An Investigation of High Order and Low Order Dynamic Modeling of a Complete Pressurized Water Reactor Nuclear Power Plant

James Downing Freels
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes
Part of the Nuclear Engineering Commons

Recommended Citation

Freels, James Downing, "An Investigation of High Order and Low Order Dynamic Modeling of a Complete Pressurized Water Reactor Nuclear Power Plant. " Master's Thesis, University of Tennessee, 1979. https://trace.tennessee.edu/utk_gradthes/2665

To the Graduate Council:
I am submitting herewith a thesis written by James Downing Freels entitled "An Investigation of High Order and Low Order Dynamic Modeling of a Complete Pressurized Water Reactor Nuclear Power Plant." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Nuclear Engineering.
T. W. Kerlin, Major Professor

We have read this thesis and recommend its acceptance:
P. F. Pasqua, E. M. Katz, T. W. Reddoch

Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by James Downing Freels entitled "An Investigation of High Order and Low Order Dynamic Modeling of a Complete Pressurized Water Reactor Nuclear Power Plant." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Nuclear Engineering.

T. W. Karin, Major Professor

```
We have read this thesis
and recommend its acceptance:
```


Accepted for the Council:

AN INVESTIGATION OF HIGH
 ORDER AND LOV GRDER DYNAMIC
 MODELING OF A COMPLETE
 PRESSURIZED WATER REACTOR
 NUCIEAR PONEF DLiNM

A Thesis
Presented for the Master of Science
Degree
The University of Tennessee, Knoxville

James Downing Freels
June 1979

The author would like to thank Dr. T. 可. Kariin, the major professor, and Dr. E. M. Katz, the rasearch advisor, for their guidance, encouragement, and valuable suggestions during the development of this thesis.

He wishes to thank Dr. P. F. Pasqua, head of the Nuc1ear Engineering Department, for making the research for this thesis possible through a graduate research assistantship.

A special thanks is given to [r. T. W. . .eddoch, of the Electrical Engineering Department, for his teaching which made the understanding and incorporation of the megawatt-frequency controller model posisible.

Much appreciation is given to Mrs. Gail Colson for her skills and effort in typing this thesis.

The members of the staff of the University of Tennessee Computing Center are appreciated for their constant advice and the use of their facilities.

The author would like to express extreme gratitude to his wife, Elizabeth Freel.s, for her patience and understanding during the course of this graduate study.

A reference high order PWR system model was developed resulting in a 57 th order, lumped parameter, state variable dynamic model. Included in the model are representations of the reactor core, pressurizer, U-tube recirculation type steam generator, connecting piping, and turbine-feedwater heaters. Also included are the models of three-element feedwater flow control, nonlinear reactor control, pressurizer pressure control, and megawatt-frequency turbine control. systems.

A low order PWR system model was developed by reducing the 57 th order model to a 25 th order model by physical methods.

A further reduction on the low order model was demonstrated by a numerical method called the "pole-zero deletion method."

The results of the physically reducec iow order model were compared to the results of the reference high order model. This comparison showed that the low order model couli simulate the desired output of turbine shaft power equally as well as the reference high order model. Other intermediate system outputs were also show to give good results for the low order model as comparec to the reference high order model.
CHAPTER PAGE
I. INTRODUCTION 1
I. 1 Purpose of this Research 1
I. 2 General Considerations and Previous Development 1
I. 3 Organization of the Text 2
II. THE HIGH ORDER MODEL 4
II. 1 The Reactor Core 4
II. 2 The Steam Generator 11
II. 3 The Three Element Controller 28
II. 4 The Reactor Control System 36
II. 5 The Pressurizer and Pressurizer Control System 64
II. 6 The Turbine and Feedwater Heaters 79
II. 7 The Main Steam and Bypass Steam Control Systems 94
II. 8 The Overall High Order System Model 106
II. 9 Additional Considerations for Coupling the Overall PWR System Mocel to an Electrical Grid System Model 125
III. THE LON ORDER MODEL 127
III. introduction 127
III. 2 Model Reduction by Physica: Methods 128
III. 3 Mociel Reduction by Numerical Methods 140
III. 4 Model Reduction by the Pule-Zero Deletion Method 148
IV. A COMPARISON OF HIGH AND LOW JRDER FHYSICAL MODELS 170
IV. 1 Introduction 1.70
IV. 2 The Basis For Comparison 170
IV. 3 Discussion of Figure 4.1 and Figure 4.2 172
IV. 4 Discussion of Figure 4.3 181
IV. 5 Discussion of Figure 4.4 189
IV. 6 Discussion of Figure 4.5 194
V. CONCLUSIONS AND RECOMMENDATIONS 201
LIST OF REEERENCES 206
APPENDIXES 211
CHAPTER PAGE
A. DESCRIPTION AND INSTRUCTIONS ON THE USE OF THE SYSTEM-MATEXP PROGRAMMING PACKAGE 212
B. CALCULATION OF THE THREE ELEMENT CONTROLLER MODEL WITH WESTINGHOUSE PARAMETERS 245
C. DERIVATION OF THE HIGH ORDER PWR REACTOR CONTROL SYSTEM MODEL 249
D. DERIVATION OF THE TURBINE-FEEDWATER HEATER SYSTEM MODEL 255
E. SOME FIGURES PLACED IN THE APPENDIX FOR CLARITY 284
F. DERIVATION OF THE PF OR MEGAWATT FREQUENCY CONTROLLER MODEL 303
G. INSTRUCTIONS FOR THE USE OF THE REDUCE COMPUTER PROGRAM 310
VITA 325
I. \quad Essential design parameters for the reactor
core model • • • • 8
II. List and description of the high order reactor core model state variables 10
III. List and description of the high order UTSG model state variables 17
IV. Essential data for the UTSG model 18
V. List and description of the three-element controller model state variables 32
VI. Parameters used to calculate the three-element controller model matrix coefficients 33
VII. List and description of the high order reactor control system model state variables 44
VIII. Parameters used to calculate the reactor controller model matrix coefficients 45
IX. Parameters needed to calculate a typical pressurizer pressure model 69
X. Parameters needed to calculate the pressurizer pressure control system model 78
XI. Parameters needed to calculate the turbine- feedwater heater model matrix coefficients 85
XII. List and description of the turbine-feedwater heater model state variables 90
XIII. List of the forcing terms as they appear in the isolated turbine-feedwater heater model 92
XIV. Parameters needed to calculate the Pf controiler model matrix coefficients 105
XV. List of the numerical values of the high order overall PWR system model matrix coefficients 110
XVI. List and description of the low order overall PWR system model state variables 137
XVII. List of the numerical values of the low order overall PWR system model matrix coefficients 141
XVIII. List of the numerical values of the $23 r d$ order model matrix coefficients used in the example case of the REDUCE computer code 156
XIX. List of the numerical values of the poles and zeroes for the complete 23 rd order transfer function of fractional change in nuclear power vs. electrical system frequency 159
XX. List of the numerical values of the poles and zeroes for the reduced llth order transfer function of fractional change in nuclear power vs. electrical system frequency 167

LIST OF FIGURES

2.1 A typical $P W R$ reactor core and vessel internals 5
2.2 Response of the high order core model for A +10 cent step in reactivity 12
2.3 Response of the high order core model for $a+10^{\circ} \mathrm{F}$ step in inlet coolant temperature 13
2.4 A typical U-tube steam generator 14
2.5 Response of the isolated UTSG high order model for $a+10$ percent step in feedwater flow 23
2.6 Response of the isolated UTSG high order model for $a+10^{\circ} \mathrm{F}$ step in feedwater temperature 24
2.7 Response of isolated UTSG high order model for $a+10^{\circ} \mathrm{F}$ step in primary inlet temperature 25
2.8 Response of isolated UTSG high order model for $a+10$ percent step in stean flow 26
2.9 Response of the isolated UTSG high order model for $a+10$ percent step in steam valve coefficiert 27
2.10 Block diagram of three element feedwater flow controller model 30
2.11 Response of the coupled UTSG and three element controller models with Westinghouse farameters for $a+10$ percent $s t e p$ in steam valve coefficient 34
2.12 Response of the coupied UTSG and three element controller models with optimized controller parameters for $a+10$ percent step in steam valve coefficient 35
2.13 Typical steady state program 38
2.14 Reactor control system logic block diagram 39
2.15 Rod speed vs. temperature error signal 41
2.16 Power mismatch channely nonlinear gain 47
2.17 Power mismatch variable gain 48
2.18 Response of coupled UTSG, reactor core, three element controller, and reactor controller models for $a+10$ percent step in steam valve coefficient with no reactor control action (NTYPE = 4) 53
2.19 Response of coupled UTSG, reactor core, three element controller, and reactor controller models for $a+10$ percent step in steam valve coefficient with reactor control action (NTYPE = 1) 57
2.20 Response of coupled UTSG, reactor core, three element controller, and reactor controller models for $a-10$ cent step in reactivity after 10 seconds of observation time 60
2.21 Pressurizer 65
2.22 Fortran listing of subroutine PRESS 73
2.23 Response of coupled pressurizer pressure model for $a+10$ cent step in reactivity after ten seconds of observation time 74
2.24 Pressurizer pressure control schematic 76
2. 25 Block diagram of the transfer function which describes che heater output of the pressurizer pressure control system 77
2. 26 Response of coupied pressurizer pressure control model for $a+10$ cent step in reactivity after ten seconds of observation cime 80
2.27 Typical flow diagram and heat balance of a Westinghouse PNR turbo-generator system 81
2.28 Turbine-feedwater heater model block diagram 84
2.29 Response of the isolated turbine-feedwater heater mocel for $a+10$ percent step in steam valve coefficient 95
2.30 Block diagram of a generator control Eyster. 100
2.31 Incremental model of the ith control area 102
2.32 Response of the Pf coutroller model for a -0.1 puMw step in power semand 107
2.33 Response of the Pf controller model to a -0.1 puMw step in tie line power flow 108
2.34 Chart of the overall high order PWR model system matrix coefficients 118
2.35 Response of the overall high order PWR system model for a -0.05 puMw (-50 Mw) step in power demand 120
3.1 Rod speed vs. temperature error signal The low order model representation is shown by the dashed line 136
3.2 Response of the overall low order PWRsystem model for a -0.05 puMw (-50 Mw) step
in the power demand signal 144
3.3 Surface of 23 rd order gain of fractional nuclear power for a change in electrical system frequency as a function of input frequency and pole-zero pairs deleted 162
3.4 Surface of $23 r d$ order phase angle of fractional change in nuclear power for a change in electrical system frequency as a function of input frequency and pole-zero pairs deleted 163
3.5 Surface of the time response of the fractional change in nuclear power as a function of time and pole-zero pairs deleted for a unit step change in electrical system frequency 164
4.1 Response of high and low order models for a -0.05 puMw step in power demand 173
4.2 First twenty seconds of Figure 4.1 177
4.3 Response of the high and low order models for a -O.l step in steam valve coefficient with Pf controller decoupled 182
4.4 Response of high and low order models for a -0.l step in steam valve coefficiant with Pf and reactor controllers ecoupled 190

4.5 Response of high and low order overall PWR
system models for a -0.05 puMiw step in power
demand with the gain of the low order reactor
controller multiplied by 4.0 195
A. 1 Flowchart of the SYSTEM-MATEXP computer program 215
A. 2 A typical 'FOR24.DAT' data file for the SYSTEM program 218
A. 3 A typical 'MATEXP.DAT' data file for the MATEXP program 219
E. 1 Response of high order coupled reactor, three element controller, core, UTSG, and reactor controller models for $a+10$ percent step in valve coefficient showing the effect of making DBOUT and DBIN too small on the reactor control system ($0.50^{\circ} \mathrm{F}$ and $0.25^{\circ} \mathrm{F}$ respectively) 285
E. 2 Response of overall high order PWR system model for a -0.05 puMw (-50 Mw) step in tie line power flow showing the effect of making ROWSTP too large on the reactor control system (ROWSTP $=0.0225$ [dollars/step]) 286
E. 3 Response of isolated turbine-feedwater heater model for $a+10$ percent step in the bypass steam valve coefficient 287
E. 4 Response of isolated turbine-feedwater heater model for $a+30$ psi step in inlet steam pressure 290
E. 5 Response of isolated turbine-feedwater heater model for $a+1001 \mathrm{bm} / \mathrm{sec}$ step in feedwater flow rate 293
E. 6 Response of the low order and high order PWR models for a -0.05 puMw step in tie line power flow 296
E. 7 Surface shown in Figure 3.3 rotated 115° about the Z axis 300
E. 8 Surface shown in Figure 3.4 rotated 115° about the Z axis 301
E. 9 Surface shown in Figure 3.5 rotated -115° about
the Z axis 302
F.l Typical real-power control mechanism 305
FIGURE PAGE
G. 1 Flowchart of the REDUCE computer program 312
G. 2 Data file used by the REDUCE program to produce
Figures 3.3, 3.4, 3.5, E.7, E.8, and E.9. 315

INTRODUCTION

I. 1 Purpose of This Research

The purpose of a pressurized water reactor (hereafter referred to as PNR) nuclear power plant is to produce electrical power and inject this power into an electrical system grid. During the process of electricity production, it is desirable for a PWR to help maintain stability within the total system, and operate as economically as possible, under normal and abrormal conditions. It is not fasible to examine PWR system behavior by creating major power system disturbances. Thus the need arises for modeling and simulation of a complete PWR system.

The Electric Power Research Institute (hereafter referred to as EPRI), which was the sponsors of this research, has developed a computer code called LOTDYS. LOTDYS stands for "long tern system dynamics." LOTDYS simulates a complete electrical sustem grid. The intent of $L O T D Y S$ is to examine the effect of slow boiler dynamics (both conventional and nuclear) on the much faster eiectrical system dynamics. The current version of LOTDYS does not include a representation of a PWR. The goal of this project is to develop a PWR model suitable for use by the LOTDYS program.
I. 2 General Considerations and Previous Development

The LOTDYS program is a very large code which inciudes representations for generating units (hyciro, coai fired, and boiling water reactors), transinission systems, transformers, loads, etc. LOTDYS presently requires a great deal of computer memory. A new
addition to the LOTDYS program should require as little additional computer memory as possible, while still correctly simulating the operating features of a PNR. This is equivalent to saying that the PWR representation should be a low order model.

The inputs available to the PWR model from the LOTDYS program include the electrical system frequency and the automatic generation control signal (power control signal). The only output necessary from the PWR model to the LOTDYS program is the turbine mechanical shaft power. However other intermediate outputs from the PWR model might be desirable such as reactor power, steam generator pressure, etc.

At the Department of Nuclear Engineering of The University of Tennessee, previous research has been done in PWR power plant dynamics. $2,6,13,17,18,35,37$ This work has resulted in representations for the reactor core, piping, pressurizer, steam generators, and reedwater flor control systems. This thesis will include the resules similar to previous work with development of additional models necessary to couple the PWP model with LOTDYS.

I. 3 Organization of the Text

Following this introductory chapter, a reference nigh order prak system model is presented in Chapter II. Two methods of reducing the high order model are presented in Chapter III. The first method reduces the high order model by "physical methods." The second method reduces the order of the system by a numerical development called the "polezero deletion method." In Chapter IV, a comparison is made between the reference high order model and the physically reduced low order model
results. Some overall conclusions and recommendations for further
research in low order modeling are discussed in Chapter V.
In the appendixes, three major areas are discussed. Two computer
codes, which were developed, or modified during the course of this
research, are described and instructions for their operation are
included. All the dynamic model derivations, which are new to the
Department of Nuclear Engineering of the University of Tennessee, arepresented. In addition, some figures, which have been referred to inthe main body of the text, are included in the appendix for clarity.

THE HIGH ORDER MODEL

II. 1 The Reactor Core

The reactor core model used in this development is a typical representation of PWNs manufactured today. A typical reactor core and vessel internals are shown in Figure 2.1. The reactor coolant enters the vessel from the cold leg piping, through nozzles which are slightly above the core, and flows down through the annular region between the vessel wall and the core barrel, and into the lower plenom. The coolant enters the core at the bottom and flows up through the core. All the coolant, upon leaving the core, is then mixed together in the upper plenum before leaving the reactor vessel through nozzles and flowing into the hot leg piping.

The theoretical model representing a typical PWR reactor core consists of a set of first order linear differential equations. The equations represent the reactor kinetics, the core heat transfer, and the transport of coolant in the piping connecting the core to the steam generators and pressurizer. The coolant is assumed to be well mixed at each node in the model. The coolant flow rate is assumed to be constant. The reader should refer to Kat ${ }^{13}$ and Merlin ${ }^{16}$ for additional information on the derivation of these equations. The equations for the reactor core are given below.
(II.1) $\frac{d \delta P_{0}}{d t}=-\frac{3 T}{L} \frac{\delta P}{P_{0}}+\sum_{i=1}^{\infty} A_{i} \delta 0_{i}+\underbrace{Q T}_{-1} \delta P_{x+}$

$$
+\frac{A L}{2 A}\left(S \theta_{1}+\delta \theta_{2}\right)+\frac{\alpha_{F}}{A} S T_{F}+\frac{\alpha_{3}}{A} S P_{p}
$$

Figure 2.1 A typical PWR reactor core and vessel internals.

$$
\begin{aligned}
& \text { (II.2) } \frac{d \delta C_{1}}{d t}= \frac{\beta_{1}}{\Lambda} \frac{\delta P}{P_{0}}-\lambda_{1} \delta C_{1} \\
& \text { (II.3) } \frac{d \delta C_{2}}{d t}= \frac{\beta_{2}}{\Lambda} \frac{\delta P}{P_{0}}-\lambda_{2} \delta C_{2} \\
& \text { (II.4) } \frac{d \delta C_{3}}{d t}= \frac{\beta_{3}}{\Lambda} \frac{\delta D}{P_{0}}-\lambda_{3} \delta C_{3} \\
& \text { (II.5) } \frac{d \delta C_{4}}{d t}= \frac{\beta_{4}}{\Lambda} \frac{\delta P}{P_{0}}-\lambda_{4} \delta C_{4} \\
& \text { (II.6) } \frac{d \delta C_{5}}{d t}= \frac{\beta_{5}}{\lambda} \frac{\delta P}{P_{0}}-\lambda_{5} \delta C_{5} \\
& \text { (II.7) } \frac{d \delta C_{6}}{d t}= \frac{\beta_{6}}{\Lambda} \frac{\delta P}{P_{0}}-\lambda_{6} \delta C_{C} \\
& \text { (II.8) } \frac{d \delta T_{1}}{d t}=\frac{\delta P_{0}}{\left(m C_{P}\right)_{F}} \frac{\delta P}{P_{0}}+\frac{h A}{\left(m C_{P}\right)_{F}}\left(\delta \theta_{1}-\delta T_{F}\right) \\
& \text { (II.9) } \frac{d \delta \theta_{1}}{d t}= \frac{(1-f) P_{0}}{\left(m C_{P}\right)_{C}} \frac{\delta P}{P_{0}}+\frac{h A}{\left(m C_{P}\right)_{c}}\left(\delta T_{F}-\delta \theta_{1}\right) \\
&+\left(\frac{m}{m}\right)_{c}\left(\delta \theta_{L P}-\delta \theta_{1}\right) \\
& \text { (II.10) } \frac{d \delta \theta_{2}}{d t}= \frac{(1-f) P_{0}}{\left(m C_{P} P_{C}\right.} \frac{\delta P}{P_{0}}+\frac{h A}{\left.m C_{P}\right)_{c}}\left(\delta T_{F}-\delta \theta_{1}\right) \\
&+\left(\frac{m}{m}\right)_{c}\left(\delta \theta_{1}-\delta \theta_{2}\right) \\
& \text { (II.11) } \frac{d \delta \theta_{U P}}{d t}=\left(\frac{m}{m}\right)_{U P}\left(\delta \theta_{2}-\delta \theta_{U P}\right)
\end{aligned}
$$

(IIT.22) $\frac{d \delta T_{H L}}{d t}=\left(\frac{\dot{m}}{M}\right)_{H L}\left(\delta \theta_{u p}-\delta T_{T_{1}}\right)$
(TITI) $\frac{d \delta \theta_{L P}}{d t}=\left(\frac{\dot{m}}{m}\right)_{L P}\left(\delta T_{C L}-\delta \theta_{L P}\right)$
(II.14) $\frac{d \delta T_{C L}}{d t}=\left(\frac{\bar{M}}{M}\right)_{C L}\left(\delta T_{P L_{0}}-\delta T_{C L}\right)$.

The essential design parameters needed to generate the model coefficients are given in Table I. The numerical value of the parameter listed in this table are typical of a Westinghouse PWR plant. However, a PWR of another manufacturer could also be modeled given these essential design parameters. A computer program for generating the coefficients of these equations has been written and is described in Appendix A.

The resulting equations will describe the dynamics of the reactor core with 14 state variables. Table II is a list and description of these state variables. The reactor core equations will also have 2 disturbance or forcing terms appearing in equation (II.1), describing the fractional change in power, and equation (II.14), which describes the change in cold leg temperature. These forcing terms are listed below.

$$
\text { (II.15) } f(1)=\frac{\beta_{T}}{\Lambda} \delta p_{\text {ext }}
$$

(II.16) $f(14)=\left(\frac{M}{M}\right)_{C L} \delta T_{P L O}$

1. 1st Delayed Neutron Group Fraction β_{1} 0.000209
2. 2nd Delayed Neutron Group Fraction β_{2} 0.001414
3. 3rd Delayed Neutron Group Fraction β_{3} 0.001309
4. 4th Delayed Neutron Group Fraction β_{4} 0.002727
5. 5th Delayed Neutron Group Fraction β_{5} 0.000925
6. 6th Delayed Neutron Group Fraction β_{6} 0.000314
7. Total Delayed Neutron Group Fraction β_{T} 0.006898
8. 1st Group Decay Constant ($1 / \mathrm{sec}$) $\boldsymbol{\lambda}_{1}$ 0.0125
9. 2nd Group Decay Constant ($1 / \mathrm{sec}$) λ_{2} 0.0308
10. 3rd Group Decay Constant $(1 / \mathrm{sec}) \lambda_{3}$ 0.1140
11. 4th Group Decay Constant $(1 / \mathrm{sec}) \lambda_{4}$ 0.3070
12. 5th Group Decay Constant $(1 / \mathrm{sec}) \boldsymbol{\lambda}_{5}$ 1.1900
13. 6th Group Decay Constant (1/sec) λ_{6} 3.1900
14. Neutron Generation Time (sec) λ 17.9×10^{-6}
15. Fuel Coefficient of Reactivity $\left(1 /{ }^{\circ} \mathrm{F}\right) \alpha_{F}$ -1.1×10^{-5}
16. Coolant Coefficient of Reactivity $\left(1 /{ }^{\circ} \mathrm{F}\right) \alpha^{\prime} \mathrm{c}$ -2.0×10^{-4}
17. Pressure Coefficient of Reactivity (1/psi) α_{p} -1.0×10^{-6}
18. Initial power level (MWt) P_{o} 3436.0
19. Mass of Fuel (lbm) MF 222739.0
20. Specific Heat of the Fuel (B/lbm-F) $C_{p F}$ 0.059
21. Total Heat Transfer Area (ft ${ }^{2}$) A 59900.0
22. Fraction of the Tocal Power Produced in che Fuei f 0.974
23. Overall Heat Transfer Coefficient From Fuel to Coolant (B/hr-ft $\left.{ }^{2}-F\right) h$ 200.0
24. Volume of Coolant in Upper Plenum (ft ${ }^{3}$) $V_{U P}$ 1376.0
25. Volume of Coolant in Lower Plenum $\left(\mathrm{ft}^{3}\right) \mathrm{V}_{\mathrm{LP}}$ 1791.0
26. Volume of Coolant in Hot Leg Piping (ft^{3}) V_{HL} 250.0
27. Volume of Coolant in Cold Leg Piping (ft ${ }^{3}$) $V_{C L}$ 500.0
28. Total Volume of Coolant in Core (ft ${ }^{3}$) V 540.0
29. Total Mass Flow Rate in Core ($1 \mathrm{bm} / \mathrm{hr}$) : $1.5 \times 10+8$
30. Hot Leg Temperature at 100% Power (${ }^{\circ} \mathrm{F}$) T_{HL} 592.5
31. Cold Leg Temperature at 100% Power $\left({ }^{\circ} \mathrm{F}\right) \mathrm{T}_{\mathrm{CL}}$ 542.5
32. Nominal Reactor Coolant System Pressure (psia) P_{Po} 2250.0
33. Coolant Density at System Pressure and Average Temperature (lbm/ft ${ }^{3}$) ρ_{C} 45.71
34. Coolant Specific Heat at System Pressure and Average Temperature ($\mathrm{B} / \mathrm{lbm} \mathbf{~}^{\circ} \mathrm{F}$) C_{PC} 1.390
```
LIST AND DESCRIPTION OF THE HIGH ORDER
    REACTOR CORE MODEL STATE vARIABLES
```

NUMBER SYMBOL
DESCRIPTION

1. $\frac{S P}{P_{0}}$	Fractional Change in Initial Power
2. $\delta_{C_{1}}$	Precursor 1 Deviation
3. SC_{2}	Precursor 2 Deviation
4. $\delta^{C} C_{3}$	Precursor 3 Deviation
5. SC_{4}	Precursor 4 Deviation
6. SC_{5}	Precursor 5 Deviation
7. $\delta^{C_{6}}$	Precursor 6 Deviation
8. δT_{f}	Fuel Temperature Deviation (${ }^{\circ} \mathrm{F}$)
9. $\delta \theta_{1}$	Coolant Node : Temperature Deviation (${ }^{\circ} \mathrm{F}$)
10. $\delta \Theta_{2}$	Coolant Node 2 Temperature Deviation (${ }^{\circ} \mathrm{F}$)
11. $\delta \theta_{U P}$	Upper Plenum Temperature Deviation (${ }^{\circ} \mathrm{F}$)
12. $\delta T_{\text {HL }}$	Hot Leg Temperature Deviation (${ }^{\circ} \mathrm{F}$)
13. $\delta \Theta_{\mathrm{LP}}$	Lower Plenum Temperature Deviation (${ }^{\circ} \mathrm{F}$)
14. $\delta T_{C L}$	Cold Leg Temperature Deviation (${ }^{\circ} \mathrm{F}$)

The forcing term in equation (II.14) (which is equation(II.16)) will become a coupling term when the core model is coupled with a steam generator model. In order to verify the validity of the reactor model, a case was run for each of these two disturbances. Only the fractional change in power (state variable l) and the hot leg temperature (state variable 12) are plotted. These will be the coupling terms for additional models added later. Figure 2.2 shows the response of the fractional power and hot leg temperature to a +10 cent step in reactivity. Figure 2.3 shows the response of the fractional power and hot leg temperature to $a+10 \mathrm{~F}$ step in the inlet coolant temperature. The response is plausible and is consistent with similar modeling done previously. (Kiser ${ }^{18}$, Cherng ${ }^{6}$)

II. 2 The Steam Generator

The steam generator considered in this work is a vertical, Utube, recirculation type steam generator (herearter abbreviated by UTSG). This type of steam generator is used by such vendors as Westinghouse and Combustion Engineering. Figure 2.4 shows a typical UTSG.

The reactor coolant from the hot leg piping enters at the bottom of the UTSG through the inlet nozzle to an inlet mixing plenum. Then the coolant flows through the U-tubes, transferring energy to the secondary fluid outside the tubes. The coolant then enters an outlet mixing plenum before leaving the system through the outlet nozzles into the cold leg piping.

The secondary feedwater to the UTSG enters chrough a feedwater nozzle just ajove the U-tubes. It mixes with recirculated water and

Figure 2.2 Response of the high order core model for a +10 cent step in reactivity.

Figure 2.3 Response of the high order core model for a $+10^{\circ} \mathrm{F}$ step in inlet coolant temperature.

Figure 2.4 A typical 0 -tube steam generator.
becomes slightly subcooled. Then this subcooled mixture flows downward through the annular region between the tube wrapper and the shell before entering the U-tube region. Heat is transferred to the secondary fluid as it flows upward outside the U-tubes, and a steam-water mixture is formed. This steam-water mixture then passes through steam separators and dryers before leaving the UTSG with a quality of approximately 99.75%. The separated water then returns to mix with the feedwater for another pass through the tube bundle region. A dynamic model for the UTSG has been developed previously (Ali ${ }^{2}$). For this high order model study, a choice has been made to use the Ali model D. In this model, the following assumptions are made:

1. Only one dimensional flow for both primary and secondary fluids is considered.
2. Constant density and specific heat are assumed for the primary and subcooled secondary fluids.
3. Thermal conductivity of the tube bundle metal is assumed to be constant.
4. Heat transfer coefficients are assumed to be constant.
5. Thermodynamic properties of saturated water and saturated steam are assumed to linear functions of pressure (for small perturbations).
6. The enthalpy and mass quality of the steam-water mixture in the secondary fluid boiling region are taken as linear functions of position along the heat transfer path.
7. No heat transfer takes place between the tube bundle region and the downcomer.

The linearized equation for this model will not be derived or shown in this thesis. (See reference number 2 for details.) Table III gives a list of the resulting state variables for this model. The state variable numbers begin with 15 since the first lit are assigned to the core and piping. A computer program, written by Ali, is available which generates the system matrix and forcing vectors for this model. The instructions for the use of this program are given in Appendix A. This program is available from The Department of Nuclear Engineering of The University of Tennessee. The essential data for generating a typical UTSG model are given in Table IV. These data again are typical of a Westinghouse PWR plant. It is important when coupling the UTSG model with the reactor core model, to be consistent with the essential data. Therefore to avoid any inconsistency in generating the system matrix, the Ali program has been modified to include the other coupling models.

The forcing terms for this model are listed below.
$\left(\operatorname{II.17)}\left(\frac{\dot{m}}{m}\right)_{P_{i}} \delta T_{H L}\right.$
(II.18) $\left(\frac{W_{S}}{\rho_{d W} A_{\delta \omega}}\right) \frac{S W_{S}}{W_{S_{0}}}$
(II.19) $\left(\frac{W_{s_{0}}}{\rho_{d w} A_{d w}}\right) \delta T_{F W}+\left(\frac{T_{F W} W_{S_{0}}}{\rho_{d w} A_{d W}}\right) \frac{\delta W_{F W}}{W_{S_{0}}}$
$\left(\right.$ II. 20) $-\left(W_{s 0}\right) \frac{\delta W_{s}}{W_{s 0}}$

LIST AND DESCRIPTION OF THE HIGH ORDER UTSG MODEL STATE VARIABLES

NUMBER SYMBOL

DESCRIPTION

15.	T_{Pi}	Primary Inlet Temperature (${ }^{\circ} \mathrm{F}$)
16.	$\mathrm{T}_{\mathrm{P} 1}$	First Primary Fluid Lump (${ }^{\circ} \mathrm{F}$)
17.	$\mathrm{T}_{\mathrm{P} 2}$	Second Primary Fluid Lump (${ }^{\circ} \mathrm{F}$)
18.	$\mathrm{T}_{\mathrm{P} 3}$	Third Primary Fluid Lump (${ }^{\circ} \mathrm{F}$)
19.	TP_{4}	Fourth Primary Fluid Lump (${ }^{\circ} \mathrm{F}$)
20.	TPo	Primary Outlet Plenum Temperature (${ }^{\circ} \mathrm{F}$)
21.	TM1	Tube Metal Lump $1\left({ }^{\circ} \mathrm{F}\right)$
22.	$\mathrm{T}_{\mathrm{M} 2}$	Tube Metal Lump $2\left({ }^{\circ} \mathrm{F}\right)$
23.	$\mathrm{T}_{\mathrm{M} 3}$	Tube Metal Lump 3 (${ }^{\circ} \mathrm{F}$)
24.	TM4	Tube Metal Lump 4 (${ }^{\circ} \mathrm{F}$)
25.	L_{D}	Level of Secondary Fluid in Downcomer (ft)
26.	$L_{\text {SUB }}$	Length of Subcooled Node (ft)
27.	P_{S}	Steam Pressure (psi)
28.	X_{e}	Quality of Secondary Fluid Leaving Boiling Lump
29.	T_{D}	Temperature of Secondary Fluid in Downcomer (${ }^{\circ} \mathrm{F}$)

TABLE IV

ESSENTIAL DATA FOR THE UTSG MODEL

1. number of U-tubes NT 3388
2. tube outside diameter (inches) TOD 0.875
3. tube metal thickness (inches) TMT 0.050
4. upper shell diameter (inches) USHD 178.0
5. upper shell thickness (inches) USHT 3.50
6. loker shell diameter (inches) LSHD 135.0
7. lower shell thickness (inches) LSHT 2.360
8. overall height (feet) OVHT 67.67
9. sectional flow area in tube region (ft ${ }^{2}$) AFS 60.87
10. downcomer area (ft ${ }^{2}$) $A D$ 32.0
11. downcomer level (ft) DL 42.17
12. riser level (ft) RL 9.63
13. primary water mass flok rate (lbm/hr) WP 3. $939 \times 10^{+7}$
14. primary kater folume (steam generator) (ft ${ }^{3}$) VP 1077.0
15. specific heat of primary mater ($\mathrm{B} / \mathrm{lbm} \mathbf{-}^{\circ} \mathrm{F}$) CPI 1.390
16. primary water inlet temperature (${ }^{\circ} \mathrm{F}$) TPI 592.5
17. primary water outlet temperature (${ }^{\circ} \mathrm{F}$) TP 542.5
18. primary loop average pressure (psia) P ? 2250
19. average densicy of primary water ($1 \mathrm{bm} / \mathrm{ft}^{3}$) ROP 45.710
20. steam flox rate (lbm/hr) WSO $3.731 \times 10^{+6}$
21. steam pressure (psig) PSTG 832.0
22. saturation temperature at steam presscre (${ }^{\circ} \mathrm{F}$) TSAT 521.9

TABLE IV (continued)

23. feedwater inlet temperature (${ }^{\circ}$ F) TFWI 434.3
24. subcooled secondary water average density (lbm/ft ${ }^{3}$) ROSI 52.32
25. subcooled secondary water specific heat ($\mathrm{B} / \mathrm{lbm} \mathrm{L}^{\circ} \mathrm{F}$) CP2 1.165
26. overall heat transfer area of U-tubes ($f t^{2}$) HTA 51500.0
27. primary side film heat transfer coefficient (B/hr) HP 4500.0
28. tube metal conductance ($B / \mathrm{hr}-\mathrm{ft}{ }^{2}$) UM 2160.0
29. subcooled secondary film heat transfer coefficient (B/hr-ft ${ }^{2}{ }^{\circ} \mathrm{F}$) HS I 1972.0
30. boiling secondary film heat transfer coefficient (B/hr-ft ${ }^{2}-{ }^{\circ} \mathrm{F}$) HS2 6000.0
31. conductivity of metal tubing ($\mathrm{B} / \mathrm{h}=-\mathrm{ft} \mathrm{t}^{2} \mathrm{o}^{\circ} \mathrm{F}$) KM 9.0
32. metal density ($1 \mathrm{bm} / \mathrm{ft}^{3}$) ROM 530.0
33. metal heat capacity ($\mathrm{B} / 1 \mathrm{bm} \mathbf{-}^{\circ} \mathrm{F}$) CM 0.11
34. enthalpy of saturated water (B / lbm) HF 515.2
35. latent heat of vaporization (B/lbm) HFG 683.1
36. enthalpy of saturated steam (B/lbm) AG 1198.3
37. specific volume of saturated water (ft $\left.{ }^{3} / 1 \mathrm{bm}\right) \mathrm{VF}$ 0.02098
38. difference betreen specific volumes for saturated steam and water (ft ${ }^{3} / \mathrm{lbm}$) VF 0.52470
39. specific volume of saturated steam (ft ${ }^{3} / 1 b m$) VG 0.5457
$\partial T_{\text {sat }}$
40. $\frac{\partial P_{s}}{}$0.140

41. $\frac{\partial h_{s}}{\partial P_{s}}$	0.170
42. $\frac{\partial h_{f g}}{\partial P_{s}}$	-.200
43. $\frac{\partial h_{g}}{\partial P_{s}}$	-0.35
44. $\frac{\partial V_{s}}{\partial P_{s}}$	3.5×10^{-6}
45. $\frac{\partial V_{s}}{\partial P_{s}}$	-7.135×10^{-4}
46. $\frac{\partial V_{s}}{\partial P_{s}}$	-7.1×10^{-4}
47. $\frac{\partial P_{s}}{\partial P_{s}}$	2.37×10^{-3}
48. initial quality of steam-water mixture leaving	
the boiling lump Xe	
49. the number of UTSG per plant NuTSG	0.200

The four means of disturbing the UTSG system are feedwater flow, feedwater temperature, primary inlet temperature, and steam flow.

