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Abstract 
 
 

This thesis presents a study of the design of a wide-swing, cascode β multiplier 

current reference to be used as a biasing circuit.  The current reference has been 

fabricated in a 0.5µm CMOS technology.  First, a review of wide-swing cascode current 

mirrors and current-source self-biasing is covered.  Then, the process of designing a 

current reference that is both wide-swing and has high output resistance is presented.  

Simulation and measurement results from the current reference are detailed.   

Improvements upon the current reference are also suggested.      
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Chapter 1 
 

Introduction and Overview 
 
 

1.1 Introduction 

 

A current reference is often needed to bias critical analog signal processing 

building blocks such as operational amplifiers and comparators.  Designing a current 

reference that meets all of the design criteria needed is a considerable task in itself.  A 

constant current over a large voltage range is typically required.  Also, the current should 

not vary significantly over a large temperature range, depending on the circuit 

application.  So, this thesis will focus on the design process of a current reference that 

meets these demands. 

 

1.2 Scope of Thesis 

 

1.2.1 Current Source Requirements 

 

The focus of the remainder of this work is the design process of a current 

reference that can provide a constant current bias over a large voltage range.  

Additionally, this current reference should provide a relatively small variation in output 

current over a large temperature range.  For this thesis, the current source will be tested 

over a range of 0 to 100 C° .  The desired current output will be 20 µA using a power 
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supply voltage of 5 V.  In order to maintain a constant current value over a wide range of 

output voltage, the current reference will need to have a high output resistance and low 

minimum compliance voltage.   

 

1.2.2 Contributions of Current Work 

 

The design approach for this current source begins with hand calculations to 

determine the needed transistor sizes in order to meet all of the design criteria.  Once the 

circuit is designed, many simulations using SMARTSPICE must be performed to 

determine the performance of the circuit.  Improvements are made based on these 

simulation results.  After the circuit design was finalized, the current reference was 

fabricated in a 0.5 µm CMOS process.  Hardware testing is then used to determine the 

performance of the fabricated circuit.  These results are compared to the simulations of 

the design.  The goal of this project is to design a current reference that will output a 

constant current over a large voltage and temperature range.  How well the circuit 

operates over temperature and output voltage range is not strictly specified.  This work 

however, provides a design example that may be utilized by others in the field. 

 

1.3 Organization of Thesis 

 

Chapter two contains an overview of current reference fundamentals.  A 

description of important performance metrics of current references is covered.  First, an 

example current reference is introduced.  The wide-swing cascode current mirror is also 
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described.  Finally, chapter two concludes with a discussion of current source self-

biasing. 

Chapter three describes designing wide-swing, high output resistance current 

references.  This chapter deals with designing a wide-swing β multiplier that utilizes a 

wide-swing current mirror bias.  A feedback stability analysis is also covered. 

Chapter four covers the simulations of the wide-swing cascode β multiplier 

current reference.  Simulations were performed in order to determine how well the 

current reference performs for the desired characteristics. 

Chapter five discusses the measured results of the final current reference design.  

This chapter covers the testing of the fabricated circuit.  The testing methodology and 

results are included. 

The conclusions of the thesis are given in chapter six.  A review of the results 

from this work and a discussion of further work that may be pursued are included.  This 

future work may improve upon the current design. 
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Chapter 2 

Current Reference Fundamentals 
 
 

2.1 Introduction 

 

Chapter two focuses on the fundamentals of current references.  It begins with a 

definition of a current source.  A current reference is either a source or a sink.  The rest of 

the chapter focuses on the two major building blocks of the current reference to be 

designed in chapter three. 

 

2.2 Current Reference Performance Metrics 

 

2.2.1 Example of a Current Reference 

 

One example of a current reference is shown in Figure 1.  This current source 

utilizes an operational amplifier (op amp) or an operational transconductance amplifier 

(OTA) and a transistor to provide a voltage to the resistor R.  A reference voltage, say 

provided by a bandgap reference[1], is applied to the non-inverting input of the op amp.  

If the op amp is close to ideal, then the voltage at the inverting input will be equal to the 

reference voltage.  Since an actual op-amp will have a small input offset voltage, this will 

actually be the reference voltage plus the input offset voltage.  The inverting input is tied 

to the top of the resistor, which causes the reference voltage plus the input offset voltage 
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I+
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V
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Vref
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rout

I=(Vref + Vos)/R

I = 0

 

Figure 1: Example of a Current Reference 

 

to be applied to the top of the resistor.  This voltage produces a current approximately 

equal to the reference voltage plus the offset voltage divided by the resistance value.  

Because there is no current going into the inverting input of a high input impedance op 

amp, then the current flowing through the resistor will also be the drain current of the 

transistor.  So, this current source produces an output current based on the resistor value 

and the reference voltage.   

