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Abstract 

 Cowpea (Vigna unguiculata (L.) Walp.) is a warm-season, multi-purpose legume that is 

well-adapted to the southeastern USA and has many traits that make it an attractive forage or 

cover crop for integration into organic production systems, including high rates of nitrogen (N) 

fixation, phosphorus (P) use efficiency, regrowth ability, and high digestibility. Eight cowpea 

cultivars were evaluated under organic management at two locations in summer 2014 for stand 

establishment, forage yield and quality, and weed biomass.  

Charcoal rot [Macrophomina phaseolina (Tassi) Goid.] is a fungal disease that is 

economically important to many host plant species. High temperatures and drought conditions 

favor disease development making it difficult to predict when disease outbreak will occur. 

Cowpea (Vigna unguiculata L. Walp.) is an important crop for many regions of the globe and is 

a host species for M. phaseolina. Efforts have been made to breed genetic lines that are resistant 

to M. phaseolina but little research has been done to screen many popular cowpea cultivars for 

resistance. This study includes an inoculated field trial and greenhouse seedling screening of 

twenty-six cowpea lines to identify resistance to charcoal rot.  
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Introduction 

Cowpea (Vigna unguiculata (L.) Walp.) is a warm-season, multi-purpose annual legume 

that is well-adapted to the southeastern USA and has many traits that make it an attractive 

forage, grain or cover crop for integration into organic production systems, including high rates 

of nitrogen (N) fixation, phosphorus (P) use efficiency, regrowth ability, and high digestibility 

(Singh et al., 1997). Cowpea is native to sub-Saharan Africa where it is commonly grown as a 

dual-purpose crop for both grain and forage production (Boe et al. 1991). Cowpea has the ability 

to improve soil structure with its deep roots and to decrease erosion based on rapid growth and 

soil coverage (Clark, 2007). When properly inoculated cowpea produces large rhizobial root 

nodules fixing between 145 and 224 kg N ha-1 that can potentially be used by intercrops and 

subsequent cool-season forages (Clark, 2007; Creamer et al. 2000; Khandaker, 1994). Cowpea is 

also a rapidly maturing crop with the earliest  flowering at 48 days and maturing by 60 days 

(Clark, 2007). This makes it ideal for organic systems that may need quick forage production, a 

quick legume grain crop, or soil improvement between major crops.  

Organic (and conventional) agricultural production in the southeastern US is often hindered 

during the summer months by anomalous weather patterns including extreme heat, high 

humidity, and periods of drought that can be difficult to predict (Li et al, 2011; Wang et al, 

2010). In addition to increased plant stress and evapotranspiration during these periods, soil 

temperatures rise and water availability becomes limited which reduces nutrient mineralization 

by soil biota (Collins et al., 1990); as such, low-input organic crops can suffer from nutrient 

deficiencies that affect growth and reproduction (Van Bueren et al., 2011). This is also the period 

during which perennial forages and grasses decline in productivity, which can be problematic 

considering that the USDA-organic certification framework requires that for ruminant livestock 
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production that the livestock to graze for the entire grazing season, no less than 120 days, and 

that livestock obtain at least 30% of their dry matter intake from grazing (USDA-AMS, 2015).  

 

Literature Review 

Cowpea is traditionally cultivated in semiarid West Africa where it is at home in dry, 

sandy soils with infrequent rainfall. Considered one of the most important food crops in this 

region, it provides local people with both food and forage for livestock (Quin, 1997). The grain 

is valued for its nutritive quality and serves as a major source of protein in rural areas; the leaves 

and green pods are also consumed as a leafy vegetable (Singh et al., 1997). It is commonly 

intercropped with warm-season grains such as sorghum (Sorghum bicolor) and pearl millet 

(Pennisetum glaucum) where is sustains agricultural production through the hot, dry growing 

season (Singh and Tarawali, 1997). It is particularly useful as a N-fixing legume in this area as 

the soils are generally nutrient poor and need inexpensive carbon and nutrient inputs (Singh et al 

1997). 

Cowpea fixes N2 through symbiotic rhizobial bacteria, which improves soil fertility, and 

could potentially make N available for succeeding crops that may be used in an organic cropping 

system. Dwivedi et al (2002) studied the relationship of soil N uptake between cowpea in 

rotation with rice (Oryza sativa) and wheat (Triticum spp.) in India. They hypothesized that 

cowpea may benefit wheat crops by increasing available organic carbon through root 

decomposition and cowpea root decomposition may favor wheat root growth by allowing wheat 

roots to penetrate into deeper soil layers allowing them access available soil N. In addition 

cowpea was also effective in minimizing nutrient leaching when combine with cereal crops in 

rotation and appropriate fertilizer applications (Dwivedi et al., 2002). 
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Organic cropping systems are often limited by N availability, but in highly weathered 

soils, P-availability can also be an issue due to its low solubility (Krasilnikoff et al, 2003). 

Cowpea has the ability to make inorganic soil P available to the organic pool due to various 

mechanisms in the soil-root interface (Krasilnikoff et al, 2003). Root-hair exudates secrete 

organic acids and phosphatase in to the rhizoshpere allowing for increased crop nutrient uptake 

due to beneficial mycorrhizal colonization (Krasilnikoff et al., 2003; Sanginga et al., 1999). 

However, cowpea genotypes are quite different in their ability to access soil P pools due to 

differences in root growth habit and genotypic differences in soil P uptake ability (Krasilnikoff et 

al., 2003; Sangina et al., 1999). 

 

Weed suppression 

Because cowpea cultivars have many phenotypic characteristics, they can fit an array of 

ecological niches. Cowpea is commonly intercropped with cereals such as sorghum and pearl 

millet (Olufajo et al. 2002). Several studies show that cowpea not only performs well in 

intercropping systems, but may also perform better when intercropped with sorghum-sudangrass 

when compared to monoculture (Creamer et al, 2000; Olufajo et al, 2002). Sorghum-sudangrass 

(Sorghum bicolor x) often has low seed costs and is also effective at suppressing weeds. Creamer 

et al. (2000) found that intercropped sorghum-sudan grass and cowpea were especially efficient 

at weed suppression due to the combined crops’ high biomass and high biomass N. Nelson & 

Robichaux (1997) observed that shorter, bushier cultivars, such as ‘California Blackeye 46’, may 

not be suitable for intercropping due to being shaded by sorghum’s height. Thus a legume-grass 

mixture between cowpea and sorghum-sudangrass may provide sufficient weed suppression, 
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biomass and nutritional content to provide low-cost, low-input organic forage, but cultivar 

selection is crucial when considering production objectives.     

Alder & Chase (2007) expanded the view of cowpea’s weed suppression abilities by 

evaluating its allelopathic potential. Aqueous foliar extracts of cowpea at differing levels (5% 

and 10%) consistently reduced seed germination in both goosegrass (Eleusine indica) and livid 

amaranth (Amaranthus lividus). This suggests that cowpea is an aggressive competitor both 

physically and chemically and can effectively contribute to minimizing herbicide input for 

organic agriculture. Due to its wide phenotype diversity, cowpea cultivars require selection based 

on specific production system traits and objectives.  

 

Insect resistance 

Some common insects that affect global cowpea production in the field are Mexican bean 

beetles (Epilachna varivestis), bean leaf beetles (Cerotoma trifucata), cowpea curculios 

(Chalcodermus aeneus), grasshoppers, aphids, green stink bugs, lesser cornstalk borers, and 

weevils (during seed storage) (Sheahan, 2012). Maruca pod borer and pod bugs infect cowpea 

pods and cause significant damage and yield reduction (Singh, 1997). Cowpea is most 

susceptible to insect infestation during seedling stages.  

Efforts have been made to cross-breed Vigna wild-type species with commercial cowpea 

but species compatibility was low and no viable progeny were produced (Fatokun, 2002). 

Developing insect resistant cultivars of cowpea has proven challenging due to the variety of 

insects present in different regions. It is important to choose insect resistant lines that are 

regionally specific especially for low-input systems that cannot rely on pesticide application 

during infestation.  
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Disease resistance 

Fusarium spp. is of particular interest to cowpea breeders because genetic resistance to 

the fungus is a simple inheritance of one or two gene pairs and is relatively simple to incorporate 

into conventional breeding programs (Singh et al., 1997). The parent breeding line ‘Iron,’ of Iron 

& Clay, is a known carrier for the gene that is resistant to both Fusarium spp. and 

Macrophomina phaseolina and is used extensively by breeders as a source of resistance to both 

(Singh et al., 1997). 

Macrophomina phaseolina (Tassi) Goid. is the causal fungal agent of charcoal rot—a 

soil- borne pathogen that causes economically important yield losses of over 500 different host 

plant species globally (Afouda et al., 2008; Pearson et al., 1984; Su et al., 2000; You et al., 

2011). It is common in subtropical and tropical countries with a semiarid climate and is severe in 

arid regions that often have sustained drought periods (You et al., 2011). Drought stress causes 

negative effects to host plant physiology, weakening plant tissues and predisposing crops to 

infectious facultative parasites such as M. phaseolina (Mayek-Perez et al., 2002). This fungus 

survives in the soil as sclerotia embedded in organic debris or free in soil and can persist due to 

the high number of species in its host range (Abawi and Pastor-Corrales, 1988; Songa et al., 

1997). There is a strong association between the occurrence of drought and susceptibility to M. 

phaseolina (You et al., 2011). Host crops show a variety of disease symptoms that can coincide 

with any stage of development. In seedlings, M. phaseolina can cause pre- or post-emergent 

damping off, black cotyledonary lesions at varying degrees of severity or it can persist in a crop 

showing little to no disease symptoms. In soybean (Glycine max (L.) Merr.), aboveground 

symptoms are typically not apparent until after flowering and reproductive growth has occurred 
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(R5-R7) (Fehr et al., 1971; Mengistu et al., 2007); while in common bean (Phaseolus vulgaris 

L.) damage is mainly significant in the early stages of development (Mayek-Perez et al., 2002). 

Afouda et al. (2008) states that many stress factors are involved in the development of M. 

phaseolina including plant age, high temperatures, and drought stress. Collins et al. (1990) 

showed that water hindered microsclerotial growth and development of M. phaseolina by 

limiting the exchange of O2 and CO2 where microbiological activity was occurring. One genetic 

mechanism that could be involved in charcoal rot development is the ability of the cultivar to 

maintain internal water turgor pressure during water stress (Mayek-Perez et al., 2002). Drought 

stress causes plant tissues to weaken and allows space for microsclerotia to infect the internal 

plant structure blocking xylem vessels and causing plants to wilt (You et al., 2011; Mayek-Perez 

et al., 2002). Mayek-Perez et al. (2002) studied the mechanisms involved in common bean 

resistance to M. phaseolina and concluded those cultivars that showed higher water and turgor 

potentials were more resistant to M. phaseolina than susceptible cultivars; thus, cultivars that are 

resistant to drought stress may also be resistant to root rot pathogens and vice versa. 

 

Drought Tolerance 

The impacts of increased climate variability through climate change portend additional 

challenges for forage crop production. It is likely that plant production in dry regions will 

experience increased losses even beyond those that are currently estimated (Wang et al., 2010). 

Plant characteristics such as high water use efficiency, caused by stomatal closure and greater 

root densities under elevated CO2, may alleviate some drought pressures (Tubiello et al, 2007). 

Thus, species that are capable of producing forage under adverse conditions warrant 

consideration (Boe et al, 1991). Cowpea cultivars have a vast array of phenotypes, some which 
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are photoperiod sensitive and if planted during long days would continue to produce new leaves 

and flowers after drought episodes had past (Anyia & Herzog, 2004; Foster et al, 2009). This is 

an important characteristic for forage situations in particular; cultivars that cannot recover from 

grazing or haying practices will not suitable for this system.  

Mai-Kodomi et al. (1999) distinguishes two types of drought tolerant cowpea. Type 1 

drought tolerant lines discontinued growth after the onset of drought stress and displayed 

declining turgidity in all tissues. The unifoliates, emerging trifoliates and epicotyl gradually dried 

at the same time. Type 2 cultivars remained green for longer and continued trifoliate growth even 

after the onset of drought stress. In a more recent study, Verbree et al (2014) showed that these 

Type 2 drought-tolerant lines that maintain trifoliate growth are a better indicator of tolerance 

during stress. Forages that are chosen for drought periods must remain subsistent in order to 

maintain quality forage and nutrition throughout the season. 

