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This study deals with the development of a computational method that generates the in-

vivo contact pressures on the superior side of the polyethylene in total knee arthroplasty 

(TKA) based on in-vivo kinematic data. Ten clinically successful subjects (five fixed and 

five mobile bearing TKA), having Hospital for Special Surgery (HSS) knee scores 

greater than 90, were analyzed under fluoroscopic surveillance while performing a 

weight-bearing deep knee bend.  3D in-vivo contact positions and kinematics, determined 

using a 2D to 3D registration technique, and soft tissue locations derived from literature 

were entered into a 3D inverse dynamics mathematical model to determine the in-vivo 

bearing contact forces. The contact areas were obtained by assembling the 3D CAD 

models of the components and measuring the interference area between them. The 

contact pressure was calculated by dividing the contact forces with the contact areas. For 

subjects with the mobile bearing TKA the average lateral contact forces varied from 

0.34BW to 0.91BW and the average medial contact forces varied from 0.5BW to 2.7BW 

from full extension to full flexion. In subjects with the fixed bearing TKA the average 

contact forces ranged from 0.43BW to 0.92BW and from 1.04BW to 2.73BW on the 

lateral and medial sides respectively from full extension to full flexion. The contact areas 

for the mobile bearing TKA was always higher than the fixed bearing TKA. The average 
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medial contact pressures ranged from 5.49MPa to 25.7MPa and from 12.8MPa to 

34.38MPa for the mobile and fixed bearing TKA respectively. The average lateral contact 

pressures varied 3.08MPa to 18.83MPa and from 3.71MPa to 18.36MPa for the mobile 

and fixed bearing TKA respectively. This study reveals that the in-vivo contact forces 

and pressures are greater for the medial condyle than the lateral condyle, which is similar 

to polyethylene retrievals that demonstrate greater posterior-medial wear. Also the ability 

of the polyethylene insert, in mobile bearing TKA, to rotate helps in maintaining higher 

femoro-polyethylene contact areas resulting in lesser contact pressures compared to the 

fixed bearing TKA.   
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Chapter 1 
 
Background 
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1.1 Anatomy of the Knee 
 
 
The knee is the largest and the most complex joint in the human body, serving as the 

connection between the upper and the lower leg and controlling the relative motion 

between the two structures. It is defined as a diarthrodial or synovial joint. This means 

that it is a freely moving joint, lubricated by synovial fluid and the whole structure is 

enclosed in a joint capsule.   

 

1.1.1 Bone Structure 

The knee joint is made up of three bones – the femur (thigh bone), the tibia (shin bone) 

and the patella (knee cap) (Figure 1-1). There is one more bone in the lower leg, the 

fibula, but it does not form a part of the knee joint. However, it does serve as an 

attachment site for soft tissues associated with the knee.  
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Figure 1-1: (Left) Anterior View, (Right) Medial View of the Normal Knee (Ahlfeld  Sports   
                     Medicine Orthopaedic Centre, 2005). 

 
 

The femur and the tibia are the two longest bones in the body and form the femoro-tibial 

articulation. The inferior end of the femur has two convex shaped condyles which are 

positioned medially and laterally and are separated by the intercondylar notch in the 

posterior direction and the trochlear groove in the anterior direction. The condyles have 

varying radii of curvatures when moving in the antero-posterior direction.  Femoro-tibial 

articulation is achieved by the contact of the femoral condyles with shallow concave 

shaped condyles present in the tibia. The femoro-tibial articulation carries the maximum 

load passing through the knee joint. To accommodate this, the femur and tibia is made of 

hard cortical bone on the outside and soft and more compressible cancellous bone on the 

inside. 
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The patella is a sesamoid bone (formed completely within the structure of a tendon). The 

patello-femoral articulation is achieved by the contact of the patella on the medial and 

lateral condyles of the femur just adjacent to the trochlear groove, the place where the 

patella is located. The function of the patella is to increase the lever arm of the quadriceps 

extensor mechanism and to provide antero-posterior constraint for the femur. 

 

1.1.2 Articular Cartilage and Meniscus 

Cartilage is a collagen based soft viscoelastic material and is attached to the end of the 

knee joint bones where articulation occurs (Figure 1-1). This makes the mating surfaces 

almost frictionless and helps in smooth motion in the knee with less wear and tear. This is 

also facilitated by the viscous, protein filled, synovial fluid which is filled up in the joint 

capsule and acts as the natural lubricant. 

 

Between the articular cartilage coated ends of the femur and tibia are two crescent shaped 

pieces of fibrocartilage, called the meniscus (Figure 1-1). Due to their wedge-like shape, 

which deepens to cup-shape for the femur to articulate and move, they increase the 

contact area of the bones. Thus they serve to cushion the joint against impact type loads 

and distribute the compressive and shear loads across vulnerable articular cartilage 

surfaces. They also contribute in overall joint stability. 
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1.1.3 Ligamentous Structures 

Ligaments are fibrous tissues, carrying only tensile loads, connected from bone to bone 

which help in stabilization of the joint. There are two main groups of ligaments that play 

a significant role in the control and stabilization of the knee joint – the collateral 

ligaments and the cruciate ligaments (Figure 1-1).  

 

The collateral ligaments attach at the sides of the joint laterally and medially. The lateral 

collateral ligament is a round cord-like ligament that attaches on the outer side of the 

lateral femoral condyles and on the superior end of the fibula. The medial collateral 

ligament is a flat band like ligament attached to the outer side of the medial condyle of 

the femur and extends downwards to attach on the tibia on the antero-medial aspect. The 

medial and lateral collateral ligaments assist in supporting the knee during abduction-

adduction (valgus-varus) motion.  

 

The cruciate ligaments are found at the centre of the knee within the joint space and are 

so named because the two ligaments in this group cross each other. The anterior cruciate 

ligament (ACL) inserts on the anterior end between the tibial condyles and on the medial 

side of the femoral lateral condyle. The posterior cruciate ligament (PCL) is attached 

more laterally on the tibia compared to the ACL and inserts on the medial side of the 

medial femoral condyle. The PCL is located posteriorly compared to the ACL. These 

ligaments are flat in cross-section and are twisted between their insertion points. These 
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ligaments stabilize the knee against antero-posterior translations as well as the medial and 

lateral rotations of the tibia relative to the femur. The ACL restrains anterior subluxation 

while the PCL restrains posterior subluxation of the tibia. 

  

1.1.4 Muscle Structures 

Muscles are the motion generators in the human body and connect to the bone through 

the tendons. Force is generated in them during the extension of the fibers. The major 

muscle groups in the upper leg are the quadriceps and the hamstrings. In the lower leg the 

largest muscle group is the gastrocnemius (Figure 1-2). All these muscles are biarticulate, 

that is, they work on more than one joint. However, the level of activity for one joint is 

much more than the other joint. 

 

The quadriceps, technically known as, the quadriceps femoris muscle group is made up 

of four muscles located anteriorly in the upper leg - rectus femoris, vastus laterlis, vastus 

medialis and vastus intermedius. Except for the rectus femoris, which inserts in the ilium 

(one of the bones making the pelvis), all the muscles insert on the femur. All the four 

muscles coalesce to form the quadriceps tendon. The quadriceps tendon, containing the 

patella bone, attaches the quadriceps muscle group to the anterior tibial bone and is 

known as the patellar tendon in the region between the patella and the tibia. The 

quadriceps muscles are the primary extensors of the knee.  
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Figure 1-2: Major Muscles used in the Flexion and Extension of the Knee (Modified from     
                     American Academy of Family Physicians, 2005). 
 

 

The hamstring muscle group is situated posteriorly on the upper leg and is made up of 

three separate muscles – biceps femoris (lateral side), semitendinosus and 

semimembranosus (medial side). Other medial thigh muscles, the gracilis, the pectinius 

and the adductor longus/ brevis/ magnus are not technically part of the hamstring group. 

All the hamstring muscles have one of their insertion points on the ischium (one of the 

bones making the pelvis) while the other insertion points lie on the fibula and femur (for 

biceps femoris) and on the tibia (for semitendinosus and semimembranosus). The 

hamstring muscles are the primary flexors of the leg. 
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The gastrocnemius muscle group, commonly known as the calf muscles, is located 

posteriorly in the lower leg and is made of three muscles - soleus, medial gastrocnemius 

and lateral gastrocnemius. While the soleus inserts in the fibula and the tibia, the medial 

and lateral gastrocnemius muscles insert on the posterior aspect of the femoral condyles. 

All the three muscles coalesce to from the Archilles tendon, which is attached to the back 

of the heel. Though these muscles primarily function in extending the heel, they also 

assist in the flexion of the leg. 

 

1.2 Osteoarthritis in the Knee 

 

Osteoarthritis is a degenerative joint disease caused due to the break down of the articular 

cartilage. Over a period of time, as the articular cartilages are worn away, bone to bone 

contact sets in. This leads to excessive joint pain and causes roughening and even 

wearing away of the bone articulation. Bony protrusions, known as osteophytes may also 

appear at the edge of the bone (Figure 1-3).  This results in significant pain, inflammation 

and a loss of function and mobility.  Though ideally osteoarthritis should develop during 

old age, however, early onset of the disease is accelerated by injuries, trauma and bone 

deformities. Treatments such as weight loss, braces, orthotics, steroid injections and 

physical therapy can alleviate the symptoms associated with mild to medium level of 

osteoarthritis.  
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Figure 1-3: Deterioration in the Knee caused by Osteoarthritis (Modified from New York   
                    Online Access to Health, BUPA, 2005). 
 
 
 
However, in severe cases the only choice remains is to undergo a knee.replacement 

surgery. Knee replacement surgery consists of the replacing the degenerated contact 

surfaces at the knee. If the arthritis affects only one side of the joint then it is replaced 

with a unicondylar knee replacement which resurfaces only the single damaged femoral 

and tibial condyle. If the arthritis affects the whole joint then a total knee arthroplasty 

(TKA) is used. Apart from restructuring both the femoral and tibial condyles, this type of 

replacement also has a component that fits with the patella. 
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1.3 Total Knee Replacements  

 

Osteoarthritis can be extremely disabling, leading to discomfort and often excruciating 

pain. The artificial orthopedic implants are designed so as to provide pain relief and allow 

a subject with severe osteoarthritis to return to a normal daily life. The first attempt to 

design a total knee arthroplasty (Figure 1-4) was around 60 years ago. With more studies 

concentrating in this area and with greater knowledge about normal knee kinematics, 

TKA designs have transformed from highly constrained hinged type and highly 

conforming designs to moderately conforming designs. 

 

Figure 1-4: Simplified Image of TKA (New York Online Access to Health, AAOS, 2005). 
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A modern TKA design consists of four components. Two components, attached 

separately to the femur and the tibia, are made of high strength, wear resistant and 

biocompatible titanium or cobalt chromium alloys. The other two components are made 

of biocompatible and wear resistant crosslinked ultra high molecular weight polyethylene 

(UHMWPE). One of this components attach on the patella and the other acts as the 

bearing material between the femoral and tibial components.  Though different TKA 

designs use different dimensions, however among comparable designs, they all have a 

similar shape at the contact surface. The patellar component articulates in a groove made 

on the anterior aspect of the femoral component and resembles the articulation of the 

patella on the trochlear groove in the femur of the normal knee.  The contact surface 

between the polyethylene insert and the tibia is generally flat with modifications with 

respect to the fixing mechanism between the two. The contact surface between the 

femoral and polyethylene bearing is elliptic having radii both in the sagittal and the 

coronal planes. Though there is no fixed pattern of the radius on the tibial component, the 

sagittal radius on the femoral component decreases from the anterior to the posterior 

direction (DesJardins, 2000).  

 

Modern TKA designs can be classified with respect to their attachments of the 

components to the bone, the rigidity between the tibial component and the polyethylene 

component and the surgical technique.  
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The femoral, the tibial and the patellar components can be attached to the bone with the 

use of bone cement, or can be fixated without cement, using the concept of inference fit. 

A hybrid approach, where some of the components are fitted with cement while the 

others are fitted without cement, can also be used. Most non-cement approaches use a 

porous coating for the bone to grow into the metal leading to a more secure fixation. The 

polyethylene insert for TKA designs can be of fixed type or mobile type depending on its 

attachment with the tibial component. Fixed bearing designs rigidly fix the two 

components, with grooves, notches, etc., thus preventing relative motion between them. 

