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ABSTRACT

We propose a new universal camera calibration approach that uses statistical information 

criteria for automatic camera model selection. It requires the camera to observe a planar 

pattern from different positions, and then closed-form estimates for the intrinsic and 

extrinsic parameters are computed followed by nonlinear optimization. In lieu of 

modeling radial distortion, the lens projection of the camera is modeled, and in addition 

we include decentering distortion.  This approach is particularly advantageous for wide 

angle (fisheye) camera calibration because it often reduces the complexity of the model 

compared to modeling radial distortion. We then apply statistical information criteria to 

automatically select the complexity of the camera model for any lens type. The complete 

algorithm is evaluated on synthetic and real data for several different lens projections, 

and a comparison between existing methods which use radial distortion is done.  
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1 INTRODUCTION 

The first step and fundamental problem in nearly every precision computer vision 

application which utilizes cameras is calibration. So what is camera calibration? When 

we are working with cameras, we need to know its characteristics, such as: how it 

represents color, how a point in space projects onto the camera imager, and what is the 

physical location of the camera relative to an object in space. In this thesis we are 

concerned with solving the last two, which is called geometric camera calibration. In 

geometric camera calibration we usually assume little or no prior knowledge of the 

camera. We are simply given a camera, a black box, and we model the inputs and 

outputs. In a perfect world we would design an ideal camera according to a mathematical 

model, and have the ability to manufacture it to exact specifications. Unfortunately, the 

manufacturing process is not perfect, and the real camera inputs and outputs will never 

match what the original model predicts exactly. The calibration step models the error, so 

the relationship between the real and ideal camera is known. This could be used to correct 

the real camera, so it becomes closer to the ideal one, or it could be used to compute 

statistics.  

 

Over the years the objective of camera calibration has not changed, but the process has 

evolved considerably. In the early days, before the computer, calibration was mostly a 

mechanical procedure which utilized instruments, such as collimators and geodetic 

theodolites, in the photogrammetry community. These instruments were used to model 

the lens to identify its center and visible distortion. Instrumentation based calibration was 

used during World War I when the US government discovered the benefits of aerial 

surveying and started submitting cameras to the National Bureau of Standards for 

calibration. Aerial surveying received even more attention during World War II, after 

which several countries believed there was a need for standardization in calibration 
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techniques, and a meeting was held between camera manufactures, calibration 

authorities, and photogrammetrists. The onset of computers marked the beginning of 

modern calibration techniques. These latter methods are largely analytical, which 

harnessed the speed of computers to compute solutions which would have otherwise been 

too tedious.  Today, it is these calibration techniques which are largely used in computer 

vision research, attributed to Tsai [Tsai86] who joined the gap between the 

photogrammetry and computer vision communities. The most recent calibration methods 

do not use any instruments to make measurements. Instead, modern calibration 

techniques utilize mathematical models, analytical solutions and computer algorithms.     

1.1 Motivation 

In camera calibration, the parameters of a mathematical model are recovered, but are we 

calibrating the correct model? Figure 1.1 shows an original image taken from a full frame 

fisheye camera, and the corrected versions of this image after calibration of two different  

models with different complexities.  

 

 

   

(a) (b) (c) 

Figure 1.1: Set of images illustrating an insufficient model. a) The 

original image, (b) corrected image using insufficient model, and (c) 

corrected image using sufficient model. Notice how lines in (c) 

appear straight, but do not in (b).  
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We see that lines which should appear straight in Figure 1.1 (b) are actually curved 

caused by an insufficient model. However, if we increase the complexity of the model 

slightly we achieve the results shown in Figure 1.1 (c), which is the expected outcome.  

 

The most popular calibration methods take several images of a known model (most often 

a precise 2D or 3D grid pattern) from different camera positions. The projection of 

features from the model onto the image sensor is approximated with a pinhole camera 

model. The deviation from the pinhole camera is modeled as radial distortion and 

decentering distortion [Heikkila97][Heikkila00][Lenz87][Tsai86][Tsai87][Zhang00A]. 

All of these methods measure some combination of radial and decentering distortion. But 

the drawback to these methods is they require prior knowledge, namely the focal length, 

or do not perform well on wide angle cameras. They also do not include a way to 

automatically select the complexity of the model so that the best model is used regardless 

if the lens is rectilinear or fisheye. 

 

This brings us to our motivation. We want to develop a calibration method that works 

equally well on a wide range of cameras, regardless of the quality or lens type, such as 

rectilinear or fisheye. In addition, we want to calibrate the least complex camera model 

that sufficiently models the camera. Wide angle cameras, such as fisheye cameras, are 

perhaps better approximated by modeling the lens projection, as opposed to radial 

distortion. Kannala and Brandt [Kannala04] used this approach to calibrate a fisheye 

camera for use in 3D reconstruction. However, they assume prior knowledge of the focal 

length, and the applicability to other lens projections, such as perspective and 

stereographic, was left unclear.   

 

In this paper, we propose a new camera calibration technique which addresses the 

shortcomings of previous approaches. Namely, how complex should the camera model be 

to sufficiently model the camera, regardless of lens projection? Thus it should work 

equally well on a rectilinear or fisheye camera. To solve this, we apply statistical 
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information criteria to automatically select the complexity of the lens and decentering 

distortion model of the particular camera, and evaluate the results for several sets of 

synthetic and real data. We provide results to show modeling lens projection performs as 

well, if not better, with little or no extra complexity, compared to modeling radial 

distortion for several different lens projections and a variety of real cameras. We also test 

an alternation technique during optimization mentioned by Weng [Weng92] and Zhang 

[Zhang00A] on several different lens projections. We found little benefit when 

calibrating a perspective camera, but significant improvement for other lens projections.  

1.2 Application 

The applications of geometric camera calibration are far reaching. Ever since the camera 

was invented, researchers have been developing methods for more precise calibration. 

Long before the camera, scientists had already written the underlying mathematics for 

modeling how 3D objects in space are represented on a 2D surface. Once the airplane 

was invented though, the application of aerial surveying became clear, which was a 

stimulus for research in developing models and calibration methods. In aerial 

photography, a plane is equipped with a camera mounted on the underside, which takes 

several images as the plane is in motion. The process of making scaled maps and 

measurements from these images is aerial photogrammetry. Prior to computer vision, 

calibration received much attention from photogrammetrists in the early to mid 1900’s. 

Computer vision spun a new set of applications for calibration. One example is in 3D 

reconstruction where a laser scanner, or several images from multiple view points, is used 

to reconstruct a scene in 3D. Figure 1.2 is an example of a 3D model generated from 

several poses of a face. 
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(a) (b) 

Figure 1.2: Example of a 3D model generated from several poses.  

(a) 2D poses and (b) 3D model. 

 

1.3 Contributions 

Existing methods in camera calibration use some prior knowledge of the characteristics 

of the camera. For instance, this knowledge could be knowing if the camera is rectilinear 

or wide-angle, or low or high quality. Based upon this information the user chooses a 

sufficient model, and if it fails to produce acceptable results a different model is adopted. 

We took a different approach by removing the user from the model selection process 

using statistical model selection. If we were to remove this process from the user, than we 

need to have a model that suffices for a gamut of catadioptric cameras, i.e. rectilinear to 

fisheye. Traditional methods using radial distortion are difficult to calibrate without prior 

knowledge of the focal length. Since we assume no prior knowledge of the camera, these 

methods tend to get stuck in poor local minimums for wide-angle cameras using the 

closed-form estimate of the focal length. We thus adopted a different technique for 

modeling the lens based on modeling the lens projection, rather than modeling the 
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deviation from the pinhole camera, i.e. radial distortion. In the experimental results 

chapter evidence is shown which supports this approach by analyzing the calibration 

errors of several synthetic and real cameras.       

1.4 Document layout 

The organization of this thesis is as follows. Chapters 2-5 are an overview of related work 

in camera calibration. They also provide the foundation to understand much of the theory 

in modern camera calibration. Chapter 2 describes the basic camera model and ways to 

parameterize a rotation matrix. Even though in this paper we assume the rotation matrix 

is parameterized as Euler angles, there are other techniques which may be superior 

depending on the application. Chapter 3 discusses lens modeling, where we specify the 

two different approaches. Chapter 4 canvasses much of the theory for direct linear 

transformation (DLT) based camera calibration, which is the basis for most modern 

calibration methods. We also discuss statistical model selection at the basic level to 

understand how it is applied to our problem; this is a huge field and can easily be a 

dissertation topic. Chapter 5 gives an overview of our algorithm and Chapter 6 gives our 

experimental results. Finally, our conclusions are in Chapter 7. 
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2 CAMERA MODELS 

2.1 Pinhole camera 

In this section we describe the pinhole camera that models the ideal perspective 

projection which is illustrated in Figure 2.1. In the pinhole camera, a point in space 

 is projected onto the image plane to image point  so the ray 

from  to m passes through the camera center (center of projection) . The focal 

length  is the distance from the camera center to the image plane. The principal point 

 is the point where the principal axis meets the image plane. From the 

similarity of triangles the point  on the image plane can be described in terms of the 

focal length and the coordinates of M : 

( T,, ZYX=M )

00 ,vu=p

( )T,vu=m

M C

f

( )
m

( ) ( ) ( ) .,,,, TTT vuZYfZXfZYX =a  (2.1)

This can be written in matrix notation using homogenous coordinates by augmenting  

and with a 1 so that 

M

m ( )T1,,,~ ZYXM  and ( )T1,,~ vum , where ~ denotes up to a scale 

factor. Homogenous coordinates and projective spaces are used throughout the field of 

computer vision and an abundant amount of information exists on the subject 

[Faugeras93][Hartley00]. 
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(a) (b) 

Figure 2.1: Two diagrams describing thee pinhole camera. a) The 

pinhole camera geometry and (b) a profile description to show the 

similarity of triangles. 

