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Abstract

Keratoconus (KC) is a corneal atrophy which causes a conical extrusion (cone). It

is often misdiagnosed as optical defocus with astigmatism. In this thesis, computer KC

eye models for various conditions are constructed. Using the KC eye model the influence

on visual performance including the consequent refractive errors and the higher-order

aberrations of KC eyes was investigated. The affects of cone shape, dimension (vol-

ume), and location on visual performance are also discussed. The modeled KC eyes

are additionally used to evaluate the performance of a common eye vision-screening

instrument. The simple photorefraction (PR) technique uses only one small light source

with a camera to photograph ocular reflection patterns. Computer optical ray tracing

was performed to simulate the PR images of both KC eyes and astigmatic eyes. The

simulation results shown indicate the ability to detect and differentiate KC from normal

refractive errors.
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Chapter 1

Introduction to Keratoconus

1.1 Keratoconus Overview

Keratoconus (KC) is an eye condition in which there is a noninflammatory thinning of

the cornea. Due to the intraocular pressure of the eye, the thinning cornea bulges to

form a conical shape (Fig. 1.1). Figure 1.2, illustrates the surface of a normal and a

KC cornea. The epithelium is a cellular avascular layer on the outside of the cornea,

the endothelium is cellular layer on the inside of the cornea. The stroma is the middle

layer of the cornea which comprises about 90 % of the cornea. The abnormal curvature

caused by KC changes the eye’s refractive power and produces myopic and astigmatic

power symptoms.

Refractive power is the inverse of focal length which is usually measured in inverse

meters or diopters (D). Myopia (nearsightedness) is a spherical refractive error in which

the light rays entering the eye focus in front of the retina. This is caused when the eye’s
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Figure 1.1: Profile View of Keratoconus[3].

Figure 1.2: Normal vs. Keratoconus Cornea.
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optical power is too strong or when the eye’s axial length is too long. Astigmatism, a

cylindrical refractive error, occurs when the ocular rotational-symmetry vanishes and

the toricity, two optical powers at right angles, of the refractive surfaces causes the

optical system to have two focal planes [2]. These two types of refractive errors can be

easily corrected using spectacles or contact lenses. Since KC is progressive and has an

irregular power distribution, it can be difficult to correct.

In the early stages KC may be corrected by spectacles [1]. As KC progresses, the

irregular astigmatism increases and cannot easily be corrected by spectacles, and rigid

contact lenses are required to correct KC [1, 3]. Rigid contact lenses can improve the

vision more effectively by depressing the cone down, however, a problem can arise if the

contact lens rubs the corneal surface which can further weaken the cornea or introduce

corneal scarring. Approximately 20% of keratoconus patients eventually require a cornea

transplant [3].

It is difficult to determine the frequency of KC. Some estimates are that one in every

two thousand people in the United States have keratoconus [3]. However, this number

may be too small because it is believed that a large number of people with KC are

misdiagnosed. Keratoconus usually develops in the teenage years and seldom progress

after thirty years of age [3]. It shows no preference in gender, and in most cases it is

bilateral [3, 5].

There are many different ideas on how keratoconus is caused, but one idea is a

change in the biochemical and physical corneal tissue [3]. There are also indications
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that it is hereditary [1, 3]. Wearing rigid contact lenes for a long time has also been

found to induce keratoconus [1, 3].

1.2 Diagnosing KC

Recognizing keratoconus can be difficult because of its appearance of myopia and astig-

matism. KC is often misdiagnosed in the early stages as myopia (nearsightedness)

with astigmatism. Some indications of KC include frequent eye prescription changes or

eye pain if contact lenses are worn [3]. Some of the different diagnosis aids for kerato-

conus include: retinoscopy, slit lamp examination, and photokeratoscope or topographer

placido disc.

Retinoscopy can also be used as an aid to detect KC [5]. Retinoscopy is a method

of examining the pupil’s light reflex to determine the eye’s refractive error. Retinoscopy

indicates advanced cases of keratoconus as a scissors reflex, or direct ophthalmoscopy

shows a shadow, (Fig. 1.3) [1, 3, 5].

A slit lamp examination is also a useful aid to detect keratoconus. A slit lamp is a

microscope that uses a slit beam of light to magnify the cross section of the cornea. With

the slit lamps aid it is possible to view many advanced indicators of keratoconus. These

include: Fleischer’s ring, stress lines of Vogt, corneal thinning and scarring, various

types of staining with and without lens wear, and increased visibility of corneal nerves

[1, 3]. A Fleischer ring is a yellow-brown to olive-green ring of pigment which may or

may not completely surround the base of the cone. Lines of Vogt are small and brushlike
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Figure 1.3: Image of Scissor’s Reflex in Keratoconus Patient [3].

lines.

The keratometer is another diagnosing aid used to measure the curvature of the

corneal surface. It is a beneficial instrument used to determine the astigmatism. Instead

of measuring the whole corneal curvature, the keratometer detects the steepest and

flattest curvatures. This gives an indication to the topography of the corneal surface.

The photokeratoscope, (Fig 1.4) is a new diagnosing aid that measures the topog-

raphy of the cornea. The photokeratoscope takes a reflection image of the placido disk

off the cornea [6]. The computer analyzes the shape of the placido disk, circular shaped

mires, to create the cornea’s two-dimensional topographical map. Using computer-

assisted analysis, plots of the cornea raw height or the refractive power can be obtained.

One can also obtain a simulated keratometry (Sim K) value for each cornea [6]. The

Sim K value has a high correspondence to the typical keratometry measurement [6].

In addition to the typical dioptric plots, it is also noted that height maps are useful
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Figure 1.4: EyeSys Photokeratoscope With Placido Disk

to diagnose KC [7]. Since the height of the cone itself is much smaller than the cornea,

it is difficult to locate a KC cone. Therefore, the background cornea must be eliminated

to reveal the resultant cone [7]. One technique is to first decompose the corneal surface

height into orthogonal functions, and then subtract off the irrelevant terms. Several

different orthogonal functions have been studied, but by far the most popular are the

Zernike polynomials [7]. Zernike polynomials have been extensively used to analyze the

ocular waver front aberration [8, 9].

Zernike polynomials have several advantages over other methods to describe an

optical surface. One obvious advantage is that Zernike polynomials are orthonormal

over the unit circle. Each Zernike polynomial also represents a physical corneal shape.

For example, the Z0
2 polynomial represents the average corneal curvature, and Z+2

2 and

Z−2
2 describe corneal astigmatism. Zernike polynomials will be discussed in more detail

6



during section 2.2.

1.3 Classification

There is currently not a standard way of classifying keratoconus. Some prevalent clas-

sification criteria include: cone shape, central keratometic reading, or how it progresses

[3]. The simplest ways of classifying the degree of keratoconus is using the keratometic

reading or the cone shape.

According to the Center for Keratoconus [3], there are four different degrees of

keratoconus using the optical power of the cornea. Table 1.1 shows the classification

criteria for various degrees of KC based on the dioptric power of the cornea. A normal

cornea has an optical power of about forty-three diopters (D), and that of the whole

eye is about sixty D. The optical power is the inverted focal length, and the diopter is

a measure of optical power in units of inverse meters. The larger dioptric power results

in a more severe KC eye, because the light rays will focus farther in front of the retina.