Feedwater flow will become a coupling term shen the UTSG is coupled to a three-element controller model (see Section II.3). Feedwater temperature will become a coupling term when the turbine model is coupled to the UTSG model (see Section II.6). Primary inlet temperature will become a coupling term (hot leg temperature) when the UTSG model is coupled to the reactor core model (see. Section II.l). The Ali program for Model D will generate a set of equations of the form

$$
\begin{equation*}
A \frac{d \bar{x}}{d t}=B \bar{x}+\bar{f} \tag{II.21}
\end{equation*}
$$

Then equation 2.21 is multiplied through by A^{-1} to yield

$$
\begin{equation*}
\frac{d \bar{x}}{d t}=\left(A^{-1} B \bar{x}+A^{-1} \bar{E}\right. \tag{II.22}
\end{equation*}
$$

Thus the forcing terms in equations II. 17 through II. 20 will actually be vectors. When coupling feedwater flow and feedwater temperature to the UTSG model, a forcing vector must be generated before coupling this to the UTSG model. Further comments will be made on this procedure in Section II. 3 and Section II. 6.

In this study, the steam flow can be expressed in two ways. The first way is to simply let the steam flow itself be the forcing function. This can be written in equation form as

(II.23) $S W_{S}=S W_{S}$

The second way to express the steam flow is to relate the steam flow rate to the steam generator pressure and turbine first stage pressure using the orifice Elor equation (Ali ${ }^{2}$). Thus the steam
flow will be proportional to the square root of the pressure drop between steam generator and turbine first stage pressure, if it is assumed that any drop in the downstream or turbine pressure will not change the steam flow rate from the steam generator. This assumption is commonly known as the "critical flow" assumption. If this assumpLion is used, the following equation can be written
(II.24) $\delta W_{S}=\epsilon_{0} \delta P_{S}+W_{S} \frac{\delta \epsilon}{\epsilon_{0}}$
when
$\delta P_{s}=$ change in steam pressure of UTSG
$\delta \epsilon_{\epsilon_{0}}=$ fractional change in valve coefficient
$\epsilon=$ valve coefficient $\equiv \frac{W_{s}}{P_{s}}$.
Before coupling the UTSG model to other models, it is necessary to verify the results of an isolated UTSG model. Therefore a case was run for each of the five types of perturbations. The state variables which will be coupled to other models are steam pressure, downcomer level, inlet plenum temperature, and outlet plenum temperature. Figures 2.5 through 2.9 show the responses of these state variables to +10 percent step in feedwater flow, $+10^{\circ} \mathrm{F}$ step in feedwater femperature, $+10^{\circ} \mathrm{F}$ step in primary inlet temperature, +10 percent step in steam flow, and +10 percent step in steam valve coefficient respectLively. In Figure 2.5, the change in steam flow is expressed as in equation (II.23) and is always equal to zero. Therefore the response should be unstable for a step in feedwater flow. In Figure 2.6, the change in steam flow again is expressed as in equation (II.23) and is equal to zero. However for a step in feedwater temperature, the response will be stable. In Figure 2.7, the steam flow is expressed

Figure 2.5 Response of the isolated UTSG high order model for a +10 percent step in feedwater flow.

Figure 2.6 Response of the isolated UTSG high order model for a $+10^{\circ} \mathrm{F}$ step in feedwater temperature.

Figure 2.8 Response of isolated UTSG high order model for a +10 percent step in steam flow.

Figure 2.9 Response of the isolated UTSG high order model for a +10 percent step in steam valve coefficient.
as in equation (II.24) where the change in valve coefficient is zero. In addition, the feedwater flow is assumed to have "perfect control." If the feedwater flow had been controlled by a three element controller (see Section II.3), then the downcomer level signal would also be used in the control action. However, in this case, using "perfect control," which means that the feedwater flow is equal to steam flow, the response will be stable, yet a change in the downcomer level will result. In Figure 2.8 , the steam flow is expressed as in equation (II.23). The feedwater flow is assumed to have no change (i.e., no control). Therefore the response should be unstable for a step in steam flow. The conditions for Figure 2.9 are the same as for Figure 2.8. Therefore the response should be unstable for a step in steam valve coefficient.

The results of these five cases are consistent with what has been obtained previously in PWR modeling (Ali ${ }^{2}$, Cherng ${ }^{6}$). In order to develop a complete PWR high order system model, additional models must be coupled.

II. 3 The Three Element Controller

In a recirculation type steam generator, the feedwater is controlled to maintain the downcomer water level in the steam generator as close to a desired level as possible. The controller currently used with a UTSG is called a three-element controller because it uses three signals to determine whether the feedwater flow rate should be adjusted by changing the feedwater valve position. The three signals are steam flow rate, feedwarer flow rate, and downcomer water level.

The particular three-element controller and model used in this
study is the type designed by Westinghouse Corporation. 38,39 The block diagram of this control system is shown in Figure 2.10. The downcomer level deviation signal is passed through a filter with a time constant τ. This is done to reduce the effect of rapid variations in the water level due to slosining. Proportional and integral control is then taken on the filtered level signal. The resulting signal is then summed with steam flow and negative feedwater flow and passed through another proportional and integral controller. The final signal is then used as an input to a transfer function which describes the valve position.

Previous work has already been done on the development of a state variable representation of this three-element controller (Cherng ${ }^{6}$).

The resulting equations for this model are shown below.
(II.25) $\frac{d \delta x}{d t}=\frac{1}{2}\left[\delta L_{0}-\delta X\right]$
(II.26) $\frac{d \delta y}{d t}=\frac{K_{1}}{2}\left[\delta L_{0}-\delta X\right]+\frac{1}{\delta_{1}} \delta X$
(II.27) $\frac{d \delta z}{d t}=K_{2}\left[\frac{1}{2}-\frac{K_{1}}{2}\right] \delta x+\frac{\delta Y}{2}+\frac{K_{1} K_{2}}{2} \delta L_{D}$
(II.28) $\frac{d \delta V}{d t}=\delta W_{S}-S W_{F W}$
(II.29) $\frac{d \delta r}{d t}=K \omega_{n}^{2} \delta z+\frac{K \omega_{n}^{2}}{\tau_{2}} \delta V-2 J \omega_{n} \delta r$

$$
-W_{n}^{2} \delta W_{F W}+K K_{2} W_{n}^{2}\left(\delta W_{3}-\delta W_{F W}\right)
$$

Figure 2.10, Block dagram of three element feedwater flow controller model.
(II.30) $\frac{d \delta W_{F W}}{d t}=\delta r$

The resulting state variables for the three-element controller are given in Table V. The state variable numbers are arrived at by coupling the three-element controller model to the UTSG and reactor core model. There are two sets of values used for the parameters in the three-element controller model. One set of parameters are those given in Westinghouse documentation on the three-element controller (Westinghouse ${ }^{39}$). The other set of parameters will be given the name "optimized parameters." These parameters were determined by Cherng to be those values winich give the minimum error of the downcomer level during a transient (Cherng ${ }^{6}$). Both sets of parameters are given in Table VI. The calculation of the Westinghouse threeelement controller coefficients is given in Appendix B. A computer program is used to generate the system matrix for the three-elemont controller model in order to assure consistent data when coupling the controller model to the UTSG model. The instructions for this program are given in Appendix A.

The coupled UTSG and three-element controller models can now be disturbed by steam flow, steam valve coefficient, feedwater temperature, and primary inlet temperature. A case is presented in this section for a +10 percent step in valve coefficient. Figure 2.11 shows the response of the coupled UTSG and three-element controller model using the Westinghouse parameters. Figure 2.12 shows the response of the coupled UTSG and three-element controller model using the "optimized parameters." In both figures only the feedwater flow,

TABLE V

LIST AND DESCRIPTION OF THE THREE-ELEMENT CONTROLLER MODEL STATE VARIABLES

NUMBER SYMBOL	DESCRIPTION
30. X	filtered level signal
31. Y	level equivalent flow signal after proportional and integral control
32. Z	final error signal to valve dynamics after proportional and integral control
33. r	```state variable used to arrive at feedwater flow from the valve dynamics```
34. V	state variable used to arrive at feedwater flow from the valve dynamics
35. W_{FW}	feedwater flow rate

SYMBOL	DESCRIPTION	VALUE	
		WESTINGHOUSE	OPTIMIZED
1. $冖$	```time constant for level signal filter (sec)```	5.0	5.0
2. τ_{1}	reset constant for level signal (sec)	6.947	199.95
3. τ_{2}	```reset constant for flow signal (sec)```	200.0	17.87
4. K_{1}	proportional gain for level signal	259.10	75.40
5. K_{2}	```proportional gain for flow signal```	1.00	30.69
6. K	proportional gain for valve positioner	31.85	31.85
7. ω_{n}	undamped natural frequency of valve positioner	0.63	0.63
8.J	damping ratio of the valve positioner	3.18	3.18

Figure 2.11 Response of the coupled UTSG and three element controller models with Westinghouse parameters for a +10 percent step in steam valve coefficient.

Figure 2.12 Responsa of the coupled UTSG and three element controller models with optimized controller parameters for a +10 percent stem in steam valve coefficient.
steam pressure, downcomer level, and outlet primary temperature are plotted. In Figure 2.11, the downcomer level transient has greater peaks than in Figure 2.12. This demonstrates the fact that the "optimized parameters" do in fact result in a smoother response than the Westinghouse parameters. At this point, the reader should compare the results of Figure 2.12 with those of Figure 2.9. Both are for the same perturbation (+10 percent step in valve coefficient), except that Figure 2.9 is the response of the system using "perfect control" on the feedwater flow while Figure 2.12 uses the three-element controller on the feedwater flow. The main difference in the results of these two figures is the response of the downcomer level. In the case of "perfect control," the downcomer level is not equal to zero at steady state, while in the case of the three-element feedwater control, the downcomer level deviation is approaching zero. For the remainder of this study, the "optimized parameters" will be used in the threeelement controller. The results in Figure 2.12 are consistent with previous work (Cherng ${ }^{6}$). Additional models can now be coupled to the system.

II. 4 The Reactor Control System

In a PWR system, a change in power level is initiated by changing the steam flow entering the steam turbine. If no control action were taken on the reactor core, the reactor could achieve a new power level without moving the control rods. This is possible because of negative feedback from the coefficients of reactivity in the fuel and reactor coolant. It can be shown that this is true by changing the steam flow for a coupled PWR system model without a control system (this will be
done after more discussion of the reactor control system). However, if this were the normal operating procedure in a PWR power plant, the resulting transients of reactor coolant temperature, steam pressure, etc., would be intolerable. Therefore, the need arises for a reactor control system.

In a PWR system, the reactor coolant average temperature is defined to be

$$
\begin{gather*}
\mathrm{T}_{\text {avg }}=\left(\mathrm{T}_{\text {hot }}+\mathrm{T}_{\text {cold }}\right) / 2 \tag{II.31}\\
\text { leg leg }
\end{gather*}
$$

During normal operation of the plant, the hot and cold leg temperatures and thus the average temperature are governed by a "steady state program." A typical steady state program for a Westinghouse PWR ${ }^{29}$ is shown in Figure 2.13. The steady state program says that at steady state the average coolant temperature set point is linearly related to power level. It can be shown that the slope of the Tavg curve is the same as the "gain" of the average temperature set point transfer function for a change in power level.

The reactor control system has three inputs which ultimately determine the movement of the control rods. These three inputs will be defined to be the average temperature set point for a change in power level, the lead-lag compensated average temperature, and the temperature equivalent of a power mismatch. These signals are combined and result in a temperature error signal. This error signal then governs the rate and direction of control rod movement. Figure 2.14 shows a block diagram of the reactor control system. Notice that the lead-lag temperature is subtracted while the power mismatch (as

Figure 2.13 Typical steady state program.

Figure 2.14 Reactor control system logic block diagram
will be defined) and temperature set point are added to arrive at the temperature error signal. The rate and direction of control rod movemont are determined by the curve shown in Figure 2.15. Notice that for positive error signals, the reactivity induced is positive and for negative error signals, the reactivity induced is negative. This is consistent with the steady state program since nuclear power increases with positive changes in reactivity.

The reactor control system temperature signals are derived from transfer functions given in Westinghouse documentation (Westinghouse ${ }^{38}$). At this point it is important to mention that the control system does not actually monitor the hot and cold leg temperatures, but it monttors the hot and cold leg temperatures as measured by resistance femperature detectors (hereafter abbreviated RTD). The difference is that the RTD temperature measurements will always lag the actual femperature in time. This is taken into account in the modeling of the reactor control system. The average temperature set point is defined by the transfer function
$\frac{\delta T_{s_{1}}(s)}{\delta \sigma_{0} P_{s}(s)}=\frac{K_{1}}{1+\tau_{s e+1} s}$
where
$S T_{\text {SI }}$ = deviation in average temperature setpoint
$\delta \mathcal{Z o}_{\mathrm{S}}=$ deviation in the percent of full power delivered to the secondary fluid in the UTSG.

The lead-lag average temperature is defined by the transfer function

$$
\begin{equation*}
\frac{\delta T_{S Z}(S)}{\left[\frac{\delta T_{H}^{\prime}+\delta T_{C}^{\prime}}{2}\right](S)}=\frac{1+\tau_{L E A D} S}{\left(1+\tau_{L A G I} S\right)\left(1+\tau_{L A G Z} S\right)} \tag{II.33}
\end{equation*}
$$

Figure 2.15 Rod speed vs. temperature error signal.
where
$\delta T_{\text {sC }}=$ deviation in lead-lag compensated average temperature $\delta T_{H^{\prime}}=$ deviation in hot leg temperature as measured by the RTD $\delta T_{C^{\prime}}{ }^{\prime}=$ deviation in cold leg temperature as measured by the RTD. The temperature equivalent of a power mismatch is defined by the transfer function

where
$\delta T_{S 3}=$ deviation in temperature equivalent of a power mismatch
$\delta \eta_{0} P_{s}=$ deviation in the percent of full power delivered to the secondary fluid in the UTSG power
$\delta \% P_{N}=\begin{aligned} & \text { deviation in the percent of fuhrer delivered by the } \\ & \\ & \text { reactor core. }\end{aligned}$
The hot and cold leg temperatures as measured by the RTDs are given by

$$
\begin{equation*}
\frac{\delta T_{c}(s)}{\delta T_{C_{L}}(s)}=\frac{1}{1+\tau s} \tag{II.36}
\end{equation*}
$$

where

$$
\begin{aligned}
& \delta T_{H^{\prime}}^{\prime}=\text { deviation in hot leg temperature as measured by the RTD } \\
& \delta T_{H L}=\text { deviation in hot leg temperature } \\
& \delta T_{C^{\prime}}=\text { deviation in cold leg temperature as measured by the RTD } \\
& \delta T_{C}=\text { deviation in cold leg temperature. }
\end{aligned}
$$

Equations (II.35) and (II.36), which define the RTD temperatures, assume that the RTD response can be represented by a first order lag.

In order to incorporate the reactor control system into the PWR system model, a state variable model of the reactor control system has been formulated. The derivation of this formulation is given in Appendix C. The resulting state variables are described in Table VII. The state variable numbers were selected to follow the numbers of the variables in the previous models described. The values of the parameters used in the differential equations are given in Table VIII. All the parameters are constant except K_{3} and K_{2}. The value of K_{2} is determined by Figure 2.16. The value of K_{3} is determined by Figure 2.17. A computer program which generates the matrix and forcing vectors for this model has been written in order to be consistent with the input data. The instructions for the program are given in Appendix A.

It is evident from Figures 2.15, 2.16, and 2.17 that a nonlinear solution to the reactor control system equations may be needed. However, the computer code MATEXP ${ }^{25}$, which gives a solution to a set of first order linear differential equations, can be used to solve these equations. This is because MATEXP has a subroutine called DISTRB which can be used to produce time varying forcing functions by updating the forcing functions at each time step in the solution. The DISTRB subroutine will monitor the temperature error signal at each time step. Then, depending on the position of the temperature error signal on the X axis of Figure 2.15 , the proper reactivity shange is made by changing the forcing term of equation (IT.15). The Fortran listing of DISTRB is not shown in this thesis. DISTRB is a part of

LIST AND DESCRIPTION OF THE HIGH ORDER REACTOR CONTROL SYSTEM MODEL STATE VARIABLES

NUMBER	SYMBOL	DESCRIPTION
36	$\mathrm{T}_{\mathrm{H}}{ }^{\prime}$	hot leg temperature as measured by an RTD (${ }^{\circ} \mathrm{F}$)
37	$\mathrm{T}_{\mathrm{C}}{ }^{\prime}$	cold leg temperature as measured by an $\operatorname{RTD}\left({ }^{\circ} \mathrm{F}\right)$
38	$\mathrm{T}_{S 1}$	average temperature at set point (${ }^{\circ} \mathrm{F}$)
39	$\mathrm{T}_{\text {dummy }}$	```state variable used to arrive at the lead-lag compensated average (}\mp@subsup{}{}{\circ}\textrm{F}\mathrm{)```
40	$\mathrm{T}_{S 2}$	lead-lag compensated average coolant temperature (${ }^{\circ} \mathrm{F}$)
41	$\mathrm{T}_{S 3}$	temperature equivalent of a power mismatch between power delivered to the secondary fluid and nuclear power (${ }^{\circ} \mathrm{F}$)

1. $W_{\text {max }}$	the steam flow rate of the system at 100\% power ($1 \mathrm{bm} / \mathrm{hr}$)	$3.733 \times 10+6$
2. $\mathrm{hg}_{\max }$	the enthalpy of the steam entering turbine at 100% power (Btu/lbm)	1198.30
3. SETI	the first order lag time constant for the average temperature set point transfer function (sec)	30.0
4. K_{1}	the gain of the average temperature set point transfer function (${ }^{\circ} \mathrm{F} / \%$ power) at beginning of core life at the end of core life	$\begin{aligned} & 0.208 \\ & 0.152 \end{aligned}$
5. LEAD	the lead time constant for the lead-lag compensated average temperature transfer function (sec)	80.0
6. LAGl	```the first lag time constant for the lead-lag compensated average temperature transfer function (sec)```	10.0
7. LAG2	the second lag time constant for the lead-lag compensated average temperature (sec)	5.0
$8 \cdot 2$	the first order lag time constant for the RTD transfer function (sec)	4.0
9. SET3	the first order lag time constant for the temperature equivalent of a power mismatch transfer function (sec)	40.0

10. K_{2} the non-linear gain of the power
mismatch transfer function (${ }^{\circ} \mathrm{F} / \%$ power) see Figure 2.16
11. K_{3} the variable gain of the power mismatch transfer function (unitless) see Figure 2.17

TABLE VIII (continued)

12. h_{f}	enthalpy of the saturated liquid (Btu/lbm)	515.24
13. $\mathrm{C}_{\mathrm{P} 2}$	specific heat of entering feedwater (Btu/lbm- ${ }^{\circ}$ F)	1.165
14. $\mathrm{T}_{\text {sat }}$	the saturation temperature (${ }^{\circ} \mathrm{F}$)	522.89
15. $\mathrm{T}_{\mathrm{FWi}}$	the temperature of entering feedwater (${ }^{\circ}$ F)	434.30
$\text { 16. } \frac{\partial h_{S}}{\partial P_{S}}$	steam enthalpy gradient with respect to pressure (Btu/ibm-psi)	-0.035
17. ϵ_{0}	the initial value of the valve coefficient (1bm/sec-psi)	1.2463
18. $\mathrm{W}_{\text {s o }}$	the initial value of the steam flow rate (lbm/hr)	$3.733 \times 10^{+6}$
19. h_{g}	the enthalpy of saturated steam (Btu/lbm)	1198.3

Figure 2.16 Power mismatch channel, nonlinear gain.

Figure 2.17 Power mismatch variable gain.
the SYSTEM-MATEXP programming package which is available from The Department of Nuclear Engineering of The University of Tennessee. In order to do this, the assumption must be made that the forcing fundtion is constant during the computational time interval($\boldsymbol{\Delta} \boldsymbol{t}$).

The highest rate of the rod speed shown in Figure 2.15 is 72 steps/minute. This means that the rods cannot move more than one time every 0.833 seconds (60/72). A typical computational time interval in this thesis is never more than 0.02 seconds for the overall system model (see Section II.7). It is assumed in this study that the rods are moved continuously rather than in discrete steps. This is done by assuming a constant value of the reactivity induced per step (see a typical value in Table VIII). Therefore, the assumption that the forcing function is constant over the computational time interval does not cause excessive error due to the discrete nature of the rod speed programmer.

Subroutine DISTRB not only can be used to update the forcing functions, but it can also be used to update algebraic variables, which depend on the state variables, but do not have any direct feedback on the system. Such an algebraic variable might be the percent of full power delivered to the secondary fluid ($\% \mathrm{P}_{\mathrm{S}}$). This has been defined to be (see Appendix C)
(I I.37) $\delta 2 P_{s}=\frac{100}{W_{\text {max }}\left(h_{g}-h_{\text {pw }}\right)_{\text {max }}}\left[W_{s} \frac{\partial h_{g}}{\partial P_{s}} \delta P_{s}+h_{g} \delta W_{s}\right.$

$$
\left.-h_{E w} \delta W_{F w}-W_{E W} C_{P 2} \delta T_{F w}\right] .
$$

From equation (II.37) and Figure 2.16 and 2.17 , the desired value
of K_{2} and K_{3} can be calculated. If these values are different from the initial values, then the difference can be represented by a difference in the forcing function.

The power mismatch equation from equation (II.34) may be rewriteten as

$$
\begin{equation*}
\left[1+\tau_{s e t} s\right] \delta T_{s 3}(s)=K_{2} K_{3}\left[\delta \eta_{0} P_{s}-\delta \eta_{0} P_{N}\right](s) \tag{II.38}
\end{equation*}
$$

Performing an inverse Laplace transform on equation (II.38) gives:
(II.39)

$$
\frac{d \delta T_{s 3}}{d t}=-\frac{1}{\tau_{\text {set } 3}} \delta T_{s 3}+\frac{K_{2} K_{3}}{\tau_{\text {set } 3}}\left[\delta T_{0} P_{s}-\delta \eta_{0} P_{N}\right] .
$$

By letting $K_{3}=K_{30}+\delta K_{3}$ and $K_{2}=K_{20}+\delta K_{2}$, equation
(II.39) becomes
(II.40) $\frac{d \delta T_{s 3}}{d t}=-\frac{\delta T_{s 3}}{\tau_{s e t 3}}+\frac{K_{2_{0}} K_{30}}{\tau_{s e t}}\left[\delta \%_{0} P_{s}-\delta \gamma_{0} P_{N}\right]$

$$
+\frac{\left[\delta \%_{0} P_{5}-\delta \eta_{0} P_{N}\right]}{\tau_{s e+} 3}\left[K_{2_{0}} \delta K_{3}+K_{30} \delta K_{2}+\delta K_{2} \delta K_{3}\right]
$$

The third term on the right hand side of equation (II.40) will become a forcing function which is updated at each time step by subroutine DISTR.

This aspect of the reactor control system is included in the compouter code package SYSTEM-MATEXP. The instructions for this program are included in Appendix A.

Two parameters used as input data for the program are DBIN and DBOUT (deadband going into equilibrium and deadband going out of
equiiibrium respectively). These parameters are shown in Figure 2.15 on page 4l. At first one would think that the purpose of the deadband would be to avoid over working of the control system due to inherent fluctuations in the instrumentation (noise, etc.). Although to some extent this may be true, there is another benefit associated with the deadband. The effect of a reactivity change on nuclear power is almost instantaneous. Whereas, the effect of a reactivity change on the average coolant temperature is "sluggish" due to large time constants in the average temperature to reactivity change transfer function. For example, let it be assumed that a change in power level has taken place and the control rods have caused a subsequent change in reactivity. After the controls rods have stopped moving, the hot and cold leg temperatures will still be changing for some time. Therefore, the deadband allows the temperature error signal to fluctuate near a desired equilibrium point without changing the control rod reactivity. The advantage of having DBIN and DBOUT as input data is to allow the user to investigate the effect of changing the deadband. Figure E.l (in Appendix E) shows the effect of making the deadband too small. The system response is oscillating. It is important to note that, because of the presence of the deadband, the average temperature will probably never reach the temperature set point as specified by the steady state program (Figure 2.13, page 38). Another input parameter in the program is ROWSTP (the assumed average reactivity induced per step change in the control rod position in dollars). This value will always be dependent on the conditions of the plant. A value of 0.225 cents/step has been used throughout this study. The reason for this is because this value caused the model to
more closely simulate some available plant data. Figure E. 2 (in Appendix E) shows the effect of making ROWSTP too large. The system is again oscillatory.

The program also includes as an input option the ability to seecify the temperature error signal in four different ways. This is done with the input parameter NTYPE. The options of NTYPE are:

1. $T_{B A R}=\delta T_{S 1}-\delta T_{S 2}+\delta T_{S 3}$
2. $T_{B A R}=\delta T_{S 3}$
3. $T_{B A R}=\delta T_{s 1}-\delta T_{52}$
4. $T_{B A R}=0$
where $T_{B A R}$ is the temperature error signal. Although NTYPE $=1$ or NTYPE $=4$ are the only reasonable options, the others are included to investigate the effect of the power mismatch signal.

In this section, three cases will be presented. The first case is the NSSS system model without taking any reactor control system action. The only feedback that the reactor control system equations has on the rest of the system is through the reactivity forcing term (equation 2.15). By making the temperature error signal always equal to zero (NTYPE=4), the reactor control system state variables can be calculated without affecting the rest of the system. Figure 2.18 shows the response of the system to $a+10$ percent step in steam valve coefficient with no reactor control action and with three element

Figure 2.18 Response of coupled UTSG, reactor core, three element controller, and reactor controller models for a +10 percent step in steam valve coefficient with no reactor control action. (NTYPE=4)

Figure 2.18 (continued)

Figure 2.18 (continued)
control of the feedwater flow. The average temperature has decreased rather than increased as desired. The steam pressure deviation is rather large at -45.26 psi.

The second case is the same as the first case except this time the reactor control system action is allowed to take place (NTYPE=1). Figure 2.19 is the response of the system to a +10 percent step in valve coefficient with reactor control action and with three element control of the feedwater flow. In this case the average temperature has gone in the direction required by the steady state program. But there is a difference in the temperature set point and the average temperature at steady state due to the deadband. The steam pressure change is much smaller than in the uncontrolled case.

The third case is shown in Figure 2.20 for a -10 cent step in control rod reactivity beginning after ten seconds of observation time with reactor control system action and with three element control of the feedwater flow. In this case, the steam flow is held constant (equation II.23). Therefore, the power removed is nearly constant, and the average temperature and control rod reactivity should return to zero. But because of the deadband, there is still -2.646 cents of reactivity induced by the control rods at steady state. This amount of reactivity can be accounted for by feedback reactivity induced on the system by fuel and coolant temperature changes (the reactivity induced by primary system pressure changes has not been included). This reactivity can simply be added up in equation form

$$
\begin{aligned}
& \text { pressure }
\end{aligned}
$$

Figure 2.19 Response of coupled UTSG, reactor core, three element controller, and ractor controller for a $\div 10$ percent step in steam valve coefficient with reactor control action. (NTYPE=1)

Figure 2.19 (continued)

Figure 2.19 (continued)

Figure 2.20 Response of coupled UTBG, reactor core, three element controlier, and reactor controlier models for a -10 cent step in reactivity after 10 seconds of observation time.

Figure. 2.20 (continued)

Figure 2.20 (continued)

At steady state, $\left(\right.$ TOTAL should be equal to zero (because $\delta P_{N}=0$). Assuming that the reactivity due to primary pressure is small, the following equation can be written
(II.42) $0=\rho_{\text {ext }}+\rho_{\text {fuel }}+\rho_{\text {coolant }}$.

Then by applying the definition of reactivity induced by fuel and coolant due to temperature changes
(II.43) $\rho_{\text {fuel }}=\left(\frac{\alpha_{F}}{\beta_{T}}\right) 100 S T_{F}=0.09395$

$$
\begin{aligned}
\rho_{\text {coolant }}=\left(\frac{\alpha_{c}}{\beta_{1}}\right) \frac{100}{2}\left(\delta \theta_{1}+\delta \theta_{2}\right) & =2.55146 \\
\text { Total } & =2.6454 \phi \\
& =- \text { ext. }
\end{aligned}
$$

This demonstrates that the existence of the deadband in the reactor control system will not allow the average temperature to reach the average temperature setpoint as defined by the steady state program. The reactivity necessary to achieve a new power level will then have to be induced on the system by the difference in the coolant themperature from the average temperature setpoint.

These three cases demonstrate that the reactor control system model can be coupled with existing models by modifying existing compouter programs.
II. 5 The Pressurizer and Pressurizer Control System

The pressurizer maintains the reactor coolant system pressure at a constant value during steady-state operation of the plant. During a transient, the pressure changes are limited by the pressurizer control system. A typical pressurizer is shown in Figure 2.21. The pressurizer is basically a large tank filled with a two-phase mixture of the primary coolant. Replaceable immersion heaters and a spray nozzle are located in the pressurizer. Relief valves discharge to a pressurizer relief tank.

During steady-state operating conditions, approximately 60 percent of the pressurizer volume is occupied by water and 40 percent by steam. The electric immersion heaters, located in the lower section of the vessel, maintain a constant sjstem operating pressure.

A raduction in plant electrical load causes a temporary increase in average reactor coolant temperature. This in turn causes an increase in the reactor coolant volume because the coolant density decreases. The reactor coolant is connected to the pressurizer by a "surge" line from the hot leg piping to the bottom of the pressurizer tank. Therefore, flow of water into and out of the pressurizer is constantly taking place in the "surge" line. The expansion of the reactor coolant raises the water level in the pressurizer. This increase in water level compresses the steam, and thus raises the pressure. Reactor coolant from the sold leg piping is connected to the top of the pressurizer to spray nozzles. A nominal spray flow rate of about (l) gallon per minute is malntained through the spray nczzle at all times to keep it from plugging. If a positive pressure

Figure 2.21 Pressurizer
transient is too large to be handled by a reduction of power to the immersion heaters alone, then the spray is increased to condense a portion of the steam. This quenching action reduces pressure and limits the pressure increase. In the event that the pressure increase still cannot be reduced, at some point, the relief valves will open and send steam to the pressurizer relief tank. A further increase in pressure will cause safety valves to open and send more steam to the pressurizer relief tank.

An increase in plant electrical load results in a temporary decrease in average coolant temperature and thus a contraction of coolant volume. Coolant then flows from the pressurizer into the reactor coolant loops, thus reducing the pressurizer level and pressure. Water in the pressurizer flashes to steam to limit the pressure reduction. This reduction in pressure also causes the immersion heaters to increase their output to further limit the pressure reduction.

A dynamic model which represents the pressurizer prassure has been developed previously (Thakkar ${ }^{37}$). The pressurizer water level will not be considered in this study. When water level begins to change, there will be an imbalance of water in-flow and out-flow. This imbalance represents a change in water inventory in the reactor coolant system. A pressurizer level control system regulates this level and maintains it at a desired point. The reactor $=001$ ant pressure will have scme feedback on the rest of the system through the pressure coefficient of reactivity in the power equation (equation II.1). However, there is no feedback from pressurizer water level on
the rest of the system model. Therefore, a pressurizer model which
represents only the pressurizer pressure is sufficient for this study.
The derivation of this model will not be presented here (the reader is referred to Thakkar 37 for this information). This derivviation involves a mass balance of water and steam and an energy balance of the whole system. Saturation conditions are assumed throughout the pressurizer and the ideal gas law is used as an equation of state for the steam. The mass flow rate of water in and out of the pressurizer is assumed linearly related to the coolant density gradient with respect to temperature at the design operating pressure. The pressurizer pressure equation is shown below

$$
\begin{aligned}
& \text { (II.44) }\left\{M_{w_{0}} \frac{\partial u_{w}}{\partial P_{p}}+M_{w_{0}} P_{p_{0}} \frac{\partial v_{w}}{\partial P_{p}}+\frac{\left(h_{f g}+P V_{w}\right)_{0}}{A}\right. \\
& \left.+\frac{\left(h_{f}\right.}{A}+\frac{\left.P V_{w}\right)_{D} B}{(A-B)}\right\} \frac{d \delta P_{P}}{d t}=\left[W _ { w _ { 0 } } \left\{-C_{P} \frac{\partial T_{w}}{\partial P_{P}}\right.\right. \\
& \left.+P_{p_{0}} \frac{\partial V_{w}}{\partial p_{p}}+V_{w_{0}}\right\}+W_{s p_{0}}\left\{-C_{p} \frac{\partial T_{w}}{\partial P_{p}}+P_{p_{0}} \frac{\partial V_{w}}{\partial P_{p}}\right. \\
& \left.\left.+V_{w_{0}}\right\}-W_{s_{0}}\left\{P_{p_{0}} \frac{\partial V_{w}}{\partial P_{p}}+V_{w_{0}}\right\}\right] \delta P_{p}+\delta q \\
& +\left\{h_{w_{i}}-h_{w_{0}}+P_{p_{0}} v_{w_{0}}+\frac{B\left(h_{f}+p_{p} v_{w}\right)_{0}}{A-B}\right\} \delta w_{w_{0}} \\
& +\left\{h_{s p_{0}}-h_{w_{0}}+p_{p_{0}} v_{w_{0}}+\frac{B\left(h_{f}\right.}{A}+\frac{\left.p_{p} v_{w}\right)_{0}}{B}\right\} \delta W_{s p} \\
& +C_{p} W_{w_{0}} \delta T_{W_{i}}+C_{p} W_{s p_{0}} \delta T_{s p}
\end{aligned}
$$

equation (II.44) continued
where

$$
\begin{aligned}
& A=R T_{s} /\left[V_{s_{0}}-R M_{s_{0}} \frac{\partial T_{s}}{\partial P_{s}}\right] \\
& B=P_{s_{0}} /\left[\rho_{w}\left(V_{s_{0}}-R M_{s_{0}} \frac{\partial T_{5}}{\partial P_{s}}\right)\right]
\end{aligned}
$$

where
and $\delta \Theta_{C i}$ is the deviation of the fth reactor coolant temperature node.

The design parameters necessary to calculate the coefficients for this model are shown in Table $I X$. After calculating the coefficients, one finds that there are two important coefficients. The first is the coefficient appearing on the derivative which will be very large. The second is the coefficient of the insurge flow rate. The coefficient

PARAMETERS NEEDED TO CALCULATE A TYPICAL PRESSURIZER PRESSURE MOUEL

1. PPo	primary system pressure (psia)	2250.0
2. R	ideal gas constant ($\mathrm{ft} \boldsymbol{\mathrm { L }} \mathrm{lb} \mathrm{f} / \mathrm{lbm} \mathrm{R}$)	53.35
3. $\mathrm{T}_{\text {sat }}$	saturation temperature ($\left.{ }^{\circ} \mathrm{F}\right)$	652.90
4. $\mathrm{V}_{\text {SO }}$	initial steam volume (ft ${ }^{3}$)	720.0
5. P so	initial steam density ($1 \mathrm{bm} / \mathrm{ft} 3)$	6.3727
6. $\mathrm{M}_{\text {So }}$	initial steam mass (1bm)	4588.33
7. $\frac{\partial T_{s a t}}{\partial P_{p}}$	saturation temperature gradient with respect to pressure (${ }^{\circ} \mathrm{F} / \mathrm{psi}$)	0.0645
8. fio	initial kater density ($1 \mathrm{bm} / \mathrm{ft} 3)$	37.0645
9. V_{EO}	initial water volume (ft ${ }^{3}$)	1080.0
10. Mo	initial water mass (1bm)	40029.65
11. $\frac{\partial U_{n}}{\partial P_{p}}$	internal energy of the liquid gradient with respect to pressure ($B / 1 b m-p s i$)	0.11
12. $\frac{\partial V_{w}}{\partial P_{P}}$	specific volume gradient with respect to pressure ($\mathrm{ft}^{3} / 1 \mathrm{bm}-\mathrm{psi}$)	5.8×10^{-6}
13. $\mathrm{hfg}_{\mathrm{f}}$	latent heat of vaporization (B/lbm)	414.8
14. $\mathrm{V}_{\text {Ho }}$	initial specific volume of the water (ft ${ }^{3} / 1 b m$)	0.02698
15. $\mathrm{W}_{\text {Spo }}$	$\begin{aligned} & \text { initial spray flow rate (gal/min) } \\ & \text { (ft } 3 / \mathrm{sec} \text {) } \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.85 \end{aligned}$
16. $W_{\text {so }}$	initial steam relief valve flok rate	0.0
17. $\mathrm{h}_{\text {仿 }}$	initial rater inlet enthalpy (B/lbm)	672.81
18. $\mathrm{h}_{\text {- }}$	```initial sater outlet enthalpy (B/lbm) = enthalpy of saturated liquid```	701.1
19. $\mathrm{h}_{\text {spo }}$	initial enthalpy of the liquid entering the spray nozzle (B/lbm)	574.36

TABLE IX (continued)

20. $\mathrm{C}_{\mathrm{P}_{\mathrm{HL}}}$	specific heat of the hot leg fluid ($\mathrm{B} / \mathrm{lbm}-{ }^{\circ} \mathrm{E}$)			1.1386
21. $C_{P_{C L}}$	specific heat of the cold leg fluid ($\mathrm{B} / \mathrm{lbm}^{\circ}{ }^{\circ} \mathrm{F}$)			1.1226
22. $\mathrm{C}_{\mathrm{P}_{\text {sat }}}$	specific heat of the saturated liquid ($B / \mathrm{lbm}-\mathrm{F}$)			2.115
$\text { 23. } \rho_{C L}$	$\begin{aligned} & \text { densicy of the cold leg piping } \\ & \left(1 \mathrm{bm} / \mathrm{ft} \mathrm{t}^{3}\right) \end{aligned}$			46.62
24. α_{P}	```pressure coefficient of reactivity (psi)```			-1.0×10^{-6}
COOLANT NODE DATA AT 75\% POWER				
NODE	SYMBOL	TEMPERATURE ${ }^{\circ} \mathrm{F}$	$\begin{gathered} \text { VOLUME } \\ \mathrm{ft}^{3} \end{gathered}$	DENSITY GRADIENT ($1 \mathrm{bm} / \mathrm{ft} \mathrm{t}^{3}{ }^{\circ} \mathrm{F}$)
9	θ_{1}	562.5	270.0	-0.06916
10	θ_{2}	585.0	270.0	-0.07578
11	$\theta_{\text {UP }}$	585.0	1376.0	-0.7578
12	${ }^{\text {THL }}$	585.0	250.0	-0.7578
13	$\Theta_{L P}$	540.0	1791.0	-0.06115
14	$\mathrm{T}_{\text {CL }}$	540.0	500.0	-0.06115
15	T_{Pi}	585.1	170.3	-0.7578
16	T_{Pl}	581.3	48.22	-0.7469
17	$\mathrm{T}_{\mathrm{p} 2}$	556.6	320.0	-0.06799
18	$\mathrm{T}_{\mathrm{P} 3}$	556.6	320.0	-0.06799
19	$\mathrm{T}_{\mathrm{P}_{4}}$	541.6	48.22	-0.06115

TABLE IX (continued)

20	T_{O}	540.1	170.3	-0.06115
pressurizer		652.9	1080.0	-0.12388
temperature				

NOTE
 The volumes and temperatures for nodes 15 through 20 were calculated from a steady state calculation of the UTSG by SYSTEM.