Two of the most important parameters of a current reference are its small-signal 

output resistance and its minimum output voltage requirement (also know as compliance 

voltage) to maintain its output resistance.  High output resistance is desired, as is low 

minimum output voltage.  The small-signal output resistance of this current source can be 

found by inserting the small-signal model for the transistor as seen in Figure 2.  Direct 

analysis can be used to find the output resistance [30].  From Figure 2, the analysis is as 

follows. 

 



 6

 

+

-
A

-AvR

vgs

RvR

iout

iout

vout
rogmvgs

 

Figure 2:  Current Reference with MOSFET Small-Signal Model 
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This result reduces to approximately 
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 )1( ARrgR Omo +≅  (2.5) 

 

since A can be quite large.  So, the output resistance of the current source is determined 

by the open-loop gain of the op-amp, the small-signal parameters of the transistor, and 

the resistor R.  Thus, very high small-signal output resistance, easily well over 10 MΩ, 

can be achieved.  

The minimum output voltage swing would be the voltage across the resistor, or 

the reference voltage, plus the saturation voltage of the transistor.  Since the reference 

voltage depends on the resistor value, it could cause a high minimum output voltage.   

Another important consideration is the fact that on-chip resistors have a high 

tolerance value.  Some on-chip resistors compatible with standard CMOS can vary as 

much as 30 % from the desired value [1].  Considering that the output current of this 

current source depends very much upon the resistor value, an accurate current value 

would be impossible to achieve if the resistor had a high tolerance.  One option to correct 

this problem may be to use a programmable resistor could be used. 

The simplest way to achieve an accurate current using the circuit shown in Figure 

1 would be with discrete off-chip parts since discrete resistors can have a tolerance as low 

as 1% (metal-film).  But, often times, it is desirable to have a fully integrated on-chip 

current reference.  As just discussed, an accurate current value could be achieved using a 

programmable resistor.  The disadvantage to using the current source in Figure 1 on-chip 

is the fact that it would be rather large since an entire operational amplifier, or at least an 

OTA is needed. 
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This chapter will discuss building blocks and design techniques that may be used 

to improve on the current source in Figure 1.  These will be used in chapter three to 

design a smaller current reference that has higher output resistance and a low minimum 

output voltage that is not dependent on a fabricated resistor. 

 

2.2.2 Wide-Swing Cascode Current Mirror 

 

The first important circuit that needs to be covered for the design of a wide-swing 

cascode β multiplier current reference is the wide-swing cascode current mirror.  A 

thorough treatment of current mirror basics and cascode connections can be found in the 

Baker, Li, and Boyce text [1].  As the name implies, the wide-swing cascode current 

mirror has both a wide output voltage swing and high output resistance. 

 

2.2.2.1 Improved Voltage Swing 

 

A detailed analysis of the wide-swing cascode current mirror, seen in Figure 3, 

will now be given.  The first step in the design is to realize that the voltage needed at the 

drain of M5 is (2∆V + VTHN), where THNGS VVV −=∆ .  This can be shown because of the 

fact that one ∆V is needed at the drain of M2 in order to get the desired output voltage 

constraint.  So, if the voltage at the drain of M5 is (2∆V + VTHN), then the voltage at the 

drain of M2 is one gate-to-source voltage lower.  This gives the following result. 

 

 VD, M2 = VS, M4 = (2∆V + VTHN) – VGS = (2∆V + VTHN) - (∆V + VTHN)=∆V (2.6) 
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Figure 3: Wide-Swing Cascode Current Mirror [1] 

 

Once again, ∆V is also needed across M4 to keep it saturated.  This gives Vo, min as 2∆V, 

the minimum possible compliance voltage for a cascode configuration.  

An explanation of how transistor sizing can affect the output voltage constraint 

will now be discussed.  Since the drain and gate of M5 are tied together, this means that 

the voltage at the drain of M5 is equal to its gate-to-source voltage.  The drain voltage of 

M5 was earlier said to be (2∆V + VTHN).  Using the saturated drain current equation for 

transistor M5, this voltage will be substituted in for VGS  below. 

 

 ID, 5 = 5

2
β (VGS, M5 - VTHN)2 = 5

2
β (2∆V + VTHN - VTHN)2 , neglecting body-effect (2.7) 

ID, 5 = 5

2
β (2∆V)2 

 

Transistor M1 will be sized so its gate-to-source voltage is still equal to the typical value 

of (∆V + VTHN).  Again, the drain current equation is used for M1 in equation 2.8. 
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 Id, 1 = 5

2
β (Vgs, M1 - VTHN)2 = 1

2
β (∆V + VTHN - VTHN)2= 1

2
β (∆V)2 (2.8) 

 

Since the two drain currents are both equal to Iref as seen in Figure 3, the needed ratio 

between transistors M1 and M5 can now be found by equating the two drain currents and 

solving for 5

1

β
β

.  This is seen in the following equation. 