The other common classification system is to use the shape of the cone. Table

1.2, shows three different cone shapes that describe KC. Perry suggested classifying

keratoconus as just round and oval cones [4]. Figure 1.5, demonstrates the round and

Table 1.1: Classification of Keratoconus Based on Dioptric Power of Cornea. [3].
Classification Parameter

Mild < 45 D in both meridians
Moderate 45-52 D in both meridians
Advanced 52-62 D in both meridians

Severe > 62 D in both meridians
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Table 1.2: Classification of Keratoconus Based on Size of Cone. [4].
Classification Parameter Comments

Nipple small diameter round shape (5mm)
Oval large diameter displaced inferiorly; (> 5mm)

Globus largest diameter 75% of cornea affected; (> 6mm)

Figure 1.5: Drawing illustrating round (nipple) left, and oval (sagging) right [4].

oval type cones in keratoconus.

There are several different characteristics of the round and oval cones. The round

cone is the most common shape. The cone’s center usually lies within a few millimeters

of the visual axis in the lower nasal quadrant. The oval cone is typically larger and

usually lies in the lower temporal quadrant. The oval cone commonly lies farther away

from the visual axis, but has a greater dioptric value [4].

The problem with these two classifications is that they are ill-defined. To monitor

KC progression a better description needs to be developed. With the advent of the

photokeratoscope it is possible to obtain a more quantitative description of the cone’s

shape and distance from the visual axis. The two different classifications are not inde-

pendent. Currently, their has been little said on how the shape and location of the cone

8



will affect the optical power.

1.4 Objectives

A major objective in this investigation is to construct a KC eye model describing various

degrees of KC. This KC eye model can be used in future research. The mathematical

construction of the KC eye model will be explained in Chapter 2. Various degrees,

from mild to severe, of KC eyes are established based on measured KC cone statistical

distributions. The optical affects for each cone parameter describing KC, (dimension,

shape, and location), are investigated in Chapter 3. Chapter 4 applies the KC eye model

to validate a vision screening instrument, based on coaxial and eccentric photorefraction

(PR), to differentially diagnose KC from spherical refractive errors.
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Chapter 2

Keratoconus Eye Model

Optical modeling of KC eyes can determine how the KC cone affects the eye’s visual

performance. A medical instruments sensitivity to detect and differential diagnose KC

can also be studied before testing on human subjects. Therefore a KC eye model would

be quite beneficial. To construct a KC eye model a normal eye’s front corneal surface

will be modified according to the KC corneal structure. The corneal surface can be

established by measuring KC patient cornea topographs. The topography of a KC

cornea has been evaluated previously [6, 7, 20, 21, 22, 23]. Typical cone sizes from these

papers can be adopted to create a systematic model describing a KC cornea.

Section 2.1 will discuss how the topography of a KC cornea can be determined. A

way to view the resulting cone using Zernike polynomials is discussed in section 2.2.

Throughout Section 2.3 the details of the normal eye model will be expatiated. The

KC eye model is constructed by modifying the normal eye model’s corneal surface and

10



is discussed in Section 2.4.

2.1 Topography of Cornea

The KC cornea surface topography must be obtained and defined before the KC eye

model is constructed. There are two different ways to obtain the height map: extracted

from dioptric correction data files, or by directly obtaining the elevation file from the

photokeratoscope. Appelgate studied the accuracy of both of these methods on different

surface types representing the cornea [24]. In Appelgate’s study, he obtained the sur-

face topography from calibrated spherical, elliptical, and bicurve surfaces. The surface

topography’s accuracy was quantified by evaluating the root-mean-squared (RMSE) of

the 6400 measured height data points from the known surface elevation.

Appelgate concluded that the extracted method yields surface elevations with an

uncertainty of less then 5 µm for spherical and elliptical surfaces. The back calculated

technique represented the known surface topography better for spherical and elliptical

surfaces, but for abrupt transitions the instrument’s elevation files had a better surface

fit. [24].

Schwiegerling [7] also evaluated the performance of a video-keratoscope to obtain

a cornea surface topography. In his investigation several toric surfaces were studied.

A toric surface is one in which two perpendicular meridians are curved in different

magnitudes. For the toric surface with the largest curvature difference, 7 D toric (Radius

7.80 x 6.71 mm), the RMSE was determined to be 4.2 µm.
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These two investigations show the cornea surface topography can be accurately

determined. The RMSE was typically a few microns for a surface representing a cornea.

However, KC patients have cone peak heights ranging from 5 to 55 µm [22]. Since the

cone heights are greater than the instrument error, the topography can reproduce the

KC cone structure and location on the cornea.

2.2 Zernike Polynomials

Due to the magnitude of their characteristic sizes, the KC cone cannot be directly

observed in the topography height map of an abnormal cornea. Therefore, a method

is required to eliminate the base cornea height to observe the KC cone. One method

is to decompose the height map into optically meaningful terms that are based on

their refractive contributions. The terms that contain cone information can then be

separated and examined. The Zernike polynomials are an obvious choice, because each

term has a physical interpretation and they are orthogonal over the unit circle. Zernike

polynomials are used as a convenient representation of the ocular wave-front aberration

function [8, 25]. More recently, Zernike polynomials have been used to determine the

resulting cone structure from video-keratoscope surface data [7, 21, 22, 23]. The Zernike

polynomials have been derived and analyzed thoroughly elsewhere [8, 25]. Therefore,

only some of the useful properties for this discussion will be discussed here.
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Zernike polynomials are defined mathematically as:

Z+m
n (ρ, θ) =

√
2(n + 1)Rm

n (ρ) cos(mθ)

Z−m
n (ρ, θ) =

√
2(n + 1)Rm

n (ρ) sin(mθ)

Zm=0
n (ρ, θ) =

√
2(n + 1)Rm

n (ρ) (2.1)

where

Rm
n (ρ) =

n−m
2∑

s=0

(−1)s(n− s)!
s![n+m

2 − s]![n−m
2 − s]!

(ρn−2s) (2.2)

n is the order of the polynomial in the radial direction, ρ is the normalized radial

coordinate r
rmax

of the pupil, θ is the normal polar angle, and m is the frequency in the

azimuthal direction. The Zernike polynomials are made orthonormal

∫ ∫
ρdρdθW (ρ)Zm

n Zm′
n′ = δnn′δmm′ (2.3)

with the appropriate weighting function.

W (r) =
1
π

for |r| ≤ 1

= 0 for |r| > 1 (2.4)

The lower order Zernike polynomials represent familiar characteristic shapes as

shown in Figs. 2.1-2.6. Z0
0 represents the surface mean height, Z1

1 and Z−1
1 determine

the surface tilt, Z2
0 describes the surface average curvature, while Z2

2 and Z−2
2
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Figure 2.1: Z0
0 : Describes surface mean height.

Figure 2.2: Z1
1 : Describes surface tilt, Z−1

1 is a 90◦ rotation of Z1
1 .
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Figure 2.3: Z0
2 : Describes the average curvature of the surface.

Figure 2.4: Z2
2 : Describes surface astigmatism, Z−2

2 is a 45◦ rotation of Z2
2 .
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Figure 2.5: Z1
3 : Describes an irregularity structure in surface, Z−1

3 is a 90◦ rotation of
Z1

3 .

Figure 2.6: Z0
4 : Describes an additional term for the curvature of the surface, also

spherical aberration.
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determine the surface astigmatism. It is interesting to note the repetition for the non-

rotationally symmetric polynomials. For example the Z−1
1 is simply Z1

1 rotated by 90◦.