NOTE

State variables 12,14 , and 15 through 20 must have their volumes multiplied by the number of UTSG's.

NOTE

The pressurizer temperature node is assumed to change at the same rate as the hot leg temperature.
on the pressure term will be very small after dividing through by the derivative coefficient (typically 10^{-6}) and could be set equal to zero if desired. The insurge flow rate depends on all the reactor coolant state variables. All the equations for the reactor coolant state variables have been calculated previously. All that is necessary is to calculate the two "important" coefficients and have the computer generate the remaining coefficients. A convenient place to do this is immediately after the system matrix has been read in by MATEXP. Subroutine PRESS has been added to MATEXP to calculate the pressurizer coefficients. The only other input necessary to calculate the coefficients is to look up the density gradients in a steam table and change them when a new initial power level is desired. The FORTRAN listing for this subroutine is shown in Figure 2.22. The instructions for the use of this subroutine are included in Appendix A.

All the other terms in the pressurizer equation are forcing terms and are not considered in this study except the heater power forcing term. This term will be coupled to a pressurizer pressure control system model. The coefficient on this term is unity and needs no calculation.

Figure 2.23 shows the response of the coupled pressurizer pressure model for a +10 cent step in reactivity that begins after ten seconds of observation time. The final value at steady state is 8.682 psi. The shape of the response and its final value are consistent with previous work (Thakkar ${ }^{37}$). Therefore, a pressurizer pressure control system modei an now be coupled.

```
SUBROUTINE PRESS
    DIMENSIO! A(70,70),C(70,70),HP(70,70),OPT(70,70),
    1X(70),Y(70),Z(70),XIC(70),TOP(70)
    DIMENSION NSPTV(24)
DIMENSION COFY(70)
DIMENSION V(20),B(20)
    OCOMMON C,HP,A,QPT,X,Z,Y,ITMAX,KK,LL,MM,
    1JJFLAG,XIC,NI, TIME, TMAX, TZERO,NE,TQP, T,
    2ITZ,ICONTR,PLTINC,MATYES,ICSS,JFLAG,PLT
        COMMON KIT,ZRP,NR,MF,M12,MF1,AMP,NSA,NII, XP,YP
        COMMON NPLOT,NSPTV
        COMMON ITYPE,JTYPE,NTYPE,NSET3,NSET2,NSET1,NROW1,NP
    #NREAC,NTBAR,NDQ,NSTM,NK3,NK2,NPT,NPN, RONSTP,BETAT,G
    #DBIN , RK1, RK2, RK3,WMAX,WSO,HG,HGMAX, DHG , COFX, HFW, CP2
    V(g)=270.0
    V(10)=V(9)
    V(11)=1376.
    V(12)=250.*3.0
V(13)=1791.
    V(14)=500.*3.0
    V(15)=170.3*3.0
    V(16)=48.22*3.0
    V(17)=320.*3.0
    V(18)=V(17)
V(19)=V(16)
V (20)=170.3*3.0
    B(9)=-0.06916
    B(10)=-.07578
    B(11)=B(10)
    B(12)=B(11)
    B(13)=-.06115
    B(14)=B(13)
    B(15) =-.07578
    B(16)=-.07459
    B(17)=-.06799
    B(18)=-.06799
    B(19)=-.06115
    B(20)=-.06115
    DO 10 I=T,NE-1
    DO 10 J=1,20
    IF((V(J).AND.B(J)).EQ.O.0)GO TO 10
    A(42,I)=A(42,I) - 1.04!2050E-2*B(J)*V(J)*A(J,I)
        10 CONTINUE
C ADD THE PRESSURIZER WATEP VOLUME
    DO 20 I= 1,NE-1
    A(42,I)=A(42,I) -1.3547E-3*(-0.12388*1080.0)*A(12,I)
        20 CONTINUE
RETURN
END
```

Figure 2.22 Fortran listing of subroutine PRESS.

[^0]The pressurizer pressure control system model is taken from Westinghouse ${ }^{38}$ documentation. A block diagram of the control system is shown in Figure 2.24. From Figure 2.24, it can be seen that at ± 15 psi around the design pressure, only the immersion heaters have any control action. If the model that is to be used in this study is to consider only small changes in the primary pressure (less than 15 psi), then the control system can be represented by a linear model.

Figure 2.25 shows a block diagram of the transfer function which describes the heater output governed by the pressurizer pressure control system. A state variable representation has previously been derived for this control system (Strange ${ }^{35)}$. The resulting equations are shown below.
(II.46) $\frac{d S P_{P}}{d t}=C . S P_{P}+C_{2} S W_{W}+C_{3}\left[A K S P_{P}+S D+A K \frac{d S P_{P}}{d t}\right]$
(II.47) $\frac{d \delta D}{d t}=A K \delta P_{P}$
where C_{1}, C_{2}, and C_{3} are constants which have been calculated proviously for the pressurizer pressure model. The essential parameters necessary to calculate the parameters for this model are given in Table X . The heater output from this derivation is defined by the following equation

$$
\begin{equation*}
\delta q=A\left[\delta F_{p}+\frac{1}{\tau_{1}} S D+\tau_{2} \frac{d \delta P_{P}}{d t}\right] . \tag{II.48}
\end{equation*}
$$

When this model is coupled with the res: of the system, the heater output can be calculated by subroutine DISTRB in MATEXP at each time

Figure 2.24 Pressurizer pressure control schematic.

Figure 2.25 Block diagram of the transfer function which describes the heater output of the pressurizer pressure control system.

TABLE X

PARAMETERS NEEDED TO CALCULATE THE PRESSURIZER PRESSURE CONTROL SYSTEM MODEL

1. K	unitless gain for PID controller transfer function	5.0
2. A	gain for PID controller transfer function for heater input (ki/psi)	-60.0
3. τ_{1}	time constant for integral control (sec)	900.0
4. $\widetilde{\Sigma}_{2}$	time constant for differential control (sec)	1.0
5. $\mathrm{q}_{\text {max }}$	the maximum heater output (kwi)	1800.0

step in the solution and the results plocted. Figure 2.26 shows the response of the coupled system including the pressurizer pressure control system model for $a \operatorname{lon}$ cent step in reactivity that begins after ten seconds of observation time. The results are plausible and the pressure deviation has been reduced. Additional results of the overall system which includes pressurizer models are shown in Section II. 8.
II. 6 The Turbine and Feedwater Heaters

In order to develop a complete model of the mechanical and heat transfer processes in a PNR system, it will be necessary to consider the turbine and feedwater heater systems. The turbine generator and related systems in general do not differ greatly between nuclear plants or between fossil fueled power plants. Therefore the model developed in this section could probably be modified and coupled with many types of systems.

A typical flow diagran and heat balance of a Nestinghouse Pr turbo-generator system is shown in Figure 2.27. This figure was obtained from the SEQUOYAH-ESAR ${ }^{29}$.

During operation of the plant, four steam generators deliver saturated steam through steam lines to the main turbine. These lines are crosstied near the turbine to ensure that the pressure difference between any of the steam generators does not exceed 10 psi thus maintaining system balance and ensuring uniform heat removal from the reactor coolant system.

As the steam leaves the JTSGs, it passes through throttle and governing valves before entering the main u urbine at the high pressure

Figure 2.26 Response of coupled pressurizer pressure control model for a +10 cent step in reactivity after ten seconds of observation time.

stage. A portion of the steam in the high pressrue turbine is extracted to the high pressure feedwater heaters; the remainder is exhausted to moisture separator reheaters and low pressure feedwater heaters. In the moisture separator reheaters, moisture is mechanically separated from the turbine steam and the steam is then superheated before entering three low pressure turbines. The steam is superheated in the moisture separator reheaters by receiving energy from a main steam line which has bypassed the high pressure turbine. Then, while the steam is in the low pressure turbines, part of it is extracted to low pressure feedwater heaters, and the remainder is exhausted to the condenser.

The feedwater heating system is of the closed type with deaeration accomplished in the condenser hotiell. The condensate pumps take the condensate through five stages of low-pressure feedwater heaters to the main feedwater pumps. The water discharge from the feedwater pumps flows through high-pressure heaters and intc the steam generators.

A dynamic model for a turbine and feediater heater system has been developed by IBM ${ }^{11}$ and modified by Shankkar ${ }^{32}$. In this development, some additional modifications will be made to this model. Primarily, the model will be adjusted to be used on a PWR system by making some assumptions, and the model will be linearized so that it can be analyzed on exjsting computer codes and soupled with the present PWR model. The derivation of the model is given in Appendix D. The resulting model is an llth order state variable representation. At this point, the model has no control action taken on the bypass steam valving and the main steam valving. A block diagram of the
model is shown in Figure 2.28. The reader should compare the block diagram with the actual flow diagram. The symbols of the state variables are shown in Figure 2.28. The values of all the necessary data which are needed to calculate the coefficients for this model are given in Table XI. The resulting state variables for this model are described in Table XII. The numbers of the state variables are arrived at by coupling this model to the existing PWR model. Note that some of the state variables have unitless dimensions in order to make the solution to the equations more easily obtainable.

This dynamic model has four possible forcing terms. These are

1. The inlet steam flow rate to the nozzle chest
2. The bypass steam flow rate to the moisture separator reheaters.
3. The inlet steam pressure to the nozzie chest and moisture separator
4. The outlet feedwater flow rate to the steam generators. The forcing terms as they appear in the model are shown in Table XIII. When this model is coupled with the existing PWR model, the only remaining forcing tern will be steam flow. dgain the steam flow is represented in two ways as given by equations (II.23) and (II.24).

It is important to realize that the final power delivered by the turbine to the electrical generator is not a state variable. This is plausible since the eiectrical power should have no feedback effect on the turbine except possibly through a control system. But, the power produced by the turbine is a linear combination of the state variables in this model, and can be calculated during a disturbance. This is easily accomplished, as with any algebraic variable, with the use of

Figure 2.28 Turbine-feedwater heater model block diagram.

TABLE XI

PARAMETERS NEEDED TO CALCULATE THE TURBINE-FEEDWATER HEATER MODEL MATRIX COEFFICIENTS

1. W_{1}, W_{2} flow rate of steam in and out of the nozzle chest ($1 \mathrm{bm} / \mathrm{sec}$)3959.5**
2. W_{2}^{1}, W_{3} flow rate of steam in and out of the reheater shell side ($1 \mathrm{bm} / \mathrm{sec}$) 2852.8 为
3. $W_{P R}, W_{P R}^{\prime}$ flow rate of steam in and out of the reheater tube side ($1 \mathrm{bm} / \mathrm{sec}$)$182.36 \div \star$
4. WMs the flow rate of the drain from the moisture separator ($1 \mathrm{bm} / \mathrm{sec}$) 358.03
5. WS, WFW the flow rate of the main steam and feedwater at initial conditions from all UTSG's (1bm/sec) 4145.9**
6. $W_{2}{ }^{\prime \prime}$ flow of steam leaving HP turbine to the moisture separator ($1 \mathrm{bm} / \mathrm{sec}$) $3210.86 \div *$
7. W_{3}^{\prime} flow of steam leaving the LP turbine to the condenser ($1 \mathrm{bm} / \mathrm{sec}$) 2232.6**
8. WhPZ flow of fluid from feedwater heater 2 to feedwater heater 1 ($1 \mathrm{bm} / \mathrm{sec}$) $1217.8 \star \star$9. KBHP fraction of steam entering the HPturbine that is extracted tofeedwater heater 2$0.1634 * *$
9. $K_{B L P}$ fraction of steam entering the LP turbine that is extracted to feedwater heater 1 $0.2174 \approx$
10. THi time constant for feedwater heater 1heat transfer (sec)100.0%
11. T_{HZ} time constant for feedwater heater 2 heat transfer (sec) $40.0 *$

TABLE XI (continued)

27.	Pc	density of steam leaving the nozzle chest ($1 \mathrm{bm} / \mathrm{ft}^{3}$)	
28.	ρ_{R}	density of steam leaving the reheater ($1 \mathrm{bm} / \mathrm{ft}^{3}$)	$0.3566 * * * *$
29.	P_{2}	density of the steam at the isentropic endpoint of the nozzle chest pressure ($1 \mathrm{bm} / \mathrm{f} \mathrm{t}^{3}$)	$0.6181 * * * *$
30.	P_{3}	pressure of steam leaving the reheater (psf)	1.0868**
31.	P_{R}	pressure of steam entering the reheater (psf)	1.1111**
32.	p_{c}	pressure of the steam leaving the nozzle chest (psf)	$5.488 \div *$
33.	$P_{R 1}$	```pressure used in empirical relationship for isentropic endpoint of HP turbine expansion (psf)```	$1.1111 * *$
34.	∂P_{s}	```gradient of steam enthalpy to steam pressure in the main steam line (B/lbm-ps i)```	$-0.035 * * * *$
35.	$\frac{\partial T_{\sin } t}{\partial P_{s}}$	```gradient of saturation temperature to steam pressure in the main steam line (}\mp@subsup{}{}{\circ}\textrm{F}/\textrm{psi```	$0.14 * * * *$
36.	$C_{P Z}$	specific heat of the feedwater (B/lbm- ${ }^{\circ}$ F)	1.14****
37.	C_{V}	```specific heat at constant volume of the steam in the reheater shell side (B/lbm-}\mp@subsup{}{}{\circ}\textrm{F}```	$0.41 * * * *$
38.	V_{R}	volume of the reheater shell side (ft t^{3})	20000.0\%
39.	V_{c}	volume of the nozzle chest (ft ${ }^{3}$)	200.0***

TABLE XI (continued)
40. HEw
41. H_{R}
42. Q_{R}
43. $\left(T_{5}-T_{2}\right)$
44. E_{2} ϵ
45. ϵ
46. $A_{k 2}$
assumed constant enthalpy of shell side in heater 2 (B / lbm) 475.0才
assumed specific heat of steam in reheater ($\mathrm{B} / \mathrm{lbm}^{\circ}{ }^{\circ} \mathrm{F}$) 21.6*
initial heat transfer in reheater (MW) $226.43 \div \div$
initial temperature difference for heat transfer in the reheater $\left({ }^{\circ} \mathrm{F}\right)$ $54.48 \div *$
valve coefficient of bypass steam (1bm/sec-psi) $0.21918 * *$
valve coefficient of main steam ($1 \mathrm{bm} / \mathrm{sec}-\mathrm{psi}$)

1. $2458 * *$
area used in empirical relationship for steam flow out of the nozzle chest (ft ${ }^{2}$)
207.82*
2. K_{3}
area used in empirical relationship
for steam flow out of the reheater
shell side $\left(\mathrm{ft}^{2}\right)$
3. K $_{1}$ constant used in Callender's relationship 7.415
4. k_{2}
constant used in Callender's relationship
$149670.6 *$
5. R constant used in ideal gas law ($\mathrm{ft}-\mathrm{lb} \mathrm{f} / 1 \mathrm{bm} \mathrm{m}^{\circ} \mathrm{R}$)
$85.78 \div \cdots \div *$
6. γ
gradient of internal energy with

7. NLP efficiency of LP turbine 0.86*
8. NHP efficiency of HP turbine 0.86*
9. conversion factor (ft-1bf/B) 778.169****

TABLE XI (continued)

55. Ω initial speed of the rotor (Hz) 60.0 .
56. Qe gravitational constant ($1 \mathrm{bm}-\mathrm{ft} / 1 \mathrm{bf}-\mathrm{sec}^{2}$) 32.2***
$\therefore \quad$ Values obtained from IBM 11
$\star \quad$ Values obtained from Figure 10.1-3 SEQUOYAH-PSAR29
$\therefore \underset{\sim}{\star+}$ These values were assumed
$\star \star \star=$ Values obtained from steam tables

LIST AND DESCRIPTION OF THE TURBINEFEEDWATER MODEL STATE VARIABLES

NUMBER	SYMBOL	DESCRIPTION
44	$\delta \rho_{c}$	density of steam in the nozzle chest ($1 \mathrm{bm} / \mathrm{ft} \mathrm{t}^{3}$)
45	$h_{\text {co }}$	fractional change in the enthalpy of nozzle chest steam
46	$\frac{\delta W_{2}^{\prime \prime}}{W_{20}^{n}}$	fractional change in the flow rate of steam entering the moisture separator
47	$\delta \rho_{\pi}$	$\begin{aligned} & \text { density of steam in the reheater shell side } \\ & \left(1 \mathrm{bm} / \mathrm{ft}^{3}\right) \end{aligned}$
48	$\frac{\delta h_{x}}{h_{R_{0}}}$	fractional change in enthalpy of reheater shell side
49	$\frac{\delta W_{P R}^{\prime}}{W_{P R_{0}}^{\prime}}$	fractional change in flow rate of steam leaving the reheater tube side
50	δQ_{R}	heat transfer in the reheater shell to tube ($\mathrm{Mth}-\mathrm{hr} / \mathrm{sec}$)
51	$\frac{\delta w_{3}^{\prime}}{w_{30}^{\prime}}$	fractional change in flow rate of steam leaving LP turbine to the condenser
52	$\delta h_{F W}^{\prime}$	change in the enthalpy of feedwater in heater 1 ($B / 1 \mathrm{bm}$)

TABLE XII (continued)

NUMBER	SYMBOL	DESCRIPTION
53	$S T_{F W}$	change in feedwater temperature leaving heater $2\left({ }^{\circ} \mathrm{F}\right)$

1) Steam Flow
$\mathrm{f}(44)=\frac{1}{V_{c}} \delta W_{1}$
$f(45)=\frac{1}{\frac{1-K_{1}}{g_{c}}}\left[\frac{h_{s}}{h_{c^{\rho}{ }_{c}{ }^{2} c}}+\frac{p_{c}}{h_{c} \rho_{c}{ }^{2} V_{c}^{J}}-\frac{1}{V_{c}{ }_{c}}\right] \delta W_{1}$
2) Steam Pressure

$$
\begin{aligned}
& f(45)=\frac{1}{\frac{1-\mathrm{K}_{1}}{g_{c}}}\left[\frac{W_{1}}{\rho_{c} \mathrm{~V}_{c} \mathrm{~h}_{c}} \frac{\delta \mathrm{~h}_{s}}{\delta \mathrm{P}_{s}}\right] \delta \mathrm{P}_{s} \\
& \mathrm{f}(50)=\frac{\mathrm{H}_{R}}{2 \mathrm{~T}_{R 2}}\left(\mathrm{~W}_{\mathrm{PR}}+W_{P R}^{\prime}\right) \frac{\delta \mathrm{T}_{s}}{\delta \mathrm{P}_{s}} \delta \mathrm{P}_{s}
\end{aligned}
$$

3) Secondary (Bypass) Steam Flow

$$
\begin{aligned}
& f(49)=\frac{1}{W_{P R}^{\prime} T_{R 1}} \delta W_{P R} \\
& f(50)=\frac{H_{R}}{2 T_{R 2}}\left(T_{S}-T_{R}\right) \delta W_{P R}
\end{aligned}
$$

TABLE XIII (continued)

4) Feedwater Flow

$$
\begin{aligned}
& f(52)=\frac{-H_{F W}}{T_{H 1} W_{F W}^{2}}\left(K_{B L P} W_{3}+W_{H P 2}\right) \delta W_{F W}-\frac{h_{F W}^{\prime}}{W_{F W}} \frac{d \delta W_{F W}}{d t} \\
& f(53)=\frac{-H_{F W}}{W_{F W}^{2}}\left(K_{B H P} W_{2}+W_{M S}+W_{P R}^{\prime}\right) \delta W_{F W}-\frac{h_{F W}}{W_{F W}} \frac{d \delta W_{F W}}{d t}
\end{aligned}
$$

Note: The steam flows W_{1} and $W_{P R}$ can be expressed by equation (II.23) or equation (II.24).
subroutine DISTRB. The derivation of the algebraic equation describing the power produced by the turbine is also given in Appendix D.

In this section, only one case will be presented. Figure 2.29 shows the time response of the turbine-feedwater heater model for a $+10 \%$ step in the valve coefficient. The feedback on the PWR model will be from the feedwater temperature which has changed by 3.14 F.

The power produced by the turbine will not be shown here (see Section II. 7 and II. 8 for typical values for this result). The turbine power result would not be conclusive until the turbine-feedwater heater model is coupled to the rest of the system model. These results are plausible. However, improvements on the accuracy of the results could only be made by improving the accuracy of the input data. Additional results of the isolated turbine-feedwater heater model for all the other types of perturbations are shown in Figures E. 3 through E. 5 of Appendix E.
II. 7 The Main Steam and Bypass Steam Control Systems

In order to complete the $P W R$ system model, the mechanical shaft power must be coupled to the electrical fower grid system. Before discussing the derivation of the model equations, it will first be necessary to understand some terms used to describe an electrical power system.

The turbine shaft is directly coupled to an electric power generator. The generator will output electrical power which will be designated \bar{S}. This electrical power is of a complex form, that is, it is made up of two components called real and reactive power. In
 TIME (SEC)

(Stional change in nozzle chest enthalpy

Figure 2.29 Response of the isolated turbine-ieedwater heater model for a +10 percent step in stean valve coefficient.

Eigure 2.29 (continued)

Figure 2.29 (continued)
equation form this is written as
(II.49) $\bar{S}=P+j Q$
P is the real power with typical units of megawatts ($M w$), Q is the reactive power with typical units of megavars (Mvar), and $\overline{\mathrm{S}}$ is the complex power with typical units of MVA. The complex power can also be written as $\overline{\mathrm{S}}=\overline{\mathrm{VI}} *$ where $\overline{\mathrm{V}}$ is the generator terminal voltage and $\overline{\mathrm{I}}$ * is the complex conjugate of the current, $\overline{\mathrm{I}}$, injected into the electrical system grid by the generator. Since the voltage, $\overline{\mathrm{V}}$, and the current, \bar{I}, are divided into real and imaginary parts, this explains why it is necessary for the power, \bar{S}, to be expressed in a complex form. If it is assumed that no real power losses take place in the generator itself (a typical generator has a 5 percent to 10 percent loss of real power), then the magnitude of P is identically equal to the turbine shaft power P. The magnitude of Q, and the angle between P and Q, which will be designated as $\Theta_{\text {, }}$ is determined by the operating conditions of the generator relative to the electrical grid. The magnitude of the complex power is written in equation form as
$(I I .50)|S|=\left[S^{2}+Q^{2}\right]^{0.5}=|V| I \mid$

It is customary to express the electrical units on a per unit basis (pu). In this study, the base power will always be 1000 MVA. Therefore if the generator is producing 500 Mw of real power, this is equivalent to saying that it is producing 0.5 puMw of real power.

The turbo-generator shaft rotates at a frequency F, which in the United States has a normal value of 60 Hz at steady state conditions. Note that at steady state, all the generators in a power grid operate
at the same frequency. The electrical power is proportional to the operating frequency of the generator. This can be written as (II.51) $\quad P=F \tau$
where \mathcal{Z} is the torque applied on the generator. When a change in power takes place, a torque change is made on the generator. Because the mechanical shaft power has not been changed yet, this will result in a change in frequency of the generator rotation in order to satisfy the power demand. This change in frequency can be denoted by δF and can be written as
(II.52) $\quad \delta F=\frac{d \delta \beta}{d t}$
where $\mathcal{S} \beta_{i s}$ the incremental change of the generator rotor angular position. Therefore the generator is said to "swing" when a change in frequency takes place. Excessive swings can cause stability problems for the generator.

In order to minimize the swing of the machine, the generator must be controlled. A block diagram of a generator control system is shown in Figure 2.30. There are two basic control schemes. The megawatt frequency or Pf controller senses the frequency deviation and tie line power (real electrical power from other generating units in the power grid) and determines the steam valve change. This in turn will result in a change of real power delivered to the power grid. The megavar voltage, or QV, controller senses the generator terminal voltage deviation and transforms this to a reactive power demand signal. This in turn will result in a change in the generator rotor field current,

Figure 2.30 $\begin{aligned} & \text { Block diagram of a generator control } \\ & \text { system. }\end{aligned}$
which will ultimately change the reactive power delivered (or absorbed as the case may be). "In general the QV loop is much faster than the Pf loop, due to the mechanical inertia constants in the latter. If it is assumed that the transients in the QV loop are essentially over before the Pf loop reacts, then the coupling between loops can be neglected" 9 .

One additional assumption must be made in order to develop a model for the generator control system. It must be assumed that the time difference between the time when a generator receives an increase in turbine shaft power and when it actually delivers the equivalent electrical power is small. This is a valid assumption since the generator electrical processes are much quicker than the turbine mechanical processes. This will eliminate the need to model the generator itself in this study. However, in a study of an electrical power system grid, this assumption may not be valid.

A mathematical model has been developed to describe the P f controller for small deviations around a nominal steady state (Elgerd ${ }^{9}$, Reddoch ${ }^{27}$). The derivation of this model is presented in Appendix F. A block diagram of the model is shorn in Figure 2.31.

In order to demonstrate how this model will work, some represen ${ }^{-}$ tation must be made for the mechanical shaft power in order to close the control loop. Ultimately this will be done using the previousiy developed PWR system modei (see Section 2.8). But by representing this mechanical power by a very simple model, it will be easier to understand how the Pf controller model morks. "In the crudest model representation me can characterize a non<reheat turbine generator with

Figure 2.3I Incremental model of the ith control area.
a single gain factor K_{T} and a single time constant $\boldsymbol{\tau}_{T}$, and thus write
(II.53) $\frac{\delta P_{m}}{\delta \epsilon_{\epsilon_{0}}}=\frac{K_{T}}{1+\tau_{T} S}$.

Typically, the time constant $\boldsymbol{\tau}_{\mathrm{T}}$ lies in the range of 0.2 to 2 seconds" ${ }^{9}$. In this study, we will use a value of 2 seconds for \boldsymbol{Z}_{T} and a value of 0.7870 punt for the gain factor K_{T}. Therefore we now have a completely closed model for the Pf controller. A state variable representation of this model is shown below

(II.55) $\frac{d \delta P_{C}}{d t}=\delta P_{T i E}+\left(D+\frac{1}{R}\right) \delta F$
(II.56) $\quad \frac{d \delta F}{d t}=-\frac{D}{M} \delta F+\frac{1}{M}\left[\delta P_{m}-\delta P_{D}-\delta P_{T I E}\right]$
(II.57) $\frac{d \delta P_{m}}{d t}=-\frac{\delta P_{m}}{\Sigma_{T}}+\frac{K_{T}}{\Sigma_{T}} \delta \epsilon_{\epsilon_{0}}$

Equations (II.54) through (II.56) will become the permanent state variable equations in the overall system model (see Section II.8). However, equation (II.57) will not be used in the overall system model, but will be replaced with the complete PWR and balance of plant model.

In order to complete the control systems on the turbinefaedwater heater model, the bypass steam valve position aust be controlled. The purpose of this control system is to maintain the steam reheater shell
side temperature as constant as possible. In a typical turbine system, the bypass steam flow is approximately 5 percent of the total steam flow at 100 percent power. For small changes in power level, the change of the bypass steam flow will be very small compared to the total steam flow change. Any change in the bypass steam flow to the reheaters will ultimately change the low pressure turbine shaft power. The turbine model used in this study predicts that the low pressure turbine shaft power deviation will be approximately one third of the high pressure turbine shaft power (see page 182). In addition, if it is assumed that the reheater enthalpy is approximately proportional to the reheater temperature, then the model predicts only a l percent change in reheater temperature for a 10 percent step in the main steam valve coefficient (see Figure 2.29). This means that small changes in the bypass steam flow to the reheaters will result in very small changes in the total turbine shaft power. Therefore, the assumption will be made that the bypass steam flow control does not need to be included in the PWR model. This means that the bypass steam valve coefficient is assumed constant. However the bypass steam flow is assumed to change only proportional to steam pressure.

The value of the parameters used in the $P f$ controller model are given in Table XIV. These values are typical of a 1200 MWa machine. The value of the gain factor K_{T} was found by running a case of the overall system model without a Pf controller model but with the reactor controller for a 10 percent step in valve coefficient (see page 182). The result of this case gave a value of 78.70 Mw for the shafi power. This value of K_{Γ} will be retained and used again in Section II. 8.

PARAMETERS NEEDED TO CALCULATE TBE PE CONTROLIER MODEL MATRIX COEFEICIENTS

1. τ_{G}	governor time congtant (sec)	0.2
2. K_{2}	governor gain ($1 / \mathrm{puntos}$)	
	high order model	I. 2706
	Iow order model	1. 2136
3. R	frequency "droop" gain (Ez/pukt)	3.0
4. M	mechanical inertia constant (puNtr-sec/Ez)	0.08333
5. D	damping factor (puMw/Ez)	0.008333
6. T_{T}	time constant of simplified prime mover (sec)	0.5
7. K_{T}	gain constant of simplified prime mover ($=1 / R_{2}$) (puntri)	
	high order model	$\begin{aligned} & 0.7870 \\ & 0.8240 \end{aligned}$

Two cases will be presented here. The first case is for a <0.1 puMW step in the power demand signal ($<100 \mathrm{MN}$). The second case is for a 0.1 puMW step in the tie line power signal. These cases are shown in Figures 2.32 and 2.33 respectively.

The difference between the two responses is that in Figure 2.33, the frequency deviation, δF, does not return to zero, and the control power error signal, δP_{C}, has returned to zero. This is because the tie line flow is used as a power control signal as well as a power demand signal. If this model were coupled to a power grid model, the tie line flow would have to change as a result of changing the electrical power produced by the machine, rather than forcing it to be constant as is done in this simulation. Note that the oscillatory motion shown in Figures 2.32 and 2.33 is due to the simple represen tation of the turbine mechanical shaft power. When the simple repre ${ }^{4}$ sentation given by equation (II.53) is replaced by the more complex PWR model, this oscillatory motion will not be as pronounced. This will be shown to be true in Section II. 8.

II. 8 The Overall High Order System Model

At this point, it is now possible to couple all the individual model components previously presented into one overall system model. This model will be called the high order PWR system model. The model is described by 57 state variables. The description of these state variables and their numerical order in the model have been shown pre~ viously (see the List of Tables).

The parameters needed to calcuiate the system matrix coefficients and forcing vector coefficients have also been previously presented.

Figure 2.32 Response of the Pf controller model for a -0.1 pulifv step in power demand.

Figure 2.33 Response of the Pf controller model to a -0.1 pultw stap in tie line power Elow.

These parameters are typical of a 1200 Mme Westinghouse plant at 100 percent power. The coefficients for state variables 1 through 41 are calculated by the computer program described in Appendix A. The pressurizer pressure control system is represented by state variables 42 and 43. All the coefficients for the pressurizer pressure control system except coefficients $(1,42),(42,42),(42,43)$, and $(43,42)$ are - also evaluated by the computer. All the coefficients for state variables 44 through 58, which represent the turbine, feedwater heaters, and $P f$ controller models are calculated by "hand." The para* meter data for the turbine<feedwater heater model are limited to the data available from the heat balance of the turbo<generator system presented in the SEQUOYAH-FSAR ${ }^{29}$. Table XV is a list of the resulting numerical values of the system matrix coefficients.

The high order PWR system model can be disturbed by a reactivity change in the control rods, a power demand signal, or a tie line power signal. If the reactor control system is implemented (NTYPE=1), then the control rod reactivity is changed automatically. Therefore, in this study, only the power demand signal and tie line power flow signal will be considered. The forcing terms for the overall model and their numerical values are shown below
(II.58) $f(1)=\frac{\beta_{T}}{\Lambda} \delta p_{\text {ext }}$
(II.59) $f(56)=\delta P_{\text {TIE }}$
(II.60) $f(57)=-\frac{1}{M}\left[S P_{D}+\delta P_{T E}\right]$.