 

 ID, 5 = ID, 1 = Iref (2.9) 

 5

2
β (2∆V)2 = 1

2
β (∆V)2 

5

1

β
β

 = 1
4

 

 

So, the gate-drain tied transistor M5 must have a size one fourth that of M1 in order to 

supply the correct voltage to the gate of M4.  This will give the desired output voltage 

constraint [1]. 

 

2.2.2.2 High Output Resistance 

 

The wide-swing cascode current mirror offers high output resistance.  The 

analysis can be found in Baker, Li, and Boyce [1].  The output resistance of a cascode 

connection is approximately 
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424 OOmO rrgR ≅  (2.10) 

 

Using the cascode connection raises the output resistance significantly since the output 

resistance of a simple two transistor current mirror is only one .Or  

 

2.2.3 Current Source Self-Biasing 

 

It has been shown so far in this chapter that some of the desirable characteristics 

of current references may be achieved using the wide-swing cascode current mirror.  

These characteristics include high output resistance and low minimum output voltage.  In 

addition, reference current generation that is independent of supply voltage is highly 

desirable.  Since power supplies sometimes fluctuate, a solution is needed.  A method 

called current source self-biasing will be introduced in this section that improves upon 

these design parameters [1]. 

 

2.2.3.1 β Multiplier Referenced Self-Biasing 

 

The design technique that will be utilized in the final current reference is called β 

multiplier referenced self-biasing.  As the name indicates, this is a self-biasing technique 

that will improve upon power supply dependency.  A simple β multiplier referenced self-

biasing circuit is shown in Figure 4.  This circuit structure with source degenerated (by 

resistor ‘R’) output device (M2) that is referred to as a simple β multiplier is loaded by a 
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simple NMOS current mirror loaded by a simple PMOS current mirror with an additional 

mirroring device (M6) to copy I to the reference’s output.  A resistor has been attached 

between the source of M2 and VSS.  Also, the transistor M2 has been sized a factor of K 

times the size of M1.  Normally, the lengths are equal and the width of M2 is K times the 

width of M1. From looking at Figure 4, it can be seen that the gate to source voltage of 

M1 is equal to the gate to source voltage of M2 plus the voltage across the resistor.  This 

is described mathematically in equation 2.11. 

 

 IRVV MGSMGS += 2,1,  (2.11) 

 

All of the transistors in the β multiplier must remain in saturation, so the gate to source 

voltages may be written in terms of their transistor’s drain current as follows.  Assuming 

strong inversion saturation operation, then, 

 

 

 

Figure 4: β Multiplier Current Reference (Start-Up Circuit Not Shown) [1] 
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 ≅1,MGSV THNVI
+

1

2
β

 and THNMGS V
K

IV +≅
1

2,
2
β

 (2.12) 

 

where K is a multiplying factor for the width of M2 and 
21 DD III == due to the PMOS 

current mirror (neglecting body effect, channel length modulation, and mobility 

modulation).  Using equations 2.11 and 2.12 and solving for I, 

 

 I = 2
1

2
R β

(1 - 1
K

)2 (2.13) 

 

As can be seen in equation 2.13, the output current has no dependency on power supply 

voltage.  It only depends upon the resistor value R and the sizing of the transistors.  

Equation 2.13 reveals also that there is a temperature dependency because R and β are 

temperature dependent [1].  The temperature dependency of I is quantified by the 

reference circuit’s temperature coefficient [1]. 

The temperature coefficient determines how much the output current varies over 

temperature, typically provided in units of 
C

ppm
°

.  Equation 2.14 shows the temperature 

coefficient for the β multiplier of Figure 4 [1]. 

 

 TCI = 1
I

I
T
∂
∂

 = -2 1 R
R T
∂
∂

 - 
( )1

( )
p

p

K T
K T T

∂

∂
 (2.14) 
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 For an n-well resistor, the resistor potion of this equation is  -4,000 ppm/degC.  Also, the 

transconductance parameters of the transistors affect the overall TC.  This part of the TC 

is equal to the inverse of the KP(T) value multiplied by the change in the 

transconductance with change in temperature.  This gives a value of 1.5
T

.  So, the final 

temperature coefficient of the β multiplier in terms of its output current is seen in 

equation 2.15. 

 

 TCI = -4,000 ppm
C°

 + 1.5
T

 (2.15) 

 

Using typical values, a β multiplier at 300 K, or room temperature, has a TC of 1,000 

ppm/degC.  This means that the current will increase by 0.10 % for each degree Celsius 

300 K [1].  Predictions for the output current at different temperatures can be found using 

the following equation. 