This allows the Zernike polynomials to represent a cone on the cornea surface at any

orientation. Some of the lower order Zernike polynomials are:

Z0
0 (ρ, θ) = 1, (2.5)

Z1
1 (ρ, θ) = 2ρ cos θ, (2.6)

Z0
2 (ρ, θ) =

√
3(2ρ2 − 1), (2.7)

Z2
2 (ρ, θ) =

√
6ρ2 cos θ, (2.8)

Z1
3 (ρ, θ) =

√
8(3ρ3 − 2ρ) cos θ, (2.9)

Z0
4 (ρ, θ) =

√
5(6ρ4 − 6ρ2 + 1). (2.10)

An important property of the Zernike polynomials is that each coefficient is indepen-

dent of each other. Considering the corneal surface map, Φ(r, θ), has been decomposed

into Zernike polynomials,

Φ(r, θ) =
∞∑

n=0

n∑

m=−n

am
n Zm

n (r, θ) (2.11)

then each Zernike coefficient (am
n ) can be found by multiplying Zm

n (r, θ) and integrating
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over the area.

am
n =

∫

Area
Zm

n (r, θ)Φ(r, θ)dσ (2.12)

Therefore, each coefficient is independent of any other coefficient. Thus by knowing

the corresponding coefficients you can uniquely describe a particular visual error. For

example, if the astigmatism Zernike coefficients (Z2
2 , Z−2

2 , etc.) are determined, then

the astigmatism of the system can be uniquely described.

The surface described by a video-keratoscope has a discrete amount of points. Un-

fortunately, the Zernike polynomials are only orthonormal in the continuous unit circle

but not for the discrete case. This can be resolved by applying the Gram-Schmidt

orthogonalization procedure to transform the Zernike polynomials into a new set of

modified Zernike polynomials Qm
n (r). The Gram-Schmidt orthogonalization takes a set

of nonorthogonal linearly independent functions and constructs an orthogonal set over

an arbitrary interval [26]. The same properties hold for the modified Zernike polyno-

mials. By using the Gram-Schmidt orthogonalization procedure, Wang showed that

each coefficient can be obtained by back substitution [8]. As a result, the regular least-

squares method to determine each coefficient does not have to be used, which may

introduce unwanted errors. By using the modified Zernike polynomials, unlike least-

squares, each coefficient is independent of the order of the expansion. The modified

Zernike polynomials will subsequently be referred to as simply Zernike polynomials.
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2.3 Eye Models

To evaluate the optical performance of the human eye, numerous normal eye models have

been established and published. Some of the early first-order, or paraxial (sinϕ ≈ ϕ),

eye models that are commonly used include the Gullstrand [14] and Von Helmholtz [15]

eye models. Conic constants, to simulate aspheric surfaces, were introduced later to

improve the eye models. A lens with a gradient refractive index were used in some eye

models [18].

Many medical examinations are performed on dilated eyes, and/or a large field

angle of detection. Therefore the eye models developed to evaluate the visual acuity

and retina image analysis for small pupil sizes are not appropriate for this investigation.

Eye models with gradient refractive index for the crystalline lens that greatly increases

the complexity of the calculations are also eliminated [18]. Some of the recent eye

models that take aberrations into account [16, 17, 18] were evaluated using a ray-tracing

computer code [11]. Escudero-Sanz [16] developed an eye model with a field angle up

to 60 degrees. Consequently, this normal eye model was adopted for this inquiry. This

model takes into account the on-axis and off-axis aberrations that are comparable to

real human eye measurements.

Table 2.1 shows the parameters used in the Escudero-Sanz eye model. These para-

meters are employed in a commercial optics computer code, ZemaxTM (ZEMAX De-

velopment Corporation, San Diego, CA, USA). The optics computer code is then used

to obtain optical ray-tracing calculations that are required to assess the eye’s visual
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Table 2.1: Geometry of the Schematic Wide-Angle Eye Model[16].
Surface Type Conic Constant Radius (mm) Thickness(mm) Optical Medium

1 Conic -0.26 7.72 0.55 Cornea
2 Spherical 0 6.50 3.05 Aqueous

Stop Plane 0 Infinity 0 Aqueous
4 Conic -3.1316 10.20 4.00 Lens
5 Conic -1.0 -6.00 16.3203 Vitreous

Image Spherical 0 -12.00

performance and also to evaluate optical ocular examination instruments. Figure 2.7

illustrates the appearance of a normal model eye.

The refractive indices for each element in this eye model were given at four different

wavelengths. Since the human eye is most sensitive around 555 nm, the calculations in

this thesis are performed at this wavelength. Whereas the published index of refraction

was not provided at 555 nm. Consequently computation of intermediate wavelengths

was required. The Conrady formula was used because of its usefulness in fitting sparse

data [19].

Refractive errors are simulated by introducing a virtual thin lens at the normal eye

model pupil’s location. Astigmatic eyes were constructed by inserting different powers

in two orthogonal meridians. A KC eye model was created by substituting the normal

eye model’s outside corneal surface with a KC corneal surface. Therefore, a KC corneal

surface model will be constructed in the next section.
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Figure 2.7: Model Eye Used in Ray-Tracing Code.

2.4 Keratoconus Cornea Model

An accurate, or faithful, optical model of KC requires knowledge of the typical values

and their ranges of the size, shapes and positions of the conical structures. With the

advent of the photo-keratoscope the height map of cornea surface can be determined.

The KC cone height is the elevation above a normal corneal surface. Therefore, to reveal

the cone’s morphology this normal corneal surface should be determined and expunged

from the height map. This can be done by decomposing the corneal surface into Zernike

polynomials. Accordingly, one eliminates the lower-order polynomials that represent the

defocus (near- and far-sightedness) and cylindrical power (astigmatism).

This method was introduced by Schwiegerling to examine the resulting cone from

the topographical map [7]. The height maps from KC patients were decomposed into

Zernike polynomials up to the fourth order (n=4), then the parabolic (a0
2Z

0
2 ), and the
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cylindrical (a2
2Z

2
2 and a−2

2 Z−2
2 ) components were eliminated [7, 22]. This results in a

residual height map. Corneas with an abnormal curvature and astigmatism will appear

as a relatively flat residual map. In this case the cornea’s height is closely represented

by the parabolic and astigmatic components. Contrary, a KC cornea’s residual map will

reveal the non-zero higher-order Zernike terms which represent the irregular surface of

the cone.

After the cone’s surface is obtained the cone’s size and corneal position need to be

evaluated. This allows an accurate optical KC cornea model to be constructed based on

a typical cone parameter’s. It is beneficial to represent the KC cone as a model surface

shape. Schwigerling used a two-dimensional Gaussian surface to represent the cone [22].

In this thesis the Gaussian cone was also used to simulate the cone with measured values

and ranges obtained from Schwigerling [22]. The two-dimensional Gaussian function is

represented by:

f(x, y) = h0 exp−[
(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

], (2.13)

where h0 is the peak height of the cone, (x0, y0) is the cone’s center location, and σx

and σy are the horizontal and vertical dimensions where the height drops to e−
1
2 of the

cone’s peak height. Schwigerling matched the two-dimensional Gaussian parameters

(x0, y0, σx, σy, h0) to fifty-six clinically diagnosed KC patient residual height maps

(three mild, forty-five moderate, and eight severe cases). Each parameter’s statistical

distribution reported by Schwigerling is discussed further in section 3.2.