 

Nutrition 

Cowpea grain and forage biomass contain a dense nutritional profile that is beneficial for 

livestock. The grain contains between 22% and 32% protein on a dry weight basis (Fatokun, 

2002; Panella et al, 1993). Fodder haulms are often fed to forage cattle in rural parts of the world 

as a nutritious supplement. Legumes supply ruminants with fermentable nitrogen, other nutrients 

for the rumen microbes, readily fermentable carbohydrates and bypass protein (Khandakar 

1994). It is a major bioavailable source of micronutrients such as zinc and iron (Ojwang et al, 

2012). A varietal nutrient test conducted by Singh (1999) showed that on a fresh weight basis 

(about 10% moisture), the protein content ranged from 20 to 26%, fat content from 0.36% to 

3.34%, iron content from 56 ppm to 95.8 ppm, and manganese content from 5 ppm to 18 ppm 
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(Singh et al., 2002). The grain also contains flavonoids, which are important for their antioxidant 

and anti-inflammatory properties. Ojwang et al (2012) showed that seed coat color had a major 

influence on flavonol composition. The average mean for flavonol content was highest in the red 

phenotype (970 µg/g) and lowest in white phenotypes (270 µg/g). Thus, defining characteristics 

such as seed coat color may be a useful indicator of greater nutritional value in cowpeas.  

Forage quality is defined as the capacity of forage to provide the required nutrients to 

livestock (Amiri et al., 2012). Near infrared reflectance spectroscopy (NIRS) is used to 

determine forage nutritive value quickly and accurately (Norris et al., 1976). The data produced 

by NIRS is a list of forage parameters and measurements. Crude protein (CP) is considered one 

of the most important qualities of forages. Pinkerton and Cross (1991) describe crude protein as a 

good indicator for high forage quality as high protein diets are essential for beef and dairy cattle 

to gain weight and produce milk. However, crude protein cannot be the sole predictor for high 

quality forages because of the limiting nutrient concept. Put simply, any excess of protein will 

not increase animal performance if there is another energy nutrient that is deficient in the diet. 

Thus, other energy and digestibility measurements are also analyzed to gain a complete profile of 

the forage at hand. As a negative performance indicator, fiber measures of ADF and aNDF were 

used to determine the digestibility of the cultivars. Neutral detergent fiber (aNDF) represents all 

cell wall material, while acid-detergent fiber (ADF) represents only the lignified or indigestible 

portions (Amiri et al., 2012, Ball et al., 2007). High ADF and NDF values are negatively 

correlated with digestibility and voluntary forage intake by the animal, respectively (Ball et al., 

2007). Dry matter digestibility (DMD) is a percentage measure representing the digestible 

portion of the sample. It is also measured from the level of ADF present in the sample; as a 

consequence, DMD decreases with increasing lignin (Amiri et al., 2012, Ball et al., 2007). Plant 
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cell walls become lignified at later maturity stages thus reducing the overall forage quality from 

the beginning to the end of the growing season (Pinkerton and Cross, 1991).  

Energy is the other major indicator for forage quality. Total digestible nutrients (TDN) 

are the sum of the digestible fiber, protein, lipid and carbohydrate components of a diet. TDN is 

calculated from ADF and is thus directly related to digestible energy making it a useful 

measurement for forage rations (Rasby, 2014). The net energy system can be broken down into 

several measurements: The net energy for lactation (NEL) is a measure of the amount of feed 

energy available for maintenance and milk production after digestive and metabolic losses. It is 

inversely related to ADF. The net energy for maintenance (NEM) is the energy needed for 

breathing, walking, and performing everyday functions. The net energy for growth or gain 

(NEG) is the amount of feed energy needed for muscle and bone production. (Belyea et al., 

1999; Encinias, 2000; Rasby, 2014). The estimated net energy (ENE) accounts not only for the 

amount of digestible nutrients in a feed or forage but also for the amount of energy which is 

wasted by the livestock and not used for productive purposes, i.e. heat loss (West, 2003). 

Other forage quality parameters can be used to get a more vivid profile of each cultivar. 

Sugars in the form of water-soluble carbohydrates (WSC) include glucose, fructose, sucrose and 

fructans (Suzuki, 1993). These sugars are accumulated and stored in the stem to be later used for 

grain filling (Ritchie et al., 2003). Greater carb storage in stems means improved grain filling 

and increased grain yields, and is often an indicator of the plant transitioning nutrient allocations 

from vegetative to reproductive growth (Huijser and Schmid, 2011). Minerals and vitamins play 

specific roles in forage animals. Calcium (Ca), Phosphorus (P), Potassium (K) and Magnesium 

(Mg) are minerals used in skeletal development and maintenance, nervous system function, 

lactation and also aide in biological energy production (Rasby et al., 2011). 
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Abstract 

Cowpea (Vigna unguiculata (L.) Walp.) is a warm-season, multi-purpose legume that is 

well-adapted to the southeastern USA, having many traits that make it an attractive forage or 

cover crop for integration into organic production systems, including high rates of nitrogen (N) 

fixation, phosphorus (P) use efficiency, regrowth ability, and high digestibility. Eight cowpea 

cultivars were evaluated under organic management at two locations in summer 2014 for stand 

establishment, forage yield and quality, and weed biomass. The experiment was arranged in a 

strip-plot design with two P fertilization rates, amended (45 kg P ha-1) and unamended, to 

evaluate cultivar responsiveness to P fertilization in soils of low native soil P status (Mehlich-1 P 

< 10 mg P kg-1). Cowpea was seeded at 209,000 seeds ha-1, managed organically, and biomass 

harvested twice during the growing season. Stand density four weeks after planting indicated the 

highest plant populations from ‘Iron & Clay’ (166,000 plants/ha), intermediate populations from 

‘Speckled Purplehull’, ‘IT82E-18’ and ‘IT85-867-5F’ (143,000 to 138,000 plant/ha) and lowest 

populations from ‘IAR7/8-5-4-1’, ‘Coronet’, ‘KVx396’, and ‘IT97K-556-4’ (128,000 to 118,000 

plants/ha) likely due to presence of seedling diseases caused by Fusarium spp. Speckled 

Purplehull and Iron & Clay had the highest total yield over both seasons (4922 and 4623 kg ha-1, 

respectively). Annual biomass was least from IT82E-18, Coronet and IAR7/8-5-4-1 (1958 to 

2585 kg ha-1), likely due to low plant populations (IAR7/8-5-4-1, Coronet) and higher weed 
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biomass than cowpea biomass (IAR7/8-5-4-1, Coronet, IT82E-18). There was no statistical 

difference in cowpea biomass (p = 0.16) between plots unamended with soil P and P-amended 

plots (3422 vs. 3150 kg ha-1), or differences in cowpea P-uptake. Annual weed biomass likewise 

did not differ (p = 0.26) between plots unamended with soil P (2398 kg ha-1) and P-amended 

plots (2398 kg ha-1 vs. 2675 kg ha-1). In general, harvest date, cultivar and the interaction 

between harvest date and cultivar significantly affected forage quality (p < 0.05). Speckled 

Purplehull was the only cultivar that was similar to Iron & Clay in both biomass production and 

indicators of forage quality. Results suggest that cultivar choice is an important consideration 

given wide variability in cultivar biomass production, forage nutritive quality and likely 

differences in seedling disease susceptibility. 

 

Abbreviations: NIRS, near infrared reflectance spectroscopy; CP, crude protein; ADF, acid 

detergent fiber; NDF, neutral detergent fiber; TDN total digestible nutrients, DMD, dry matter 

digestibility; WSC, water soluble carbohydrate; ENE, estimated net energy; NEL, net energy for 

lactation; NEM, net energy for maintenance; NEG, net energy for gain 

 

Introduction 

Organic cropping systems in the southeastern US can be limited by low soil N, weed 

pressure, insect and disease pressure, lack of commercially-available adapted cultivars for 

organic systems, and the highly weathered, low organic matter soils common in the region. In 

systems that integrate organic livestock production at the farm scale with crop production, there 

are additional issues, such as the difficulty in producing adequate quantity and quality of forage 

for grazing livestock during hot and potentially droughty summer months. During this period, air 
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and soil temperatures are often elevated and soil water potential is often reduced which increases 

plant stress and can reduce nutrient mineralization by soil biota. This is also the period during 

which cool-season perennial grasses decline in productivity and quality (Rao and Northup, 

2009). 

Integrating cowpea (Vigna unguiculata (L.) Walp.) into existing organic crop rotations 

can help address many of these issues. As a warm-season legume native to sub-Saharan Africa, 

cowpeas are drought and heat tolerant and fix N, making them a promising summer crop for 

organic production systems in the region (Ehlers and Hall, 1997). They require few inputs and 

can enhance or maintain soil fertility through N fixation and efficient uptake of poorly soluble 

soil P (Sangina et al., 2000). In association with Bradyrhizobium spp., they produce large 

rhizobial root nodules fixing between 145 kg and 224 kg N ha-1 that can be used by intercrops 

and subsequent cool-season forages (Clark, 2008; Creamer et al., 2000; Khandaker, 1994).  

Cowpea is known by many common names including southern field pea, crowder pea, 

cream pea, zipper pea, purple hulls, pink eyes, and black-eyed pea. These common names refer 

to different market classes of the same species and the lack of consistent common name 

recognition has impeded the development and adoption of new cultivars. The high degree of 

genetic diversity in cowpea has caused further confusion. Great varietal diversity exists with 

cultivars targeted for fresh vegetable, dry grain, forage, and/or cover crop use, but there is little 

research or guidance for growers on varietal selection or how to integrate cowpeas into organic 

forage production systems. Many of the cultivars tested in this study historically served dual 

purposes as grain or forage producers. For example, the widely grown ‘pink-eye’ cultivar 

Coronet is often grown for grain production, but is an erect cultivar that produces tendrils (Hall 

et al., 2003). Cultivars differ in growth habit and phenotypic attributes such as seed size, seed 
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coat color, pod color and flower color, photosensitivity, determinacy, and nutritional value 

(Ehlers et al., 1997). Growth habits range from erect, semi-erect, semi-prostrate or prostrate and 

determinate, bushy growth to indeterminate, tendriling growth. Whereas cowpea demonstrating 

an erect, determinate growth habit will likely be more suitable for mechanical harvest of dry 

grain; prostrate, indeterminate cowpea cultivars could be more valuable as forages or cover crops 

where maximum ground cover and biomass accumulation are essential functional traits (Harrison 

et al., 2006). 

Photosensitivity plays a part in regional cowpea adaptability in that many cultivars are 

short-day photosensitive. These cultivars are late maturing in the United States and often don’t 

produce pods until very late in the growing season. Photoperiod sensitive cultivars have the 

potential to produce much more biomass if planted during longer day-lengths due to the extended 

duration of the vegetative stage preventing early transition into reproductive growth (Ehlers et 

al., 2002a, Hall et al., 2003). The photosensitive cultivar Iron & Clay produces a large amount of 

biomass throughout the season and has rapid regrowth ability given that nutrient allocation for 

grain production is delayed until daylight hours are significantly shorter in the fall. Iron & Clay 

is widely marketed as a cover crop and forage for being resistant to root-knot nematodes 

(Meloidogyne spp.; Ehlers et al., 2002b, Hall et al., 2003), highly competitive with various weed 

species (Wang et al., 2004), and is often the standard cultivar used extensively in cover crop 

research (Harrison et al., 2006). Iron & Clay serves as a control cultivar in this study as it is 

perhaps the only widely-available forage cowpea cultivar in the southeastern USA.  

Pinkerton and Cross (1991) describe crude protein as a good indicator for high forage 

quality as high protein diets are essential for beef and dairy cattle to gain weight and produce 

milk. However, crude protein cannot be the sole predictor for high quality forages because 
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adequate protein will not increase animal performance if other nutrients are limiting. As a 

negative performance indicator, fiber measures of acid-detergent fiber (ADF) and neutral 

detergent fiber (NDF) are used to estimate the digestibility and intake of animals consuming the 

forage. All cell wall material is represented by NDF, while ADF represents only the lignified or 

indigestible portions (Amiri et al., 2012, Ball et al., 2007). High ADF and NDF values are 

negatively associated with digestibility and voluntary forage intake by the animal, respectively 

(Ball et al., 2007). Plant cell walls typically become more lignified at later maturity stages, thus 

reducing the overall forage quality from the beginning to the end of the growing season 

(Pinkerton and Cross, 1991).  