 

 Io(T) = Io(To)(1 + TC(Io)(T – T0)) (2.16) 

 

Using 27 C°  (300 K) for T0, the current can be found to be 19.46 µA at 0 C°  and 21.46 

µA at 100 C°  where Io(To) is 20µA 

So, the β multiplier current reference has been shown to have no power supply 

dependency (theoretically) and a moderate temperature dependency.  Since these are both 

very desirable characteristics, this circuit is a good basis for the current reference design 
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of this work.  But, the simple β multiplier in Figure 4 has a low small-signal output 

resistance of just rO.  It does have a low output voltage constraint, but a circuit is needed 

that has a low Vo, min and a high output resistance.  The next chapter will show how a β 

multiplier can be improved upon to fulfill all of the needed design parameters. 
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Chapter 3 

Designing Wide-Swing Cascode Current References 
 

 
3.1 Introduction 

 

The previous chapter covered basic building blocks of current reference design.  

Two very important circuits were introduced that will be used in this chapter to form a 

wide-swing high output resistance current reference.  

 

3.2 Designing a Wide-Swing, High Output Resistance β Multiplier 

 

At the end of chapter 2, the β multiplier current reference was introduced.  Using 

a technique called self-biasing, this circuit provides a current reference that has low 

dependency on power supply and temperature variations.  However, the simple β 

multiplier introduced does not have both high output resistance and a low output voltage 

constraint.  This section will use some circuit design techniques, also covered in chapter 

2, that will convert the simple β multiplier into a wide-swing, high output resistance β 

multiplier that still has the same dependency on power supply and temperature variations. 
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3.2.1 Setting Current Value 

 

Before any changes are made to the basic β multiplier, which is seen in Figure 4, 

the process of setting the desired output current value will be discussed.  For this work, 

an output current value of 20 µA is selected.  Rearranging equation (2.13), the needed 

resistor value to implement this amount of current can be found. 

 

 R2 = 
1

2
(20 )Aµ β

1
K

 (3.1) 

 

 This theory is based on strong inversion saturated transistors where β1 is determined by 

the sizing of M1.  K is determined by 
1

2

W
W ( an integer value) and should not be greater 

than 4 because it then becomes difficult to maintain both M1 and M2 in strong inversion 

saturation.  L1 and L2 are equal and it is desired to have M1 and M2 in same inversion 

level for good matching [1].  

Transistor sizing is the next design factor that must be discussed.  When designing 

current mirrors, the transistors are sized to achieve strong inversion saturation and 

matching at the desired current.  But with the β multiplier the output current is 

determined by the resistor value and the ratio )(
1

2

W
WK using Figure 4.  For this design, K 

is equal to four.  The proper sizes for the basic β multiplier seen in Figure 4 were found 

using the inversion coefficient equation seen below [4].   
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 IC = 
( )o

I
WI
L

 (3.2) 

 

Io is called the technology current and typical values are 80 nA for PMOS transistors and 

200 nA for NMOS transistors in this 0.5 µm CMOS process.  In order for a transistor to 

be in strong inversion, the inversion coefficient, or IC, must be greater than or equal to 

ten.  Using the typical NMOS technology current, M1 was set to (W/L)1 = (10µm/10µm), 

giving an inversion coefficient of 100.  M2 is K times larger, or (W/L)2 = (40µm/10µm), 

with an inversion coefficient of 25.  So, these sizes ensure that the transistors are well 

within strong inversion.  They could have been sized even smaller and remained in strong 

inversion but they were sized to optimize matching.  Thus, W2 was implemented using K 

gate fingers in parallel where each gate finger aspect ratio equals (W/L)1.  As a result, 

W2=KW and L2=L1.  For our case,  (W/L)1  would be (2µm/10µm) with five parallel gate 

fingers and then 20 parallel gate fingers, each with (W/L)= (2µm/10µm) for M2.  In the 

schematic, m designates the number of parallel gate fingers. 

  The sizes for the PMOS bias current mirror are also found using the inversion 

coefficient equation.  Using the typical PMOS technology current of 80 nA, M3 is set to 

(W/L)3 = (10µm/10µm) with m = 4 ((W/L)3 total is (40µm/10µm)), giving an inversion 

coefficient of 63.  M4 and M6 are sized exactly the same as M3.  So again, these 

transistors are well within the strong inversion saturation region.  They are also sized for 

using convenient m factors.  The PMOS current mirror is used both to provide the proper 

current bias for the NMOS β multiplier and to mirror the current to the output.  So M3, 

M4, and M6 must be the same size in order to keep the same current in all three legs of the 
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overall β multiplier circuit.    

 

3.2.2 Converting β Multiplier to Wide-Swing Cascode 

 

The β multiplier will now be converted to wide-swing with high output resistance.  

In chapter 2, a circuit was introduced called the wide swing cascode current mirror shown 

in Figure 3.  This same technique will now be applied to the β multiplier in order to 

increase its’ output resistance and maintain a low minimum output voltage.  The first step 

in the conversion process is to think of the basic β multiplier, seen in Figure 4, as a basic 

current mirror.  Then add on the cascode transistors and the diode connected (gate-to-

drain) bias transistor as in the wide-swing cascode current mirror to M1 and M2.  For the 

moment, the PMOS bias current mirror will be left as is.   