These five different parameters, along with their distributions, are used in this inves-

22



tigation to simulate various KC cone dimensions and locations. A synthetic KC corneal

surface is generated by superimposing the KC cone onto a normal corneal surface. The

synthetic KC corneal surface can be replaced in the normal eye model’s corneal surface,

(section 2.3). In this way a KC eye model is obtained. The irregular exterior corneal

surface cannot be directly modeled using a standard Zemax surface. Therefore the five

cone parameters and the normal eye model’s corneal radius and conic constant are used

to create the artificial KC corneal surface. Microsoft Visual C++ is used to create the

KC corneal surface file required to produce the non-standard Zemax surface.

The surface generated by the C++ code is an intuitive KC corneal model. The

synthetic KC cornea is created by superimposing a typical KC cone onto the exterior

corneal surface from the Escudero-Sanz normal eye model [16]. The KC cone is modeled

using the range of measured cone parameters obtained by Schwigerling [22]. Although

the interior corneal surface is affected in KC patients the visual significance is not as

great. This is in view of the fact that the index of refraction difference is small between

the cornea and aqueous humour mediums. The KC eye model is used to investigate the

visual performance in Chapter 3, and to evaluate the detection capabilities of optical

instruments in Chapter 4. Figures 2.8 and 2.9 illustrate the 3-D profile and 2-D contour

shape of a KC cone modeled using the two dimensional Gaussian function.
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Figure 2.8: Typical 3-Dimensional View of Modeled Keratoconus Cone.

Figure 2.9: Typical 2-Dimensional View of Modeled Keratoconus Cone.
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Chapter 3

Keratoconus Eye Visual

Performance

There is currently little information on how the KC cone affects the eye’s visual perfor-

mance. One method to evaluate the visual performance is to determine the equivalent

refractive error, and the effectiveness of eye spectacles. By examining a KC eye’s wave-

front aberration the equivalent refractive errors can be established. The spectacles ef-

fectiveness to correct the vision can be obtained by examining the remaining wave-front

aberration. Then by constructing different KC cones the characteristics that affect the

vision significantly can be obtained. For each different cone characteristic a refractive

error analysis will be performed.
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3.1 Evaluating Visual Performance Through Wave Front

Aberration

To evaluate the visual performance of KC eyes the equivalent refractive errors for dif-

ferent degrees of KC needs to be calculated. This is accomplished by determining the

corresponding equivalent clinical KC eye prescription. The equivalent eye prescription,

in plus-cylinder form, gives the spherical power (Φ), cylindrical power (Φa), and the

corresponding angle describing the astigmatism axis (θa). An astigmatic eye consists

of two perpendicular meridians specifying the maximum and minimum powers (curva-

tures). In plus-cylinder interpretation, the spherical power is the minimum power in one

meridian. The cylindrical power is the difference of the two (maximum and minimum)

spherical powers. The astigmatism axis specifies the rotation about the optical axis

to determine the cylindrical meridian location. There are two different ways to repre-

sent the eye prescription, plus-cylinder and minus-cylinder form. If the prescription is

written in plus-cylinder form as (Φmin, Φa, θa) the corresponding minus-cylinder form

is written as (Φmax,−Φa, θa + 90◦).

The model KC eye’s equivalent refractive error is determined by examining the wave

front aberration (WFA). WFA is defined as the optical path difference (OPD) between

the real wave front and a reference, or perfect wave front, as a function of position on

the exit pupil. The wave front aberration is a useful tool to evaluate an ocular system’s

visual performance. A wave front is a surface described with equal phases. The wave

front of a point source in space is a sequence of spherical surfaces moving outward.
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The two dimensional WFA function can be expanded into any orthogonal complete

functions. The Zernike polynomials are typically used. As is discussed in chapter 2.2,

the Zernike polynomials have useful features in optometry and recently have gained

considerable popularity in the vision science community. The wave front of a perfect

eye with a point source located at the retina will emerge as a plane-wave. As shown

in Fig 3.1, the WFA of an eye can be measured experimentally by projecting a laser

beam onto the retina to form a diffusive point source. The rays from the point source

travel through the eye’s elements and exit the cornea. The 2-dimensional wave front

at the exit pupil is determined and compared with an ideal wave front, a plane wave

in this case, to obtain the point to point difference. The point to point difference is

described as W (ρ, θ), where ρ = r/rmax is the normalized exit pupil radius, and θ is

the azimuthal angle. The wavefront aberration is usually expressed in units of microns

µm or wavelengths λ. It is helpful to apply the wavelength to describe the WFA since

destructive interference occurs when W (ρ, θ) > λ
2 . Normally the WFA is assigned to be

zero at the center point, W (ρ = 0) = 0.

The cornea’s refractive prescription was previously found by Schwiegerling using

Zernike polynomials [7]. The mean power and astigmatism have also been found from

the wavefront using Zernike polynomials [27]. The Schwiegerling method is modified

to evaluate the whole eye’s prescription, since this is what an ophthalmologist would

measure in the clinic. Therefore, only a short description will be discussed here, and

the changes made will be noted.
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Figure 3.1: Eye’s Wave Front Aberration.

To evaluate the prescription, the total eye’s WFA function needs to be decomposed

into Zernike polynomials, as described in section 2.2. Once the WFA has been decom-

posed, the spherical power, astigmatism power, and astigmatism axis can be determined.

The astigmatism axis can be established by finding the extremum of the Zernike astig-

matism terms Z2
2 and Z−2

2 . The axis is obtained by taking the derivative and equating

it to zero, then solving for θ. The astigmatic axis is then represented in terms of Zernike

astigmatism coefficients.

θ0 =
1
2

arctan
a−2

2

a2
2

(3.1)

There exists two solutions θ = θ0 and θ = θ0 + 90◦ that satisfy the equation. Therefore
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the astigmatic axis is given by

θa = θ0 for a−2
2 sin 2θ0 + a2

2 cos 2θ0 < 0

= θ0 + 90◦ for a−2
2 sin 2θ0 + a2

2 cos 2θ0 > 0 (3.2)

If the astigmatic axis is negative then 180◦ is added so that the range is 0 ≤ θa < 180◦.

The spherical and cylindrical powers are obtained by equating the Zernike parabolic

terms, up to the fourth order, to the wavefront’s spherical sag. An approximation of

the spherical sag is defined as:

sag =
ρ2r2

max

2R0
(3.3)

where ρ = r
rmax

, rmax is the exit pupil’s radius (determined from optical software), r

is the radial coordinate, and R0 is the sphere’s curvature radius. It was determined [7]

that the two solutions R0 = R⊥ for θ = θ0 and R0 = R for θ0 + 90◦ are:

R⊥ =
r2
max

2[2
√

3a0
2 − 6

√
5a0

4 +
√

6(a2
2 cos 2θ0 + a−2

2 sin 2θa)− 3
√

10(a2
4 cos 2θ0 + a−2

4 sin 2θ0)]
.

(3.4)

Similarly, for θ = θ0 + 90◦:

R =
r2
max

2[2
√

3a0
2 − 6

√
5a0

4 −
√

6(a2
2 cos 2θ0 + a−2

2 sin 2θa) + 3
√

10(a2
4 cos 2θ0 + a−2

4 sin 2θ0)]
.