 

 

Unless otherwise mentioned, the rest of this paper will assume homogenous 

representation. The pinhole camera is simply expressed in homogenous coordinates as 

.

1
0100
000
000

~
1 ⎟⎟

⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Z
Y
X

f
f

v
u

 (2.2)

The camera calibration matrix in the above equation,  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0100
000
000

f
f

K , (2.3)

holds the internal parameters of the camera. The pinhole camera does not include 

parameters for rectangular pixels, non-orthogonal image axes or principal point offset. 

Additionally, it assumes the point  is in camera coordinates. The next section describes M
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the projective camera that is much more flexible and more accurately models real 

cameras.   

2.2 Projective camera 

The pinhole camera provides the foundation for the projective camera, absent the 

restrictions. The internal parameters, which are the parameters that model the internal 

aspects of the camera, include the focal length , aspect ratio f βα  (rectangular pixels), 

skew  (non-orthogonal image axes) and principal point  s ( )00 ,vu   (location of image 

center). 

 

The rotation matrix R  and translation vector ( )T,, zyx ttt=t  comprise the external 

parameters which transfer  to camera coordinates as illustrated in Figure 2.2. Although 

the rotation matrix may be parameterized different ways, such as axis/angle, quaternions 

or Cayley-Klein parameters, we will assume the rotation matrix is parameterized as Euler 

angles 

M

( )γϕχ ,, . 

 

 

 

Figure 2.2: Diagram of the projective camera geometry. 
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Aspect ratio, skew and principal point: Whereas the pinhole camera assumes the two 

image axes have equal scale in both directions. CCD cameras on the other hand have the 

possibility of having non-square pixels. The pixels per unit distance in the  and  

directions are   and  respectively. Then the inhomogeneous representation of the 

mapping  is 

x y

xm ym

( ) ( TT ,,, vuZYX a )

( ) ( ) ( ) .,,,, TTT vuZYfmZXfmZYX yx =a  (2.4)

In lower quality cameras, the image axes might not be orthogonal. We can include this 

non-orthogonality with the skew parameter θtan=s  as  

( ) ( ) ( ) .,,,, TTT vuZYfmZYsZXfmZYX yx =+a  (2.5)

The principal point (  can be included as an offset into the image, which can be 

written in the inhomogeneous representation as 

)00 ,vu

( ) ( ) ( ) .,,,, TT
00

T vuvZYmfuZYsZXfmZYX yx =+++a  (2.6)

Keeping in mind the origin of the image is usually in the upper left corner. Homogenous 

representation combines all these as 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
0100
00
0

~
1

0

0

Z
Y
X

v
us

v
u

β
α

 (2.7)

with xfm=α  and yfm=β . The camera calibration matrix for the projective camera is 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100
0 0

0

v
us

β
α

K  (2.8)
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Rotation and translation: The projective camera does not restrict the point in space  M  

to be in camera coordinates. This other coordinates system, the world coordinate frame, 

is related to camera coordinates via a rotation R  and translation . The projective 

camera, represented by P  and called the projection matrix, can be concisely written as 

t

[ ]tRKP |=  (2.9)

with R  a  rotation matrix:  33×

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

333231

232221

121211

321

rrr
rrr
rrr

rrrR  (2.10)

and a  a  translation vector t 13×

( ) .,, T
zyx ttt=t  (2.11)

2.3 Properties and parameterization of R 

The rotation matrix has a certain set of properties that all rotation matrices share. If these 

properties are not satisfied, or are almost satisfied, this will introduce numerical errors in 

the computations. This section defines a rotation matrix, its properties and then describes 

common methods of parameterization. 

 

According to Euler’s Rotation Theorem, a rotation in Euclidean 3D-space can be 

represented with three parameters. The process of parameterization is representing a 33×  

rotation matrix with a reduced set of parameters. For example, a rotation matrix can be 

parameterized into Euler angles consisting of three parameters. However, other 

parameterizations such as quaternions have four parameters, but have advantages over 

Euler angles.  
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2.3.1 Definition of R 

A rotation matrix  is an orthogonal matrix such that nn×ℜ∈R IRRRR == TT  and 

 for proper rotation. Equivalently, denoting the column vectors as  then the 

equality  must be satisfied, where 

( ) 1det =R ir

ijji δ=rrT
ijδ  is the Kronecher symbol 

.
 if  0
 if  1

⎩
⎨
⎧

≠
=

=
ji
ji

ijδ  (2.12)

2.3.2 Euler angles 

We know from Euler’s Rotation Theorem that any rotation may be described by three 

parameters. A rotation matrix can be computed by considering the rotation around each 

axis, called the pitch (tilt) χ , yaw (azimuth) ϕ  and roll γ . The direction of rotation is 

assumed to be in the clockwise direction around the axis when looking down axis from 

the origin as in Figure 2.3. 

 

 

ϕ

χ

γ

 

Figure 2.3: Diagram of pitch, yaw and roll. 
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Converting from Euler angles to rotation matrix 

The three rotation matrices corresponding to the three axes are constructed as 

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

100
0cossin
0sincos

cos0sin
010

sin0cos

cossin0
sincos0

001

γγ
γγ

ϕϕ

ϕϕ

χχ
χχ

z

y

x

R

R

R

 (2.13)

and the rotation matrix is the product of the individual rotations 

.xyz RRRR =  (2.14)

 

Converting from rotation matrix to Euler angles 

There are numerous ways to extract the Euler angles from the rotation matrix. A 

straightforward technique is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=

−

−

−

ϕϕ
γ

ϕϕ
χ

ϕ

cos
,

cos
tan

cos
,

cos
tan

sin

11211

33321

31
1

rr

rr

r

 
(2.15)

where  is the two argument inverse tangent.  1tan −
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2.3.3 Axis/angle    

An arbitrary rotation matrix R  can be represented as a rotation around an axis 

 by a rotation angle ( T
321 ,, nnn=n ) θ . The rotation axis has 2-DOF, since only the 

direction is important. The rotation angle adds one more DOF making 3-DOF, which is 

consistent with Euler’s Rotation Formula. The four axis/angle parameters can be 

concisely written using only three parameters as 

( )
θ

ωωωω

n
n

=

= zyx ,,
 (2.16)

with the magnitude of ω   being the angle of rotation θ  and its vector components 

describe the axis of rotation. However, if using this parameterization in unconstrained 

nonlinear optimization, keep in mind that ω  is not guaranteed to be θ  during the 

iteration process when using this minimal representation.  

 

Converting from axis/angle to rotation matrix 

A rotation matrix  can be written as an exponential of the antisymmetric matrix H  R

∑
∞

=

==
0 !n

n

n
e HR H  (2.17)

with  

.
0

0
0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

xy

xz

yz

ωω
ωω
ωω

H  (2.18)

The Rodrigues’ Rotation Formula is a convenient way to compute the rotation matrix  

from the antisymmetric matrix  and rotation angle 

R

H θ  directly as 
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( ). cos1 sin 2HHIR θθ −++=  (2.19)

 

Converting from rotation matrix to axis/angle 

The axis of rotation and rotation angle are computed from the rotation matrix by 

eigenvalue decomposition. The three eigenvalues of R  are ( )θθ sincos,1 i± . The axis of 

rotation is the eigenvector associated with the eigenvalue of 1, and the rotation angle is 

, computed from the real and imaginary parts of the remaining 

eigenvalues. The sign ambiguity can be resolved by converting the two possible solutions 

back to rotation matrices and comparing to the original rotation matrix. 

