably preserve the order of gray values, i. e., the relationship 
among the colors should be 1c  perceived as preceding ... ic perceived as preceding Nc ; (2) 
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Color should perceivably reflect the distances between the gray values, that is, for 
any nmji vvvvifNnmji −=−≤≤ ,,,,1 , we should also have ),(),( nmji ccpdccpd = , 

where ),( ji ccpd is the perceived distance between ic and jc ; (3) Boundaries not existing in 
gray-level data should not be perceived after using color.  
 
The combination of the concepts of increasing the number of JNDs [Levkowitz and 
Herman, 1992] and conveying both value and form information effectively, by reducing 
the effects of simultaneous contrast, would result in a color scale sequence that increases 
monotonically in luminance, while cycling through a range of hues [Ware, 1988]. 
Combining these two major ideas with the general recommendations for optimum color 
assignment given in Subsection 5.1.3, the following rules [Ware, 1988] are used to 
produce a number of optimal transforms: 
 
• For transforms designed based on the RGB color model, the R, G and B versus gray 

level transform functions should not decrease simultaneously and the 
intensity, 3/)( BGRI ++= , should increase monotonically. 
For 11 −≤≤ Nn and 1+≤ nn rr , 1+≤ nn gg , and 1+≤ nn bb , we should have 

111 +++ ++≤++ nnnnnn bgrbgr . Colors should be triple mixtures (RGB), and not pair-
wise mixtures, to avoid exaggerated saturation. 

 
• For transforms designed based on the HSI color model, good properties for revealing 

both shape and value are that the intensity I versus gray level should increase 
monotonically; the hue H versus gray level should cycle through a particular range of 
hues such that for ,1 Nm ≤≤  360...360... 11 +≤+≤≤ + Nmm hhhh p  
or 360...360... 11 −≥−≥≥ + Nmm hhhh f , and the saturation S versus gray level 
should be monotonic, i.e., NN sssss ≤≤≤≤≤ −1321 ...  or NN ssss ≥≥≤≥ −132 ...  
[Levkowitz and Herman, 1992]. The hues should be chosen in such a way that the 
color scale runs from inherently dark hues to inherently light hues.  

 
Based on the characteristics of major color spaces and recommendations for color 
transforms, a number of color maps were designed, implemented, and applied to x-ray 
luggage scans. The following sections describe the implementation, results, and 
comparative performance of these color mapping approaches. Two classes of color maps 
were identified one in the RGB space and the other in the HSI space. Within each class, 
user-specified, mathematically formulated, or constraint-driven transforms are 
implemented and tested. 
 
The color transforms were applied to x-ray luggage scans containing various potential 
threat objects made of low-density materials. Three x-ray luggage scans with three 
different knives are shown in Figures 5.4 (a), (b) and (c) in order of increasing density. 
The three knives are made of soft wood, light-purple glass, and aluminum.  
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(a) 

 
(b) 

 
(c) 

Figure 5.4 Original x-ray luggage scans containing knives made of (a) soft wood, (b) light-purple 
glass, and (c) aluminum. 
 

5.3 RGB-Based Color Transforms 

RGB-based color transforms were further classified into two subcategories, user-selected 
color mappings and mathematically formulated approaches. Linear and non-linear maps 
were implemented and evaluated. 

5.3.1 Perceptually-Based Color Mapping 
In these mappings, the color series are usually set up visually according to the color 
preferences of the user and the transforms defined accordingly. 

5.3.1.1 Linear Mapping 
For initial trials, a few color maps were adopted from the Matlab image processing 
toolbox. Those maps were also used in our final performance evaluation for comparison 
purposes with the transforms that we designed. The “Hot” and “Jet” color scales were 
first applied to x-ray luggage scans. As Figures 5.5 (a) and (b) show, the “Hot” map 
changes smoothly from black, through shades of red, orange and yellow, to white, and 
“Jet” map ranges from blue to red passing through cyan, yellow and orange. The two 
color scales can be produced using Equations (5.3) and (5.4), respectively. 
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(a) 

  
(b) 

Figure 5.5 (a) The “Hot” color scale and (b) the “Jet” color scale. 
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where I represents the gray value, m is the number of colors of the “Hot” scale and 

)
8
3(1 mfn =  in which )(1 xf rounds x  to the nearest integer towards zero. In Equation  

 (5.4) I represents the gray value, )
4

(2
mfn = and )1)4,(mod()

2
(2 ==−=∆ mnf  in 

which m  is the number of colors of the “Jet” scale and )(2 xf rounds x  to the nearest 
integer larger than x . 
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The Red and Blue component values can be obtained by shifting the Green component G  

to the right and left by
)max( grayvalue

n , respectively. Figures 5.6 (a) and (b) illustrate 

the R, G, and B transforms of the “Hot” and “Jet” color scales.   
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(a) 

 
    (b) 

Figure 5.6 (a) R, G and B values versus gray level for the “Hot” scale, (b) R, G and B values 
versus gray level for the “Jet” scale. 

 
 
Colored versions, shown in Figures 5.8 and 5.9, of Figure 5.4 were generated by applying 
the “Hot” and “Jet” scales to the enhanced images in Figure 5.7 produced by using 
original + negative + h-domes + contrast stretching [Abidi et al., 2004]. 

5.3.1.2 Non-linear Mapping 
This scale, referred to as the “Warm” color scale, varies from dark blue, through magenta 
and orange, to light yellow. The distances between adjacent colors on this scale are 
perceivably equal. A 256-step scale as seen in Figure 5.11 (b) was developed and applied 
to x-ray luggage scans as an extended version to the 16-step color scale shown in Figure 
5.10 [Shi et al., 2002]. The colors on the 16-step scale were utilized as base colors and 
intermediate colors computed by linearly interpolating the red, green, and blue intensity 
values from each base color to the next. Let iii BGR ,, and 111 ,, +++ iii BGR  represent any 
two adjacent base colors; iI  and 1+iI  denote their corresponding gray levels. Thus, given 
a gray level I  ( 1+<< ii III for 151 ≤≤ i ), the associated intermediate color 

),,( BGRC = between base colors iC  and 1+iC can be found by applying Equation (5.5). 
Figure 5.11 (a) illustrates the R, G and B values versus gray levels obtained by linearly 
fitting 256 colors to the 16-step data. Figure 5.12 was obtained by applying the designed 
color scale “Warm” to the same preprocessed images of Figure 5.7. 
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(a) 

 
(b) 

 
(c) 

Figure 5.7 Enhanced version of Figure 5.4 produced by using original + negative + h-
dome + contrast stretching. 
 
 

  
(a) (b) (c)  

Figure 5.8 Colored version of Figure 5.7 generated by applying color scale “Hot”. 
 
 

  
(a) (b) (c)  

Figure 5.9 Colored version of Figure 5.7 generated by applying color scale “Jet”. 
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Figure 5.10  The 16-step “Warm” color scale. 

 
 
 

 
(a) (b) 

Figure 5.11 (a) R, G and B values versus gray level obtained by linearly fitting 256 steps to 
the16-step scale, (b) the 256-step “Warm” color scale. 
 
 
 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 
Figure 5.12 Colored version of Figure 5.7 generated by applying the designed color scale 
“Warm” shown in Figure 5.11(b). 
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5.3.2 Mathematical Formulations 
The mapping between colors and gray values in this case is obtained through the use of a 
mathematically formulated transform. The nature of the mathematical formula determines 
the color content of the output image. In this section, I denotes the value of a pixel before 
transform; BandGR ,, denote its color output in each of the channels. Various types of 
transforms can be used for color mapping. The following are some of the transforms we 
designed and applied to x-ray luggage data. 

