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Abstract 

Precision agriculture techniques are becoming more popular within the agriculture 

community as producers demand more return from an ever-decreasing amount of 

farmland. Increased environmental regulations are forcing farmers to reduce the input of 

fertilizers and agrochemicals on their crops. Innovative techniques in precision 

agriculture are enhancing traditional decision-making processes by offering multiple 

layers of data for a production field. It is difficult to determine the complex interactions 

that exist between factors affecting crop growth and the resultant management decisions. 

Strategies in precision agriculture attempt to modify customary practices in order to 

address the known variability of field conditions. 

This case study evaluated some of the tools used to create spatial data maps and 

the relationship of those maps to various soil properties. Electromagnetic induction (EMI) 

and ground-penetrating radar (GPR) were used to examine the similarities and 

differences among spatial and temporal variations of soil water content, soil texture, and 

bulk soil electrical conductivity (ECa) on a large research watershed in southwestern 

Tennessee. A protocol was developed that identifies spatial variations in ECa patterns 

using geographical information system (GIS) maps. Soil cores were collected in areas of 

contrasting conductivity, which were identified by temporal ECa maps. Repeated spatial 

measurements of ECa, starting near field capacity and then progressing through the 

draining and drying process, supplied visually shifting patterns that correspond to 

dynamic soil moisture variations and subsurface morphology transitions. 
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After several seasons of acquiring data for other studies, it was noted that spatial 

ECa patterns remained somewhat similar across data gathering events, shifting only in 

relative amplitude in relation to seasonal moisture levels. The overall ECa patterns 

remained somewhat similar, regardless of field moisture conditions. Soil morphology was 

considered constant over the data acquisition period, with subsurface moisture variations 

being the major influence in differing ECa maps during the same period. Follow-up soil 

coring analysis supported this assumption in this case study. 

The interpolation of spatial ECa maps creates a continuous surface that contains 

values at unsampled locations. Inverse distance weighted (IDW), ordinary kriging (OK), 

and radial basis function (RBF) were examined as potential interpolation algorithms. 

Data were gathered to investigate the influences of short-term conductivity shifts over the 

data collection period, as well as from travel route patterns and instrument orientation. 

Using root-mean-squared error (RMSE) to quantify the transformation accuracy of ECa 

maps, a data collection method and an appropriate geostatistical model were determined 

for this particular case study. Analysis showed that a bidirectional travel path produced 

the highest quality map, as transformation inaccuracies were reduced when 

measurements were obtained in a manner by which all measurements were temporally 

contiguous. A skilled application of ordinary kriging (OK) also increased map quality in 

comparison to the inverse distance weighted (IDW) and radial basis function (RBF) 

interpolation methods. Due to variability in our data, we are not able to recommend the 

use of a single interpolation algorithm for all data gathering scenarios. 
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General Introduction 
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Recent tightening of environmental and economic constraints in the field of 

agriculture has resulted in a need for more efficient management strategies. A successful 

farming operation requires a management system that maximizes crop production and 

minimizes the input of fertilizers and agrochemicals. Precision agriculture is a 

management system that addresses in-field variations to optimize inputs on a point-by-

point basis. In the past, detailed knowledge of agricultural inputs has been prohibitively 

expensive to acquire; however, recent innovations in electronics, communications, and 

related software have removed previous hurdles (Jahns, 2000). Satellite communications, 

fast microprocessors, coupled with innovative software, mobile power sources, and the 

use of inexpensive sensors now enables producers to collect vast amounts of geo-

referenced data in a short amount of time (Auernhamer, 1994). Most of the early work in 

precision agriculture focused on grid sampling to determine differences in soil nutrient 

contents for variable rate fertilizer applications (Wibawa et al., 1993). When remotely 

sensed crop data is coupled with precision agricultural tools, the over-and under-

application of inputs can potentially be reduced. This strategy can improve profitability 

for the producer as well as reducing the threat of ground and surface water contamination 

from agrochemicals and fertilizers. 

Most producers are slow to adopt new practices or to invest in cutting edge 

technology until they are certain their investment will improve yield, reduce risk, or 

decrease costs. An increased awareness of precision agriculture applications along with 

the technology driven markets of sensors and instrumentation have made this practice a 

cost-effective tool for producers to use in making important land management decisions. 
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The decisions that are made today can affect the environment immediately or generations 

from now.  

Precision agriculture data consists of many different layers of information. Yield 

maps, soil surveys, fertility-grid sampling data, visible changes in soil appearance, and 

especially a producer’s historical knowledge of crop growth in the area are valuable and 

widely available layers of data. Equally important, but more limited in availability, are 

aerial and satellite images, elevation maps, and soil conductivity maps. While each data 

layer has some value, the challenge lies in using each one properly. Assumptions that are 

made beyond the utility of the layer might be inaccurate (Lund et al., 1999). Yield maps 

are ideal representations of production quantities for a single year and a specific field. 

Yield maps do not give any indication as to why variability occurs. If yield maps are used 

to establish site-specific production goals, other data layers that confirm occurrence of 

certain features should accompany them. 

The world is facing a decrease in the amount of farmland that is supporting an 

increased demand for food and fiber products. This demand creates a need for accurate 

soil maps, which are useful for making production and management decisions. The 

heterogeneous nature of soils has long been recognized, but there is a lack of tools to 

detect subtle shifts among soil properties (Johnson et al., 2001). Traditional soil 

evaluation techniques involve intrusive methods, which have a limited sampling density 

due to time and labor constraints. Soil core extraction is currently the most accurate 

method used to determine morphological properties, but due to the high spatial resolution 

requirements in precision agriculture applications, soil cores are prohibitively expensive 
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to acquire. There is a need to improve upon existing soil mapping techniques that would 

reduce the time and labor costs associated with acquiring the data. 

Electrical conductivity measurements have been used to identify contrasting soil 

properties in the environmental and geological fields (Lund et al., 1999). Due to its 

relationship with soil physical properties, the measurement and mapping of bulk soil 

electrical conductivity (ECa) has the potential to enhance soil resource mapping. In this 

case study an electromagnetic induction (EMI) meter was employed to measure ECa 

nonintrusively. The instrument can measure ECa without contacting the ground, thereby 

eliminating destruction of the underlying morphology. In many applications, a single soil 

property, such as moisture content, salinity, temperature, or particle size, is the primary 

factor controlling the conductivity. Thus, once the correlation between ECa and this 

property is established, an EMI survey can be used to map this feature quickly and 

inexpensively (Jaynes, 1996). 

The mobile EMI data collection system described by Freeland et al. (2002), can 

quickly and efficiently measure the conductivity of large agricultural fields. The previous 

method of manually collecting ECa data was time consuming and labor intensive. Large 

fields could be surveyed, but the resolution of measurements was low. The mobile 

method of data collection gives the high-resolution data needed to facilitate soil mapping 

without taking additional time to setup a grid pattern. 