Mobile bearings, however, allow relative motion between the two components and can be 

of rotating type (where only rotational motion is allowed) or of meniscal type (where 

both rotation and translation is allowed). Modern TKAs can also be PCL retaining (PCR), 

PCL sacrificing (PCS) or posterior stabilized (PS). PS designs differ from other designs 

by having an additional cam-spine (also called cam-post) contact between the femoral 

component and the polyethylene bearing in order to initiate posterior femoral rollback. 

This is required in order to prevent the impingement of the femur on the tibia during high 

values of flexion. The spine (post) is located on the polyethylene bearing and the cam is 

provided on the femoral component in between the two condyles. PCR designs do not 

have this mechanism as the PCL is believed to be the one that causes posterior femoral 

rollback in the normal knee. 
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2.1 Introduction 

 

Experimental studies in humans are difficult and often restrictive due to the exclusion of 

any measuring device that would require invasive techniques. Since cadaveric studies fail 

to simulate in-vivo conditions adequately (Komistek, 2005), biomechanical researches 

have strived for new and unique methods for indirect measurements. This chapter aims at 

providing the reader with some background related to this thesis, and deals with: 

• Analysis of motion in TKA.  

• Analysis of forces in TKA. 

• TKA failure mechanisms. 

• Analysis of wear in TKA. 

• Stress in the polyethylene bearings in TKA. 
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2.2 Motion Studies 

 

Previous methods that have been used to determine in-vivo motions can be categorized as 

either invasive or non-invasive techniques. Some of invasive techniques include the use 

of fracture fixation devices (Cappozzo, 1993), bone pins (LaFortune, 1992), minimally 

invasive ‘halo ring’ pin attachments (Holden, 1994) and Roentgen 

Stereophotogrammetric Analysis (RSA) (Karrholm 1989; Nilsson, 1995). Though they 

probably generate very accurate results, they haven’t received a wide scale approval due 

to their invasive nature. 

 

Some of the non-invasive techniques include the use of skin markers (Antonsson, 1989), 

externally worn goniometric devices (Chao, 1980), single plane fluoroscopic techniques 

(Banks, 1996; Hoff, 1998) and non-invasive RSA technique (Valstar, 2001).  

 

Since, the skin based marker systems have been found to generate substantial error due to 

undesired motion between the markers and the underlying bones (Murphy, 1990; Sati, 

1996; Holden 1997), modifications have been made to reduce the errors associated with 

it. Some of these methods include artifact assessment (Lucchetti, 1998), Point Cluster 

Technique (Andriacchi, 1998; Alexander, 2001) and optimization using minimization 

techniques (Spoor, 1988; Lu 1999).  
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Though fluoroscopic techniques have been accused of exposing patients to radiation 

(Andriacchi, 2000), the amount of risk to the patient due to radiation is minimal  and have 

been found to generate more accurate results, errors within 0.4° and 0.1mm, under 

dynamic load bearing conditions (Mahfouz, 2003). 

 

It has now been accepted that knee motion can be described in terms of 6 degrees of 

freedom (DOF), though they are not necessarily mutually perpendicular (Bull, 1998). 

 

Flexion -Extension 

This is the rotation of the knee as viewed in the sagittal plane and represents the largest 

motion of the knee. In the normal knee this range of motion has been found to vary from 

0° -140° with a little bit of hyperextension in some cases.  

 

Internal- External Rotation 

This is the rotation of the knee in the transverse plane. This motion is influenced by the 

position of the joint in sagittal plane. During flexion, the tibia is found to rotate internally 

with respect to the femur and during extension, the tibia is found to rotate externally with 

respect to the femur. At full extension, rotation is completely restricted by the 

interlocking of the femoral and tibial condyles. This happens because the medial condyle 

is longer than the lateral condyle (Nordin, 2001).  
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Abduction-Adduction 

This is the rotational motion in the knee as viewed from the frontal plane and is also 

dependant on the flexion-extension motion in the knee joint.  This motion is also known 

as valgus-varus movement and causes one of the condyles (generally the lateral condyle) 

to lift off. Passive abduction and adduction increases with increase in knee flexion to 

about 30°, but only to small values, after which it decreases due to the effect of soft 

tissues (Nordin, 2001). 

 

Medial-Lateral Shift 

This is the sliding motion experienced by the knee in the medial and lateral directions. 

This type of motion is very small compared to the other movements in the knee. Since the 

tibial plateau is not flat in the medial lateral direction, so medial-lateral shifts are 

accompanied by a coupled abduction/ adduction and vice-versa. 

 

Anterior-Posterior Translation 

This is the second largest motion in the human body and is the movement in the anterior 

and posterior directions. This motion arises due to slipping of the femur while rotating in 

the sagittal plane. With increasing knee flexion, the femoral condyles move in the 

posterior direction on the tibial plateau. This happens due to the tension exerted by the 

posterior cruciate ligament and helps in allowing the knee to go into high flexion without 

causing the femur to impinge on the tibia. 
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Superior-Inferior Translation 

This motion refers to the movement of the femur in the superior-inferior direction with 

respect to the tibia. Since the sagittal contour of the condyles are not exactly circular and 

also since the medial condyle is larger than the lateral condyle, so the flexion and 

extension motion is coupled with compression distraction causing an unequal load 

sharing between the two condyles. 

 

Knees implanted with TKAs have been found to be experience variable kinematic 

patterns compared to the patterns demonstrated by normal, non-implanted knees. Primary 

among those derived differences are restricted range of flexion, decreased normal axial 

rotation and increased occurrences of reverse axial rotation and condylar lift off (Dennis, 

2003, 2005a; Oakeshott, 2003). The causes for such variations are believed to be the 

effects of TKA geometry and implantation procedure. This is due to the fact that the TKA 

fails to replicate the condylar and contact geometries and also causes a change in the 

operating environment at the knee by the removal or alteration of the soft tissues within 

the knee which act as secondary stabilizers (Dennis, 2005b).  
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2.3 Force Studies 

 

The in-vivo force studies related to the knee joint can be divided into two broad 

categories – telemetry and mathematical modeling.  

 

Studies using telemetry utilize force sensors, fitted to the prosthetic components, which 

are implanted directly inside the human body.  This is the method which generates the 

best results because it directly derives in-vivo measurements. However, it is restricted in 

its use because of the high amount of costs involved in developing a telemetric implant, 

making it unsuitable for mass scale production and use. Telemetry is a developing art and 

though there are quite a number of telemetric studies for the hip, its use in the knee has 

been pretty restricted to date (Komistek, 2005). Previous attempts to incorporate 

telemetry for the knee have either used special femoral prosthesis (non TKA) fitted with 

strain gauges (Taylor, 1998, 2001; Burny, 2000) or have used a modified tibial tray of the 

TKA fitted with load cells (Kauffman 1996, Morris 2001). While the first set of studies 

have generated in-vivo data for weight bearing conditions, the second set was tested in-

vitro. Recently a telemetric TKA has been designed (D’Lima 2005) and implanted. This 

also incorporates the principle of using load cells in the tibial tray. However, only 

preliminary data, up to 6 weeks of follow up, for this implant has been published 

(Colwell, 2005).  
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Unlike the experimental telemetric approach, mathematical modeling techniques provide 

a theoretical approach, which can be used on a large scale to predict in-vivo forces both 

for the normal and the implanted knee using the principles of inverse dynamics. In this 

principle, kinematics of a system is input to the mathematical model to derive the kinetics 

of the system. Due to a large number of muscles and soft tissues, the number of 

unknowns in the human body is large. Therefore mathematical modeling of the human 

body is a challenging task and relies on two techniques – optimization and reduction, to 

resolve this issue. In the optimization technique, the number of unknowns is greater than 

the number equations that be generated for the solution. Therefore, the process deals with 

the solution generated by the minimization of a suitably chosen objective function 

(Seireg, 1973; Brand, 1982; Anderson 2001; Piazza 2001). The reduction technique, 

however, uses simplifying assumptions to reduce the complexity of the system. In this 

case the system is always kept determinate i.e. the number of unknowns is always made 

equal to the number of equations that can be generated to solve them (Paul, 1965, 1976; 

Wimmer, 1997; Lu, 1997, 1998; Komistek, 1998, 2005).  

 

There are variances in the force data generated by the studies (Table 1). This is because 

data collected by telemetry and the data input to the mathematical models for the same 

type of activity are collected at different speeds. The interactive forces increase as the 

speed of the activity is increased. However, it is now a well accepted fact that the contact 

forces increase with the increase in the angle of flexion (Komistek, 2005). 
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Table 1: Knee Contact Forces from Previous Studies (Modified from Komistek, 2005). 
 

Authors Technique Activity Knee Force 

Taylor et. al. Telemetry Normal gait 2.2 – 2.8 BW 

  Treadmill gait 2.75 BW 

  Stair descent 3.1 BW 

  Stair ascent 3.8 BW 

  Jogging 3.6 BW 

Colwell et. al. Telemetry Walking 2.4 BW 

  Stair ascent 3.3 BW 

Seireg et. al. Optimization Walking 7.1 BW 

Paul Reduction Walking 2.7 – 4.3 BW 

  Stair descent 4.9 BW 

  Stair ascent 4.4 BW 

  Up ramp 3.7 BW 

  Down ramp 4.4 BW 

Wimmer et. al. Reduction Walking 3.3 BW 

Komistek et. al. Reduction Walking 2.1 – 3.4 BW 

  Deep knee bend 1.8 – 3.0 BW 
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2.4 TKA Failure Studies 

 

The nature of failure in TKAs has been the main guideline in its development. The major 

reasons for failure of TKAs leading to revision surgery were loosening of the 

components, instability in the joint due to incorrect surgery, mechanical failure of the 

components and infection (Hood, 1983; Fehring 2001, Sharkley, 2002). Infection being a 

non-engineering issue has been neglected in this review. Modern day TKAs have been 

found to have survival rates of more than 90% at ten years and 84% at fifteen years 

(Godest, 2000; Rand, 2003).  

 

2.4.1 Component Loosening  

In earlier implant designs, tibial component loosening was the main cause of TKA failure 

with cemented fixation (Scuderi, 1989; Windsor, 1989). The main reason for this type of 

failure was believed to be: 

 

• Malalignment: Due to incorrect valgus-varus alignment of the component, the 

implant experiences off centered loading which can result in the lift off the tibial 

baseplate (Windsor, 1989).   
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• Poor Initial Fixation: For cemented implants, an adequate amount of bone 

cement must be used to ensure proper intrusion of the cement into the bone and 

the porous surface of the implants. Too much intrusion of the bone cement into 

the bone, for cemented designs, can lead to the necrosis of the bone and 

consequent loosening of the components (Moreland, 1988). For cementless 

designs too little stress on the trabecular bone holding the prosthesis components, 

due to disuse or stress shielding, can result in atrophy of the bone causing the 

prosthesis to loosen (Matthews, 1985).  

 

• Impact Loading and Implant Design: The amount of resistance generated in the 

implant for displacement and rotation of the femoral component on the tibia is a 

measure of the constraint in the implant (Thatcher, 1987; Heim, 2001). For a 

given tibial sagittal radius, the larger the femoral radius in the sagittal plane, the 

larger is the translation constraint. The rotational constraint depends both on the 

sagittal radius and the coronal radius of the components (Haider, 2005). Higher 

the constraint, higher is the force required for movement and higher is the force at 

the bone joint interface. Moreover, use of the implant for which it is not designed 

such as running and jumping, leads to higher forces and stresses which can be 

more than the bonding strength thereby causing loosening. This can also lead to 

the fractures of the surrounding bone (Pugh, 1973). 
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2.4.2 Joint Instability 

TKA implantation requires loosening, and alteration of the medial and collateral 

ligaments and the removal of the ACL and the PCL (PS designs). Since the surrounding 

ligaments are the secondary stabilizers for the knee joint, a successful implantation 

requires correct ligament balancing and proper alignment of the components. Instabilities 

can be caused by excessive bone resection, improper balancing of the ligaments leading 

to improper flexion gaps, mismatch and incorrect alignment of the prosthetic components 

(Gebhard, 1990; Fehring, 1994).  Malalignment is believed to be the major reason leading 

to joint instability. If alignment is correct then mild instability can be tolerated but if 

alignment is incorrect then even mild instability can lead to severe disfunctionality 

(Moreland, 1988). 

 

2.4.3 Mechanical Failure of Components 

Earlier designs using metal on metal articulations and highly constrained hinged-type 

designs had severe wear and high rate of fracture caused due to fatigue (Wright, 1985). 