Total digestible nutrients (TDN) is the sum of the digestible fiber, protein, lipid and 

carbohydrate components of a diet. Total digestible nutrients are calculated from ADF and is 

thus directly related to digestible energy making it a useful measurement for forage rations 

(Rasby, 2014). The net energy system can be broken down into several measurements: The net 

energy for lactation (NEL) is a measure of the amount of feed energy available for maintenance 

and milk production after digestive and metabolic losses. It is inversely related to ADF. The net 

energy for maintenance (NEM) is the energy needed for breathing, walking, and performing 

everyday functions. The net energy for growth or gain (NEG) is the amount of feed energy 

needed for muscle and bone production (Belyea et al., 1999; Encinias, 2000; Rasby, 2014). The 

estimated net energy (ENE) accounts not only for the amount of digestible nutrients in a feed or 

forage but also for the amount of energy that is wasted by the livestock (i.e. heat loss) and not 

used for productive purposes (West, 2003). 

Sugars in the form of water-soluble carbohydrates (WSC) include glucose, fructose, 

sucrose and fructans (Suzuki, 1993). These sugars are accumulated and stored in the stem to be 
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later used for grain filling (Ritchie et al., 2003). Greater carbohydrate storage in stems may 

improve grain filling and increase grain yields, and is often an indicator of the plant transitioning 

nutrient allocations from vegetative to reproductive growth (Huijser and Schmid, 2011). 

Minerals and vitamins play specific roles in forage animals. Ca, P, K and Mg are minerals used 

in skeletal development and maintenance, nervous system function, lactation and also aide in 

biological energy production (Rasby et al., 2011).  

The objectives of this research were (i) to evaluate cowpea cultivar performance 

(establishment, biomass, regrowth and weed competitiveness) as a forage crop under organic 

management in the southeastern US, (ii) evaluate cowpea cultivar response to fertilizer P in low 

native P soils, and (iii) to evaluate cowpea cultivar forage quality.  

 

Materials and Methods 

In May 2014 a randomized complete block design with a strip plot was established in two 

locations at the Organic Crops Unit of the East Tennessee Agricultural Research and Education 

Center in Knoxville, TN, USA (OCU) and the University of Tennessee Plateau Research and 

Education Center (PREC) in Crossville, TN. Soil types were a Dewey loam (fine, kaolinitic, 

thermic Typic Paleudult) at the OCU and a Lily loam (fine-loamy, siliceous, semiactive, mesic 

Typic Hapludult) at PREC. The site at the OCU is USDA-certified organic. At each location, 

four blocks were established each containing two main plots (17.1 by 7.6-m) randomly assigned 

as either amended or unamended with P. Within each block, eight subplots 2.1-m wide were 

randomly assigned to one of eight cowpea cultivars, creating a strip-plot design with 2.1-m by 

7.6-m plots as the experimental unit. Within each plot, four rows (38-cm spacing) were planted 

with a plot drill equipped with seed metering belt cones (OCU,ALMACO, Nevada, IA, USA; 
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PREC, Hege Maschinen, Waldenburg, Germany) at a seeding rate of 209,000 seeds ha-1 to the 

entire plot length (7.6-m). Cowpea cultivars included were: Iron & Clay, IT97K-556-4, KVx396, 

IT85F-867-5, IT82E-18, Speckled Purple Hull, IAR7/8-5-4-1, and Coronet (Table 2). Due to 

limited seed availability, cultivar germination was assessed by planting 3 replicates of 10 seeds 

in 10 cm pots filled with moist sand. All cultivars were confirmed to germinate at a rate of 80% 

or above, with no significant differences (p > 0.05) among cultivars. Cultivars were chosen based 

on their history of use as a cover crop and forage in the southeastern US (Iron & Clay), observed 

indeterminate habit and high biomass in preliminary trials (Speckled Purplehull and IT97K-556-

4), and more determinate cultivars with potential for multipurpose use (Coronet, IAR7/8-5-4-1 

and IT83E-18). All seeds were untreated and were sourced from seed produced in preliminary 

trials at the University of Tennessee. Cowpea seed was inoculated with N-Dure Bradyrhizobium 

sp. (Vigna) inoculum (INTX Microbials, Kentland, IN, USA) immediately prior to seeding. 

Planting dates were May 23, 2014 at OCU and June 4, 2014 at PREC. 

Soils at the OCU and PREC were both sampled in the fall of 2013 to confirm low native 

soil P status (Mehlich-1 P < 10 mg P kg-1). At the OCU, winter cover crops of triticale 

(xTriticosecale Wittm.) and crimson clover (Trifolium incarnatum L.) preceded cowpea in 

rotation. The cover crop was mowed with a flail mower and then incorporated with a disk. At 

PREC, winter wheat (Triticum aestivum) was mowed and incorporated with a disk. Bone meal 

was applied in P-amended plots at both sites at a rate of 44.8 kg P ha-1 and amended by hand 

broadcasting throughout main plots. At the PREC location, previous season soil tests indicated 

low soil K and the entire site was amended at a rate of 74 kg K ha-1(KCl). Data on rainfall and 

temperature averages were collected from weather stations at each site equipped with 
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precipitation gauges and temperature sensors (OCU, Vantage Pro2, Davis Instruments Corp., 

Hayward, CA, USA; PREC, CR3000 datalogger, Campbell Scientific, Logan, UT, USA). 

Stand counts were recorded on June 20, 2014 at the OCU and June 25 at PREC by 

counting every germinated, live cowpea in each plot. No weed control operations were 

performed during the course of the study other than mowing at harvest. Plots were harvested at 

the OCU on August 15, 2014 and again on October 2, 2015 and August 13, 2014 and September 

24, 2014 at PREC. Cowpeas were at early bloom (R1) to early pod filling (R3) prior to the first 

harvest and regrew to seeding stages (R5 to R6) at the second harvest. Subsamples of weed and 

cowpea biomass were taken prior to harvest. In the outer two rows, 1.8 linear m of cowpea were 

cut to 2 cm above the soil surface and collected for cowpea quality analyses. Weed biomass was 

sampled from three, 0.25-m2 areas (2-cm above the soil surface) to assess total weed dry matter. 

A 5.8-m2 (7.6-m x 0.76-m) harvest area of the center two rows of each plot were then cut at a 

height of 15 to 20-cm using a flail-type forage harvester (OCU, ALMACO, Nevada, IA, USA or 

Swift Machine and Welding Ltd., Swift Current, SK, Canada; PREC, Carter Manufacturing 

Company Inc., Brookston, IN, USA). Fresh weight of bulk-harvested biomass was determined in 

the field at harvest. Subsamples from the bulk biomass were collected and oven-dried (65°C for 

72 hours) and weighed to determine bulk forage moisture content. Samples of cowpea for quality 

analyses and weed biomass samples were similarly oven-dried and then weighed. Cowpea 

samples for forage quality were ground in a lab grinder (Thomas Model 4 Wiley Mill, Thomas 

Scientific, Swedesboro, NJ, USA) through a 1-mm sieve. Cowpeas were ground as the entire 

plant including stems, leaves and pods, if present. The grinder was thoroughly cleaned between 

samples to avoid sample cross-contamination.  
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Forage samples were analyzed using near-infrared spectroscopy (NIRS) using a “mixed 

legume” calibration equation typically used for forage soybeans (Foss 6500, Eden Prairie, MN, 

USA). Parameters analyzed included: total protein, acid detergent fiber (ADF), neutral detergent 

fiber (NDF), minerals (Ca, Mg, P, K), lignin, water soluble carbohydrates (WSC), total digestible 

nutrients (TDN), estimated net energy (ENE), net energy for lactation (NEL), net energy for 

maintenance (NEM) and net energy for gain (NEG). 

Three soil cores (1.75-cm internal diameter) were sampled a depth of 0 to 15-cm from 

each plot on June 25 and October 15, 2014 at OCU and on June 26 and October 16, 2014 at 

PREC. Samples were taken several weeks after applying P amendments and at the end of the 

study just after the second harvest date. Soils were air-dried and then gently crushed with a 

mortar and pestle and sieved (2-mm). The method described by Sims et al. (1995) and Sims 

(2006) was used to determine soil inorganic N (NH4-N + NO3-N + NO2-N). Briefly, 

approximately 5-g of air-dried, sieved soil was placed into a tared centrifuge tube and exact soil 

weight recorded. Soil was extracted with 40 mL of 1-M KCl on a reciprocating shaker for 60 min 

at 180 rpm, then centrifuged at 3500 rpm for 5 min before filtering the supernatant (Whatman 42, 

Whatman Ltd., Kent, United Kingdom). Concentration of inorganic N constituents in filtrate was 

determined using a microplate reduction technique and absorbance measured at 550 nm 

(Powerwave XS, Biotek, Woonooski, VT, USA). Extractable soil P was determined by adding 

Mehlich-1 extractant (0.0125 M H2SO4 + 0.05 M HCl; Mehlich 1953) at a ratio of 20mL per 5-g 

soil and extracting by shaking for 5 min at 180 rpm. Samples were centrifuged for 5 min at 3500 

rpm and supernatant filtered prior to colorimetric analysis for P concentration. Filtrate was 

analyzed using the microplate method described by D’Angelo et al. (2001) where dissolved 

phosphates in soil extracts were reacted with ammonium molybdate tetrahydrate and then 
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Malachite green carbinol hydrochloride in polyvinyl alcohol. Concentrations of inorganic P were 

determined by measuring absorbance at 630 nm (Powerwave XS). Final concentration of 

extracted N and P in soils was determined based on extract concentrations and exact weight of 

extracted soil.  

Analysis of variance was performed using mixed models (PROC GLMMIX, SAS 9.4, 

Cary, NC, USA) and least squares means computed and separated with LSD. Differences 

between means were considered significant at p ≤ 0.05. Total annual cowpea biomass, total 

annual weed biomass and stand density were analyzed using a randomized complete block 

design with a split plot. Cultivar and applied soil P and their interaction were considered fixed 

factors in the model, and site, block (nested within site), and the interaction of block with fixed 

effects (cultivar, soil P and their interaction). For response variables associated with harvest 

dates, cultivar, soil P, harvest and their interactions were considered as fixed factors and site, 

block (nested within site), and the interaction of block with cultivar, block with soil P and block 

with cultivar x soil P considered as random effects. 

 

Results and Discussion 

Precipitation from May through October at the OCU totaled 400 mm and rainfall was 

variable throughout the season (Figure 1a). From planting (May 23, 2014) to the first harvest at 

the OCU (August 15, 2014), plots received 300 mm of total rainfall. In the six weeks from the 

first harvest to the second harvest (October 2, 2014) plots received 100 mm of total rainfall with 

70% of that occurring on just four days. At PREC, total precipitation was higher at 480 mm, 

including 136 mm occurring in the month of June (Figure 1b). Rainfall totaled 274 mm from 

planting (June 4, 2014) to the first harvest (August 13, 2014) and 206 mm from the first harvest 
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to the second harvest (September 23, 2014). Average temperatures were similar between the two 

locations (Figures 1a and 1b). From planting to the first harvest the average temperature was 

23˚C at the OCU and 22˚C at PREC. From the first harvest to the second harvest the average 

temperature was 22˚C at both locations.  

Mehlich I soil P was influenced by P amendment (p < 0.001) and sampling time (p < 

0.05), but not the interaction. Increased soil P was observed in P-amended plots with 14.7 mg P 

kg-1 soil as compared to 10.6 mg P kg-1 soil in unamended plots averaged over sampling date. 

Soil P was higher at the June sampling dates (13.5 mg P kg-1 soil) than the October sampling 

dates (11.8 mg P kg-1 soil), averaged across amended and unamended plots. Inorganic soil N was 

affected by sampling time (p < 0.001), but not cultivar or the interaction. Inorganic soil N was 

higher at the June samplings (21.5 mg N kg-1 soil) than on the October samplings (7.5 mg N kg-1 

soil). 

 

Cowpea performance 

Stand density four weeks after planting indicated the highest plant populations from Iron 

& Clay (166,000 plants ha-1), intermediate populations from Speckled Purplehull, IT82E-18 and 

IT85F-867-5 (143,000 to 138,000 plants ha-1) and lowest populations from (IAR7/8-5-4-1, 

Coronet, KVx396, and IT97K-556-4; 128,000 to 118,000 plants ha-1) (Figure 2).  Diseased 

seedlings were collected from plots to verify causal pathogens, and both Fusarium spp. and 

Macrophomina phaseolina were identified (Shrestha et al., unpublished data). Fusarium spp. is 

of particular interest to cowpea breeders because genetic resistance to the fungus is a simple 

inheritance of one or two gene pairs and is relatively simple to incorporate into conventional 

breeding programs (Singh et al., 1997). The parent breeding line ‘Iron,’ of Iron & Clay, is a 
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known carrier for the gene that is resistant to both Fusarium spp. and Macrophomina phaseolina 

and is used extensively by breeders as a source of resistance to both (Singh et al., 1997). These 

results suggest that cultivars evaluated likely differ widely in resistance or tolerance to seedling 

pathogens, and is an area that requires further study, especially for organic production. Given 

limited seed treatments available for organic production, planting at a higher seed densities may 

be necessary for cultivars that are less resistant to these diseases to still produce an adequate 

plant density for crop productivity (Hwang et al., 2007).  