5.3.2.1 Algebraic Transforms  
In this mode, color is assigned through a mathematical algebraic formula applied to 
individual or group pixel values to create various combinations of these original pixels 
and obtain their resulting color counterparts. An example formula for such a function is 
given by Equation (5.6), where the number of colors is a parameter (L) that can be 
supplied by the user and is intrinsically incorporated into the formula for color 
generation. N  is an integer varying from 1 to L . The gray scale was divided into L equal 
intervals corresponding to the L  colors; therefore, for all I s belonging to the same 
interval, one single color is assigned. 
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−=
=
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(5.6)

 
In this mode, the number of basic colors actually remains the same but variations occur in 
the color range.  For example, when 4=L , a color image with only the “basic” colors is 
produced.  The information in this color image is minimal because only the higher pixel 
values from the gray-scale image are clearly coded.  However, when 16=L an image 
with the same basic colors is produced but the individual range for each color is 
expanded to obtain 16 colors overall.  Most of the information is now retrieved with even 
the lower pixel values in the gray-scale image being coded.  Figure 5.13 illustrates the 
use of this method to color code a gray-scale image and shows how the variation of the 
number of colors can achieve different effects in the colored image, such as a variable 
amount of detail and clutter.  

5.3.2.2 Trigonometric Transforms 
a) Sine/Cosine transform 
One of the characteristics of the sine function is that it contains regions of relatively 
constant value around the peaks as well as regions that change rapidly near the valleys. 
The advantage of a continuous color scale becomes evident when considering 
overlapping materials inside luggage. In systems with abrupt color switch-over between, 
for example, organic and non-organic materials, even thin layers of overlapping 
materials, such as steel, copper or PVC, will lead to organic materials being classified as 
non-organic materials, which is incorrect and might result in false negatives and/or false  
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Figure 5.13 Varying the number of colors using the mathematical expression of equation (5.6) 
for color mapping; (a) through (f) represent color maps using 4, 8, 12, 16, 64, and 256 colors 
respectively. 

       (a)        (b)        (c) 

       (d)       (e)        (f) 
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positives. The typical form of the sine transform can be expressed as [Gonzalez and 
Woods, 2002]: 
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where BGR ωωω ,, are the frequencies for the R, G, and B channels and BGR θθθ ,,  their 
corresponding phase angles. Changing the frequency and phase of each sine function can 
emphasize (in color) certain ranges of the gray scale. The effect of mathematical 
manipulation of the sine-based color assignment on viewer perception of objects and 
presence of details in x-ray data can be seen in Figure 5.14. 
 
b) Rainbow transform 
The rainbow transform can be seen as a special case of the sine/cosine transform. The 
general form of the three-transform functions used for the rainbow map, are given by 
Equation (5.8). Specifically speaking, the three periodic functions were used in such a 
way that one of them was at a peak in a selected color interval as shown in Figure 5.15. 
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                       (a) 

 
(b) (c) 

Figure 5.14 Colored version of Figure 5.4 generated using the sine transform. 
 
 



Chapter 5: Pseudo Coloring 
 

 

67

 
                                         (a)                                                                                        (b) 

Figure 5.15 (a) The rainbow color scale; (b) the three periodic functions used for the rainbow 
transformation. Red, green and blue curves represent the R, G, and B vs. gray level transform 
functions, respectively. 
 

5.4  HSI Based Color Transforms 

HSI-based color transforms were also classified into two subcategories. Color transforms 
in the first subcategory provide a direct mapping between the gray values and their color 
counterparts while color transforms in the second subcategory were created according to 
the approach illustrated in Figure 5.16, where a selected series of enhancement operations 
are first performed on the x-ray luggage scan to extract or emphasize features of interest 
and then the results are fed into the H, S and I components to create a composite 
chromatic image.  

5.4.1 Color Directly Applied to Original Gray Scale Data 
Two methods are investigated in this subcategory: (1) a histogram-based approach, 
resulting into a visually selected scale, and (2) a non-linear approach based on the 
considerations of Subsection 5.2.2. 

5.4.1.1 Histogram-Based Color-Mapping 
The colors of the various components in the scene are assigned based on the values of the 
raw image. Pixel ranges are selected from the data’s histogram and automatically 
assigned certain colors. For instance, it is known that high-density (metallic) material has 
a low degree of transparency and consequently higher pixel intensities. Color components 
for such gray levels can then be set to result in certain values. Based on the results 
derived from the color study discussed earlier, this basic procedure can be conducted as 
follows: (1) Set threshold values, (2) Define the number of colors to be used, (3) Define 
the hues to be used for each interval of pixel values, (4) Set the saturation to one and the 
intensity to the gray value of the pixel, then (5) Transform the HSI image to RGB space 
for display. If for example, four gray level regions were created, the chances of the low-  
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Figure 5.16 General process producing the second-subcategory of HSI-based color transforms. 
 
 
density threat being present would be greatest in the first two regions. Four colors will be 
picked based on the recommendations of Subsection 5.1.3. Blue will be used as 
background and other easy to remember basic colors like red and green will be applied to 
the other pixels in each bin. The output image would have four hues, which vary as a 
function of the gray intensity values of the pixels. 

5.4.1.2 Function-Based Color Mapping 
Based on the criteria mentioned in Subsection 5.2.2, the focus was on the design of 
natural-order color scales with the ability to reveal value and shape information 
accurately and effectively by decreasing the effects of simultaneous contrast. In luggage 
inspection applications, as in many others, the most important issue is that the colors on a 
color scale used to represent gray values should be perceived as preserving the order of 
the gray values whenever colors are individually viewed or colors located on different 
color grounds are viewed. Specifically, the intensity was selected to be monotonically 
increasing, which could be described by a logarithmic transform, an exponential, a 
linearly increasing, or any other non-decreasing transform. The optimum selection of the 
appropriate transform depends on the specific application, i.e., emphasis needs to be 
made on the low-intensity or high-intensity part of the image. A key issue in the 
implementation is the design of the hue transform. A right/left semi-ellipse curve is 
selected for the hue transform and the saturation set to a constant.  Considering the fact 
that the objective is to better visualize low density threat items, the logarithm transform 
for intensity is used as a way of increasing the value of the low gray levels, improving 
their appearance, and potentially recognition by screeners. Figure 5.17 (a) shows the 
transformations of intensity, hue, and saturation and Figures 5.17 (b) and (c) the resulting 
color bars when using the right and left semi-ellipses respectively. The color scale of 
Figure 5.17 (b), called “Springtime”, uses 1800,0 ≤≤= es hh and updir = , where sh is 
the starting hue, eh is the ending hue, and up means a counterclockwise progression. The 
H, S, and I components are given by Equation (5.9). 
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(a) 

 
(b) 

 
(c) 

Figure 5.17 (a) Intensity, hue and saturation transforms, (b) color scale “Springtime” produced 
by using the concave part (solid curve) of the semi-ellipse for the hue transform, and (c) color 
scale produced by using the convex part (dotted curve) of the semi-ellipse for the hue transform. 
 
 
where G  is the gray level value and maxG   is the maximum gray value over the entire 
image (255 for 8-bit images).  
 
Applying the non-linear “Springtime” color scale to the images in Figure 5.7, we obtain 
the colored version shown in Figure 5.18. 

5.4.2 Color Mapped to Preprocessed Gray Scale Data 
Based on the theoretical background addressed in Subsection 5.2.2 and the 
recommendations of Subsection 5.1.3, different color schemes were designed where 
preprocessed gray scale data is used as input to the hue, saturation, and intensity color 
channels. The first set of transforms uses a constant saturation while the second set uses a 
data dependent saturation.  
 
Let 1E , 2E , and 3E  be the enhanced images produced using some desired gray scale 
enhancement operations. 

5.4.2.1 Constant Saturation  
In this first approach, two subsets of color mapping are produced by feeding 1E  (or 2E ) 
into the hue component and 3E  (or 1E ) into the intensity component. The saturation, S, is 
set to a constant within the interval ]1,6.0[ , that is high enough to ease the distinction 
between colors but low enough to avoid eye-fatigue due to refocusing [Murch, 1984]. 
 