( θθθ cos,sintan 1 ±= − )

2.3.4 Quaternions  

A quaternion is an extension of an imaginary number denoted as 

.3210 kqjqiqqq +++=  (2.20)

This is usually written in vector form as  

( ) ( )TTT
3210 ,,,, vsqqqqq qq ==  (2.21)

with  the scalar component and  the vector part. The magnitude of a quaternion is sq T
vq

2
3

2
2

2
1

2
0 qqqq +++=q  which is normalized to unity for unit quaternions. Quaternions 

are often used in precision applications because of their numerical stability in nonlinear 

optimization [Hornegger99][Schmidt01]. They are similar to axis/angle in that they have 

four elements, even though a rotation has 3-DOF. The unit length constraint again has to 

be considered during unconstrained nonlinear optimization. Schmidt and Niemann 

[Schmidt01] proposed a technique to use quaternions in unconstrained nonlinear 

optimization with results in photogrammetric bundle-adjustment.   
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Converting from rotation matrix to quaternion 

The quaternion  is computed from a rotation matrix as defined by 

equation 2.10 by solving the following system of equations: 

( T
3210 ,,, qqqq=q )

( )

( )

( )

( )

( )

( ).
4
1
4
1
4
1
4
1
4
1
4
1

322332

311331

211221

122130

311320

233210

rrqq

rrqq

rrqq

rrqq

rrqq

rrqq

+=

+=

+=

−=

−=

−=

 (2.22)

 

Converting from quaternion to rotation matrix  

The rotation matrix corresponding to the quaternion ( )T
3210 ,,, qqqq=q  is 

( ) ( )
( ) (
( ) ( )

.
22

22
22

2
3

2
2

2
1

2
010322031

1032
2
3

2
2

2
1

2
03021

20313021
2
3

2
2

2
1

2
0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−+−
−−+−+
+−−−+

=
qqqqqqqqqqqq

qqqqqqqqqqqq
qqqqqqqqqqqq

R )  (2.23)
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3 LENS MODELING 

Camera systems are built from many different elements: multiple lenses, sensor element, 

camera assembly, etc. Ideally all these elements would fit together perfectly, to 

mathematical precision. However, this is never the case. Since the invention of the camera 

researchers in photogrammetry, and more recently computer vision have tried to model 

camera systems for accurate metrology, rigid and non-rigid object reconstruction, and 

countless other applications.  

 

We typically think of a camera as being one that takes a perspective image, but perspective 

projection is not the only way to map points onto a planar surface. An example of this is the 

circular fisheye, which has a field-of-view (FOV) of approximately . With this camera 

projections of straight lines in the scene appear curved. This is sometimes seen in 

hemispherical or spherical maps of the globe. In the study of maps the question is: “how do 

you project a sphere onto a planar image?”. When in camera calibration the question is: 

“given the planar image of the object what is the projection?”.  

o180

 

There are two ways of modeling the way a point in space projects on the camera sensor. If 

we think of a perspective camera as being ideal, then we model the real camera as a 

deviation from a perspective camera called radial distortion. The other approach is not to 

think of an ideal camera; instead the lens projection is modeled directly. The difference 

between modeling radial distortion and projection is emphasized because both have their 

advantages and disadvantages. Notably, if we are modeling a quality perspective camera 

then the projective camera model is sufficient, and there is minimal complexity in the radial 

distortion model. However, if we are modeling lens projection, then there is increased 

complexity due to the nonlinearity of perspective projection. Other types of cameras, such 

as wide-angle and fisheye, are perhaps better modeled using lens projection rather than 

radial distortion. 
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m̂

ûv̂

 

Figure 3.1: Diagram of two image planes: the true image plane and 

normalized image plane. 

 

 

We will first setup a few ideals and notation. The image points  are normalized to unit 

focal length using the inverse of the camera calibration matrix as illustrated in Figure 3.1: 

im

ii mKm 1ˆ −= . (3.1)

The normalized image points ( )Tˆ,ˆˆ iii vu=m  are then converted to polar coordinates ( )iir θ,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+=

−

i

i
i

iii

u
v

vur

ˆ
ˆ

tan

ˆˆ

1

22

θ
 (3.2)

and ( frii
1tan −=φ )  the angle between the principal axis and the incoming ray. Since the 

points are assumed to be normalized to unit focal length 1=f . 

 

Section 3.1 describes some basic lens projections and section 3.2 discusses modeling radial 

distortion, along with other types of distortion commonly seen in camera calibration.  
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3.1 Modeling lens projection 

Cameras are typically built to follow a perspective projection model probably because 

that is the way humans perceive the world. The lenses that are mounted on these cameras 

are called rectilinear lenses which map lines in the world to lines in the image. Lenses of 

this type include normal and telephoto lenses. For normal lenses, the field-of-view (FOV) 

is around 40-50 degrees, and telephoto lenses can have a FOV as small a 1 degree. For 

normal and telephoto use, rectilinear lenses are desirable. However, the perspective 

projection has an asymptote at 180° FOV, as illustrated in Figure 3.2a, which causes 

objects to appear stretched near the edge of the image. This makes it impossible to build a 

rectilinear lens with 180° FOV, and extremely difficult to build a rectilinear lens above 

100° FOV. Other types of projections have been proposed or used which overcome these 

problems and are listed in Table 3.1. 

 

Figure 3.2a shows the geometry and behavior of these projections. When modeling the 

lens projection, the radial distance r  is a function of the angle between the principal axis 

and the incident ray from the world point. These projections map lines which do not run 

through the center of the image to curves. Objects near the edge of the image are no 

longer stretched, but they are distorted. Lenses of this type, called wide-angle lenses, 

usually have a FOV greater than 50°.  

 

 

Table 3.1: Types of lens projections. 

            Name                            Formula 

1 Perspective φtanfr =  

2 Stereographic ( )2tan2 φfr =  

3 Equidistant φfr =  

4 Orthogonal φsinfr =  
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(a) (b) 

Figure 3.2: Lens projection diagram. a) Plot of the ideal 

projections in Table 3.1 and (b) a diagram of the geometry. 
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Two specific wide-angle lenses are full-frame fisheye, with a FOV of 180° across the 

diagonal, and circular fisheye, with a FOV of 180° in all directions.  

 

In practice, real cameras do not exactly follow the projections in Table 3.1. We use a 

polynomial of the following form to approximate the real lens projection: 

( ) K+++= 5
3

3
21 φκφκφκφr  (3.3)

3.2 Modeling distortion 

There are several different types of distortion, which commonly occur due to 

imperfections of the lens design and the manufacturing process. Projection modeling, 

which was discussed in the previous section, and radial distortion modeling are closely 

related. One or the other, not both, needs to be performed depending on the application.  

3.2.2 Radial distortion 

Modeling distortion differs from modeling lens projection in that it is a function of the 

radial distance r  of point , with  the perspective projection of point  as illustrated 

in Figure 3.3. Modeling distortion is usually done using a polynomial [Slama80] of the 

form  

m m M

( ) K+++= 5
3

3
21 rrrrrd κκκ  (3.4)

Alternative models have been proposed for different types of cameras. Basu and Licardie 

[Basu95] used a logarithmic model for the fisheye 

( ) ( ).1log rsrrd λ+=  (3.5)
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φ

φ

 

Figure 3.3: Diagram of the geometry for modeling radial 

distortion. 

 

 

The advantage of the logarithmic model is in the stability of the nonlinear optimization, 

partly contributed to having only one parameter, and the asymptotic behavior of a 

logarithm function. However, it sacrifices flexibility to achieve this.  

3.2.2 Decentering distortion 

Optical systems are generally a composite of lens elements which are subject to a various 

amount of decentering distortion [Brown66][Slama80][Weng92]. This occurs when the 

centers of the lens elements are not strictly collinear. This type of distortion has a radial and 

tangential component, which just means the distortion acts differently on the image axes. It 

can be modeled as  
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( )( )( )
( )( )( ⎟⎟

⎠
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ρρρρ
ρρρρ

∆d )

)

 (3.6)

with ( K,, 21 ρρ  the decentering distortion coefficients. The coefficients 1ρ  and 2ρ  are 

typically the only ones used in practice, neglecting higher order terms. 

3.2.3 Thin prism distortion 

Thin prism distortion occurs due to imperfections in the lens design and manufacturing, as 

well as camera assembly [Weng92]. It too acts in the radial and tangential directions and 

can be expressed as  

.2
2

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

rs
rs

∆s  (3.7)

Higher order terms can be included but rarely are in practice. In actuality, thin prism 

distortion can be neglected and compensated for by higher order radial and decentering 

distortion models [Folm-Hansen99].   
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4 CALIBRATION AND MODEL 

SELECTION 

There are several techniques to estimate the parameters of a camera. Early methods 

derive explicit solutions to the camera parameters discussed in Chapter 2. The classic 

method in computer vision was developed by Tsai [Tsai86][Tsai87] which merged 

computer vision and photogrammetry, and also Abidi and Eason [Abidi85]. More recent 

methods are based on projective geometry [Zhang00A][Hartley00][Heikkila00]. These 

methods first estimate the projection matrix and then extract the camera parameters from 

it. If the projection matrix is estimated from a coplanar model, rather than a 3D model, 

then difficulties arise in extracting the intrinsic parameters. In this case, multiple images 

of a coplanar target are needed. However, all parameters can be extracted from a 

projection matrix computed from a single 3D model. The type of target used is 

application dependent. If in a laboratory setting, then precision coplanar and 3D targets 

are readily available. However, in the field coplanar targets are probably easier to handle.   

Section 4.1 is a review on 2D homography and 3D projection matrix estimation. A 2D 

homography maps from 2D to 2D space, and a 3D projection matrix maps from 3D to 2D 

space. Section 4.2 discusses parameters extraction techniques that use multiple images of 

a coplanar target and also different factorization methods. 
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4.1 Homography and projection matrix estimation 

The projection matrix  maps points in world space P ( )ZYX ,,=M  to points in image 

space . When using a 3D model, the world point  is mapped to image 

point  via the projection matrix  with  a  matrix . The 

transformation is given by the equation 

( vu,=m ) 3ℜ∈M

m 23: ℜℜ aP P 43×

PΜm = . Note that the transformation operates 

in homogenous coordinates, thus m  and  are augmented with a 1 prior to the 

operation. In the coplanar case, which uses a 2D model, the point  is mapped to 

point  via a homography  with  a 

M
2ℜ∈M

m 22 a: ℜℜH H 33×  matrix. A  projection 

matrix can be computed from the homography using the orthogonality constraint of the 

rotation matrix. There are benefits of both methods. Notably, a 3D model will give more 

accurate calibration, but a precise model is difficult to build. However, calibration 

techniques which use multiple images of coplanar patterns are highly accurate and the 

ease of creating the model is desirable. Figure 4.1 illustrate the difference between 

estimating the projection matrix using 3D and 2D world points. 