A high resolution ECa map can identify small inclusions that are not found on 

typical USDA order 2 soil maps, which allow for 1-ha inclusions. Areas of contrasting 

conductivity can be targeted for soil classification, and these areas are easily delineated 
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by an ECa map. This will reduce the number of samples required to characterize a field or 

improve upon existing characterization by sampling typical and non-typical regions of 

the field. Field scale ECa maps serve as a basis for developing soil-sampling strategies, 

which accurately reflect spatial variation within the field.  

Temporal ECa data were collected over a two-day period in a large agricultural 

field to direct our soil coring analysis. The areas of the field with the sharpest change 

over the shortest distance were targeted for analysis of soil moisture and physical 

properties. Two 40-m transects were identified and three cores were collected from each 

for analysis purposes. 

Several different mathematical algorithms were used to create continuous raster-

based ECa maps. Three common interpolation algorithms were compared to determine 

the effects of each on map accuracy in the loessial soils of southwest Tennessee. The 

precise location and conductivity of each discrete sample point was recorded to create a 

conductivity map of the field.  

Soil properties were also investigated to determine which influenced ECa readings 

in a spatial and temporal manner. Soil moisture content, salinity, and ECa measurements 

are not constant but dynamic values. Soil can take thousands of years to form, but certain 

properties are constantly changing due to environmental conditions.  

Map inaccuracies often occur when continuous surfaces are created from point 

data. The manner in which points are interpolated, the spacing of points, and the 

distribution of samples all affect the resultant surface. In the last decade there has been an 

increased awareness of the importance of assessing the uncertainty of values at 
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unsampled locations and the need to incorporate this assessment in subsequent 

management decisions (Goovaerts, 2001). Conductivity maps needed to make effective 

management decisions are not obtained in a single season but over the course of several 

seasons. A single season map is like a snapshot in time that can change quickly. Multiple 

maps over several growing seasons give a much better representation of data trends and 

patterns. A producer that has data from several seasons will be able to make more 

informed decisions about crop inputs.  

The sensor industry has produced low-cost instruments that meet the need for 

high-resolution spatial data in precision agriculture applications. Instruments that do not 

have to come into contact with the target, such as the EMI meter, as well as others that 

bring the sensor in direct contact with the soil or plant surface, can be carried or towed in 

the field. The towed instruments are more capable than carried ones for collecting data in 

large agricultural studies as indicated by the use of our mobile EMI survey method. The 

use of ground penetrating radar (GPR) in tandem with ECa data can potentially produce 

continuous subsurface profiles without disturbing the soil. There must be some form of 

soil disturbance for ground truth purposes, but it is minimal in comparison to traditional 

methods. Both EMI and GPR are fast, inexpensive, and can provide continuous ground 

measurements. Research by Doolittle and Collins (1998) found that neither technique 

works well in all soil environments. Ground-penetrating radar works best in soils that are 

low in clay content and relatively dry, due to the radar signal being highly attenuated in 

wet soils. Electromagnetic induction has been successfully used in a variety of soil 

conditions to detect conductivity in salty, wet, and even high clay content soils. 
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As a result of this case study, a protocol was developed that uses geophysical 

tools in addition to traditional methods for comprehensive site analysis. Essential to such 

protocol, soil scientists and geophysical technicians are refining techniques to map large 

sites for rapid soil mapping. Included in this new technique is the collection of soil cores, 

for ground truthing, along with noninvasive EMI and GPR data. The final geographical 

information systems map from the survey protocol incorporates digital ortho quads 

(DOQ’s) for background maps of the field and surrounding areas. The utility of the 

survey protocol should be proven at several different test sites before widespread use of 

the protocol is recommended. 

The geophysical team conducts the EMI and GPR surveys, while the soil 

scientists collect and analyze the soil samples. This thesis will concentrate on EMI data 

collection protocols. See appendix for protocol and data acquisition technique specifics 

for GPR. The current survey protocol for EMI data collection is as follows: 

1) Both teams of researchers identify a field to be surveyed. The field needs to be 

free of trees and power lines, which can influence the performance of the 

geophysical equipment. 

2) Based on the size of the field, the geophysical team determines which method of 

data collection to use from previous research (Leonard, 2001). 

3) A geophysical technician calibrates the EMI instrument near the survey site 

before data collection begins. 

4) The geophysical team executes the initial EMI survey in the horizontal dipole 

mode, which gives a maximum exploration depth of 3 m. An additional survey in 
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the vertical dipole mode can be collected if deemed necessary. The vertical dipole 

mode allows a maximum exploration depth of 6 m. In addition to ECa readings, 

global positioning systems (GPS) data were collected at each measurement 

location in the field.  

5) A conductivity map is rapidly produced for in-field evaluation by both teams. The 

soil scientists decide where to take soil samples by examining the conductivity 

map(s). Ideally, there are multiple surveys from which to gather information since 

conditions can change quickly. 

6) Once the soil coring sites are identified from conductivity maps, the points are 

entered into a handheld GPS unit for navigation purposes. The soil scientists 

collect and describe the samples in 10 cm increments to a depth of 2.5 m. The 

samples are analyzed for particle size and nutrient and moisture content. 

 

The combination of geophysical instruments in conjunction with minimal or no 

soil coring can potentially make these soil mapping applications more attractive to 

producers who would otherwise not use the technology. The number of small farms in the 

country is decreasing, and producers are looking for any advantage that will increase 

profit while reducing inputs of fertilizer and agrochemicals. Large farms will utilize this 

technology more readily than small farms because of their larger budgets and greater 

potential for profit. Once ECa maps are created for a field, soil management zones can be 

delineated. 
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Today successful producers must stay informed on new and emerging technology 

while relying on traditional methods at the same time. However, techniques associated 

with precision agriculture are being widely incorporated into other sciences. While more 

research is conducted, the cost of sensors and instruments will continue to drop while at 

the same time quality and accuracy will continue to increase. This will ideally simplify 

these procedures to the point that minimal training is required to use and understand 

them. There are certainly many more applications that are relevant to precision 

agriculture than we will discuss in this case study. The boundaries of precision 

agriculture are far reaching and are limited only to a person’s imagination as to what 

products to use and how to use them. 
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Introduction 

Our long-term research program involves developing survey protocols to identify 

areas that exhibit rapid horizontal movement of subsurface moisture, as this is a precursor 

of offsite agrochemical migration. Using electromagnetic induction (EMI) technology, 

we are developing survey protocols to identify areas that exhibit rapid horizontal 

movement of subsurface moisture. Our premise is that by identifying susceptible regions 

within agricultural production fields of rapid off-site water movement, producers can then 

implement best management practices that help reduce the risk of offsite contamination. 