Using this scheme, zero value pixels in 3E  (or 1E ) would not appear in the colored image, 
which generally helps improve the appearance of the final output. The sequences CS1  
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(a) (b) (c) 
Figure 5.18 Colored version of Figure 5.7 generated by applying the “Springtime” color scale. 

 
 
and CS2, described below, are two sets of transformations using gray level enhancement 
operations found, through screeners tests, to be effective in revealing low-density threats 
in x-ray luggage scans [Abidi et al., 2004]. The notation “ ...++++ CBAOriginal ” 
denotes a sequence of preprocessing using operations A, B, C, ... applied to the original 
x-ray luggage scan. The two sets are designed as follows: (1) CS1 with H = 1E = original 
+ histogram equalization + contrast stretching, S = constant, and I = 3E = original + 
negative + H-domes + contrast stretching; and (2) CS2 with H = 2E = original + negative, 
S = constant, and I = 1E = original + histogram equalization + contrast stretching. The 
colored versions of Figure 5.4 shown in Figures 5.19 and 5.20 were produced using color 
schemes CS1 and CS2. 
 
Another approach uses the segmented image of the original luggage scan as an input to 
the pseudo-coloring process. N classes in the scene are clustered through segmentation 
and a single hue is assigned for each class. For any two adjacent classes complementary 
colors are used. Contrast stretching is applied to each class such that the intensities of 
objects in each class cover the full range of gray scale. Objects belonging to a given class 
will have the same hue value but different intensities. This transform is similar to the 
histogram-based color map described in Subsection 5.4.1 except that the thresholds in 
this case are selected automatically via the segmentation algorithm. For each class, the 
transforms for the H, S, and I channels are expressed as: H = constant, S = constant, and 
I = image slice containing one class of objects + contrast stretching. A single chromatic 
image containing the N classes of objects is obtained by replacing the image slice in the 
intensity transform by the segmented image and assigning the hue values accordingly. A 
multi-level thresholding (Maximum Entropy Approach Using Iterated Conditional Modes 
-ICM- [Besag, 1986]) was performed to segment various objects in the scene into 5 
classes. The red color was assigned to the class of threat objects. The result of a selected 
color assignment is shown in Figures 5.21. 
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Figure 5.19 Colored version of Figure 5.4 generated by using color map CS1 with constant 
saturation. 
 
 
 

Figure 5.20 Colored version of Figure 5.4 generated by using color map CS2 with constant 
saturation. 
 
 
 
 
 
 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(a) 

 
(b) 

 
(c) 
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(a) (b) (c) 

Figure 5.21 Color-coded version of Figure 5.4 obtained after segmentation, using a constant 
saturation and 5 different hues (complementary colors), (a) and (b) blue, green, red, cyan and 
yellow, (c) blue, yellow, cyan, red and green. 
 

5.4.2.2 Variable Saturation  
In this scheme 1E is fed into both the hue and saturation components, while 3E  is fed into 
the intensity component. Thus, 1E determines whether some areas of the output image are 
shown in color or in black and white. If the pixel values of an area in 1E  are all zero, the 
area will appear black in the output image. Therefore colors are only assigned to the areas 
where pixel values of both 1E and 3E  are non-zero, that is, the areas of 031 ≠EE I . 
Instead of using a constant for the S component as in sets CS1 and CS2 in Subsection 
5.4.2, the same transformed data used for the H component is fed into the saturation 
channel. The two sets obtained are therefore: (1) VS1 with H = 1E = original + histogram 
equalization + contrast stretching, S = 1E =original + histogram equalization + contrast 
stretching, and I = 3E = original + negative + H-domes + contrast stretching; and (2) 
VS2 with H = 2E = original + negative, S = 2E =original + negative, and I = 1E = 
original + histogram equalization + contrast stretching. Figures 5.22 and 5.23 illustrate 
the results obtained from applying sets VS1 and VS2, respectively to the images in 
Figure 5.4. 

5.5 Formal Airport Evaluation 

Given the fact that airport screeners are the end users of any selected luggage coloring 
scheme, a natural step of this process is to include, in the validation of the various color 
coding approaches, the responses of a representative section of the screeners’ population. 
A fully automatic, portable, and interactive computer test was designed. A set of 45 x-ray 
scans containing various low density threat items in different configurations and with 
various levels of clutter were selected. Eight pseudo-coloring approaches as described in 
Sections 5.3 and 5.4 were chosen according to preliminary evaluations of the various  
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(a) 
 

(b) 
 

(c) 

Figure 5.22 Colored version of Figure 5.4 generated by using color map VS1 with variable 
saturation. 
 
 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.23 Colored version of Figure 5.4 generated by using color map VS2 with variable 
saturation. 
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transforms. The selected color maps were each applied to the luggage scans containing 
low-density threats. All images were shown to screeners in random order using a random 
number generator, with all originals shown first and also in random order. The random 
display of all original data first insures that no systematic influence or bias is gained in 
the detection of threat by viewing the color enhanced images before the non-colored 
images. The screeners were asked not only to affirm seeing a threat but to also point and 
click on the threat to ensure they saw the actual threat. The screeners were also asked to 
rank the images in terms of their visual clarity and ease of interpretation, which is an 
important fact in relieving boredom and keeping the screener’s level of concentration 
relatively high. The evaluation sessions were conducted at McGhee Tyson Airport in 
Knoxville, Tennessee and involved a total of 40 Transportation Security Administration 
(TSA) luggage screeners.  Three types of information were collected for each image 
shown: (1) did the screener see the threat object in the image, (2) could the screener click 
on the location of the threat item correctly, (3) a rating (from 1 to 10, with 10 being best) 
of “how helpful” the screener believed the displayed image was in detecting the threat 
object. After all color coded images have been shown as single windows, a montage 
image is shown for each original.  
 
In this montage, the original image is shown side by side (for comparison purposes) with 
each of its colored versions and the screener is asked to rate each of the nine images on a 
1 to 10 scale – with ten being the best in terms of ease of threat detection in the image. 
An example of one montage window is shown in Figure 5.24. The ability of the screener 
to correctly click on the threat item location within the luggage was determined through 
use of a binary mask image. When the screener clicks on a specific ),( yx location in the 
image being evaluated, the program checks the same location in the corresponding mask 
image.  If this pixel location has a value of 1, the answer is recorded as being correct. 
 
Once all screeners have completed the evaluation, the composite set of data obtained was 
evaluated in Excel. Figure 5.25 presents a graphic showing the percent of all screeners 
who were able to correctly click on the threat location for the original image and each of 
the color enhancement methods. This graphic indicates that a low percentage (31%) of 
screeners were able to correctly locate the threat object in the original gray scale luggage 
scan. On the other hand, the color enhanced images fared much better with recognition 
rates ranging from 56.5 to 69.5%.  The images with the color map “Springtime” had the 
highest recognition rate.  This enhancement consists of histogram equalization, followed 
by image stretching, followed by application of color map “Springtime” developed in 
Subsection 5.4.1.2.  
 
Another important evaluation criteria collected was the rating of each type of color 
coding.  Figure 5.26 shows the graphic comparing the mean rating by screeners (10 
maximum) of the original image and eight pseudo-colored procedures.  Again, the 
original scored lowest (1.64) while the enhanced images were all significantly higher and 
in the range 2.56 to 5.24.  That is an improvement of up to 219%. Color scale 
“Springtime” again obtained the highest rating in this category.  
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Figure 5.24 Montage of original and all color coded images for comparative rating. 
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Figure 5.25 Percent of screeners able to correctly identify threat objects on each type of 
images. 
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The overall results obtained from the screeners’ evaluations indicated a clear preference 
for color-enhanced x-ray scans over original gray scale luggage scans. The four 
approaches, “Warm”, “Springtime”, CS1 and CS2 received higher average ratings than 
the rest of the methods. Most of the four approaches, except “Warm”, were designed 
based on the HSI color model, which confirms earlier remarks that the HSI color model is  
more suitable to human interpretation and therefore more effective in revealing low-
density threats concealed in x-ray luggage scans. 