The problems associated with the failure of the metallic components have been 

eliminated with the use of ultra high molecular weight polyethylene (UHMWPE) as the 

bearing material between the femoral and tibial component (Hood, 1983). The main 

cause of TKA failure nowadays is due to the wear of the UHMWPE insert (Collier, 

1991).  The wear in the polyethylene insert can cause the implant to fail in a number of 

ways. The particles generated during wear may cause synovitis (joint swelling), 
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osteolysis (bone resorption) and in extreme cases, necrosis (bone death). This would 

cause the components to loosen and even cause fractures in the bones due to weakening. 

Wear would increase the roughness of the contact surfaces in the polyethylene insert. 

This would result in an increase in the frictional force between the femur and the 

polyethylene. Thus there would be an increase of the constraints in the implants.  

Moreover, due to imperfections and irregularities on the surface, the femoral component 

won’t rest properly on the polyethylene. The ultimate effect would be reflected in poorer 

kinematics, malalignment and instability of the joint which would ultimately lead to 

component loosening, more wear and failure (Walker, 2000a). 

 

2.5 Wear Studies 

 

Wear of UHMWPE has been found to be the major limiting factor in the longevity of the 

modern TKA implants (Collier, 1991; Jacobs, 1994; Sharkley, 2002). Therefore, the 

major focus of biomechanical engineers and orthopedic surgeons has switched to the 

understanding of the mechanism associated with polyethylene wear and ways to prevent 

it. The study of wear can be divided into two broad groups – results obtained from 

simulators and the results obtained from retrieval studies. In case of simulators, the cause 

is input and the effect is studied. For retrieval studies, on the other hand, the final effect is 

analyzed and the cause for wear is hypothesized and estimated. 
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Speaking in broad terms two types of simulators are used in wear studies – the knee 

simulators and the wear simulators, Knee simulators are complex and expensive 

equipments that test actual knee prosthesis. These are extensively used by TKA 

manufactures and provide physiological loading in at least four degrees of freedom – 

flexion-extension, AP sliding, tibial rotation and abduction-adduction (Thompson, 2001). 

Wear simulators are simplified testing devices which have lesser degrees of freedom and 

makes use of circular metallic discs (to simulate the femur) which rotate and slide of flat 

or curved UHMWPE blocks (to simulate the polyethylene insert).  

 

Thus wear simulators basically focus on the effect of the rolling and sliding motion of the 

femoral component on the contact fatigue failure mechanism in polyethylene (Blunn, 

1991; Walker, 1996; Wang, 1999; Kennedy, 2000). Apart from studying the effect of 

contact fatigue failure, knee simulators can also help in the quantification of surface area 

of wear and the volume of wear in actual polyethylene inserts (Harman, 2001; Bell, 2003; 

Laurent, 2003; Muratoglu, 2003).  

 

Retrieval studies on the other hand examine the wear patterns in the polyethylene inserts 

which have been obtained directly from patients (Collier, 1991; Wasielewski, 1994; 

Wang, 1998) and tries to correlate the reasons which might have resulted in such a 

pattern. The implant is divided into zones and the amount of wear in each of the regions 

is identified (Wasielewski, 1994; Currier, 2005).   
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2.5.1 UHMWPE Wear Models 

Among the many reasons which can cause wear, fatigue related wear and wear due to 

abrasion adhesion have been found to be prevalent in UHMWPE. Seven types of damage 

modes affecting wear have been identified for polyethylene inserts (Hood, 1983): 

 

• Burnishing: This is caused by the constant rubbing of the femoral component on 

the polyethylene, thereby smoothening out surface roughness and creating a 

polishing effect. 

• Abrasion: This causes severe shredding of the material due to the small particles 

on the surface, generally generated by the exposed bone and the cement around 

the femoral component. Wear particles generated in the polyethylene also aid in 

this process. 

• Delamination: This causes the top layers of the polyethylene to break away. The 

process of delamination starts at regions of high stress, caused by micro-cracks or 

defects in the material (Blunn, 1991). Under cyclic loading these cracks, assisted 

by tensile and shear stresses (Bartel, 1986), propagate parallel to the articulating 

surface and results in sheets of material breaking away (Walker, 1993).  

• Pitting:  These are small holes generated in the articulation surface from similar 

fatigue mechanisms as delamination. 
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• Surface Deformation: This is the permanent deformation of the material caused 

by cold flow and creep. 

• Scratching: These are small wear tracks that are caused on the surface of the 

polyethylene. This is a mild version of abrasion caused due entrapment of small 

particles between the articulating surfaces. 

• Embedded Debris: This is caused due to the embedment of hard particles like 

bone and bone cement on the soft polyethylene material. 

 

2.5.2 Factors Influencing UHMWPE Wear 

As a material UHMWPE exhibits low wear rates when compared to metals and other 

polymers, previously used as tibial inserts, like polytetrafluoroethylene (PTFE) and high 

density polyethylene (HDP) (Fisher, 1991). This is because polyethylene has very long 

chains of hydrocarbons which are bonded strongly and so does not break due to 

mechanical stresses. If the material property is neglected, the performance of UHMWPE 

as used in TKAs is affected by the process of manufacture and the geometrical design of 

the components. 

 

2.5.2.1 Manufacturing Process 

Polyethylene inserts used in TKAs are manufactured in one of the three ways (Bellare, 

1996): 
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• Machined from sheets created by compression moulding of resin. 

• Machined from bars created by extrusion of the resin.  

• Direct compression moulding of the resin to the required shape. 

 

Fusion defects are caused when the UHMWPE resin is polymerized into bar and sheet 

stock. These are microscopic defect areas of unconsolidated resin remaining in the 

material either due to the quality of the resin or the manufacturing process. Moreover, the 

machining of the raw stock to the final shape causes strain hardening and work hardening 

in certain areas. These act as the main causes related to polyethylene wear (Wrona, 1994; 

Bankston, 1995). Polyethylene inserts that are directly made from the compression 

moulding of the resin have been found to be significantly stiffer in the outer layer in 

comparison to machined components which can lead to surface cracking and 

delamination (Tanner, 1995).  

 

After manufacturing, the components are sterilized before packaging. Previously 

sterilization methods used gamma radiation in the presence of air or used ethylene oxide. 

This is was found to oxidize the material reducing its fatigue resistance (Baker, 2000) and 

increasing wear rates and contact stresses (White, 1996; Heim, 1996). Moreover, shelf 

life was also found to be a major cause of polyethylene oxidation thereby increasing its 

tendency to wear (Heim, 1996).  
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Orthopedic companies have addresses this issue by now using gamma sterilization in the 

absence of air – either in vacuum or in an inert atmosphere of nitrogen. This prevents 

oxidation of the outer layer of the polyethylene and has been found to dramatically 

improve fatigue related wear like delamination and pitting (Li, 1994; Williams, 1998). 

The use of gamma rays has also helped in increasing the abrasion-adhesion wear 

resistance of polyethylene (McKellop, 1999; Wroblewski, 1999). This happens by a 

mechanism called cross-linking where the gamma radiation knocks of atoms from a 

molecular chain and the two such chains join together forming a cross-linked structure.   

 

2.5.2.2 Geometrical Design  

The stresses produced in the polyethylene insert under loading have been found to have a 

direct influence on the wear and damage associated with it (Collier, 1991; Kuster, 2002). 

The critical factor that is associated with stresses developed is the contact area. The 

contact stresses have been found to decrease almost exponentially with an increase in the 

contact area (Rullkoeter, 1999). Increasing the polyethylene thickness has been found to 

increase the contact areas at the femoro-polyethylene interface and reduce contact 

stresses (Bartel, 1985, 1986; Collier, 1991, Heim, 1996). Using the same reasoning it can 

be said that highly conforming designs would also have larger contact areas leading to 

lower stresses. This is certainly true in the neutral position where studies have shown that 

high conformity reduces contact stresses compared to low conforming designs (Bartel, 

1995; Kuster, 2002; Liau, 2002). However, when the position is not neutral higher 
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conforming designs have been found to generate higher stresses than low conforming 

designs (Heim, 1996; D’Lima, 2001, Liau, 2002). This is because for highly conforming 

designs a slight change in alignment due to flexion, internal-external rotation and AP 

translations causes the conformity to reduce drastically. Low conforming designs on the 

other hand maintain a similar kind of conformity for most orientations thereby 

experiencing lower stresses. 

 

Incidence of wear on the tibio-polyethylene interface and its contribution to the 

generation of microscopic particles, leading to osteolysis, has also been found in fixed 

bearing polyethylene inserts (Wasielewski, 1997; Rao, 2002; Conditt, 2005). This has 

been attributed to backside micromotion caused to inadequate locking in the modular 

fixed bearing polyethylene inserts. Interestingly enough retrieval studies of rotating 

mobile bearing TKA inserts have reported no evidence of significant backside wear 

(Huang 2002a, 2002b). This has been ascribed to the decoupling effect on motion mobile 

bearing TKAs have (Bell, 2003; McEwen, 2005). Both the surfaces of the mobile bearing 

experienced unidirectional motion. For the fixed bearing both surfaces experience 

multidirectional motion arising due to rotation and translation of the components. Thus is 

can be concluded that polyethylene wear depends on the type of motion its experiences. 

Unidirectional motion causes the grain to orient along the direction of motion, thereby, 

increasing wear resistance. For multidirectional motion, the grains of the polyethylene are 

randomly oriented, thus experiencing higher wear rates.  
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2.6 UHMWPE Stress Studies 

 

The study of stresses in polyethylene inserts can be divided into two broad groups – 

experimental methods and analytical methods.  

 

Experimental methods are used to calculate the contact stresses/ pressures and basically 

work on the principle of dividing the normal force generated/ assumed with the measured 

area of contact. The main advantages of these methods lie in the rapid generation of data 

and therefore are used extensively by orthopedic companies. Some experimental 

techniques used previously include stereophotogrammetric methods (Ateshian, 1994), 

dye injection methods (Greenwald, 1971; Black, 1981), silicone rubber methods 

(Kurosawa, 1980), 3S technique (Yao, 1991), Fuji pressure sensitive film (Stewart, 

1995), resistive ink sensors (K-ScanTM) (Ochoa, 1993), ultrasound (Zdero, 2001), 

piezoelectric transducers (Mikosz, 1988; Buechel, 1991) and micro-indentation 

transducers (Ahmed, 1983). All of these experimental methods, however, are in vitro 

techniques that either assumes the contact forces and/or the orientation of the implanted 

components. Also, the differences between these various techniques and loading 

conditions make direct data comparisons difficult. Finally, these methods do not calculate 

sub-surface stresses which are important in determining potential wear and failure 

(Harris, 1999). 
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Previous studies using analytical methods involve the use of “Hertzian Contact Stress” 

analysis (Hertz, 1881) or Finite Element Modeling. Using Hertzian analysis is probably 

the quickest method in calculating the contact stresses as it does not involve time 

consuming calibration and positioning of the components and also does not require 

extensive calculations. Though this method has been used previously to calculate the 

stresses in polyethylene inserts (Bartel, 1985; Walker, 1988), the accuracy of this method 

is limited due to the simplifying assumptions on which the theory is based (Lewis, 1998). 

As a result, it is used more as a tool for comparison rather than for the actual generation 

of data.  

 

Finite Element Analysis (FEA) is a well proven method that is used in CAD-CAM 

(computer aided design and computer aided manufacture) as a virtual prototyping tool. In 

this method, complex structures, whose exact solution is not possible, is broken down 

into smaller elements that can be solved independently. The results of the individual 

elements are summed up to predict the behavior of the entire complex structure. Along 

with the ability to perform analysis for complex structures, it can work on non-linear 

materials and can also compute sub-surface stresses. Past finite element studies have 

either used two dimensional plane strain models (Bartel, 1986; Morra, 1998; Walker, 

2000b) or have used three dimensional models but with simplified material properties 

(Sathasivam, 1998) or have been static and quasi-static models (Rawlinson, 2001; 

Machan, 2004). In more recent studies, explicit dynamic models have also been 
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developed (Godest, 2002; Halloran, 2005). Though FEA provides the best capability to 

model the polyethylene accurately and calculate stresses in it, however, the greatest 

disadvantage of this method lies in the high amount of effort, time and computational 

infrastructure required for the analysis. Thus most studies, using FEA have used 

simplifying assumptions to reduce the complexity of the method.  

 

As with most types of studies in this field, the stress and contact area data generated by 

the various methods have a lot of variability in them (Table 2). 

 

Table 2: Summary of some Previous Contact Area and Contact Stress Studies (Thompson, 

2001). 