TABLE XV

LIST OF THE NUMERICAL VALUES OF THE HIGH ORDER OVERALL PWR SYSTEM MODEL MATRIX COEFFICIENTS

ROW	COL	COEFFICIENT	ROW	COL	COEFFICIENT
1	1	$-3.8536 E+02$	1	2	$1.2500 \mathrm{E}-02$
1	3	$3.0800 \mathrm{E}-02$	1	4	1.1400E-01
1	5	$3.0700 \mathrm{E}-01$	1	6	1. $1900 E+00$
1	7	$3.19005+00$	1	8	-6.1452E-01
1	9	$-5.5866 E+00$	1	10	$-5.5856 E+00$
1	42	-5.5866E-02	2	1	1.1676E+01
2	2	-1.2500E-02	3	1	7.8994E+0 1
3	3	-3.0800E-02	4	1	$7.3128 E+01$
4	4	-1.1400E-01	5	1	$1.5235 E+2$
5	5	-3.0700E-01	6	1	5.1676E+01
6	6	$-1.1900 E+00$	7	1	$1.7542 \mathrm{E}+01$
7	7	$-3.1900 E+00$	ε	1	2.4137E+02
8	8	-2.5322E-01	8	9	2.5322E-01
9	1	2.6186E+00	9	8	$1.0292 E-01$
9	9	$-3.6492 E+00$	9	13	$3.5462 \mathrm{E}+00$
10	i	2.6186E+00	10	8	$1.0292 \mathrm{E}-01$
10	9	$3.4433 E+00$	10	10	$-3.5462 E+00$
11	10	$6.9585 \mathrm{E}-01$	11	11	-6. $9585 \mathrm{E}-01$
12	11	$9.57408-01$	12	12	-9.5749E-31

TABLE XV (continued)

ROW	COL	COEFFICIENT	ROW	COL	COEFFICIENT
13	13	$-5.3461 \mathrm{E}-01$	13	14	5.3461E-01
14	14	$-4.7874 \mathrm{E}-01$	14	20	$4.7874 \mathrm{E}-01$
15	12	$1.40595+00$	15	15	$-1.40595+00$
16	15	4.5264E+00	16	16	$-5.1762 E+00$
16	21	6.4982E-01	16	26	$-4.9921 E+00$
17	16	7.5905E-01	17	17	-1.40895+00
17	21	4.3606E-02	17	22	5.9878E-01
17	23	-5.1036E-02	17	24	$4.3606 \mathrm{E}-02$
17	25	-6.0946E-02	17	26	$1.6602 E+00$
17	27	-1.8505E-02	17	28	$-5.4153 E-01$
17	29	$1.69395-01$	17	35	2.0572E-04
17	53	$-3.8829 E-03$	17	55	2. 1853E+00
18	17	$7.5905 E-01$	18	18	$-1.4089 \mathrm{E}+00$
18	23	$6.4982 \mathrm{E}-01$	18	26	5.0472E-01
19	18	$4.5264 \mathrm{E}+00$	19	19	-5.1762E+00
19	21	-1.8824E-02	19	22	2.2032E-02
io	23	2.2032E-02	19	24	6.3099E-01
19	25	$2.63105-02$	19	26	$-2.4626 E+00$
19	27	7.0884E-03	19	28	2.33775-01
19	29	-7.3127E-02	19	35	-3.8808E-05
10	53	$1.74005-03$	10	55	$-9.43505-01$
20	19	1.40595+00	20	20	$-1.40505+00$
21	16	2. $4295 E+00$	21	21	-3.9737E+00

TABLE XV (continued)

ROW	COL	COEFFICIENT	ROW	COL	COEFFICIENT
21	22	-8.4332E-02	21	23	-8.4332E-02
21	24	7.2055E-02	21	25	-1.0071E-01
21	26	1. $39695+00$	21	27	8.2554E-02
21	28	-8.0481E-01	21	29	$1.0880 \mathrm{E}+00$
21	35	3. 3993E-04	21	53	-6.5721E-03
21	55	$3.6122 E+00$	22	17	2.4295E+00
22	21	1.2083E-02	22	22	$-5.4018 \mathrm{E}+00$
22	23	-1.4142E-02	22	24	1.2083E-02
22	25	-1.6888E-02	22	26	2. 3426E-01
22	27	$4.0901 \mathrm{E}-01$	22	28	-1.5005E-01
22	29	$4.6939 \mathrm{E}-02$	22	35	5.7004E-05
22	53	-1.0982E-03	22	55	$6.0560 \mathrm{E}-01$
23	18	2.425E+00	23	21	-2.761CE-03
23	22	$3.2314 \mathrm{E}-03$	23	23	$-5.3845 E+00$
23	24	-2.7610E-03	23	25	3.8589E-0.3
23	26	-5.3528E-02	23	27	4.1531E-01
23	28	3.4288E--2	23	29	-1.0725E-02
23	35	$-1.3026 E-05$	23	53	$2.3651 \mathrm{E}-04$
23	55	-1.3840E-01	24	19	2. $4295 \mathrm{E}+00$
24	21	-1.6465E-02	24	22	1.9270E-02
24	23	1.9270E-02	24	24	-4.0622E+00
24	25	2. 3012E-02	24	26	-3.1920E-01
24	27	1.20120-0?	24	28	2.0446E-01
24	29	7.4413E-01	$2!$	35	-7.7676E-05

TABLE XV (continued)

ROW	COL	COEFFICIENT	ROW	COL	COEFFICIENT
24	53	1.4154E-03	24	55	-8.2530E-01
25	21	4.9508E-04	25	22	$2.2947 \mathrm{E}-02$
25	23	2.2947E-02	25	24	4.9508E-04
25	25	-4.7793E-02	25	26	$5.2058 \mathrm{E}-03$
25	27	$-4.8774 \mathrm{E}-03$	25	28	$-1.5008 E+01$
25	29	1. 9232E-03	25	35	5.6588E-04
25	53	-4.7303E-05	25	55	9.7900E-01
26	21	-4.06205-02	26	22	$4.7541 \mathrm{E}-02$
26	23	4. $7541 \mathrm{E}-02$	26	24	-4.0620E-02
26	25	$5.6772 \mathrm{E}-02$	26	26	-7.8751E-01
26	27	1.7238E-02	26	28	$5.0444 \mathrm{E}-01$
26	29	-1.5780E-01	26	35	-1.9163E-04
26	53	3.8820E-03	26	55	$-2.0363 E+00$
27	21	2.5758E-02	27	22	1.1939E+00
27	23	1.1939E+00	27	24	2.5758E-02
27	25	-2.0191E-02	27	26	$-1.5537 E+00$
27	27	-4.10185-01	27	28	$4.71545+00$
27	29	1.0006E-01	27	35	2. 1845E-03
27	53	-2.46115-03	27	55	$-5.7020 E+01$
28	21	-1.1189E-03	28	22	2.2115E-03
28	23	2.2115E-03	28	24	-1.1189E-03
28	25	6.6482E-94	22	26	-2.2531E-02
22	27	2.5317 E - 4	28	28	$-2.72425-01$

TABLE XV (continued)

ROW	COL	COEFFICIENT	ROW	COL	COEFFICIENT
28	29	-4.3464E-03	28	35	-5.5847E-06
28	53	$1.0687 E-04$	28	55	-4.74COE-02
29	21	2.0801E-04	29	22	$9.6412 \mathrm{E}-03$
29	23	9.6412E-03	29	24	$2.0801 \mathrm{E}-04$
29	25	2.6274E-03	29	26	-1.46125-02
29	27	5. $9822 \mathrm{E}-03$	29	28	$-5.5759 E+00$
29	29	-7.2594E-02	29	35	-1.0184E-03
29	53	1.4661E-02	29	55	4.1120E-01
30	25	-2.00005-01	30	30	-2.0000E-01
31	25	-1.5080E +01	31	30	-1.5075E+01
32	25	$-4.6281 E+02$	32	30	-4.6265E+02
32	31	5.5960E-02	33	27	1.2452E +00
33	35	$-1.00005+00$	33	55	$9.8949 E+02$
34	27	4.8331E+02	34	32	1.2541E+01
34	33	7.0740E-01	34	34	-4.0068E +00
34	35	$-3.8836 E+02$	34	55	3.8405E+05
35	34	1.0000E+00	36	14	2.5000E-01
36	36	-2.5000E-01	37	12	2.5000E-- 1
37	37	-2.5000E-01	38	27	1.2385E-03
38	35	$-3.5038 E-04$	38	38	$-3.3333 E-02$
38	53	-1.0283E-03	38	55	1. $\cos 65+00$
39	12	2. OOCOE-01	30	14	2.0C00E-01
39	36	-1.000CE-01	39	37	-1. OOOCE - - 1
39	30	$-3.0000-01$	39	40	-2. CCOOE-02

TABLE XV (continued)

ROW	COL	COEFFICIENT	ROW	COL	COEFFICIENT
40	39	1.0000E+00	41	1	-7.4054E-01
41	27	$8.7911 \mathrm{E}-04$	41	35	-3.7901E-04
41	41	-2.5000E-02	41	53	-1.1124E-03
41	55	$1.0912 E+00$	42	42	-5.152 СЕ-02
42	43	1.7159E-04	43	42	-3.3333E-01
44	27	2.4020E-02	44	44	-1.6293E+01
44	45	$-3.6720 E+01$	44	47	1.9290E+00
44	48	$5.8740 \equiv+00$	44	55	2.0730E+01
45	27	1.4870E-02	45	44	$-9.9553 E+00$
45	45	-3.1153E+01	45	47	$1.1785 E+00$
45	48	$3.5892 E+00$	45	55	$1.26675+01$
46	44	3.9300 ± -01	46	45	8. $5583 \mathrm{E}-01$
46	46	-5.COOOE-01	46	47	-4.6530E-02
46	48	-1.4176E-01	47	46	1.9532E-01
47	47	$-2.7134 E-01$	47	48	-2.10105-01
48	46	$6.1513 \mathrm{E}-01$	48	47	$-1.0747 E+00$
48	48	$-1.2767 E+00$	48	50	3.7648 E - 1
49	27	4.0064E-04	49	49	-3.3333E-01
50	27	$8.3500 E-05$	50	48	$-1.0102 \mathrm{E}+00$
50	49	7.852 $5=-03$	50	50	-2.5000E-01
51	$4 ?$	1.0020E-01	51	48	1.4590E-0i
51	51	$-1.00005-01$	52	35	-2.1678E-03
52	47	1.351\%	52	48	$1.0365 E+00$

TABLE XV (continued)

ROW	COL	COEFFICIENT	ROW	CCL	COEFFICIENT
52	52	$-1.0000 E-01$	52	54	$1.3953 E+00$
53	35	$-1.2707 E-03$	53	44	$1.3378 E+00$
53	45	$3.0144 E+00$	53	46	$-1.1006 E+00$
53	47	$-1.5838 E-01$	53	48	$-3.7430 E-01$
53	49	$4.5818 E-01$	53	52	$2.1930 E-02$
53	53	$-2.5000 E-02$	54	44	$4.3722 E-02$
54	45	$9.8510 E-02$	54	46	$-3.5970 E-02$
54	47	$-5.1760 E-03$	54	48	$-1.2240 E-02$
54	49	$1.4970 E-02$	54	54	$-1.0000 E-01$
55	55	$-5.0000 E+00$	55	56	$-7.0050 E+00$
55	57	$-2.3350 E+00$	56	57	$3.4167 E-01$
57	57	$-1.0000 E-01$			

One additional forcing term will be generated by the reactor control system in state variable equation number 4l. This will happen when subroutine DISTRB is called upon to include the nonlinear affects of the reactor control system.

When calculating the system matrix coefficients, it is very easy to make a mistake on the coupling terms for the individual component models. One method of eliminating these mistakes is to show the signs of the matrix coefficients and forcing vector coefficients on a chart (Machado23). Figure 2.34 shows a chart of the system coefficients. The positive coefficients are represented by a * and the negative coefficients are represented by a e.

Because the coefficients for state variable 44 through 57 are calculated by hand, the coupling coefficients for the turbine, feedwater heaters, and Pf controller models must be calculated systemati^ cally. Since state variable 53 is the change in feedwater tem ${ }^{\wedge}$ perature, matrix elements (i,53), i=17, 19, 21 through 29, 38, and 41 are the same as the forcing vector coefficients for a $\dot{1}^{\circ} \equiv$ step in feedwater temperature on the isolated core, UTSG, three element controller, and reactor controller models (hereafter referred to as the isolated PWR model). Likewise, since state variable 55 is the change in valve coefficient, matrix elements (i,55) i=17, 19, 21 through 29, $33,34,38$, and 41 are the same as the forcing vector coefficients for a 0.95511 (fraction of main steam flow that enters the turbine nozzle chest) step in the valve coefficient on the iso lated PWR model. Matrix elements $(44,27),(45,27),(49,27)$, and $(50,27)$ are the same as the forcing vector coefficients for a 1 psi

Figure 2.34 Chart of the overall high order PWR model system matrix coefficients.

Matrix elements $(52,35)$ and $(53,35)$ are the same as the forcing vector coefficients for a 1 lbm/sec step in the feedwater flow on the iso lated turbine feedwater heater model. Matrix elements $(44,55)$ and $(45,55)$ are the same as the forcing vector coefficients for a unit step in the valve coefficient for the isolated turbine-feedwater heater model. Similar relations exist for all the coupling terms for the individual component models. Figure 2.34 will help in determining the location and sign of any coefficient in the system model.

In this section, only one case will be presented. Figure 2.35 shows the time response of the high order overall PWR system model for a <0.05 pulti step ($<50 \mathrm{Mi}$ step) in the power demand signal.

From Figure 2.35, it is easily seen that the turbine shaft power transient occurs very quickly. This is because the valve coefficient transient is very fast. But later on the valve coefficient starts to "back off" as the steam pressure begins to have its effect on the total steam flow. The reactor control system causes the control rods to move to a final value of <7.56 cents. The nonlinearities of the control system are apparent from the plot of the temperature error signal. The energy balance between nuclear and secondary power is also plotted to show that this balance is achieved. The steam flow and feedwater flow can also be compared to show that the mass balance is satisfied in the UTSG. The average temperature of the hot and cold leg can also be found from Figure 2.35. It is apparent that the average temperature approaches the steady state program value but does not reach it because of the deadband in the reactor control system. The feedwater temperature experiences a small transient and will ultis mately have a small effect on the UTSG steain pressure. The system

Figure 2.35 Response of the overall high order PTVR system model for a $-0.05 \mathrm{puliw}(-50 \mathrm{M}$) step in power demand.

Figure 2.35 (continued)

Figure 2.35 (continued)

Figure 2.35 (continued)

Figure 2.35 (continued)
frequency, primary pressure, and downcomer level deviations have been eliminated by the Pf, pressurizer pressure, and three element feedwater control systems respectively. The turbine shaft power is shown subdivided into the high pressure and low pressure turbine torque. This figure will be compared to a similar low order model response in Chapter IV.

Figure E. 6 shows a similar time response of both the high and low order overall PWR system model for a <0.05 pulti step in the tie line power flow.

Thus a complete high order PWR system is now described by 57 state variables. Subroutine DISTRB must be used to simulate the nonlinear reactor control system. The input to the model is the power demand, and tie line powar flow signals. The output of turbine mechá nical shaft power is calculated at each time step from turbine model state variables. Other state variables of interest can also be obtserved.
II. 9 Additional Considerations for Coupling the Overall PWR System Model to an Electrical Grid System Model

It may be desirable to couple the overall PWR system model to an electrical grid system model. In this case, the electrical system frequency deviation, δF, and the change in the tia line power flow, S $P_{\text {TIE }}$, previously used as forcing terms would become coupling terms. However some additional considerations must be dealt with.

An obvious restriction will be the maximum ruclear power. In this study, the percent of full nuclear power, $\% P_{N}$ (defined by equation (II.34) and (C.15)), should not exceed 100 .

Many of the components in a PWR nuclear plant are powered by the electrical system grid itself. Such components include the reactor coolant pumps. If the power supply to these components experiences an undervoltage or an underfrequency, it would cause the plant to trip and thus be isolated from the electrical grid system. For a typical PWR nuclear plant, an underfrequency of 56 Hz from the nominal 60 Hz or an undervoltage of 70 percent of the rated voltage will cause the plant to trip. However, if the undervoltage is obtained at a slow rate, then a time lag of 20 to 25 seconds can be experienced at 70 percent of the rated voltage before the plant will trip.

In this thesis the overall PWR system model was not coupled to an electrical grid system model. Therefore, the nonlinear effects of underfrequency, undervoltage, and maximum nuclear power were not considered.

If an electrical grid system model is coupled to the overall PWR system model, and the power supply to the PWR system components experiences an underfrequency or undervoltage which exceeds the requirements, then the turbine mechanical shaft power output of the PWR plant must be set equal to zero. That is, the PWR plant can no longer supply power to the electrical grid system if the electrical supply to the PWR system components is in this condition.

III. I Introduction

In Chapter II a high order PWR system model was presented which used 57 state variables to describe the system. It may be desirable to reduce the number of state variables which are needed to describe the system and thus reduce the complexity of the model. For example, if the only output desired of the system were the power delivered by the turbine for a power demand input, then a reduction in the order of the system might be desirable.

In this study, three major methods were pursued in reducing the order of the model. The first method used will be called the physical method. The equations used to describe the system are lumped parameter first order differential equations. If certain sets of these equations for the plant components could be combined into one equation, this would reduce the total number of equations needed to describe the overall system. In order to combine the equations, physical intuition must be used. For example, six delayed neutron groups might be combined into one delayed neutron group to describe the reactor $k i n e t i c s i n a ~ s i m p l e r ~ f o r m . ~$

The second method used is to take the see of linear equations in its state variable form and numerically reduce the order of the model. This could be performed on the high order model of Chapter II, or the physically reduced model which is also in a state variable formulation. This method has been pursued previously and was originally seen as a possible candidate for this study (Akinl).

The third method considered will be called purely empirical model reduction. This method would use available performance data from an operating plant and find the minimum number of coefficients needed to describe the input-output characteristics of the system (Kerlin ${ }^{17}$, Zwingelstein ${ }^{17}$, Upadhyaya ${ }^{17}$. However, this method is limited to available plant data. For example, if the desired input-output characteristics were the turbine shaft power produced for a power demand signal, that data must be available in order to use the purely empirical method. Another possibility would be to generate simulated data (for example, the results of the 57 th order model of Chapter II), and use these results as if they were real plant data. This method was not used in this study. However, if the necessary data were available, a purely empirical model reduction method would be an excellent candidate for further study.

In this chapter, the high order model of Chapter II will be reduced by physical methods. Then a numerical method of model reduction will be applied to the physically reduced low order model.
III. 2 Model Reduction by Physical Methods

The intent of this section is to show how the detailed high order PWR model presented in Chapter II can be reduced in a physical manner. All the models which have been presented previously will be reduced except the turbine-feedwater heater, and Pf controller models. These models will not be reduced becsuse they are already in a simplified form.

The high order reactor core model is described by fourteen equations. Incorporated in this model are equations which use sis
groups of delayed neutron precursors. These six groups of delayed neutrons can be reduced to one group of delayed neutrons. In order to do this, the delayed neutron decay constant must be defined to be :41 (III.1) $\lambda=\beta_{T} /\left[\sum_{i=1}^{6} \beta_{i} / \lambda_{i}\right]$.

The number of equations which describe the core neutronics and heat transfer can then be reduced by five. These resulting equations are
(IIT.2) $\frac{d \frac{\delta P}{P_{0}}}{d t}=-\frac{\beta_{T}}{\Lambda} \frac{S P}{P_{0}}+\lambda S C+\frac{\alpha_{F}}{\Lambda} \delta T_{F}$

$$
+\frac{\alpha_{c}}{2 \Omega}\left(\delta \theta_{1}+\delta \theta_{2}\right)+\frac{\beta_{T}}{\alpha} \delta \rho_{e x t}
$$

(III.3) $\frac{d \delta C}{d t}=\frac{\beta_{T}}{\Lambda} \frac{\delta P}{P_{0}}-\lambda \delta C$
(III.4) $\frac{d \delta T_{F}}{d t}=\frac{f P_{0}}{\left(m C_{P}\right)_{F}} \frac{\delta P}{P_{0}}+\frac{h A}{\left(m C_{P}\right)_{F}}\left(\delta \Theta_{1}-\delta T_{F}\right)$
(III.5) $\frac{d \delta \theta_{1}}{d t}=\frac{(1-f) P_{0}}{\left(m C_{p}\right)_{c}} \frac{\delta P}{P_{0}}+\frac{h A}{\left(m c_{p}\right)_{e}}\left(\delta T_{F}-\delta \Theta_{i}\right)$

$$
+\left(\frac{\dot{M}}{M}\right)_{C}\left(S T_{C L}-\delta \Theta_{1}\right)
$$

(III.6) $\frac{d S \theta_{2}}{d t}=\frac{(1-f) P_{0}}{\left(m C_{p}\right)_{c}} \frac{\sum p}{P_{0}}+\frac{h A}{\left(M C_{p}\right)_{c}}\left(\delta T_{F}-\delta \theta_{1}\right)$

$$
+\left(\frac{\dot{m}}{m}\right)_{c}\left(\delta \theta_{1}-\delta \theta_{2}\right)
$$

The next simplification that can be made on the high order core model is to assume that the upper plenum, hot leg, and UTSG inlet pie ~ nom volumes can be combined into one volume. This will allow the hot leg temperature to be represented by a single time constant. The same assumption can be made on the UTSG outlet plenum, cold leg, and core lower plenum. These time constants will be defined to be the hot and cold leg time constants respectively. The hot leg time constant can be written as

$$
\text { (III.7) } \tilde{L}_{H 2}=\frac{P_{a v e}}{m}\left[\frac{V_{U P}}{N U T S G}+V_{H L}+V_{P_{i}}\right]
$$

The cold leg time constant can be written similarly as

$$
\text { (III.8) } \tau_{c L}=\frac{P_{a u E}}{m}\left[V_{p_{0}}+V_{C L}+\frac{V_{L p}}{\text { NUTS }}\right] .
$$

The variables of equations (III.7) and (III.8) have been defined pres viously in Chapter II. Thus the equations of the hot and cold leg piping are

$$
\text { (III.9) } \frac{d \delta T_{H L}}{d t}=\frac{1}{\tau_{H L}}\left[\delta \Theta_{2}-\delta T_{H L}\right]
$$

$$
\text { (III.10) } \frac{d \delta T_{C L}}{d t}=\frac{1}{\tau_{C L}}\left[S T_{p}-\delta T_{C L}\right]
$$

where δT_{P} is the average temperature of the primary fluid in the UTSG.

The 15th order UTSG model as described in Chapter II was Ali's model D^{2}. In addition to model D , Ali also developed a model A . This model consists of a primary fluid lump, a heat conducting tube metal lump, and a secondary fluid lump. The equations will not be derived here (the reader should refer to reference 2 for this information). The derivation involves an energy balance on the subs cooled primary fluid lump which results in the primary fluid tem perature as a state variable. An energy balance is also made on the tube metal which results in the tube metal temperature as a state variable. The governing equation for the secondary fluid lump is obtained by applying mass balances for the water and steam components, a volume balance on all the secondary fluid in the whole steam genera* tor, and also an energy balance on the secondary fluid. Saturation conditions are assumed to exist throughout the secondary fluid lump. The resulting equation will have the steam pressure as a state variable. The weakness of this model is that it will not describe the downcomer water level. This may be important for some applications of the overall system model. However, for applications where the primary concern of the overall system model is to describe the turbine shaft power as accurately as possible, the downcomer level will not need to be described.

In Chapter II, a three element controller model was shown coupled to the high order UTSG model. This model, which is described by six equations, can be eliminated if the feedwater flow is assumed to be controlled perfectly. Perfect feedwater flow control, as defined in

Chapter II, means that at every instant, the feedwater flow is assumed equal to the steam flow. A detailed study has been done previously on the effect of this assumption (Cherng ${ }^{6}$). For the application of this model, this assumption is valid. In addition, the steam flow will be expressed as in equation (II. 24). The 20 equations of the combined high order UTSG and three element controller model will then be reduced to three equations. The resulting equations are:

$$
\text { (III.11) } \begin{aligned}
\frac{d \delta T_{p}}{d t} & =-\left[\frac{1}{\tau_{p}}+\frac{U_{p m} S_{p m}}{m_{p} C_{p 1}}\right] \delta T_{p}+\left[\frac{U_{p m} S_{p m}}{M_{p} C_{p 1}}\right] \delta T_{m} \\
& +\left[\frac{1}{\tau_{p}}\right] \delta T_{H L} \\
\text { (III.12) } \frac{d \delta T_{m}}{d t} & =\left[\frac{U_{p m} S_{p m}}{M_{m} C_{m}}\right] \delta T_{p}-\left[\frac{U_{p m} S_{p m}+U_{m s} S_{m s}}{M_{m} C_{m}}\right] \delta T_{m} \\
& +\left[\frac{U_{m s} S_{m s}}{M_{m} C_{m}}\right] \frac{\partial T_{s q t}}{\partial P_{s}} \delta P_{s}
\end{aligned}
$$

$$
\text { (III.13) } \frac{d \delta P_{s}}{d t}=\frac{1}{K}\left\{U_{m s} S_{m s} \delta T_{m}-\left[U_{m s} S_{m s} \frac{\partial T_{s a t}}{\partial P_{s}}\right.\right.
$$

$$
\left.+W_{s} \frac{\partial h_{\partial}}{\partial P_{s}}+\epsilon_{0}\left(h_{\delta}-h_{F w}\right)\right] \delta P_{s}+W_{s} C_{P Z} \delta T_{F W}
$$

$$
\left.-W_{s}\left(h_{g}-h_{F w}\right) \frac{\delta t}{\epsilon_{0}}\right\}
$$

where $\quad K=M_{s w} \frac{\partial h_{f}}{\partial P_{s}}+M_{s s} \frac{\partial h_{c}}{\partial P_{s}}-M_{s s} \frac{\partial h_{f}}{\partial V_{f}} \frac{\partial V_{f}}{\partial P_{s}}$
and $\tau_{p}=\frac{M_{p}}{W_{p}}$.

The pressurizer pressure control system was described previously in Chapter II by two equations. The only feedback this model has on the rest of the system is through the pressure coefficient of reactivity. Because this coefficient is so small, (typically on the order of $1 \times 10^{-6} / \mathrm{psi}$) this model which is described by two equations, can simply be eliminated by assuming this coefficient to be equal to zero.

The reactor control system model was previously described by six state variables. In addition, subroutine DISTRB in MATEXP had to be used to simulate the different rates of control rod motion and the non-linearities of the reactor control system. Two state variables in this model, the outputs of RTDs that measure hot and cold leg temperatures will be ignored. This will not result in any large error in the operation of the reduced reactor control system model. The remaining four equations in the complete model are used to describe a temperature error signal. This temperature error signal is then sent to DISTRB to change the forcing term for reactivity induced by control rods. The purpose of the reactor control system is to force the average reactor coolant temperature tc follow the steady state program (see page 38) as closely as possible. This is equivalent to saying that the reactor control system reduces the temperature error signal to a minimum.

A simplification can be made on the ractor control system model by assuming that integral control action is taken on the difference between the average temperature set point for a change in power level and the actual average reactor coolant temperature. The result of integral control is that the error signal used for the control action will be driven to zero. In this case, the error signal is the dif-
ference in the temperature set point and the average temperature. In equation form this can be written as

$$
\begin{equation*}
\frac{d \delta \rho_{\text {ext }}}{d t}=K\left[\delta T_{\text {set }}-\delta T_{\text {ave }}\right] \tag{III.14}
\end{equation*}
$$

where δ (ext is the reactivity induced by the control rods. The average temperature set point is defined by the steady state program. In perturbation form this can be written as
(III.15) $\delta T_{\text {set }}=K_{1} \delta \% P_{s}$
where $\delta \mathcal{N P}_{2}$ is the change in percent of full power delivered to the secondary fluid as defined by equation (II.37), and K_{1} is equal to the gain of the average temperature set point transfer function as defined by equation (II.32). K_{1} is also equal to the slope of the average temperature line of the steady state program (see page 38). At steady state conditions, $\frac{d \delta f e x t . i s ~ e q u a l ~ t o ~ z e r o . ~ T h i s ~ m e a n s ~ t h a t ~ a t ~}{d t}$ steady state, $\delta T_{\text {set }}=\delta T_{\text {Gu e }}$. Thus, if integral control action is used, as given by equation (III.14), the criterion for the reactor control system will be satisfied. The remaining task is to define a K that will simulate as closely as possible the more detailed reactor control system.

K can be broken down into two factors so that $\mathrm{K}=\mathrm{K}^{\prime} \mathrm{x} \mathrm{K}^{\prime \prime}$. It is desirable for the units of K to be (dollars $\left./{ }^{\circ} \mathrm{F}-\mathrm{sec}\right)$. Since the control rods move in discrete steps, the units of K^{\prime} can be set equal to (dollars/step). The magnitude of K^{\prime} will be identically equal to the
value of ROWSTP as defined in Section II.4. Therefore, $K^{\prime \prime}$ must be set equal to an "average" control rod rate of movement with units of (steps/sec $-^{\circ}$ F). The value of $\mathrm{K}^{\prime \prime}$ will be assumed equal to 0.1 (steps/sec ${ }^{\circ}$ F). The effect of this assumption can be seen in Figure 3.1. This figure is a duplicate of Figure 2.15 on page 41 except the slope of the dashed line is equal to $\mathrm{K}^{\prime \prime}$.

The turbine-feedwater heater and Pf controller models will not be reduced. Therefore, the high order model described by 57 state variables in Chapter II has been reduced to 25 state variables by thysical methods. Table XVI is a description of the state variables in their numerical order in the model. All the input parameters necessary to calculate the system coefficients will be the same as for the high order model except the following

1. $\lambda=$ Delayed neutron decay constant $=$

2. $U_{P_{m}}=$ steam generator overall heat transfer coefficient from mri-

$$
\begin{aligned}
& \text { mary fluid to metal }= \\
& {\left[\frac{1}{H P}+\left(\frac{T O D-2 T m T}{24 K M}\right) \ln \left(\frac{T O D-T M T}{T O D-2 T M T}\right)\right]^{-1.0}}
\end{aligned}
$$

3. $U_{m s}=$ steam generator overall heat transfer coefficient from metal

$$
\left.\left[\frac{1}{H S 2}-\frac{\text { to secondary fluid }=}{24 K M}\right) \ln \left(\frac{T O D}{T O D-T M T}\right)\right]^{-1.0}
$$

4. $K=$ reactor control system gain $=R^{\prime} K^{\prime \prime}$

$$
\delta E / \epsilon_{0}
$$

5. $K_{2}=$ Pf controller gain $=\overline{\delta P_{m}}$ at steady state

Figure 3.1 Rod speed vs. temperature error signal. The low order model representation is shown by the dashed line.

LIST AND DESCRIPTION OF THE LON ORDER OVERALL PWR SYSTEM MODEL STATE VARIABLES

1. $\delta \mathrm{P} / \mathrm{P}_{\mathrm{o}} \quad$ Fractional change in nuclear power
2. $\delta C \quad$ Fractional change in delayed neutron precursor group
3. $\delta T_{\mathrm{F}} \quad$ Change in average fuel temperature of the core (${ }^{\circ} \mathrm{F}$)
4. $\delta \theta_{1} \quad$ Change in coolant node 1 of the reactor core (${ }^{\circ} \mathrm{F}$)
5. $\delta \theta_{2}$ Change in coolant node 2 of the reactor core (${ }^{\circ} \mathrm{F}$)
6. $\delta \theta_{\text {HI }} \quad$ Change in hot leg temperature $\left({ }^{\circ} \mathrm{F}\right)$
7. $\delta \theta_{\mathrm{C}} \quad$ Change in cold leg temperature (${ }^{\circ} \mathrm{F}$)
8. $\delta \theta_{\mathrm{P}} \quad$ Change in the average primary fluid temperature in the UTSG (${ }^{\circ} \mathrm{F}$)
9. $\delta T_{M} \quad$ Change in the average tube temperature in the UTSG (${ }^{\circ}$ F)
10. $\delta \mathrm{P}_{\mathrm{S}} \quad$ Change in the average steam pressure of the UTS¢ (psi)
11. Spext The reactivity induced by control rods (dollars)
12. $\delta \rho_{c} \quad$ Change in the density of the steam in the nozzle c chest ($1 \mathrm{bm} / \mathrm{ft}^{3}$)
סh
13. $\frac{c}{\mathrm{co}}$
Fractional change in the enthalpy of the nozzle chest ठW"
14. $\frac{2}{{ }_{2 "}^{\prime \prime}}$ Fractional change in the flow rate of steam entering
15. $\delta \rho_{R}$ Density of stear. in the reheater tuoe side ($1 \mathrm{bm} / \mathrm{ft}^{3}$)
16. $\frac{\delta h_{R}}{H_{R_{0}}}$ Fractional change in enthalpy of reheater tube side

TABLE XVI (continued)

17. $\frac{\delta W_{P R}^{\prime}}{\omega_{P R a}^{\prime}}$
18. $\delta Q_{R} \quad$ Heat transfer in the reheater shell to tube (M w-hr/sec)
19. $\frac{\delta W_{3}^{\prime}}{W_{20}^{1}}$
20. $\delta h_{\mathrm{FW}}^{\prime} \quad$ Cnange in the enthalpy of feedwater in heater 1 (B/Ibm)
21. $\delta T_{F W} \quad$ Change in feedwater temperature leaving heater 2 (${ }^{\circ} \mathrm{F}$)
22. $\frac{\delta H H_{2}}{W_{H P 2}}$

Fractional change in flow rate of fluid leaving heater 2 to heater 1
23. $\frac{\delta \varepsilon}{\varepsilon_{c}} \quad$ Fractional change in the main steam valve coefficient
24. ${ }^{-\delta P_{c}} \quad \begin{gathered}\text { Change } \\ (\text { puNw) }\end{gathered}$ in the integral of the ACE control signal
25. δF Change in the system frequency (Hz)
6. $S P M=$ Total heat transfer area of primary side to tubes $=H T A\left[\frac{T O D-2 T i n T}{T O D}\right]$
7. $S M S=$ Total heat transfer area of metal tubes to secondary fluid $=\mathrm{HTA}$
8. $M_{m}=$ mass of metal tubes

9. $M_{p}=$ mass of water inside tubes

$$
=\left[\frac{T O D}{12}-\frac{2 T M T}{12}\right]^{2}\left[\frac{3 H T A}{T O D}\right] R O P
$$

10. $M_{S W}=$ mass of secondary liquid $=(V S W)($ RUS $)$
11. $\mathrm{M}_{\mathrm{ss}}=$ mass of secondary steam $=$ VSS/VG

These values can be calculated from the input data for the high order model. The gain of the Pf controller must be reevaluated as in the high order model (see Section II.7). This gain is determined by running a case of the system model without the Pf controller for a 10 percent step in main steam valve coefficient. The value of K_{2} will $\delta E 1 \notin$ be defined to be $\frac{\overline{\delta P_{m}}}{}$ at steady state conditions. For the high order model, this gain turned out to be 1.2706 for a 100 percent power model. For the 100 percent power low order model, this gain was found to be 1.2136.

A computer program has been written co calculate the system coffficients for the isolated low order PWR model (Machado ${ }^{23}$). The turbine-feedwater heater and Pf controller model coefficients, as in Chapter II, are calculated by "hand." The input data is formed
exactly as the program described in Appendix A for the high order model. This will assure consistent design data is used when comparing the results with the high order model. The resulting numerical values for the system matrix coefficients for a typical 1200 Min plant at 100\% power are shown in Table XVII.

The forcing terms for the low order model are shown below

$$
\begin{equation*}
f(24)=\delta P_{\text {TIE }} \tag{III.16}
\end{equation*}
$$

$$
\begin{equation*}
f(25)=-\frac{1}{M}\left[\delta P_{T E}+\delta P_{D}\right] \tag{II.17}
\end{equation*}
$$

Therefore, the tie line power flow and power demand signal are two methods of disturbing the low order PWR model. Only one case will be presented in this section. Figure 3.2 shows the time response of the overall low order PWR system model to a 40.05 pu mi ($<50 \mathrm{Mm}$) step in the power demand signal. Figure 2.35 (page 118) and Figure 3.2 will be compared in Chapter IV.
III. 3 Model Reduction by Numerical Methods

In Section III. 2 the high order P RN model was reduced to a $25 t^{h}$ order model by physical methods. Several methods were considered in reducing the P WR model by numerical methods (Genesio ${ }^{10}$, Shieh ${ }^{33}$, Bosley $5,21, W_{i}{ }^{33}$, Milanese ${ }^{10}, L^{20}, ~ M i t r a{ }^{20}, J^{20}{ }^{20}$, Krishnamurthi ${ }^{19}$, Seshadri ${ }^{19}$, Bill e ${ }^{4}$, Sinh ${ }^{34,4}$, Arumugam ${ }^{3}$, Ramamoorty ${ }^{3}$, Bereznai ${ }^{34}$, Lees ${ }^{21,22,5}$, Devisor 8, Gibilaro ${ }^{22}$, Kropholler ${ }^{5}$, Neale ${ }^{5}$). The majority of these methods involved placing the responses of the state variables in a transfer function form (Laplace domain) before reducing the order of the model. In

TABLE XVII

LIST OF THE NUMERICAL VALUES OF THE LOW ORDER OVERALL PWR SYSTEM MODEL MATRIX COEFFICIENTS

Row	COL	COEFFICIENT	ROW	COL	COEFFICIENT
1	1	$-3.8536 E+02$	1	2	8.2246E-02
1	3	-5.1452E-01	1	4	$-5.5866 E+00$
1	5	$-5.5266 \mathrm{E}+00$	1	11	$3.8536 E+02$
2	1	$3.8536 E+02$	2	2	-8.2246E-02
3	1	2. $11137 E+02$	3	3	-2.5322E-01
3	4	2.5322E-01	4	1	$2.6185 E+00$
4	3	1.0292E-0i	4	4	$-3.6492 \mathrm{E}+00$
4	7	$3.54 E 2 E+00$	5	1	$2.6185 E+00$
5	3	1. C292E-01	5	4	3.4433E+00
5	5	$-3.5462 E+00$	6	5	$3.1321 \mathrm{E}-01$
6	6	-3.132 1E-01	7	7	-2.1411E-01
7	8	2.1411E-01	8	6	3.2502E-01
ε	8	$-1.6055 E+00$	8	9	1.2805E+00
9	8	$4.7874 E+00$	9	9	$-7.7818 E+00$
9	10	4. 1922E-01	10	9	$5.5986 E+00$
10	10	$-9.3331 E-01$	10	21	1.91405-01
10	23	-1.233EE+02	11	6	$-1.12505-04$
11	7	-1.1250E-04	11	10	$5.3816 E-06$
11	21	-8.0130E-06	11	23	$4.46905-03$

TABLE XVII (continued)

ROW	COL	COEFFICIENT	ROW	COL	COEFFICIENT
12	10	$2.49205-02$	12	12	$-1.6203 E+01$
12	13	$-3.6720 E+01$	12	15	1. $92905+00$
12	16	$5.87495+00$	12	23	$2.0730 E+01$
13	10	1.4870E-02	13	12	$-9.9553 E+00$
13	13	$-3.1153 E+01$	13	15	1.1785E+00
13	16	$3.5892 E+00$	13	23	1.2667E+01
14	12	$3.93005-01$	14	13	$8.8583 \mathrm{E}-01$
14	14	-5.0000E-0 1	14	15	$-4.6530 E-02$
14	16	-1.4176E-01	15	14	1. $0532 \mathrm{E}-01$
15	15	-2.7134E-01	15	16	-2.1010E-01
16	14	6.1613E-01	16	15	$-1.07475+\infty 0$
16	16	$-1.2757 E+00$	16	18	3.7648E-01
17	10	4. $0054 \mathrm{E}-04$	17	17	$-3.3333 E-01$
18	10	8.3500E-05	18	16	$-1.0102 \mathrm{E}+00$
18	17	7.8524E-03	18	18	-2.50005-0i
19	15	1.9020E-01	19	16	1. $4590 \mathrm{E}-01$
19	19	-1.0000E-01	20	10	-2.7006E-03
20	15	i. $3517 E+00$	20	16	$1.0365 E+00$
20	20	$-1.00005-01$	20	22	1. $35535+00$
20	23	$-2.14505+00$	21	10	-1.5830E-03
21	12	1. $33785+00$	21	13	$3.0142 \mathrm{E}+00$
21	14	-1.1006E+00	21	15	-7. $58388-01$
21	10	-3.7305-01	21	17	4.5818 E-31

TABLE XVII (continued)

ROW	COL	COEFFICIENT	ROW	COL	COEFFICIENT
21	20	$2.1930 E-02$	21	21	$-2.5000 E-02$
21	23	$-1.2579 E-00$	22	12	$4.3722 E-02$
22	13	$9.8510 E-02$	22	14	$-3.5970 E-02$
22	15	$-5.1750 E-03$	22	16	$-1.2240 E-02$
22	17	$1.4970 E-02$	22	22	$-1.0000 E-01$
23	23	$-5.0000 E+00$	23	24	$-6.0745 E+00$
23	25	$-2.0248 E+00$	24	25	$3.4167 E-01$
25	25	$-1.0000 E-01$			

Figure 3.2 Response of tho overall low order PWR system model for a -0.05 pulfr (-50 Nm) step in the power demand signal.