(3.5)
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The two orthogonal powers in diopters can be determined, if the units are mm, from:

Φ⊥ =
1000
R⊥

, (3.6)

and

Φ =
1000
R

. (3.7)

The cylindrical power Φa is given by

Φa = Φ⊥ − Φ. (3.8)

There is a sign change since the power to correct the eye is required. To determine

the power in the principal meridians requires an infinite number of ρ2 terms. Only the

Zernike terms up to the fourth order (n = 4) were used to calculate the powers in the

two meridians.

The higher-order aberrations cannot be represented by the spherical and cylindrical

powers. Spectacles alone cannot correct these higher-order aberrations. Therefore, a

value to determine the higher-order aberrations significance is constructed. To represent

the higher-order aberrations the W3,4 value is introduced. The W3,4 is defined as

RMS of WFAHO =
∫ ∫

W 2
n≥3ρdθdρ,

=

√√√√
∞∑

n=3

m=n∑

m=−n

(am
n )2,
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≈
√√√√

4∑

n=3

m=n∑

m=−n

(am
n )2,

= W3,4, (3.9)

where the RMS of WFAHO represents the root mean square (RMS) of the higher order

wave front terms (n ≥ 3), and am
n represent the Zernike polynomial coefficient. Only the

n = 3, 4 terms are included because they are the most consequential. Now the higher

order aberrations are approximated by the W3,4 value.

3.2 KC Eye Visual Performance Analysis

As was discussed in section 1.3, KC is commonly classified by the degree of dioptric

power or the cone’s shape. Little is known as to how the cone’s characteristics affect

the dioptric power. In this section the KC eye model is used to simulate different degrees

of KC. Cone parameters that affect the vision significantly are found after examining

their optical effects. Then the KC visual affects are evaluated for each distinctive KC

cone parameter.

Four KC eye degrees (mild, moderate, advanced, and severe) are created. Each

degree is based on Schwiegerling’s fifty-six measured cones statistical distribution. These

four KC classification degrees do not have a direct correspondence with Table 1.1.
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Figures 3.2, 3.3, 3.4, and 3.5 illustrate each measured cone’s distribution of size, volume,

and location from Schwiegerling [22]. Three cones are randomly generated for each or the

four different KC degrees. Two additional round cones are generated, since none were

randomly produced. Table 3.1 gives the characteristic variables describing the fourteen

KC cones . The cone variables include: peak height (h0), horizontal and vertical radius

(σx and σy), volume, and the shape (eccentricity). The cones are numbered according

to an increase in the peak height. The 2-D Gaussian surface volume (V ) is given by

V = 2πh0σxσy. (3.10)

The shape or eccentricity (e) is given by the ellipse equation

e =

√
1− b2

a2
, (3.11)

where b is the semi-minor axis (min[σx, σy]), and a is the semi-major axis (max[σx, σy]).

An eccentricity e = 0 corresponds to a round shaped cone, while e = 1 corresponds to

a line, using this definition of a and b.

Figure 3.6 illustrates the fourteen chosen cones in a false colored image. Each image

is 10 mm in diameter, and the max height is 55 µm for the most severe cone. Cone

#7 and #11 represent the round cones added to the randomly shaped elliptical cones.

Cones # 1-3 represent the mild, # 4-7 moderate, # 8-11 advanced, and # 12-14 severe

KC cones.
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Figure 3.2: Measured Cone Height Distribution [22].
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Figure 3.3: Measured Cone Dimension Distribution. The red cross shows the mean
value and standard deviations.[22].
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Figure 3.4: Measured Cone Volume Distribution [22].
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Figure 3.5: Measured Cone Location Distribution, T and N indicate the temporal and
nasal directions. The red symbols and crosses in the 2 plots indicate the mean locations
and standard deviations of the distributions. [22].

Table 3.1: Keratoconus Cone Parameters.
KC Degree Cone # h0 (mm) σx (mm) σy (mm) Volume (mm3) Eccentricity (e)

mild 1 0.0051 0.418 0.473 0.0146 0.282
2 0.0087 0.435 0.572 0.0136 0.649
3 0.0090 0.517 0.496 0.0063 0.467

moderate 4 0.0101 0.732 0.694 0.0323 0.317
5 0.0118 0.658 0.775 0.0380 0.529
6 0.0156 0.642 0.601 0.0377 0.351
7 0.0200 0.800 0.800 0.0804 0.000

advanced 8 0.0246 1.182 0.855 0.1561 0.690
9 0.0269 0.970 0.882 0.1447 0.415
10 0.0296 1.161 0.882 0.1907 0.650
11 0.0400 1.200 1.200 0.3619 0.000

severe 12 0.0410 1.738 1.059 0.4746 0.729
13 0.0507 1.701 1.028 0.5568 0.797
14 0.0541 1.762 1.031 0.6180 0.811
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Figure 3.6: 14 Synthetic KC Cones Describing 4 Degrees (mild, moderate, advanced,
and severe). The lower portion illustrates three cone locations on the cornea used during
the calculations.
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Table 3.2: 14 Keratoconus on Axis: Equivalent Prescription.
Cone # Spherical Eq. Power (D) Cylindrical Power (D) Axis (degrees) W3,4 (µm)

1 -2.99 0.29 180 0.21
2 -5.24 1.38 180 0.38
3 -5.52 0.23 180 0.39
4 -5.26 0.41 180 0.30
5 -6.16 1.49 180 0.36
6 -9.00 0.77 180 0.58
7 -9.26 0.00 180 0.50
8 -8.55 4.83 180 0.43
9 -10.35 1.70 180 0.49
10 -10.17 4.92 180 0.49
11 -10.20 0.00 180 0.35
12 -9.24 8.21 180 0.41
13 -12.04 10.84 180 0.51
14 -12.62 12.01 180 0.61

To determine each cone’s visual affect the spherical equivalent power (SE), cylin-

drical power, astigmatism axis, and the RMS of the higher-order WFA is evaluated.

The method to obtain the two orthogonal spherical powers and cylindrical power is dis-

cussed in section 3.1. The spherical equivalent (SE) is the average of the two orthogonal

spherical powers. A positive (negative) SE indicates an average far- (near-) sighted eye.

The SE and cylindrical refractive errors can be corrected with normal eye spectacles.

However, W3,4 represents the higher order aberrations that cannot be corrected with

spectacles. The 14 KC eye’s equivalent prescription is given in Tables 3.2, 3.3, and 3.4,

corresponding to the three different cone locations. The three different cone locations

(on visual axis: x0 = 0.0, y0 = 0.0 mm, average location: x0 = 0.404, y0 = −0.891 mm,

and far location: x0 = 1.079, y0 = −1.385 mm) selected are based on the measured

locations from Schwigerling, shown in lower portion of figure 3.6.