5.6 Summary 

A number of novel color transforms were introduced, applied to luggage scenes, and 
tested by screeners in an airport environment. Proper color mapping schemes have been 
designed based on human perceptive and cognitive features. The expectation that pseudo-
coloring techniques can provide additional enhancement of x-ray luggage scans, better 
data visualization, increased screeners’ alertness, and longer attention retention was 
demonstrated through experimental results and evaluations by actual airport screeners. In 
this chapter, we showed through visual interpretation, and more importantly through 
testing on TSA airport screeners that newly developed color-mapping techniques are very 
valuable tools in increasing the rate of low density threat detection in x-ray luggage 
scans. A significant increase of up to 97%, as compared to results from the original data, 
in the rate of threat detection was obtained when color coded data was used by screeners. 
Feedback from screeners also rated the color processed data, on average, up to 219% 
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Figure 5.26   Mean ratings of eight pseudo-coloring approaches and gray level original obtained 
from screeners’ evaluation. 
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more helpful in detecting threats than the raw data. Not only did the testing show that 
color processed data is more effective than gray scale data in detecting threat and keeping 
the screener’s attention, but we were able to also rank the set of color mapping 
procedures in terms of the most effective and most appealing to screeners. In comparing 
the RGB-based approaches to the HSI-based approaches, the latter color space proved 
superior, which was expected given the many known advantages of the HSI space in 
human-based applications [Wei et al., 1997]. Future efforts will include more testing with 
the introduction of images containing no threat objects and others containing multiple 
threat items to study the performance in terms of false positive rates. 
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6 Dual-Energy X-Ray Image Fusion 

The goal of image fusion here is to integrate complementary information from the low-
energy x-ray image and the high-energy x-ray image such that the produced combined 
image is more amenable for a successful screeners’ interpretation.  
 
As introduced in Section 2.2.2, commercial dual energy x-ray luggage inspection systems, 
that fuse low-energy image and high-energy x-ray image into a single color image 
through estimating the atomic number of materials, result in a false alarm rate of roughly 
30%. To reduce the false alarm rate and increase the threat detection rate, we explored 
other approaches to fuse dual-energy x-ray images.  

6.1 Image Fusion using Local Spatial Information  

6.1.1 Algorithm 
This fusion method highlights details hidden or not clearly seen in original dual-energy 
images.  
 
Assume that LowE denotes the low-energy x-ray image of a given luggage scene and 
HighE the corresponding high-energy x-ray image.  
 
1. Find the difference image, Diff, using (6.1). 
 

HighELowEDiff −= ,  (6.1)
 
2. Categorize each pixel in the given luggage scene as local background pixel or detail 

pixel.  
 

Generally, in one plane a pixel is classified into a local background pixel if its 
intensity value is close to the values of its surrounding pixels. Here the concept of 
local background pixel is extended to two planes, that is, the low-energy and high-
energy images. If the pixel value in one plane is close to its corresponding pixel value 
in the other plane, the pixel is classified as a local background pixel. Otherwise, the 
pixel is classified as a detail pixel. Based on the above definition of local background 
pixel and detail pixel, a threshold is required to categorize each pixel. Allowing for 
some possible errors resulted in during image capture, we should set a small positive 
value as the threshold. For the dual-energy x-ray luggage images (256 gray levels) we 
have examined, the threshold value was set around gray level 10 and was found to 
work well for the pixel classification. Any pixel whose intensity value in the 
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difference image is greater than the threshold is categorized as a detail pixel; On the 
other hand, any pixel whose intensity value in the difference image is equal to or less 
than the threshold is categorized as a background pixel. Figure 6.1 depicts the process 
of this categorization. 
 

3. Form a background image and a detail image.  
 

� Formation of the background image: To highlight details in the luggage 
scene, a smooth background is obtained by averaging the intensity values of 
the low-energy and high-energy images for the pixels categorized as 
background pixels, as given in (6.2). 

 
                                     2/)( HighELowE +     for background pixels  
Background Image =  
                                        0                          for detail pixels 

(6.2)

 
� Formation of the detail image: To have the pixels categorized as detail pixels 

have higher contrast with their neighbors, for any detail pixel, the intensity 
value in the detail image is taken from either the low-energy or the high-
energy image according to the condition given in (6.3). 

 
                             LowE    if   HighER − < LowER −  

            Detail Image =                                                                     for detail pixels 
                                         HighE    if   HighER − >= LowER −    

                                           0          for  background pixels 

(6.3)

 
where R is the response of a 3×3 averaging filter applied to the image 
obtained by averaging, 2/)( HighELowE +  .    

 
 
 
 

 

Figure 6.1 Categorization of the pixels in a given luggage scene as local background pixels or 
detail pixels.  

 

Pixel Value in Diff > 10?
(a predefined threshold)

Categorize the pixel 
as a detail pixel 

Categorize the pixel 
as a background pixel 
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4. Generate the combined grayscale image by adding the background image and the 
detail image. 

 
The major steps of this proposed fusion approach are illustrated in Figure 6.2. Figure 6.3 
(c) shows a combined grayscale image generated by applying this algorithm to dual-
energy x-ray images in Figures 6.3 (a) and (b). 

6.1.2 Noise Analysis and Noise Reduction 
The fused results generated by directly applying the preceding proposed method to the 
original dual-energy images show the presence of noise. To characterize this noise, a 
small patch is analyzed from an area of the image where pixel values should be constant. 
Observing the shapes of the histograms of the small patches taken from the same spatial 
location of each pair of low and high-energy images, we approximate this noise with 
Gaussian function. Figure 6.4 shows a small patch selected from a luggage scene and the 
histograms for the small patches taken from the low and high-energy images of the same 
luggage scene. 
 
To reduce the presence of noise, an adaptive and local noise-removal filter, Wiener filter 
good for Gaussian noise removal, is applied to the dual-energy images. Figure 6.5 shows 
the histograms of the noise-reduced versions of the same small patch as Figures 6.4 (b) 
and (c). It is obvious that the distribution ranges of the gray levels of the small patch 
decrease after noise removal. After performing noise reduction on the low-energy and 
high-energy images, the preceding fusion approach is employed to fuse the two noise- 
 
 

 
Figure 6.2 Flow chart of the developed approach for dual-energy x-ray image fusion. 

Fused grayscale image = Background Image + Detail Image 

LowE 
Low-energy x-ray image 

HighE 
High-energy x-ray image 

Diff: Difference Image  HighELowE −

Form two new images, background image and detail image 

Categorize pixels of a given luggage scene as 
Background pixels or Detail pixels  
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(a) 

 
(b) 

  
(c) (d) 

Figure 6.3 Dual-energy x-ray images and fused results generated using the local spatial 
information based fusion algorithm, (a) low-energy image, (b) high-energy image, (c) combined 
grayscale image, and (d) noise-reduced combined version. 
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(b) 

 
(a)  

 
(c) 

Figure 6.4 Noise analysis. (a) A selected small patch of size 160×60, (b) and (c) histograms of 
the small patches taken from the low-energy and the high-energy images. 
 
 
 

 
 

(a) 

 
 

(b) 
Figure 6.5 Noise reduction. (a) Histogram of the noise-reduced version of the same small patch 
as used in Figures 6.4 (b), (b) histogram of the noise-reduced version of the same small patch as 
used in Figures 6.4 (c). 
 