Figure 3.2 (continued)

Figure 3.2 (continued)

Figure 3.2 (continued)
this section, a numerical method for reducing the model will be pres sente which will be called the polézero deletion method. Then, the polézero deletion method will be applied to the 25 th order PWR model.

III. 4 Model Reduction by the Pole-Zero Deletion Method

If a system model is represented in state variable form, as in equation (II.21), then a Laplace transformation of the state variables can be applied and the resulting equation will be of the form
(III.18)

$$
[s I-A] \bar{x}(s)=\bar{f} g(s) .
$$

One method of solution to this linear algebraic equation is to use Cramer's rule. The form of the th row of the solution vector by using Cramer's rule is
(III.19) $\frac{x_{i}(s)}{g(s)}=\frac{B}{C}$
where $C=|s I \in A|$ and B is equal to C except the fth column of the matrix (sI $\sim A$) has been replaced by the vector of forcing conf ${ }^{\circ}$ ficients, \bar{f}, before calculating the determinant. The determinants, B and C, can be expanded and written in polynomial form. If the sola tion to the resulting polynomials were found, then equation (III.i9) could be written as

where the Z_{k} 's are the zeroes and the D_{e} 's are the poles; m is the
total number of zeroes, and n is the total number of poles. K ill be called the gain of the transfer functions.

The poles are equal to the eigenvalues of the system matrix A. 16 The problem is to find the zeroes of a desired transfer function. A method has been developed (Davison ${ }^{8}$, Bosley ${ }^{5}$) to find the zeroes of a state variable model. The zeroes of the ith row of the solution vector are the eigenvalues of the matrix formed by replacing the ith column of (sI 4 A) with the forcing vector. The form of this matrix is shown in the following equation
(III.21)

From equation (III. 2l) it is easily seen that the matrix eiement of
the th row and th column is equal to f_{i} and does not have an s pesent. A standard eigenvalue routine (Cope ${ }^{7}$, Dunphey ${ }^{7}$) will take the original matrix A and perform the operation (sI - A) before finding the eigenvalues. Therefore, the matrix element of the th row and th column will be automatically set equal to (s $-\mathrm{f}_{\mathrm{i}}$). This means that the standard eigenvalue routine would result in some "undesired solutions" to the determinant B. If the forcing vector is arbitrarily multiplied by a "large" constant, which will be called HCRIT, the matrix elements of the th column will become "large." Then if the eigenvalues of this matrix are found, there will be some numbers that are large relative to the other eigenvalues. These large undesired solutions can then be disregarded and the remaining eigenvalues will be the zeroes. There is no guarantee that the correct eigenvalues have been obtained for the zeroes. Therefore, the results of this method must be compared to other methods of solution in order to be assured of the correct zeroes.

The gain of the transfer function c an be found by applying the final value theorem ${ }^{16}$ to equation (III.20). If it is assumed that the forcing vector is applied as a unit step input, then $s(s)=1 / s$. The result will be

and therefore the gain can be written as
(III.23)

$$
K=x(t=\infty)(-1)^{n-m} \frac{\prod_{l=1}^{n} P_{l}}{\prod_{k=1}^{m} z_{k}}
$$

The final value of the state vector can be found by setting the derivative vector of equation (III.22) equal to zero and solving for x. In equation form this can be written as

$$
\begin{equation*}
\bar{x}(t=\infty)=-A^{-1} \bar{f} \tag{III.24}
\end{equation*}
$$

Then equation (III.24) is substituted into equation (III.23) to get the gain of the transfer function.

Every quantity in equation (III.20) can now be obtained. A computer code called REDUCE has been written that uses this method. The instructions for the use of this code are given in Appendix G.

After the response is written as in equation (III.20), mind n can be reduced by deleting poles and zeroes that are "close" to che same value. Two problems arise in doing this. First, the poles and zeroes have real and imaginary parts. And second, the poles and zeroes are found by an eigenvalue routine on a digital computer. Thus, the resulting numerical values of the poles and zeroes may not be found exactly due to the limited number of digits allowed by the machine. Thus, this method is highly dependent on the type of compouter used. The computer reed in this study as the DEC System 10 at The University of Tennessee. The REDUCE code is executed in double
precision arithmetic. Therefore, approximately 16 digits of accuracy can be expected.

The following algorithm was used to delete poles and zeroes.

1. Determine the mantissa and exponent of the real part of all the poles and zeroes. The mantissas will have a value between 1.0 and 10.0 .
2. Check to see if any pole-zero pair combination has a real part less than an input parameter LCRIT. This is because occasionally a pole or zero may be found which is close to zero. If a pole is only slightly positive, the response would be unstable. Therefore, if a pole-zero pair of a "small" value is found, it will be deleted. In this study a typical value used for LCRIT is 1.0×10^{-10}.
3. Deteraine whether any pole-zero pair has the same exponent. Compare all pole-zero pair combinations not previously deleted. Store these pole-zero pairs as possible candidates for deletion and continue to step 4.
4. Determine whether the absolute value of the difference between the mantissas of this pole-zero pair'is less than an input parameter EPIL. If not, keep comparing all pole-zero pairs with the same exponent against each other until all combinations of pole-zero pairs, which have been stored from step 3, have been compared. If so, go to step 5.
5. If step 3 and step 4 pass, or if step 2 alone passes, then delete that pole-zero pair.
6. Repeat step 2 through 5 until no more poie-zero pairs can be deleted.

Steps 3 and 4 are carried out at the option of the user of REDUCE. Step 2 is always carried out.

The arbitrarily large number which has been called HCRIT is not easily found. It can have a value typically in the range of 10^{15} to 10^{50}. The number of zeroes, m, appears to be a function of the number of elements appearing in the ith row for the x_{i} response. That is $m \quad n$ - (number of non-zero terms in the ith row). If any eigenvalue appears that is greater than (HCRIT) ${ }^{n-m}$, then it should be thrown away.

Another problem associated with calculating the gain K is that it may not work if there is not an element appearing on all the diagonal positions. If it is impossible to rearrange the rows of the matrix to achieve this condition before using the REDUCE program, then it may still be possible to find the steady state value of the state variable desired. This is because the vector can be evaluated without calculating the inverse matrix. This is done by placing the matrix A in upper triangular form and back substituting to find the solution. If a zero diagonal is still present, the solution of that row cannot be found. However, not all the remaining back calculations will depend on this solution and some, if not all, of the remaining solutions might be found.

After the pole-zero pairs have been deleted, then the gain constant K must be reevaluated for the reduced representation. This is to assure that the steady state behavior for the reduced representation will be equal to the full representation.

The computer program REDUCE wili then calculate the frequancy response for both the full and reduced representation. REDUCE will
also calculate the time response for a step input for both the full and reduced representation. The process can then be repeated as many times as desired.

The pole-zero deletion method can now be applied to the 25 th order P P R model presented in Section III.2. The first observation of this model is that the system does not have diagonal elements on rows 11 and 24. It is not coincidental that these rows correspond to the integral control action taken by the reactor and Pf controllers respectively. In order to set the system matrix in a form that can be used by the REDUCE program, the following steps were taken.

1. Ignore equation 25 so that the electrical system frequency, δ, will be a forcing function.
2. Ignore the integral control action of the ACE signal so that equation 24 will also be eliminated. Now. the only forcing function appears in equation 23 and the system is now 23 rd order rather than 25 th.
3. Change state variable 1 which is $\frac{\delta P}{P_{0}}$ to $-\frac{\delta P}{P_{0}}$. This will cause the following matrix elements to change sign: (1,2), (1,3), $(1,4),(1,5),(1,11),(2,1),(3,1),(4,1),(5,1)$. This is to assure that negative diagonal elements will appear everywhere after step 5 is taken.
4. Change state variable 5 which is $\delta \Theta_{2}$ to $-\delta \theta_{2}$. This will cause the following matrix elements to change sign: (5,l), $(5,3),(5,4),(1,5),(6,5)$. This is to assure that negative diagonal elements will appear after step 5 is taken.
5. Interchange the matrix rows in the following manner

Existing Row	Modified Row
	11
11	6
6	5
5	1

This is done to assure that a diagonal element will appear on every row of the matrix.

Now the matrix is in a form that can be used by REDUCE. Table XVIII is a list of the 23 rd order system matrix used by REDUCE. As an example of the use of this method, the transfer function of fractional change in nuclear power for a change in electrical system frequency can be found. In equation form this will be

Then this transfer function will be reduced by deleting poles and zeroes. The REDUCE program deleted poles and zeroes 17 times with increasing values of the input parameter EPIL until 17 pole-zero pairs were deleted. A value of HCRIT for this case was chosen to be 5×10^{20} by trial and error. In order to assure that this value of HCRIT is correct, the results of REDUCE must be compared to results from similar computer programs such as MATEXP ${ }^{25}$ or SFR3 ${ }^{30}$. A listing of the input data used for this case is included in Appendix G. A listing of the resuiting poles and zeroes for the 23 rd order transfer function of fractional change in nuclear power vs. change in elestrical system frequency is shorin in Table XIX. The gain factor K

LIST OF THE NUMERICAL VALUES OF THE 23rd ORDER MODEL MATRIX COEFFICIENTS USED

IN THE EXAMPLE CASE OF THE REDUCE COMPUTER CODE

ROW	COL	COEFFICIENT	ROW	COL	COEFFICIENT
1	1	$-2.61905+\infty 0$	1	3	1.0290E-01
1	4	3.4430E+00	1	5	$3.5460 E+00$
2	1	$-3.8540 E+02$	2	2	-8.2250E-02
3	1	$-2.4140 E+02$	3	3	-2.5320E-01
3	4	$2.532 C \leq-01$	4	1	$-2.6100 E+00$
4	3	1.0200E-01	4	4	$-3.64905 \div 0$
4	7	$3.54605+00$	5	5	-3.1320E-01
5	6	-3.1320E-01	6	6	$-1.1250 E-94$
ϵ	7	$-1.12505-04$	6	10	5.3820E-06
6	21	$-8.0130 E-06$	6	23	$4.4700 \mathrm{E}-03$
7	7	-2.141CE-01	7	8	2.1410E-01
8	6	3.2500E-0i	8	8	$-1.50505+00$
8	9	$1.28005+00$	0	8	$4.78705+00$
9	9	-7.7820E-00	9	10	4. 1920E-01
10	9	5.5CSOE+00	10	10	-9.33305-01
10	21	1.9140E-01	10	23	-1. 23 LOE 52
11	1	$-3.8540 E+02$	17	2	$-2.2250 \geq-02$
11	3	$6.14505-31$	11	4	$5.5870 \pm+00$
11	5	-5.58705+00	i	11	-3.8540E+0?

TABLE XVIII (continued)

Row	COL	COEFFICIENT	ROW	COL	COEFFICIENT
12	10	2.4020E-02	12	12	$-1.6290 E+01$
12	13	$-3.67205+01$	12	15	1.9290E+00
12	16	$5.8750 E+00$	12	23	2.0730E +01
13	10	1.4870E-02	13	12	$-9.9550 E+00$
13	13	$-3.1150 E+01$	13	15	1.1780E+00
13	16	$3.5890 E+00$	13	23	1.2670E+01
14	12	3.9300E-01	14	13	$8.85805-01$
14	14	-5.000CE-01	14	15	-4.6530E-02
14	16	$-1.4180 E-01$	15	14	1.9530E-01
15	15	-2.7130E-01	15	16	-2.1010E-01
16	14	6.1610E-01	16	15	-1.0750E+J0
16	16	-1.2770E+00	16	18	$3.7650 \mathrm{E}-01$
17	10	4. CO60E-O4	17	17	$-3.3330 E-01$
18	10	8. 3500E-05	18	16	$-1.0100 \mathrm{E}+00$
18	17	$7.8520 E-03$	18	18	-2.5000E-01
19	15	$1.9020 E-01$	19	16	1.4590E-01
19	19	-1.0000E-01	20	10	-2.70105-03
20	15	1.3520E+00	20	16	1.0370E+00
20	20	-1. COOOE -01	20	22	1.3050E+00
20	23	$-2.1460 \Xi+\infty 0$	21	10	$-1.58305-03$
21	12	1. $33805+00$	21	13	$3.0140 E+00$
21	14	$-1.1010 \pm+00$	21	15	$-1.58405-01$
21	16	$-3.7430 E-01$	21	17	4.5820E-01

TABLE XVIII (continued)

ROW	COL	COEFFICIENT	ROW	COL	COEFFIC IENT
21	20	$2.1930 E-02$	21	21	$-2.5000 E-02$
21	23	$-1.2580 E+00$	22	12	$4.3720 E-02$
22	13	$9.8510 E-02$	22	14	$-3.5970 E-02$
22	15	$-5.1760 E-03$	22	16	$-1.2240 E-02$
22	17	$1.4070 E-02$	22	22	$-1.0000 E-01$
23	23	$-5.0000 E+00$			

TABLE XIX

LIST OF THE NUMERICAL VALUES OF THE POLES AND ZEROES FOR THE COMPLETE 23rd ORDER TRANSFER FUNCTION OF FRACTIONAL CHANGE IN NUCLEAR POWER vs ELECTRICAL SYSTEM FREQUENCY

TABLE XIX (continued)

	REAL PART	IMAGINARY PART
	$-0.3656658346498506 \mathrm{D}+01$	$0.0000000000000000 \mathrm{D}+00$
9	$0.1538612815401276 \mathrm{D}+01$	$-0.2856448344664414 \mathrm{D}+01$
10	$0.1538612815401276 \mathrm{D}+01$	$0.2856448344664414 \mathrm{D}+01$
11	$-0.1075726161143901 \mathrm{D}+01$	$-0.5097785431205009 \mathrm{D}+00$
12	$-0.1075726161143901 \mathrm{D}+01$	$0.5097785431205009 \mathrm{D}+00$
13	$0.4068989483444778 \mathrm{D}+01$	$0.0000000000000000 \mathrm{D}+00$
14	$-0.1316323892945096 \mathrm{D}+00$	$0.0000600000000000 \mathrm{D}+00$
15	$-0.1443983273816879 \mathrm{D}+00$	$0.0000000000000000 \mathrm{D}+00$
16	$-0.4422183469784892 \mathrm{D}-01$	$0.0000000000000000 \mathrm{D}+00$
17	$-0.3492260545793666 \mathrm{D}+00$	$0.0000000000000000 \mathrm{D}+00$
18	$-0.3338528652401436 \mathrm{D}+00$	$0.0000000000000000 \mathrm{D}+00$
19	$-0.1011449306052564 \mathrm{D}+00$	$0.0000000000000000 \mathrm{D}+00$
20	$-0.3146752200148401 \mathrm{D}+00$	$0.0000000000000000 \mathrm{D}+\mathrm{O} 0$
21	$-0.8224999997764826 \mathrm{D}-01$	

for the 23 rd order representation is 1.85×10^{-9}. The steady state value of $\frac{\delta P}{\gamma_{0}}$ for a 1 Hz step input is -0.2953 .

A set of three surfaces can be found from the results of this case. The frequency response is found by substituting $\boldsymbol{W}_{\boldsymbol{U}}$ for s in the transfer function. The natural log of the magnitude of the frequency response is equal to the Z axis of surface 1 . The X axis is equal to the natural \log of the frequency $\boldsymbol{\omega}$. The Y axis is equal to the number of pole-zero pairs deleted starting from zero and increasing to 17. Figure 3.3 is a representation of surface 1 as produced by the SURFACE II 36 program available from The University of Tennessee Computing Center. (Instructions for the use of this program are available from The University of Tennessee Computing Center.) Figure E. 7 in Appendix E is also surface 1 as seen from another view.

The phase angle, in radians, of the frequency response is equal to the Z axis of surface 2. The X axis is equal to the natural \log of the frequency \boldsymbol{U}. The Y axis is equal to the number of pole-zero pairs deleted. Figure 3.4 is a representation of surface 2. Figure E. 8 in Appendix E is also surface 2 as seen from another view.

The time response for a unit step input can be found by multiplying the transfer function through by $g(s)=1 / \mathrm{s}$ and performing an inverse Laplace transform. The Z axis of surface 3 is equal to the fractional change in nuclear power. The X axis is the time in seconds. The Y axis is the number of pole-zero pairs deleted. Figure 3.5 is a representation of surface 3. Figure E. 9 in Appendix E is also surface 3 as seen from another view.

From Figures 3.3, 3.'4, 3.5, E.7, E.3, and E.9 it will be possible to estimate the maximum number of pole zero pairs that can be deleted.

This is equivalent to estimating the minimum order of the transfer function of fractional change in nuclear oower for a change in electrical frequency by the pole-zero deletion method.

At low frequencies Figures 3.3 and E. 7 indicate there need be no maximum for deletion of pole-zero pairs. This is primarily due to the fact that the gain factor, K, has been recalculated each time a polezero pair was deleted. As the surface is examined toward the higher frequencies, it appears that only 14 pole-zero pairs can be deleted before the surface is far from the response of the initial modei having no pole-zero pairs deleted.

Figures 3.4 and E.8, which show the phase angle as a function of frequency and number of pole-zero pairs deleted, will not be affected by the recalculation of the gain factor K. Therefore, at low frequencies the inconsistency between the response at no pole-zero pair deletion and the response at higher pole-zero pair deletion happens sooner. From these figures, it appears that the maximum number of pole-zero pairs that should be deleted is 11 .

Figures 3.5 and E.9, which show the fractional change in naclear power for a unit step input of electrical frequency as a function of time and number of pole-zero pairs deleted, shows a dip in the surface in the pole-zero pair deletion ranges of 7 to 9 and 12 to 14 . This indicates that this method may give a "bad" response at a point in the pole-zero pair deletion and then obtain a "good" response as more pole-zero pairs are deleted. This can be attributed to the fact that the pole-zero deletion algorithm only considers the real parts of the numerical values of the poles and zeroes. Therefore it is possible that a pole-zero pair could be deleted that have unequal imaginary
parts. This can be checked by looking at the printed output of the REDUCE program. However, REDUCE has not been automated to tell the user when this has happened, or to correct itself when this happens. Also it is possible that a pole complex conjugate pair or a zero complex conjugate pair would not be both deleted at the same time. This would leave an imaginary part of either a pole or zero without its complimentary complex conjugate when calculating the time and frequency response.

From the investigation of these surfaces, it appears that the minimum order of the fractional change in nuclear power to a change in electrical frequency transfer function hould be about 11. This is if the interest is to match the time and frequency responses as closely as possible. If the interest is only to watch the gain of the frequency response or the time response, then the pole-zero deletion method appears to obtain a value of 9 as the minimum order for this transfer function. A list of the numerical values of the poles and zeroes for the reduced llth order transfer function of fractional change in nuclear poker vs electrical system frequency is given in Table XX.

This procedure can be applied to any linear state variable model. Further investigation of other numerical methods might result in further minimization of the system order than what can be obtained by the pole-zero deletion method.

The main disadvantage of this method is that only one state variable response can be obtained. This means that if an algebraic variable needed to be obtained, which might depend upon more than one state variable, then this method would get quite complicated. For

TABLE XX

> LIST OF THE NUMERICAL VALUES OF THE POLES AND ZEROES FOR THE REDUCED 11 th ORDER TRANSFER FUNCTION OF FRACTIONAL CHANGE IN NUCLEAR POWER vS ELECTRICAL SYSTEM FREQUENCY

REAL PART IMAGINARY PART
A. Poles
$1 \quad-0.8161078603294609 \mathrm{D}+00$
$2-0.8161078603294609 \mathrm{D}+00$
$3 \quad-0.4888984254503823 \mathrm{D}+01$
$4 \quad-0.4314690614323917 \mathrm{D}+00$
$5 \quad-0.2003087512600324 \mathrm{D}+00$
$6 \quad-0.2150423998650362 \mathrm{D}+00$
$7 \quad-0.1000127856222936 \mathrm{D}+00$
$8 \quad-0.2532307050510290 \mathrm{D}-01$
$9 \quad-0.1729322606608031 \mathrm{D}-03$
10 -0.9999999962747097D-01
$11-0.5000000000000000 \mathrm{D}+01$

$$
\begin{array}{r}
-0.6027362789131288 \mathrm{D}+01 \\
0.6027362789131288 \mathrm{D}+01 \\
0.000000000 \mathrm{C} 000000 \mathrm{D}+00 \\
0.2281844295007351 \mathrm{D}-02 \\
0.0000000000000000 \mathrm{D}+00 \\
0.0000000000000000 \mathrm{D}+00 \\
0.4030307367457476 \mathrm{D}-02 \\
0.00000000000000000 \mathrm{D}+00 \\
0.0000000000000000 \mathrm{D}+00 \\
0.0000000000000000 \mathrm{D}+100 \\
0.0000000000000000 \mathrm{D}+00
\end{array}
$$

B. Zeroes

1	$0.6594037552966448 \mathrm{D}+02$	$0.0000000000000000 \mathrm{D}+00$
2	$-0.6922348150124941 \mathrm{D}+01$	$-0.1818512955169113 \mathrm{D}+01$
3	$-0.6922348150124941 \mathrm{D}+01$	$0.1818512950169113 \mathrm{D}+01$
4	$-0.3656658346498506 \mathrm{D}+01$	$0.000000000000000 \mathrm{D}+00$
5	$0.1538612815401276 \mathrm{D}+01$	$-0.2856448344654414 \mathrm{D}+01$
6	$0.1538512815401276 \mathrm{D}+01$	$0.2856448344564414 \mathrm{D}+\mathrm{O} 1$
7	$-0.1316823892945096 \mathrm{D}+00$	$0.0600000000000000 \mathrm{D}+00$
8	$-0.1443983273816879 \mathrm{D}+00$	$0.0000000000000000 \mathrm{D}+00$
9	$-0.4422183469784892 \mathrm{D}-01$	$0.000000000000000 \mathrm{D}+00$

example, let it be assumed that it is desired to find the turbine mechanical shaft power change for a change in electrical frequency transfer function. Before the pole-zero deletion method can be used, five state variable transfer functions must be obtained. This is because the mechanical shaft power depends on state variable number 12, 13, 15, 16, and 19 as presented in Section III.2. Then after these transfer functions have been obtained, they must be algebraically combined into one polynomial and then the zeroes must be factored out again before pole-zero pairs can be deleted.

Another disadvantage to the pole-zero deletion method is that it is very easy to obtain the incorrect zeroes. This is due to the uncertainty in choosing the correct input parameter HCRIT. Often the resulting frequency responses and time responses appear to be correct, but they $k i l l$ still be incorrect. Therefore, it is necessary to have a backup method of obtaining frequency response and time response such as MATEXP 25 and SFR3 30 computer codes, so that the correct response is certain.

The system matrix of the 25 th order model of Chapter III could not be rearranged so that the final values could be calculated by the REDUCE program for a power demand input signal. In addition, as has been previously pointed out, the turbine mechanical shaft power is calculated from five state variables. REDUCE has been written to calculate only one state variable response at a time. A recommendation for the improvement of the REDUCE program to handle this problem is given in Chapter V. Because of these problems, a transfer function of the turbine mechanical shaft power for a power demand input or electrical system frequency input could not be obtained in
this study. However, this chapter has demonstrated the use of the pole-zero deletion method of system reduction.

A COMPARISON OF HIGH AND LOW ORDER PHYSICAL MODELS

IV.l Introduction

In Chapter III, two methods of reducing the high order model were presented. The first method was called the "physical method." I'his method resulted in reducing the 57 th order $P W R$ system model presented in Chapter II to a 25 th order system model. The second method was called the pole-zero deletion method. This method was applied to the transfer function of fractional change in nuclear power for a change in electrical system frequency. This transfer function was originally a $23 r d$ order model and it was found in Chapter II that it could possibly be reduced to a 9 th order representation.

The reduced model by the pole-zero deletion method was compared to the original model in Chapter III by developing a three dimensional surface from time and frequency response calculations. As more polezero pairs were deleted, a point was attained where the reduced response no longer resembled the full order response.

The physically reduced model has not been compared to the high order model of Chapter II. The intent of this chapter is to compare the 25 th order PWR system model of Chapter III with the 57 th order PWR system model of Chapter II and make improvements on the low order model if possible. It is desired to have a low order model so that a simpler representation of the $P W R$ system can be achieved.

IV. 2 The Basis For Comparison

In order to compare the high order model with the physically
reduced lou order model, a choice must be made of the state variables and algebraic variables which are coumon to both models. In this study, the following variables $x e r e$ chosen as a basis for comparison

1. δP_{M} The change in turbine mechanical shaft power in units of megawatts
2. Spert The reactivity change induced by the control rods in units of cents
3. To P_{M} The percent of full nuclear power
4. To P_{s} The percent of full power delivered by the secondary fluid
5. $S T_{F}$ The change in fuel temperature in degrees Fahrenheit
6. $S P_{s}$ The change in steam pressure in units of psi
7. SWEW The change in feedrater flow rate in units of lbm/sec
8. SWS The change in steam flow rate in units of $1 \mathrm{bm} / \mathrm{sec}$ st/to The fractional change in stean valve coefficient
9. STEW The change in UTSG inlet feedwater temperature in degrees Fahrenheit
10. $\delta T_{C L}$ The change in coid leg temperature in degrees Fahrenheit
11. $\delta T_{H L}$ The change in hot leg temperature in degrees Fahrenheit
12. δP_{C} The change in the integral of the ACE signal in units of pumi-sec
13. SF The change in electrical systam frequency in Hz_{z}
14. STHP The change in the high pressure turbine torque int units of $f t-1 b f$
15. $\delta T_{L p}$ The change in low pressure turbine torque in units of $f t-1 b f$

In all the figures of this chapter, the high order model response is represented by a solid line. The low order model response is represented by + characters.
IV. 3 Discussion of Figure 4.1 and Figure 4.2

The first case presented will be for a -0.05 puMw (-50 Mw) step in the power demand signal. Figure 4.1 shows the response of the 16 basis variables of both the high order and low order models for a -0.05 puMw step in power demand. The solid line in Figure 4.1 is identical with the results shown in on page 120 and the line designated by crosses is identical with the results shown in Figure 3.2 .

The turbine shaft power appears to attain the desired power change of 50 Mw almost immediately. A more detailed look at the first 20 seconds of the turbine power is shown in Figure 4.2. It appears that both the high order and low order model give the same result for the turbine power. This is plausible since both models contain the same turbine representation. However, the effect of steam pressure upon the turbine model will be differant for the two models.

The control rod reactivity is very different in the two models. This is primarily due to the nonlinear reactor control system representation in the high order model. The high order reactor controller stops moving the rods after the reactivity is reduced by 7.560 cents. This is because the temperature error signal has fallen within the deadband. The low order reactor controller, on the other hand, will remove reactivity until the temperature error signal is zero.

Figure 4.1 Response of high and low order models for a -0.05 puriv step in power demand.

Figure 4.1 (continued)

Figure 4.1 (continued)

Figure 4.1 (continued)

Figure 4.2 First twenty seconds of Figure 4.1.

The percent of full nuclear power response of the low order model is much "smoother" than that of the high order model. This is primarily due to the nonlinear reactor controller of the high order model.

The percent of full power delivered to the secondary fluid response for the low order model is almost identical to the high order model response. The main difference is during the first 100 seconds of the response. The "dip" in the high order response is due to the feedwater flow. This dip arises due to the downcomer level error signal (see Figure 2.10 page 30). Thus the assumption of perfect feedwater flow control for the low order model will not account for changes in controlled feedwater flow due to changes in downcomer level. This will ultimately affect the reactor control system since the percent of full power delivered to the secondary fluid is an input to the reactor control system.

The fuel temperature response for the low order model is very similar to the high order model response. Any inconsistency is again primarily due to the nonlinear reactor control system of the high order model.

The steam pressure response for the low order model is different from the high order model response. This can be attributed to the nonlinear control system of the high order reactor controller, and the Pf controller. The low order model reactor controller is different from the high order mociel reactor controller because it will drive the average reactor coolant temperature more toward the average temperature set point. This means that if the average reactor coolant temperature is more negative (which it is in this case), the steam
pressure deviation will ultimately be less positive at steady state. However, during the transient, the steam pressure inconsistency is largely due to the different rates of reactivity change of the high order model, दُhereas the lok order model has a single rate of reactivity change. The Pf controller kill also affect the steam pressure. The output of the Pf controller is the fractional change in the steam valve coefficient. In this case, the fractional change in valve coefficient is larger for the low order model than the high order model during the first 100 seconds of the response. The high order model response of fractional change in valve coefficient becomes greater than the low order model response after approximately 100 seconds. This kill cause the response of steam pressure to be greater for the low order model during the first 100 seconds than the high order model response. After approximately 100 seconds, the high order response of steam pressure then becomes greater than the low order model response. Further discussion of the effect of the valve coefficient rill follox.

The feedwater flow difference during the first 100 seconds has already been attributed to the assumption of perfect feedwater flow, which does not consider dokncomer level deviation as part of the feedwater flow control.

The steam flor rate response for the low order model is very similar to the high order model response. This can be attributed to the Pf controller. The Pf controller rill force the steam flow to achieve the desired power level out of the turbine. Because the turbine representation is the same for both models, the steam flow change must be the same to achieve the same turbine power change.

The change in steam vaive coefficient is very close for both models. The difference arises from the fact that the steam flow is the same for both cases. The steam flow is proportional to steam pressure and steam valve coefficient (equation II.24). Because the low order model steam pressure deviation is smaller at steady state, the low order model steam valve coefficient deviation must be greater at steady state in order to obtain the same steady state steam flow rate. Notice that the steam pressure deviation for both high and low order models intersect at approximately 100 seconds. Because the steady state steam flow has already been obtained by this time for both models, the steam valve ccefficient deviation for both high and low order models should also intersect at approximately 100 seconds. The inlet UTSG feedwater temperature response for the low order model is similar to the high order model except during the first 100 seconds. This can be attributed to the perfect feedwater flow control assumption of the low order model.

The average temperature deviation of the hot and cold leg for the low order model is approaching the average temperature set point. The average temperature deviation of the hot and cold leg for the high order model sill not reach the average temperature set point because of the deadband of the high order model reactor control systen.

The integral of the $A C E$ signal response and the electrical system frequency response is almost identical for both the high order and low order models. This is plausible since the representation for the integral of the ACE signal and electrical system frequency is almost identical for both high and low order models. The only difference between the tro being the representation of the turbine mechanical
shaft power which may be different due to the fact that steam pressure is an input to the turbine model.

The high pressure and low pressure turbine shaft torque response is very close for the high and low order models. Any differences can be attributed to the differences in steam pressure for both models. This is the reason for the intersection of the curves again at approximately 100 seconds. One interesting note is that the turbine shaft torques take almost the full 400 seconds to reach steady state, while the total turbine shaft power (which is the sum of the torques multiplied by a constant) is at steady state after only a fek seconds.

Figure 4.2 also shows the response of both the high order and low order models for a -0.05 pulth step in power demand. However, only the first 20 seconds are shown for the turbine shaft power, the electrical system frequency, and the high and low pressure turbine torques. From Figure 4.2, the early part of the transient experiences an oscillatory motion that was not apparent from Figure 4.l. However, the responses of both the high and low order models is almost identical. A small difference between the responses exist for the high and low pressure turbine torques. This again can be attributed to the differences between the steam pressure and steam valve coefficient responses as shown in Figure 4.1. However, the first 5 seconds of the response of the torques is almost identical since the effect of steam pressure has not been felt.
IV. 4 Discussion of Figure 4.3

Figure 4.3 shows the response of the 16 basis of comparison variables for both the high order and low order model for a -0.1 step

Figure 4.3 Response of the high and low order models for a -0.1 step in steam valve coefficient with Pf controller decoupled.

Figure 4.3 (continued)

Figure 4.3 (continued)

Figure 4.3 (continued)
in fractional steam valve coefficient. In order to obtain Figure 4.3 the following steps were taken

1. Decouple the Pf controller of the high order model by setting the matrix coefficients $(55,55)(55,56)$, and $(55,57)$ equal to zero.
2. Decouple the Pf controller of the Iow order model by setting the matrix coefficients $(23,23),(23,24)$, and $(23,25)$ equal to zero.
3. Form the forcing vector of the high order model for a unit change in steam valve coefficient. This vector will be identical to matrix coefficients (i,55) for $i=1$ through 57. Multiply this vector by -0.1 to obtain the forcing vector for a -0.1 step in steam valve coefficient.
4. Form the forcing vector of the low order model for a unit change in steam valve coefficient. This vector will be identical to matrix coefficients (i,23) for $i=1$ through 25 . Multiply this vector by -0.1 to obtain the forcing vector for a -0.1 step in steam valve coefficient.

Referring to Figure 4.3, one sees that the turbine shaft power is not controlled by the Pf controller. Therefore, the turbine power results are slightly different in the high and low order models. The valve coefficient change is the same for both the high order and low order models because it is the forcing function. Since the steam flow to the turbine is proportional to both steam valve coefficient and steam pressure, any differences in turbine shaft power can be attributad to stean pressure.

The response of the reactivity change due to the control rods for the low order model is different from the high order model. This can be attributed, as in Figure 4.1, to the nonlinear reactor control system of the high order model.

The percent of full nuclear power responses from the high and low order models agree well. Only slight differences in the shape of the curves arise because of the different reactor control system representations.

The percent of full power delivered by the secondary fluid response is slightly different between high and low order models during the first 100 seconds of the response. This can be attributed, as in Figure 4.1 , to the perfect feedwater flow assumption of the low order model.

The fuel temperature response from the high and lok order models also agree kell. Again only slight differences in the shape of the curves are present which is primarily due to the nonlinear reactor control system of the high order model.

The steam pressure response is a closer match in this case than in Figure 4.1. Therefore the $P f$ controller is responsible for a larger portion of the differences of the steam pressure response of Figure 4.1. However, there is still a slight difference betreen the high and low order model responses. This again can be artributed to the reactor control system since the low order model reactor control system kill cause a larger change in the average reactor coolant temperature.

The feedkater flok, as in Eigure 4.1 , has some slight differences during the first part of the transient. However, in this case the
steady state response will also be different. Because the Pf controller has been decoupled, the steam flow will not be controlled. Therefore, it is possible for the steam flow to obtain different values at steady state. This would depend on the steady state value of the steam pressure. Since the feedwater flow rate must be equal to the steam flow rate at steady state, this explains the difference of the high and low order model response of feedwater flow rate at steady state.

The steam flow rate is different in the high and low order models at steady state. This can be attributed to the fact that steam pressure is also different in the high and low order models, and the steam valve coefficient is the same for both models.

The steam valve coefficient response is equal to zero since the Pf controller has been decoupled from the system. The forcing function in this case is a -0.1 step in steam valve coefficient.

The feedwater inlet temperature to the UTSG has a very close match between the high and low order response in this case. The difference in the early part of the transient is due to the perfect flow assumption of the feedwater control system in the lok order model.

The average temperature of the hot and cold leg temperatures, as in Figure 4.1, will be closer to the temperature set point in the low order model case. Notice also that the transient peaks of the hot and cold leg temperatures are smaller in the high order model response. This means that the nonlinear reactor control system will cause a reduction in the transient peaks.