43×

 

The next section describes estimating the homography from 2D world points. This is then 

extended to include 3D world points in section 4.1.2 to compute the projection matrix 

directly. Section 4.2 describes techniques to compute the projection matrix from a set of 

homographies and parameterize the projection matrix into physical parameters.   

4.1.1 Homography estimation 

This section reviews three techniques to estimate 2D homographies. We start with a 

linear solution (DLT), followed by linear solution with normalization (NDLT), and 

finally the NDLT with an optimization step. The normalization step adds a significant 

improvement over the linear solution, especially when noise is present.  
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(a) (b) 

Figure 4.1: Two images illustrating the difference between the 

projection matrix and homography. a) The projection matrix  maps 

the 3D point M  in world coordinates to the 2D point m  in image 

coordinates. (b) The homography H  maps the 2D point  to m . 

P

M

 

2D direct linear transformation (DLT) 

The linear transformation  can be computed using the DLT given a set of at 

least four correspondences 

33×ℜ∈H

ii Mm ↔  so that ii HMm =  with  a 2D projective 

transformation. The product  may be written as 

H

iHM

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

i

i

i

i

Mh
Mh
Mh

HM
T3

T2

T1

 (4.1)

with  the  row of . Taking the cross product of  and  Tih thi H im iHM
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which may be written as a homogenous system 
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Alternatively, since the rows are linearly dependent only the first two rows are needed 
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 (4.4)

This has the form , stacking all these equations makes  a  matrix with  

the number of correspondences. The solution of the homogenous system  is the 

right singular vector associated with the smallest singular value, or equivalently the 

eigenvector of  associated with the smallest eigenvalue. The 9 element vector h  

makes up the components of the homography matrix  

0hA =i A 92 ×n n

0Ah =

AAT

H

.
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232221

131211

T3

T2

T1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
hhh
hhh
hhh

h
h
h

H  (4.5)

 

 

 

 

 

 

 



Chapter 4: Calibration and model selection 

 

28

 

 

 

2

 

Figure 4.2: Normalized 2D points so the centroid of the points is at 

the origin and the average distance from the origin is 2 . 

 

 

2D normalized direct linear transformation (2D NDLT) 

Hartley [Hartley97][Hartley00] used a simple normalizing transformation before 

applying eight-point algorithm to compute the fundamental matrix which produced 

results comparable to the best iterative algorithms. The same normalization technique can 

be used in conjunction with the DLT. The normalizing transformation  is a similarity 

transformation that a) translates the centroid of the points to the origin and b) scales the 

points so the average distance from the origin is 

T

2  in the planar case as illustrated in 

Figure 4.2. 

 

This can be accomplished by the following similarity transformation  
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where  and ( )nxxx ,,, 21 K=X ( )nyyy ,,, 21 K=Y  are the coordinates of the 2D points. 

Two different normalizing transformations are applied,  and , on the model and 

image points, respectively 

T T′

.~

~

mTm
TMM
′=

=  (4.7)

The DLT algorithm is used on the normalized data yielding a transformation  such that H~

.~~~
ii MHm =  The matrix  can be represented as a H~ 19×  vector ( )TT3T2T1 ~,~,~ hhhh =  with 

 the  row of . The DLT on the normalized data is T~ ih thi H~

0~
~~~
~~~

TTT

TTT

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
− h

MM0
M0M

v
u  (4.7)

with ( )T~,~~ vu=m . Letting THTH ~1−′=  recovers the homography  on the actual 

data.  

HMm =
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Normalized 2D DLT 

Objective 

 

Given  2D to 2D point correspondences 4≥n ii mM ↔  compute a 

linear estimate of . H

 

Algorithm 

 

1. Compute normalized model points TMM =~  and image points 

 mTm ′=~

2. Compute normalized projective transformation matrix H  using DLT ~

3. Denormalize  THTH ~1−′=

 

2D Gold Standard Algorithm  

The Gold Standard Algorithm [Hartley00] follows directly from the normalized DLT 

with an optimization step on the normalized homography . The linear solution is used 

as the initial guess for Maximum Likelihood Estimation (MLE) 

H
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Gold Standard Algorithm for 2D projective transformation 

Objective 

 

Given  2D to 2D point correspondences 4≥n mM ↔  determine the 

maximum likelihood estimate of the homography matrix H . 

 

Algorithm 

 

1. Linear solution 

a. Compute normalized model points TMM =~  and image points 

 mTm ~~ ′=

b. Compute normalized transformation matrix H  using DLT ~

2. Minimize geometric error with the linear estimate as the initial guess. 

( )∑
i

iid
2

~
~~,~min MHm

H
 

3. Denormalize  THTH ~1−′=

 

4.1.2 Projection matrix estimation 

This section is similar to the previous section on estimating the homography, so we will 

simply extend some of the ideas to estimate the projection matrix. The only difference in 

the 2D DLT and 3D DLT is that  has an extra component and P  is a   matrix. 

The DLT for the projection matrix is 

M 43×



Chapter 4: Calibration and model selection 

 

32

0
p
p
p

MM0
M0M

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

3

2

1

TTT

TTT

iii

iii

v
u

 (4.8)

with  the  row of . This has the form Tip thi P 0pA =i , stacking all the equations makes 

 with A  a  matrix. This homogenous system is solved in exactly the same 

way as was done with homography estimation. Similarly, the normalizing transformation 

used in the 3D case a) translates the centroid of the points to the origin and b) scales the 

points so the average distance from the origin is 

0Ap = 122 ×n

3 . The transformation applied to the 

3D model points is  
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We now have the tools to compute the projection matrix using the Gold Standard 

Algorithm, which is outlined below.  
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Gold Standard Algorithm for computing the projection matrix 

Objective 

 

Given  3D to 2D point correspondences 6≥n mM ↔  determine the 

maximum likelihood estimate of the projection matrix P . 

 

Algorithm 

 

4. Linear solution 

c. Compute normalized model points TMM =~  and image points 

mTm ~~ ′=  

d. Compute normalized projection matrix P  using DLT ~

5. Minimize geometric error with the linear estimate as the initial guess. 

( )∑
i

iid
2

~
~~,~min MPm

P
 

6. Denormalize  TPTP ~1−′=

4.2 Extracting physical parameters from P 

There are a myriad of methods to extract the camera parameters from the projection 

matrix. This section reviews a few techniques for planar models, which require multiple 

images, and for 3D models.  
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(a) (b) 

Figure 4.3: An example of a planar calibration model. (a) Original 

calibration target with the control points shown in red and (b) 

corresponding image corrected towards a perspective projection. 

 

 

4.2.1 Coplanar model  

There are two main techniques to extract the camera parameters using planar models. 

Figure 4.3 shows one example of a planar model taken from a wide-angle camera. The 

first method assumes some prior knowledge, specifically the camera calibration matrix, 

and only requires a single image. The second method estimates all the parameters, 

including the camera calibration matrix, using multiple images.  

Known K 

We use the technique in section 3.1 to compute the homography  such thatH ii HMm = . 

Here, the rotation matrix and translation vector are extracted from the homography using 
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a known camera calibration matrix K . The camera calibration matrix could have been 

computed u 

sing other techniques, or an estimate could be used based on expected values. The 33×  

homography  can be written as H

[ ]
[ ]KtKR

tRKH

23

23

×

×

=
=

 (4.10)

where   is the first  submatrix of the rotation matrix 23×R 23× R . Then K  and the first 

 submatrix of  are used to recover the orientation 23× H

.23
1

23 ×
−

× = HKR  (4.11)

Since a rotation matrix is orthogonal the last column of R  is , and the full 

rotation matrix is . The translation vector is  

213 rrr ×=

( 321 rrrR = )

3
1hKt −=  (4.12)

with  the last column of . The rotation matrix and translation vector are then scaled 

by dividing through by 

3h H

∑= 1rλ  where ∑ 1r  is the summation of the components of 

the first column vector of R . 