Before moving on to the PMOS bias mirror, the transistor sizes of the wide-

swing, high output resistance β multiplier must be discussed.  The gate-drain connected 

bias transistor M5 must still be about one-fourth the size of M1, as in the wide-swing 

cascode current mirror.  But in simulation, it has been found that it is better to size this 

transistor to one-fifth the size of M1 to compensate for body effect in the cascode 

transistors.  Since M1 has a width to length ratio of (2µm/10µm) and m equal to 5, the 

gate-drain connected transistor is sized at (W/L) equal to (2µm/10µm) with m equal to 1.  

For accurate circuit performance, matching between M1 and M2 is critical.  Matching 

between the cascode transistors is less stringent so a shorter L may be used.  These 

cascode transistors are set to (W/L) equal to (8µm/2µm) with m equal to one.  Also, a 

PMOS transistor M6 has been added to mirror the β multiplier current to M5.  It is also 
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sized the same as the other PMOS transistors, or (W/L) equal to (10µm/10µm) and m 

equal to four. 

The next step in the design process is to convert the PMOS current mirror bias 

into a wide-swing, high output resistance current mirror bias.  This will cause the 

complete current source to maintain a low minimum output voltage and raise the output 

resistance.  The PMOS bias current mirror can be converted to a wide-swing cascode 

current mirror using the same technique as that used for the NMOS mirror.  The cascode 

transistors are added along with a gate-drain connected bias transistor.  Of course, these 

are now PMOS.  The gate-drain connected bias transistor must again be about one-fourth 

of the primary (topmost) PMOS.  Since the primary PMOS has a width to length ratio of 

(10µm/10µm) and m equal to four, then the gate-drain connected transistor is sized at 

(10µm/10µm) with m equal to one.  Once again, the cascode transistors need not be as 

large as the primary mirror transistors as long as they are in strong inversion saturation.  

They are both set to a width to length ratio of (8µm/2µm) with m equal to one.  Also, as 

before, a bias transistor is needed for the gate-drain connected transistor of the PMOS 

mirror.  This transistor is sized at (2µm/10µm) with m equal to five.  In order to increase 

the output resistance, a cascode transistor has been added to the output transistor sized at 

(8µm/2µm) and m equal to one.  The bias transistors for both the gate-drain connected 

transistors must also be cascoded.  These are sized (8µm/2µm) with an m factor of one. 

Utilizing all of these improvements, the wide-swing cascode β multiplier current 

reference can be seen in Figure 5.  As mentioned earlier, one of the problems with 

implementing this circuit on-chip is the fact that resistor values can sometimes be as 

much as thirty percent off of their intended value.  For the worst case of a fabricated on- 
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 Figure 5: Wide-Swing Cascode β Multiplier Current Reference 
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chip resistor with 30 % error, the error in the output current can be found using the 

following equation for the β multiplier current. 

 

 I = 2
1

2
R β

(1 - 1
K

)2 (3.3) 

 

Using a resistor value that is 30 % lower than the original hand calculated value, or 15.7 

kΩ, the expected output current will be 40.57 µA.  This shows the very high dependence 

of the output current on the resistor value.  A 30 % error in the resistor value doubles the 

output current. 

There are four transistors in Figure 5 that have not yet been discussed.  These are 

used in order to provide proper start-up operation for the circuit.  The start-up circuitry 

consists of two pairs of two gate-drain connected transistors.  Without the start-up 

transistors, the circuit would not operate properly.  When the power supply is turned on, 

the start-up circuitry prevents the zero current condition that might otherwise occur [1].  

The start-up transistors provide a current path between VDD and VSS to initiate circuit 

turn-on.  These start-up transistors turn off once the desired quiescent point is reached.  

The positive feedback loop kicks off the start-up circuit.  The loop gain magnitude of this 

loop is less than 1 to prevent oscillation at desired quiescent point. 

In order to use the β multiplier current reference to bias other circuits, some 

output current mirrors must be added.  As discussed in [1], multiple current mirrors can 

be connected in order to reproduce additional bias currents.  A three-output NMOS 

current mirror may be connected to the output of the β multiplier current reference in 
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order to provide a current sink for three different circuits.  These mirrors are cascoded in 

order to maintain a high output resistance.  All of the added transistors are sized only to 

keep them in strong inversion saturation, with the cascode transistors smaller.  Also, each 

output mirror is sized the same.  This completes the design of the wide-swing cascode β 

multiplier current reference.  A similar approach was used to develop a bandgap 

reference circuit by Wai-Tat-Wong. 