The integral of the ACE signal and the electrical system frequency responses will be zero since the Pf controller has been decouled.

The high pressure and lok pressure turbine torques are very close to one another for this case. Any differences in this case can be attributed solely to the steam pressure differences.

IV. 5 Discussion of Figure 4.4

In Figure 4.1 through. 4.3, the differences between the high and lok order model responses have been attributed to the reactor control and Pf controller systems. In Figure 4.3, the Pf controller was decoupled and resulted in a closer response betreen the high order and lok order model. Now it is desired to examine the effect of decoupling the reactor control system (or in the nonlinear case "turning off the reactor control system"). This can be accomplished very easily. For the high order model the reactor control system can be "turned off" by using the value of 4 for the input parameter NTYPE in the SYSTEM-MATEXP program (see Appendix A). For the low order model, the reactor control system is decoupled by setting matrix coefficient (1,11) equal to zero.

Figure 4.4 shows the response of the high and low order models for $a-0.1$ step in the steam valve coefficient. This is identical to Figure 4.3 except the reactor control system has been decoupled ("turned off") for both the high and low order models. Therefore the Pf controller and reactor control sysrem are both not used in this case. The only remaining control systems are three element control of feedwater flow on the high order model, perfect control of the feedwater flow on the low order model, and pressurizer pressure controi on the hign order model.

Figure 4.4 Response of high and low order models for a -O.1 step in stean valve coefficient with Pf and reactor controllers decoupled.

Figure 4.4 (continued)

Figure 4.4 (continued)

Figure 4.4 (continued)

Referring to Figure 4.4 , one sees that all the responses of the 16 basis variables from the high and low order models at steady state are in good agreement. Some differences still exist during the early part of the responses due to the perfect feedwater flow control assumption of the low order model. In addition, because the equations of the low order reactor core and UTSG model are "more lumped," the detailed dynamic effects of the early part of the transient are not as good for the low order model. This is consistent with work done previously (see Ali ${ }^{2}$).

IV. 6 Discussion of Figure 4.5

At this point the following question must be asked, "Is there anything that can be done to make the overall low order PWR system model response agree more with the overall high order PWR system model response?" The Pf controller model used in the low order model is exactly the same as the high order model. The only difference between the two Pf controller models is the value of the turbine gain constant K_{T}. This constant was determined from the steady state response of the turbine mechanical shaft power for a change in valve coefficient forcing function (see Section II.7 and Section III.2).

Let it be assumed that the turbine gain constant is not the main cause of the differences in the high and low order models. Let it also be assumed that the differences of the high and low order models is largely due to the reactor control system. This is plausible since there is a large difference in the representation of the reactor control system of the high and low order models (ronlinear vs. linear).

Figure 4.5 Response of high and low order overall pun system models for a -0.05 pulw step in power demand with the gain of the low order reactor controller multiplied by 4.0.

Figure 4.5 (continued)

Figure 4.5 (zontinued)

Therefore, the low order reactor control system model will be changed to attempt to improve the agreement. Recall that the gain of the low order reactor control system model was described by the following equation
(IV.1) K = K' x K"

The value of $K^{\prime \prime}$ was set equal to 0.1 (steps/sec-F) while the value of K' was defined to be identically equal to the high order model value of ROWSTP. In this thesis, the value of ROWSTP used is 0.00225 (dollars $/{ }^{\circ} \mathrm{F}-\mathrm{sec}$). For this case, K^{l} will be multiplied by 4.0. The criterion for choosing this number is to increase the rate at which the control rod reactivity will come to steady state.

Figure 4.5 is identical to Figure 4.1 on page 173 except the gain on the low order reactor control system model has been changed. The result of this change was to multiply row 11 of the low order system matrix by 4.0

Referring to Figure 4.5 , one sees that the response of the low order model 16 basis variables of comparison have about the same steady state values as those shown in Figure 4.l. Therefore, it must be concluded that no matter what gain is used in the low order reactor controller, the steady state value of control rod reactivity, and thus steam pressure, will be the same. The only effect that a change in the value of $\mathrm{K}^{\prime \prime}$ will have is the rate at which the new steady state value is reached. This is why the response is oscillatory in Figure 4.5. This is plausible since the low order model reactor control syster will always bring the average temperature to the average temperature set point. The average temperature set point for a given
power level change will always be the same, therefore the average temperature change will always be the same for a given power level change due to the reactor control action.

Therefore, it is concluded that no improvement can be made on the steady state value of the control rod reactivity for the low order model. However, a change in the gain of the low order model reactor control system could improve on the shape of the response and more closely match the high order model response.

CONCLUSIONS AND RECOMMENDATIONS

Assuming that the Pf control system is coupled, the 25 th order overall PWR system model will predict the turbine mechanical shaft power equally as well as the 57 th high order overall PWR system model. If other output variables of the system are of interest, such as steam pressure, or steam valve coefficient, some small differences exist between the two models. This is primarily due to the nonlinear readtor control system of the high order model.

The pole-zero deletion method can be used for the reduction of the order of the system model. There are some disadvantages to using this method. The system matrix must be in a form such that the final values of the desired state variables can be calculated. The REDUCE program as written produces and reduces only one transfer function at a time. It may be desired to reduce the order of an output variable which is a function of more than one state variable. For example, the mechanical turbine shaft poker is a function of five state variables (see Appendix D).

As a possible continuation of this research, the REDUCE program could be modified to handle this multiニstate variable problem. Let j be the number of state variables needed to determine some desired output variable $y(s)$. Then the following equation can be written

where
$A_{i}=$ constant coefficient
$\mathrm{K}_{\mathrm{i}}=$ gain for the X_{i} transfer function defined by Equation (III.23)
$\mathrm{Z}_{\mathrm{k}}=$ zeroes for the X_{i} transfer function defined by Equation (III.20)
$=$ poles for the X_{i} transfer function defined by Equation (III.20)
$m_{i}=$ the total number of zeroes for the X_{i} response
$n_{i}=$ the total number of poles for the X_{i} response
The poles of each state variable X will be the same. Thus equation (V.1) can be written as
where

$$
K=\prod_{i=1}^{j} K_{i}
$$

The product term in the numerator of equation (V.2) can be combined so that equation (V.2) can be written as

Then the constant coefficients, a_{m}, of equation (v.3) having the same order as s can be combined to obtain

$$
\text { (v.4) } y(s)=\frac{K}{\prod_{l=1}^{n}\left(s-p_{l}\right)}\left(b_{+} s^{+}+b_{t-1} s^{+-1}+\cdots+b_{1} s+b_{0}\right)
$$

where

$$
t=\text { maximum value of } m_{i} \text { for } i=1,2, \ldots ., j
$$

The solution to the polynomial

$$
\text { (v.5) } \quad b_{t} s^{t}+b_{t-1} s^{t-1}+\ldots+b_{1} s+b_{0}=0
$$

kill be defined to be the zeroes of the output variable $y(s)$. This Kill allow equation (V.4) to be written as

$$
(v .6) \quad y(s)=\frac{\prod_{k}}{\prod_{\substack{ }}^{n}\left(s-z_{k}\right)}
$$

The pole-zero deletion method could now be applied to equation (V. 6). The 25 th order overall PWR system model presented in Chapter III has an lith order representation of a turbine-feedmater heater system. This model is identical to the turbine-feedwater heater system used in the high order overall PiN system model of Chapter II. In this study, no investigation was made into reducing the order of this model. Elgerd ${ }^{9}$ (shown in equaticr $9-13$, page 326) presents an empirical and order transfer function model for a reheat turbine system. The input
to this model is a change in steam valve position. The output of this model is the change in turbine shaft poner. This model nould have no feedback on the other components of the PWR system through changes in feedwater temperature to the UTSG. An investigation should be made into the validity of this model. In addition, it should be possible to determine the parameters of this model from the physical input parameters of the turbine-feedwater heater used in this study. These parameters are listed in Table XI.

The input parameters of the turbine-feedwater heater rere obtained from IBM and the SEQUOYAH-FSAR for a typical 1200 MWe nuclear plant. However the values of the nozzle chest volume, V_{C}, and the reheater shell side volume, V_{R}, could not be determined exactly in this study. Therefore, the values of V_{R} and V_{C} should be determined for a typical 1200 MWe nuclear plant.

The SYSTEM computer code calculates the system matrix coefficients for the reactor core, UTSG, three element controller, and reactor controller models. Subroutine PRESS calculates the pressurizer pressure matrix coefficients after the system coefficients other than the pressurizer pressure model have been read in by MATEXP. The SYSTEM program should be improved to calculate the system coefficients for the turbine-feedwater heater model and the $P f$ controller model.

As a further improvement, the SYSTEM program should have the option to specify either the high order model or the low order model coefficients to be calculated. The SYSTEM program should also have the capability to develop a more detailed high order model. For example, it may be desirable for scme particular applicarions to have a multi-node representation for the reactor fuel rather than a single
lump representation. Ideally, the user of the SYSTEM-MATEXP code would be able to sit at the computer terminal and type in only a few input parameters. Then the computer will calculate the desired system coefficients, in as much detail as desired. The resulting calculations could then be used to simulate the system response for the desired forcing function.

1. Akin, I. E., "A Note on Control System Model Simplification," Int. J. Control, 1971, Vol. 14, No. 5.
2. Ali, M. R. A., "Lumped Parameter, State Variable Dynamic Models for U-Tube Recirculation Type Nuclear Steam Generators," Ph.D. Dissertation, Nuclear Engineering Department, University of Tennessee, August 1976.
3. Arumugan, M. and Ramomoorty, M., "A Method of Simplifying Large Dynamic Systems," Int. J. Control, 1973, Vol. 17, No. 6.
4. Bille, W. and Sinha, N. K., "A New Method of Reduction of Dynamic Systems," Int. J. Control, 1971, Vol. 14, No. 1.
5. Bosley, M. J., Kropholler, H. W., Lees, F. P., and Neale, R. M., "The Determination of Transfer Functions From State Variable Models," Automatica, Vol. 18, Pergamon Press 1972.
6. Cherng, J. C., "An Investigation of Feedwater Control and Nonlinear Effects for a U-Tube Steam Generator Model," M.S. Thesis, Nuclear Engineering Department, The University of Tennessee (December 1978).
7. Cope, J. and Dunphey, J., "RILMAT - A Program for Calculating the Eigenvalues and Eigenvectors of a Matrix," Computing Technology Center, Union Carbide Corporation, Nuclear Division, Dak Ridge, Tennessee.
8. Davison, E. J., "The Numerical Solution of Large Systems of Linear Differential Equations," AIChE Journal, Jan. 1968.
9. Elger¿́, O. I., "Electric Energy Systems Theory: An Introduction," McGraw-Hill Inc., 1971.
10. Renesio, R. and Milanese, M., "A Note on the Derivation and Use of Reduced-Order Models," IEEE Transactions on Automatic Control, Feb. 1976.
11. IBM Data Processing Application, "Power Systems Simulator Description of Models," IBM Technical Publications Department, 1133 Westchester Avenue, White Plains, New York 10604, 1970.
12. Jones, J. B. and Hawkins, G. A., "Engineering Thermedynamics - An Introductory Textbonk," 1960, John Wiley and Sons, Inc.
13. Katz, E. M., "Planning, Performing and Interpreting Dynamic Measurements in Pressurized Water Reactors," Ph.D. Dissertation, Nuclear Engineering Department, The University of Tennessee (June 1975).
14. Kearton, W. J., "Steam Turbine Theory and Practice," Sir Issac Pitman \& Sons LTD., Fifth Edition 1948.
15. Kerlin, T. W., "Frequency Response Testing in Nuclear Reactors," Academic Press, New York (1974).
16. Kerlin, T. W., Nuclear Engineering 5210, 5220, 5230 Class Notes, Nuclear Engineering Department, The University of Tennessee (1977-78 Academic Year).
17. Kerlin, T. W., Upadhyaya, B. R., Zwingelstein, G. C., "Identification of Nuclear Systems," Nuclear Technology, Vol. 36, November 1977.
18. Kiser, E. M., "Investigation of Identifiability of Various Parameters in Pressurized Water Reactors with Application to Millstone 2 and Oconee I Nuclear Power Plants," M.S. Thesis, Nuclear Engineering Department, University of Tennessee (March 1977).
19. Krishnamurthi, V. and Seshadri, V., "A Simple and Direct Method of Reducing Order of Linear Systems and Routh Approximations in the Frequency Domain," IEEE Transactions on Automatic Control, October 1976.
20. Lal, M., Mitra, R., and Jain, A. M., "On Schwarz Canonical Form for Large System Simplification," IEEE Transactions on Automatic Control, April 1975.
21. Lees, F. P. and Bosley, M. J., "A Survey of Simple TransferFunction Derivations from High-Order State Variable Models," Automatica, Vol. 8, Pergamon Press, 1972.
22. Lees, F. P. and Gibilaro, L. G., "The Reduction of Complex Transfer Function Models to Simple Models Using the Method of Moments," Chemical Engineering Science, 1969, Vol. 24.
23. Machado, E. L., personal communication, undocumented computer programs, 1978.
24. Masche, George, "Systems Summary of a Westinghouse Pressurized Water Reactor Nuclear Power Plant," 1971 Westinghouse Electric Corporation, PWR Systems Division.
25. MATEXP: "A General Purpose Digital Computer Program for Solving Ordinary Differential Equations by the Matrix Exponential Method," S. S. Ballard, R. K. Adams, ORNL-TM-1933, (August 1997).
26. Nagarajan, R., "Optimum Reduction of Large Dynamic Systems," Int. J. Control, 1971, Vol. 14, No. 5.
27. Reddoch, T. W., "Models and Cost Functionals for Optimal Automatic-Generator Controllers," Ph.D. Dissertation, Louisiana State University, 1973.
28. Riggs, J. B. and Edgar, T. F., "Simplification of Large-Scale Linear Dynamic Systems," Dept. of Chemical Engineering, The University of Texas, Austin, Texas.
29. Sequoyah Nuclear Plant - Final Safety Analysis Report, Tennessee Valley Authority, April 1974.
30. SFR3 Code - 'A Fortran Program for Calculating the Frequency Response of a Multivariable System and its Sensitivities to Parameter Changes," T. W. Kerlin and J. L. Lucius, USAEC Report ORNL-TM-1575 (1966).
31. Shamash, V., 'Linear System Reduction Using Pade Approximation to Allow Retention of Dominant Modes," Int. J. Control, 1975, Vol. 2l, No. 2 .
32. Shankkar, P. V. G., "Simulation Model of a Nuclear Reactor Turbine," Nuclear Engineering and Design, November 1977, Volume 44 (1977) No. 2.
33. Shie', L. S. and Wei, Y. J., "A Mixed Method for Multivariate System Reduction," IEEE Transaction on Automatic Control, June 1975.
34. Sinha, N. K. and Bereznai, G. T., "Optimum Approximation of High-Order Systems by Low-Order Models," Int. J. Control, 1971, Vol. 14, No. 5.
35. Strange, J., "Incorporation of Pressurizer Pressure Controller Models into State Variable Models of H. B. Robinson and Oconee Nuclear Power Plants," Research Project for Nuclear Engineering 5980, University of Tennessee, August 1975.
36. SURFACE II Graphics System (Revision One), R. J. Sampson, Revised 1978.
37. Thakkar, J. G., "Correlation of Theory and Experiment for the Dynamics of a Pressurized Water Reactor," M. S. Thesis, Nuclear Engineering Department, The University of Tennessee (March 1975).
38. Westinghouse Electric Corporation, PWR Systems Division, "Precautions, Limitations, and Setpoints for Nuclear Steam Supply Systems," Revision 5, June 1976.
39. Westinghouse Electric Corporation, PWR Systems Division, FA-1-793, December 9, 1977.
40. Wrangham, D. A., "The Theory and Practice of Heat Engines," New York, The Macmillan Co., Cambridge, England: at the University Press, 1942 .
41. Meghreblian, R. V., Holmes, D. K., "Reactor Analysis," McGraw-Hill Book Company Iric., 1960.

APPENDIX A

DESCRIPTION AND INSTRUCTIONS ON THE USE OF THE SYSTEM-MATEXP

PROGRAMMING PACKAGE

A. 1 DESCRIPTION OF THE SYSTEM-MATEXP PROGRAMMING PACKAGE

The SYSTEM-MATEXP programming package was developed with the intent of reducing the effort involved in dynamic modeling of PWR systems. Previously, the system matrix coefficients had to be calculated by hand and calculated again for new initial conditions or if a mistake had been made. Then the resulting coefficients were used in the MATEXP code.

Ali ${ }^{2}$ developed a code to calculate the matrix coefficients and forcing vector coefficients for a 15 th order UTSG model. This program has been modified and is called the SYSTEM program. The SYSTEM program will calculate the matrix coefficients and forcing vector coefficients for the UTSG, reactor core, three-element feedwater controller, and reactor controller of the high order PWR model presented in this thesis.

The output of the SYSTEM program, along with other data, is used as input to the MAIEXP program. A varsion of subroutine DISTR3 of the MATEXP program has been written to simulate the nonlinear reactor controller presented in this thesis. DISTRB will also allow the calculation of algebraic variables to be made at each tine step in the solution. Subroutine PRES has also been added to MATEXP to calculate the matrix coefficients of the pressurizer pressure model. Subroutines ROD, STEAM, VALVE, FEED1, and FEED2 have been added to MATEXP to vary all the possible forcing functions on the PNR system. These subroutines are called by DISTRB depending on the value of the input parameter ITYPE.

A flowchart of the SYSTEM-MATEXP programming package is given in Figure A.l. A list of the input cards to the SYSTEM program is given in Section A.2. A list of the input cards to the MATEXP program is given in Section A.3. The instructions for the execction of the SYSTEM-MATEXP programming package is given in Section A.4. Figure A.2 is an example of the input file for the SYSTEM program. Figure A. 3 is an example of the input file for the MATEXP program. The reader should refer to Figures A.l, A.2, and A. 3 to help in understanding the use of this program.
A. 2 INPUT FORMAT FOR THE SYSTEM PROGRAM (FOR24.DAT)

Card No. 1 (geometrical parameters)

Column	$1-5$	$6-15$	$16-25$	$26-35$	$36-45$	$46-55$	$56-65$	$66-75$
Format	I5	7						
Input	NT	TOD	TMT	USHD	USHT	LSHD	LSHT	OVHT

NT - number of U-tubes
TOD - tube outside diameter (inches)
TMT - tube metal thickness (inches)
USHD - steam generator upper shell diameter (inches)
USHT - steam generator upper shell thickness (inches)
LSHD - steam generator lower shell diameter (inches)
LSHT - steam generator lower shell thickness (inches)
OVHT - steam generator overall height (ft)

Figure A. 1 Flowchart of the SYSTEM-MATEXP computer progran.

Figure A. 1 (continued)

Figure A. 1 (continued)

$1.415420-05$
1.46608 ± -06

$$
\begin{aligned}
& 2.56510 \mathrm{c}-0425 \mathrm{y} \\
& 1.068750-042053
\end{aligned}
$$

$$
\therefore \therefore=
$$

$$
\therefore n_{n} \tilde{O}_{n}=
$$

（1）		$24 j$	$-7.767578-05$		5．6．j8．76r－04	26 5	－1．916 34tiond
$\cdots s^{\text {a }}$		2935	－5．58467i－06	？ 035	－1．0184 зi－0）	उ引 ${ }^{\text {a }}$	－－COOUの天－01
¢1	－－6m00́a－01	31 ct	－－．50，300e＋u？	31 30	－1．50750ctio？	$3{ }^{\circ} \mathrm{a}$	－4．hasorie＋u\％
31		3： 31	5.50597 ¢－－ 0 a	s 3 ¢ 7	1．24977r＋00	＜\％ 25	－＋000006＋30
\＆\％$\quad 1$	4．「＇sinnerat	3430	1． $044130^{\circ}+1$	¢4 sj		94 s4	－4．（0） 6 Rem＋00
4%		9） 34	1．000008\％+00				

$$
\text { Figure A. } 3
$$

(continued)

Card No. 2 (geometrical parameters)

Column	$1-10$	$11-20$	$21-30$	$31-40$
Format	$4 D 10.4$			
Input	AFS	AD	LD	RL

AFS - secondary flow area in the tube region (ft^{2})
AD - downcomer level (ft ${ }^{2}$)
LD - downcomer level (ft)
RL - riser level (ft)

Card No. 3 (primary side parameters)

Column	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$
Format	8D10.4							
Input	WP	VP	CP1	TPID	TPOT	PP	ROP	PHC

WP - primary water (reactor coolant) mass flow rate into the steam generator ($1 \mathrm{bm} / \mathrm{hr}$)

VP - total steam generator primary water volume (ft ${ }^{3}$)
CPl - specific heat at constant pressure of the primary water ($\mathrm{B} / 1 \mathrm{bm}-{ }^{\circ} \mathrm{F}$)

TPI - primary water inlet temperature (${ }^{\circ} \mathrm{F}$)
TPO - primary water outlet temperature (${ }^{\circ} \mathrm{F}$)
PP - primary loop average pressure (psia)
ROP - average density of primary water ($1 \mathrm{bm} / \mathrm{ft}^{3}$)
PHC - primary side heat content (B)

Card No. 4 (secondary side parameters)

Column	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80
Format	8D10.4							
Input	wso	PSTG	TSAT	TFWI	XE	vss	ROS 1	CP2
WSO - steam flow rate ($\mathrm{lbm} / \mathrm{hr}$)								
PSTG - steam generator pressure (psig)								
TSAT - saturation temperature at PSTG (${ }^{\circ} \mathrm{F}$)								
TFWI - feedwater inlet temperature (${ }^{\circ} \mathrm{F}$)								
XE - quality of steam at riser exit								
VSS - volume of secondary steam in the drum steam volume (ft ${ }^{3}$)								
ROS1 - subcooled secondary water average density ($1 \mathrm{bm} / \mathrm{ft}^{3}$)								

Card No. 5 (heat transfer coefficients)

Column	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$
Format	$6 \mathrm{CD10.4}$					
Input	HTA	HP	UM	HS1	HS2	KM

HTA - overall heat transfer area of the steam generator U-tubes (ft ${ }^{2}$)
HP - primary side film heat transfer coefficient (B/hr-ft ${ }^{2}{ }^{\circ} \mathrm{F}$)
M - tube metal conductance (B/hr-ft $\left.{ }^{2}{ }^{\circ} \mathrm{F}\right)$
HSl - subcooled secondary film heat transfer coefficient
(B/hr-ft ${ }^{2}-{ }^{\circ} \mathrm{F}$)

HS2 - boiling secondary film heat transfer coefficient (B/hr-ft ${ }^{2}-{ }^{\circ} \mathrm{F}$)

KM - conductivity of the tube metal ($\mathrm{B} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$)

Card No. 6. (tube metal properties)

Column	$1-10$	$11-20$
Format	$2 D 10.4$	
Input	ROM	CM

ROM - density of tube metal ($1 \mathrm{bm} / \mathrm{ft}^{3}$)
CM - tube metal heat capacity ($\mathrm{B} / \mathrm{lbm} \mathrm{C}^{\circ} \mathrm{F}$)

Card No. 7 (steady state thermodynamic properties)

Card No. 8 (thermodynamic property gradients)

Column	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$
Format		$71-80$					
Input	DTSAT	DHF	DHFG	DHG	DVF	DVFG	DVG

Card No. 9. (SYSTEM control card)

Column	$1-5$	$6-10$	$11-15$	$16-20$
Format				
Input	ITYPE	NC	NUTSG	NCNTRL

ITYPE - specification of forcing vector
$1 \quad 1^{\circ} \mathrm{F}$ primary inlet temperature - no feedwater flok control
2 Unit change in fractional steam flow - no feedwater flowcontrol
3 Unit change in steam valve coefficient - no feedwater flowcontrol$4 \quad 1^{\circ} \mathrm{F}$ feedwater inlet temperature - no feedwater flow control5 Unit change in fractional feedwater flow - no feedwater flowcontrol
$6 \quad 1^{\circ} \mathrm{F}$ primary inlet temperature - perfect feedwater flowcontrol.
7 Unit change in fractional steam flow - perfect feedwater flowcontrol8 Unit change in steam valve coefficient - perfect feedwaterflok control$9 \quad 1^{\circ} \mathrm{F}$ feedwater inlet temperature - perfect feedrater flowcontrol$10 \quad 1^{\circ} \mathrm{F}$ primary inlet temperature - three element feedwater flowcontrol
11 Unit change in fractional steam flow - three element feedwater flow control
12 Unit change in steam valve coefficient - three element feedwater flow control
$13 \quad 1^{\circ} \mathrm{F}$ inlet feedwater temperature - three element feedwater flow control

NC - The number of state variable equations which will be used to describe the reactor core. If $\mathrm{NC}=0$, the UTSG will be treated as an isolated model.

NUTSG - The number of UTSG's per reactor unit
NCNTRL - A non-zero entry will cause the reactor control system matrix to be calculated. A zero entry will not calculate the reactor control system matrix. NCNTRL should be set equal to zero for NC equal to zero.

Card No. 10. (include only for NC >0)
neutronics data for the reactor core model

Column	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80
Format	8F10.0							
Input	BETAT	BETAI	BETA2	BETA3	BETA4	BETA5	BETA6	ALPHAF

BETAT - total delayed neutron fraction
BETAI - lst delayed neutron group fraction
BETA2 - 2nd delayed neutron gruop fraction
BETA3 - 3rd delayed neutron group fraction
BETA4 - 4th delayed neutron group fraction
BETA5 - 5th delayed neutron group fraction
BETA6 - 6th delayed neutron group fraction
ALPHAF - fuel coefficient of reactivity ($1 /{ }^{\circ} \mathrm{F}$)

Card No. 11 (include only for NC >0)
neutronics data for the reactor core model

Column	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80
Format	8F 10.0							
Input	GEN	LAMDA	LAMDA2	LAMDA 3	LAMDA4	LAMDA5	LAMDA6	ALPHAC
GEN - neutron generation time (seconds)								
LAMDAI - lst group decay constant (l/sec)								
LAMDA2 - 2nd group decay constant (1/sec)								
LAMDA3 - 3 rd group decay constant ($1 / \mathrm{sec}$)								
LAMDA4 - 4th group decay constant (1/sec)								
LAMDA5 - 5th group decay constant (1/sec)								
LAMDA6 - 6th group decay constant ($1 / \mathrm{sec}$)								
ALPHAC - coolant coefficient of reactivity ($1 /{ }^{\circ} \mathrm{F}$)								
Card No. 12 (include only for NC >0)								

Column	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$
Format		$51-60$			
Input	POWER	FUELM	CPF	AREA	FRACF

POWER - initial reactor power level (Yik)
FUELM - mass of fuel (lbm)
CPF - specific heat of the fuel ($\mathrm{B} / 1 \mathrm{bm} \mathrm{m}^{\circ} \mathrm{F}$)

AREA - total heat transfer area from fuel to coolant (ft ${ }^{2}$)
FRACF - fraction of the total power produced in the fuel
H - overall heat transfer coefficient from fuel to coolant ($\mathrm{B} / \mathrm{hr}-\mathrm{ft} \mathrm{t}^{2}{ }^{\circ} \mathrm{F}$)

Card No. 13. (include only for $N C>0$)
reactor coolant volumes

Column	$1-10$	$11-20$	$21-30$	$31-40$
Format			$41-50$	
Input	UPPERV	LOWERV	HOTV	COLDV

UPPERV - volume of coolant in upper plenum (ft ${ }^{3}$)
LOWERV - volume of coolant in lower plenum (ft ${ }^{3}$)
HOTV - volume of coolant in hot let piping (ft ${ }^{3}$)
COLDV - volume of coolant in cold leg piping (ft ${ }^{3}$)
COOLV - volume of coolant surrounding the reactor core (ft ${ }^{3}$)

Card No. 14 (include only for NCNTRL $>$ 0)
reactor control system data

Column	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$
Format		$71-80$					
Input	WMAX	HGMAX	SET1	RK1	LEAD	LAG1	LAG2

WMAX - \#aximum flou rate of steam leaving the UTSG (1bm/hr)

```
HGMAX - the enthalpy of the steam leaving the UTSG at maximum flow
    conditions (B/lbm)
    SETl - time constant of average temperature set point transfer
        function (sec)
    RRl - gain of average temperature set point transfer function
        ( }\mp@subsup{}{}{\circ}\textrm{F}/%\mathrm{ Power)
    LEAD - lead time constant of lead-lag compensated average tem-
        perature transfer function (sec)
    LAGl - first lag time constant of lead-lag compensated average
    temperature transfer function (sec)
LAG2 - second lag time constant of lead-lag compensated average
    temperature transfer function (sec)
TAU - time constant of RTD transfer function (sec)
```

Card No. 15. (include only for NCNTRL >0)
reactor control system data

Column	$1-10$	$11-20$	$21-30$
Format		3 F10.0	
Input	SET3	RK2	RK3

SET3 - time constant of power mismatch transfer function (sec)
RK2 - nonlinear gain of power mismatch transfer function (${ }^{\circ} \mathrm{F} / \%$ Power)
RK3 - variable gain of power mismatch transfer function (unitless)
A. 3 MATEXP INPUT INSTRUCTIONS

Card No. (title card)

Column	$1-80$
Format	$20 A 4$
Input	TITLE1

TITLEl - 80 alphanumeric characters on one card may be used for a title. A blank is considered to be an alphanumeric character.

Card No. 2 (title card)

Column	$1-80$
Format	20 A4
Input	TITLE2

TITLE2 - 80 alphanumeric characters on one card may be used for a title. A blank is considered to be an alphanumeric character.

Card No. 3 (title card)

Column	$1-16$
Format	$4 \mathrm{A4}$
Input	TITLE3

TITLE3 - 16 alphanumeric characters on one card may be used for a title. A blank is considered to be an alphanumeric character.

Card No. 4 (plotting information)

Column	$1-5$
Format	I5
Input	NPLOT

NPLOT - The total number of plots to be made. Include a blank if no plots are desired. NPLOT must be _ 24 .

Card No. 5 (plotting information)

Column	$1-80$
Format	$8(5 \mathrm{X}, \mathrm{I} 5)$
Input	NSPTV(I)

[^1]Card No. ${ }^{\text {. (}}$ (plotting information)

Column	$1-80$
Format	$8(2 \mathrm{X}, \mathrm{A} 8)$
Input	$\mathrm{DY}(\mathrm{I})$

$D Y(I)$ - A vector of the names of the state variables, corresponding with NSPTV(I), to be plotted. Each name can be up to 8 alphanumeric characters in length. If necessary, repeat card No. 6 until NPLOT entries for $D Y(I)$ have been made.

Card No. 7 (Reactor control system input data not previously input to the SYSTEM program)

Column	$1-5$	$6-15$	$16-25$	$26-35$
Format	IS	E10.3	E10.3	E10.3
Input	NTYPE	ROWSTP	TRIP	BOUT

NTYPE - The type of temperature error signal which will be used by the reactor control system.
$1=\delta T_{s 1}-\delta T_{s 2}+\delta T_{s 3}$
$2=\delta T_{S 3}$
$3=\delta T_{s 1}-\delta T_{s 2}$
$4=0$

ROWSTP - The amount of reactivity induced by the control rods per step change. Note that control rods move in discrete steps rather than continuously.

TRIP - The temperature error signal that will trip the plant. When this temperature error signal is reached, the execution of the MATEXP program will cease.

DBOUT - The absolute value of the temperature error signal deadband upon leaving (going out of) steady state conditions. Westinghouse ${ }^{38}$ recommends $1.5^{\circ} \mathrm{F}$.

DBIN - The absolute value of the temperature error signal deadband upon entering (going in to) steady state conditions. Westinghouse ${ }^{38}$ recommends $1.0^{\circ} \mathrm{F}$.

Card No. 8 (Locations in the solution vector for algebraic and state variables needed by the reactor control system and for plotting capabilities)

Column	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$	$26-30$	$31-35$	$36-40$
Format	I5	I5	I5	I5	I5	I5	I.5	I5
Input	NREAC	NTBAR	NDQ	NSTM	NK3	NK2.	NPT	NPN

Column	$41-45$	$46-50$
Format	I5	I5
Input	NPRES	NFLOW

NREAC - Solution vector location for the reactivity induced by the control rods. Must be greater than the number of state variable equations and <70.
NTBAR - Solution vector location for the temperature error signal. Must be greater than the number of state variable equations and <70.
NDQ - Solution vector location for the difference in percent of full power delivered to the secondary fluid and the percent of full nuclear power ($\% \mathrm{P}_{\mathrm{S}}-\% \mathrm{P}_{\mathrm{N}}$). Must be greater than the nimber of state variable equations and <70. NSTM - Solution vector location for the steam flow out of the UTSG. Must be greater than the number of state variable equations and <70.
NR3 - Solution vector location for the variable gain of the power mismatch transfer function. Must be greater than the number of state variable equations and <70.
NR2 - Solution vector location for the nonlinear gain of the power mismatch transfer function. Must be greater than the number of state variable equations and <70.
NPT \& Solution vector location for the percent of full power delivered to the secondary fluid. Must be greater than the number of state variable equations and <70.
NPN - Solution vector location for the percent of full nuclear power. Must be greater than the number of state variable equations and <70.
NPRES - Solution vector location of the UTSG steam pressure.
NFLOW - Solution vector location of the UTSG feedwater flok rate.

Card No. 9. (MATEXP control card)

Column	$1-2$	$3-5$	6.7	$8-10$	$11-20$	$21-30$	$31-40$
Format	I2	3 X	$\mathrm{I2}$	3 K	F 10.0	F 10.0	F10.0
Input	NE		LL		P	TZERO	T

Column	$51-60$	$61-62$	$63-64$	$65-56$	$67-69$	70	$71-72$	$73-74$
Format	F10.0	I2	I2	I2	I3	I1	I2	I2
Input	PLINTC	MATYES	ICSS	JFLAG	ITMAX	LASTCC	I1Z	ICONTR

Column	$75-80$
Format	F6.0
Input	VAR

NE - number of equations, must be <70
LL - matrix tag number
P - precision, recomend 10^{-6} or less
TZERO - zero time
T - computational time interval
TMAX - maximum time
PLTINC - printing time increment

```
MATYES - matrix control flag
    l = use previous A and T
    2 = read nek coefficient to alter A
    3 = read entire new A (nonzero values)
    4 = CALL DISTRB to calculate entire new A
    5 = read some, DISTRB to calculate others
    6 = DISTRB to alter some A elements
    ICSS - initial condition vector (XIC) flag
    l = read in all nek nonzero values
    2 = read new values to alter previous vector
    3 = use previous vector
    4 = vector = 0
    5 = use last value of solution vector (X) from previous run
JFLAG - forcing function (Z) flag
    l through 4 = same as ICSS for constant Z
    5 = Call DISTRB at each time step for variable Z. (Use this for the
        reactor control system.)
    ITMAX - maximum number of terms in series approximation of exp (AT)
LASTCC - nonzero for last case
    IlZ * rok of Z is only one nonzero, otherwise = 0
ICONTR - for internal control options
    O = read nek control card for next case
    l = go to 212, call DISTRB for nek A or T
    -1 = go to 215, call DISTRB for nek initial conditions
    VAR - maximum allowable value of largest coefficient matrix element
        *T (recommend VAR = 1.0)
```

Card No. 10 (nonzero elements of system matrix)

Column	$1-3$	$4-6$	$7-20$	Repeat, 4 per card
Format	I3	I3	E14.5	
Input	Il	J1	D1	I2, J2, D2, I3, J3, D4, I4, J4, D4

Il - row number, zero for last entry
Jl - column number
D1 - A matrix coefficient
Note: A value of zero for Il must be included to stop the reading of the matrix coefficients. This is equivalent to including a blank card for the last entry of Card No. 10. Repeat Card No. 10 until all matrix coefficients have been read in.

Note: The SYSTEM program can be used to calculate the matrix coefficients. One output from SYSTEM is FOROl.DAT and will contain these coefficients. However, matrix coefficients not calculated by SYSTEM must be included here.

> Option A for JFLAG $=1$ through 4
> (as per the original MATEXP program)

Card No. 11. (initial condition vector) Include if ICSS $=1$ or 2

Column	I-2	$3-5$	$6-17$	
Format	I2	I3	E12.3	Repeat columns 3-17 5 per card
Input	MM	Row No.	I.C. Value	

Note: Insert blank card to stop reading in the initial condition vector.

Card No. 12 (disturbance vector) Include if JFLAG = 1 or 2

| Column | $1-2$ | $3-5$ | $6-17$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Format | I2 | I3 | E12.3 | Repeat columns 3-7 5 per card |
| Input | KR | Row
 No. | Z Value | |

Note: Insert blank card to stop reading in the disturbance vector.