 

Size 160X60

N
um

be
r o

f P
ix

el
s

Gray Level 

N
um

be
r o

f P
ix

el
s

Gray Level 

N
um

be
r o

f P
ix

el
s

Gray Level 

N
um

be
r o

f P
ix

el
s

Gray Level 



Chapter 6: Dual-Energy X-Ray Image Fusion 
 

 

83

reduced versions. The resulting image generated by applying the proposed fusion 
approach to noise-reduced low-energy and high-energy x-ray images is referred to as 
noise-reduced combined version. Figure 6.3 (d) shows the noise-reduced combined 
version of the luggage scene. 
 
Small patches are also taken at the same location as indicated in Figure 6.4 (a) from the 
directly combined version and the noise-reduced combined version of the luggage scene. 
As shown in Figure 6.6, the distribution range of the gray levels of the patch from the 
directly combined version and the noise-reduced combined version lies between those of 
the patches from the low-energy and high-energy images. This means that noise is not 
amplified by the fusion method proposed. The reason behind the appearance is most 
pixels in the small patch fall into background pixels and an averaging operation was 
performed on them. 

6.2 Wavelet Based Image Fusion 

6.2.1 Image Fusion with Wavelet Transform  
The general procedure of fusing images based on wavelet transform is illustrated in 
Figure 6.7. First, the registered source images are each transformed into corresponding 
wavelet coefficient images using the discrete wavelet transform (DWT). Then, following 
a fusion rule, the fused wavelet coefficients are computed from the wavelet coefficients 
of the source images. The inverse DWT (IDWT) is then applied to the fused wavelet 
coefficients to obtain the fused image.  
 
The fusion rule plays an essential role in the wavelet-based image fusion process. Two 
commonly used fusion rules, pixel based and region based rules, are introduced here. For 
pixel based fusion rule, the value of a fused wavelet coefficient is determined by the 
corresponding wavelet coefficients of the source images as depicted by the green pixels 
in Figure 6.8. Region based fusion rule not only utilizes the corresponding wavelet  
 
 

 
 

(a) 

 
 

 (b) 
Figure 6.6 Noise reduction. (a) Histogram of the small patch taken from the combined version, 
(b) histogram of the small patch taken from the noise-reduced combined version. 
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Figure 6.7 General procedure of image fusion with the wavelet transform. 

 
 
 

 
Figure 6.8 Two commonly used fusion rules: pixel based fusion rule (green) and region based 
fusion rule (red). 
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coefficients of the source images but also employs their surrounding wavelet coefficients 
to define a fused wavelet coefficient as shown by the red pixels in Figure 6.8. 

6.2.2 Wavelet Based Fusion Algorithm for Dual-Energy X-Ray Images 
As in Section 6.1.1, assume that LowE denotes the low-energy x-ray image of a given 
luggage scene; HighE the corresponding high-energy x-ray image; and FuseI the fused 
image obtained. 
 
1. Compute the wavelet decompositions of LowE and HighE, seperately. 

 
To perform DWT on LowE and HighE and obtain their decompositions, a wavelet 
family and a wavelet basis able to represent enough image detail, need to be selected. 
A practical selection rule in image processing applications is to use a wavelet basis 
that can represent enough variation detail, regardless of its wavelet family. Another 
aspect needing to be determined is how many scales are necessary for the 
decomposition. Too few scales will cause too little detail to show in the fused image; 
On the other hand, too many scales will result in the fusion image not to be smooth 
enough for screeners to interpretation. Thus, to get a high-quality fusion image a 
compromise on the number of scales needs to be made. 
 

2. Apply a low-pass filter to the approximation coefficients of LowE and the 
approximation coefficients of HighE to get the approximation coefficients of the 
fused version. 
 
The idea behind this step is a smooth approximation of a given scene can make the 
details in the scene more easily perceptible. Specifically, we generate each of the 
approximation coefficients of the fused image by averaging the corresponding 
approximation coefficients of LowE and HighE, as shown in (6.4). 

 
     approximation coefficients of FuseI = (approximation coefficients of 

LowE + approximation coefficients of HighE) / 2 (6.4)

 
3. Combine corresponding detail coefficients of LowE and HighE to get the detail 

coefficients of fused version. 
 

The idea behind this step is to have the details, uniquely exhibited in LowE or HighE, 
be incorporated into the fused version, and details existing in both LowE and HighE 
be more visible in the fused version. Specifically, we obtain each of the detail 
coefficients of the fused version, at all decomposition levels, by adding the 
corresponding detail coefficients of LowE and HighE, as shown in (6.5).  
 

   detail coefficients of FuseI = detail coefficients of LowE + detail 
coefficients of HighE (6.5)
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The use of (6.5) as a way of combining the detail coefficients stem from an attribute 
exhibited in dual-energy x-ray images where distinct objects in a given luggage scene 
show similar general contours in both LowE and HighE. 
 

4. Construct the fused image. 
 

The fused image, FuseI, is obtained by performing IDWT using the approximation 
coefficients and the detail coefficients, computed in Steps 2 and 3, respectively. 
 

Figure 6.9 (c) shows a fused grayscale image generated by applying the wavelet-based 
fusion algorithm to dual-energy x-ray images in Figures 6.9 (a) and (b). 

6.2.3 Noise Analysis and Reduction 
To determine if noise is amplified during the fusion process while using the preceding 
wavelet-based fusion algorithm, a small region of a given luggage scene was selected for 
noise analysis as presented in 6.1.2. We calculated the mean and standard deviation of 
gray levels for the small region using each of the image patches cropped from the low- 
energy x-ray image, the high-energy x-ray image, and the fused image. Table 6.1, for 
example, gives the mean and standard deviation of gray levels of the small region 
illustrated in Figure 6.4 (a), computed by using data from the low-energy x-ray image, 
the high-energy x-ray image, and the fused image. Comparing their means and deviations, 
we can see that the noise presence in fused image version is slightly increased. Since it is 
very likely that the increase in noise level will cause the fused images to possess many 
artificial details, a question arises on “how can we reduce noise in the fused image?” A 
noise reduction step needs to be incorporated into the wavelet-based fusion algorithm. 
Observing the wavelet transform results of the dual-energy images, we found the noise 
appears in their corresponding detail coefficient images after wavelet decomposition. 
Figures 6.10 (a) and (b) are corresponding wavelet transform results of Figures 6.9 (a) 
and (b) where the number of scales was set to 4. To decrease the noise as much as 
possible with a little loss of useful information, the first-scale detail coefficient images 
are processed by using a hard thresholding method [Mathworks, 1994]. That is, find a 
threshold from a set of data − first-scale detail coefficients, and then set to 0 the first-
scale detail coefficients whose absolute values are lower than the threshold. Different 
threshold selection rules can be used. For dual-energy x-ray luggage images, we finally 
chose the selection rule based on minimax principle [Mathworks, 1994] after observation 
and comparison of a set of experimental results. Figure 6.9 (d) shows the fused image 
version generated after the application of noise reduction. We used the small patch, 
corresponding to the patch shown in Figure 6.4(a), from Figure 6.9 (d) and obtained its 
mean and standard deviation shown in the fourth row of Table 6.1. Comparing with the 
fused version before noise reduction, we see a significant noise decrease in levels. After 
the incorporation of noise reduction, noise level now resides between the noise levels of 
its corresponding high-energy and low-energy images while there is no any perceptible 
loss to the quality of the fused image. 
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(a) 

 
(b) 

 
(c)  

(d) 
Figure 6.9 Results of wavelet-based fusion algorithm, (a) and (b) low-energy and high-energy x-
ray images, and (c) and (d) fused image generated using wavelet-based fusion algorithm, before 
and after the application of noise reduction. 
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Table 6.1 Means and standard deviations of gray levels of the small region shown in Figure 6.4 
(a), computed by using data from the low-energy x-ray image, the high-energy x-ray image, and 
the fused image generated using wavelet-based fusion method before and after noise reduction. 
 

      Parameter 
Patch Mean Standard 

Deviation 
Low-Energy 233.4935 1.5159 
High-Energy 233.3541 18.0587 

Fused 232.9319 18.8955 
Fused after 

noise reduction 232.9258 12.9902 
 

 
 
 

  
Figure 6.10 Noise analysis. (a) and (b) Wavelet transforms of Figure 6.9 (a) and (b). 
 