Method Reference Load Average 
Contact Area 

Maximum 
Contact Stress 

Elasticity Bartel et. al. 1.5 KN N/A 18.0 MPa 

FEA Bartel et. al. 1.5 KN N/A 20.0 MPa 

Fuji film Collier et. al. 2.8 KN N/A 23.5 MPa 

Fuji film Collier et. al. 0.7 KN 0.3 cm2 N/A 

K-scan sensor Harris et. al. 3.6 KN 3.5 cm2 N/A 

Fuji film Harris et. al. 3.6 KN 2.3 cm2 N/A 
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While TKA procedure is found to be very successful in treating severe osteoarthritis, 

failure, especially in the form of polyethylene wear limits its longevity (Howling, 2001; 

Currier, 2005). Efforts to address this issue have mainly concentrated on improving the 

manufacturing process and the material properties. Some of these efforts include 

improvement of the sterilization techniques to reduce oxidation and therefore reduce 

fatigue related delamination and pitting of the polyethylene (Li, 1994; Williams, 1998), 

and development of highly crosslinked polyethylene (MarathonTM, Depuy; LongevityTM 

and DurasulTM,, Zimmer; CrossfireTM, Stryker) and scratch resistance femoral 

components (OximiumTM, Smith and Nephew, Ceramics) to reduce abrasive wear 

mechanisms (Wroblewski, 1999; Heimke, 2002).  
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Wear is ideally a function of kinematics, kinetics and the material properties (Wimmer, 

1997). Interestingly enough, all the various types of TKA available today use similar kind 

of materials but have wide differences in the design and the dimension of the 

components. This suggests that the correlation of kinetics, kinematics and wear hasn’t 

been developed (Sathasivam, 2001; Fregly, 2005).  With modern TKA designs aiming at 

higher degree of flexion, which generates higher forces (Komistek, 2005), and also TKAs 

being implanted in younger and more active patients a perfecting understanding of the 

relation of kinematics, kinetics and wear has become increasingly important (Walker, 

1999).  

 

Methods to study wear behavior in UHMWPE have been limited to the use of simulators 

or retrieval studies. The greatest drawback with using simulators is the fact that it works 

on in-vitro conditions. Comparison between wear generated by simulators and that 

obtained from retrieval studies, for the same bearing designs and for similar cycles, have 

indicated greater amount of wear in the retrieved inserts (Harman, 2001). On the other 

hand retrieval studies involve a backward approach and can only give us an idea about 

what ‘might have caused’ such wear rather can pinpointing as to ‘this is the cause’. Thus 

the correct approach would be to go in the forward direction and predict wear from the 

in-vivo kinematics and kinetics. At present there has been just one study attempting to do 

this (Fregly, 2005). However, this study is limited due to the fact that it assumes a linear 

material model, does not incorporate friction and assumes an axial force distribution.  
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Previously, fluoroscopy has been successfully used in our lab to determine the in-vivo 

kinematics of TKA, allowing for the determination of antero-posterior translation, axial 

rotation, femoral condylar lift-off and weight-bearing range-of-motion (Komistek, 2000, 

2004; Dennis, 2003). The objective of this research is to devise a new computational 

methodology which would extend this capability to the calculation of in-vivo contact 

forces and torques, contact stresses and sub-surface stresses and ultimately serve as 

reliable predictor for potential polyethylene wear. 

 

This thesis describes the initial process that has been derived. This process is currently 

restricted in its complexity and can calculate only the contact pressures at the femoro-

polyethylene interface. We intend to increase the accuracy and the capability in the future 

by continuation of this work. In order to test the method we have come up with so far, 

this methodology was applied on subjects having either a fixed or a mobile bearing PFC 

Sigma Posterior Stabilized (PS) TKA (Depuy, Warsaw, IN). The femoro-polyethylene 

contact geometry of the components for the two types of implants is similar in the sagittal 

plane but the mobile bearing has greater conformity in the coronal plane than the fixed 

bearing. We therefore hypothesize that subjects implanted with a mobile bearing TKA 

will have larger contact areas and lower contact pressures at the superior surface of the 

polyethylene bearing. 
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4.1 Test Group 

 

The data used in this study is a subset from a previous study in our lab, which was 

conducted to analyze the in-vivo kinematics for the PFC Sigma PSTM fixed bearing and 

the PFC Sigma PSTM RP mobile bearing (Depuy, Warsaw, IN) TKA patients, using 

fluoroscopy, while performing a deep knee bend (Komistek, 2004; Ranawat, 2004).  Each 

groups consisted of five implants – three right TKA and two left TKA. Also, there was 

one subject in each group who had received bilateral TKA implants. This was chosen in 

order to analyze if there exists any patient related similarities. All the ten knee implants 

were judged clinically successful having Hospital for Special Surgery (HSS) knee scores 

greater than 90 (Insall, 1989) with no ligamentous laxity or pain. The five fixed bearing 

TKAs were implanted by one surgeon and all five mobile bearing TKAs were implanted 

by a second surgeon. 
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4.2 General Methodology 

 

In order to calculate the in-vivo contact pressures, the method deals with two broad 

aspects – calculating the in-vivo contact forces and calculating the in-vivo contact areas 

(Figure 4-1). The in-vivo contact forces were calculated using an inverse dynamics 

mathematical model. In this technique the kinematics is inputted in order to predict the 

kinetics. The input to this model consisted of the implant kinematics, the dimensions of 

the bones and implant components and the ground foot interaction force. The implant 

kinematics was calculated by registering the 3D implant components on the 2D 

fluoroscopic image. 

 

 

Figure 4-1: Flow Chart Describing the Method Followed in the Study.  
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Though this part was not performed during the course of this project, nonetheless it has 

been explained to allow the reader to understand the full process utilized in this 

methodology. The bone geometry and muscle attachment coordinates were obtained from 

the previously published anthropometric data. The required dimensions of the implant 

components were directly obtained from the CAD models of the components. The ground 

foot interaction force was obtained from force plate data.  

 

In order to calculate the in-vivo contact areas, the implant models were loaded in a CAD 

package and were assembled based on the transformation matrices obtained previously 

from the 2D to 3D registration technique. Once the basic orientation of the components 

was achieved, the femoral component was re-oriented to interfere with the polyethylene. 

The amount of interference was calculated from the load versus deformation 

characteristics of polyethylene. The interference area was considered to be the contact 

area.  The contact pressures were then calculated by the following relations:  

 (MPa) PressureContact  Average x 1.5 (MPa) PressureContact  Maximum

)(mm AreaContact 
(N) Force Normal (MPa) PressureContact  Average 2

=

=

 

 

The relation between the maximum contact pressure and the average contact was an 

assumed one and was based on the Hertzian Contact Analysis which also uses the same 

relationship. 
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4.3 Fluoroscopy 

 

The patients were fluoroscoped in the sagittal plane while performing the deep knee bend 

activity. There can be subtle variations in the way that a person performs a deep knee 

bend. So to maintain uniformity, the patients were asked to perform a deep knee bend 

from full extension to full flexion while always keeping their foot (of the fluoroscoped 

knee) fixed on the ground. While the leg which was fluoroscoped was placed forward, the 

patients had their other leg inclined backwards at an angle which was comfortable for 

them. Finally, they were asked to use their hands to support themselves against the frame 

of the fluoroscopy machine if needed (Figure 4-2).  

 

The fluoroscopic videos were digitized using a frame grabber and were broken down into 

still images of size 640 x 480 and having 8 bits. For each patient, images from zero to 

maximum flexion at increments of 10° of flexion were used for the analysis. Some 

patients exhibited hyperextension. However, to maintain uniformity it was neglected 

from the study and only the image showing a zero angle of flexion between the femur and 

the tibia was used as the starting image. By keeping a record of the frames used in the 

study, the time elapsed for each frame was noted. (The time between each frame and the 

total time was used later while curve fitting the input data.)  
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Figure 4-2: Fluoroscoping the Deep Knee Bend Activity (Mahfouz, 2003). 

 

The individual fluoroscopic images are distorted due to the effects of pincushion and 

spiral distortion. Pincushion distortion is caused due to mapping of electrons from the 

input screen of the image intensifier, which is curved, to the flat output screen. This 

phenomenon is dependant on the distance between the X-ray source and the image 

intensifier and causes larger magnification at the periphery of the final image than at the 

centre of the image.  

 

Spiral distortion, also known as S-distortion, is due to the effect of the magnetic field 

encompassing the image intensifier. The component of the magnetic field parallel to the 

image intensifier affects the radial electron velocity thereby causing a rotation of the 

image. The transverse component of the magnetic field affects the longitudinal electron 

velocity causing a translation of the final image. This generates the resultant image with a 

characteristic S-shape. 



Materials and Methods 
 

 
 - 41 - 

The distortion of the fluoroscopic images is corrected using the image of a board 

containing beads, at known positions, which act as control points (Figure 4-3). By 

comparing the known positions of the control points with it corresponding location in the 

distorted image, transformation coefficients for each pixel of the image can be 

determined (Mahfouz, 2003). By applying the obtained transformation coefficients on the 

distorted image, we can recover the true image. This final distortion free image is used 

for further analysis.   

 

 

 

Figure 4-3: Image of a Bead Board. The white dots represent the actual location of the    
                    beads. The black dots represent the distorted images of the beads. 
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4.4 2D to 3D Registration 

 

This technique has been developed in our lab and overlays the 3D models of the 

components on their projection in the 2D fluoroscopic image (Mahfouz, 2003). This is a 

semi-automated process that uses direct image to image similarity measure and works on 

the principle of recreation of the 3D scene in which the patient was fluoroscoped. This 

requires the calibration of the camera for the fluoroscopic unit. The CAD models are 

loaded in the software with their geometrical centre coinciding with the global origin of 

the system. The geometrical centre of the CAD models are found by drawing a 3D 

bounding box and then joining the diagonals. The common intersection of the diagonals 

is the geometrical centre. For the automated process to start, the user must orient the 

models (translate and rotate) to the pose they feel is the best estimate. Starting from this 

initial pose, the models are automatically oriented to their final position by the use of an 

automated optimization algorithm known as Simulated Annealing (SA). In its search for 

the global minimum, the SA algorithm searches the 6-dimensional space (3 rotational and 

3 translational) and needs a metric for scoring how the pose of the model compares with 

that of the fluoroscopic image. This is done using the fluoroscopic image (input image) 

and a 2D projection image of the model (predicted image) which is generated in white 

against a black background. Using morphological operations, edge images are created for 
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both the input and the predicted images. Also the input image is inverted to be similar in 

color with the predicted image (Figure 4-4). 

 

 The match between the input image and the predicted image is calculated by two 

metrics. The first metric compares the pixels of the predicted image and the inverted 

input image. The second metric evaluates the overlap of the contours in the edge images 

generated for both the input and the predicted image. The final matching score is 

obtained by multiplying the two images together, summing the result and then 

normalizing it with the sum of the predicted image. This method has been found to be 

robust and converges to the global minimum and is insensitive to image noise and 

occlusions. Also this method has been found to generate accurate results in the image 

plane with root mean square (RMS) errors of 0.4° in rotation and 0.1mm in translation. 

However, it is found to generate higher errors in along the axis perpendicular to the 

image plane (RMS errors of 0.65mm in translation and 1.5° in rotation) (Mahfouz, 2003). 

 

 

Figure 4-4: (Left) Inverted Image. (Right) Edge Image (Mahfouz, 2003). 
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4.5 Generating the Required Kinematics 

 

4.5.1 Femoral and Tibial Components 

The 2D to 3D registration process works effectively for components that are visible in the 

fluoroscopic images and outputs their transformation values (three rotational and three 

translational) based on the global origin defined in the system. Therefore, the 

transformations for the femoral and tibial components were directly obtained from this 

process. Once both the femoral and the tibial components have been overlayed this 

process also calculates the antero-posterior (AP) position of the femur with respect to the 

tibia. This is achieved by calculating the AP distance of the lowest point on each condyle 

of the femur measured from the centre of the tibial tray which is assumed to be flat. This 

is not necessarily the contact point between the femur and polyethylene component, 

which is curved both on the sagittal pane and the coronal plane (Figure 4-5). However, it 

serves as a good measure in studying the translational nature of the femur with respect to 

the tibia and was used in the mathematical model, details of which are explained later.  

 

 

Figure 4-5: The Assumed Point of Contact to calculate AP Position of the Femur. 
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4.5.2 Polyethylene Insert 

Since polyethylene is transparent to radiation, so it is rendered invisible in the 

fluoroscopic images. Therefore, the 2D to 3D registration technique cannot be directly 

applied to this component. To overcome this difficulty, for the fixed bearing TKA, the 

polyethylene was assumed to be rigidly fixed to the tibial component thus having the 

same kinematics as that of the tibial component. For the mobile bearing TKA, the 

polyethylene was specially prepared before implantation. Each insert was designed and 

manufactured with four tantalum beads strategically placed at locations offset with each 

other in all directions, so that they were always visible in the fluoroscopic images.  The 

kinematics of the polyethylene was obtained by orienting the beads on it to the locations 

visible in the fluoroscopic images. Though the same 2D to 3D registration software 

interface was used to generate the transformation values, the matching of the four beads 

was done manually. To ensure correct alignment, the femoral and the tibial components 

were fit before the polyethylene insert (Figure 4-6). The final assembly was viewed in 

three mutually perpendicular planes to ensure correctness of the overlay process.  