> Option B for JFLAG $=5$ (reactor control
> system or non-constant disturbance vector)

Card No. 11 (number of forcing vector elements calculated by the SYSTEM program)

Column	$1-5$
Format	I5
Input	NCOFX

NCOFX - The number of forcing vector elements calculated by SYSTEM. If more than NCOFX forcing vector elements are needed, they must be input in DISTRB. NCOFX mast be ≥ 1.

Card No. 12 (forcing vector coefficients calculated by SYSTEM)

Column	$1-70$
Format	SE14.5
Input	COFX(I)

COFX(I) - The forcing vector elements calculated by SYSTEM. Card No. 12 is repeated until NCOFX elements have been input. If more than NCOFX elements are needed, include their input in DISTRB.

Card No. 13. (data used by the reactor control system which has already been input into the SYSTEM program)

Column	$1-14$	$15-28$
Format	E14.5	E14.5
Input	BETAT	GEN

BETAT - total delayed neutron fraction
GEN - neutron generation time (sec)
Note: If subroutine DISTRB is being used, but the reactor model is not, SYSTEM «ill not automatically calculate this card, therefore, include a blank card for this case.

Card No. 14 (data used by the reactor control system which has already been input into the SYSTEM program)

Column	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$	
Format	5 I5					
Input	ITYPE	NSET3	NSET2	NSET1	NROW1	

ITYPE - The type of forcing function. See Card No. 9 of Section A. 2 of the SYSTEM program instructions.

NSET3 - The state variable number of the power mismatch temperature signal.

NSET2 - The state variable number of the lead-lag compensated temperature signal.

NSET1 - The state variable number of the temperature set point signal. NROW1 - The row number in which the reactivity induced by the control rods is

Card No. 15 (data used by the reactor control system which has already been input into the SYSTEM program)

Column	$1-14$	$15-28$	$29-42$	$43-56$	$51-70$	
Format	5 514.5					
Input	RK1	RK2	RK3	WMAX	WSO	

See Card No. 14 and 15 of Section $A .2$ of the SYSTEM progran instructions.

Card No. 16 (data used by the reactor control system which has already been input into the SYSTEM program)

Column	$1-14$	$15-28$	$29-42$	$43-56$
Format			$57-70$	
Input	HG	HGMAX	DHG	HFW

See Card Nos. 4, 7, 8, and 14 of Section A. 2 of the SYSTEM program instructions.

Card No. 17 (data used by the reactor control system which has already been input into the SYSTEM program)

Column	$1-14$
Format	E14.5
Input	VCOF

See Card No. 4 of Section A. 2 of the SYSTEM program instructions. Note: Card Nos. 10 through 17 can be calculated and placed in the data files FORO1.DAT and FOR23.DAT by the SYSTEM progran. See Section A. 4 on how to execute the SYSTEM-MATEXP prograunning package.

A. 4 EXECUTION OF THE SYSTEM-MATEXP PROGRAMMIING PACKAGE

The SYSTEM-MATEXP programming package was executed on the DecSystem 10 at the University of Tennessee for this thesis. However, this program could be executed on other computer systems depending on
the input-output devices available. Referring to Figure A.1, the abbreviation LUN stands for "logical unit number". Each LUN corresponds to an input-output device. The Fortran statement WRITE (1, 100) will cause the contents of the format statement labeled by 100 to be written into device 1 . For this program, the following LUN's were used

1 - DSKC of the user's disk space
3 - line printer
5 - teletype
20 - DSKC of the user's disk space
21 - DSKC of the user's disk space
23 - DSKC of ther user's disk space
24 - DSKC of the user's disk space
25 - DSKC of the user's disk space
In order to execute the SYSTEM-MATEXP program, the following steps must be taken,

1. Assemble the data file FOR24.DAT ty creating card numbers 1 through 14 as per the instructions of Section A.2.
2. Execute the SYSTEM program by typing the following comand. .EX SYSTEM.FOR,FOR:IMSLIB/LIB In order to execute the SYSTEM program for the input parameter ITYPE=10 through 13, the user must first specify ITYPE=5 and perform steps 1 and 2 beforehand.
3. Assemble the data file MATEXP.DAT by creating card numbers 1 through 9 as per the instructions of Section A.3.
4. Add to the and of the MATEXP.DAT file the matrix coefficients
not calculated by the SYSTEM program (if any) as per card No. 10 of the instructions of Section A.3.
5. If subroutine DISTRB is called in MATEXP, but the reactor core (and thus the reactor controller) is not being considered, add a blank card to the front of the data file FOR23. DAT which has already been formed from step 2 (see card No. 13 of Section A.3).
6. Combine data files by typing the following command .COPY MATEXP.DAT=MATEXP.DAT, FORO1.DAT, FOR23.DAT
7. Program the forcing vector. This is done by modifying subroutine ROD for $\operatorname{ITYPE}=1,6,10$, subroutine STEAM for ITYPE $=2,7,11$, subroutine VALUE for $\operatorname{ITYPE}=3,8,12$, subroutine FEED1 for ITYPE $=4,9,13$, and subroutine FEED2 for ITYPE $=5$.
8. Execute the MATEXP program by typing the following comand. .EX MATEXP.FOR
9. If printed output is desired, two options can be made. The first option would be to type the following command. .PRINT OUTPUT.DAT

The second option would be to change all the fortran statements WRITE (20, to WRITE (3, throughout the MATEXP program before performing step number 8 then skip step number 9 after performing step number 8 .
10. If plotted output is desired, type the follorving conmands. .COPY SEND.FOR=MATPLO.FOR,PLOT1. DAT,PLOT2.DAT
. HS UBMIT SEND.FOR

APPENDIX B

CALCULATION OF THE THREE ELEMENT CONTROLLER

MODEL WITH WESTINGHOUSE PARAMETERS

The following block diagram was given by Westinghouse ${ }^{39}$ for the three element controller transfer function model:

The values of the time constants and gains were also given to be
$\tau_{30}=5$ seconds
$\tau_{31}=1800$ seconds
$\mathcal{Z}_{33}=200$ seconds
$K_{30}=3 \%$ Eull Flow/\% Levei Span
$\mathrm{K}_{31}=1 \%$ Valve Lift/\% Full Flow

It is desired to calculate the equivalent paranetars for the three element controller block diagram of Figure 2.10 on page 30 . The parameters will be calculated for the Sequoyah 100 percent power model used throughout this thesis. The following dara are needed to evaluate the parameters

1. Nominal steam flow rate $=$ maxinum steam flow rate $=3.731 \times 10^{6} 1 \mathrm{bm} / \mathrm{hr}=1036.389 \mathrm{lbm} / \mathrm{sec}$
2. Assume that at 100 percent flow, the feedwater valves are 100 percent open
3. Westinghouse ${ }^{39}$ has indicated that 1 percent span is equivalent to 0.12 it of the downomer level.

With this information the Westinghouse gains can be calculated

$$
\begin{aligned}
K_{30} & =3 \frac{9 \text { Full Flow }}{9_{0} \text { Level Span }} \times \frac{10.3639 \mathrm{lsm} / \mathrm{sec}}{90 \text { Full Flow }} \times \frac{190 \text { Level Span }}{0.12 \mathrm{ft}} \\
& =259.097 \mathrm{l6m} / \mathrm{sec}-\mathrm{ft} \\
K_{31} & =\frac{190 \text { ValveLift }}{70 \text { Full Flow }} \times \frac{10070 \text { Full Flow }}{10070 \text { Valve Lift }}=1.0
\end{aligned}
$$

It is easily seen that the equivalent three element controller parame-
ter of Figure 2.10 on page 30 are

$$
\begin{aligned}
& \tau=\tau_{30}=5.0 \mathrm{sec} \\
& \tau_{1}=\frac{\tau_{31}}{K_{30}}=\frac{1800.0}{259.097}=6.947 \mathrm{sec} \\
& \tau_{2}=\frac{\tau_{33}}{K_{31}}=\frac{200.0}{1.0}=200.0 \mathrm{sec} \\
& K_{1}=K_{30}=259.097 \frac{16 \mathrm{~m}}{\mathrm{ft}-\mathrm{sec}} \\
& K_{2}=K_{31}=1.0
\end{aligned}
$$

APPENDIX C

DERIVATION OF THE HIGH ORDER PWR

REACTOR CONTROL SYSTEM MODEL

From Westinghouse documentation on PWR control systems ${ }^{38}$, equation (II.32) can be written for the average temperature set point for a change in power transfer function. Equation (II.32) is rearranged to obtain
(C.1) $\left(1+\tau_{\text {set } 1} s\right) \delta T_{S 1}(s)=K_{1} \delta \% P_{S}(s)$.

An energy balance can be done on the secondary fluid in the steam generator to obtain
(c.2) $P=\frac{d E}{d t}=W_{S} h_{S}-W_{F W} h_{F W}$.

Equation (C.2) is linearized to obtain
(c.j) $\delta P=W_{s} \delta h_{s}+h_{s} \delta W_{s}-W_{\text {ow }} \delta h_{\text {Pw }}-h_{\text {Fo }} \delta W_{\text {Pw }}$.

The percent power delivered by the secondary fluid is defined to be
(c.4) $\nabla_{0} P_{s}=\frac{P_{s}}{P_{\text {max }}} 100=\frac{W_{s}\left(h_{g}-h_{5 w}\right) 100}{W_{\max }\left(h_{g}-h_{5 w}\right)_{\max }}$

At steady state, the feedwater flow will equal the steam flow. Let it be assumed that saturation conditions exist, which allows the following equation to be written

$$
\text { (c.5) } \begin{aligned}
\delta \eta_{0} P_{s} & =\frac{100}{W_{\max }\left(h_{g}-h_{F W}\right)_{\max }}\left[W_{s} \frac{\partial h_{g}}{\partial P_{s}} \delta P_{s}\right. \\
& \left.+h_{g} \delta W_{S}-W_{s} C_{P Z} \delta T_{F W}-h_{F W N} \delta W_{F W}\right] .
\end{aligned}
$$

Substituting equation (C.5) into equation (C.1) will yield

$$
\begin{aligned}
& \text { (c.6) }\left(1+\tau_{\text {set }} s\right) \delta T_{s 1}(s)=\frac{K_{1} 100}{W_{\text {max }}\left(h_{\delta}-h_{\text {Pw }}\right)_{\text {max }}} x \\
& {\left[W_{s} \frac{\partial h_{g}}{\partial P_{s}} \delta P_{s}+h_{\delta} \delta W_{s}-W_{s} C_{P 2} \delta T_{\text {FF }}-h_{\text {sw }} \delta W_{\text {fwiw }}\right](s) .}
\end{aligned}
$$

The inverse Laplace transform of equation (C.6) is

$$
\text { (c.7) } \begin{aligned}
\frac{d \delta T_{s 1}}{d t} & -\frac{\delta T_{s 1}}{\mathcal{Z}_{s e t}}+\frac{K_{1} 100}{W_{\text {mar }}\left(h_{g}-h_{5 w}\right)_{\text {max }} \tilde{\tau}_{\text {set }} 1} L^{W_{s}} \frac{\partial h_{s}}{\partial P_{s}} \\
& \left.+h_{g} \delta W_{s}-W_{s} C_{F 2} \delta T_{F w}-h_{F w} \delta W_{F w}\right]
\end{aligned}
$$

Also from reference 38 , equation (II.33) defines the lead-lag compensated average temperature transfer function. Equation (II.33) can be rearranged to obtain

Equation (C.8) can again be rearranged, and an inverse Laplace transform will yield

$$
\begin{aligned}
& +\frac{1}{2}\left[\delta T_{H}^{\prime}+\delta T_{C}^{\prime}\right]+\frac{\hat{L E S A D}}{2}\left[\frac{d \delta T_{H}}{d t}+\frac{d \delta T_{C}}{d t}\right] .
\end{aligned}
$$

Equations (II.35) and (II.36) define the transfer functions of the hot and cold leg temperatures as measured by the resistance temperature detectors. Equations (II.35) and (II.36) can be rearranged and an inverse Laplace transform performed to obtain
(c.10) $\frac{d \delta T_{4}^{\prime}}{d t}=\frac{1}{\imath_{R T D}}\left[\delta T_{H L}-\delta T_{H}\right]$
(C.11) $\frac{d \delta T_{c}^{\prime}}{d t}=\frac{1}{2}\left[\delta T_{\pi D}-\delta T_{c}^{\prime}\right]$

A dummy temperature variable will no z be defined by the following equation

$$
\text { (c.12) } \frac{c \delta T_{52}}{d t}=\delta T_{\text {dummy }}
$$

Thus, equations (C.12), (C.11), and (C.10) can be substituted into equation (C.9) to obtain

$$
\begin{aligned}
& +\frac{1}{2}\left[1-\frac{\hat{\imath}_{2 A D}}{\hat{\imath}_{R T D}}\right]\left[S T_{C}+S T_{H}\right]+\frac{\hat{2}_{2 A D}}{2 \hat{\imath}_{R J D}}\left[S T_{L L}+S T_{H L}\right]
\end{aligned}
$$

Again from reference 38, equation (II. 34) defines the temperature
equivalent of a power mismatch transfer function. Equation (II. 34)
is rearranged to obtain

$\% \mathrm{P}_{\mathrm{s}}$ has been defined previously by equation (C.5). $\frac{\delta P}{P_{0}}$ is the fac-
tonal change in nuclear power and is state variable number 1 in both the high order and low order PWR models (see Table II on page io and Table XVI on page 137).

The percent change in nuclear power is defined by the following equation

$$
\text { (c.15) } \delta \eta_{0} P_{N}=100 P_{0}\left(\frac { \delta P } { P _ { \operatorname { m a x } } } \left(\frac{100 W_{S}\left(h_{\delta}-h F w\right)}{W_{0}} \frac{\delta P_{\text {max }}\left(h_{g}-h_{F w}\right)_{\max }}{P_{0}}\right.\right.
$$

The gains K_{2} and K_{3} of the power mismatch transfer function are not constant (see Figures 2.16 on page 47 and 2.17 on page 48). The following equation will then be used to express K_{2} and K_{3}
(c.16) $\quad K_{2}=K_{2}+\delta K_{2}$
(c.17) $\quad K_{3}=K_{3}+\delta K_{3}$

Substituting equations (C.17), (C.16), (C.15) and (c.5) into equation (C.14) and performing an inverse Laplace transform will yield
(c.18) $\frac{d \delta T_{53}}{d t}=\frac{\sqrt{53}}{2_{5 e+3}}+\frac{100}{c_{s e+3} W_{\text {max }}\left(h_{\delta}-h_{\text {ww }}\right)_{\text {max }}}$
equation (C.18) continued
$\left[K_{20} K_{30}+K_{20} \delta K_{3}+K_{30} \delta K_{2}+\delta K_{2} \delta K_{3}\right] x$
$\left[W_{S} \frac{\partial h_{S}}{\partial P_{S}} \delta P_{S}+h_{\delta} \delta W_{S}-C_{P Z} W_{S} \delta T_{F W}-h_{F W} \delta W_{F W}\right.$
$\left.-W_{S}\left(h_{g}-h_{F W}\right) \frac{\delta P}{P_{0}}\right]$.
Equations (C.18), (C.13), (C.12), (C.11), (C.10) and (C.7) are the final form of the state variable equations for the reactor control system of the high order PWR model. Subroutine DISTRB is used to simulate the nonlinear gain of equation (C.18). The values of the parameters used to calculate the coefficients were obtained from reference 38 and are given in Table VIII on page 45.

APPENDIX D

DERIVATION OF THE TURBINE-FEEDWATER HEATER SYSTEM MODEL

D. 1 Introduction

This appendix is written with the intent of deriving a turbine and feedwater heater model as presented in reference ll. The derivation of the model is not shown in reference 11 , therefore the equations are derived in this appendix. The models represented here for the turbine and feedwater heaters attempt to follow the developments that led to the documented IBM model. This model proved very useful and convenient in giving a balance-of-plant model within the time schedule available for this study. However, some of the approaches differ from the author's preferred choices. Nevertheless, the model was used to expedite the present work. The equations as they appear in reference 11 consist of a set of nonlinear algebraic and differential equations. The computer code, MATEXP, solves a set of first order linear differential equations. In order to use MATEXP with this model, it is necessary to linearize the nonlinear equations. However, these equations can also be solved in their nonlinear form if desired (see Shankhar ${ }^{32}$, IBM11).

Table XI on page 85 gives a listing and description of all the parameters used in this model. Table XI on page 85 also gives a value of these parameters at steady state initial conditions. These values were obtained for a typical 1200 MWe plant at 100 percent power from references 11 and 29. Figure 2.28 on page 84 shows a block diagram of the turbine-feedwater heater model. This figure shows all the differential and algebraic variables presented in this appendix. The reader should refer to page 85 and page 34 while reading this appendix,

Section D. 2 of this appendix presents the derivation of the differential equarions. Section D. 3 presents the derivation of the tur-
bine shaft power. Section $D .4$ presents all the algebraic equations needed to describe the system in a state variable form. Section D. 5 presents the final form of both the linear and non-linear form of the equations. Section D. 5 also gives the final calculated linear equations used in this study.

The isolated turbine-feedwater heater model can be perturbed by four forcing functions as presented in Chapter II. The results of these four cases are shown on pages 95, 287, 290 and 293.

D. 2 Differential Equations

i) Nozzle chest

A mass balance over the constant nozzle chest volume V_{c} will
result in the following equation
${ }_{\text {(0.1) }} \frac{d m}{d t}=W_{1}-W_{2}$.

Because the volume is constant the mass, M, can be expressed as $\overbrace{\text { e }} V_{\text {e }}$ After rearranging equation (D.1) and performing a linearization, the following equation will result

An energy balance on the nozzle chest will result in the following equation
(D.3) $\frac{d E}{d t}=W_{1} h_{5}-W_{2} h_{c}$

The energy stored in the volume V_{c} can be expressed as $E=M u_{c}$. The mass, as before, can be expressed as $M=\rho_{C} V_{C}$. Thus equation (D.3) can be written as
(0.4) $V_{c} \rho_{c} \frac{d u_{c}}{d t}+V_{c} u_{c} \frac{d \rho_{c}}{d t}=W_{1} h_{s}-W_{2} h_{c}$.

Callender's empirical state equation $11,14,40$, which relates
enthalpy, specific volume, and pressure can be used to eliminate ${ }^{4}$ c from equation (D.4). This expression is reasonably valid for superheated steam. The complete Callender's relation is given by
(0.5) $p_{c} v_{c}=\frac{J}{g_{c}}\left[k_{1} h_{c}-k_{2}-k_{3} p_{c}\right]$
where k_{1}, k_{2}, and k_{3} are constants given on page 85 for h_{c} units of $B / l b m, v_{c}$ units of $f t^{3} / l b m$, and p_{c} units of $l b f / f t^{2}$. The product $k 3 P_{C} J$ is much smaller than the other products of equation (D.5), therefore this product will be assumed equal to zero. Then, after differentiation, equation (D.5) can be expressed as

$$
\text { (D.6) } p_{c} d v_{c}+v_{c} d p_{c}=\frac{J k_{1}}{g_{2}} \text { dh }
$$

By definition, the enthalpy h_{c} an be expressed as

$$
\text { (D.7) } h_{c}=\ell_{c}+\frac{P_{c} V_{c}}{J} .
$$

Upon differentiation and rearranging, equation (D.7) can be written as
(D.8) $d u_{c}=d h_{c}-\frac{p_{c} d v_{c}}{J}-\frac{v_{c} d p_{c}}{J}$

Substituting equation (D.6) into equation (D.8) will result in
(D.9) $d u_{c}=d h_{1}-\frac{k_{1}}{g_{e}} d h_{c}$

After rearranging and division by de, equation (D.9) can be written as

$$
\text { (D.10) } \frac{d b_{c}}{d t}=\frac{1}{1-\frac{k_{1}}{g_{c}}} \frac{d u_{c}}{d t}
$$

Then equations (D.10), (D.7) and (D.2) can be substituted into equation (D.4), resulting in

$$
\text { (D.11) } \frac{d h_{c}}{d t}=\frac{1}{1-\frac{k_{1}}{g_{c}}}\left[\frac{w_{1} h_{s}}{V_{c} \rho_{c}}-\frac{w_{2} h_{c}}{v_{2} \rho_{c}}+\left(\frac{p_{2}}{J \rho_{c}^{2}}-\frac{h_{c}}{\rho_{c}}\right)\left(\frac{w_{1}-w_{2}}{V_{c}}\right)\right]
$$

Then after linearization and division by $h_{c_{o}}$, equation (D.11) will
become
(D.12)

$$
\begin{aligned}
\frac{d \frac{s h_{c}}{h_{c o}}}{d t} & =\frac{1}{1-\frac{k_{1}}{g_{c}^{c}}}\left[\frac{P_{c}}{J V_{c} \rho_{c}^{2} h_{c}} \delta W_{1}+\frac{W_{1}}{V_{c} \rho_{c} h_{c}} s h_{s}\right. \\
& \left.-\frac{P_{c}}{J \rho_{c}^{2} V_{c}} \delta W_{2}-\frac{W_{1}}{\rho_{c} V_{c}} \frac{\delta h_{c}}{h_{c_{0}}}\right]
\end{aligned}
$$

ii)

A mass balance on this system will result in
(D.13) $\frac{d M}{d t}=W_{2}-W_{2}^{\prime \prime}-W_{B H P}$

It will be assumed that the regenerative bleed flow, $W_{B H P}$, is equal to $\mathrm{K}_{\mathrm{BHP}} \mathrm{W}_{2}$. "Let $\mathrm{T}_{\mathrm{W} 2}$ be the time constant associated with volume of the bleed lines". ${ }^{11}$ This will allow the approximate diffferential equation for the exiting flow to the reheater to be obtained from equation (D.13). In addition, equation (D.13) will be linearized and divided by $\mathrm{W}_{2}{ }^{\prime \prime}$ to obtain
(D.14) $\frac{d \frac{\delta W_{2}^{\prime \prime}}{W_{2}^{\prime \prime}}}{d t}=\frac{1}{T_{W 2}}\left[\frac{1-K_{B H P}}{W_{2}^{\prime \prime}} \delta W_{2}-\frac{\delta W_{2}^{\prime \prime}}{W_{2}^{\prime \prime}}\right]$.

If one performs a mass balance on the reheater shell side, the following equation will result
(D.15) $\frac{d M}{d t}=W_{2}^{\prime}-W_{3}$

Because the reheater volume remains constant, the mass can be written as $M=V_{R} f_{R}$. Thus, after linearization, equation (D.15) can be written as
${ }_{(0.16)} \frac{d \delta p_{x}}{d t}=\frac{1}{V_{R}}\left[\delta W_{2}^{\prime}-\delta W_{3}\right]$

An energy balance can be made on the shell side of the reheater, which will result in the following equation
(D.17) $\quad \frac{d E}{d t}=Q_{R}+W_{2}^{\prime} h_{2}-W_{3} h_{R}$

The internal energy of this control volume can be written as $E=M u_{R}$. This can also be written as $E=V_{R} R_{R} \mu_{R}$. Substituting this expression for energy into equation (D.17) will result in the following equation
(D.18) $V_{R} p_{R} \frac{d u_{R}}{d t}+V_{R} u_{R} \frac{d p_{R}}{d t}=\hat{O}_{R}+W_{2}^{\prime} h_{2}-W_{3} h_{R}$

Because the steam leaving the reheater of the shell side is superheated, a substitution can be made for the $\frac{d u_{r}}{d t}$ term of equation (D.18) similar to that of equation (D.10) except the subscript c is replaced with subscript R. This expression, along with equation (D.16) can be substituted into equation (D.18) and rearranged to obtain

$$
\frac{d h_{R}}{d t}=\frac{1}{1-\frac{k_{1}}{g_{2}}}\left[\frac{Q_{R}+w_{2}^{\prime} h_{2}-w_{3} h_{R}}{V_{R} \rho_{2}}+\left(\frac{p_{2}}{J \rho_{R}^{2}}-\frac{h_{2}}{\rho_{2}}\right)\left(\frac{w_{2}^{\prime}-w_{3}}{V_{R}}\right)\right]
$$

A linearization of the above equation and division by hoo will yield

$$
\frac{d \frac{s h_{R}}{h_{R}}}{d+}=\frac{1}{1-\frac{k_{1}}{\theta_{0}}}\left[\left(\frac{h_{2}}{h_{R} V_{R} p_{2}}+\frac{P_{R}}{J V_{R} h_{R} \rho_{2}^{2}}-\frac{1}{\rho_{i 2} V_{R}}\right) \delta W_{2}^{\prime}\right.
$$

$$
\begin{aligned}
& +\frac{W_{2}}{V_{R} \rho_{2} h_{R}} \delta h_{2}-\frac{\partial R}{I Q_{R}^{2} V_{R}} \delta W_{3} \\
& \left.-\frac{W_{2}^{\prime}}{\rho_{R} V_{R}} \frac{\delta h_{R}}{h_{R_{0}}}+\frac{\delta Q_{R}}{V_{R} \rho_{R} h_{R}}\right]
\end{aligned}
$$

If a mass balance is now performed on the tube side of the reheater, the following equation can be written
(D.21) $\frac{d W}{d t}=W_{P R}-W_{P R}^{\prime}$

Let it be assumed that the control volume for the reheater tube side is a "well mixed tank." Thus, the mass M can be written as $M=W_{P R}{ }^{\prime} T_{R 1}$ where $T_{R 1}$ is a constant. After linearization and division by $W_{P R_{O}}{ }^{\prime}$, the following equation is obtained

In equation (D.20), the heat transfer across the reheater tubes, δQ_{R}, is given as a state variable. IBM ll uses an approximation to obtain the reheater heat transfer. Basically, two assumptions are made: (1) the dynamic heat transfer is assumed to be equal to the steady state heat transfer modified by a time constant, (2) the heat transfer coefficient for heat transfer across the reheater tubes is assumed to vary as the tube side flow rate to the first power. These assumptions are not correct. A proper dynamic heat balance will avoid assumption (1). Assumption (2) is incorrect because the overall heat transfer coefficient depends on surface affects on both sides of the tubes and on tube conduction effects. The IBM ll equation is

where
$T_{S}=$ main steam temperature
$\mathrm{T}_{\mathrm{R}}=$ reheat steam temperature
$H_{R}=$ overall heat transfer coefficient/flow
If the flow does not change much, then equation (D.23) should still give good results. However, it is just as easy to model it correctly, and future modifications should incorporate a change in equation (D.23). However, due to the time schedule of this research, and the necessity to obtain a usable model, the IBMll model was not changed for this thesis. Upon linearization, equation (D.23) will become
(0.24) $\frac{d \delta G_{R 2}}{d t}=\frac{1}{T_{R 2}}\left[\frac{H_{2}}{2}\left(T_{S}-T_{R}\right)\left(\delta W_{P R}+\delta W_{P R}{ }^{\prime}\right)\right.$

iv) Low Pressure Turbine

A mass balance of the control volume for the L ? turbine will result in the following equation
(0.25) $\frac{d M}{d t}=W_{3}-W_{\text {BLT }}-W_{3}{ }^{1}$

It will be assumed that the regenerative bleed flow, $W_{B L P}$, is equal
to $K_{B L P} W_{3}$. If $T_{W 3}$ is defined to be the time constant assocciated with the volume of the bleed lines, the approximate differenttrial equation for the flow to the condenser can be obtained from equation (D.25). In addition, equation (D.25) will be linearized and divided by $W_{3}{ }^{\prime}$ to obtain
${ }_{(0.26)} \frac{d \frac{\delta W_{3}^{\prime}}{W_{30}^{\prime}}}{d t}=\frac{1}{T_{W 3}}\left[\frac{1-K_{B L P}}{W_{30}^{\prime}} \delta W_{3}-\frac{\delta W_{3}^{\prime}}{W_{30}^{\prime}}\right]$

The following equation can be obtained by performing an energy balance on the tube side of feedwater heater 非1

$$
\text { (D.27) } \frac{d E}{d t}=Q_{H 1}+h_{0} W_{F W}-h_{F W} W_{E W}
$$

The energy in this control volume can be expressed as E=MuFw'. If it is assumed that the control volume is a "well mixed tank" then the mass can be expressed as $M=T_{H 1} W_{F W}$ where $T_{H l}$ is a constant. This will result in

The internal energy term can be expressed as $u_{F W}{ }^{\prime}=h_{F W}{ }^{\prime}-(p v)_{F W}$ '. Because this fluid is in a liquid state, it will be essentially incomepressible. Therefore, the change in the (pv$)_{\mathrm{FW}}$ ' term will be small compared to the change in the enthalpy term. This will allow the internal energy to be expressed as $u_{F W} \approx h_{F W}$. Then equation (D . 28) can be written as

The heat transfer from the shell side to the tube side will be expressed as an effective flow on the shell side multiplied by a constant. If it is assumed that the effective flow rate is equal to $W_{H P 2}+W_{B L P}=W_{H P 2}+K_{B L P} W_{3}$, the heat transfer from the shell side to the tube side can be written as

$$
\begin{equation*}
Q_{H 1}=H_{F W}\left(K_{B L D} W_{3}+W_{H P 2}\right) \tag{D.30}
\end{equation*}
$$

The constant $H_{F W}$ could be called the latent heat removed from the steam entering the shell side of feedwater heater $\# 1$ as it condenses
across the feedwater heater tubes. The only comment that the IBM 11 report has made is "the proportionality constant $H_{F W}$ is calculated during the initialization phase." 11 Therefore one must assume that given the steam flows W_{3} and $W_{H P 2}$, and the initial heat transfer $\mathrm{Q}_{\mathrm{H} 1}$, the constant H_{FW} is determined. However, the numerical value of $H_{F W}$ used by IBM and for this thesis (given on page 85) is the same for feedwater heater $\# 1$ and feedwater heater ${ }^{*} 2$. Equation (D.29) will now be written as
(D.31) $\frac{d h_{F W}^{\prime}}{d t}=\frac{H_{F W}}{T_{H 1} W_{F W}}\left[K_{B L P} W_{3}+W_{H P 2}\right]+$

$$
\frac{\left(h_{0}-h_{F w}^{\prime}\right)}{T_{H 1}}-\frac{h_{F W}^{\prime}}{W_{F W}} \frac{\Delta W_{F w}}{d t}
$$

Assuming that the inlet enthalpy change is zero ($\delta_{h_{0}}=0$), linearzation of the above equation will result in

$$
\text { (D.32) } \begin{aligned}
\frac{d \delta h_{F W}^{\prime}}{d t} & =\frac{H_{F W}}{T_{H 1} W_{F W}}\left[K_{B L P} \delta W_{3}+\delta W_{H P 2}\right] \\
& -\frac{\delta h_{F W}^{\prime}}{T_{H 1}}-\frac{h_{F W}^{\prime}}{W_{F W}} \frac{d \delta W_{F W}}{d t} \\
& -\frac{H_{F W}}{T_{H 1} W_{F W}^{2}}\left(X_{B L P} W_{3}+W_{H P 2}\right) \delta W_{F W}
\end{aligned}
$$

The high order PWR model presented in Chapter II has a representtation for the feedwater flow rate entering the UTSG. It will be assumed that the feedwater flow rate and its derivative are the same through the complete feedwater heater system. Thus the feedwater flow rate, $W_{F W}$, will become a coupling term if the turbine-feedwater heater model is coupled to the UTSG model. The feedwater flow derivaLive term in equation (D.32) can be expressed by equation (II.30). This equation resulted from the three-element feedwater flow controller model. Equation (II.30) is repeated here for clarity

(D.33) $\frac{d \delta W_{F W}}{d t}=\delta \Gamma$

If the turbine-feedwater heater del is coupled to the physical low order PWR model of Chapter III, then the feedwater flow will be controlled perfectly. If the steam flow out of the UYSG is expressed as in equation (II.24), then the following equation will result

where $\frac{d \delta P_{s}}{d t}$ and $\frac{d \delta / t_{0}}{d t}$ are expressed in state variable equations 10 and 23 respectively.
vi)

An energy balance similar to the energy balance done on feedwater heater $\# 1$ is done for feedwater heater $\# 2$ which will result in
(D.35) $\frac{d E}{d t}=Q_{H Z}+W_{\text {EN }} h_{\text {FF }}^{\prime}-W_{\text {Fw }} h_{\text {Lw }}$

By analogy with the derivation of the feedwater heater $\# 1$ equations, the following equations can be written
(D.36) $E=T_{H 2} W_{\text {LW }} h_{\text {WW }}$

$$
\begin{equation*}
Q_{H 2}=H_{F W}\left(K_{B H P} W_{2}+W_{M s}+W_{P R}^{\prime}\right) \tag{D.37}
\end{equation*}
$$

Substitution of equations (D.36) and (D.37) into equation (D.35), linearization of the resulting equation, and letting δ f ow be set equal to $C_{p 2} \delta \Gamma_{F W}$ (incompressible fluid), will obtain the following equation

$$
\text { (0.38) } \begin{aligned}
& \frac{d \delta T_{F w}}{d t}=\frac{1}{C_{P 2} T_{H 2}}\left[\frac{H_{F w}}{W_{F w}}\left(K_{B H P} \delta W_{2}+\delta W_{m s}+\delta W_{\rho i}\right)\right. \\
&\left.-\frac{H_{F w}}{W_{F w}^{2}}\left(K_{B H H} W_{2}+W_{m s}+W_{p i}\right) \delta W_{F w}+\delta h_{F w}^{\prime}\right] \\
&-\frac{\delta T_{F w}}{T_{H 2}}-\frac{h_{E w}}{W_{E w}} \frac{d \delta W_{F w}}{d t} .
\end{aligned}
$$

A tass balance on feedwater heater \#2 will give
(D.39) $\frac{d m}{d t}=W_{B H P}+W_{m S}+W_{P R}^{\prime}-W_{H P Z}$.

If the control volume is assumed to be a "well mixed tank," then the mass can be expressed as $M=T_{H P 2} W_{H P 2}$, where $T_{H P 2}$ is a constant. Again $W_{B H P}=K_{B H P} W_{2}$ as before. Upon linearization and divison by $W_{H P 2 o}$, equation (D.39) will become
(0.00) $\frac{d \frac{\delta W_{\text {HP Z }}}{W_{\text {API }}}}{d t}=\frac{1}{T_{\text {APR }} W_{\text {APR }} L}\left[K_{B H P} \delta W_{2}+\delta W_{m s}\right.$

$$
\left.+\delta W_{P R}^{1}\right]-\frac{1}{T_{H P 2}} \frac{\delta W_{H P 2}}{W_{H P 2}} .
$$

D. 3 Derivation of the Turbine Shaft Power

The mechanical shaft power is given in Chapter II by equation (II.51) to be $P=F$ where F equals the rotational frequency (60 Hz) and
τ is the torque applied to the generator shaft. This can also be kit ten as

$$
\begin{equation*}
P_{m}=\Omega\left[T_{H P}+T_{L P}\right] \tag{D.41}
\end{equation*}
$$

where Ω is the nominal frequency, usually equal to 60 Hz , and T_{HP} and $T_{L P}$ are the high pressure turbine torque and the low pressure turbine torque respectively.

The flow entering the HP turbine, W_{2}, "is assumed totally available to produce torque since the regeneration bleed flow from the HP turbine is typically tapped right after the HP turbine ."11 This kill allow the following equation to be written
(D.42) $T_{H P}=\frac{1}{I_{\Omega}} W_{2}\left(h_{c}-h_{2}\right)$
where h_{c} is the nozzle chest enthalpy of the steam entering the HP turbine and h_{2} is the enthalpy of the steam as it leaves the $H P$ turbine to the reheater.