 

3.3 Stability Analysis of Wide-Swing Cascode β Multiplier 

 
 
In order for a circuit to be useful in practical applications, it is necessary that it be stable.  

A stability analysis will now be performed on the negative feedback loops in the wide-

swing cascode β multiplier current reference seen in Figure 5 to ensure that it is stable.  

There are two negative feedback loops in the circuit that must be analyzed to insure 

stability.  This analysis will be based on the NMOS negative feedback loop.  Using the 

NMOS feedback loop seen in Figure 6, a two-pole transfer function for the loop gain can 

be found [30].  In Figure 6, the PMOS cascode of Figure 5 has been replaced by a DC 

current source Ibias equal to 20µA with an AC equivalent parallel resistance (Req,cascode)p.  

Also, the high frequency capacitances have been included for the frequency response 

analysis of the loop gain.  Cgd3 and the capacitances associated with the PMOS cascode 

have been neglected.  The stability analysis will be performed from the derived two-pole 

loop gain expression.  First, the expression for the midband loop gain will be represented 

as the multiplication of the gains around the loop as seen in the following equation.  
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Figure 6: NMOS Negative-Feedback Loop 
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The gain of the Common-Source amplifier M1 is expressed in equation 3.5. 
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Also, the gain of the Common-Gate amplifier M3 is shown in equation 3.6. 
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So, the midband loop gain reduces to equation 3.7. 
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Next, the two high frequency poles must be found.  These poles occur at node A and 

node B as seen in Figure 6.  The pole at node A will be found first.  Equation 3.8 shows 

the time constant at this node. 
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The pole at node A is approximated using small-signal parameters predicted by 

simulation. 
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Similarly, the time constant and pole at node B are shown in equations 3.10 and 3.11. 

 

 |))|1()()(||)(( 111,, ACCRRCR gdgsnCascodeeqpCascodeeqBBB ++==τ  (3.10) 
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 =Bpf , 10.7 kHz 

 

In calculating the poles, (Req,Cascode)p was found to be 7.6 MΩ through .tf analysis in 

simulation and ro,M1 was found to be 1.25 MΩ.  For all calculations, typical parameters 

for this 0.5 µm process are used.  In calculating the small signal transistor output 

resistances, different values for the channel length modulation parameter were used 

depending on the length of the device.  As channel length increases, channel length 

modulation decreases.  The midband loop gain and the two poles can now be used to 

form the two-pole loop gain expression seen in equation 3.12. 
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Stability can be determined from equation 3.12 using estimation techniques described in 

[30].  Two parameters that can be used to determine stability are the natural frequency 

and the damping ratio as seen in the following equation. 

 

 |)|1( midABn Tfff +=   and 
n

AB

f
ff

2
)( +

=ζ  (3.13) 

 

The natural frequency and the damping ratio can be used to find the phase margin as in 

equation 3.14.  The phase margin is a measure of  stability for a given negative feedback 

loop.   
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Phase Margin, or P.M., is defined as the difference between the phase of the loop gain 

and °−180  when the magnitude of the loop gain is unity [30].  A phase margin greater 

than °0  is needed for a system to be stable but at least °45  is desired.  Most designs 

require °60  in order to eliminate overshoot in the transient response.  The percentage of 

overshoot in the transient response can be found using the following equation. 
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This system is very stable, having a phase margin of only °007. .    Although it is not 

applicable in this case, dominant pole compensation could be used to improve the phase 

margin by adding capacitance to node B, the highest resistance node in this loop [30].  

A similar analysis can be applied to the PMOS wide-swing cascode negative feedback 

loop. 

   

3.4 Layout of the Wide-Swing Cascode β multiplier 

 

Once the design was completed, the next step was to layout the wide-swing cascode β 

multiplier current reference.  Figure 7 shows the layout of the wide-swing cascode β 

multiplier done using the Cadence Virtuoso layout tool.  The use of m number of parallel 

transistors to create one can be seen.   

 

 

Figure 7: Layout of Wide-Swing Cascode β Multiplier Current Reference 
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Chapter 4 

Current Reference Simulation Results 
 
 
4.1 Introduction 

 

This chapter will cover the simulation of the wide-swing cascode β multiplier current 

reference.  All simulations were done using Figure 8 below.  As can be seen from Figure 

8, the resistor value is smaller than that found in hand calculations.  This is caused by the 

body effect of the transistors, which was neglected in the hand calculations.  The resistor 

was manually adjusted in simulation in order to get a current value of 20 µA. 

 

4.2 Simulation Methodology 

 

The wide-swing cascode β multiplier current reference has been simulated to 

determine several important design characteristics.  These include output current under a 

DC sweep on the output, start-up, and determination of stability.  All of these simulations 

were done over three different temperatures using a typical model for this standard 0.5 

µm CMOS process.  The three temperatures used were 0 C° , 27 C° , and 100 C° . 
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4.3 Simulation Results 

 

4.3.1 DC Output Voltage Sweep 

 

First, the output current is plotted as the output voltage is swept from 0 to 5 V.  