Cowpea biomass at each harvest was significantly influenced by cultivar only (p < 0.001; 

(Table 1).  Speckled Purplehull and Iron & Clay had the highest average biomass per harvest 

(2446 and 2330 kg ha-1, respectively) and biomass was least from IAR7/8-5-4-1, IT82E-18 and 

Coronet (1302 to 983 kg ha-1). The first harvest average biomass (1707 kg ha-1) did not differ 

from the second (1585 kg ha-1). Although not significant (p > 0.05), Iron & Clay and Speckled 

Purplehull biomass was over 500 kg ha-1 higher than other cultivars on both harvest dates (Table 

3a). Both of these cultivars are indeterminate and produce tendrils (Table 2) allowing them to 

spread across rows and completely cover inter-row space effectively shading out all but the taller 

and more competitive weeds (Wang et al., 2006). Notably, photosensitive Iron & Clay was still 

in a vegetative growth stage when the first harvest occurred in August 2014 allowing it to 

quickly re-establish its leafy biomass, which was maintained until final harvest in October 2014. 

Annual cowpea biomass was significantly influenced by cultivar (p < 0.001), but not soil 

P (p = 0.16) or the interaction (p = 0.77; Table 1. Speckled Purplehull and Iron & Clay had the 

highest annual cowpea biomass (4922 and 4623 kg ha-1, respectively; Figure 3). Annual biomass 

was least from IAR7/8-5-4-1, Coronet and IT82E-18 (2585 to 1958 kg ha-1), likely due to low 

plant populations (IAR7/8-5-4-1, Coronet) and greater weed biomass than cowpea (IAR7/8-5-4-
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1, Coronet, IT82E-18). Interesting, although not statistically significant (p = 0.16), there was a 

trend of higher annual cowpea biomass in unamended soil P plots compared to amended plots 

(3422 kg ha-1 vs. 3150 kg ha-1). Sanginga et al. (2000) evaluated cowpea breeding lines under P-

amended and unamended environments for performance indicators such as dry matter 

production, N-fixation, P use efficiency, and arbuscular mycorrhizal fungi (AMF) symbioses. 

They concluded that P use efficiency varies widely within cowpea germplasm with some 

cultivars not responding to P amendments even in low P soils. This study evaluated 94 cowpea 

breeding lines, only one of which was included in our forage study (IT82E-18). Our results 

suggest that at the low soil P ranges in the Ultisols evaluated in our study (Mehlich 1 P at 5 to 10 

mg P kg-1 soil), these cowpea cultivars are unlikely to respond to P fertilizer application. Cowpea 

may be a particularly useful forage crop for sites in the southeastern USA with low soil P values. 

Weed biomass at each harvest was significantly affected by harvest date (p < 0.001) 

(Table 1), but not by soil P (p = 0.19), cultivar (p = 0.45), or any interactions (p > 0.05; Table 1). 

The first harvest (1488 kg ha-1) produced significantly more weed biomass than the second 

harvest (893 kg ha-1). Annual weed biomass was not significantly affected by cultivar (p = 0.14), 

soil P (p = 0.26) or the interaction (p = 0.21). Interestingly, the trends indicated higher annual 

weed biomass from P-amended plots compared to unamended plots (2675 kg ha-1vs 2398 kg ha-

1) indicating that that the addition of P may give grass weed populations a slight competitive 

advantage due to increased P availability and the cowpea cultivars’ neutral response to added P 

(Sanginga et al., 2000). Wang et al. (2006) looked at three cowpea cultivars (Iron & Clay, 

IT89KD-288 and UCR 277) of differing phenotypic growth habits (erect, semi-erect and 

prostrate, respectively) against four densities of two weed species with differing statures, 

common purslane (Portulaca oleracea) and common sunflower (Helianthus annuus). They 
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concluded that cowpea biomass declined as weed density increased but the pattern of reduction 

varied with weed species’ stature. At the OCU, while there was still vigorous cowpea growth 

from some indeterminate cultivars, the determinate, bushy cultivars such as Coronet and IT82E-

18 seemed poor competitors with the taller grasses (i.e., fall panicum). High biomass cowpea at 

PREC in competition with much shorter sedge, canopied more completely and were able to more 

effectively compete for light within the plots. These cultivars (Iron & Clay, Speckled Purplehull, 

IT97K-556-4) are either photosensitive or displayed indeterminacy and tendriling to achieve 

maximum ground coverage and weed suppression for the length of the growing season (Table 2).  

If growing cowpeas as cover crop for weed competition, it is recommended that a 

producer choose a cultivar that has a competitive ability over endemic weed species. Growth 

habit, determinacy and photosensitivity all play a part in the phenotypic behavior of cowpea. Iron 

& Clay and IT97K-556-4 are both photosensitive and rely on short day lengths in the late 

summer and early fall to produce pods, thus they produce only vegetative biomass for the 

majority of the season and actively regrow that biomass after grazing or harvesting. Cultivars 

that tendril or display indeterminacy can produce rapidly growing biomass with good ground 

coverage. Determinate cultivars such as Coronet and IT82E-18 will produce less biomass for an 

organically managed forage system with vigorous weed populations. Iron & Clay, IT97K-556-4 

and Speckled Purplehull are indeterminate cultivars and provide good coverage throughout the 

plot, suggesting that determinacy is a more effective indicator of weed suppressive ability than 

growth habit.  
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Forage quality 

Cultivar significantly (p < 0.01) affected forage quality for all quality components except 

lignin in which the interaction of cultivar and harvest was significant (p < 0.001; Table 3). 

Harvest and the interaction between harvest and cultivar were also significant for all quality 

components (p < 0.05). There were no significant three-way treatment interactions (p > 0.05; 

Table 1). 

Speckled Purplehull, IT85F-867-5 and Iron & Clay had the highest total forage protein 

content based on biomass and protein percentage at 1164, 664, and 633 kg protein ha-1, 

respectively. Coronet and IAR7/8-5-4-1 had the lowest protein production at 277 and 412 kg 

protein ha-1, respectively (Figure 4). The first harvest (654 kg protein ha-1) produced almost 100 

kg ha-1 more protein than the average of the second harvest (551 kg protein ha-1). Buxton et al. 

(1996) stated that as a forage legume matures, voluntary intake declines and this quality decline 

is more closely related to plant maturity rather than plant age. Cowpeas were harvested at early 

bloom (R1) to beginning pod development (R3) after the first harvest and then matured to 

beginning seed (R5) to full seed after the second harvest (R6). Forages, especially warm season 

legumes, mature more rapidly in warm environmental conditions than in cooler conditions 

(Buxton et al., 1996). Typically, the southeastern US does not experience consistent cooler 

temperatures until mid to late October; thus, these cowpeas were exposed to high temperatures 

and inconsistent precipitation throughout the growing season allowing them to mature rapidly 

after the first harvest (Figure 1). 

The percentage of protein content also differed among cultivars (p < 0.001) with IAR7/8-

5-4-1and KVx396 having the highest protein proportion in biomass at 205 g protein kg-1 of 

biomass (20.5%) and 204 g protein kg-1, respectively (Figure 4). Coronet and IT85F-867-5 had 
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the lowest protein content 161 g protein kg-1 and 185g protein kg-1, respectively. The first harvest 

had a greater percentage of protein 206 g kg-1 than the second harvest 177 g protein kg-1 ( p < 

0.001) but the interaction between cultivar and harvest was not significant (p > 0.05) (Table 1).  

Cultivar, harvest date and the interaction between cultivar and harvest date significantly 

affected both ADF and NDF (p < 0.01; Table 3). IT97K-556-4, IT82E-18, and Iron & Clay had 

the highest ADF at 278, 271, and 271 g ADF kg-1, respectively, indicating more fiber content and 

less animal digestibility. Alternately, KVx396 and IAR7/8-5-4-1 had the lowest ADF at 247 and 

241 g ADF kg-1, respectively, indicating less fiber content and greater digestibility (Amiri et al., 

2012; Ball et al., 2007). Harvest significantly (p = 0.001) affected ADF with the second harvest 

having greater ADF (268 g ADF kg-1) compared to the first (257 g ADF kg-1). Similarly, IT97K-

556-4, Iron & Clay and IT82E-18 had the highest NDF at 365, 347, and 344 g NDF kg-1, 

respectively (p < 0.001), indicating likelihood of less intake by grazing livestock. IAR/8-5-4-1 

and KVx396 had the lowest NDF at 305 and 316 g NDF kg-1, respectively, indicating likelihood 

of higher voluntary intake by the grazing animal (Ball et al., 2007; Table 3). As expected, 

digestibility was highest in earlier maturity stages (Buxton, 1996). Lignin content was influenced 

by harvest (p < 0.0001) and the interaction between harvest and cultivar (p < 0.001), but not 

cultivar (p = 0.12) or soil P (p > 0.05; Table 3). Lignin content was highest after the second 

harvest (37.8 g lignin kg-1 vs. 28.7 g lignin kg-1) in all cultivars, which is expected, as lignin is 

more prevalent in plants that are more mature (Ball et al., 2007; Buxton, 1996; Muir et al., 

2008). Muir et al. (2008) in a study with nine warm-season legumes (including Iron & Clay 

cowpea), reported that the crude protein values decreased from early season to late season in all 

species. Similarly, Cherney and Cherney (2002) and Ball et al. (2007) state that plant maturity is 

the primary cause for legume forage quality decline. The cultivar by harvest interaction indicates 
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relative differences of nutritional quality among cultivars and changes in chemical composition 

of cultivars as they transition from vegetative to reproductive growth stages (Schut et al., 2010). 

In this study, the harvest by cultivar interaction was significant for most parameters indicating 

that the relationship of quality amongst cultivars differed over the two harvest dates. Thus, 

earlier growth stages of these cultivars will provide higher quality forages with less lignin and 

indigestible fibers. 

Minerals Ca, Mg, P, and K all were significantly influenced by cultivar (p < 0.01), 

harvest (p < 0.001), and the interaction (p < 0.01) but not soil P (p > 0.05; Table 4). All cultivars 

contained between 8.7 and 9.1 g Ca kg-1 except Coronet, which was lower at 8.2 g Ca kg-1 (p = 

0.009). The first harvest contained 9.2 g Ca kg-1compared to 8.3 g Ca kg-1 at the second harvest. 

The highest biomass P content was observed from IT82E-18 (3.2 g P kg-1), IAR7/8-5-4-1 (3.2 g 

P kg-1) and KVx396 (3.1 g P kg-1), and the lowest in Coronet (2.8 g P kg-1) and IT85F-867-5 (2.9 

g P kg-1). The first harvest contained 3.1 g P kg-1 and the second harvest contained 2.9 g P kg-1. 

All cultivars had a higher P content after the first harvest than the second harvest. The highest 

Mg content occurred in IT82E-18 (4.7 g Mg kg-1), IT97K-556-4 (4.4 g Mg kg-1) and IT85F-867-

5 (4.2 g Mg kg-1) and the lowest content in Coronet (3.8 g Mg kg-1) and KVx396 (4.1 g Mg kg-1). 

The first harvest contained 4.4 g Mg kg-1while the second harvest had 4.0 g Mg kg-1. All 

cultivars had higher Mg content after the first harvest than the second harvest, except for 

Coronet, which had a lower Mg content after the first harvest (3.7 g Mg kg-1) than the second 

(3.9 g Mg kg-1; Table 3b). KVx396 and IAR7/8-5-4-1 both contained the highest K content at 23 

g K kg-1 with Speckled Purplehull and IT97K-556-4 both containing 22 g K kg-1. Coronet was 

the lowest in K content at 20.6 g K kg-1. K content was higher after the first harvest (23 g K kg-1) 

and lower after the second harvest (21 g K kg-1). Overall, minerals declined from the first harvest 
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to the second, further supporting that nutrient forage quality and content quantity decreases with 

plant maturity (Buxton, 1996).  

WSC were influenced by cultivar (p < 0.001), harvest (p < 0.01) and the interaction 

between harvest and cultivar (p < 0.05; Table 5). Coronet, IT85F-867-5 and IAR7/8-5-4-1 are 

more typical of grain-type cultivars and contained the most WSC at 183, 166 and 158 g WSC kg-

1, respectively. IT97K-556-4 contained just 139 g WSC kg-1, which is likely due to the 

photosensitivity of this cultivar (Table 2). Photosensitivity can cause plants to transition to 

reproductive growth much later in the growing season when the day length shortens if they are 

planted during longer day lengths. Lower WSC in photosensitive cultivars suggests that the plant 

has not fully transitioned to reproductive grain filling (Ritchie et al., 2003; Huijser and Schmid, 

2011). Indeed, although IT97K-556-4 produces substantial biomass, it is a difficult cultivar to 

harvest for grain or seed expansion in the southeastern USA as the first frost in late October to 

early November often damages the plants before the pods are harvestable.  