(a) (b) 
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6.3 Color-Coding of Fused Images 

A pseudo coloring scheme is proposed and applied to fused dual energy data. The 
algorithm is described as follows:  
 
1. Segment the difference image obtained from (6.6) using a histogram based 

thresholding method. 
 

HighELowEDiff −=  or LowEHighEDiff −= , (6.6)
 

The underlying reason for this segmentation is due to the fact that the range of 
differences is usually function of the properties of objects such as objects’ density and 
thickness. 
 

2. Designate a given chromaticity (H and S) for each class. 
 
3. Feed the fused image into brightness channel (I). 
 
The color images produced using the above method indicate similarities and 
dissimilarities between objects’ properties for those objects of same/different 
chromaticities. 

6.4 Experimental Results 

A number of pairs of dual-energy x-ray images are examined by using the two proposed 
fusion methods described in Sections 6.1 and 6.2.  

6.4.1  Image Fusion Using Local Spatial Information  
Results produced by applying the proposed algorithm in Section 6.1 to three pairs of 
dual-energy x-ray images are shown in this section. For the generation of all combined 
versions, the threshold was set to 10. Besides, as for noise removal, the size of the Wiener 
filter was 3×3. Figures 6.11 6.12 and 6.13 each show the raw dual-energy x-ray images, 
the directly combined version, and the noise-reduced combined version, of each one of 
the three luggage scenes.  

6.4.2 Wavelet-Based Dual-Energy X-Ray Image Fusion Approach 
This section shows the results produced by applying the wavelet-based fusion algorithm 
presented in Section 6.2 to two pairs of dual-energy x-ray images. As discussed in 6.2.2, 
a wavelet family (a wavelet basis) and the number of scales need to be determined for the 
decomposition of original dual-energy images. Through a series of experiments, we 
selected Daubechies wavelet transform and specified 4 scales in our fusion process. 
Figures 6.14 and 6.15 each show the raw dual-energy x-ray images, the directly fused  
 



Chapter 6: Dual-Energy X-Ray Image Fusion 
 

 

90

 
 

  
(a) (b)  

  
(c) (d) 

Figure 6.11 Dual-energy x-ray images and fused results generated using the algorithms presented 
in Section 6.1 (a) low-energy image, (b) high-energy image, (c) combined grayscale image, and 
(d) noise-reduced combined version. 
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(a) (b) 

  
(c) (d) 

Figure 6.12 Dual-energy x-ray images and fused results generated using the algorithms presented 
in Section 6.1 (a) low-energy image, (b) high-energy image, (c) combined grayscale image, and 
(d) noise-reduced combined version. 
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(a) 

 
(b) 

  
(c) (d) 

Figure 6.13 Dual-energy x-ray images and fused results generated using the algorithms presented 
in Section 6.1 (a) low-energy image, (b) high-energy image, (c) combined grayscale image, and 
(d) noise-reduced combined version. 
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(a) 

 
(b) 

 
(c) 

Figure 6.14 Results of wavelet-based fusion algorithm, (a) low-energy x-ray image (b) high-
energy x-ray image, (c) fused image generated by using wavelet-based fusion algorithm. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.15 Results of wavelet-based fusion algorithm, (a) low-energy x-ray image (b) high-
energy x-ray image, (c) fused image generated by using wavelet-based fusion algorithm, and (d) 
fused image version generated by incorporating noise-reduction step into the wavelet-based 
fusion algorithm. 
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image version, and the noise-reduced fused image version, of each one of the two 
luggage scenes.  

6.4.3 Color Coding of Fused Images 
We used three color-coding schemes to color the fused images obtained in the previous 
sections. The first scheme directly applies an established color scale to the fused version; 
The second applies an HSI-based color coding approach − constant saturation (CS) 
introduced in Section 5.4.2 of Chapter 5; and the third is the one presented in Section 6.3. 
 
The “Warm” scale presented in Section 5.3.1 of Chapter 5 and Set 1 shown below (CS) 
were used to generate the color results in Figures 6.16 and 6.17.  
 
Set 1: 

      Combined grayscale image → H  
      Constant 0.8→ S  

Combined grayscale image + gamma correction →I 
 

Several luggage scenes were color-coded using color Scheme 3. Preliminary 
experimental results for the two luggage scenes in Figures 6.18 (a) and (b) are shown in 
Figures 6.19 (a) and (b), respectively. Figures 6.18 (c) and (d) illustrate the histograms of 
difference images corresponding to luggage scenes in Figures 6.18 (a) and (b). We 
manually picked two thresholds, as indicated in Figures 6.18 (c) and (d) with red arrows, 
for segmenting items in each of the two luggage scenes. Three hues, white, yellow and 
green, were chosen and each of them in sequence was assigned to a class of items. 

6.5 Objective Evaluation of Fused Images 

In-house visual assessment of fused x-ray images, produced by applying the proposed 
fusion algorithms described in Sections 6.1 and 6.2 to a number of distinct luggage 
scenes, have indicated the effectiveness of such algorithms in differentiating different 
kinds of objects in luggage. As a large size of observers is required to obtain more 
reliable judging of the effectiveness of these fusion approaches, we attempted to seek 
objective image quality measures that correlate acceptably well with the perceived image 
quality. This will also reduce the overhead of human assessment.  
 
Efficient image quality measures are sought among various existing IQMs, as described 
in Section 2.6, for the assessment of fused images. Because of the extreme difficulty in 
defining good reference images in our case, our focus was measures from the class of 
NRIQM. 
 
Nill et al. [Nill et al., 1992] developed an NRIQM derived from the image power 
spectrum of normally acquired arbitrary scenes, utilizing previously known invariance 
property of the power spectra of arbitrary scenes. This measure is selected to evaluate our 
fused x-ray images because of the following features: (1) It is a rapid and automated  
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(a) 
 

(b) 

 
(c) 

 
(d) 

Figure 6.16 Color versions (a) manufacturer’s color image, (b) & (c) color versions obtained by 
applying “Warm” scale to Figure 6.17 (c) and (d), respectively, (d) color version obtained by 
applying Set 1 to Figure 6.17 (c). 
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(a) (b) 

 
(c) 

 
(d) 

Figure 6.17 Color versions (a) manufacturer’s color image, (b) & (c) color versions obtained by 
applying “Warm” scale to Figure 6.3 (c) and (d), respectively, (d) color version obtained by 
applying Set 1 to Figure 6.3 (c). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.18 Histograms of difference images. (a) and (b) Two pairs of dual-energy x-ray 
images, (c) and (d) histograms of the difference images corresponding to (a) and (b).  
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(a) 

 
(b)  

 
 

(c)  
(d) 

Figure 6.19 Color versions, (a) and (b) color images produced using color Scheme 3, (c) and (d) 
manufacturer’s color images. 
 
 
 
 
 



Chapter 6: Dual-Energy X-Ray Image Fusion 
 

 

100

objective NRIQM; (2) Researchers’ experimental verification demonstrates a very good 
correlation (r=0.9) of this objective quality measure with the visual quality assessment as 
shown in Figure 6.20; (3) It is applicable to the tasks of detection, recognition and 
identification of man-made objects in images. 
 
The IQM of Nill et al. is derived from the normalized 2-D power spectrum ),( θρP  
weighted by the square of the modulation transfer function of the human visual system 

)(2 ρTA , the directional scale of the input image )( 1θS , and the modified parameter 
Wiener noise filter )(ρW [Nill et al., 1992]. The IQM is given by 
 

IQM= ),()()()(1 2
12 θρρρθ PTAWS

M ∑∑ , (6.7)

 
where 2M  is the image size in pixels; θρ, spatial frequency in polar coordinates. 
 