Let it be assumed for the moment that the steam exhaust from the HP turbine has been expanded isentropically. If we define the exhaust enthalpy of the $H P$ turbine for an isentropic process to be $h_{2}{ }^{\prime}$, then the following equation can be written 12
(D. 43)

$$
\eta_{H P}=\frac{h_{c}-h_{2}}{h_{c}-h_{2}^{\prime}} .
$$

The following empirical relationship has been developed ${ }^{11}$ for the isentropic endpoint enthalpy of the HP turbine for nuclear power plants
(0.44$) h_{2}^{\prime}=1080.3+0.37\left(P_{x_{1}}-200\right)-0.0011\left(P_{2_{1}}\right.$ $-200)^{2}-0.10\left(p_{c}-1000.0\right)$
where $P_{R l}$ and P_{C} are the reheater entrance pressure (psia) and the nozzle chest pressure respectively (in psia). This empirical relationship given by equation (D.44) was applied to a 1000 Mae BWR nuclear plant. This expression could be different for a P NR nuclear plant of a different power rating. However, for this thesis, no changes were made on the IBM1l model. The pressures $P_{R 1}$ and P_{C} can be related by the following equation assuming an ideal gas relationship for saturated steam

Let W_{3} " be defined to be the effective flow through the turbine. In equation form this sail be $W_{3}{ }^{\prime \prime}=1 / 2\left(W_{3}+W_{2}\right)$. This definition "arises from the assumption that one -half of the bleed flow (for regeneration purposes) produces torque, or alternatively, that the average bleed flow passes one half way through the LP turbine."11 This will allow the following equation to be written
(D.46) $T_{H P}=\frac{\eta_{H P}}{J \Omega} W_{2}\left(h_{C}-h_{2}^{\prime}\right)$
there h_{c} and h_{2} are the inlet and outlet enthalpies of the $H P$ pressure turbine respectively. An analagous relationship exists for the LP turbine assuming isentropic expansion which allows the following equation to be written
(D.47) $T_{L P}=\frac{\eta_{L P}}{I \Omega} W_{3}^{\prime \prime}\left(h_{R}-h_{4}^{\prime}\right)$

Upon linearization, and assuming that $\delta h_{4}{ }^{\prime}=0$, equations (D.41)
through (D.47) will become
(D.48) $S P_{M}=\Omega\left(\delta T_{H P}+\delta T_{L P}\right)$
(D.49) $\delta T_{H P}=\frac{\eta_{H P}}{J \Omega}\left[W_{2} \delta h_{C}-W_{2} \delta h_{2}^{\prime}+\left(h_{c}-h_{2}^{\prime}\right) \delta W_{2}\right]$
(D.50) $\left.\delta T_{L P}=\frac{\eta_{L P}}{I \Omega}\left[\frac{W_{3}+W_{3}^{\prime}}{2}\right) \delta h_{x}+\left(\frac{h_{R}-h_{4}^{\prime}}{2}\right)\left(\delta W_{3}+\delta W_{3}^{\prime}\right)\right]$
(D.51) $\delta h_{2}^{\prime}=0.3678 \mathrm{spz}-0.10 \mathrm{spe}$
$1 / \gamma \quad 1 / \gamma$
(0.52) $\delta \rho_{2}^{\prime}=\left[\frac{P_{R}}{P_{C}}\right]_{1 / \gamma} \delta \rho_{C}+\left[\frac{P_{R}}{P_{C}}\right] \frac{\rho_{C}}{\gamma p_{R}} \delta p_{R}$

Equations (D.48) through (D.52) are combined to describe the mechanical shaft power. In this study subroutine DISTRB was used to calculate P_{m} at each time step in the solution. However, P_{m} could be incorporated as part of a constant coefficient system matrix by substituting equations (D.48) through (D.52) into the expression of P_{m} of a $P f$ controller model (see equation (II.56)). For this thesis the final calculated form of P_{m} is given in equation (D.88).

D. 4 Algebraic Equations

The state variables of the turbine-feedwater heater model are given by Table XII on page 90. There are many algebraic variables in equations (D.1) through (D.52) which need to be described. W_{1}, can be related to the steam flow leaving the UTSG, W_{s} by the following equation
(0.53) $W_{1}=($ NUTSG $) W_{S}=($ NUTS $) \in P_{S}$
where NUTSG is the number of UTSG's in the total plant, is the valve coefficient, and P_{S} is the steam pressure leaving the UTSG. This equation can be linearized to obtain
(0.54) $\delta W_{1}=N U T S G\left[\epsilon_{0} \delta P_{s}+W_{s_{0}} \frac{\delta \epsilon_{0}}{\epsilon_{0}}\right]$.

The steam flow entering the nozzle chest can be expressed by the followirig empirical relationshipll

$$
\begin{equation*}
W_{2}=\sqrt{g_{c}} A_{k 2}\left[P_{c} P_{c}-P_{2} P_{2}\right]^{0.5} \tag{D.55}
\end{equation*}
$$

where $A_{K 2}$ is a constant given on page 85. Equation (D.55) is linearized to obtain

The steam flow leaving the moisture separator and into the reheater can be obtained by performing an energy balance at steady state over the moisture separator as the control volume

$$
\text { (D.57) } W_{2}^{\prime \prime} h_{2}-W_{2}^{\prime} h_{g}-W_{m s} h_{f}=0=\frac{d E}{d t}
$$

It is assumed that $W_{m s}=W_{2}{ }^{\prime \prime}-W_{2}$. . This will allow equation (D.57) to be rearranged and linearized to obtain

$$
{ }_{(0.58)} \delta W_{2}^{\prime}=\left[\frac{h_{2}-h_{f}}{h_{f}}\right] \delta W_{2}^{\prime \prime}-\frac{W_{2}^{\prime \prime}}{h_{f}} \delta h_{2} .
$$

The steam flow leaving the reheater and into the LP turbine can be described by the following empirical relationship ll

$$
\text { (0.59) } W_{3}=\sqrt{g_{c}} K_{3}\left[P_{R} P_{2}\right]^{0.5}
$$

where K_{3} is a constant. Equation (D.59) is linearized to obtain

$$
{ }_{(0.60)} \delta w_{3}=\frac{k_{3} \sqrt{g_{c}}}{2\left[p_{2} p_{p} p^{0.5}\right]}\left[p_{n} \delta \delta_{n}+p_{2} \delta p_{2}\right] .
$$

The steam flow from the bypass line to the reheater shell side
Will follow the "critical flow"2 assumption which will allow the following equation to be written
(D.61) $W_{P R}=\epsilon_{2} P_{S}$

Where \mathcal{E}_{2} is the valve coefficient and P_{S} is the steam pressure of the UTSG. Linearization of equation (D.61) will yield
(D.62) $\quad \delta W_{P R}=\epsilon_{2_{0}} \delta P_{s}+W_{P R} \frac{\delta E_{2}}{E_{2}}$

Callender's empirical relationship ll for superheated steam can be used on the nozzle chest and reheater outlet pressures to obtain
(D.63) $P_{c}=\frac{I \rho_{c}}{g_{c}}\left[k_{1} h_{c}-k_{2}\right]$

$$
\text { (D.64) } P_{R}=\frac{I \rho_{2}}{g_{e}}\left[k_{1} h_{R}-k_{2}\right]
$$

Equations (D.63) and (D.64) are linearized to obtain
(D.65) $\delta p_{e}=\frac{J}{g_{c}}\left[\rho_{c} k_{1} \delta h_{c}+\left(k_{1} h_{c}-k_{2}\right) \delta \rho_{c}\right]$
(D.65) $\delta p_{R}=\frac{J}{g_{2}}\left[p_{R} k_{1} \delta h_{R}+\left(k_{1} n_{R}-k_{2}\right) \delta p_{R}\right]$.

It will be assumed that the quality of the steam entering the nozzle chest and entering the reheater shell side is approximately 1.0. Therefore the following equations are obtained

$$
\begin{equation*}
\delta h_{s}=\left(\frac{\partial h_{s}}{\partial P_{s}}\right) \delta P_{s} \tag{D.67}
\end{equation*}
$$

$$
\begin{equation*}
\delta T_{s}=\left(\frac{\partial T_{\text {sat }}}{\partial P_{s}}\right) \delta P_{s} \tag{D.68}
\end{equation*}
$$

It is assumed that the steam on the tube side of the reheater behaves as an ideal gas (superheated). Thus the following equation is obtained
(D.69) $\quad P_{R}=R P_{R} T_{R}$

Differentiating equation (D.69) yields
(D.70)

$$
d T_{R}=\frac{1}{R}\left[\frac{d p_{R}}{\rho_{R}}-\frac{p_{R}}{\rho_{R}^{2}} d \rho_{R}\right]
$$

By definition, the enthalpy of the steam on the reheater tube side can be written as $h_{R}=u_{R}+\frac{\rho_{R}}{\rho_{R} J}$ Differentiating this equation will yield
(D.71) $\quad d h_{R}=d u_{R}+\frac{d p_{R}}{J P_{R}}-\frac{P_{R}}{J P_{R}^{2}} d p_{R}$.

Substituting equation (D.71) into equation (D.70) will give
(D.72)

$$
d T_{R}=\frac{J}{R}\left[d h_{R}-d u_{R}\right] .
$$

Because the ideal gas law has been assumed, the internal energy can be written as $d u_{R}=C_{v} \mathrm{dT}_{R}$ where C_{v} is defined to be $C_{v}=\left[\frac{\Delta U}{\Delta T}\right] \begin{gathered}\text { constant } \\ \text { volume }\end{gathered}$. Therefore, the temperature on the shell side of the reheater can be expressed as

$$
\begin{equation*}
\delta T_{R}=\frac{\delta h_{R}}{\left[\frac{R}{J}+e_{v}\right]} \tag{D.73}
\end{equation*}
$$

The steam leaving the moisture separator and entering the reheater is saturated. Thus the following equations can be obtained

(D.75)

$$
\delta \rho_{2}=\frac{\partial \rho_{2}}{\partial p_{R}} \delta p_{R} \approx S \rho_{2}
$$

D. 5 Final Form of the Non-linear and Linear Differential Equations The final form of the model will have 11 state variables. These state variables are described in Table XII on page 90. If it is desired to analyze the model in its nonlinear form, the following differential equations will be needed: (D.1), (D.11), (D.13), (D.15), (D.19), (D.21), (D.23), (D.25), (D.31), (D.35), (D.39).

In addition, the following assumptions which have been previously discussed are made

```
- mass of nozzle chest fluid \(=V_{c} P_{c}\)
- mass of HP turbine fluid \(=\mathrm{W}_{2}\) " \(\mathrm{T}_{\mathrm{w} 2}\)
- mass of shell side reheater fluid \(=V_{R} \rho_{R}\)
- mass of tube side reheater fluid \(=W_{P R}{ }^{\prime}{ }^{\prime 2} R 1\)
- mass of LP turbine fluid \(=W_{3}{ }^{\prime} T_{w}\)
- mass of shell side feedwater heater fluid \(=W_{H P 2} T_{H P 2}\)
- mass flow \(=W_{B H P}=K_{B H P} W_{2}\)
- mass \(\mathrm{flow}^{\prime}=\mathrm{W}_{\mathrm{BLP}}=\mathrm{K}_{\mathrm{BLP}} \mathrm{W}_{3}\)
- energy storage in feedwater heater \#2 \(=\mathrm{T}_{\mathrm{H} 2} \mathrm{~W}_{\mathrm{FW}} \mathrm{FW}_{\mathrm{FW}}\)
- heat transfer from shell to tube side of feedwater heater \#2
```

 \(=Q_{H 2}=H_{F W}\left(K_{B H P} W_{2}+W_{m s}+W_{P R}{ }^{\prime}\right)\)
 where \(V_{C}, T_{W 2}, V_{R}, T_{R 1}, T_{W 3}, T_{H P 2}, K_{B H P}, K_{B L P}\),
 \(\mathrm{T}_{\mathrm{H} 2}\), and \(\mathrm{H}_{\mathrm{FW}}\) are constants.
 The following algebraic equations would also be needed: (D.53), (D.55), (D.57), (D.59), (D.61), (D.63), and (D.64).

The mechanical shaft power would also be described by equations (D.41), (D.42), (D.43), (D.44), (D.45), (D.46), and (D.47). In addition, for a nonlinear solution, it will be assumed that a table of steam properties are available to update the thermodyamic properties at each step in the solution.

If it is desired to obtain a linear solution to the model, the following differential equations must be used: (D.2), (D.12), (D.14), (D.20), (D.22), (D.24), (D.26), (D.32), (D.38), (D.40), and (D.16).

In addition, the following algebraic equations should be substituted into the differential ẹִations to obtain a state variable
formulation: (D.54), (D.56), (D.58) (D.60), (D.62), (D.65), (D.66), (D.67), (D.68), (D.73), (D.74), and (D.75).

In addition, the mechanical shaft turbine power can be found by applying equations (D.48) through (D.52).

In this study, the linear solution to these equations was obtained. The data from page 85 was substituted into the algebraic equations. The resulting calculated algebraic equations were then substituted into the differential equations plus any remaining data from Table XI which has not been used in the algebraic equations, to obtain the final calculated equations in a state variable form. The final equations used in this study are

$$
\text { (0.76) } \begin{aligned}
\frac{d \delta p_{c}}{d t}= & +0.025 \delta P_{s}+20.73 \frac{\delta E}{\epsilon_{0}}-16.29 \delta \rho_{c} \\
& +1.93 \delta p_{r_{1}}-36.72 \frac{\delta h_{c}}{h_{c_{0}}}+5.88 \frac{\delta h_{R}}{h_{R_{0}}}
\end{aligned}
$$

$$
\text { (D.77) } \begin{aligned}
\frac{d \frac{\delta h_{c}}{h_{c_{0}}}}{d t}= & +0.015 \delta P_{5}+12.67 \frac{\delta \epsilon_{2}}{\epsilon_{L_{0}}}-31.15 \frac{\delta h_{c}}{h_{c_{0}}} \\
& -9.96 \delta p_{c}+1.18 \delta p_{2}+3.59 \frac{\delta h_{2}}{h_{2_{0}}}
\end{aligned}
$$

(D.78)

$$
\begin{aligned}
\frac{d \frac{\delta W_{2}^{\prime \prime}}{W_{2}^{\prime \prime}}}{d t} & =+0.393 \delta \rho_{c}+0.886 \frac{\delta h_{c}}{h_{c_{0}}}-0.047 \delta \rho_{R} \\
& -0.142 \frac{\delta h_{2}}{h_{R_{0}}}-0.5 \frac{\delta W_{2}^{\prime \prime}}{W_{2}^{\prime \prime}}
\end{aligned}
$$

(0.79) $\frac{d \delta \rho_{R}}{d t}=+0.195 \frac{\delta W_{2}^{\prime \prime}}{W_{2}^{\prime \prime}}-0.271 \delta \rho_{R}-0.21 \frac{\delta h_{R}}{h z_{0}}$

$$
\begin{aligned}
& \text { (D.80) } \\
& \frac{d \frac{\delta h R_{2}}{h R_{0}}}{d t}=+0.616 \frac{\delta W_{2}^{\prime \prime}}{W_{2}^{\prime \prime}}-1.075 \delta \rho_{2} \\
& -1.277 \frac{\delta r_{z}}{h z_{0}}+0.377 \delta Q_{z} \\
& \text { (D.81) } \frac{d \delta W_{P R}^{\prime}}{W_{P r_{0}^{\prime}}^{\prime}}=-0.33 \frac{\delta W_{P P^{\prime}}^{\prime}}{W_{P R}^{\prime}}+\left(4.0 \times 10^{-1}\right) \delta P_{S} \\
& +0.33 \frac{\delta \epsilon_{2}}{\epsilon_{z_{0}}}
\end{aligned}
$$

$$
\text { (D.82) } \begin{aligned}
\frac{d \delta Q_{R}}{d t}= & -1.01 \frac{\delta h_{R}}{h_{R_{0}}}+0.008 \frac{\delta W_{P R_{2}^{\prime}}^{\prime}}{W_{P R_{0}^{\prime} 0}^{\prime}} \\
& +\left(8.5 \times 10^{-5}\right) \delta P_{S}-0.25 \delta Q_{R}+0.013 \frac{\delta \epsilon_{2}}{\epsilon_{2_{0}}}
\end{aligned}
$$

(D. 83)

$$
\frac{d \frac{\delta W_{3}^{\prime}}{W_{3}^{\prime}}}{d t}=+0.17 \mathrm{\delta} \rho_{2}+0.146 \frac{\delta h_{2}}{h z_{0}}-0.1 \frac{\delta W_{3}^{\prime}}{W_{3}^{\prime}}
$$

$$
\text { (D.84) } \begin{aligned}
\frac{d \delta h_{\text {Fw }}^{\prime}}{d t}= & +1.352 \delta \rho_{R}+1.037 \frac{\delta h_{2}}{h_{R}}-0.01 \delta h_{\text {FW }}^{\prime} \\
& +1.395 \frac{S W_{\text {HPZ }}}{W_{\text {HRE }}}-0.0022 \delta W_{F W}-0.063 \frac{d \delta W_{\text {FW }}}{d t}
\end{aligned}
$$

(D.85)

$$
\begin{aligned}
\frac{d \delta T_{F W}}{d t} & =+1.338 \delta \rho_{2}+3.0144 \frac{\delta h_{c}}{h_{C 0}}-1.1 \frac{\delta W_{2}^{\prime \prime}}{W_{2}^{\prime \prime}} \\
& -0.16 \delta \rho_{R}-0.374 \frac{\delta h_{2}}{h R_{0}}+0.46 \frac{\delta W_{p r}^{\prime}}{W_{P R_{0}^{\prime}}^{\prime}} \\
& +0.022 \delta h_{F W}^{\prime}-0.025 \delta T_{F_{W}} \\
& -0.0013 \delta W_{F W}-0.0947 \frac{d \delta W_{1} W}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& -0.0052 \delta \rho_{R}-0.0122 \frac{S h_{2}}{h_{R_{0}}} \\
& +0.015 \frac{\delta W_{P R}^{\prime}}{W_{P R_{0}^{\prime}}^{\prime}}-0.1 \frac{\delta W_{4 P 2}}{W_{H P 2}}
\end{aligned}
$$

The final form of the turbine torque in $f t+1 b f$ is

$$
\begin{align*}
& +1,184,187.03 \delta \rho_{c}+11,076,434.76 \frac{5 h_{c}}{h_{c_{0}}} \tag{D.87}\\
& -140,272.02 \delta p_{2}-1,657,726.72 \frac{\delta h_{R}}{h_{2}}
\end{align*}
$$

$$
\begin{align*}
\delta T_{L P}= & +938555,008 p_{2}+6,456,187.70 \frac{\delta h r}{h R_{0}} \tag{D.88}\\
& +386,305.53 \frac{\delta w_{3}^{\prime}}{W_{3}^{\prime}}
\end{align*}
$$

Thus the final form of the total turbine power in units of M is

$$
\begin{align*}
\delta P_{m} & =605.28 \delta \rho_{2}+5661.52 \frac{\delta h_{2}}{h_{c_{0}}} \tag{D.89.}\\
& -408.28 \delta \rho_{1}-2452.65 \frac{\delta h_{\pi}}{h_{R_{0}}} \\
& +197.45 \frac{\delta W_{3}^{\prime}}{W_{3}^{\prime}}
\end{align*}
$$

From equation (D.86), the power produced by the HP turbine can be found by determining the thermodynamic state of the fluid in the nozzle chest and the reheater (input-output characteristics). From equation (D. 87), the power produced by the LP turbine can be found by deter mining the thermodynamic state of the fluid in the reheater and the fluid flow entering the LP turbine. Therefore, this model assumes that the power delivered by the LP turbine is a function of input characteristics only. This is equivalent to saying that the thermodynamic state of the fluid in the condenser remains constant.

APPENDIX E

SOME FIGURES PLACED

IN THE APPENDIX FOR

CLARITY

Figure E.l Response of high order coupled reactor, three element controller, core, UTSG, and reactor controller models for a +10 percent step $j n$ valve coefficient showing the effect of making DBOUT and DBIN too small on the reactor control system $\left(0.50^{\circ} \mathrm{F}\right.$ and $0.25^{\circ} \mathrm{F}$ respectively).

Figure E. 2 Response of overall high order PWR system model for a -0.05 pumiv (-50 Mm) step in tie line power flow showing the effect of making ROWSTP too large on the reactor control system (ROWSTP $=0.0225$ [dollars/step]).

Figure E. 3 Response of isolated turbine-feedwater heater model for a +10 percent step in the bypass steam valve coefficient.

Figure E. 3 (continued)

Figure E. 3 (continued)

Figure E. 4 Response of isolated turbine-feedwater heater model for a +30 psi step in inlet steam pressure.

Figure E. 4 (continued)

Figure E. 4 (continued)

Figure E. 5 Response of isolated turbine-feedwater heater model for a $+100 \mathrm{lbr} / \mathrm{sec}$ step in feedwater flow rate.

Figure E. 5 (continued)

Figure E. 5 (continued)

Figure E. 6 Response of the low order and high order PWR models for a -0.05 putw step in tie line power flow.

Figure E. 6 (continued)

Figure E. 6 (continued)

Figure E. 6 (continued)

Figure E. 7 Surface shown in Figure 3.3 rotated 115° about the
-867°

Figure E. 8 Surface shown in Figure 3.4 rotated 115° about the $\%$ axis.

Figure E. 9 Surface shown in Figure 3.5 rotated -115° about the Z axis.

APPENDIX F

DERIVATION OF THE PF OR MEGAWATT

FREQUENCY CONTROLLER MODEL.9,27

The real power in a power system is controlled by controlling the driving torques of the individual turbines of the system. It is important for the further discussions of $P f$ control to understand the workings of the individual power regulators. Figure F.l shows a schematic of the operating features of a speed-governing system.

The model developed here ${ }^{27}$ applies to small deviations around a nominal steady state. The following chain of events are assumed to take place

1. The system is initially in a constant steady state, characterized by a constant nominal speed or frequency f°, a constant prime mover valve setting $\mathrm{X}_{\mathrm{E}}{ }^{\circ}$, and a constant generator output power $P_{G}{ }^{\circ}$.
2. By means of the speed changer, we command a power increase P_{C}. As a result of this command, the linkage point A moves downward a small distance X_{A} proportional to P_{C}.
3. The movement of linkage point A causes small position changes X_{C} and X_{D} of the linkage points C and D. At this time no speed changes have taken place, which means that point 3 is fixed. Points C and D therefore move upward. As oil flows into the hydraulic motor, the steam valve will move a small distance X_{E}, resulting in increased turbine torque and, consequently, a power increase P_{G}.
4. The increased power output causes a momentary surplus, or accelerating, power in the system. If the system is very large ("infinite"), the increased generator power will not noticeably effect the speed or frequency. However, if the system is of finite size, the speed and frequency will

Figure F. 1 Typical real-power control mechanism.
experience a slight increase that sill cause the linkage point B to move doninard a small distance ΔX_{B} proportional to Δ_{f}. The speed governor being fast, we neglect any time delay in it. Consequently, we set ΔX_{B} proportional to Δf.

All incremental movements $\Delta \mathrm{X}_{\mathrm{A}}$, $\Delta \mathrm{X}_{\mathrm{E}}$ are assumed postfive in the directions indicated in Figure Fl. Since all linkage movements are small, we have the following linear relationships (F.1) $\Delta X_{c}=k_{1} \Delta f-k_{2} \Delta P_{c}$

$$
\begin{equation*}
\Delta x_{D}=k_{3} \Delta x_{c}+k_{4} \Delta x_{E} \tag{F.2}
\end{equation*}
$$

The positive constants k_{1}, and k_{2} depend upon the lengths of the linkage arms 1 and 2 and upon the proportional constants of the speed changer and the speed governor. The positive constants k_{3} and $k_{i 1}$ depend upon the lengths of the linkage aras 3 and 4.

If we assume that the oil flow into the hydraulic motor is proportional to position ΔX_{D} of the pilot valve, we obtain the following relationship for the position of the main piston (F.3)

$$
\Delta x_{E}=k_{5} \int\left(-\Delta x_{\Delta}\right) d t
$$

The positive constant k_{5} depends upon orifice and cylinder geometrics and fluid pressure.

By taking the Laplace transform of equations (F.1), (F.2), and (F.3), and eliminating the variables ΔX_{C} and ΔX_{D}, we obtain the following equation
$\underset{\text { (F.4) }}{ } \Delta X_{E}(s)=\frac{k_{2} k_{3} \Delta P_{c}(s)-k_{1} k_{3} \Delta F(s)}{k_{4}+\frac{s}{k_{5}}}$
where
(F.5) $D F(S) \equiv \mathcal{L}[D F]$
(F.6) $\Delta X_{E}(\Omega) \equiv \mathcal{L}\left[D X_{E}\right]$
(F.7) $\quad \Delta P_{c}(S) \equiv \mathscr{L}\left[\Delta P_{C}\right]$.

Equation (F.4) can be rewritten as follows
(F.8) $\Delta X_{E}(s)=\frac{K C_{G}}{1+Z_{T} s}\left[\Delta P_{c}(s)-\frac{\Delta F(s)}{T}\right]$
where
$R \equiv \frac{k_{2}}{k_{2}}=$ speed "regulation" due to governor action
$K_{6} \equiv \frac{k_{2} k_{3}}{k_{4}}=$ static gain of speed-governing mechanism sn
$\tau_{T}=\frac{1}{k_{+} k_{S^{-}}}=$time constant of speed-governing mechanism.
The value of these constants used in this study are given on page 105 . One additional assumption will be made. The incremental change in steam valve position, ΔX_{E}, will be assumed to be directly proportional to the fractional change in steam valve coefficient. In addLion, a more generalized form cf equation (F.8) can be written by adding a subscript i to each variable. The subscript i denoting the lith control area as given on page 102. In equation form, this can be written as
(F.9) $\Delta x_{E_{i}} \propto \frac{\Delta t_{i}}{\epsilon_{i}}$

Thus, the static gain K_{G} will nor be change to K_{2}. In this study, the power control error signal, $\Delta P_{C i}$ will always be set equal to the ACE signal. ACE or "area control error" is defined to be
(F.10) $A C E_{i}=\Delta P_{T E_{i}} \rightarrow\left(D+\frac{1}{R}\right) \Delta F_{i}$
where
$\Delta P_{\text {TIE }}=$ the tie line power flow a power flowing into the fth control area from outside the th control area (see Figure 2.31) in punt units D = constant damping coefficient (pußth/Hz).
R and I_{i} have been defined previously. In this study, only one control area will be considered, that of a single 1200 ma PWR nuclear power plant. Therefore the i subscripts will be dropped. In addition, in order to be consistent with the symbols used previously in this thesis, the Δ symbol used by Elgerd will be changed to δ. Thus the following equation can be written for the fractional change in valve coefficient
(F.11) $\frac{\delta \epsilon}{\epsilon_{0}}(s)=\frac{K_{2}}{1+\zeta_{T} s}\left[-A C E(S)-\frac{\delta F(s)}{R}\right]$.

Performing an inverse Laplace transform, equation (F.11) becomes

Let $\delta P_{C}=\int A C E(t) d t$. This will allow equation (F.12) to be Fritten as two first order linear differential equations.
(F.13) $\frac{d}{d} \frac{\delta P_{C}}{d t}=A C E=\delta P_{T E}+\left(D+\frac{1}{R}\right) \delta F$
(F.14) $\frac{c \mid \delta \epsilon / \epsilon_{0}}{d f}=-\frac{\delta \epsilon_{E_{0}}}{\tau_{T}}-\frac{K_{2}}{\tau_{T}} \delta P_{C}-\frac{K_{2}}{\tau_{T} R} \delta F$

From page 102, the following equation can be written

where
$\delta P_{\text {SUM }}=$ sum of all power signal into the i th control area (puMa)
$=S P_{M}-\delta P_{T I E}-\delta P_{D}$
$M=$ generator inertia constant (puMis-sec/Hz)
$\delta P_{M}=$ mechanical shaft power produced by the generator (p uNiv) $\delta P_{D}=$ the power demand signal for the eth control area (puMw)
$\delta P_{\text {TIE }}, \delta F$, and D have been previously defined. After performing an inverse Laplace transform, equation (F.15) becomes

$$
\text { (F.16) } \frac{\mid \delta F}{d t}=-\frac{D}{M \mid} \delta F+\frac{1}{M \mid}\left[\delta P_{M 1}-\delta P_{T, E}-\delta P_{D}\right] .
$$

Equations (F.13), (F.14), and (F.16) make up the state variable model for the Pf controller. The values of the parameters used in this study are given on page 105.

APPENDIX G

INSTRUCTIONS FOR THE USE OF THE REDUCE COMPUTER PROGRAM

G. 1 INTRODUCTION

The REDUCE computer code is a program which will reduce the order of a state variable system model by the pole-zero deletion method. The theory used to develop the pole-zero deletion method is given in Section III. 4 of this thesis. The time response and frequency response of both the full and reduced representation are also evaluated by REDUCE. The printed output from REDUCE can be used to compare the accuracy of the low order representation. Additional output can be used to develop plots if desired.

Figure G.l is a flow chart of the REDUCE program. From Figure G.1, the input and output, as well as internal characteristics of REDUCE, can be determined.

In Figure G.l, the abbreviations LUN stand for "logical unit number." The fortran statement $\operatorname{WRITE}(20,100)$ will cause the contents of the format statement labeled by 100 to be written into the LUN 20 . The various LUN's used by REDUCE are shown in Figure $G .1$.

The computer used to run this program for this thesis was the Dec System 10 at the University of Tennessee. For this computer system, the following devices were used with the corresponding LUN's

3 line printer
20 DSKC of the user's disk space
21 DSKC of the user's disk space
22 DSKS of the user's disk space
23 DSKC of the user's disk space
In Section G.2, the instructions for the input data file used to run REDUCE is given. Then the data file called 'FILE.DAT' used in this thesis is given in Figure $G .2$.

Figure G. 1 Flow chart of the REDUCE computer program.

Figure G. 1 (continued)

Figure G. 1 (continued)

コーにへのか○○○ー下ーN～N ーーーーーールヘミNへへNへへ

$+5.000 D+20$
（continued）

て．0 axnsta	
	$520 \cdot 2-8$
$0 \cdot 1$	$0+10000 \cdot \varepsilon+1$
	S．0．2－
9^{*}	$0+00000 \cdot 8+1$
	520．2－\＆
Or＊	$0+0^{0} 000 \cdot 6+l$
	s20•2－
$0 ¢ \cdot$	$0+00000 \cdot \varepsilon+1$
	¢20・を－¢
して．	$0+00000 \cdot \varepsilon+1$
	520・て－\＆
$02 \cdot$	$0+C 0000 \cdot \varepsilon+i$
	S．0．3－\＆
Sl．	$0+00000 \cdot \varepsilon+l$
	Sこう・て－ع乙
30°	$0+60000 \cdot \varepsilon+i$
	$520 \cdot 2-$ ह．
$2.0{ }^{\circ}$	$0+00000 \cdot \varepsilon+1$
	520．3－\＆．ट
$\varepsilon 10^{\circ}$	$0+10000 \cdot 5+1$
	$520 \cdot 3-$

$1+3.00000+0$	1.1	$+5.000 D+20$
2.3	-2.025	

Figure G. 2 (continued)

G. 2 INSTRUCTIONS FOR THE INPUT DATA FOR REDUCE

Card No. 1 (title)

Column	$1-80$
Format	$20 A 4$
Input	TITLE

TITLE - a title of 80 alphanmeric characters to be used to identify the case being run

Card No. 2. (REDUCE control parameters)

Column	$1-5$	$6+10$	$11-15$	$16-20$	$21-30$
Format	I5	I5	I5	I5	D10.2
Input	N	NO	NPLOT	NINT	DT

N - Number of differential equations. Must be ≤ 50
NO - Number of frequencies to be used in calculating the frequency responses. Must be ≤ 100

NPLOT - Number of cases to be run. (Or the number of plots to be made.) Must be ≤ 16.

NINT - The number of time intervals to be evalated in performing the time response. Must be ≤ 1000.

DT * The value of the individual time intervals. No restrictions. DT x NINT $+1=$ the time at the end of observation of the desired time response.

LCRIT - The low critical value for deleting poles and zeroes. If any pole-zero pair is found which is less than this value, that pair will be deleted. 1×10^{-10} is a recommended value.

Card No. 3. (state variables to be examined)

Column	$1-80$
Format	16 I5
Input	ISTATE

ISTATE - The vector of state variables to be examined. The total number of state variables to be evaluated must be equal to $N P L O T \leq 16$.

Card No. 4. (name of the state variables to be examined)

Column	$1-80$
Formt	$16(1 \mathrm{X}, \mathrm{A} 4)$
Input	NAME (I)

NAME(I) - The vector of the names of the state variables to be examined. Each name can be made of four alphanumeric characters. The total number of names must be equal to NPLOT ≤ 16.

Card No. 5. (frequencies to be evaluated)

Column	$1-70$
Format	7 (D10.3)
Input	W(I)

W(I) - Vector of frequencies to be used in evaluating the frequency
responses. The total number of frequency points must be equal to $N O \leq 100$. Repeat this card until all frequency points have been read in (seven points per card).

Card No. 6 (non-zero system matrix coefficients

Column	$1-5$	$6-10$	$11-20$	$21-25$	$26-30$	$31-40$	$41-45$	$46-50$	$51-60$
Format	I5	I5	D10.4	I5	I5	D10.4	I5	I5	D10.4
Input	Il	J1	D1	I1	J2	D2	I3	J3	D3

Il - row number ≤ 50 and ≥ 0
J1 - column number ≤ 50 and >0
Dl - value of the matrix coefficient at location (Il, Jl)
I2 - row number ≤ 50 and >0
J2 - column number ≤ 50 and >0
D2 - value of the matrix coefficient at location (I2, J2)
I3 - row number ≤ 50 and >0
J3 - column number ≤ 50 and >0
D3 - value of the matrix coefficient at location (I3, J3)

Repeat this card until all the non-zero matrix coefficients have been read in. Make the value of the input parameter $I=0$ for the last card of matrix coefficients. This will stop the reading of the system matrix coefficients.

Card No. 7 (non-zero forcing vector coefficients

Column	$1-5$	$6-15$	$16-20$	$21-30$	$31-35$	$36-45$	$46-50$	$51-60$
Format	I5	D10.3	I5	D10.3	I5	D10.3	I5	D 10.3
Input	I1	F1	I2	F2	I3	F3	I4	F4

Il - row number ≤ 50 and 20
Fl - value of the forcing coefficient at row Il
I 2 - row number ≤ 50 and >0
F2 - value of the forcing soefficient at row I2
I3 - row number ≤ 50 and >0
F3 - value of the forcing coefficient at row I3
I4 - row number ≤ 50 and >0
F4 - value of the forcing coefficient at row I'4
Repeat this card until all the non-zero forcing coefficients have been read in. Make the value of the input parameter $I=0$ for the last card of the forcing coefficients. This will stop the reading of the forcing coefficients.

Card No. 8 (REDUCE control card)

Column	$1-5$	$6-15$	$16-25$	$26-35$
Format	I5	D10.2	D10.2	D10.2
Input	LAGAIN	RNEST	EPIL	HCRIT

LAGAIN - Non-zero value will cause the time response and frequency response to be repeated again for the reduced model representation (after pole-zero pairs have been deleted). A value of zero will not allow the time response and frequency response to be done for the reduced representation. Must be either zero or non-zero integer number.

RNEST - The estimated difference between the number of poles and number of zeroes. The number of poles by definition is equal to N. RNEST is approximately equal to the number of nonzero system matrix coefficients in the row corresponding to the state variable number being examined. Must be <50.

EPIL - The critical value for deciding whether a pole-zero pair will be deleted. If a pole-zero pair has the same exponent, and if the absolute value of the difference of the mantissas of that pole-zero pair is less than EPIL, then that pole-zero pair will be deleted. Must be 0 .

HCRIT - The high critical value for determining the zeroes of the desired state variable transfer function. The forcing vector is multiplied by HCRIT before using Cramer's rule to determine the zeroes. The "bad" eigenvalues are thrown away if they have an absolute value greater than (HCRIT)RNEST.

Repeat card number 7 and 8 (NPLOT-1) times to complete the input data for REDUCE.

The data file which was used to produce Figures 3.3, 3.4, 3.5, E.7, E. 8 , and E. 9 on pages $162,163,164,301$, and 302 respectively is given in Figure $G .2$ on page 315 . The SURFACE II ${ }^{36}$ computer code was used to produce the $3-D$ plots from the output data files OMEGA.DAT and TIME.DAT.

James Downing Freels was born in Morristown, Tennessee, on December l, 1954 the son of James C. and Patricia Freels. After graduating from Morristown-Hamblen High School East in June 1972, he received his first experience in the engineering field through a summer job with Culley Engineering and Manufacturing Company of Whitesburg, Tennessee.

In the fall of 1972, he started his college education as a Mechanical Engineering major at Virginia Polytechnic Institute and State University in Blacksburg, Virginia. During his stay at V.P.I. \& S.U., he participated in the co-op work study program with Tennessee Eastman Company of Kingsport, Tennessee. He completed four work quarters as an M.E. student with T.E.C.

In the spring of 1975, he transferred to the University of Tennessee in Knoxville. He obtained the Bachelor of Science degree in Nuclear Engineering on June 10 , 1977. During his undergraduate study at U.T., he worked as a part time employee of the Tennessee Valley Authority in Knoxville from August 1975 to June 1977 on the design of principal piping systems for the Sequoyah-Watts Bar design projects.

In June 1977, he was awarded a graduate research assistantsip from the Nuclear Engineering Department of the University of Tennessee. He obtained the M.S. degree in Nuclear Engineering in March 1979.

He is currently e:nployed with Science Applications Incorporated in Oak Ridge, Tennessee.

Jim is married to the former Elizabeth Gilmore Little of Morristown, Tennessee. They currently reside in Clinton, Temnessee.

[^0]: Figure 2.23 Response of coupled pressurizer pressure model for +10 cent step jn reactivity after ten seconds of onservation time.

[^1]: NSPTV(I) - A vector of the state variable numbers to be plotted. If necessary, repeat card No. 5 until NPLOT entries for NSPTV(I) have been made.