 

 

Figure 4-6: Process used to fit the Polyethylene Insert in the Mobile Bearing TKA. 
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4.5.3 Patella 

For the patellar component, a similar problem, as with polyethylene insert, exists. 

However, the patellar bone is visible in the fluoroscopic images. Therefore, movements 

of the patellar component can be directly derived from the fluoroscopic images with the 

help of the patellar bone.  The patella was assumed to rotate only in sagittal plane and the 

amount of tilt was calculated by measuring an axis of the patella (obtained by marking 4 

points on the extremity of the patella, as visible in the fluoroscope image, and bisecting 

the lines joining them) with the axis of the tibia (Figure 4-7).  The distance between the 

most anterior aspect of the femoral component and the most posterior aspect of the 

patella was defined as the patellar contact point. This method has been previously used in 

our lab to study patellofemoral kinematics (Komistek, 2000).    

            

 

Figure 4-7: Method used to calculate the Patellar Tilt Angle from the Fluoroscopic Image  
                      (Komistek, 2000). 
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4.6 Mathematical Modeling  

 

In order to predict the in-vivo forces during the deep knee bend activity, an inverse 

dynamics model was created. This model was based on the principle of rigid body 

dynamics and utilized the reduction technique, where, the system is always kept 

determinate by keeping the number of unknowns equal to the number of equations. The 

underlying assumption in this technique is that certain muscles, which do not influence 

the system significantly, are neglected. Moreover, the modeled muscles are grouped 

together and it is assumed that the force within the grouped muscles represents a good 

estimate of the force acting within each separate muscle. The model was developed using 

AutolevTM (Online Dynamics Inc, Sunnyvale, CA), a symbolic manipulator based on 

Kane’s dynamics (Kane, 1985; Komistek, 1998). Unlike classical methods in dynamics, 

Kane’s method uses generalized multipliers, called partial velocities and partial angular 

velocities, to convert the actual forces and torques into what is known as generalized 

forces, based on which the equation for equilibrium is derived (Appendix B). Moreover 

the method is vector based, i.e., vector cross products and dot products are used to 

determine the velocities and accelerations rather than tedious calculus (Yamaguchi, 

2001). Therefore, this method is extremely efficient and well suited for multibody 

systems having large degrees of freedom. This method allows for the solution of a 

maximum of six kinetic terms associated with each rigid body. 
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4.6.1 Inputs to the Model 

Same amount of rotation between two different centers does not produce the same final 

orientation. Though the angle of body with respect to a reference line remains the same, 

the final position of the body is translated (Figure 4-8). The 2D to 3D registration process 

generates three rotational and three translational values for each component. However, 

these calculations are based on the geometrical centre of the model. In the constructed 

mathematical model, the rotational centre of the rigid bodies does not correspond to the 

geometrical centre of the implant components. Therefore, to take care of this effect, only 

the rotational values obtained from the registration process were considered. Before use 

in the model, the kinematic data was made continuous by interpolation using splines of at 

least the 3rd order. This was done in order to make the acceleration, obtained by double 

differentiation of path of motion, continuous. Each data was fit with splines of order 3, 4, 

5 and 6 respectively. The final selection was made based on the least sum square error 

generated by the splines when fitting the original data. 

 

Ground reaction force, obtained from a force plate, was also used as an input to the 

model. However, this data was unavailable for each patient individually. Therefore, the 

data used in this study were that for a single healthy person. This data was scaled with 

respect to the patient weight and the time they took for the activity. Though this resulted 

in a variation in the magnitudes of the round reaction force for each patient, however, the 

variable nature of each curve with respect to flexion angle was similar.  
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Figure 4-8: Effect of Rotation about different Centers.  

 

The dimensions of the bones, location of prominences and their inertial parameters were 

obtained from previously published anthropometric data (Zatsiorski, 1983; White, 1989; 

deLeva, 1996). The attachments of the muscles were considered as points and were also 

obtained from previous studies (Yamaguchi, 2001). Since these studies use different axes 

systems, therefore, the data were transformed to the axis system in this study before being 

used.  Also, these data were scaled with respect to the height and body weight of the 

patients. In this regard, the dimension of the patella was unavailable. So the patella was 

assumed to be a disc whose dimensions were measured directly from the fluoroscopic 

images at full extension. Finally, the relevant femoral, polyethylene and tibial component 

dimensions of the TKA were directly measured form the CAD models of the 

components.  
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4.6.2 Description of the Model 

Initially, a free body diagram of the mathematical model, simulating the deep knee bend 

activity was derived in the sagittal plane (Figure 4-9). The anterior-posterior (AP) 

direction, superior-inferior (SI) direction, and the medial-lateral (ML) directions were 

denoted as unit vectors in the 1, 2, and 3 directions, respectively.  This is the same set 

axes that the 2D to 3D registration technique uses. The system consisted of a kinematic 

chain starting from the foot-ground interaction through to the hip joint which was 

modeled as a fixed point corresponding to the superior most aspect of the femoral head.  

 

Figure 4-9: Simplified Free Body Diagram for the Mathematical Model used in the Study. 
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During this particular deep knee bend activity, the foot always remained firmly rooted to 

the ground. Therefore, it was removed from the analysis and the tibia was considered to 

have pure rotation in the sagittal plane about a point, corresponding to the ankle joint, 

which was fixed to the ground. The amount of rotation was the value that was obtained 

from the 2D to 3D registration process. This point was considered as the origin for the 

Newtonian and the tibial reference frames. Also since the patients did not do the deep 

knee bend activity bare footed, so the foot has a surface contact with the ground. The 

point of action of the original ground reaction was considered to be the midpoint of the 

foot. As the model starts from the ankle so the ground reaction force calculated from the 

force plate data was replaced by a force and moment acting at the ankle. The magnitude 

of this force was equal to the force plate value while the moment was calculated as the 

cross product of the position vector form the midpoint of the foot to the ankle and the 

magnitude of the force (Figure 4-10). 

 

 

Figure 4-10: Transforming the Ground Reaction Force from the Foot to the Ankle. 
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The tibia, femur, patella and polyethylene were modeled as rigid bodies while the ground 

was chosen as the fixed Newtonian reference frame (referred to as ‘A’,’B’,’D’, ‘G’ and 

‘N’ in the figure).  

 

Subsequent transformation was then defined for the adjacent bodies. The mobile bearing 

polyethylene insert was assumed to have pure rotation with respect to the tibia in the 

transverse plane about the superior-inferior axis (A2>). The polyethylene coordinate 

system had its origin at the mass centre of the polyethylene. This point is aligned on the 

axis of rotation due to the symmetrical nature of the polyethylene insert. For the fixed 

bearing TKA, the polyethylene was assumed to be rigidly fixed to the tibial component, 

without having any motion relative to it, and the polyethylene axis system was similar to 

that of the mobile bearing. The femur was assumed to roll with slipping along the AP 

direction on the polyethylene insert. This was modeled as a cylinder rolling with slipping 

on a curved surface which had a curvature only in the sagittal plane. The cylinder had a 

radius equal to the radius of the femoral condyles in the sagittal plane and a length equal 

to the intercondylar distance of the femoral implant. The intercondylar distance was 

defined as the distance between the lowest points in the femoral condyles at full 

extension and this was assumed to be constant throughout flexion. Also, the effect due to 

the coronal curvature of the polyethylene was neglected. The femur was also assumed to 

rotate in the transverse plane with respect to the polyethylene about the superior-inferior 

axis (B2>) but rotation in the coronal plane, causing lift off, was neglected. The sagittal 
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motion of the femur was the value obtained from the 2D to 3D registration transformation 

values. However, the translational effect and the axial rotation of the femur were obtained 

from the AP data, as previously specified. The slip factor for the motion was calculated 

as the ratio of the actual distance translated by the femur to the distance it would have 

moved had it been rolling without slipping in the antero-posterior direction (Figure 4-11). 

 

The motion of the femur was finally depicted as rotations in the sagittal plane and the 

transverse plane about an instantaneous centre of rotation. This instantaneous centre was 

calculated as the line of intersection of the instantaneous axis of rotation in the sagittal 

plane and the axis of rotation in the transverse plane. Since, in the transverse plane, the 

rotation was calculated with respect to the bisector of the length of the cylinder, the axis 

of rotation for this case was always fixed. 

 

 

Figure 4-11: Calculating the Slip factor and the amount of Axial Rotation in the Femur. 
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The origin for the femoral coordinate system was defined at the intersection of the 

longitudinal axis and the transverse axis of the femur (considered to be a cylinder) 

(Figure 4-12). For the TKAs used in this study, the femoral component has three distinct 

radii in the sagittal plane and they contact with the polyethylene at around 0-60°, 60°-90° 

and 90° to maximum flexion. Similarly, the polyethylene also has two distinct radii in the 

sagittal plane and comes into action depending on the location of contact with the femur. 

This is provided into order to achieve higher areas of contact as the femur goes into 

higher ranges of flexion. Therefore, while using the AP data to calculate the motion of 

the femur with respect to the polyethylene (as obtained from the 2D to 3D registration) 

the correct femoral and polyethylene radii corresponding to the angle of flexion were 

used. 

 

 

 

Figure 4-12: Location of the Origin and the Instantaneous Centre for the Femoral  
                      Component as used in the Model. 
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The patella was assumed to be located in the femoral groove and as a result had the same 

axial rotation as the femur. The patella was assumed to have rotation in the sagittal plane 

with respect to the femur about a centre passing through the mass centre of the patella. 

The mass centre of the patella was calculated by the method as outlined in Komistek et. 

al., 2000 and was considered to be the origin for the patellar coordinate system. Only one 

point of contact was considered between the femur and the patella and this contact was 

considered variable based on the contact values directly obtained from the fluoroscopic 

images using the process described in the referred study.  

 

The surface contacts between the tibia and the polyethylene and between the femur and 

the polyethylene was modeled as having two contact points corresponding to the medial 

and lateral condyles. The PS type implants experience and additional contact due to the 

engagement of the cam-spine mechanism, but this was neglected in this analysis. The 

femoro-polyethylene and tibio-polyethylene contact forces were included into the system 

only at the points of contact and were modeled as having two components, one in the 

direction along the common normal for the surfaces in contact (FN) and the other in the 

direction opposite to the direction of relative velocity of the points in contact (frictional 

force, FS).  A constant frictional co-efficient (CF) of 0.05 was used for this analysis and 

the magnitude of the frictional force was obtained as the product of the frictional co-

efficient and the normal force (Figure 4-13).  
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Figure 4-13: The direction of the Femoro-Polyethylene Contact Forces used in the Model. 

 

As the surface curvature of the patellar component was unavailable, the contact forces 

between the femur and patella were modeled along the three Newtonian unit vector 

directions.  

 

To keep the system determinate, only the quadriceps and the patellar ligament were 

entered into the system whose forces were calculated in this model.  The quadriceps is a 

set of four muscles. But in this model it assumed to be a single muscle having its 

attachment on the greater trochanter of the femur. The patellar ligament and the 

quadriceps were modeled as mass-less frames (represented as ‘C’ and ‘E’). They were 
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entered into the system as equal and opposite forces acting at their points of attachments 

and the line of action being the straight line joining their attachment points. Thus though 

the forces were unknown in magnitude, their direction was known. This helps in reducing 

the number of unknowns in the system. This method however neglects the effect due to 

the wrapping of the muscles on the bones. 

 

The model solved for 18 unknowns that included the femoro-polyethylene and tibio-

polyethylene contact forces and torques, the patello-femoral contact force, the force in the 

patellar ligament and quadriceps muscle, and the forces and torques acting at the hip.  

 

 

4.7 3D CAD Modeling 

 

The in-vivo contact areas were derived by the use of CAD modeling. The CAD models 

that were provided to us directly from the manufacturer were in ‘IGES’ format. In this 

format a 3D object is broken down into surfaces. In order to be able to calculate the 

interference area Mechanical DesktopTM (Autodesk Inc, San Rafael, CA) requires that the 

contacting components be solid. Therefore, the surfaces of the femoral and polyethylene 

components which were supposed to be in contact were converted into solids. This was 

done by extruding the surfaces in the required direction. Since the cam-spine contact was 
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neglected for this whole study, the structure of the cam on the femur and the spine of the 

polyethylene were not modified and the contact area between them were not calculated. 