Figures 6.21 and 6.22 show the results obtained by applying the above IQM to two pairs 
of x-ray luggage images, respectively, where IQMs computed with (6.7) are converted 
into National Imagery Interpretability Rating Scale (NIIRS) [NIIRS, 1998] to easily compare 
with the visual evaluation results. NIIRS is defined by the aerial imaging community to 
measure the quality of images and the performance of imaging systems. The NIIRS 
consists of 10 graduated levels referred to as 0 to 9, with several interpretation tasks or 
criteria forming each level. These criteria indicate the amount of information that can be 
extracted from an image at a given interpretability level. With a NIIRS 2 image, for 
example, analysts should be able to detect large buildings, while on NIIRS 6 imagery 
they should just be able to identify automobiles as sedans or station wagon [Guide, 1998]. 
 
As shown in Figures 6.21 and 6.22, NIIRS values of fused images in comparison with the 
NIIRS values of their corresponding original dual-energy images indicate image 
interpreters are able to identify more objects in a luggage scene from the fused image 
than from the original image. This demonstrates that x-ray image quality is effectively  
 
 

 
Figure 6.20 IQM vs. Visual National Imagery Interpretability Rating Scale (NIIRS) [Nill et al., 
1992]. 
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NIIRS = 7.40689 

(a) 

 
NIIRS = 7.24497 

(b) 

 
NIIRS = 7.91971 

(c) 

 
NIIRS = 7.76784 

(d) 

 
NIIRS = 7.94778 

(e) 

 
NIIRS = 7.94516 

(f) 
Figure 6.21 Evaluation results by applying the IQM of Nill’s et al. to the luggage scene in Figure 
6.3. (a) Low-energy image, (b) high-energy image, (c), (d) combined grayscale image and noise-
reduced combined version generated using local-spatial-information based fusion algorithm, (e) 
fused image generated by using the wavelet-based fusion algorithm, and (f) fused image version 
generated by incorporating a noise-reduction step into the wavelet-based fusion algorithm. 
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NIIRS = 7.51761  

(a) 

 
NIIRS = 7.32933  

(b) 

 
NIIRS = 7.90862  

(c) 

 
NIIRS = 7.70565  

 (d) 

 
NIIRS = 8.04048  

(e) 

 
NIIRS = 8.03817 

 (f) 
Figure 6.22 Evaluation results by applying the IQM of Nill et al. to the luggage scene in Figure 
6.13. (a) Low-energy image, (b) high-energy image, (c), (d) combined grayscale image and noise-
reduced combined version generated using local-spatial-information based fusion algorithm, (e) 
fused image generated by using the wavelet-based fusion algorithm, and (f) fused image version 
generated by incorporating a noise-reduction step into the wavelet-based fusion algorithm. 
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increased after using the two proposed fusion algorithms, which is consistent with our in-
house visual evaluation results. When a noise-reduction step is incorporated into the fusion 
algorithms, the decrease in noise levels also resulted in a little loss of useful information. 
Comparing the four pairs of NIIRS values of Figures 6.21 (c) and (d), Figures 6.22 (c) and 
(d), Figures 6.21 (e) and (f), and Figures 6.22 (e) and (f), we see that the NIIRS value of 
the fused image before noise-reduction is slightly higher than the NIIRS value after noise-
reduction. As noise may cause the fused images to exhibit many artificial details and 
therefore result in inaccurate image interpretation, we suggest to still have the noise 
reduction step incorporated into the fusion process anyway. 

6.6 Summary 

Two proposed approaches to dual-energy x-ray luggage image fusion − local spatial 
information based image fusion and wavelet-based image fusion, are presented in this 
chapter. 
 
Local spatial information based image fusion classifies each pixel in a luggage scene into 
either background pixel or detail pixel, and then highlights which represents the features 
of interest in the luggage scene.  
 
Wavelet based image fusion performs DWT on dual-energy x-ray images, and then 
processes their approximation coefficients and detail coefficients to produce the fused 
version. One of the most important features of dual-energy x-ray images is used as a basis 
of our wavelet based image fusion − distinct objects in a given luggage scene show 
similar general contours in both the high-energy and low-energy images. Therefore, 
details, uniquely exhibited in the low or high-energy x-ray images, can be incorporated 
into the fused version, and details existing in both low and high-energy x-ray images can 
be more visible in the fused version, through the addition of the detail coefficients of the 
low-energy and high-energy x-ray images. 
 
The effectiveness of the preceding fusion approaches has been demonstrated by our in-
house visual assessment and the use of objective evaluation measures to fused gray-level 
image versions. In the context of dual-energy x-ray image fusion, comparisons of our 
fusion approaches with other popular fusion approaches will be performed in further 
studies. 
 
In addition, a new color-coding scheme for the fused images is presented. Some 
preliminary color results, produced using this scheme, indicate that this color-coding 
scheme is a very promising method to color-coded fused images. The next-step study of 
color-coding will involve the exploration of a powerful automatic segmentation algorithm 
to segment the difference images and selection of hue sequences that correspond to the 
segmented classes. 
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7 Application Software Development 

7.1 X-ray Image Processing (XIP) 

The objective of the development of the XIP application is to simplify the procedures of 
processing raw data of x-ray images of carry-on luggage using the image enhancement, 
image segmentation, and pseudo-coloring techniques presented in the previous chapters. 
The application will also ease the judging of methods and combinations which are more 
useful for the identification of potential threats. VC++ is used as the development tool for 
XIP, because of its versatility in creating friendly GUIs with desirable features and high 
efficiency in processing images.  
  
A new generation of GUI of XIP is designed and implemented. The GUI shows the 
original image and the output image simultaneously so that it facilitates the comparison 
between the two. For the display of the two images, two different modes are provided, a 
side by side mode and top to bottom mode. When an image is opened, according to the 
ratio of width to height of the original image, XIP automatically selects an appropriate 
mode to display the original and resulting images.  
 
As the original images obtained from the x-ray scanner of carry-on luggage are in tiff 
format, XIP is made to support 8-bit and 16-bit tiff image processing. Using XIP, the user 
can process an input image with one specific method or a sequence of methods. The 
satisfactory processed image can be saved as an 8-bit or 16-bit tiff image file, 
corresponding to the image format of the input image. Figure 7.1 shows the GUI of XIP, 
which contains an original single-energy image of a given luggage scene (top left), and 
its corresponding processed images generated by using XIP with one specific algorithm 
or a series of algorithms.  

7.2 Wireless Tablet PC-Based Remote Supervision 

The remote supervision system (RSS) is designed to remotely process tough scenes of 
luggage at the requests of screeners at front-end explosive detection systems (EDS) at 
airport luggage check points and to remotely check any selected front-end EDS remotely 
at the requests of the supervisor of back-end supervisory machines which are portable 
tablet PCs. 
 
The system is implemented based on client-server mode with VC++ on Windows XP. 
Communication among EDSs, servers and supervisory machines (wireless tablet PCs), is 
fulfilled through connection-oriented sockets (TCP). Supervisory machines are able to 
process raw x-ray images loaded from EDSs with selected and designed image  
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Image Enhancement Image Hashing Pseudo Coloring Best Combination 

 

  

 

(b) 
Figure 7.1 (a) The GUI of XIP, (b) XIP drop-down menus showing image enhancement and 
visualization algorithms implemented. 
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processing techniques and send back/save helpful resulting images to assist screeners in 
threat identification. 

7.2.1 Introduction 
New approaches have continuously been proposed for airport luggage inspection; 
however, because of the inherent complication of luggage scenes and the adoption of 
more sophisticated methods to conceal threat objects, it is close to impossible to have 
only one single or uniquely combined technique to successfully reveal different kinds of 
potential threats hidden in x-ray luggage scans.  Besides, considering the speed 
requirement of luggage inspection, it is undesirable to have screeners apply several image 
processing approaches to every piece of luggage. Therefore, wireless tablet PC based 
remote supervision system, that can process tough pieces of luggage remotely at the 
requests of front-end EDSs at airport luggage check points and can remotely check the 
work of any chosen front-end EDS at the requests of back-end supervisory machines, is 
proposed as a solution to applying advanced image processing and visualization 
techniques to airport luggage inspection on need basis.  