Total digestible nutrients (TDN) were influenced by cultivar (p < 0.01), harvest (p < 

0.01), and the interaction between harvest and cultivar (p < 0.001) but not soil P (p > 0.05; Table 

5). IAR7/8-5-4-1, KVx396, and Coronet contained the highest TDN at 750, 744 and 726 g TDN 

kg-1, respectively. IT82E-18 and IT97K-556-4 had the lowest TDN at 716 and 709 g TDN kg-1, 

respectively. The first harvest (733 g TDN kg-1) on average contained more digestible nutrients 

than the second harvest (720 g TDN kg-1). Cultivar (p < 0.01), harvest (p < 0.01) and the 

interaction between harvest and cultivar (p < 0.001) but not soil P (p > 0.05; Table 6) influenced 

estimated net energy content (ENE). IAR7/8-5-4-1, KVx396, and Coronet had the highest means 

at 645, 639 and 623 g ENE kg-1, respectively, while IT82E-18 and IT97K-556-4 contained the 

lowest energy at 614 and 607 g ENE kg-1 respectively. The three net energy parameters (NEG, 
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NEL, NEM) were all influenced by cultivar (p < 0.01), harvest (p < 0.01) and the interaction 

between harvest and cultivar (p < 0.001) and not soil P (p > 0.05; Table 6). IAR7/8-5-4-1, 

KVx396, and Coronet all had the highest means for each. IT82E-18 and IT97K-556-4 had the 

lowest values (Mcal kg-1) in all three energy parameters.  

 

Conclusions 

Cultivars Iron & Clay and Speckled Purplehull produced the greatest biomass over the 

two sites, suggesting that they offer the greatest potential for forage or cover crop use in regional 

organic and low-input systems of the cultivars evaluated. Both cultivars display indeterminate 

growth, high biomass, and are high in protein. Indeterminate cultivars were more competitive 

with weeds than determinate cultivars because they were able to cover more surface area in the 

plot. They both produced relatively high stand densities, suggesting that they are potentially 

more resistant to endemic seedling diseases. Soil P amendments can have conflicting effects in 

an organically managed system. Many cowpea accessions are not screened for P use efficiency 

and cultivars screened in this trial did not respond to P fertilization in low P soils. Our results 

also suggest that P amendment may increase relative competitiveness of weeds with cowpea in 

these low P soils under organic management.  
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Table 1. Mixed models analysis of variance for all response variables as affected by soil P, 
cowpea cultivar, harvest (where applicable) and their interactions 
 

 Soil P Cultivar Cult. x 
soil P Harvest Soil P x 

harvest 
Cult. x 
harvest 

Soil P x 
cult. x 
harvest 

 ---------------------------------------p-value-------------------------------------- 
Stand 
Count NS† <0.001 NS n/a n/a n/a n/a 

Annual 
cowpea 
biomass 

NS (0.16) <0.001 NS n/a n/a n/a n/a 

Annual 
weed 
biomass 

NS (0.26) NS (0.14) NS (0.21) n/a n/a n/a n/a 

Cowpea 
biomass NS <0.001 NS NS NS NS NS 

Weed 
biomass NS NS NS <0.001 NS NS NS 

Protein 
(kg ha-1) NS <0.001 NS <0.001 NS NS NS 

Protein 
(%) NS <0.001 NS <0.001 NS NS NS 
†NS= not significant, p > 0.05 
n/a= Not applicable  
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Table 2. Cowpea cultivar descriptors collected from visual field observation (Verbree; 
unpublished data).  
 

Cultivar Name Origin Days to 
flowering 

Days to 
maturity 

Seed 
weight 
(100-

seeds; g) 

Photo-
sensitivity 

Growth 
habit Determinacy 

Iron & Clay 

U.S. Department of 
Agriculture-Agricultural 

Research Service 
Georgia, USA 

83 110 11.3 Yes Semi-
prostrate Indeterminate 

Speckled 
Purplehull  Georgia, USA 58 83 17.7 No Erect Indeterminate 

IT97K-556-4 
International Institute of 

Tropical Agriculture 
(IITA), Nigeria 

83 110 17.3 Yes Semi-
prostrate Indeterminate 

KVx396 

Institut de 
l'Environnement et 

Recherches Agricoles 
(INERA), Burkina Faso 

52 87 13.8 No Erect Determinate 

IT85F-867-5 
International Institute of 

Tropical Agriculture 
(IITA), Nigeria 

37 64 13.8 No Erect Indeterminate 

IAR7/8-5-4-1 Institute for Agricultural 
Research (IAR), Nigeria 54 90 15.4 No Semi-

erect Determinate 

IT82E-18 
International Institute of 

Tropical Agriculture 
(IITA), Nigeria 

40 64 16.9 No Erect Determinate 

Coronet University of Georgia, 
USA 37 83 17.1 No Semi-

prostrate Determinate 

  



 43 

Table 3. Cowpea cultivar and harvest effects on forage quality fiber parameters acid detergent 
fiber (ADF), neutral detergent fiber (NDF) and lignin as a proportion of biomass and on a mass 
basis. Within columns, means followed by the same letter are not significantly different, p > 
0.05. 

Cultivar Harvest Biomass  ADF NDF Lignin 
(kg ha-1) (g kg-1) (g kg-1) (g kg-1) 

Iron & Clay 
1st 2431 ab 284 ab 361 abc 30.6 de 
2nd 2229 abc 258 def 334 def 36.3 abc 

Speckled 
Purplehull 

1st 2424 ab 263 cde 336 cdef 28.5 ef 
2nd 2469 a 267 bcde 344 bcde 38.2 abc 

IT97K-556-4 
1st 1826 bcd 286 ab 373 a 30.5 de 
2nd 1730 cdef 270 bcde 358 abcd 38.6 ab 

KVx396 
1st 1503 defg 238 fg 307 gh 27.0 ef 
2nd 1802 cde 256 def 326 efg 35.9 abc 

IT85F-867-5 
1st 1761 cde 249 efg 315 fgh 24.7 f 
2nd 1425 defg 279 abc 359 abc 38.6 ab 

IAR7/8-5-4-1 
1st 1335 defgh 232 g 294 h 27.8 ef 
2nd 1269 defgh 251 def 316 fgh 34.0 cd 

IT82E-18 
1st 1170 fgh 249 efg 324 efg 26.0 f 
2nd 998 gh 293 a 364 ab 39.5 a 

Coronet 
1st 1210 efgh 254 def 321 efg 34.8 bcd 
2nd 757 h 271 bcd 340 bcdef 37.5 abc 

  ------------------------------p-values------------------------ 
Soil P NS† NS NS NS 

Cultivar <0.05 <0.01 <0.001 NS 
Cultivar x soil P NS NS NS NS 

Harvest NS <0.01 <0.01 <0.001 
Soil P x harvest NS NS NS NS 

Cultivar x harvest NS <0.001 <0.01 <0.01 
Soil P x cultivar x harvest NS NS NS NS 

†NS, not significant, p > 0.05 
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Table 4. Cowpea cultivar and harvest effects on forage calcium, magnesium, phosphorus, and 
potassium as a proportion of biomass and on a mass basis. Within columns, means followed by 
the same letter are not significantly different, p > 0.05. 
 

Cultivar Harvest Ca  Mg P K 
(g kg-1) (g kg-1) (g kg-1) (kg ha-1) (g kg-1) 

Iron & Clay 
1st 9.85 a 4.56 abc 3.15 bcd 7.8 a 22.6 bcd 
2nd 8.29 de 3.77 fg 2.82 fg 6.3 abc 21.1 ef 

Speckled 
Purplehull 

1st 9.28 b 4.44 bc 3.23 ab 7.9 a 23.3 ab 
2nd 8.16 e 3.88 efg 2.87 f 7.1 ab 21.9 de 

IT97K-556-4 
1st 9.79 a 4.90 a 3.23 ab 6.0 abc 22.6 abcd 
2nd 8.18 de 3.94 efg 2.88 f 5.0 cde 21.8 def 

KVx396 
1st 9.05 bc 4.21 cde 3.20 bc 5.0 cde 23.5 ab 
2nd 8.48 de 3.94 efg 3.03 e 5.5 bcde 23.0 abc 

IT85F-867-5 
1st 9.30 b 4.37 bcd 3.09 cde 5.6 bcd 22.1 cde 
2nd 8.24 de 4.01 efg 2.74 g 3.9 defg 19.9 gh 

IAR7/8-5-4-1 
1st 9.00 bc 4.17 cdef 3.25 ab 4.6 cdef 23.6 a 
2nd 8.58 cde 4.02 defg 3.06 de 3.9 defg 22.5 bcd 

IT82E-18 
1st 9.18 b 4.68 ab 3.35 a 4.0 defg 23.7 a 
2nd 8.65 cd 4.67 ab 3.03 e 3.0 fg 20.8 fg 

Coronet 
1st 8.24 de 3.71 g 2.88 f 3.6 efg 21.7 def 
2nd 8.18 e 3.92 efg 2.79 fg 2.1 g 19.7 h 

  ----------------------------------p-values----------------------------- 
Soil P NS† NS NS NS NS 

Cultivar <0.05 <0.01 <0.001 <0.001 <0.001 
Cultivar x soil P NS NS NS NS NS 

Harvest <0.001 <0.001 <0.001 <0.01 <0.001 
Soil P x harvest NS NS NS NS NS 

Cultivar x harvest <0.001 <0.001 <0.01 NS <0.001 
Soil P x cultivar x harvest NS NS NS NS NS 

†NS, not significant, p > 0.05 
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Table 5. Cowpea cultivar and harvest effects on forage quality parameters water soluble 
carbohydrates (WSC) and total digestible nutrients (TDN) as a proportion of biomass and on a 
mass basis. Within columns, means followed by the same letter are not significantly different, p 
> 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NS, not significant, p > 0.05 
  

Cultivar Harvest 
WSC TDN 

(g kg-1) (g kg-1) 

Iron & Clay 
1st 129.2 ef 702 fg 
2nd 169.7 ab 731 bcd 

Speckled Purplehull 
1st 142.7 def 726 cde 
2nd 168.0 abc 721 cdef 

IT97K-556-4 
1st 119.6 f 700 fg 
2nd 157.5 bcd 718 cdef 

KVx396 
1st 157.3 bcd 754 ab 
2nd 159.2 bcd 733 bcd 

IT85F-867-5 
1st 161.0 bcd 742 abc 
2nd 171.3 ab 707 efg 

IAR7/8-5-4-1 
1st 157.9 bcd 761 a 
2nd 159.0 bcd 739 bcd 

IT82E-18 
1st 147.0 cde 741 abc 
2nd 143.3 de 691 g 

Coronet 
1st 188.9 a 735 bcd 
2nd 176.5 ab 716 def 

  -------------p-values------- 
Soil P NS† NS 

Cultivar <0.001 <0.01 
Cultivar x soil P NS NS 

Harvest <0.01 <0.01 
Soil P x harvest NS NS 

Cultivar x harvest <0.05 <0.001 
Soil P x cultivar x harvest NS NS 
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Table 6. Cowpea cultivar and harvest effects on forage quality parameter estimate net energy 
(ENE), net energy for lactation (NEL), net energy for gain (NEG), and net energy of metabolism 
(NEM) as a proportion of biomass and on a mass basis. Within columns, means followed by the 
same letter are not significantly different, p > 0.05. 
 