The output voltage sweep can be seen in Figure 9.  Figure 9 also shows the output current 

of the β multiplier versus output voltage for three different temperatures.  It can be seen 

that there is an increase in current as the temperature is increased.  The output current is 

around 19.4 µA at room temperature.  At 0C, the current is still fairly close at 18 µA.  

However, at 100 C, the current is quite high at 25.2 µA.  These values vary more than 

predicted by the temperature analysis in chapter 2.  The major cause of the current change 

with temperature is due to the fact that resistance value changes with temperature.  Since 

the resistor in this circuit directly affects the output current, this is a concern.  A solution 

to this problem would be a programmable resistor that maintains the desired output 

current value as temperature is changed.  Also in Figure 9, the minimum output voltage 

can be seen.  The point where the current leaves the saturation region is the point where 

there is no longer enough output voltage left to keep the output transistors in saturation.  

From the plot, the minimum output voltage is approximately 0.7 V.  Hand calculations 

predicted 0.74 V, so this is very close. 
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Figure 9:  DC Output Voltage Sweep at Temperatures 0 C° , 27 C° , and 100 C°  
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4.3.2 Start-Up Simulations 

 

The next simulation ran on the β multiplier were the start-up tests.  For the first 

start-up test, a piece-wise linear voltage source was used to slowly raise the VDD power 

supply from 0 to 5 V as seen in Figure 10.  A 10 µs delay was used before the power 

supply began to turn on in order to allow the circuit to reach a stable quiescent point.  

Figure 10 also shows that the circuit starts up successfully at all three temperatures.  

Again, the output current increases with increasing temperature.  VDD was raised from 0 

to 5 V starting at 10 us and ending at 100 µs.  The output current reaches its desired value 

at approximately 93 µs, which means that the output transistors are saturated at this point.  

The output current goes from zero to its desired output in about 3.5 µs.   

For the second start-up test, the power supply was kept at 5V, but initial 

conditions were used to set the current through the β multiplier to zero.  The output 

current was then plotted to ensure that the start-up circuitry properly caused the circuit to 

produce the desired output current.  A plot of the output current can be seen in Figure 11.  

As can be seen from the plot, the start-up circuits forced the β multiplier transistors into 

strong inversion saturation producing the desired output current.  The circuit started up in 

only 2.5 µs. 

 

4.3.3 Stability Simulations 

 

For the stability simulation, a small transient current will be inserted into each of the 

negative feedback loops.  There is one negative feedback loop in the PMOS bias and one 
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Figure 10:  Transient Start-Up Simulation 
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Figure 11: Start-Up Test With Zero Initial Current 
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negative feedback loop in the NMOS current source.  Then, the voltage at the output of 

each feedback loop was plotted over time.  The current was applied at 100 µs as shown in 

Figure 12.  A schematic of the β multiplier current reference showing the transient input 

currents and the output voltages for the stability simulation is given in Figure 13.  The 

output voltage of the NMOS feedback loop at the three temperatures is shown in Figure 

14.  Also, the output voltage of the PMOS feedback loop for the three temperatures is 

shown in Figure 15.    For each plot in Figures 14 and 15, a step in voltage can be seen 

centered at the point when the current was added.  As can be seen from all of the plots, 

there is a very small amount of overshoot and ringing on the loop outputs over all three 

temperatures.  Also, from the start up test with zero current initial conditions seen in 

Figure 11, only a small amount of overshoot and ringing can be seen in the output 

current.  So, this circuit should be stable.  These results are within 10% of the 

calculations in chapter 3. 



 37

 

Figure 12:  Current Inserted For Stability Simulations. 
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Figure 13: Schematic for Stability Simulations 
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Figure 14:  Stability Simulation of NMOS Feedback Loop. 
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Figure 15: Stability Simulation of PMOS Feedback Loop. 
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Chapter 5 

Current Reference Measured Results 
 

 
5.1 Introduction 

 

This chapter will include the measured results of the major concepts covered in this 

thesis.  Included are the testing procedure and the measured results of the fabricated β 

multiplier current reference.   

 

5.2 Testing of the Fabricated Wide-Swing β Multiplier 

 

After all of the design, layout, and simulation of the wide-swing β multiplier was 

completed, the circuit was fabricated by MOSIS in an AMI 0.5 µm process.  Tests were 

performed on the fabricated chips in order to determine several important characteristics 

of the design. 

 

5.2.1 Testing Methodology 

 

In order to determine the chip’s operation at different temperatures, socketed 

chips were placed in a temperature chamber.  The wires soldered to the socket were fed 

out of the temperature chamber and connected to a breadboard.  Then, a power supply 

was connected to the breadboard.  A Keithley meter was connected to the output of the β 



 42

multiplier current reference on the breadboard.  The Keithley meter, along with a PC 

running LabView, was used to perform a DC voltage sweep on the output and measure 

the output current.  The test setup can be seen in Figure 16. 