 

4.7.1 Orienting the CAD Models 

This process works on the concept of recreating the same scene as that in case of the 2D 

to 3D registration technique. The CAD models were loaded into the system so that the 

geometrical centre of the components coincided with the global origin of the software. 

Using the rotational and translational values obtained from the registration technique, the 

components were oriented to match in the same way as observed in the registration 

process. In order to ensure this all rotations for a particular component was applied at the 

geometrical centre and the order of rotation about the three mutually perpendicular axes 

was the same as that used in the registration technique. For the mobile bearing TKA only 

the femur and the polyethylene components were used which were rotated and translated 

with respect to their geometrical centre. For the fixed bearing TKA, since polyethylene 

transformation data was unavailable, it was assumed to be rigidly fitted to the tibia. 

Therefore, the rotation and translation for this component was done with respect to the 

geometric centre of the tibia, for which it was necessary to fit the polyethylene on the 

tibia first.   
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4.7.2 Calculating the Deformation 

The compressive stress-strain data for UHMPWE generated by DeHeer and Hillberry 

(DeHeer, 1992) has been used in several studies, especially FEA studies, for calculation 

of contact stresses (Walker, 2000b; Halloran, 2005). However, for this study we chose 

the data from Kurtz et.al. 2002.  This study lists the compressive stress strain properties 

for UHMWPE processed under different radiation levels (unradiated, 30KGy y-N2, 

100KGy 100°C, 100KGy 150°C), tested at different strain rates (0.02/s, 0.05/s, 0.1/s) and 

temperatures (20°C – 60°C), and  tested under uniaxial tension and uniaxial compression. 

For this study the uniaxial compression data for UHMWPE radiated by 30KGy y-N2, 

tested at a strain rate of 0.05/s and a temperature of 37°C was used (Figure 4-14). This 

data was also compensated for toe-in as per ASTM D695-02a standards. 

 

Figure 4-14: Compressive Stress-Strain Nature of UHMWPE (Kurtz, 2002). 



Materials and Methods 
 

 
 - 60 - 

The uniaxial compression test data was generated for cylindrical specimens 10mm in 

diameter and 15mm in height (Kurtz, 2002). From this true stress-strain data, the load 

versus deformation variation of polyethylene was calculated and used in this study. This 

was achieved by the following relations: 
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From the load versus deformation variation of the polyethylene, the actual deformation of 

the polyethylene was calculated using the forces generated by the mathematical model at 

the femoro-polyethylene contacts. Separate deformation was calculated for the medial 

and the lateral sides depending upon the forces they experienced. 

 

4.7.3 Generating the Contact Area 

In order to generate the contact areas the initially aligned femoro-polyethylene assembly 

was re-oriented. The polyethylene orientation was unchanged but the model of the 

femoral component was moved about its superior-inferior axis until it interfered with the 

polyethylene insert by the deformed amount as calculated previously. Since the medial 

and the lateral sides in the polyethylene had differing deformation values, with the medial 
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deformation being higher due to higher values of loads acting on the medial side, the final 

orientation of the femoral component on the polyethylene was achieved in two steps. 

First, the femoral component was first interfered with the polyethylene component to a 

thickness equal to that of the predicted medial deformation and then it was rotated along 

the coronal plane about the medial contact point which was assumed to be the centre of 

rotation. This ensured the lateral condyle to lift upwards and attain its correct deformation 

value (Figure 4-15). Once the components were perfectly oriented, the interference area 

between the two components was obtained and then used as the contact area (Figure 4-

16).  

 

 

Figure 4-15: Re-orienting the Femoral Component to Interfere with the Polyethylene.  
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Figure 4-16: (Top) Top view of the final assembled CAD Models. (Bottom) The Interference  
                      Area (Contact Area) between the Femur and the Polyethylene. 
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This section reports the results obtained for this project. As stated earlier the kinematics 

used in this project was taken directly from previous studies (Komistek, 2004; Ranawaat, 

2004). However, since this project consists of a smaller test group than the original 

studies the kinematic results described in this section would be different from that 

published in the literature. The previous studies published data from full extension to 90° 

of flexion. This study however utilized the data from full extension to maximum flexion. 

 

Since the subjects analyzed in this study experienced various amounts of knee flexion, for 

comparison purposes, the results obtained were normalized for each subject with respect 

to their flexion range. This was achieved by converting the motion from full extension to 

full flexion on a percentage scale with the maximum flexion being denoted as 100%.  

Also though the calculations of the forces were in Newtons, the final values were scaled 

with respect to the body weight of each person. 
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5.1 Kinematics 

 
On average, subjects having a PFC Sigma fixed bearing PS TKA experienced -0.8 mm 

(range, 2.3 mm to -3.1 mm; SD, 2.1) of posterior motion for the medial condyle and -3.2 

mm (range, -0.3 mm to -5.2 mm; SD, 2.1) of posterior motion for the lateral condyle 

from full extension to maximum knee flexion.  Subjects having the mobile bearing PS 

TKA experienced, on average, an anterior movement of 2.7 mm (range, 0.3 mm to 6.2 

mm; SD, 2.8) for the medial condyle and a posterior movement of -1.8 mm (range, 1.2 

mm to -4.3 mm; SD, 2.3) for the lateral condyle from full extension to maximum knee 

flexion.   The average amount of internal tibial rotation was 3.1° (range, -3.6° to 5.8°; 

SD, 3.8) and 5.9° (range, 1.0° to 12.4°; SD, 4.2) for the fixed and mobile bearing PS 

TKA groups, respectively.   The maximum amount of condylar lift-off was 1.3 mm 

and 1.5 mm for the fixed and mobile PS TKA groups, respectively.  Four of five (80%) 

subjects having a fixed bearing PS TKA and  one of five (20%) subjects having a mobile 

bearing PS TKA experienced greater than 1.0 mm of condylar lift-off at any analyzed 

increment of flexion.  The average weight-bearing range-of-motion for the fixed and 

mobile bearing PS TKA groups was 112.2° (range, 95° to 130°; SD, 15) and 97.2° 

(90° to 108°; SD, 8.04), respectively. 
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5.2 Contact Forces 

 
5.2.1 Mobile Bearing TKA 
  
 
The contact forces for each subject increased with increasing knee flexion. Subjects 

having a mobile bearing TKA experienced, on average for the medial condyle, a force at 

full extension of 0.5BW (range, 0.17 BW to 0.69 BW; SD, 0.22) to a force of 2.7BW 

(range, 2.68BW to 2.80BW; SD, 0.08) at maximum knee flexion. The lateral contact 

force remained less than the medial contact force, averaging from 0.34BW (range, 

0.25BW to 0.38BW; SD, 0.06) at full extension to 0.91BW (range, 0.88BW to 0.94BW; 

SD, 0.03) at full knee flexion (Figure 5-1).  

 

 

Figure 5-1: The Average Contact Forces in the Mobile Bearing TKA. 
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The average force in the patellar ligament varied from 0.17BW (range, 0.14Bw to 

0.21BW; SD, 0.03) at full extension to 1.5BW (range, 1.47BW to 1.55BW; SD, 0.03) at 

full knee flexion. The average quadriceps force on the other hand varied from 0.27BW 

(range, 0.12BW to 0.43BW; SD, 0.15) at full extension to a value of 2.86BW (range, 

2.62BW to 3.25BW; SD, 0.28) at full knee flexion. The average patello-femoral contact 

force had a value of 0.23BW (range, 0.14BW to 0.34BW; SD, 0.09) at full extension, 

which increased to 2.82BW (range, 2.64BW to 3.00BW; SD, 0.14) at full knee flexion 

(Figure 4). In summary, all of the subjects experienced a larger patellofemoral force 

compared to the quadriceps force throughout knee flexion except during early flexion (0-

5%) and deep flexion (80-100%) when some subjects experienced larger quadriceps 

forces that increasingly influenced the group average for this force (Figure 5-2). 

 

 

Figure 5-2: The Average Patellofemoral, Patellar Ligament and Quadriceps Force in the  
                      Mobile Bearing TKA. 
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Figure 5-3: Distribution of the Contact Forces in the Mobile Bearing TKA. 

 

The medial-lateral force distribution increased with the increase in flexion and varied 

from around 65%-35% ratio at full extension to around 73%-27% ratio at maximum knee 

flexion (Figure 5-3).   

 

5.2.2 Fixed Bearing TKA 

Fixed bearing TKA subjects experienced similar force patterns as the mobile bearing 

TKA subjects where the average forces increased with increasing knee flexion.  The 

average medial force varied from 1.04BW (range, 0.70BW to 1.77BW; SD, 0.42) at full 

extension to 2.73BW (range, 2.56BW to 2.87BW; SD, 0.12) at full knee flexion. The 

average lateral force varied from 0.43BW (range, 0.34BW to 0.62BW; SD, 0.11) at full 

extension to 0.92BW (range, 0.87BW to 0.95BW; SD, 0.03) at full flexion (Figure 5-4).  
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Figure 5-4: The Average Contact Forces in the Fixed Bearing TKA. 

 

The average patellar ligament force varied from 0.27BW (range, 0.06BW to 1.02BW; 

SD, 0.42) at full extension to 1.54BW (range, 1.48BW to 1.58BW; SD, 0.04BW) at full 

knee flexion. The average quadriceps force varied from 0.52BW (range, 0.16BW to 

1.06BW; SD, 0.32) at full extension to 3.10BW (range, 2.78BW to 3.27BW, SD; 0.19) at 

full knee flexion. Finally, the average patellofemoral force ranged from 0.62 BW (range 

0.24BW to 1.26BW; SD, 0.41) at full extension to 2.92BW (range, 2.72BW to 3.02BW; 

SD, 0.12) at full knee flexion (Figure 5-5). Unlike the subjects having a mobile bearing 

TKA, the patellofemoral force remained greater than the quadriceps force, except at the 

final stage of flexion (90-100%). 

 

The medial-lateral force distribution ranged from 70%-30% at full extension to 72-25% 

at maximum knee flexion (Figure 5-6). 
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Figure 5-5: The Average Patellofemoral, Patellar Ligament and the Quadriceps Force in the  
                    Fixed Bearing TKA. 
 
 
 

 

Figure 5-6: Distribution of Contact Forces in the Fixed Bearing TKA. 
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5.3 Contact Areas 

 

Throughout knee flexion, the medial and lateral condylar contact areas for both TKA 

types varied considerably. The amount of contact area varied for each subject within a 

TKA group and, in general, was fairly consistent for the medial side but decreased on the 

lateral side with increasing knee flexion. The average minimum and maximum contact 

area values ranged from 50.12 mm2 to 213.21 mm2 (Appendix D) for the subjects having 

mobile bearing TKA (Figure 5-7) and from 59 mm2 to 160 mm2 (Appendix D) for the 

subjects having a fixed bearing TKA (Figure 5-8). For each subject, the analysis revealed 

that the medial condyle contact area was greater than the lateral condyle contact area. 

Also, the contact areas for subjects having a mobile bearing TKA were higher than the 

values for those subjects implanted with a fixed bearing TKA.   

 

Interestingly, for those cases where the relative axial rotation of the femur with respect to 

the polyethylene was greater than 2.0°, the contact area decreased. This finding seems to 

suggest that the main factor affecting the contact area is the axial orientation of the femur 

on the polyethylene. Higher axial rotations cause a mismatch between the components’ 

contour, thus reducing the area of contact between them. 
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Figure 5-7: The Average Contact Areas in the Mobile Bearing TKA. 

 

 

Figure 5-8: The Average Contact Areas in the Fixed Bearing TKA. 
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5.4 Contact Pressures 

 

The contact pressures for both the mobile and fixed bearing TKA groups increased with 

the increasing knee flexion. The average maximum medial condylar pressure for the 

mobile bearing group ranged from 5.49 MPa at 10% of the knee flexion cycle to a 

maximum value of 25.7 MPa, occurring at maximum knee flexion. The average 

maximum lateral condylar contact pressure for the mobile bearing group ranged from 

3.08 MPa at 20% of the knee flexion cycle to a maximum value of 18.83 MPa, occurring 

at maximum knee flexion (Figure 5-9).  