The pupil’s diameter also influences the WFA, and thus the visual performance is
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Table 3.3: 14 Keratoconus Average Location: Equivalent Prescription.
Cone # Spherical Eq. Power (D) Cylindrical Power (D) Axis (degrees) W3,4 (µm)

1 0.17 -2.48 114 0.26
2 -0.18 -4.18 114 0.46
3 0.29 -4.46 114 0.47
4 -0.56 -3.77 114 0.45
5 -1.19 -4.45 114 0.53
6 -0.26 -6.84 114 0.77
7 -1.90 -6.20 114 0.79
8 -1.82 -4.10 119 0.81
9 -2.76 -5.99 115 0.89
10 -2.48 -4.90 118 0.93
11 -5.04 -4.56 114 0.79
12 -3.29 2.00 143 0.95
13 -3.98 2.67 143 1.24
14 -4.14 2.59 144 1.33

Table 3.4: 14 Keratoconus Far Location: Equivalent Prescription.
Cone # Spherical Eq. Power (D) Cylindrical Power (D) Axis (degrees) W3,4 (µm)

1 0.25 -0.44 130 0.16
2 0.55 -1.20 132 0.29
3 0.54 -1.17 127 0.29
4 0.82 -2.47 127 0.30
5 0.93 -2.97 131 0.36
6 1.21 -3.19 127 0.49
7 1.42 -5.21 128 0.54
8 1.48 -5.85 121 0.51
9 1.49 -6.78 126 0.61
10 1.60 -6.99 122 0.61
11 0.08 -7.40 128 0.65
12 0.88 -6.18 119 0.67
13 1.38 -8.13 119 0.85
14 1.47 -8.41 118 0.91
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also affected. A three mm pupil diameter is chosen to evaluate the visual performance

during this chapter. Figure 3.7 also illustrates the normal refractive errors (SE and

absolute cylindrical) for the fourteen cones at the three different locations. The absolute

cylindrical (AC) is the magnitude of the cylindrical power.

Interpreting the optical affects shown in Tables 3.2, 3.3, 3.4 and Figure 3.7 give

an idea into which cone parameters significantly affect the eye’s vision. In Figure 3.7

the on-axis cones (yellow points) have a much larger near-sighted power than cones

further from the visual axis. The on-axis cone’s shape also has a significant refractive

error effect. This can be seen by examining the examining the specific on-axis cones

#7 and #11 in Figure 3.7. These round cones have no cylindrical power. While the

oval cones have an increased AC. The cone’s dimension (volume) also seems to have a

refractive error affect. As the on-axis cone’s dimension increases the SE becomes more

near-sighted. The higher order terms in the WFA (W3,4) are smaller for on-axis cones.

This is observed by comparing Table 3.2 with Tables 3.3 and 3.4. Although the on-

axis cones have the greatest dioptric powers, they are corrected with normal spectacles

better than can the off-axis cones

At the average location (green points) the SE power is more far-sighted. When the

cones are moved to the far location (blue points) the SE becomes positive, resulting

in a far-sighted eye. For both locations the higher order WFA terms increase as the

dimension increases. The far location’s high order WFA terms are smaller than the

average location’s. The shape affect appears less significant for cones at the average
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Figure 3.7: Keratoconus Normal Refractive Errors For 14 Different Cones at 3 Different
Locations.
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and far location. Unlike the on-axis round cone’s there is always a cylindrical power

present away from the visual axis.

It can be seen by comparing Table 1.1 with these results that only the cones near the

visual axis correspond to the more severe cases of KC. Three different cone parameters

are studied to determine how the KC cone affects the visual performance. Related

to the previous discussion, the cone parameters chosen are: distance from visual axis,

dimension, and shape. The cone’s visual performance is considered individually during

the remaining sections.

3.3 Cone Location Visual Affects

Possibly the most important cone parameter that notably affects the vision is the cone’s

apex location. To determine the cone location affects three cones are analyzed. The

three cones represent a small (h0 = 0.008, σx = 0.5, σy = 0.5 mm), medium (h0 = 0.02,

σx = 0.8, σy = 0.8 mm), and a large (h0 = 0.05, σx = 1.5, σy = 1.5 mm) round

cone. This ensures that the cone’s shape does not affect the prescription. Each cone is

moved radially outward from the optical center to a final radius of 3.5 mm. The path

is directed along an angle of 45◦ below the horizontal axis.

Figure 3.8 illustrates the three different cone’s location prescription effects. This

figure demonstrates how the cone’s location affects the spherical equivalent, cylindrical,

and higher-order aberrations. The cone’s curvature determines the spherical power. The

cone’s curvature is found by taking the laplacian of the gaussian function, Eq. 3.12.
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Figure 3.8: Keratoconus Cone Location Visual Prescription Affects. Top: Spherical
Equivalent Power. Middle: Absolute Cylindrical Power. Bottom: Root-mean-square of
higher-order aberrations W3,4.
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Figures 3.9, 3.10, and 3.11 demonstrate the three different cone’s curvature.

52f(x, y) =
h0x

2 exp[−( x2

2σ2
x

+ y2

2σ2
y
)]

σ4
x

−
h0 exp[−( x2

2σ2
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2σ2
y
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σ2
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+
h0y
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2σ2
y
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σ4
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−
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2σ2
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2σ2
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σ2
y

(3.12)

There are several visual effects obtained from Figs. 3.8, 3.9, 3.10, and 3.11. Fig.

3.8 illustrates that the small (red lines) and average (green lines) sized cones have little

or no spherical equivalent, cylindrical power, or W3,4 far from the axis. The large

(blue lines) cone prescriptions still exist at 3.5 mm. Near the visual axis, each cone’s

higher-order aberrations increase as the distance from the visual axis increases. Then

the higher-order aberrations reach a maximum and then gradually decrease until they

are insignificant. The refractive error prescription changes can also be seen from the

cone’s curvature. The small (Fig. 3.9) and medium (Fig. 3.10) cone’s curvature rapidly

changes, and then becomes insignificant far from the visual axis. Whereas the large

(Fig. 3.11) cone’s curvature changes less drastically, and is gradually decreasing to zero.

From Fig 3.8 the smaller cones near the visual axis apex have an increased negative

SE power (near-sightedness). As the distance increases the power switches and becomes

positive (far-sightedness) before going to zero. The large cone’s SE power changes also,

but is not zero at 3.5 mm. These effects can also be observed from the cone’s curvature.

For each cone the curvature’s concavity changes sign near the location where the SE
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Figure 3.9: Surface Curvature For Small Cone (σx/σy/h0).
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Figure 3.10: Surface Curvature For Medium Cone (σx/σy/h0).
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Figure 3.11: Surface Curvature For Large Cone (σx/σy/h0).
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power changes sign. The curvature switching signs causes a particular region to change

from convex to concave. When this region is near the visual axis the eye switches power.

The maximum absolute cylindrical power is greatest when the SE is zero, or when the

curvature concavity changes near the visual axis. Therefore from these observations, it

seems the corneal curvature near the visual axis has a significant dioptric effect.

3.4 Cone Dimension Visual Affects

The cone’s dimension, or volume, also remarkably affects the vision. Three different

cone locations are applied to understand how the cone dimension affects the equivalent

prescription. The cone’s apex is located on the visual axis (x0 = 0.0, y0 = 0.0 mm), at

the average location (x0 = 0.404, y0 = −0.891 mm), and at a far location (x0 = 1.079,

y0 = −1.385 mm). Each cone has the same h0, σx, and σy ratio (h0
h0

= 1 : σx
h0

= 42.4 :

σy

h0
= 32.6). Then the cone’s height (h0) is varied from 0.002 to 0.1 mm by 0.002 mm,

and the other cone characteristics are determined from the constant ratios. This results

in each cone having the same shape, even though the volume is increased.