Cultivar Harvest 
ENE NEL NEG NEM 

(g kg-1) (Mcal kg-1) (Mcal kg-1) (Mcal kg-1) 

Iron & Clay 
1st 600 fg 1.60 fg 1.03 fg 1.64 fg 
2nd 628 bcd 1.68 bcd 1.12 bcde 1.74 bcd 

Speckled Purplehull 
1st 623 cde 1.67 cde 1.10 cde 1.72 cde 
2nd 618 cdef 1.65 cdef 1.09 cdef 1.70 cdef 

IT97K-556-4 
1st 599 fg 1.60 fg 1.03 fg 1.64 fg 
2nd 616 cdef 1.65 cdef 1.08 cdef 1.70 cdef 

KVx396 
1st 649 ab 1.73 ab 1.18 ab 1.81 ab 
2nd 629 bcd 1.68 bcd 1.12 bcd 1.74 bcd 

IT85F-867-5 
1st 637 abc 1.70 abc 1.15 abc 1.77 abc 
2nd 606 efg 1.62 efg 1.05 efg 1.66 efg 

IAR7/8-5-4-1 
1st 655 a 1.75 a 1.20 a 1.83 a 
2nd 635 bcd 1.70 bcd 1.14 abcd 1.76 abcd 

IT82E-18 
1st 637 abc 1.70 abc 1.15 abc 1.77 abc 
2nd 591 g 1.58 g 1.00 g 1.61 g 

Coronet 
1st 631 bcd 1.69 bcd 1.13 bcd 1.75 bcd 
2nd 614 def 1.64 def 1.08 def 1.69 def 

  ---------------------------p-values-------------------------- 
Soil P NS† NS NS NS 

Cultivar <0.01 <0.01 <0.01 <0.01 
Cultivar x soil P NS NS NS NS 

Harvest <0.01 <0.01 <0.01 <0.01 
Soil P x harvest NS NS NS NS 

Cultivar x harvest <0.001 <0.001 <0.001 <0.001 
Soil P x cultivar x harvest NS NS NS NS 

†NS, not significant, p > 0.05 
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Figure 1a. Organic Crops Unit (OCU) temperature data recorded as daily maximum, daily 
minimum and daily average (˚C) and precipitation recorded as rain (mm). Represents data from 
planting on May 23, 2014 to harvest October 2, 2014.  
 
 

 
Figure 1b. Plateau Research and Education Center (PREC) temperature data recorded as daily 
maximum, daily minimum and daily average (˚C) and daily precipitation recorded as rain (mm). 
Represents data from planting on June 4, 2014 to harvest September 24, 2014.  
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Figure 2. Stand density at 4-weeks post planting as influenced by cultivar, averaged over 
location.  Means followed by the same letter are not significantly different, p > 0.05. Error bars 
represent raw standard error of the mean. 
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Figure 3. Total annual cowpea and weed biomass as influenced by cultivar, averaged over 
location. Means indicated by the same letter or no letters are not significantly different (p > 
0.05). Error bars represent standard error of the mean.  
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Figure 4. Total protein production and the protein content per cultivar as influenced by cultivar 
and averaged over location. Means followed by the same letter or no letters are not statistically 
different (p > 0.05). Error bars represent standard error of the mean. 
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Screening cowpea cultivars for resistance to charcoal rot (Macrophomina 

phaseolina) 

 

Samantha Hill, Alemu Mengistu, David Verbree, David M. Butler 

 

Abstract 

Charcoal rot [Macrophomina phaseolina (Tassi) Goid.] is a fungal disease that is 

economically important to many host plant species. High temperatures and drought conditions 

favor disease development making it difficult to predict when disease outbreak will occur. 

Cowpea (Vigna unguiculata L. Walp.) is an important crop for many regions of the globe and is 

one of the host species for M. phaseolina. Efforts have been made to breed genetic lines that are 

resistant to M. phaseolina but little research has been done to screen many popular cowpea 

cultivars for resistance. Our result indicated that two of the 26 cultivars, IT85F-867-5 and 

IT98K-589-2 displayed the highest stand densities in both the field trial and the greenhouse 

study, suggesting they may be resistant to M. phaseolina. Later maturing cultivars, such as Iron 

& Clay and US1136, may also withstand infection from M. phaseolina to produce grain or 

forage yields due to known genetic resistance or physiological mechanism involved in plant 

aging. C.T. Pinkeye and Coronet displayed the highest numbers of CFU at maturity and were 

amongst the highest in visual RSS ratings indicating that their physiology may provide a more 

desirable environment for microsclerotial growth later in the season. Correlation analysis 

however, showed that field and greenhouse studies on cultivar resistance to M. phaseolina did 

not seem to be correlated indicating that cultivar responses differed under the two environments. 
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Abbreviations: Colony-forming unit, CFU; Colony-forming unit index, CFUI; Root and stem 

severity, RSS; potato dextrose agar, PDA; SCN; soybean cyst nematode; potato dextrose broth, 

PDA; polymerase chain reaction, PCR 

 

Introduction 

Macrophomina phaseolina (Tassi) Goid. is the causal fungal agent of charcoal rot a soil-

borne pathogen that causes infection in over 500 different host plant species globally (Afouda et 

al., 2008; Pearson et al., 1984; Su et al., 2000; You et al., 2011). It is common in subtropical and 

tropical countries with a semiarid climate and is severe in arid regions that often have sustained 

drought periods (You et al., 2011). Drought stress causes negative effects to host plant 

physiology, weakening plant tissues and predisposing crops to infectious facultative parasites 

such as M. phaseolina (Mayek-Perez et al., 2002). This fungus survives in the soil as sclerotia 

embedded in organic debris or free in soil and can persist due to the high number of species in 

it’s host range (Abawi and Pastor-Corrales, 1988; Songa et al., 1997). There is a strong 

association between the occurrence of drought and susceptibility to M. phaseolina (You et al., 

2011). Host crops show a variety of disease symptoms that can coincide with any stage of 

development. In seedlings, M. phaseolina can cause pre- or post-emergent damping off, black 

cotyledonary lesions at varying degrees of severity or it can persist in a crop showing little to no 

disease symptoms. In soybean (Glycine max (L.) Merr.), aboveground symptoms are typically 

not apparent until after flowering and reproductive growth has occurred (R5-R7) (Fehr et al., 

1971; Mengistu et al., 2007); while in common bean (Phaseolus vulgaris L.) damage is mainly 

significant in the early stages of development (Mayek-Perez et al., 2002).  
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Cowpea (Vigna unguiculata L. Walp.) is an important food crop for many developing 

countries and is highly adapted to many agro-ecological environments. M. phaseolina is 

important to cowpea where it undergoes moisture stress and can cause seedling damping-off in 

early growth stages or losses in grain production in adult plants (Adekunle et al., 2001). 

Currently there are limited chemical or effective cultural controls to combat the fungus; thus 

identifying genetic resistance in cultivars is a priority (Pearson et al., 1984). Some cowpea 

cultivars have already been identified as having genetic resistance to charcoal rot (e.g., Iron & 

Clay) and earlier maturing cultivars may have the ability to still produce several pod flushes 

before the fungus ultimately cause high disease severity in later maturity stages (Singh et al., 

1997; Afouda et al., 2008). However, plants remain susceptible to infection at any growth stage, 

particularly if there are environmental stressors such as drought or high temperatures (Afouda et 

al., 2008). Identifying cowpea genotypes that show resistance to M. phaseolina is important for 

producers as host resistance may be the only viable method for control, as with soybean 

(Mengistu et al., 2007). 

The objectives of this study were (i) to screen 26 cowpea cultivars for resistance or 

susceptibility to M. phaseolina in a naturally-infested field using two methods of verification, (ii) 

to evaluate these same 26 cultivars under a controlled greenhouse environment for seedling 

disease resistance.  

 

Materials and Methods 

Field screening 

Field plots were established at the West Tennessee Research and Education Center 

(WTREC) in Jackson, TN. The experimental design was a randomized complete block design 
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with four replications. Twenty-six cowpea cultivars were selected based on their commercial 

popularity or existence in other ongoing cowpea trials (Table 8). Plots were planted on May 21, 

2014 with a cone planter (ALMACO, Nevada, IA, USA) at a rate of 430,600 seeds ha-1 (200 

seeds plot-1) at a 2-cm depth. Each plot was a 6.1-m single row and rows were 76-cm apart. The 

field was known to be naturally infested with M. phaseolina (A. Mengistu, personal 

communication). In order to reduce plot to plot variability plots were further inoculated with 

charcoal rot infested Japanese millet (Echinochloa frumentacae L.) seed at a rate of 1.6-g 

inoculum m-1 of row. Plots were maintained weed free with Round-Up (Isopropylamine salt of 

N-(phosphonomethyl) glycine (56)) + Zidua (Pyroxasulfone) as a pre-emergent herbicide and 

Prefix (S-metolachlor + fomesafen) was used as a post-emergent herbicide. Plots were not 

irrigated. Stand density was evaluated on June 3, 2014 and July 10, 2014 by counting every 

germinated, live cowpea in each plot. Data on rainfall and temperature averages were collected 

from a weather station at WTREC equipped with precipitation gauges and temperature sensors 

(CR3000 datalogger, Campbell Scientific, Logan, UT, USA). 

Field plot disease assessment protocols were used according to Mengistu et al. (2007). 

On September 19, 2014, five random individuals were sampled from each plot and branches and 

axillary roots were removed. Plants progressed to the R7 growth stage before being collected for 

sampling. The stems included the taproot and were washed thoroughly of excess soil, then 

bundled and placed in a burlap bag to air dry, and then stored at room temperature until 

processed. This period of time allowed any existing microsclerotia to develop within the root-

stem system. Stems were then assessed for root and stem severity (RSS) by longitudinally 

splitting the stem and taproot of each plant and visually rating the intensity of discoloration from 

microsclerotia development. The ratings were on a scale of 1 to 5 where 1 = no discoloration and 
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5 = highly discolored (Figure 5). The RSS scale ratings were used to categorize cultivar 

resistance or susceptibility as described for soybean by Paris et al. (2006) and Mengistu et al. 

(2007): resistant (values of 1), moderately resistant (values > 1 and < 2), moderately susceptible 

(values > 2 and < 3) and susceptible (values of 3 to 5). 

The five plant samples per plot that were used for the RSS assessment were also used to 

determine colony-forming units (CFU) of M. phaseolina present in the stem. Each stem was cut 

at the cotyledonary node and a lower portion of the stem and root were ground with a laboratory 

cyclone mill (Thomas Model 4 Wiley Mill, Thomas Scientific, Swedesboro, NJ, USA) and 

passed through a 1-mm mesh screen. The mill was thoroughly cleaned between each sample to 

avoid sample-to-sample contamination.  

Each plant tissue sample was then weighed to 0.005 g into a microcentrifuge tube and 1 

mL of 10% sodium hypochlorite solution was then added to each tube. Using a vortex shaker, the 

samples were washed and shaken in 1-min intervals 3 times with 15 s between each shake 

period. Tubes were filled with sterile distilled water to dilute the sodium hypochlorite solution 

and poured into a 45-µm sieve. Samples were then gently rinsed from the sieve into 15 mL tubes 

using sterile water. 250-mL bottles containing 50 mL of autoclaved potato dextrose agar (PDA) 

was cooled from 50˚C and the ground stem samples, 0.05 g of rifampicin, and 15 drops of 

tergitol were added to the bottles. Media was shaken by hand until evenly mixed, poured evenly 

into five Petri dishes, and allowed to solidify. The plates were incubated at 30˚C for 3 days. The 

numbers of M. phaseolina colonies per plate were counted and data converted to CFU g-1 of 

tissue. A colony forming unit index (CFUI) was calculated by dividing the CFU g-1 of each 

cultivar with the highest average CFU g-1 of a susceptible cultivar within the experimental plot. 

C.T. Pinkeye had the highest average CFU g-1 thus all reported data for CFUI are based on CFU 
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from C.T. Pinkeye. The genotypes were then classified in percentage based on CFUI as resistant 

(0 to < 10), moderately resistant (10 to < 30), moderately susceptible (> 30 to 60) and susceptible 

(> 60), in accordance with the classification system of Schmitt and Shannon (1992) developed 

for SCN (Mengistu et al., 2007). 

 

Greenhouse screening 

The same twenty-six cultivars were evaluated in a greenhouse at seedling stage. Sterile 

potting soil (indicate the composition, company producing it, city and state) was placed in 15 cm 

pots and organized in a completely randomized design with three replications. Eight seeds were 

planted in each pot at a 2 cm depth and then inoculated with charcoal rot infested millet seed at 

one of 3 levels of inoculation (0 g (control), 1 g, and 3 g)/pot by placing the appropriate density 

directly adjacent to the cowpea seed. Pots were hand-watered every other day to maintain soil 

moisture content. 

Pot stand density was recorded 14 days after planting and was rated for disease severity. 

Pots were then thinned to 4 plants per pot to assess disease severity over time. Aboveground 

infection of seedlings was rated at 20 days and 25 days according to an adapted M. phaseolina 

rating scale provided by Abawi and Pastor-Corrales (1990) for common bean (Fig. 6a). This 

visual scale was used based on disease severity exhibited below the cotyledonary node (Fig. 6b).  