Closed-form solution from IAC 

Zhang [Zhang00A] used the Image of the Absolute Conic (IAC) to parameterize a set of 

homographies computed from multiple images of a 2D model, since typical methods 

based on RQ factorization and Cholesky decomposition do not work for a projection 

matrix computed from a 2D model. The IAC  and the homography 

 relating a model plane in the world coordinate system to its image are 

used to place two constraints on the intrinsic parameters. Given a homography  we 

may write 

1-T −= KKω

( trrKH 21= )
H
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HKKHHH 1-TTT  −=ω  (4.13)

and since  is orthonormal: ,  and . Hence the two 

constraints are 

R 1 1
T
1 =hh ω 1 2

T
2 =hh ω 0 2

T
1 =hh ω

.0 

0  

2
T
1

2
T
21

T
1

=

=−

hh

hhhh

ω

ωω
 (4.14)

Rewriting ω  in terms of ( )00 ,,,, vusβα  gives 

( )
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which is a symmetric matrix that may be defined by a 6-tuple 

vector .  Letting the  column of  be 

 we may write 

( )T332313221211 ,,,,,ˆ ωωωωωωω = thi H

( T
321 ,, iiii hhh=h )

ωω ˆ ˆ TT
ijji v=hh  (4.15)

with  

( ) .,,,,, T
333223311322122111 jijijijijijijijijiij hhhhhhhhhhhhhhhhhhv +++=  (4.16)

Combining the two constraints in equation 4.14 as a homogenous system gives 

( ) .ˆˆ
2211

T
12 0V =⎥

⎦

⎤
⎢
⎣

⎡

−
= ωω

vv
v

 (4.17)
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If there are n  images of the model plane, then stacking (4.17) makes  a  matrix 

with a unique solution when . Once we have 

V 62 ×n

3≥n ω  we can solve for ( )λβα ,,,,, 00 vus  

with λ  a scale factor yielding 

( ) ( )
( )[ ]

( )

.2
1300

2
12

2
12221111

11

11131113120
2
1333

2
122211231113120
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ωωωλωβ
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ωωωωωωωλ

ωωωωωωω
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=
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svu

s

v

v

 (4.18)

Once the intrinsic parameters have been solved the extrinsic parameters are computed as 

3
1
213

2
1

2

1
1

1

hKt

rrr
hKr
hKr

−

−

−

=

×=
=

=

λ

λ

λ

 (4.19)

with 2
1

1
1 11 hKhK −− ==λ . 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Calibration and model selection 

 

38

 

 

 

 

 

Figure 4.4: An example of a 3D calibration model.

 

4.2.1 Non-coplanar model  

There are several techniques to extract the camera parameters when using a 3D 

calibration model as illustrated in Figure 4.4. In this section, we describe a few 

techniques that have been proposed. The decision to use a non-coplanar model depends 

on the application, specifically the required precision. Interestingly enough, RQ 

factorization, and Cholesky factorization of the IAC produce exactly the same results in 

our analysis on synthetic 3D data; and Faugeras’ method produces nearly the same   

results.  
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Known K 

Similar to recovering the orientation knowing the camera calibration matrix in the 

coplanar case, we can do the same in the 3D case. The projection matrix P  can be 

factored as 

[ ]
[ ]KtKR

tRKP
=
=

 (4.20)

where  R  is a rotation matrix and  the translation vector. Then the known t K  and the 

first 3  submatrix of  are used to recover the orientation 3× P

.33
1

×
−= PKR  (4.21)

The translation vector is  

4
1PKt −=  (4.22)

with  the last column of . The rotation matrix and translation vector are then scaled 

by dividing through by 

4P P

∑=
i

i
2

1rλ  where ∑
i

i
2

1r  is the squared summation of the 

components of the first column vector of . R

RQ factorization 

The projection matrix [ ]tRKP |=  can be factored as [ ] [ ]VUKtKRP || == . The first 

 submatrix  is the product of an upper triangular and rotation matrix. RQ 

factorization is used to compute the camera calibration matrix 

33× KRU =

K  and rotation matrix . 

The translation vector is  with  the right most 

R

VKt 1−= V 13×  vector of . The camera 

calibration matrix computed using this method will be of the form 

P
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000
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v
us

β
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with  the angle between image axes and s1tan −=θ βα  the aspect ratio. The rotation 

matrix and translation vector are then scaled by dividing through by ∑= 1rλ  where 

 is the summation of the components of the first column vector of ∑ 1r R . 

Factor DIAC using Cholesky factorization 

Seedahmed and Habib [Seedahmed02] used the orthogonality of R  and Cholesky 

factorization to recover the camera calibration matrix. Letting KRU = , then 

( )( )

T

T

TT

TT

KK
KIK

KKRR
KRKRUU

=

=

=

=

 (4.24)

since the rotation matrix is orthogonal. The product  is the dual image 

of the absolute conic (DIAC). Using Cholesky decomposition the known DIAC  can 

be factored into 

TT KKUU ==∗ω
∗ω

TKK  where K  is an upper triangular matrix. The normalized camera 

calibration matrix is computed by dividing through by the element in the last row and 

column . The Cholesky factorization will not reveal a correct decomposition due to 

the missing structure in terms of lower-upper ordering. An iterative step is needed to 

correctly decompose  using Cholesky decomposition.  

33K

∗ω
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Iteratively factor the DIAC to recover the camera calibration matrix 

Objective 

 

Compute the camera calibration matrix from the DIAC via Cholesky 

decomposition by iteratively updating the principal point.  

 

Algorithm 

 

1. Compute projection matrix 

2. Form the DIAC  ∗ω

3. Apply Cholesky factorization to recover K  

4. Normalize K  by dividing through by  33K

5. Extract principal point from K  

6. Displace the observed image coordinates using the principal point 

7. Repeat steps 1-7 until convergence 

 

The rotation matrix and translation vector are recovered using the same technique found 

in the RQ factorization method. Again, proper scaling must be done.  

Factor IAC using Cholesky factorization 

Seedahmed and Habib [Seedahmed02] also proposed a non-iterative algorithm that 

produces the correct ordering in terms of the lower-upper matrix by factoring the matrix 

 , which is the image of the absolute conic (IAC). ( ) 1T −
= UUω
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Factor the IAC to recover the camera calibration matrix 

Objective 

 

Compute the camera calibration matrix from the IAC via Cholesky 

decomposition. 

 

Algorithm 

 

1. Compute projection matrix 

2. Form the IAC ω  

3. Apply Cholesky factorization to ω   

4. Invert factorized matrix to recover K  

8. Normalize K  by dividing through by  33K

 

Both of the methods described in [Seedahmed02] require the submatrix  to be positive 

definite. This should be the case when working with a 3D model, but not necessarily with 

a 2D model. Similarly, the rotation matrix and translation vector are recovered using the 

previously mentioned technique. 

U

Faugeras method 

Faugeras and Toscani [Faugeras87] recover the camera parameters based on the fact that 

 is orthogonal and  is defined up to a scale factor. All the camera parameters can be 

recovered as long as the scale factor  is known, which corresponds to knowing whether 

the world coordinates system is in front or behind the camera (  or ). In 

accordance with the original notation found in [Faugeras87], the projection matrix can be 

denoted as 

R P

k

0<zt 0>zt
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where ,  and  are the 1I 2I 3I 31×  row vectors of , and ,  and  are the last 

components of each row. Then the closed-form solution to recover the camera parameters 

is  

P 14I 24I 34I
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(4.26)

where  is the  row of . The derivation of the solution is not derived here due to its 

length. However, the original paper does derive the solution.  

Tir thi R
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4.3 Model selection 

Model selection picks the best model when several competing models can be used to 

explain an observation. Akaike [Akaike74] laid the foundation for statistical model 

selection, for use in time series analysis, using what is called Information Theoretic 

Criterion (AIC). In AIC, the model selected is the one that minimizes the error of a new 

observation. It has the form  

( ) kL i 2;log2AIC +−= mθ  (4.27)

where  is the number of parameters in the model and k ( )iL mθ;  is the likelihood of the 

model parameters  given the observations . The model with the 

lowest AIC score is selected according to this criterion. The first term in equation 4.27 is 

a measure of the goodness of fit of the model, and the second term penalizes higher 

complex models.  

( ρκtRKθ ,,,,= ) im

 

We will denote the estimated projection of point  as jM im(  according to the model 

parameters . The sum-square-error (SSE) is computed as  with θ ∑=
i

ir
2SSE

iiir mm (−=  the difference between the measured and estimated image points.  

 

Assuming the noise in the data is Gaussian distributed, the probability of  given the 

model  is the product of the individual probability density functions (PDF’s) of each 

point, assuming the errors on all points are independent [Harltey00]. The PDF of the 

noise perturbed data is given by 

im

θ

( ) ( )22 2
22

1|Pr σ

σπ
ir

i
i e −∏ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=θm  (4.28)
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where  is the variance of the noise. Then the log-likelihood of the model parameters 

 given the observations  is 

2σ

θ im

( ) ( )[ ]

constant.
2

1

|Prlogarg;log

2
2 +−=

=

∑
i

i

ii

r

L

σ

θmmθ
θ

 (4.29)

The maximum log-likelihood estimate (MLE) is the set of parameters  that maximizes 

. What we observe is that minimizing the SSE is equivalent to maximizing 

the log-likelihood, which is in-turn equivalent to maximizing the likelihood of the model 

parameters . Therefore, by substituting equation 4.29 into equation 4.27 and 

simplifying, we can write AIC in the following form: 

θ

( iL mθ;log )

θ

kr
i

i 21AIC 2
2 += ∑σ

 (4.30)

Similarly, we can do the same with all the criterions in Table 4.1.  

 

 

Table 4.1: List of model selection criterions. 