Since 1991, our multidisciplinary water quality research team has conducted a 

watershed-scale research effort to study the offsite movement of waterborne 

agrochemicals in southwestern Tennessee. The research fields are representative of 

thousands of hectares of soils that formed in the loess-covered Tertiary-aged Claiborne 

and Wilcox geologic formations (Hardeman, 1966). The research watershed resides 

within Major Land Resource Area 134 (MLRA 134—Southern Mississippi Valley Silty 

Uplands), which follows beside the Mississippi River from southern Illinois into northern 

Louisiana (fig. 2.1)( all figures located in appendix). The fields are essentially flat, with 

less than 0.5% slope, and have a parent material sequence of loess-alluvium-Tertiary sand 

(Ultic Hapludalfs). A distinct soil horizon interface commonly occurs between the loess 

and the underlying and sandier alluvium that forms an abrupt textural discontinuity. In 

places, the interface becomes a mixing zone. This textural discontinuity creates transient 

saturated conditions that can greatly influence vertical and lateral moisture movement. 
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Since dry soil is a poor electrical conductor that becomes an increasingly better 

conductor with increased moisture content, the value of ECa (bulk electrical conductivity) 

is a “relative” indicator of its volumetric soil water content. Within a given homogeneous 

block of soil, a wetter region will have higher ECa values than a drier region. However, a 

single ECa value is a poor direct predictor of absolute soil moisture, especially across 

fields that have variations of soil texture (e.g., sand being a poorer conductor than clay 

under similar field moisture conditions), soluble salt concentrations, and temperature 

(Freeland, 1989). Due to the very apparent influence of moisture on soil conductivity, 

individuals have attempted to determine soil moisture directly from soil resistance 

measurements. However, soil moisture-sensing methods, such as TDR (time domain 

reflectometry) and neutron moisture probes are more reliable than resistive methods due 

to influences of temperature and salinity on soil conductivity. 

Comparison of EMI technologies to the neutron moisture probe as the standard 

reference produced favorable results with a multiple coefficient of determination (R2) 

between 0.58 and 0.64 (Sheets and Hendrickx, 1995). Kachanoski et al. (1988) compared 

spatial variations in soil properties with bulk, surface, and solution phase electrical 

conductivity. They found in soils with low dissolved electrolyte that ECa, independent of 

a wide range in texture, explained 96% of the spatial variation in soil water content. 

Jaynes et al. (1995) used EMI to correlate ECa readings to the Kd (soil-partitioning 

coefficient). After calibration, the maps proved to be useful in determining leaching 

potential of herbicide applications in specific areas of the field. Another study by 
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Kachanoski et al. (1990) correlated ECa readings to soil water storage and found that 50-

60% of the variability in soil water content was explained by variations in ECa. 

Doolittle et al. (1994) used ECa measurement as an estimator of claypan depth in 

an area of Mexico soils in central Missouri, finding a high correlation to the response of 

an EM38 meter. Eigenberg et al. (2002) linked a mobile EM38 induction system with 

global positioning system (GPS) to identify the dynamic changes in available soil N, as 

affected by animal manure and fertilizer. Corwin et al. (1993) used a mobile EM38 

linked with GPS to investigate salinity levels within irrigated fields to forage yield and 

chemical analysis. The mobile system helped to establish a soil sampling scheme to 

characterize soil property spatial variability. Sudduth et al. (2001) also developed a 

mobile GPS-linked EM38 system, and investigated the accuracy issues in the collection 

of soil ECa data. Although concerned with instrument drift, the sensitivity to speed and 

height was observed to be relatively minor. They noted that whole-field maps of ECa  

from multiple surveys were similar but not identical. 

Freeland et al. (2002) implemented a mobile survey method for nonintrusively 

measuring the depth-weighted average of ECa (fig. 2.2). Using GIS (geographic 

information system), this procedure produced spatial ECa maps by linking synchronized 

time stamps embedded within data streams of both a DGPS (differential global 

positioning system) receiver and an ECa data logger, which is an option of the data logger 

software for conducting mobile surveys. Inman et al. (2002) employed this system on the 

research watersheds to gather ECa data for comparison with laboratory analysis of pedon 

sample cores. They found percent sand to have a strong positive linear relationship with 

ECa, while no other soil physical property produced a statistically significant relationship. 
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After several seasons of acquiring field data, Inman et al. (2002) noted that spatial ECa 

patterns for a field remained somewhat similar across data gathering events, shifting in 

relative amplitude along with seasonal moisture levels. The overall ECa pattern remained 

somewhat similar on a relative low-to-high scale, regardless of overall field moisture 

levels. From this basic observation, we formed a hypothesis that soil physical properties 

not changing with time caused the spatial pattern similarity. Furthermore, we assumed 

that any temporal pattern dissimilarity was a function of soil moisture, since it was the 

only known rapidly changing variable that affected soil ECa. 

Objectives 

The objectives of this project were to: 

1. Develop and evaluate a survey method for generating temporal ECa maps, 

2. Evaluate the soil properties that may be responsible for dissimilar spatial ECa 

patterns in the loess-alluvium-Tertiary sand region, and 

3. Develop numerical methods to identify areas of the field with similar and 

dissimilar ECa variation patterns. 

Materials and Methods 

Survey equipment used in this project included: 1) two non-intrusive soil ECa 

meters, a Geonics, Inc. EM-31 and EM-38 (probing at approximately 6 m and 1.5 m in 

the horizontal dipole orientation), 2) a non-metallic carrier for transporting the deep-

probing EM-31 ECa meter pulled by all-terrain utility vehicle (fig. 2.2), and 3) GIS and 

DGPS for spatial mapping and real-time positioning (fig. 2.3). 

The EM31-MK2 and EM38-RT meters (Geonics Ltd., Mississauga, Ontario, 

Canada) detect near-surface geological variations, groundwater contaminants, or any 
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subsurface features that affect noticeable changes in ground conductivity (Geonics, 

1995). A patented electromagnetic inductive technique allows measurements without 

ground contact. The instruments have a manufacturer-rated sensing depth of 

approximately 6 m (EM31-MK2) and 1.5 m (EM38-RT), recording ECa values in 

milliSiemens per meter (mS/m). If rotated 90º along its longitudinal axis, both meters 

measure ECa to one-half depth. The instruments work by energizing a transmitter coil, 

while a receiver coil detects the induced currents in the earth caused by time-varying 

magnetic fields. A secondary magnetic field is generated by the currents that the receiver 

coil senses along with the primary field. The ratio of secondary-to-primary magnetic 

fields is linearly proportional to terrain ECa, which makes it possible to create a direct 

reading (McNeill, 1980). 