Fifteen samples of seedlings displaying various stages of disease were collected for verification 

of causal disease organism. Sampled tissue was cut 1 cm above and 1 cm below the infected 

cotyledonary node, disinfected in 10% ethanol solution, rinsed in deionized water and then 

placed on water agar plates. Fungal hyphae were allowed to grow for 10 days. After growth on 

the media had been established, a heat sterilized wire wand was used to transfer small samples of 
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hyphal growth to rifampicin amended PDA plates and incubated at room temperature (21 ˚C) for 

10 additional days.  

DNA extraction of fungal isolates was completed using Qiagen plant extraction kits. The 

fungal pathogens were grown in potato dextrose broth (PDB) for 7 days. The extraction product 

was amplified by polymerase chain reaction (PCR) with transcribed ITS1 and ITS4 internal 

regions for Macrophomina. PCR was carried out in a 50 µl reaction mixture containing 50 ng 

genomic DNA, 10 µl 5X buffer, 1 µl of 10 mM dNTPs, 2.5 µl of 10 µM of each primer and 0.25 

µL of Taq polymerase (Hot master mix). The following protocols were used for PCR reaction: 1 

cycle of initial denaturalization at 94°C for 2 min, 30 cycles of de-naturalization at 94°C for 1 

min, 56°C for 30 s for primer annealing, 72°C for 1 min for extension and 1 cycle of final 

extension at 72°C for 5 min. The amplification was analyzed in agarose gel at 1% through 

electrophoresis. PCR resulting product was purified using ExoSAP. Base pairs obtained were 

compared with the sequences reported in the database of NCBI’s gene bank (National Center for 

Biotechnology Information, www.ncbi.nih.gov). 

Analysis of variance was performed using mixed models (PROC GLMMIX, SAS 9.4, 

Cary, NC, USA) and least squares means computed and separated with LSD. Differences 

between means were considered significant at p ≤ 0.05. Field screening was analyzed using a 

randomized complete block design. Cultivar was considered as fixed effects in the model and 

block was considered random. The greenhouse screening was analyzed using a completely 

randomized design with cultivar, inoculation level, and the interaction between cultivar and 

inoculation level as fixed effects. Inoculation levels of 1 g pot-1 and 3 g pot-1 were different from 

the control (0 g pot-1) but not from each other; therefore means were analyzed to distinguish 

differences between inoculated pots and the control. Percent data was transformed using the 
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arcsin of the square root. Differences in germination and disease ratings of inoculated pots versus 

the control were log transformed to improve normality. Data was then back transformed and 

presented.  

 

Results and Discussion 

Field study 

The average temperature during the growing season was 24˚C. Precipitation totaled 720 

mm from planting on May 21, 2014 to the sampling date on September 19, 2014 (Fig. 7); which 

was nearly double the total precipitation recorded for the same time period in the previous year 

(data not shown). Mayek-Perez et al. (2002) reported that drought stress was an important 

contributor to charcoal rot development in common bean. There was a short period (13 d) in July 

where there was no precipitation recorded at WTREC, but drought periods were limited for the 

majority of the season (Fig. 7). Many of the existing plants in this study did not show any visual 

signs of charcoal rot infection until late in the season when sampling occurred and pods were 

nearly dry. Likely due to high soil moisture, two late maturing US cultivars, Iron & Clay and 

US1136, did not show any visual symptoms in the field and also did not mature to R7 due to 

photosensitivity before the sampling date, therefore they were not sampled for the other disease 

assessment methods. Iron & Clay is the most commercially available forage and cover crop 

cowpea cultivar in the U.S. and is known to contain a single gene pair that could be resistant to 

M. phaseolina and Fusarium spp. (Singh et al., 1997). For this reason, Iron & Clay and US1136 

are not included in RSS visual ratings or in the CFUI assessment.  

Cultivar was significant for all tested parameters (p < 0.001, Table 7). The first stand 

count taken 2 weeks after planting (growth stage V1 to V3) showed the highest stand density 
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from IT85F-867-5 (81,000 plants ha-1), IT98K-589-2 (80,000 plants ha-1) and IT82E-18 (79,600 

plants ha-1). Stand density was least for C.T. Pinkeye (56,000 plants ha-1), IT98K-205-8 (50,000 

plants ha-1) and Melakh (38,000 plants ha-1). The second stand count taken 7 weeks after planting 

(growth stage R1 to R3) showed similar results with IT85F-867-5 and IT98K-589-2 having the 

highest stand density (78,500 and 76,000 plants ha-1) and C.T. Pinkeye, IT98K-205-8, California 

Blackeye 27 and Melakh having the lowest plant populations (from 51,000 to 36,500 plants ha-1) 

(Fig. 8). Differences in plant populations from the first stand count to the second stand count 

could indicate seedling damping off and plant mortality from M. phaseolina (Afouda et al., 

2008). Stand density changes from the vegetative stage to the reproductive stage were 

significantly influenced by cultivar (p < 0.05, Table 7). Mississippi Silver and Early Acre had the 

highest stand density loss (18 to 19%) while stands differed least for KVx403 (3%), KVx396 

(2%) and UCR288 (2%) (Fig. 9).  

Cultivar also significantly affected visual RSS ratings (p < 0.01). Means from RSS 

ratings show that no cultivars were classified as resistant or moderately resistant. Thirteen 

cultivars were classified as moderately susceptible and eleven were susceptible according to this 

scale. IAR7/8-5-4-1, C.T. Pinkeye and Coronet had the highest RSS ratings of 3.7, 3.5 and 3.5 

respectively. IT98K-1069-6, UCR288 and IT97K-499-35 had the lowest RSS ratings of 2.2, 2.2 

and 2.0, respectively (Fig. 10). Average values for CFU g-1 were highest for C.T. Pinkeye, 

therefore, C.T. Pinkeye was labeled the most susceptible and was used as an indicator for disease 

resistance. CFUI ranged from 1.6% to 71% among genotypes and was also significant for 

cultivar (p < 0.001). Six cultivars were classified as resistant (2% to 8%), eight cultivars were 

moderately resistant (11% to 29%), seven cultivars were moderately susceptible (31% to 56%) 

and two cultivars were susceptible (61% to 71%) relative to C.T. Pinkeye (100%) (Fig. 11). 
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Coronet and IT98K-476-8 were highest for CFUI percentage at 71% and 61% compared to C.T. 

Pinkeye and were labeled susceptible. Lowest CFUI percentage was from Melakh, IT97K-1069-

6, and KVx403 at 1.6%, 2% and 3.8%, respectively; these cultivars were labeled resistant. CFUI 

was moderately positively correlated to RSS ratings (p < 0.001; r = 0.536), which could be due 

to both methods being based on rating the intensity of microsclerotial infection as the indicator 

of disease severity (Mengistu et al., 2007).  

 

Greenhouse study 

Disease severity was highest for the first rating date (14 days after planting), and this date 

includes the germination and rating of 8 plants. After pots were thinned to 4 plants, there was no 

change in disease severity for the remaining plants from 20 to 25 days after planting (data not 

shown), thus the data presented are reflective of the first rating date only.  

Cultivar (p < 0.001) was highly significant for percent emergence in the inoculated pots, 

but neither the inoculation levels nor the interaction differed (p > 0.05). Emergence percentage in 

inoculated pots showed highest stand density from IT98K-589-2 (100%; 8 plants pot-1), IT85F-

867-5 (97%), Early Acre (95%) and IT90K-277-2 (95%), and lowest stand density from 

UCR288 (44%), Mississippi Silver (50%) and IT98K-476-8 (33%; data not shown). Similarly, 

average ratings for infected cotyledonary nodes were related to cultivar (p < 0.001) but 

inoculation level (1 or 3 g pot-1) and the interaction were not significant (p > 0.05). Ratings were 

highest from IT98K-476-8 (7.0), UCR288 (6.1) and Mississippi Silver (5.8). Lowest ratings were 

from IT90K-277-2 (1.4), Early Acre (1.3), and IT98K-589-2 (1.2; data not shown).  

To account for potential differences related to seed lot (e.g., seedborne pathogens, seed 

viability, seed lot vigor), differences in emergence percentage and disease severity ratings 
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between inoculated (1 or 3 g pot-1) and uninoculated (i.e., control) were assessed. Cultivar was 

significantly related to differences in emergence (p < 0.01) but inoculation level (1 or 3 g pot-1) 

and the interaction were not related to emergence. UCR288 had the highest difference in 

emergence with 40% less emergence in inoculated pots compared to respective uninoculated 

pots, followed by Colossus (14%) and IT98K-476-8 (14%; Fig. 12). Emergence differences were 

least for Mississippi Silver (0.7%) while IT98K-589-2 and IT97K-1042-3 had no difference from 

inoculated pots to the control. Differences in disease severity ratings were also significantly 

related to cultivar (p < 0.001), but not inoculation or the interaction (p > 0.05), with UCR288 

being rated 3.6 points higher in inoculated pots compared to the uninoculated control and 

US1136 and Colossus rated 2.0 points higher in inoculated pots than in the control. Mississippi 

Silver, IT98K-589-2 and IT82D-889 were the least different from the control and rated 0.06 

points higher than the control pots.  

Based on results of field and greenhouse studies, cowpea genotype resistance to M. 

phaseolina in seedling stages compared to reproductive stages do not seem to be correlated. In 

the field screening, the best performing cultivars for stand density at both stand counts were 

IT85F-867-5 (81,752 and 78,525 plants ha-1) and IT98K-589-2 (80,676 and 75,863 plants ha-1; 

Fig. 5). They were also among the least in stand density loss between stand counts (4% and 7%, 

respectively). These two cultivars also had the highest stand density in the greenhouse screening 

in inoculated pots and were two of the best performing cultivars for emergence differences in 

inoculated pots versus control pots (2%, IT85F-867-5; 0%, IT98K-589-2). These results suggest 

that these two cultivars may be resistant to M. phaseolina at this growth stage. Adekunle et al. 

(2001) states that the greatest losses in cowpea production occur due to seedling damping off and 

M. phaseolina is often the causal agent where moisture stress is involved. In another study Hill et 
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al. (2015, unpublished data) experienced seedling disease losses for cowpea due to both 

Fusarium spp. and M. phaseolina (Shrestha et al., unpublished data). Moisture stress in this 

study was much higher than at the location in Jackson, TN and stand losses from seedling 

damping-off were significant. The ability for a cultivar to escape the seedling disease stage 

without anti-fungal seed treatment could indicate genetic resistance to M. phaseolina and these 

cultivars could still produce grain or forage yields before M. phaseolina infects mature plant 

tissues. The greenhouse screening showed that those plants that escaped the seedling disease 

stage, even plants infected with slight cotyledonary lesions, did not show any change from 

growth stage V3 to V5.  

Because M. phaseolina can infect plant tissues at any maturity stage depending on 

environmental conditions, conclusive decisions about the resistance of these two cultivars cannot 

be made without identifying genetic markers for resistance (Afouda et al., 2008). In a highly 

cited study, Short et al. (1978) hypothesized that the populations of sclerotia in roots and stems 

of a host may indicate compatibility between the host plant and M. phaseolina. They showed that 

there was extreme variability of the amount of sclerotia present in root tissues of soybean 

(Glycine max) cultivars and that the variability may be due to a combination of genetic, 

physiological, and environmental factors. They concluded that there could also be differences in 

multiple host genes in individual plants that result in different levels of compatibility with the 

fungus. If environmental stressors are not present, M. phaseolina may persist in plant tissues 

without showing any symptoms of infection even in highly inoculated environments (Afouda et 

al., 2008).  