                     Name                             Formula 

AIC [Akaike74] ( ) kL i 2;log2 +− mθ  

MDL [Rissanen78] ( ) NkL i log21;log2 +− mθ  

BIC [Schwarz78] ( ) NkL i log2;log2 +− mθ  

SSD [Rissanen78] ( ) ( )[ ] ( )1log2242log;log2 ++++− kNkL imθ  

CAIC [Bozdogan87] ( ) ( )1log;log2 ++− NkL imθ  
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5 ALGORITHM OVERVIEW 

In this chapter, we give an overview of the calibration algorithm based on the theory from 

Chapter 4. We first discuss the setup, and then move onto the linear solution for the 

camera parameters, nonlinear optimization and finally model selection.  

5.1 Homography estimation 

A point in the world coordinates  is projected to its image  by the projection matrix 

 which maps from  (projective mapping): 

M m

P 23 Ρ→Ρ
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 (5.1)

Letting all the points in world coordinates lie on a plane, i.e. 0=Z , the projection matrix 

reduces to a mapping from : 22 Ρ→Ρ
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 (5.2)

Then the model point and image point are related by a 33×  homography : H

HMm ~  with ( )trrKH 21= . (5.3)

We use the Gold Standard Algorithm from Chapter 3 to compute the homographies from 

the model plane to each of the images taken from unknown vantage points. Figure 5.1 

shows two of eight images in one of the calibration sets with the model points mapped to 

the image via the computed homographies appearing as red dots. The red dots should 

correspond to the corners of the black squares. Since the images were taken with a wide-

angle camera the nonlinearity of the lens projection will be considered in a later stage.  

 

 

 

          
 

Figure 5.1: Two of eight images taken of a planar grid pattern and 

the mapping of the model points by the estimated homographies 

overlaid on the image without considering distortion. 
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5.2 Solving for intrinsic parameters  

With multiple images of the model plane and all the homographies computed which map 

the model points to the image points; the intrinsic parameters are extracted from the 

homographies using the technique described by Zhang [Zhang00A] discussed in Chapter 

3 via the IAC. A minimum number of three images are needed, with five generally 

producing stable results. Based on our research, this method will usually overestimate the 

focal length as the FOV of the camera increases. In addition, the solution for the other 

parameters will be off target. We apply an alternation technique during optimization 

discussed in section 5.7, significantly improving the final results.  

5.3 Solving for extrinsic parameters 

Solving for the extrinsic parameters is straight forward once the camera calibration 

matrix is known. We use the formulation in equation 4.19 to extract the extrinsic 

parameters. Once the rotation matrix has been extracted, it is parameterized using Euler 

angles as described in section 2.3.2. Other parameterizations could be used, which were 

also discussed in Chapter 2, such as axis/angle and quaternions. Keeping in mind though 

that axis/angle and quaternions have four parameters, but 3-DOF. Even though axis/angle 

can be represented with only three parameters, it adds a constraint. So in the bundle 

adjustment stage when unconstrained nonlinear optimization is performed, all four 

parameters must be used or a technique which takes the constraint into account must be 

applied. Hornegger and Tomasi developed a technique to use quaternions in 

unconstrained nonlinear optimization which only used three parameters [Hornegger99]. 
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5.4 Solving for the lens projection 

In practice, the ideal lens projection never extends to the real camera. Thus we use a 

polynomial to approximate the real lens projection of the following form: 

( ) ( ))12(3
21

1

12 −

=

− +++== ∑ p
p

p

i

i
i ffr φκφκφκφκφ K  (5.4)

We will denote the number of coefficients in equation 5.4 as .  p

 

Once a solution has been computed for the calibration matrix, rotation matrix and 

translation vector, a least-squares solution to the lens projection coefficients 

 is calculated. Prior to computing the coefficients, we assume the 

estimated and measured image points, denoted as 

( T
21 ,, Kκκ=κ )

( )yx ((,  and  ( )yx,  respectively, are 

normalized to unit focal length by multiplying them by the inverse of the camera 

calibration matrix. The estimated image points are those computed using the closed-form 

solution set described in section 5.2, and the measured image points are those that were 

detected in the image. Then let 22 yxr ((( +=  be the radial distance ( yx )((,  is from the 

principal point, and similarly 22 yxr +=  for the measured point ( . Then equation 

5.4 can be written in matrix notation as 

)yx,

( ) ( )r

p

p =

⎟
⎟
⎟
⎟
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⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−  2

1

)12(3

κ

κ
κ

φφφ
M

K  (5.5)

with ( fr )(1tan −=φ  the angle between the principal axis and the incoming ray. Since the 

points are normalized to unit focal length: 1=f . Stacking equation (5.5) for  points 

we can write  where  is a 

m

bAκ = A pm ×  matrix with p  the number of coefficients in 

the lens projection model. The least squares solution is simply  
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( ) bAAAκ T1T −
= . (5.6)

5.5 Decentering distortion 

Decentering distortion occurs when lens elements are misaligned, which was discussed in 

Chapter 3. Even though decentering distortion may not be needed to model a particular 

camera, the model selection stage will automatically determine this. The components are 

modeled as 

( )( )( )
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 (5.7)

with ( K,, 21 ρρ  the decentering distortion coefficients. The coefficients 1ρ  and 2ρ  are 

typically the only ones used in practice, neglecting the higher order terms. We denote the 

number of coefficients used for decentering distortion by , and initially set all coefficients 

to zero prior to nonlinear optimization.  

q

5.6 Complete model 

The complete camera model includes everything that has been described in the previous 

sections. The final estimated image point ( )T, yx ((( =m is 

( ) ∆d+⎟⎟
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 r
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(

 (5.8)

where ( )φr  is the lens projection and ∆  the decentering distortion. The angle d ϑ  is the 

angle the image point is from the x-axis calculated as ( )xy1tan −=ϑ . 
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5.7 Bundle adjustment 

Once the close-from solutions to the camera parameters are computed, including the lens 

projection coefficients, the results are refined using Maximum Likelihood Estimation 

(MLE).  

 

From our experiments, as the lens projection deviates from the perspective projection, 

alternating between refining ( )tRK ,,   and ( )ρκ,  produces significantly better results. 

Figure 5.2 shows a plot of the mean-square-error (MSE) for different lens projections 

computed both with and without alternation using our algorithm. Perspective and 

orthogonal projection had little or no benefit with alternation, but stereographic and 

equisolid projection had significant improvements.  

  

MLE is performed by minimizing the following functional  

( )
2

1 1
,,,,,∑∑

= =

−
n

i

m

j
jiiij MρκtRKmm (  (5.9)

where ( )jii MρκtRKm ,,,,,(  is the projection of point  in image  computed from 

equation 5.8. The parameters 

jM i

( )tRK ,,  and ( )ρκ,  are optimized in alternation until 

convergence. The initial estimates for the decentering coefficients are set to zero, which 

is satisfactory because decentering distortion is usually small in practice. The Levenberg-

Marquardt algorithm is used to perform the MLE. Figure 5.3 gives a flow chart of the 

complete algorithm.  
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Figure 5.2: Chart of the MSE for different projections with and 

without alternation. The data was synthetically generated with the 

same camera parameters found in the results section for synthetic 

data. To simulate real data we added Gaussian noise with zero mean 

and unit variance. 
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Corner detection and 
subpixel refinement
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Lens projection 
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Bundle adjustment
(decentering distortion coefficients initialized to the 

zero vector) 

Parameterize 
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Model selection
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Figure 5.3: An overview of the algorithm. 



Chapter 5: Algorithm overview 

 

54

5.8 Model selection 

One of the model selection criteria from Chapter 5 is used to find the best model, once 

several models have been computed.  So far we have assumed the variance of the noise is 

known. We use the formulation in [Gheissari03] to calculate the variance of unknown 

Gaussian noise: 

2σ

( )kNr
i

i
ˆ22 −=∑σ  (5.10)

where   is the number of samples and  is the number of coefficients of the most 

complex model in the library. The performance of equation 5.10 is shown in Figure 5.4 

for different lens projections. Notice that the noise of a stereographic projection tends to 

be severely overestimated.  

N k̂

 

 

 
 

Figure 5.4: Graph of the true and estimated Gaussian distributed 

noise (standard deviation) for the different lens projections listed in 

Table 4.1. 
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6 EXPERIMENTAL RESULTS 

We begin this section with the implementation decisions of the calibration procedure and 

model selection algorithm. We then illustrate the results of our algorithm on multiple sets 

of synthetic and real data which include several different lens projections. 

6.1 Implementation 

The algorithm takes several sets of data as input: the 2D model plane points, and several 

sets of 2D image points. Since our algorithm is a DLT based algorithm, the first 

component of the software is to compute several sets of 2D homographies relating the 

model and image points. The homographies are computed using the normalized DLT and 

optimized using Levenberg-Marquardt algorithm described as the Gold Standard 

Algorithm in section 4.1.1. The second component decomposes the homographies into 

the intrinsic and extrinsic parameters of the camera using the closed-form solution from 

the IAC discussed in section 4.2.1. The third component estimates the lens projection of 

the camera in a least-squares sense. The fourth component refines all the parameters in 

bundle-adjustment. The last component takes several optimized models of increasing 

complexity and selects the best model using statistical information criteria. The majority 

of the software has been developed by the author in Matlab. However, several existing 

functions have been utilized from multiple sources. 
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6.2 Synthetic data 

Four sets of data were generated using the lens projections listed in Table 3.1: (1) 

perspective, (2) stereographic, (3) equisolid and (4) orthogonal. We chose these lens 

projections because they represent wide range of cameras on the market, varying in order 

(1-4) from rectilinear to fisheye. The purpose of this experiment was to compare the 

robustness of our model, which comprises of lens projection and decentering distortions 

(LPDD), vs. models that use radial and decentering distortions (RDDD) 

[Heikkila97][Heikkila00][Zhang00A]. We apply both methods to several lens 

projections, and compare the complexity of the model and camera parameters with 

respect to the types of lens projection. The information criterions listed in Table 4.1 were 

used to choose the complexity of the models. We let p  be the number of coefficients in 

the lens projection model for LPDD, or the radial distortion model for RDDD, and q  the 

number of coefficients in the decentering distortion model. 