Freeland et al. (2002) described an instrument carriage that transports the EM31-

MK2 conductivity meter during surveys. An all-terrain vehicle (ATV) tows the carriage, 

which cradles the EMI instrument during data collection (fig. 2.2). To minimize ambient 

conductivity interference, the carriage consists of non-metallic components, primarily 

structural fiberglass. Evaluation testing has ensured that electrical noise and metal 

components from the ATV did not appreciably affect EMI readings (Freeland et al., 

2002). 

An AgGPS 132™ (Trimble Navigation Limited, Sunnydale, CA, USA) supplied 

real-time, differentially corrected data with sub-meter accuracy. The DGPS antenna was 

mounted directly over the EMI console (fig. 2.2). A GIS package (ArcView 8.2, 

Environmental Systems Research Institute, Inc., Redlands, CA) allowed the importation 

of raw geographical location data, linked via time stamp to ECa values, in order to 
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generate spatial ECa maps. The interpolation method employed for creating the maps 

from the discrete data points was ordinary kriging using a spherical semivariogram with a 

variable search radius of twelve nearest points. The grid density was one square meter 

with a sample density of 0.06 points per square meter 

Because the potential for rapid change in moisture content is much higher closer 

to field capacity (USDA, 1997), surveys began following an extended rainfall when soil 

moisture levels neared field capacity, and as soon as surface conditions permitted cross-

field travel (fig. 2.4). From these surveys, two linear transects were established for soil 

core extraction by noting examining and dissimilar patterns using empirical calculations 

“RATE” and “CAPACITY” (fig 2.5). 

Numerical Methods 

The data are four-dimensional (i.e., latitude, longitude, ECa, and time). An 

animated graphics interchange format (GIF) allowed displaying of these sequential events 

in movie format, producing a repeating time-sequence animation of the ECa survey 

events. To depict the data statically, we reduced the data into three dimensions by 

forming two empirical variables that were functions of ECa and time. We defined the first 

variable “RATE” as the slope of the best-fit line through the time vs. temporal ECa data, 

thus having the units of conductivity / time. A second variable “CAPACITY” as the area 

beneath this curve (fig. 2.5), having the units of conductivity x time. Each of the spatial 

ECa surveys constituted a GIS layer, with two additional calculated layers containing the 

spatial plots of “RATE” and “CAPACITY”. We made the initial assumptions that finer 

texture profiles would probably have higher “CAPACITY” and lesser “RATE” values, 
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while coarser texture profiles would exhibit lower “CAPACITY” and steeper “RATE” 

values. 

Soil Properties 

Located near Grand Junction, Tennessee on the Ames Plantation (N 35o 8' 11", W 

89o 13' 41"), the survey site resides on an upland position with an average site elevation 

of 156 m above mean sea level (fig. 2.1). Measured loess thickness ranges from 55-175 

cm and measured alluvium thickness ranges from 100-235 cm. The USDA Field Survey 

(1964) mapped the entire survey site as either a Memphis or Loring silt loam. 

For a groundtruth of the EMI data, two linear transects were established (fig. 2.5), 

each passing through regions that continually exhibited sharply differing ECa temporal 

patterns that were derived as “RATE” and “CAPACITY”. For core sampling, we focused 

on regions having shifts of relatively high-to-low ECa levels that occurred over a short 

distance, thereby signifying a possible morphological boundary or transition zone. 

During the drier field conditions of the subsequent survey, a truck-mounted drill 

rig (CME-45B) extracted soil cores along the two linear transects to a 4-m depth, one 

each from high, medium, and low ECa regions. The drill rig employed a 7.62-cm hollow-

stem auger with extendable 76.2-cm long Shelby tubes. Each tube remained in the ground 

for 3 min. to ensure retrieval of an intact sample. Immediately after coring, a 

reciprocating saw sliced each tube into three equal lengths. The segments were 

transported back to the lab and extruded from the Shelby tubes in an effort to reconstruct 

the soil profile. Mineralogy, drainage, moisture content, horizons by depth, and other 

significant features were described by a soil scientist using standard laboratory 

procedures. Particle size was determined using the hydrometer method (Day, 1965). 
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To examine the influence of feature depth and method of measurement along the 

transects, subsequent EMI measurements (mobile EM31, manual EM31, and manual 

EM38) were taken the following summer before core sampling, once the preceding day 

(May 15, 2002) and once immediately prior to soil core extraction (May 16, 2002) during 

ground truth sampling. We defined “Manual” measurements as when the EMI 

instruments are hand carried during data acquisition, as opposed to “Mobile” where a 

vehicle tows the instrument mounted upon a carriage. 

Results and Discussion 

Survey Methodology 

Traversing the entire site using the mobile method for complete field coverage 

(7.5 ha) required approximately 1.5 h (fig. 2.3), while equipment setup, calibration, and 

data transfer required an additional 1.5 h. This time lag prevented continuous data 

collection between surveys. The surface conditions and area of the research site permitted 

complete field survey coverage twice daily, once in the morning and once in the 

afternoon. Surveying continued for two days until rainfall resumed, allowing four time-

sequential surveys (fig. 2.6). 

Spatial plots of “CAPACTIY” and “RATE” for the entire field are presented in 

figs. 2.7 and 2.8. Regions of low “CAPACITY” values illustrate probable high sand 

content areas, whereas regions of higher “CAPACTIY” regions depict probable higher 

clay content areas (fig. 2.7). A small number of distinct regions of the field had positive 

“RATE” values, pointing to an increase in ECa with time, a possible indicator of drainage 

accumulation areas (fig 2.8). 
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The series of time-elapsed ECa maps suggest a temporal drying/draining pattern 

across the field (fig. 2.6). Table 2.1 (all tables located in addendix)contains statistics 

summarizing all of the point data for the entire site, where mean and maximum 

conductivities indicate a downward trend in ECa measurements with time, supporting the 

known occurrence of a field drying/draining event. Temperature measurements taken at a 

depth of 12 cm were similar, which indicates little or no effect on changes in ECa. 

Ambient air temperature and relative humidity variations did not have an apparent affect 

in the overall trend in ECa. The change in salinity of the soils within this non-irrigated 

field was not a significant factor during the short time period over which data collection 

occurred, as these soils are nonsaline. 

Along both transects, soil coring in high ECa regions located a higher content clay 

layer beginning at the loess-alluvium interface, requiring noticeably extra force by the 

drill rig to continue coring. Extracting the core from the high ECa regions was difficult. In 

contrast, very little force was required to core in the low ECa regions. Coring effort at the 

medium ECa sites required coring forces between these two extremes. 