Figure 3.12 demonstrates the equivalent prescription changes for on axis, average,

and far located similarly shaped cones. The average and far located cones exhibit

alike prescription behavior. The only difference is that the closer cones have a greater

spherical equivalent power, and less higher-order aberrations. Both cone locations are

far-sighted for smaller dimensions. As the dimension increases the eye proceeds to

become more near-sighted.
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Figure 3.12: Keratoconus Cone Dimension Visual Prescription Affects. Top: Spherical
Equivalent Power. Middle: Absolute Cylindrical Power. Bottom: Root-mean-square of
higher-order aberrations W3,4.
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This in view of the fact that both meridian powers are the same sign, while for smaller

dimensions they are different. The absolute cylindrical power also increases for smaller

dimensions. The maximum cylindrical occurs as the cone’s boundary (σ) approaches

the visual axis center.

The cones located at the visual axis behave entirely different. As the dimension

increases the near-sightedness rapidly increases until it reaches about ten diopters. Then

for larger dimensions the near-sighted SE gradually decreases to about three diopters.

This implies that although the dimension increases the spherical equivalent becomes less

significant. This can be explained by examining the cone curvature. As the dimension

increases the cone becomes broader which causes little curvature change. In contrast,

as the cone’s dimension decreases the peak sharpens, which creates faster curvature

changes . The higher-order aberrations are much larger for smaller cone dimensions, and

the average located cones have the largest higher-order aberrations. The largest cone

dimensions have comparable equivalent prescriptions for each location. This implies

that all cones far from the visual axis have similar prescriptions.

3.5 Cone Shape Visual Affects

The last cone parameter that greatly affects the vision is the cone’s shape. To demon-

strate how the shape parameter affects the eye’s prescription three different locations

are examined. Each cone has the same volume (V = 0.12 mm3), and the σx and σy

ratio are varied from σx
σy

= 2.5 to σx
σy

= 1
2.5 . The natural logarithm of the ratio is used
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during the calculations because the shape can be varied evenly from ln 1
2.5 = 0.916 to

ln 2.5 = −0.916.

Figure 3.13 illustrates how the cone’s shape can affects the eye’s equivalent pre-

scription. The three elliptical shapes at the figure’s bottom illustrate how the cone’s

shape changes for different ratios. The figure’s horizontal axis represents the shape as

the ln σx
σy

. The on axis cone’s shape has the greatest cylindrical power effect of all the

cone parameters. The round cone on axis has no cylindrical power. While as the shape

becomes more ellipsoidal the cylindrical power increases. This is explained because a

round cone’s curvature is circularly symmetric around the cone’s apex. Although, an

oval cone’s curvature and optical power is different in every direction away from the

cone apex. The on axis cone’s shape has little spherical equivalent power effect.

The cone’s shape at the average location demonstrates a smaller cylindrical power

dependence. The SE is affected by the cone’s shape, because the oval cone’s curvature

is different for each radial direction. Thus in addition to the cone’s shape the apex’s

horizontal and vertical distance from the visual axis will affect the optical power. The

cone’s shape at the far location has trivial optical power effects, because the curvature

far from the cone’s apex is nearly the same for different shapes.

The cone’s shape has the most significant affect on higher-order aberrations. Oval

cones located at the average position have the most high-order aberrations than any

other cone configuration considered. At each location the rounder cones have less higher-

order aberrations than the oval cones. This implies that round cones are corrected better
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Figure 3.13: Keratoconus Cone Shape Visual Prescription Affects. Top: Spherical
Equivalent Power. Middle: Absolute Cylindrical Power. Bottom: Root-mean-square of
higher-order aberrations W3,4.
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with spectacles than oval cones.
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Chapter 4

Keratoconus Analysis Using

Photorefraction

Among the most valuable eye modeling applications is the ability to predict and eval-

uate conventional and new instrument detection capabilities. For KC detection the

photokeratoscope is effective. However, it is a clinical-based device and not appropriate

for large population screenings. Consequently, the majority of people have never been

examined by such an instrument. In this chapter, the KC eye model is used to simu-

late a KC eye measurement result as observed with a device that is commonly used for

vision screening. This instrument is based on photorefraction (PR) theory that will be

discussed in the next section. The KC eye PR measurement result is compared with an

astigmatic eye with the same refractive powers. Results are shown to illustrate how PR

may be used to detect and differentially diagnose KC from normal astigmatic eyes.
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4.1 Photorefraction Description

Photorefraction (PR) is a method to estimate the instantaneous refractive power by

photographing the light refracted from a subject’s eyes [10]. PR is based on the same

principles as retinoscopy mentioned in section 1.2. The only difference is that an image

is photographed. Chen performed PR theoretical analysis using three-dimensional ray

tracing on realistic human eye models [11]. Therefore, a similar PR analysis is performed

using the KC eye model.

There are two different PR image types: coaxial and eccentric images. As the name

implies, coaxial PR occurs when the light source is aligned with the camera lens center.

In eccentric PR, the light source is decentered near the camera’s center. Each type has

certain advantages and disadvantages. It is suggested that the simultaneous using both

configurations, which is not currently done, will enhance the ability to diagnose KC.

In PR the light passes twice through the eye. The light rays reflected from normal,

near-sighted, and far-sighted eyes are illustrated in Figure 4.1. This figure has the same

configuration except the eye’s optical power is different. The light rays reflecting from

a normal eye retina exits parallel to the optical axis. However, a far (near)-sighted eye

the light rays diverge (converge) from the eye. For such refractive eyes a crescent will

appear in the pupil. An image taken of the pupil will appear dark for a normal eye,

because no light rays enter the camera’s aperture. Conversely, a near (far)-sighted eye

has a bright crescent in the same (opposite) direction as the light source, Figure 4.1. If

the camera and light source are interchanged the crescent rotates 180◦.
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Figure 4.1: Eccentric Photorefraction For Farsighted, Normal, Nearsighted Eye.

To obtain the theoretical PR pupil image, the eye and the PR system parameters

and are inserted into the optical software program. The parameters that are intrinsic

to the PR calculation include: pupil diameter, camera aperture diameter, camera ec-

centricity, working distance, light source wavelength, shape and size of light source, and

number of light rays to be calculated for each image. Table 4.1 identifies the PR parame-

ters, gives the parameter values used in the calculation, and discusses the parameter’s

affect on the pupil’s image. Since PR devices often acquire images in semi-darkened

environments, the pupil diameter is set to 7 mm in these calculations. The camera’s

eccentricity, distance from optical axis, is either coaxial (on optical axis) or eccentric

(15 mm decentered from optical axis) in the following PR calculations. Only a large

camera eccentricity will capture light rays from sizable refractive eyes. This enables one

to evaluate different refractive error degrees by varying the camera’s eccentricity.
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Table 4.1: Photorefraction Parameter Affects.
Parameter Value used Parameter’s PR pupil image affect

Pupil Diameter 7 mm When the pupil size is increased the refracted light
becomes more spread out

Camera Aperture Diameter 20 mm When aperture is increased more light rays enter the system,
cone in pupil irradiance image becomes less distinct.

Camera Eccentricity 15 and 0 mm Farther from the optical axis more severe
KC degrees can be identified.

Working Distance 1 m As the distance from the camera to the eye is
increased the irradiance decreases

Number of Light Rays 100 million The more light rays increases computation time,
but cone in pupil irradiance image becomes more distinct.

Light Source Wavelength 555 nm The eye reflects and absorbs wavelengths differently.
The eye is most sensitive near this wavelength

Light Source Shape & Size point source The crescent for a line light source will be become
more distinct.