 

The intrinsic parameters of the synthetic perspective camera had the following values: 

800=α , 800=β , , 0=s 3200 =u  and 2400 =v . The other three synthetic cameras, 

namely stereographic, equisolid, and orthogonal, were set to smaller focal lengths: 

160=α  and 160=β . The image resolution was 480640× , and  the model plane 

consisted of corner points. Five different images of the model were generated 

for each lens projection with the following Euler angles: 

6488 =×

 ( )T1 0,0,2244.0=r , 

 ( )T2 0,0.3491,0=r , 

 ( )T3 0.2618,0,0=r , 

 ( )T4 0,3491.0,3491.0=r  and 

 ( )T5 3491.0,3491.0,0=r , 
 

(6.1)
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and the translation vectors for perspective projection were: 

 ( )T1 500,120,120 −−=t , 

 ( )T2 450,120,145 −−=t , 

 ( )T3 600,145,145 −−=t , 

 ( )T4 425,120,95 −−=t , 

 ( )T5 500,95,170 −−=t  
 

(6.2)

and for the other three projections: 

 ( )T1 90,120,120 −−=t , 

 ( )T2 40,120,145 −−=t , 

 ( )T3 80,145,145 −−=t , 

 ( )T4 120,120,95 −−=t  and 

 ( )T5 40,95,170 −−=t . 
 

(6.2)

We chose the values of these parameters so the collection of images spanned a large 

portion of the image plane. We then added Gaussian noise to the image points which had 

unit variance and zero mean. 

 

We measure the error of the overall model using mean-square-error (MSE), measured in 

pixels, between the actual measured and estimated image points. Table 6.1 and Table 6.2 

list the calibration results for the four tested lens projections. From the tables, the results 

for perspective projection are close to the ground truth, and the MSE is relatively small. 

For the other lens projections, α  and β  tended to be considerably smaller in magnitude 

compared to the ground truth in both models, except for orthogonal projection using the 

RDDD model, this is expanded on this later in this section when analyzing the lens 

projection. However, the MSE in the RDDD model is significantly larger compared to 

the LPDD model for stereographic, equisolid and orthogonal projection. This is 

illustrated in Figure 6.1, which is a plot of the MSE for all the tested lens projections. 
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Table 6.1: Calibration results for synthetic cameras using LPDD model and MDL. 

Projection α β s u0 v0 MSE 

(1) Perspective 809.04 808.55 -0.02 315.40 228.06 0.3500 

(2) Stereographic 97.87 97.84 0.13 319.67 240.91 0.4571 

(3) Equisolid 102.92 102.96 -0.01 320.86 240.14 0.4041 

(4) Orthogonal 105.60 105.76 0.05 320.25 239.89 0.5035 

 

 

 

Table 6.2: Calibration results for synthetic cameras using RDDD model and MDL. 

Projection α β s u0 v0 MSE 

(1) Perspective 792.76 790.94 -0.11 315.84 239.00 0.3990 

(2) Stereographic 84.15 85.10 -1.52 307.52 264.44 3.2148 

(3) Equisolid 118.93 119.25 0.20 317.17 248.00 1.2878 

(4) Orthogonal 163.42 162.54 0.40 320.64 244.88 1.3435 

 

 

 

 
Figure 6.1: Graph of the mean-square-error (MSE) for 

several different lens projections in pixels: (1) perspective, (2) 

stereographic, (3) equisolid and (4) orthogonal. 
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Initially, we may think the complexity of the LPDD model is higher than that of the 

RDDD model because the errors are small regardless of the lens projection. Table 6.3 and 

Table 6.4 list the complexity of the LPDD and RDDD models chosen by the different 

information criterions, respectively. We plotted the results from MDL in Figure 6.2 to 

show how the complexity changes as a function of the lens projection. MDL was chosen 

over the other criterions to generate these plots because it always selected a complexity 

less than or equal to that of the other criterions, without sacrificing a significantly lower 

error. With the RDDD model the complexity increased as the FOV increased. However, 

the LPDD stayed level for all the lens projections.  

 

The results of the calibration procedure for the intrinsic parameters are listed in Table 6.1 

and Table 6.2 for each lens projection for both models. The MSE corresponds to the 

model selected by the corresponding MDL criterion. The values for perspective 

projection for both methods are close to the ground truth, but vary widely for the other 

projections. Even though α  and β  are not close to the ground truth for the other 

projections, the MSE stays relatively small in the LPDD model, which is not the case in 

the RDDD model. In the RDDD model, the MSE is over four times that of LPDD model 

for stereographic projection, and over two times that for equisolid and orthogonal 

projections. 

 

We also plotted the estimated lens projections with the true lens projections in Figure 6.3. 

The estimated lens projection in the perspective case is nearly identical to the theoretic. 

In the other lens projections, the estimated lens projections are similar in curvature, but 

vary in amplitude. This is presumably due to the error in the estimated focal length since 

the focal length and the lens projection are highly correlated. The lens projection or radial 

distortion model parameters will compensate when the focal length is off target. This is to 

be expected when estimating the parameters of wide angle camera with a linear solution 

under the pinhole model. 
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Table 6.3: Complexity of the LPDD model for several lens projections. 
AIC MDL BIC SSD CAIC 

Projection p  q  p  q  p  q  p  q  p  q  
(1) Perspective 5 2 2 0 5 0 5 0 5 0 

(2) Stereographic 2 0 2 0 2 0 2 0 2 0 

(3) Equisolid 2 0 2 0 2 0 2 0 2 0 

(4) Orthogonal 2 0 2 0 2 0 2 0 2 0 

 

 

 

 

 

 

Table 6.4: Complexity of the RDDD model for several lens projections. 
AIC MDL BIC SSD CAIC 

Projection p  q  p  q  p  q  p  q  p  q  
(1) Perspective 1 0 1 0 1 0 1 0 1 0 

(2) Stereographic 3 2 3 2 3 0 3 3 3 0 

(3) Equisolid 4 2 4 2 4 2 4 2 4 2 

(4) Orthogonal 4 2 4 2 4 2 4 2 4 2 
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Figure 6.2: Graph of the complexity of the LPDD and RDDD 

models for several different lens projections: (1) perspective, (2) 

stereographic, (3) equisolid and (4) orthogonal. The complexity for 

the LPDD model is calculated as the sum of the number of lens 

projection and decentering distortion model coefficients in Table 6.3 

corresponding to the MDL criterion. Similarly, the complexity of the 

RDDD model is calculated as the sum of the radial distortion and 

decentering distortion model in Table 6.4 corresponding to the MDL 

criterion. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.3: Plots of the estimated lens projections for synthetic 

data for (a) perspective, (b) stereographic, (c) equisolid, and (d) 

orthogonal projections using MDL. The red curve is the estimated 

lens projection and the black curve is the true lens projection. The 

unit of Φ is in radians, and the unit of r  is the same as in Figure 3.2 

(a), i.e normalized to unit focal length. 
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6.3 Real data 

We applied our calibration algorithm to four different real cameras: (1) PULNiX CCD 

camera with 6 mm lens (data taken from [ZhangData]), (2) IQEye3 with a verifocal 

FUJINON 1.4-3.1 mm lens set to wide angle, and a Nikon with a fisheye FC-E8 lens set 

to two different zoom settings to produce a (3) full frame fisheye (180˚ across the 

diagonal) and (4) circular fisheye (180˚ in all directions). Each set contained eight images 

with 64 corners on each image for a total of 512 corners (except for Zhang’s data which 

contains 5 images each with 256 corners [Zhang00B]).  

 

The layout of the results in this section is similar to that in the previous section. Figure 

6.4 shows how the MSE increases exponentially as the FOV increases, denoted by the 

numbering: (1) being rectilinear camera and (4) a circular fisheye. Zhang [Zhang00A] 

achieved a root-mean-square (RMS) error on his publicly available dataset [Zhang00B] 

of 0.335, where only radial distortion was modeled. This corresponds to an MSE of 

approximately 0.1122. Our LPDD method achieved an MSE of 0.0298 using the same 

number of coefficients which is a 73% improvement. These values are listed in Table 6.5 

and Table 6.6 for comparison. The RDDD method also achieved a lower MSE than 

Zhang when adding two extra coefficients for decentering distortion, selected by MDL. 