However, visual ratings of microsclerotia growth are still good indicators for disease 

resistance. C.T. Pinkeye and Coronet displayed the highest percentages of CFUI and were among 
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the highest in visual RSS ratings. UCR288 performed well in the field (74760 plant ha-1; Fig. 8) 

with little stand losses between the first and second stand counts (2%; Fig 9) and had relatively 

low RSS and CFUI means (2.15 RSS; 21% CFUI; Fig 10 and 11), but in the greenhouse study it 

was the worst in emergence losses (40%; Fig. 12) and rating differences between inoculated and 

uninoculated pots (3.6; Fig. 13); thus this cultivar may be more contagious to infection in 

seedling disease stages than in maturity. Some cultivars did not display any visual symptoms in 

the field (e.g., Iron & Clay and US1136) but they cannot be labeled as resistant solely based on 

lack of visual symptoms due to the absence of highly favorable conditions for M. phaseolina in 

the field (Afouda et al., 2008). Collins et al. (1990) showed that water hindered microsclerotial 

growth and development of M. phaseolina by limiting the exchange of O2 and CO2 where 

microbiological activity was occurring. In the greenhouse, Iron & Clay performed comparably to 

the best and worst cultivars in all tests and US1136 had high differences between inoculated and 

uninoculated pots in both emergence and ratings (Fig. 12 and 13). Afouda et al. (2008) states that 

many stress factors are involved in the development of M. phaseolina including plant age, high 

temperatures, and drought stress. One genetic mechanism that could be involved in charcoal rot 

development is the ability of the cultivar to maintain internal water turgor pressure during water 

stress (Mayek-Perez et al., 2002). Drought stress causes plant tissues to weaken and allows space 

for microsclerotia to infect the internal plant structure blocking xylem vessels and causing plants 

to wilt (You et al., 2011; Mayek-Perez et al., 2002). Mayek-Perez et al. (2002) studied the 

mechanisms involved in common bean resistance to M. phaseolina and concluded those cultivars 

that showed higher water and turgor potentials were more resistant to M. phaseolina than 

susceptible cultivars; thus, cultivars that are resistant to drought stress may also be resistant to 

root rot pathogens and vice versa.  
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Conclusions 

IT85F-867-5 and IT98K-589-2 displayed the highest stand densities in both the field trial 

and the greenhouse study, suggesting they may be resistant to M. phaseolina in the seeding 

disease stage. In the greenhouse, UCR288 was the worst performer in stand losses and had the 

highest rating differences from inoculated to uninoculated pots indicating that this cultivar may 

be susceptible in the seedling disease stage. Later maturing cultivars, such as Iron & Clay and 

US1136, may be able withstand infection from M. phaseolina to produce grain or forage yields 

due to known genetic resistance or physiological mechanism involved in plant aging. C.T. 

Pinkeye and Coronet displayed the highest numbers of CFU at maturity and were amongst the 

highest in visual RSS ratings indicating that their physiology may provide a more desirable 

environment for microsclerotial growth later in the season. Environmental conditions are an 

important factor when screening for M. phaseolina due to its high association with moisture 

stress.  
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Table 7. Mixed models analysis of variance for all response variables as affected by cultivar, 
inoculant level (where applicable; 1 g pot-1 versus 3 g pot-1) and their interactions. Colony-
forming unit index, (CFUI); Root and stem severity rating, (RSS). 

†NS= not significant, p > 0.05  
n/a= Not applicable  
  

 Cultivar Inoculant Level Cult. x Inoc. Level 
 ----------------------------------p-value---------------------------------------- 

 Field Screening 
Stand at V1-
V3 

<0.001 n/a n/a 
Stand at R1-R3 <0.001 n/a n/a 
Stand loss (V1-
3 to R1-3) <0.05 n/a n/a 

RSS <0.01 n/a n/a 
CFUI <0.01 n/a n/a 
 Greenhouse Screening 

Disease rating <0.001 NS† NS 

Stand density 
at 14 days 

<0.001 NS NS 

Disease rating 
difference 
(inoculated –
control) 

<0.001 NS NS 

Stand density 
difference 
(inoculated-
control) 

<0.01 NS NS 
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Table 8. Cowpea cultivar descriptors collected from visual field observation (Verbree; 
unpublished data).  
 

Cultivar Name Origin Days to 
flowering 

Days to 
maturity Photo-sensitivity 

California Blackeye 27 University of California-Davis, 
California, USA 37 64 No 

California Blackeye 46 University of California-Davis, 
California, USA 53 85 No 

Colossus 
U.S. Department of Agriculture-
Agricultural Research Service, 

South Carolina, USA 
37 71 No 

Coronet University of Georgia, Georgia, 
USA 37 83 No 

C.T. Pinkeye 
Purplehull C.T. Smith Company, Texas, USA 40 83 No 

Early Acre University of Arkansas, Arkansas, 
USA 52 76 No 

IAR7/8-5-4-1 Institute for Agricultural Research 
(IAR), Nigeria 54 90 No 

Iron & Clay 
U.S. Department of Agriculture-
Agricultural Research Service 

Georgia, USA 
83 110 Yes 

IT82D-889 International Institute of Tropical 
Agriculture (IITA), Nigeria 48 71 No 

IT82E-18 International Institute of Tropical 
Agriculture (IITA), Nigeria 40 64 No 

IT85F-867-5 International Institute of Tropical 
Agriculture (IITA), Nigeria 37 64 No 

IT90K-277-2 International Institute of Tropical 
Agriculture (IITA), Nigeria 53 85 No 

IT97K-499-35 International Institute of Tropical 
Agriculture (IITA), Nigeria 48 83 No 

IT97K-1042-3 International Institute of Tropical 
Agriculture (IITA), Nigeria 40 83 No 

IT97K-1069-6 International Institute of Tropical 
Agriculture (IITA), Nigeria 54 83 No 

IT98K-205-8 International Institute of Tropical 
Agriculture (IITA), Nigeria 53 83 No 

IT98K-476-8 International Institute of Tropical 
Agriculture (IITA), Nigeria 48 83 No 

IT98K-589-2 International Institute of Tropical 
Agriculture (IITA), Nigeria 40 69 No 

IT98K-1111-1 International Institute of Tropical 
Agriculture (IITA), Nigeria 44 70 No 

KVx396 
Institut de l'Environnement et 

Recherches Agricoles (INERA), 
Burkina Faso 

52 87 No 

KVx403 
Institut de l'Environnement et 

Recherches Agricoles (INERA), 
Burkina Faso 

40 70 No 

Melakh 
Institut Senegalais de Recherches 
Agricoles (ISRA), Senegal 

 

40 83 No 

Mississippi Silver Mississippi State University, 
Mississippi, USA 52 83 No 

Speckled Purplehull Heirloom, Southeastern USA 58 83 No 

UCR288 University of California-Riverside, 
California, USA 55 76 No 

US 1136 
U.S. Department of Agriculture-
Agricultural Research Service, 

South Carolina, USA 
83 110 Yes 
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Figure 5. Split lower stem and root sections showing Macrophomina phaseolina microsclerotia 
evaluated for root and stem severity (RSS). On a scale of 1 to 5, 1 = no microsclerotia visible in 
tissue; 2 = very few microsclerotia visible in pith, vascular tissue or under the epidermis, 
vascular tissue has not discolored; 3 = vascular tissue is partly discolored and microsclerotia 
have partially covered the tissue; 4 = vascular tissue is discolored with numerous microsclerotia 
embedded in tissue, microsclerotia are also visible under the outside epidermis in stem and root 
sections; and 5 = vascular tissue darkened due to high numbers of microsclerotia both inside and 
outside of the stem and root tissues (rating system adapted from Mengistu et al., 2007; Paris et 
al., 2006). 
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Scale  Description 
1  No visible symptoms.  
3  Lesions are limited to cotyledonary tissues.  
5   Lesions have progressed from cotyledons to about 2 cm of stem  

tissues.  
7   Lesions are extensive on stem and branches. The foliage exhibits  

chlorosis and necrosis.  
9   Most of the stem, petioles, and growing point are infected. A  

considerable amount of pycnidia and sclerotia is produced. 
10  Pre-emergent seedling damping off. 
Figure 6a. Rating scale from Abawi and Pastor-Corrales (1990; 1 to 9 scale) for aboveground 
infections of Macrophomina phaseolina on common bean (Phaseolus vulgaris L.) and adapted 
for cowpea (Vigna unguiculata (L.) Walp.). 
 
 

 
Figure 6b. Cotyledonary nodes of cowpea seedlings displaying symptoms as described by 
Abawi and Pastor-Corrales (1990) with ratings of 1 (far left) to 9 (far right). 
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Figure 7. West Tennessee Research and Education Center (WTREC) temperature data recorded 
as daily maximum, daily minimum and daily average (˚C) and precipitation recorded as rain 
(mm). Represents data from planting on May 21, 2014 to plant sampling September 19, 2014. 
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Figure 8. Field study stand density at 7-weeks (flowering) post planting as influenced by 
cultivar. Means indicated by the same letter are not significantly different (p > 0.05). Error bars 
represent raw standard error of the mean. 
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Figure 9. Percentage stand loss from 2-weeks (V2 to V3 growth stage) and 7-weeks (R1 to R3 
growth stage) post planting as influenced by cultivar in the field study. Means indicated by the 
same letter are not significantly different (p > 0.05). Error bars represent raw standard error of 
the mean. Untransformed means are reported. 
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Figure 10. Average root and stem severity rating as influenced by cultivar in the field study. 
Genotypes were classified on a rating of 1 to 5 based on the intensity of internal stem 
discoloration (using the rating system of Mengistu et al., 2007, Paris et al., 2006). Means 
indicated by the same letter are not significantly different (p > 0.05). Error bars represent raw 
standard error of the mean. 
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Figure 11. Colony-forming unit index (CFUI) as influenced by cultivar in the field study. CFUI 
values less than 10 were considered relatively resistant (white bars) as compared to C.T. 
Pinkeye, between 10 and 30 were considered moderately resistant (striped white bars), between 
31 and 60 were considered moderately susceptible (striped grey bars), and greater than 60 were 
considered susceptible (solid black bars) (Schmitt and Shannon, 1992). Means indicated by 
asterisk are significantly different (p > 0.05) from C.T. Pinkeye, which was the cultivar with the 
highest average number of CFU per g. Untransformed means are reported. Error bars represent 
raw standard error of the mean. 
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Figure 12. Difference in stand density of inoculated pots versus uninoculated pots as influenced 
by cultivar in the greenhouse study. Cultivars that had higher inoculated emergence percentages 
than the control were considered not different at zero percent. Means indicated by the same letter 
are not significantly different (p > 0.05). Error bars represent raw standard error of the mean. 
Untransformed means are reported. 
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Figure 13. Difference in ratings of inoculated pots versus uninoculated pots as influenced by 
cultivar in the greenhouse screening. Values less than 10 were considered relatively resistant 
(white bars) as compared to UCR288, between 10 and 30 were considered moderately resistant 
(striped white bars), between 31 and 60 were considered moderately susceptible (striped grey 
bars), and greater than 60 were considered susceptible (solid black bars) (Schmitt and Shannon, 
1992). Means indicated by the same letter are not significantly different (p > 0.05). Error bars 
represent raw standard error of the mean. Untransformed means are reported. 
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Conclusion 

Cowpea has many traits that make it an attractive forage or cover crop for integration into 

organic production systems, including high rates of nitrogen (N) fixation, phosphorus (P) use 

efficiency, regrowth ability, and high digestibility. Cultivars Iron & Clay and Speckled 

Purplehull produced the greatest biomass over the two sites, suggesting that they offer the 

greatest potential for forage or cover crop use in regional organic and low-input systems of the 

cultivars evaluated. Both cultivars display indeterminate growth, high biomass, and are high in 

protein. Indeterminate cultivars were more competitive with weeds than determinate cultivars 

because they were able to cover more surface area in the plot. They both produced relatively 

high stand densities, suggesting that they are potentially more resistant to endemic seedling 

diseases. Soil P amendments can have conflicting effects in an organically managed system. 

Many cowpea accessions are not screened for P use efficiency and cultivars screened in this trial 

did not respond to P fertilization in low P soils. Our results also suggest that P amendment may 

increase relative competitiveness of weeds with cowpea in these low P soils under organic 

management.  

Charcoal rot (Macrophomina phaseolina) can cause pre- or post-emergent damping off, 

black cotyledonary lesions at varying degrees of severity or it can persist in a crop showing little 

to no disease symptoms in many host crop species globally. Cowpea displays similar symptoms 

to common bean in seedling stages and similar symptoms to soybean in later maturity stages. In 

this cowpea cultivar screening, IT85F-867-5 and IT98K-589-2 displayed the highest stand 

densities in both the field trial and the greenhouse study, suggesting they may be resistant to M. 

phaseolina in the seeding disease stage. In the greenhouse, UCR288 was the worst performer in 

stand losses and had the highest rating differences from inoculated to uninoculated pots 
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indicating that this cultivar may be susceptible in the seedling disease stage. Later maturing 

cultivars, such as Iron & Clay and US1136, may be able withstand infection from M. phaseolina 

to produce grain or forage yields due to known genetic resistance or physiological mechanism 

involved in plant aging. C.T. Pinkeye and Coronet displayed the highest numbers of CFU at 

maturity and were amongst the highest in visual RSS ratings indicating that their physiology may 

provide a more desirable environment for microsclerotial growth later in the season. 

Environmental conditions are an important factor when screening for M. phaseolina due to its 

high association with moisture stress.  

Cowpeas vary greatly in disease resistance, growth habit, photosensitivity, determinacy 

and nutritional quality. Cultivar choice is the most important consideration when selecting 

cowpeas for forage or grain production systems and producers should select an appropriate 

cultivar to fit production needs and objectives.  
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