 

5.2.2 Measured Results 

 

5.2.2.1 DC Output Voltage Sweep 

 

Using the Keithley meter and the temperature chamber, a DC voltage sweep was done on 

four chips.  Each chip was tested at three temperatures.  These temperatures were 0 C, 27 

C, and 100 C.  The resulting measurements are shown in Figure 17.  As seen in Figure 

17, all four chips performed almost the same.  The largest variation is at 27 C.  The 

average output current for this temperature is 37 µA compared to the simulations, which 

are shown in black in Figure 17.  So, as predicted, there is a large error in output current 

due to the tolerance of fabricated resistors.  The predicted worst-case output current, from 

chapter 3, was 40 µA.  So, the error is not quite worst case.  A solution to correct the 

resistor tolerance error would be to implement a programmable resistor that allows 

adjustment of the resistor value.  Also, as can be seen in Figure 17, there is a large change 

in the β multiplier current due to temperature variation.  At 0 C, the average output 

current for the four chips is 30 µA.  The average current at 100 C is 50 µA.  The same 

programmable resistor can be used to compensate for temperature variation errors.   

Another observation that can be made from Figure 17 is the fact that the fabricated β 

multiplier does indeed have a high output resistance due to the almost constant current 
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Figure 16: Test Setup for Output DC Voltage Sweep 
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Figure 17: Measured Output Current of the Fabricated β Multiplier 
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over the output voltage sweep.  Also, since the output current reaches its saturated value 

at an average of 0.7 Volts at room temperature, the fabricated current reference has a 

wide output voltage swing.  The hand calculated value for the minimum output voltage 

swing was 0.74 V at 27 C, so the fabricated chips operate as predicted. 

Unfortunately, stability of the negative feedback loops could not be measured.  

Internal pad connections to these loop outputs could have been added in order to measure 

stability by looking at the transient response of these voltages.  However, since the output 

current from the DC output voltage sweep remains relatively constant, the system is 

stable.  But, the phase margin cannot be measured without internal pad connections to the 

negative feedback loop outputs. 

 

5.2.2.2 DC Start-Up Test 

 

The second test performed on the fabricated β multiplier was a start-up test.  A 

DC voltage sweep was performed on the power supply as the output voltage was held at a 

constant potential to keep the output saturated.  Figure 18 shows the output current of 

three chips as the power supply voltage is swept from 0 to 6 Volts.  Figure 18 shows that 

approximately 4.5 Volts is needed on the power supply before the fabricated β multiplier 

will reach its’ desired output current level.  All four chips have very similar curves.  Also 

note that the four chips used for this test have output currents that are much closer to the 

desired value.  These chips averaged around 25 µA, compared to 37 µA for the other 

chips. 
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Figure 18: Output Current of Fabricated β Multiplier over Power Supply Sweep 
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5.2.2.3 Temperature Sweep 

 

The third test performed on the β multiplier was a test to determine how the output 

current changes over temperature variation.  Figure 17 shows the current at three discrete 

temperatures over an output voltage sweep.  But, this new test shows the saturated output 

current of the β multiplier over a temperature sweep from 0 C to 100 C.  The results are 

shown in Figure 19.  Figure 19 shows that the current is around 31 µA at 0 C and it 

increases to 51 µA at 100 C.  An interesting characteristic of this data is that the increase 

in temperature does not stay linear.  It is linear from 0 C to close to 60 C and then the 

curve begins to level off for higher temperatures.  Above 90 C, the output current begins 

to approach a constant value.   
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Figure 19: Output Current of β Multiplier versus Temperature 
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Chapter 6 

Conclusion 
 
 

6.1 Conclusion 

 

This thesis focused on the design of a wide-swing cascode β multiplier current 

reference.  Some basic building blocks and design techniques were introduced in order to 

provide the tools necessary to design the circuit.  Then the actual design process of the 

current reference was covered.  The finished design layout and schematic were presented.  

Simulation of the current reference and measurement results of the fabricated circuit were 

shown and compared.  The design sufficiently meets the requirements needed for an 

efficient current reference other than the error due to resistor tolerance, which will be 

addressed in the next section.   

 

6.2 Future Work 

 

The low-voltage cascode bias circuit covered in [29] may be used to build a smaller 

version of the current source designed for this thesis.  Also, the high error in the output 

current of this design could be corrected using a programmable resistor such as the one 

shown in Figure 20.  A digital decoder could be used to close one switch at a time, 

providing an adjustable resistor.  The resistance can be changed to correct error due to 

both fabricated resistor tolerance and temperature variations.  
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Figure 20:  Programmable Resistor for β Multiplier 
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