4.2 Photorefraction Images of Keratoconus and Astigma-

tism of Same Equivalent Prescription

Using the photorefraction instrument it is advantageous to determine the observed pupil

image differences between a KC and a normal refractive eye. To evaluate the differences,

fifteen different KC eyes and the corresponding equivalent prescription refractive eyes

are used to obtain theoretical PR irradiance pupil images. The fifteen KC eyes are

modeled with five various cones at three different locations. The five various cones are

chosen from the four volume regions mentioned in section 3.2, and also a round cone is

included. The chosen cones are 2, 5, 7, 9, and 13 from table 3.1.

Figure 4.2 illustrates the coaxial PR irradiance pupil image for a centrally-, averagely-

, and outlying- located KC cone. Each pupil image is scaled according to the maximum

irradiance for that cone location. The left column corresponds to the KC cones located

at the visual axis, middle column to average cone location, and right column to outlying

cone location. The equivalent prescription results from section 3.2 is repeated below
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Figure 4.2: Keratoconus Coaxial Photorefraction Images In Three Different Locations.
Left column corresponds to cones on visual axis, middle column to average cone location,
and right column to outlying cone location. The four numbers correspond to Spherical
(D), Cylindrical (D),Astigmatism Axis, W3,4 (µm).
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the cone number, in the form (spherical Diopters (D), cylindrical (D), astigmatism axis

(degrees), W3,4 (µm)).

To observe keratoconus using the coaxial PR technique the cone needs to be quite

large. Cone # 9 presents the first detectable difference. The coaxial KC eye PR pupil

image shows a decreased intensity (shadow) region. The decreased intensity region is

believed to be the scissors reflex, or shadow that was seen in Figure 1.3. Therefore, mild

KC cases cannot be detected using the coaxial PR method.

Eccentric PR irradiance pupil images for a centrally-, averagely-, and outlying- lo-

cated KC cone are shown respectively in Figures 4.3, 4.4, and 4.5. Each pupil image

is scaled according to the maximum intensity for that configuration, since the eye’s

reflectance is not known. The left column corresponds to the modeled KC eye’s PR

pupil image, while the right side corresponds to an astigmatic eye with the equivalent

refractive prescription. The equivalent prescription is repeated again for direct com-

parison. The KC eye and the corresponding astigmatic eye have the same correctable

prescriptions, while the high-order aberrations W3,4 are different. Each astigmatic PR

pupil image resembles the theoretical prediction obtained from Wesemann [28]. Wese-

mann evaluated eccentric PR images with mixed (irregular) astigmatism, two orthogonal

spherical powers are near- and far- sighted, and determined that the crescent rotates

along the rim of the pupil with increasing astigmatism axis.

One goal during this investigation is to determine if a PR vision screening instrument

can detect and also differentiate KC from normal refractive errors. Each simulated KC
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Figure 4.3: Keratoconus Eccentric Photorefraction Pupil Image For Cones Located On
Visual Axis. Left column corresponds to KC eyes, while right column corresponds to
Equivalent Astigmatic Eyes. The four numbers correspond to Spherical (D), Cylindrical
(D), Astigmatism Axis, W3,4 (µm).
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Figure 4.4: Keratoconus Eccentric Photorefraction Pupil Image For Cones Located At
Average Position. Left column corresponds to KC eyes, while right column corresponds
to Equivalent Astigmatic Eyes. The four numbers correspond to Spherical (D), Cylin-
drical (D), Astigmatism Axis, W3,4 (µm).
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Figure 4.5: Keratoconus Eccentric Photorefraction Pupil Image For Cones Located At
Outlying Position. Left column corresponds to KC eyes, while right column corre-
sponds to Equivalent Astigmatic Eyes. The four numbers correspond to Spherical (D),
Cylindrical (D), Astigmatism Axis, W3,4 (µm).
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eccentric PR pupil image indicates an irradiance region corresponding to the KC cone.

Even the smallest KC cone #2 has a small irradiance region. This implies that the PR

instrument is capable of detecting mild KC cases.

The PR irradiance pupil image also appears to differentiate KC from the equiva-

lent correctable astigmatic eye. The PR irradiance crescent region lies on the pupil’s

periphery for each equivalent astigmatic eye. Conversely, each KC PR image has an

isolated irradiance region located near the pupil’s image interior. An astigmatic eye’s

PR irradiance image is typically less than a KC eye. This cannot be seen since each PR

pupil image has its own irradiance scale.

The cone’s size and location can also be described qualitatively from the KC PR pupil

image. The cone height correlates with the irradiance. The cone volume corresponds

to the flux through the PR image’s irradiance region. Similarities in the cone’s shape

are also noticed in the PR pupil irradiance image, by comparing Figure 3.6, the cone’s

height map, and the corresponding KC PR image. A correlation between the cone’s

location and the PR image’s irradiance region location is similarly observed. Also, the

irradiance decreases when the cone is moved further from the visual axis.

The features of a KC PR pupil image show great potential for detecting and differ-

entiating KC eyes. However, obtaining quantifiable KC cone characteristics using the

PR technique requires further theoretical investigation. Also, clinical trials are required

to validate the simulated PR results.
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Chapter 5

Summary

Before this investigation little was known as to how a KC corneal cone’s characteristics

affect the eye’s vision. Also, no known research has been done to identify a screening

instrument to detect KC.

This thesis proposed and constructed an optical KC eye model for the first time.

The visual performance was theoretically investigated for different KC degrees. Three

independent cone characteristics were considered: dimension (volume), location, and

shape. A photorefraction screening instrument was investigated as a possible new way

to detect and differentially diagnose KC.

There are several conclusions obtained from this thesis:

1. A KC patient’s visual performance is dominated by the effective cone curvature

near the visual axis. i.e. ∼ 3 mm-diameter range around corneal center.

2. KC cones on the visual axis procure a significant spherical refractive error (near-
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sightedness). The cylindrical refractive error for on axis cones drastically depends

on the cone’s shape. However, the un-correctable high-order aberrations are small-

est for the on axis KC cones. This implies that eye spectacles can correct on axis

cones better than that of off axis cones.

3. KC cones on the visual axis procure a significant spherical refractive error (near-

sightedness). The cylindrical refractive error for on axis cones drastically depends

on the cone’s shape. However, the un-correctable higher-order aberrations are

smallest for the on axis KC cones. This implies that eye spectacles can correct

KC cones located on the visual axis better than off the visual axis.

4. The PR technique, especially eccentric PR, can detect and distinguish refractive

errors (near- and far-sighted and astigmatism) from KC easily. Clinical trials are

required to validate simulated results.

Some future research plans may include:

1. Developing a more quantifiable KC classification system. The current ways to

classify KC are very simple and rudimentary. A more rigorous classification system

might include quantifiable cone parameters that describe the shape, location, and

KC progression over time.

2. Modeling the internal corneal surface. Nearly 2
3 of the eye’s optical power occurs

at the air/corneal surface interface. Therefore, the current KC eye model only

modifies the outside corneal surface. The inner corneal surface is also different
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from a normal eye. Therefore, in some calculations additionally modeling the

inside corneal surface may represent a KC eye better than the current KC eye

model.

3. Quantifying the KC cone structure and location from the PR pupil image. The

KC cone structure and location were seen as qualitative characteristics from the

KC PR theoretical pupil image. Analyzing more KC PR pupil images may ob-

tain quantitative cone characteristics (height, shape, and location) from the PR

irradiance pupil image.
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