 

 

Figure 5-9: The Average Maximum Contact Pressures in the Mobile Bearing TKA. 
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Although the average maximum lateral condylar contact pressures for the fixed bearing 

TKA group were similar to the mobile bearing TKA group, ranging from 3.71 MPa at 

10% of the knee flexion cycle to 18.36 MPa at maximum knee flexion, the medial 

condylar contact pressures were greater for the fixed bearing TKA group. The average 

maximum medial contact pressure for the fixed bearing TKA group started at 12.8 MPa 

at full extension, increasing rapidly after 40o of knee flexion to a maximum value of 

34.38 MPa occurring at 90% of the knee flexion cycle (Figure 5-10). 

 

 

 

Figure 5-10: The Average Maximum Contact Pressures in the Fixed Bearing TKA. 
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6.1 Introduction 

 

This study describes an in vivo computational method to predict polyethylene contact 

pressures occurring at the femoro-polyethylene articulation in TKA. This study used the 

reduction technique of mathematical modeling to calculate in vivo contact forces and 

solid modeling to calculate in vivo contact areas. This is the first documented study that 

attempts to model a knee implanted with a TKA and calculates the contact forces on the 

medial and the lateral sides separately. The overall (sum of medial and lateral) bearing 

surfaced contact force averaged 3.6BW, which is similar to that obtained in previous 

studies using telemetry and mathematical modeling (Taylor, 2001; D’Lima, 2005; 

Komistek, 2005).  
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6.2 Contact Forces 

 

The bearing surface forces increased with the increase in flexion for all subjects. This is 

due to the fact that as the knee goes into higher flexion, the forces in the quadriceps 

increase causing in an increase in the net downward normal force at the femoro-

polyethylene interface (Komistek, 2005). The average bearing surface forces on the 

medial side and the lateral side in the fixed and mobile bearing TKA were similar of 

similar magnitude. However, the fixed bearing TKA group had slightly higher values, on 

both the condyles, during the early parts of the flexion cycle (0-25%) compared to the 

mobile bearing group (Figure 6-1, 6-2). This might be due to the fact that fixed bearing 

TKA group experienced greater axial rotation during early flexion. Also the similar 

magnitudes in the forces during higher flexion angles suggest that the additional 

constraint imposed in the mobile bearing prosthesis, due to its higher conformity in the 

coronal plane, is offset by the additional rotational degree of freedom it possess. The 

medial contact force was always higher in magnitude than the lateral contact force. Also, 

interestingly, for all the subjects (with both fixed and mobile bearing TKA) the contact 

forces slowly increased at first and then rapidly from round about 40-60% of the flexion 

cycle (Appendix C). This is the similar range of flexion for which the cam-post 

mechanism comes in contact and there might be a correlation between the two. 
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Figure 6-1: Variation of Average Medial Forces with Flexion. 

 

 

Figure 6-2: Variation of Average Lateral Forces with Flexion. 
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6.3 Contact Areas 

 

The contact areas for both the implant types demonstrated variable patterns and 

magnitudes on a subject-to-subject basis (Appendix D). As had been previously 

hypothesized, the average contact areas, for subjects having a mobile bearing TKA 

remained higher than those subjects having a fixed bearing TKA, during the majority of 

the flexion cycle (Figure 6-3, 6-4). This is due to the fact that the mobile bearing has 

greater conformance than the fixed bearing and this scenario is maintained even 

throughout flexion due to the ability of the bearing to follow the femoral component in 

axial rotation. On more interesting fact was that though the medial contact area was 

pretty consistent throughout flexion, the lateral contact areas decreased with increasing 

knee flexion and the subjects experienced their lowest contact area value at maximum 

flexion. As flexion increases, the difference in between the lateral and medial contact 

forces increases. Since the polyethylene was modeled as viscoelastic, so with increasing 

flexion the amount of difference in the deformation levels between the medial and the 

lateral sides also increases. Thus reduction in contact area due to mismatch between the 

femoral component and the polyethylene gets compensated in the medial side due to 

higher deformation of the polyethylene but fails to do so in case of the lateral side.  
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Figure 6-3: Variation of Average Medial Contact Areas with Flexion. 

 

 

Figure 6-4: Variation of Average Lateral Contact Areas with Flexion. 
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6.4 Contact Pressures 

 

Both the medial and the lateral average maximum contact pressures increased with the 

increase in the flexion angle. For the medial side, the average maximum pressure was 

higher in the fixed bearing than in the mobile bearing (Figure 6-5). This is because the 

fixed bearing design experienced lesser contact area compared to the mobile bearing 

while the contact forces in the two were almost similar. Due to similar variation in the 

lateral contact forces and the lateral contact areas both types of TKA experienced similar 

maximum average lateral contact pressure (Figure 6-6). Also the medial contact pressure 

was higher than the lateral contact pressure. This correlates well with the retrieval studies 

which show that the wear on the medial side is more than the wear on the lateral side 

(Wasielewski, 1994; Currier, 2005). There were a few cases where the polyethylene 

contact pressure was more than the yield strength of the polyethylene (generally around 

20 – 22 MPa). The highest amount of maximum pressure experienced was about 45 MPa 

on the medial condyle for a patient implanted with a fixed bearing TKA (Appendix E). 

This subject also experienced a large amount of axial femoral rotation with respect to the 

tibia around the same flexion range. This suggests that higher the relative axial rotation of 

the femur with respect to the polyethylene, higher would be the pressures generated in it. 

In this regard the mobile bearing design does seem to offer and advantage with respect to 

the fixed bearing by maintaining a higher area of contact.   
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Figure 6-5: Variation of Average Maximum Medial Contact Pressures with Flexion. 

 

 

Figure 6-6: Variation of Average Maximum Lateral Contact Pressures with Flexion. 
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6.5 Conclusions 

 

There exists a great deal of variability in the in-vivo contact forces, contact areas and the 

contact pressures among all the patients analyzed in this study. This is true even for the 

patients who had bilateral implants (Appendix C, D, E). This might suggest that in 

essence no two TKA’s are similar and the chief factor to the TKA’s performance is the 

kinematics it experiences.  However, there are a few general trends that can be safely 

concluded from this study: 

 

1. The contact forces (both on the medial and the lateral side) increase with the 

increase in the flexion, with the medial contact force being higher than the lateral 

contact force. The difference between the two increases with the increase in 

flexion. 

2. The contact areas are most affected by the relative axial rotation of the femoral 

component over the polyethylene and the amount of deformation caused in the 

polyethylene due to the contact forces. 

3. The contact pressures also increase with the increase in flexion and the medial 

contact pressure experienced by the polyethylene is higher than the lateral contact 

pressure. 

 



 
 
 
 
 
 
 
 
 
 

 
Chapter 7 
 
Limitations and Future Work 
  

 
 - 82 - 

7.1 Introduction 

 

This was the first computational model that attempted to predict the in-vivo contact 

forces, contact areas and contact pressures, simultaneously.  This original work does have 

limitations which we intend to eliminate with continuation of work on this project. Some 

of the limitations in the study include the input parameters used, especially that for the 

patellar movements and the ground reaction force, some of the assumptions made in the 

mathematical model to simplify the system, in assuming the interference area as the 

contact area and finally assuming the maximum contact pressures to be always 1.5 times 

the average contact pressures.   
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7.2 Input Collection 

 

The greatest inaccuracy in the input data used in the study was in the use of the ground 

reaction force data. Since this data was unavailable for each subject, separately collected 

data for a different subject was used. However, this data was scaled with the individual 

subject weight and the time they took to complete the activity before being used. Though 

this results in different magnitudes of the ground reaction force for each subject, 

however, the nature of variation of the force profile with flexion is similar in all the cases. 

The ground reaction force depends on the physical characteristics and kinematics, which 

is unique for each subject, and therefore should not only have differing magnitudes but 

also have different nature of variations of the profile with the change in flexion. 

Collecting the force plate data simultaneously while fluoroscoping a subject would be the 

best way to address this issue. 

 

Another inaccuracy in this study was in the calculation of the patellar motion, which was 

derived directly from the 2D fluoroscopic images captured in the sagittal plane. The 

inaccuracy arises from the fact that all these calculations have been based on the 

projected lengths on the sagittal plane and not the true lengths. Since the patella can 

rotate in the coronal plane the amount of shortening of the lengths caused by projection 

also changes. Also due to the axial rotation of the femur and hence the patella, which sits 
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on the femoral groove, the view in the sagittal plane may get obscured. A way to improve 

the accuracy would be to use biplanar fluoroscopy and derive the true lengths from the 

projected distances in the two perpendicular planes. However, the use of biplanar 

fluoroscopy might unacceptably constrain the motion of the patient (Mahfouz, 2003). The 

best method however would be to use the 3D registration technique on the patella, too. 

Along with generating correct kinematics, this would also help in correctly determining 

the contact points of the patella on the femur. 

 

Currently, the lowest point on the femur with respect to an assumed flat tibial surface is 

used as the contact point. Due to the curvature of the polyethylene insert in both the 

sagittal and the coronal plane, the actual contact point may not necessarily be the lowest 

point on the femur. A correlation between the differences caused by this assumption with 

the actual contact points would help us to address this issue. The best method however, 

would be to directly modify the algorithm currently used in our 2D to 3D registration 

technique.  

 

Also instead of relying on previously published anthropometric data, we intend to make 

use of computed tomography (CT) scans and magnetic resonance imaging (MRI) images 

to correctly determine the muscle and ligament attachment sites and the size and 

dimensions of the bones (Komistek, 2005). 
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7.3 Mathematical Model 

 

One of the greatest simplifications of the model was in neglecting the presence of the 

cam-spine (cam-post) mechanism which is present in all PS type implants to ensure 

posterior femoral rollback. In the present study, we determined that these subjects 

experienced cam-post engagement between 60 and 80 degrees of knee flexion.  In our 

next generation model, we intend to include the effect of the cam-spine mechanism. 

Inclusion of the cam-spine would necessitate the inclusion of a third point of contact 

between the femur and the polyethylene and also contact forces associated with it. This 

would definitely cause a discontinuity in the system which can be easily addressed by 

breaking up the analysis in two parts – early to mid flexion without the cam-spine contact 

and mid to late flexion with the cam-spine contact. The future inclusion of cam-post 

forces should alter both the antero-posterior and medio-lateral forces at the femoro-tibial 

bearing surface interface.  

 

In order to keep the system determinate, the mathematical model had to neglect muscles 

and soft tissues and incorporate simplifying assumptions.  The quadriceps muscles are the 

primary extensors in the human body and so would have high amount of force during the 

flexion of the knee, with values increasing with flexion. This is due to the fact that as the 

knee flexes, the quadriceps muscle extend more thus causing the force developed in them 
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to increase. The opposite case exists with the knee flexors (hamstring muscles act as the 

primary flexors while the gastrocnemius muscles help in small amounts). As the flexion 

angle increases, the tension in them decreases as they start to reduce from their stretched 

lengths. Thus they should have an effect on the kinetics and the kinematics of the knee, 

especially during the early part of the flexion, with their effect progressively decreasing 

with increase in the flexion angle. In our future model, along with the quadriceps, we 

would like to incorporate the knee flexors (especially, the hamstrings) too.   

 

Moreover, in this model in order to reduce the number of unknowns, we assumed the 

quadriceps as a single set of muscle having its superior attachment site on the femur. In 

reality quadriceps is a set of four muscles, three of which attach on the femur and one 

attaches on the pelvis. So in our future models while incorporating any muscle group we 

intend to use the individual muscle attachment sites. This would necessitate modeling of 

the whole leg from the pelvis to the foot. The reduction method that we use, calculates six 

kinematic terms associated with each rigid body. So the inclusion of more rigid bodies in 

the form of the pelvis, the fibula and the foot would help us in increasing the number of 

unknowns we can calculate.   

 

We would also like to incorporate them medial and the lateral collateral ligaments, and 

the anterior and posterior cruciate ligaments (when present). These soft tissues act as the 

secondary stabilizers to the knee and so forms an integral part of the system. We want to 
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incorporate them as known quantities instead of unknowns. We intend to do this by 

modeling them as extensions springs (Mommersteeg, 1997; Abdel-Rahman, 1998). This 

can be done by studying their visco-elastic behavior and deriving the value of the spring 

constant from their stress-strain relationship. By measuring the distances of their 

attachment sites we can obtain their passive lengths and the strain developed in them, 

which we can use to calculate the forces generated in them. Another important factor that 

we intend to take into account is the wrapping of muscles and ligaments around the 

bones. Wrapping not only causes the effective length of the soft tissues to decrease and 

change the line of action of the forces generated in them but also results in additional 

forces acting on the bones at the region where they wrap.  