The complexity of the models for each camera can be seen in Figure 6.5, and the 

numerical values are listed in Table 6.7 and Table 6.8 for the LPDD and RDDD models, 

respectively. In each case, except for the circular fisheye, the complexity selected by 

MDL was less when modeling lens project. Even in the case of the circular fisheye, the 

complexity was the same, however the MSE was considerably less. 
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Figure 6.4: Graph of the mean-square-error (MSE) for the different cameras: (1) 

Rectilinear, (2) wide angle, (3) full frame and (4) circular fisheye, modeled using LPDD 

(blue) and RDDD (red) models.  

 

 

 

Table 6.5: Calibration results for real cameras using LPDD model and MDL. 

Projection α β s u0 v0 MSE 

(1) Zhang (rectilinear) 821.08 821.12 0.23 303.90 207.55 0.0298 

(2) Wide angle 229.03 229.43 0.56 333.93 257.75 0.9520 

(3) Full frame 219.19 218.67 0.05 414.94 324.58 0.6639 

(4) Circular fisheye 149.73 149.57 0.04 411.73 315.61 0.9405 

 

 

Table 6.6: Calibration results for real cameras using RDDD model and MDL. 

Projection α β s u0 v0 MSE 

(1) Zhang 832.05 831.98 0.25 303.76 212.25 0.0287 

(2) Wide angle 121.57 122.45 0.71 326.74 269.81 1.3790 

(3) Full frame 132.13 131.29 0.17 408.79 307.45 2.3857 

(4) Fisheye 170.56 170.33 0.11 413.40 324.25 8.1422 
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Figure 6.5: Graph of the complexity for the different cameras: (1) Rectilinear, (2) wide 

angle, (3) full frame and (4) circular fisheye, modeled using LPDD (blue) and RDDD (red) 

models. The complexity for the LPDD model is calculated as the sum of the number of lens 

projection and decentering distortion model coefficients in Table 6.7 corresponding to the 

MDL criterion. Similarly, the complexity of the RDDD model is calculated as the sum of the

number of radial distortion and decentering distortion model coefficients in Table 6.8 

corresponding to the MDL criterion. 
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Table 6.7: Complexity of model selection for LPDD model for real cameras. 
AIC MDL BIC SSD CAIC 

Projection p  q  p  q  p  q  p  q  p  q  
(1) Zhang 4 0 2 0 2 0 2 0 2 0 

(2) Wide angle 1 2 1 0 1 2 1 2 1 0 

(3) Full frame 1 2 1 0 1 0 1 0 1 0 

(4) Fisheye 3 0 3 0 3 0 3 0 3 0 

 

 

 

 

 

 

 

Table 6.8: Complexity of model selection for RDDD model for real cameras. 
AIC MDL BIC SSD CAIC 

Projection p  q  p  q  p  q  p  q  p  q  
(1) Zhang 2 2 2 2 2 0 2 2 2 2 

(2) Wide angle 2 2 2 2 2 0 2 0 2 0 

(3) Full frame 3 2 3 2 3 2 3 2 3 2 

(4) Fisheye 3 0 3 0 3 0 3 0 3 0 
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To get a better understanding of the estimated lens projection for comparison to the ideal 

ones, we plotted the estimated lens projection with perspective and orthogonal 

projections (the two extremes) in Figure 6.6. In these plots, the focal length is normalized 

to unity, thus they have the same scale as in Figure 3.2. What is interesting about these 

plots is the estimated lens projections for cameras appear to be linear. This is also true for 

the fisheye camera in Figure 6.6 (d), even though MDL selected three coefficients for the 

lens projections (Table 6.7).  

 

In all the experiments, the LPDD method outperformed the RDDD method except for 

Zhang rectilinear camera, but was higher only by a small margin (3.8%). We can clearly 

see in Figure 6.4 the exponential increase of the MSE for the RDDD model as the camera 

approaches a circular fisheye, denoted by the numbering (1-4), whereas the MSE for 

LPDD is small and stable for all cameras. Also, the complexity of the model is less than 

or equal to that of RDDD as shown in Figure 6.5 for all cameras.  

 

This calibration technique can be used in wide area surveillance and video tracking. 

Figure 6.7 shows three original images taken from the Nikon circular fisheye camera and 

the corresponding corrected versions after calibration. We use the large FOV of these 

wide angle cameras to monitor large areas, and relay information to PTZ cameras that 

zoom in to acquire a close-up view of suspicious activity. In correcting these images 

towards a perspective projection we have traded one distortion for another as clearly seen 

in Figure 6.7 (e). The perspective distortions become visible as the FOV approaches 

180˚’s. Also, the resolution of the fisheye images is lower near the perimeter of the 

image. Hence, corrected versions appear slightly blurred near the perimeter. The original 

images which were used to calibrate the different cameras and the corrected versions are 

shown in Figure 6.8 through 6.11. The first column contains the original images, and the 

second shows the corrected version towards an ideal perspective one. The corners were 

detected using the Harris corner detector with sub-pixel refinement, except for Zhang’s 

data. We corrected the images by applying the complete model in equation 5.8. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.6: The estimated projection for (a) PUNiX camera  

[Zhang00B], (b) IQEye3 wide angle, (c) full frame fisheye, and (d) 

circular fisheye using MDL model selection. The unit of Φ is in 

radians, and the unit of r  is the same as in Figure 3.2 (a), i.e 

normalized to unit focal length.  
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(a) (b) (c) 

 
(d) 

 
(e) 

 
(f) 

 
Figure 6.7: Three images and perceptively corrected versions. 

Image (a), (b) and (c) are three original images taken from the 

Nikon circular fisheye and (d), (e) and (f) are the corresponding 

corrected version after calibration, respectively. 

 



Chapter 6: Experimental results 

 

70

  

  

  

Figure 6.8: (left) Three out of the the original set of five images 

taken from the PUNix camera [Zhang00B] and (right) the 

corresponding corrected versions after calibration. 
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Figure 6.9: (left) The original set of images taken from the IQEye3 

wide-angle camera and (right) the corresponding corrected versions 

after calibration.
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Figure 6.9: Continued
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Figure 6.10: (left) The original set of images taken from the full frame 

fisheye camera and (right) the corresponding corrected versions after 

calibration.
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Figure 6.10: Continued
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Figure 6.11: (left) The original set of images taken from the fisheye 

camera and (right) the corresponding corrected versions after 

calibration. 
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Figure 6.11: Continued
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7 CONCLUSIONS AND FUTURE 

WORK 

In this thesis, we have described a general camera calibration technique which performs 

equally well on a wide range of cameras, regardless of lens projection or quality. To our 

knowledge, we do not know of an existing calibration technique that performs well across 

the spectrum of cameras within a unified framework. The technique uses several images 

of a planar pattern taken at different positions of the camera. Since our method models 

lens projection, we compared it with that of modeling radial distortion, and in all 

experiments our method outperformed, or worked as well, as Zhang’s methods 

[Zhang00A] based on modeling radial distortion. We used statistical information criteria 

to automatically select the complexity (number of coefficients) of the lens projection and 

decentering distortion model, which allowed us to use the least number of coefficients 

which sufficiently model the camera.  

 

The contribution of this work lies in universally, fully automatic camera calibration, the 

application of statistical information criteria to select the complexity of the model, and 

our experimental results which show this method works better than traditional methods 

which model radial distortion especially on wide angle cameras. One of the main troubles 

was convergence to an acceptable local minimum during optimization. We achieved good 

results with a perspective projection, or rectilinear camera. However, stereographic 

projection and fisheye cameras were more difficult to calibrate. The alternation technique 

during bundle adjustment used in the optimization step helped considerably, allowing us 

to achieve good results across a wide range of lens projections.     
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We believe the techniques described in this thesis can be fruitful, giving an alternative 

approach to traditional methods of camera calibration. Generally, when we implement a 

theory, we want to automate as much of the process as possible. The introduction of 

model selection in camera calibration brings us one step closer to automation. 

 

We feel that camera calibration has significant room for improvement, especially in the 

calibration of wide angle and fisheye cameras. There are several problems when 

calibrating these types of cameras. The extreme distortion exhibited in fisheye images 

make it more difficult to get accurate detection of the corners of the grid. Since fisheye 

images also have a 180˚ FOV in all directions, it is more difficult to accurately represent 

the FOV by taking images of a planar target. We also used a pinhole model to calibrate 

cameras which do not obey the pinhole model, such as a wide angle or fisheye, which is 

quite typical in camera calibration. Thus we expect better results if we use radial 

distortion or lens projection to extend the pinhole model to accommodate these cameras, 

which we did in this thesis. This causes problems when computing the initial estimates of 

the intrinsic and extrinsic parameters from the projection matrix. As we saw in the 

synthetic test results, the focal length was off target from the ground truth for 

stereographic, equisolid and orthogonal projections. Perhaps there is a better way to 

extract the parameters from the projection matrix which considers the lens projection of 

the camera. If the initial estimates are off target, we cannot depend upon nonlinear 

optimization to achieve a good local minimum. We also did not analyze the use of 3D 

targets in calibration, or compare our method to methods which use 3D targets, although 

we did describe these techniques. In any case, we would expect these methods to reduce 

the calibration error, but by how much we are not sure. In theory though, if we have three 

planar targets, it should perform equally well as having a single 3D target. We also did 

not investigate different parameterization of the rotation matrix, such as Axis/Angle or 

Quaternions. It is unclear if the use of other parameterizations would yield a significant 

improvement. 
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