As expected, all measured soil properties to the coring depth correlate well with 

EM-31 measurements, with percent sand content being the highest, followed by moisture 

and clay percentages (Table 2.2). However, the EM-38 correlation values were much 

lower compared to soil physical properties (Table 2.2), an indicator of its limited depth of 

penetration over the extent of the sample coring depth. Because the two meters did not 

correlate well, this indicated that subsurface influences on conductivity were occurring 

beyond the range of the EM-38. The exact probing depth of neither meter was known, 
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only that the readings were depth averages, with near-surface features having a greater 

influence on the readings than deeper features. 

Mobile and manual EM-31 measurements had a Pearson correlation coefficient (r) 

of .89 to .98 over the two-day period (Table 2.3), indicating that the two survey methods 

were similar. As predicted, high Multiple Pearson correlation coefficients (r) were found 

when comparing clay and sand percentages (Table 2.4) with “CAPACITY” (area beneath 

the curve with units of ECa x time) and “RATE” (slope of best-fit line with units of 

ECa/time) values. 

Figure 2.9 illustrates the physical properties by depth of the six cores extracted 

from the two transects. Cores sampled from the two high ECa regions had thicker loess 

layers layer than cores sampled from lower ECa regions. In addition, the percent clay in 

the alluvium layer was higher. Low ECa region core samples exhibited higher sand 

percentages rising nearer to the surface. 

Summary and Conclusions 

A method of generating temporal ECa maps was developed by collecting multiple 

maps over a short interval following field capacity, and applying the method to a field in 

southwestern Tennessee. We identified two distinct areas of the field that had significant 

ECa variations over a short distance by viewing spatial maps. 

To better depict the data graphically, we reduced the data into three dimensions 

by forming two empirical variables, RATE and CAPACITY, which were functions of 

both ECa and time. Targeting areas of abrupt transitions, we identified two transects that 

exhibited significant ECa shifts over short distances. We collected ECa data with EM-31 

and EM-38 (deep and shallow probing) instruments before and after extracting soil cores 
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in relative high, medium, and low ECa areas of the transect. Corresponding soil properties 

and ECa measurements showed statistically similar trends for this site, with the EM-31 

readings better typifying the depth extent of subsurface feature variability at this site. 

However, on shallow feature sites, the EM-38 may provide better results. 

For this site, we subjectively inferred that soil morphology was the major factor 

for ECa pattern similarity across time following field capacity. As the field drained/dried, 

the pattern dissimilarity was inferred as due to the moisture variation. Whereas a single 

ECa measurement may be a poor direct indicator of soil moisture or morphology in itself, 

temporal measurements of ECa followed by spatial analysis of pattern similarities and 

dissimilarities hold promise as one tool in subsurface investigations of soil morphology 

and moisture migration. 

For example, regions exhibiting greater RATE and lower CAPACITY values 

exhibited a faster change in conductivity and less overall conductivity, which for this site 

correlated to thinner loess and shallower sands. These soil physical characteristics typify 

faster moisture rate of change and less moisture holding capacity; thus, one may wish to 

investigate restricting chemical application within these regions if susceptible water 

bodies are nearby. 
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Figure 2.1-- Position of Ames Plantation within MLRA 134. 
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Figure 2.2-- EMI carriage and DGPS components (Freeland et al., 2002). 
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Figure 2.3-- Travel track of a mobile EM31 survey depicting sample points. 
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Figure 2.4-- Surveys taken during respite in rainfall (December 10, 2001 and December 

11, 2001). 
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Figure 2.5-- Illustration of two assumptions in selecting two survey transects from four 

temporal conductivity measurements.  
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Figure 2.6-- Conductivity patterns over a 36-h period using mobile EM31. 
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Figure 2.7-- Capacity pattern (area beneath the curve) of four surveys illustrating high 

(black) to low (white) overall conductivity levels. 
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Figure 2.8-- Rate pattern (slope of best-fit line) of four surveys illustrating high (black) 
to low (white) rate of conductivity decrease. Positive sites had increase in 
conductivity with time, an indicator of moisture gain. 
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Figure 2.9-- Loess, alluvium, and tertiary sands parent material by depth, with darker 
shaded regions of alluvium layer representing higher clay content. 
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Table 2.1--Temporal variations for entire field survey  
Mobile EM 31 Conductivity (mS/m) Temp. (°C)  

Mean Min. Max. Std Dev. Mean 
Morning 4.100 0.386 7.269 1.108 9.7 12/10/01 

Afternoon 4.070 0.550 7.082 1.057 10.8 
Morning 3.876 0.112 6.688 1.034 9.6 12/11/01 

Afternoon 3.190 0.024 6.299 1.091 10.6 

 

Table 2.2--Pearson correlation coefficient (r) of six core locations  
(May 15, 2002 and May 16, 2002) 

Manual EM31 (ECa) Mobile EM31 (ECa) Manual EM38 (ECa)  
5/15/02 5/16/02 5/15/02 5/16/02 5/15/02 5/16/02 

Clay† (%) *0.86 0.74 0.72 0.64 0.44 0.41 
Sand† (%) **-0.98 **-0.97 **-0.94 *-0.91 -0.72 -0.77 
Bulk density† 0.16 0.28 0.44 0.49 -0.21 0.20 
Moisture† (% d.b.) 0.76 *0.87 *0.82 *0.90 0.68 0.85 
*Correlation is significant at the 0.05 level (2-tailed) 
**Correlation is significant at the 0.01 level (2-tailed) 
†Entire 4-m soil core, with effective depth of 1.5 m and 6 m for EM38 and EM31, respectively 

 

Table 2.3--Pearson correlation coefficient (r) of ECa data obtained over two transects 
using three methods (May 15, 2002 and May 16, 2002) 

Manual EM31 Mobile EM31 Manual EM38  
5/15/02 5/16/02 5/15/02 5/16/02 5/15/02 5/16/02 

5/15/02 1 **0.96 **0.95 *0.89 0.65 0.70 Manual EM31 
5/16/02 **0.96 1 **0.98 **0.97 0.72 *0.86 
5/15/02 **0.95 **0.98 1 **0.98 0.56 0.76 Mobile EM31 
5/16/02 *0.89 **0.97 **0.98 1 0.61 *0.85 
5/15/02 0.65 0.72 0.56 0.61 1 *0.85 Manual EM38 
5/16/02 0.70 *0.86 0.76 *0.85 *0.85 1 

*Correlation is significant at the 0.05 level (2-tailed) 
**Correlation is significant at the 0.01 level (2-tailed) 

 

Table 2.4--Correlation coefficient (R) of soil physical 
properties and assumptions illustrated by fig. 6 

 “RATE” “CAPACITY” Combined 
Clay (%) 0.76 0.83 0.89 
Sand (%) 0.56 0.62 0.66 
Moisture (d.b.) 0.20 0.24 0.30 
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Part III 

Data Collection and Interpolation Techniques for Mapping Soil 

Bulk Electrical Conductivity 
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Introduction 

Our research involves mapping subsurface moisture pathways within the loessial-

over-alluvium soils of southwest Tennessee. Identifying these pathways help to target 

possible agrochemical migration patterns. Towards this goal, spatial maps of bulk soil 

electrical conductivity (ECa) can nonintrusively highlight major shifts in soil morphology 

and soil moisture regime patterns. Repeated short-interval surveys have revealed that 

positional ECa measurements are dynamic, and are multidimensional in regard to 

instrument orientation. We have observed that mapping accuracies vary depending upon 

the interpolation method and/or model employed, and from the route taken across the 

field while gathering data. 