 

Finally, we intend to incorporate the rotation of the femur in the coronal plane which this 

current model neglects. The femur has been found to rotate in the coronal plane causing 

one of the condyles to lift off (Dennis, 2003; Komistek, 2004). Lift off causes the contact 

forces to increase dramatically as the whole contact force acts on one condyle instead of 

two.  This creates the same problem of discontinuity as exists with the cam spine contact. 

This is because the number of contact points would vary with time depending on whether 

there is lift off or not. We intend to address this issue by introducing additional 

conditional statements in the code for the mathematical model. 
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7.4 Deformation Model 

  

This current study used uniaxial compression data to determine the deformation of the 

polyethylene. Also the interference areas between the polyethylene insert and the femoral 

component, derived from the assembly of the 3D CAD models, was used to determine the 

contact areas. Finally the average pressure was multiplied by a factor of 1.5 to calculate 

the peak contact pressure (Similar to the peak Hertzian stress calculation). Though simple 

to implement, this method does not take into account the multiaxial behavior of 

polyethylene and the effect of deformation of one point on the adjacent points. Moreover, 

this method might not correctly estimate the contact area. These factors might add up to 

affect the final values of the contact pressures and stresses which we intend to address by 

the use of finite element analysis. In our future efforts, we plan to incorporate a more 

exact deformation model of polyethylene that will utilize more parameters. In order to 

simulate the mechanical behavior of UHWMPE used in orthopedic implants models like 

the Arruda-Boyce model, Hasan-Boyce model, Bergstrom-Boyce model and Hybrid 

models have been developed. It has been found that the Hybrid model performs the best 

in predicting the visco-elastic behavior of modern cross linked UHMWPE (Bergstrom, 

2004). We would like to extend this model and also would like to incorporate the factors 

like creep, deterioration due to shelf life and the aging of the polyethylene due to its 

operation within the human body.  
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7.5 Conclusion 

 

Once this current system is perfected we intend to integrate all the individual elements to 

work in a seamless manner with minimal human interaction. This will not only result in 

the generation of faster results but will also reduce the errors associated with the human 

interaction. Finally, by incorporating a wear model which takes into account factors like 

kinematics, kinetics and material properties, we intend to extend the capability of this 

system in order to serve as a reliable predictor of wear in polyethylene implants 
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The following directions and planes are used in the medical field and also in the field to 

biomechanics to describe the locations on the human body: 

 

 Superior or Cranial – direction towards the head or the upper part of the body 

(above). 

 Inferior or Caudal – direction away from the head and towards the lower part of 

the body (below). 

 Medial – direction towards the midline of the body (inner side). 

 Lateral – direction away from the midline of the body (outer side). 

 Anterior or Ventral  – direction towards the front of the body (front). 

 Posterior or Dorsal – direction towards the back of the body (back). 

 Proximal –direction towards or nearest the trunk or the point of origin of a body 

part (closer). 

 Distal – direction away or farthest from the trunk or the point of origin of a body 

part (farther).  

 Superficial – direction towards the surface of the body (external). 
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 Profundum – direction away from the surface of the body (internal). 

 Sagittal or Lateral – plane perpendicular to the ground in the antero-posterior 

direction dividing the body into right and left. A sagittal plane which divides the 

body into two equal halves is also known as the Medial Plane. 

 Coronal or Frontal – plane perpendicular to the ground in the medio-lateral 

direction dividing the body into front and back. 

 Transverse or Horizontal– plane parallel to the ground dividing the body into 

upper and lower.  

 
 

Figure A-1: The Anatomical Planes defined in the Human Body (SEER, 2005). 
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Kane’s method combines the advantages of both Newton-Euler methods and the 

Lagrangian method (Huston, 1990). By using generalized forces, this method avoids the 

incorporation of non-contributing interactive and constraint forces between the bodies. 

Also this method avoids the use of energy functions. Finally, in this method 

differentiation needed to compute velocities and accelerations are obtained through the 

use of vector products.  

 
 
The governing equation for Kane’s method is that the sum of the generalized active 

forces and the generalized reactive forces should be zero. The key component while 

conducting an analysis with the Kane’s method lies in development and the use of 

“partial velocities” and “partial angular velocities”. 

 

Calculating the partial velocities: 

 

Generalized coordinates, rq  – These are defined as time varying translations and 

rotations selected to define the position of all points and the orientation of rigid bodies. 
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     ( 1,........., )rq r n=  

 

Where ' 'n  is the number of degrees of freedom. 

 

Generalized speeds, ru  – These are defined as time varying linear functions of 'srq
•

 

(derivative with respect to time) selected so as to simplify expressions for velocities of 

points and angular velocities of rigid bodies. 

  

 

1
        ( 1,....., )

n

r rs s r
s

u Y q Z r n
•

=
= + =∑  

 

Where 1' '  and ' '  are functions of ' ,....., '  and time ' '.rs r nY Z q q t  

 

Partial angular velocities, rω , and partial velocities, rν  – These are time varying 

linear functions of 'sru , determined by inspection, which greatly facilitate the 

formulation of the equations of motion. 
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1
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n
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∑

∑
 

 

Where ' 'ω  is the angular velocity of the rigid body, ' 'ν  is the velocity of a point, and, 

' ', ' ', ' '  and ' 'r r t tω ν ω ν  are the functions of 1' ,......, '  and ' '.nq q t   In principle, partial 

angular velocities need only be formed for those rigid bodies subjected to applied torques 

and possessing inertia, while partial velocities need only be forces for those points 

subjected to applied forces or possessing mass. 

 

Using the partial velocities: 

 

Generalized active forces, rF  – These are the quantities formed by taking the dot 

products of partial velocities and active (i.e. applied) forces and dot products of partial 

angular velocities and active torques. For each point ' 'iP  subjected to an applied force, 

  

( )         ( 1,......., )i
i i

P
r rP PF R r nν= =i  
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Where ' 'iP
rν  is the thr partial velocity of ' ' and ' '

ii PP R  is the resultant of all contact and 

distance forces acting on ' 'iP . Similarly, for each rigid body ' 'jB  subjected to an applied 

torque,  

 

 ( )          ( 1,........, )j
j j

B
r rB BF T r nω= =i  

 

Where ' 'jB
rω  is the thr partial velocity of ' ' and 'T '

jj BB  is the resultant of all couples 

acting on ' 'jB . The thr  generalized active force ' 'rF  can then be determined by summing 

the results over all points ' 'iP  and all rigid bodies ' 'jB : 

 

 
1 1
( ) ( )           ( 1,........, )

i jr r rP B
i j

F F F r n
κ λ

= =
= + =∑ ∑  

 

Where ' 'κ  is the number of points subjected to applied forces and ' 'λ  is the number of 

rigid bodies subjected to applied torques. 

 

Generalized inertia forces, *
rF  - These are the quantities formed by taking the dot 

products of partial velocities and inertia forces and dot products of partial angular 

velocities and inertia torques. For each point ' 'iP  possessing mass, 
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* *( )         ( 1,......., )i
i i

P
r rP PF R r nν= =i  

 

Where ' 'iP
rν  is the thr partial velocity of *' ' and ' '

ii PP R  is the inertia force for ' 'iP and is 

defined as 

 

 * i
i i

P
P PR m a= −  

 
Where ' '

iPm  is the mass of ' 'iP  and ' 'iPa  is the acceleration of ' 'iP .Similarly, for each 

rigid body ' 'jB  possessing inertia, 

 

 * *( )          ( 1,........, )j
j j

B
r rB BF T r nω= =i  

 

Where ' 'jB
rω  is the thr partial velocity of *' ' and 'T '

jj BB  is the inertia torque for ' 'jB  and 

is defined as 

  

/ /* * *j j j j j j j
j

B B B B B B B
BT I Iα ω ω= − − ×i i  
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Where / *' 'j jB BI  is the inertia dyadic of ' 'jB  about its mass centre *' 'jB , ' 'jBω  is the 

angular velocity of  ' 'jB  and ' 'jBα  is the angular acceleration of ' 'jB . 

 

 The thr  generalized active force *' 'rF  can then be determined by summing the results 

over all points ' 'iP  and all rigid bodies ' 'jB : 

 

 * * *

1 1
( ) ( )           ( 1,........, )

i jr r rP B
i j

F F F r n
µ η

= =
= + =∑ ∑  

Where ' 'µ  is the number of points possessing mass and ' 'η  is the number of rigid bodies 

possessing inertia. 

 

Equations of motion: 

 

The equations of motion can be generated by adding all the generalized active forces and 

the generalized reactive forces and then equating the results to zero. 

 

 * 0          ( 1,........, )r rF F r n+ = =  

 

In this method statics problems can be solved by considering 0rF = . 



 
 
 
 
 
Appendix C – Contact Forces in the Patients  
 
 

 
 - 116 - 

For the mobile bearing TKA, patient 1 and patient 2 refer to the same person. This is the 
person who had received bilateral implants. 
 
For the fixed bearing TKA patient 4 and patient 5 is the same person having bilateral 
implants. 
 
Mobile Bearing TKA: 
 
 
 

 
Figure C-1: Contact Forces in Patient 1 with a Mobile Bearing TKA 
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Figure C-2: Contact Forces in Patient 2 with a Mobile Bearing TKA 

 
 

 
Figure C-3: Contact Forces in Patient 3 with a Mobile Bearing TKA 
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Figure C-4: Contact Forces in Patient 4 with a Mobile Bearing TKA 

 
 
 

 
Figure C-5: Contact Forces in Patient 5 with a Mobile Bearing TKA 

 
 



Appendix C – Contact Forces 
 

 
 - 119 - 

Fixed Bearing TKA: 

 
Figure C-6: Contact Forces in Patient 1 with a Fixed Bearing TKA 

 
 

  
Figure C-7: Contact Forces in Patient 2 with a Fixed Bearing TKA 
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Figure C-8: Contact Forces in Patient 3 with a Fixed Bearing TKA 

 
 
 

 
Figure C-9: Contact Forces in Patient 4 with a Fixed Bearing TKA 
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Figure C-10: Contact Forces in Patient 5 with a Fixed Bearing TKA 
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For the mobile bearing TKA, patient 1 and patient 2 refer to the same person. This is the 
person who had received bilateral implants. 
 
For the fixed bearing TKA patient 4 and patient 5 is the same person having bilateral 
implants. 
 
 
Mobile Bearing TKA: 
 
 

 
Figure D-1: Contact Areas in Patient 1 with a Mobile Bearing TKA 
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Figure D-2: Contact Areas in Patient 2 with a Mobile Bearing TKA 

 
 

 
Figure D-3: Contact Areas in Patient 3 with a Mobile Bearing TKA 
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Figure D-4: Contact Areas in Patient 4 with a Mobile Bearing TKA 

 
 

 
Figure D-5: Contact Areas in Patient 5 with a Mobile Bearing TKA 
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Fixed Bearing TKA: 

 
Figure D-6: Contact Areas in Patient 1 with a Fixed Bearing TKA 

 
 

 
Figure D-7: Contact Areas in Patient 2 with a Fixed Bearing TKA 
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Figure D-8: Contact Areas in Patient 3 with a Fixed Bearing TKA 

 
 
 

 
Figure D-9: Contact Areas in Patient 4 with a Fixed Bearing TKA 
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Figure D-10: Contact Areas in Patient 5 with a Fixed Bearing TKA 
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For the mobile bearing TKA, patient 1 and patient 2 refer to the same person. This is the 
person who had received bilateral implants. 
 
For the fixed bearing TKA patient 4 and patient 5 is the same person having bilateral 
implants. 
 
 
Mobile Bearing TKA: 
 
 

 
Figure E-1: Contact Pressures in Patient 1 with a Mobile Bearing TKA 
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Figure E-2: Contact Pressures in Patient 2 with a Mobile Bearing TKA 

 
 
 

 
Figure E-3: Contact Pressures in Patient 3 with a Mobile Bearing TKA 
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Figure E-4: Contact Pressures in Patient 4 with a Mobile Bearing TKA 

 
 

 
Figure E-5: Contact Pressures in Patient 5 with a Mobile Bearing TKA 
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Fixed Bearing TKA: 

 
Figure E-6: Contact Pressures in Patient 1 with a Fixed Bearing TKA 

 
 

 
Figure E-7: Contact Pressures in Patient 2 with a Fixed Bearing TKA 



Appendix E – Contact Pressures 
 

 
 - 132 - 

 
Figure E-8: Contact Pressures in Patient 3 with a Fixed Bearing TKA 

 
 
 

 
Figure E-9: Contact Pressures in Patient 4 with a Fixed Bearing TKA 
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Figure E-10: Contact Pressures in Patient 5 with a Fixed Bearing TKA 
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