7.2.2 RSS Framework 
RSS is designed based on client-server mode. As Figure 7.2 shows, EDSs reside at the 
front end of the entire system and are considered as special clients. The server and clients 
supervising EDSs reside at the back end of the system. For convenience and high 
efficiency of remote supervision, wireless tablet PCs are actually used as supervisory 
clients in RSS. In addition, through a set of simple settings, RSS can authorize a 
supervisor to process the requests of a particular group of screeners who are operating 
EDSs and also to supervise this group of screeners’ work. That is, as illustrated in 
different colors in Figure 7.2, Client 1 has the authority to process the requests of the 
group of EDSs marked in pink and supervise their work; Client 2 processes the requests 
of the group of EDSs marked in white and supervises them, and so on. Advanced x-ray 
image processing methods are provided for supervisory clients, so tough luggage scans 
that front-end screeners cannot surely interpret will be interpreted by qualified 
supervisors via applying advanced x-ray image processing methods.  
 
RSS is developed with VC++ 7.0 on Windows XP, consisting of client-end application 
and server-end application. Communication among EDSs, server and supervisory 
machines, namely wireless tablet PC, is fulfilled by using connection-oriented windows 
sockets (TCP). 8-bit and 16-bit gray-level and color TIFF format images are the image 
formats supported by RSS. 

7.2.3 Communication of Server and Client 
As mentioned in previous section, communications between server and client in RSS are 
implemented using connection-oriented windows sockets (TCP) technology. Socket is an 
essential network-programming concept.  This section is about to introduce such concept, 
and then present how connection-oriented sockets are established and utilized in a typical 
client-server system. 
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Figure 7.2 Schematic diagram of the Remote Supervision System (RSS). 
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7.2.3.1 Introduction to Sockets 
A socket is a communication endpoint. It enables bidirectional communication between 
processes located on the same or different machines using standard mechanisms built into 
network hardware and operating systems [SU, 2004; Wol, 2004].  Commonly, processes 
residing on different machines rely on Internet for communications; hence, internet 
addresses, i.e. the familiar IP address, and port numbers (a 16-bit unsigned integer) are 
used to specify sockets. There are two commonly used types of sockets, datagram sockets 
and stream sockets. Datagram sockets use the datagram protocol (UTP) that provides 
unreliable transfer of data to communicate between client and server processes; Stream 
sockets, also called connection-oriented sockets, use the Transmission Control Protocol 
(TCP) that provides reliable, transfer for data to communicate. 

7.2.3.2 Client/Server System  
In a client-server system, the way a socket is used determines a process as either a client-
end process or a server-end process. A server-end process establishes a socket with a 
known, or published, address, waits for incoming connections and presumably provides 
some service to client-end processes. In contrast, a client-end process creates an unnamed 
socket, connects to a server, usually to ask a server-end process to do something. Figure 
7.3 shows how a typical interaction between a client and a server is performed using 
connection-oriented sockets. 

7.2.4 RSS Functions 
RSS functions can be grouped into three categories, client-server communication, image 
processing algorithms, and image access and display operations. 

7.2.4.1 Client-Server Communication 
Two kinds of data, image data and auxiliary data, are transferred between client and 
server. Auxiliary data helps the server application or client application know what it 
should do — for example, send an image or receive an image, and assist server 
application in identifying users, recording operation histories, and so on. For the 
transmission of an image, image data are disassembled two components, property 
information and pixels’ value information. Property information includes such parameters 
as image size, pixel type and the total number of channels of the image. After correctly 
receiving property information and pixels’ value information of an image, the two 
components are reassembled together at the receiving end.  
 
Assume that the luggage image that an EDS requests for a supervisory machines to 
process has been stored on the server. Figures 7.4 and 7.5 give the flows on how to load 
an image from the server and how to send the processed image version back to the server 
in RSS. 
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Figure 7.3 A typical interaction between a client and a server using connection-oriented sockets. 
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Figure 7.4 Flow of loading an image from the server. 

 
 

 
Figure 7.5 Flow of sending a processed image version back to the server. 
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7.2.4.2 Image Processing Algorithms 
The client-end application used for the supervisory Tablet PCs provides image processing 
approaches to further process tough x-ray luggage scans. Techniques, on image 
enhancement, image segmentation, pseudo coloring and image fusion, that have been 
explored/proposed in our research and show effectiveness in visualizing different objects 
in luggage, especially potential threats, are incorporated in this application. 

7.2.4.3 Image Access and Display 
Local image access enables the client-end application used for supervisory machines to 
not only access images remotely but also to open local images, process them and save 
them locally.  

7.2.5 RSS GUIs 
RSS GUIs consist of the GUIs of client-end and server-end application. The server-end 
application can record and show requests from any clients. The client-end application, as 
shown in Figure 7.6, displays the original image and its corresponding processed version 
simultaneously for convenient comparison. 
 
 

 
Figure 7.6 GUI of the client-end application. 
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8 Conclusions 

In this thesis, we have presented several different aspects of improvement of airport 
carry-on luggage inspection using image processing and visualization technologies. 
Figure 8.1 graphically summarizes the main procedure we used to process single-energy 
x-ray images and dual -energy x-ray images. 

8.1 Summary of Contributions 

The primary contribution of our research as presented in this thesis includes the 
identification of optimized combinations of common segmentation and enhancement 
methods, HSI based color- coding methods and two dual-energy image fusion 
algorithms—local spatial information based image fusion and wavelet based image 
fusion.  
 
Optimum combinations of common segmentation and enhancement methods: 
Several combinations of selected common image segmentation and enhancement 
methods were designed and applied to single-energy x-ray images. Two combinations, 
logarithm transform + contrast stretching and image negative + hdome + contrast 
stretching, are particularly effective in enhancing single-energy x-ray luggage images. 
 
HSI based color-coding methods: A color scale called “Springtime” is designed to 
convey both value and shape information. This scale decreases the perceptual artifacts of 
the human visual system in general and simultaneous contrast in particular Additionally, 
constant saturation and variable saturation schemes based on the HSI model are proposed 
to color to preprocessed gray scale data, while decreasing the perceptual artifacts of the 
human visual system. 
 
Dual-energy image fusion algorithms: 
Local spatial information-based image fusion: The approach is based on classifying each 
pixel in the luggage scene into either background pixel or detail pixel, and then 
highlighting detail pixels based on the fact that detail pixels carry the main features of 
interest in the luggage scene. 
 
Wavelet-based image fusion: One of the most important features of dual-energy x-ray 
images is used as a basis of the wavelet based image fusion; Distinct objects in a given 
luggage scene show similar general contours in both high-energy and low-energy images. 
This algorithm incorporates details, uniquely exhibited by the low-energy or high-energy  
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Figure 8.1 Main procedure used to process single-energy and dual-energy x-ray images. 
 
 
x-ray image into the fused version, as well as details existing in both low-energy and 
high-energy x-ray images. 
 
For each of these algorithms, qualitative and quantitative results have been presented to 
demonstrate their effectiveness in improving x-ray luggage images. 

8.2 Future Work 

Extensions to this work may involve the following: (1) More extensive testing the 
preceding algorithms in airports to acquire a more comprehensive feedback and to 
prompt further improvement of these algorithms; (2) Further exploration of objective 
image quality measures. Few existing image quality measures are widely accepted for the 
evaluation of enhanced x-ray images, although many image quality measures have been 
proposed. Therefore, to provide more reliable evaluation results and decrease the 
overhead of human assessments, objective image quality measures that correlate 
acceptably well with the perceived image quality are to be sought. 
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