We employ an EM31-MK2 (Geonics Ltd., Mississauga, Ontario, Canada) 

conductivity meter to nonintrusively measure ECa to an optimal depth of 6 m. Whenever 

it is desired to probe shallower, the instrument can be rotated 90o along its longitudinal 

axis to take measurements at approximately half this depth (Geonics, 1995). McNeill 

(1980) gives a complete description of the function and theory behind the EM31-MK2 

and its operation. Subsurface transitions are detected by first detecting a change in ECa 

while moving across the field. Pivoting the instrument horizontally about a point over a 

transition zone and observing maximum to minimum readings gives a sense of the 

boundary orientation. 

Measurements of ECa across large fields are typically obtained with some form of 

mobile transport, such as a towed, cart-mounted conductivity meter described by 

Freeland et al. (2002) (Fig. 3.1a) (all figures located in the appendices). Data are sampled 
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at closely spaced, geo-referenced points within the field. From this data set, Geographical 

Information Systems (GIS) software is used to create continuous-surface ECa maps using 

one of several interpolation models. As this mobile protocol is typically more time 

extensive and covers more acreage than a pedestrian survey where the instrument is hand 

held (Fig. 3.1b), considerations of temporal effects and instrument orientation are 

essential. 

During post processing, spatially interpolating discrete ECa data can also produce 

pattern inconsistencies. A discrete field point above a subsurface transition area may 

conceivably yield a full range of ECa values. Varying readings for a discrete field point 

may be related to the instrument’s height above the point, calibration drift, and the time-

varying soil moisture content and ambient conditions (Sudduth et al., 2001). These 

observations of mapping inconsistencies has led to an examination of the available 

geostatistical interpolation models and methods to determine which one produced ECa 

spatial maps with the “best” transformation accuracy, where accuracy is defined as the 

predictable agreement between meter measurements (true or erroneous) and the resulting 

spatially interpolated surface. Furthermore, field tests focused on a variety of driving 

pattern scenarios, as this affected both sample time and instrument orientation. 

Literature Review 

Englund (1990) performed a study where identical spatial data sets were given to 

twelve geostatistical investigators. Each investigator was asked to independently analyze 

the same data set and create spatial interpretations. Results varied considerably, in part 

due to the vast number of models, methods, and options that are available for producing 

spatial maps. 
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Goovaerts (2001) noted that no one interpolation model works well in all cases, but 

rather there exists a “toolbox of algorithms” from which to select appropriate methods. 

The selection of a particular interpolation model depends on characteristics of the data set 

as well as the study objectives. Individual models can contain numerous user-defined 

settings, methods, and variables that influence mapping transformation accuracy. With 

larger data sets, some are more processing-intensive and require more user-selected 

model parameters than other simpler, less robust models. 

A review of the literature showed many interpolation model studies for the natural 

sciences. For example, researchers have studied the relationships between ordinary 

kriging (OK) and inverse distance weighted (IDW) for mapping soil nitrate (NO-3) and 

organic matter content for variable-rate fertilizer applications in corn production (Zea 

mays L.) on Midwest soils (Gotway et al., 1996). They found that OK provided 

reasonably accurate results in all cases. They also found that model accuracy was 

dependent upon the soil parameter being mapped. Burgess and Webster (1980a, 1980b) 

used punctual and block kriging to estimate soil properties for small and large blocks of 

land. They concluded that block kriging was more appropriate than punctual kriging in 

estimating average values over large areas. They also found kriging to be especially 

pertinent to physical properties associated with water in the soil. Bishop and McBratney 

(2001) evaluated the performance of multiple linear regression, OK, and Kriging with 

External Drift (KED) for mapping Cation Exchange Capacity (CEC) using the secondary 

variables of yield, ECa, elevation, and satellite images. They suggested that KED, with 

the use of secondary information such as ECa, could more accurately predict the CEC 

than could OK. Isaaks and Srivastava (1989) compared OK, IDW, and triangulation on 
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several clustered data sets and found that OK produced the lowest prediction error in their 

applications. Niemann et al. (2001) compared real surface data to the radial basis 

function (RBF)-derivative Completely Regularized Spline (CRS) and fractal interpolation 

methods on topographic data in simulated river networks. The CRS method was viewed 

as the smooth interpolator, in this case, while the fractal method was a rough interpolator. 

They tested the ability of each method to estimate unobserved elevations, slopes, and 

curvatures as well as to simulate their distribution. The CRS interpolation produced better 

estimates of slope than the fractal method. They concluded that the CRS method was a 

good compliment to existing interpolation methods used in simulating river networks. 

As suggested above, each application is often a function of human prerogative 

and individual analytical skill. In fact, multiple approaches may be taken to explore 

different aspects of the data set. This study focused on three interpolation models found 

in ArcMap 8.2 Geostatistical Analyst (ESRI, Inc., Redlands, CA):  IDW, OK, and RBF. 

However, the concepts used to evaluate the model results presented herein may be 

applied to other interpolation models and software platforms. 

Common Interpolation Models 

The IDW model creates a surface from measured points based on their similarity 

and distance. Weights are assigned to control points during interpolation, such that the 

influence of one point relative to one another decreases with distance from the calculated 

point. As the power increases, the closer the value of the calculated point is to the nearest 

observed point (Isaaks and Srivastava, 1989). Inverse distance weighted gives reasonable 

results for many types of data as well as being easy to use and calculate. When using 

IDW, the choice of weighting function is difficult if there is a non-uniform spatial 
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distribution of data points. Also, the occurrences of maximum and minimum values occur 

only within the range of measured data. This model is more likely to produce “bull’s 

eyes” around data points. 

Due to its robustness and effectiveness, kriging has become almost synonymous 

with spatial interpolation among laypersons. However, the flexibility provided by certain 

kriging models may require extensive analyst decisions. Kriging derives its weights from 

variation patterns expressed within a semivariogram, whereby an optimal model (e.g., 

circular, exponential, logarithmic, Gaussian, etc.) is fitted by the analyst for calculating 

unmeasured points. The semivariogram illustrates the spatial correlation among measured 

and unmeasured points as a function of separation distance and directional angle within a 

search window. One method of kriging is OK, a flexible form of kriging where there are 

few assumptions, but as such can be less powerful than other kriging methods. 

Radial basis functions are flexible, and can handle regularly spaced or scattered 

data points. There are many forms of RBF, but this study focused on the CRS function. 

Pollution concentrations, elevation points, water table heights, and other gently varying 

surfaces are well suited for RBF interpolations (Johnston et al., 2001). The weight of a 

CRS point is defined by the third derivative in a curve minimization expression. The 

overall curvature of the surface is reduced and interpolated data are forced through a 

specified number of data points. Radial basis functions are simple to compute, requiring 

only the solution of linear equations (Hickernell and Hon, 1999).  

Mapping Transformation Accuracy 

The ultimate goal in generating spatial maps is supplying an accurate surface 

representation as provided by the measured control points. A concept known as “jack-
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knifing”, or cross validation, removes each control point one at a time. Its replacement 

value is then calculated using the model. The difference determined between the actual 

and predicted values, repeated for all control points within the data set, forms an indicator 

of mapping transformation accuracy. Various validation indices can be used as a measure 

of prediction quality, the most common of which are the root-mean-squared error 

(RMSE) and mean error (Bishop and McBratney, 2001). 

Objectives 

Our field experience suggested that three sources of mapping inconsistencies or 

transformation inaccuracies can occur due to (1) temporal soil conductivity shifts and 

instrument calibration drift over an extended data collection period, (2) instrument 

orientation due to driving pattern, and (3) from the application of a selected interpolation 

model itself. The objectives of this case study for our field site were to: 

1. Determine if ECa data collection driving patterns have an influence on the 

mapping consistency of interpolated surface ECa maps, 

2. Investigate any short-term temporal effects upon ECa mapping consistency, and 

3. Evaluate common interpolation models (IDW, OK, RBF) as to the impact of each 

model on transformation accuracy when mapping ECa. 

Materials and Methods 

Bulk soil electrical conductivity data were gathered using a mobile system (fig. 

3.1a) that allowed automated measurements over large acreages without a pre-established 

survey grid (Freeland et al., 2002). Using differential global positioning system (DGPS), 

geospatial data were merged with ECa data using synchronized time stamps. Resultant 

data were imported into ArcView 8.2 (ESRI, Inc., Redlands, CA) for spatial mapping and 
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interpolation purposes. A large concrete pad was installed in a shaded area that is 

adjacent to the site for calibration and monitoring instrument drift. The in-phase reading 

of the EM31 was re-zeroed over this pad immediately prior to each survey. 

Using this survey method, three studies were conducted to determine the effect of 

data collection procedures on map transformation accuracy. The first study took place on 

a small 0.4-ha plot with instrument orientation as the variable. Data were collected in 

three different instrument orientations (fig. 3.2). A bidirectional pattern involved 

collecting data in both opposing directions. Unidirectional data were extracted from the 

bidirectional data set, copying transect data that were traversed in only one direction, 

approximately northeast-to-southwest (N-S) and then southwest-to-northeast (S-N). Thus, 

the two unidirectional data sets are subsets of the bidirectional data set. Finally, a separate 

perpendicular pattern followed that consisted of driving in four directions, which required 

orthogonal repositioning after each subsequent pass. 

The second study involved comparing non-continuous temporal data to a 

bidirectional survey on a 7.5-ha field (fig. 3.3). After an initial bidirectional survey, 

boundary passes encircling the field were driven that did not in all instances follow the 

orientation of the original bidirectional pattern. Thus, an instrument reorientation and a 

time delay in these measurements were introduced. The boundary passes were similar to 

headlands that are subsequently planted in the turn rows at the edge of a field. Boundary 

passes help to fully encompass the survey by smoothing the erratic end-of-row turning 

points in the bidirectional survey, and also to establish the outer boundary coordinate 

trace for the survey map. 
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The final study was in a nearby field of similar size to the second study, where 

both planned and non-planned driving patterns were evaluated (fig.3.4). First, a non-

planned driving pattern was driven by an operator using personal choice. The operator 

had no prior knowledge of the test results from the previous two studies. The operator 

was instructed to canvas the entire field. A follow-up survey, the planned survey, was 

where the operator relied on information gained from the previous study that predicted 

the optimal driving pattern. 

Each of the data sets from the three studies was evaluated using a standardized 

methodology, whereby similar parameters were used when possible for the models. A 

single sector spherical search neighborhood that incorporated ten surrounding data points 

determined the value at unsampled locations. The OK interpolation parameters included 

using a spherical semivariogram to estimate the weighting factor. A power of two was 

used to determine weighting values in the IDW interpolation. The RBF interpolation used 

a CRS function to calculate unknown values. 

Results and Discussion 

The results are presented in terms of “best” transformation accuracy, where 

accuracy is defined as the predictable agreement between ECa measurements (true or 

erroneous) and the resulting spatially interpolated surface. The parameter RMSE was 

selected as the transformation accuracy indicator, as it is available for OK, IDW, and 

RBF. There is no assessment of prediction errors for IDW and RBF in ArcMap 8.2 

Geostatistical Analyst (ESRI, Inc., Redlands, CA). 

Figure 3.5 presents the RMSE values for the small plot driving pattern tests 

illustrating influences due to data collection methods as well as interpolation models. 
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Small differences were observed between instrument orientations (N-S, S-N) in the 

unidirectional data, as they also had the largest RMSE. The bidirectional data produced 

the lowest RMSE in the driving pattern tests, and by observation, it is also the most time-

efficient driving pattern. The lower RMSE may also be due to the denser sampling rate of 

the bidirectional pattern as compared to the unidirectional pattern, and the latter is a 

subset halved from the former (table 3.1) (all tables located in the appendices). The maps 

produced in the perpendicular survey had higher RMSE than the bidirectional survey. 

However, its RMSE was lower than the unidirectional orientations. 

Figure 3.2 presents a visual interpretation of each method including data point 

sampling location and resultant interpolation map. The original point data values for each 

of the four maps are identical, but the three resultant maps from applying OK, IDW, and 

RBF models exhibit noticeable pattern differences. 

The field scale boundary study encompassed a larger survey area, which included 

significantly more data points (tables 3.1 & 3.2). Interestingly, the RMSE values between 

the field scale study (fig. 3.6) and small plot study (fig. 3.5) were comparable, but the 

numbers of points gathered in the field scale survey were substantially higher. In this 

instance, the field scale survey produced the least RMSE with IDW interpolations, just 

slightly less than OK. Ordinary kriging using various semivariogram models (table 3.3) 

consistently produced an RMSE of approximately 0.2 across all data sets in regard to 

bidirectional, no boundary, and planned surveys. 

Figure 3.3 highlights a small area of the larger field scale study that produced the 

“bull’s-eye” pattern when using IDW as the interpolator. This pattern is evident where 

subsequent boundary passes intersect at a right angle the initial bidirectional survey 
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points over a transition zone. The same pattern was not visually apparent when using OK 

and RBF interpolation models. 

The survey technique study determined that planned surveys produce lower 

RMSE maps than non-planned surveys. Figure 3.7 depicts lower RMSE values for the 

planned survey. Visual interpretation of the data (fig. 3.4) indicates little variability 

between the maps produced by each model. Differences are apparent between RMSE 

values as compared between each of the models (fig. 3.7). Ordinary kriging produced 

lower RMSE results in the planned survey, while IDW produced lower RMSE results in 

the non-planned survey. 

Summary and Conclusions 

This manuscript discusses the potential sources of errors when mapping discrete 

ECa measurements. Three sources of mapping inconsistencies or transformation 

inaccuracies are from (1) temporal soil conductivity shifts and instrument calibration drift 

over an extended data collection period, (2) instrument orientation due to driving pattern, 

and (3) from the application of a selected interpolation model itself. Mapping 

transformation accuracy was evaluated by comparing RMSE values for each of the 

interpolation models as well as the different data collection methods. Selection of an 

optimal surveying scenario, including post processing, was based upon minimizing 

RMSE as the goal. Using RMSE to quantify the transformation accuracy of ECa maps, a 

data collection method and an appropriate geostatistical model were determined for the 

loessial soils of West Tennessee. The results are presented in terms of “best” 

transformation accuracy, where accuracy is defined as the predictable agreement between 

ECa measurements (true or erroneous) and the resulting interpolated surface. 
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For this study site, the data collection driving pattern was found to influence the 

mapping transformation accuracy of continuous surface ECa maps, with an opposing 

bidirectional orientation of the instrument supplying the smaller RMSE. Analysis showed 

that a bidirectional travel path helped to lower RMSE, as transformation inaccuracies were 

reduced when measurements were obtained in a manner that limited the directional 

influence of the EM31 orientation passing over subsurface transitions. The OK model 

demonstrated a trend of having lower RMSE values as compared to IDW and RBF 

models. Data that were gathered both spatially and temporally contiguous yielded lower 

RMSE. 
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Figure 3.1-- (a) Mobile Survey System and GPS components: antenna positioned over 

EMI console, antenna cable suspended alongside carriage body, and GPS 
receiver (b) Conventional pedestrian survey 
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Figure 3.2-- Patterns and resultant interpolation maps from the small test plot (0.4 ha) 
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Figure 3.3-- Orientation of instrument and temporal shifts that produce a “bulls-eye” 
pattern in IDW interpolation 
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Figure 3.4-- Planned and non-planned survey maps with resultant interpolations for an 
adjacent field 
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Figure 3.5-- Error comparisons of instrument orientation in small test plot (0.4 ha) 
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Figure 3.6-- Illustration of temporally and spatially contiguous and incontiguous 

sampling 
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Figure 3.7-- Driving pattern error comparison 
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Table 3.1-- Test plot (0.4 ha) data points 
Method Data Points 

Unidirectional (N-S) 381 
Unidirectional (S-N) 349 
Bidirectional 729 
Perpendicular 766 
 
 
 
Table 3.2-- Field scale (7.5 ha) data points 

Method Data Points 
Boundary 4918 
No Boundary 4558 
 
 
 
Table 3.3-- RMSE values for selected semivariogram models using OK interpolation 

Method Circular Spherical Exponential Gaussian Stable
Unidirectional (N-S) 0.359 0.359 0.372 0.362 0.360 
Unidirectional (S-N) 0.335 0.337 0.347 0.345 0.342 
Bidirectional 0.199 0.199 0.200 0.223 0.217 
Perpendicular 0.256 0.255 0.262 0.283 0.280 
Boundary 0.284 0.283 0.272 0.292 0.292 
No Boundary 0.228 0.227 0.212 0.238 0.238 
Non-Planned 0.738 0.733 0.648 0.790 0.785 
Planned 0.183 0.183 0.183 0.259 0.254 
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Part IV 

Summary 
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The future of precision agriculture is promising, and the use of new technologies 

in conjunction with existing ones provides endless possibilities for products available to 

producers. There are many more potential uses for the technologies that were discussed in 

this case study. Although yield monitors, variable rate fertilizer applicators, and variable 

rate chemical applicators were not discussed, they are also important components of a 

successful precision agriculture program. 

The use of temporal ECa mapping techniques on spatial data has shown promise 

on the loessial soils of southwest Tennessee. Future studies on different soil formations in 

similar and alternate study areas will determine the efficacy of the proposed survey 

protocol. Incorporating some of the common mathematical interpolation algorithms into 

the protocol can aid in the creation of accurate spatial maps. This case study has 

demonstrated the correlation of ECa maps to soil particle size and moisture content. The 

use of ECa maps in precision agriculture applications goes further than simply directing 

soil core collection. Further testing will determine if different morphological features can 

be correlated to ECa maps. 

There is room for improvement in current mapping techniques, and the door is 

open to imaginations and new technologies for future research ideas. As we have seen in 

this case study, results can vary from survey to survey depending on field conditions. The 

amount of time over which data are collected is another avenue for future research.. An 

extended data collection period would be better for determining changes in temporal ECa 

maps. A single survey is not a sound basis for making important management decisions. 

Multiple surveys should be conducted to obtain a more accurate representation of what is 

occurring in a field. A producer would ideally have multiple layers of data for the same 
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field in order to make management decisions concerning specific field treatments. This 

secondary data might include yield maps, soil maps, and aerial photographs that could be 

brought together in a geographical information system (GIS) format. 

There are several interpolation algorithms available for creating continuous ECa 

maps. This study only looked at three that are most common in commercial surface 

mapping software packages. There is an opportunity for development of new algorithms 

that improve upon the interpolation accuracy. Experimentation with different 

interpolation algorithm techniques can potentially yield more accurate maps. Combining 

the interpolation algorithms can possibly provide a more complete spatial analysis of the 

data because of unique functions within each method.  

There are many settings within the algorithms themselves that can be fine-tuned 

in future research projects. In the OK interpolation, a spherical semivariogram was used 

to determine the weighting factor; but there are many other models from which to choose. 

Each semivariogram model could give slightly different results. In the IDW interpolation, 

we used a power of two; but any number can be used. The greater the number, the more 

influence there is from closer points. In the RBF interpolation, we used the CRS function 

to estimate values at unmeasured locations. The best algorithm is often determined by the 

configuration of the data set as well as the personal opinion of the scientist. Another 

determining factor in the selection of interpolation algorithms is the appearance of 

resultant maps. Smooth patterns are more visually appealing than ones that have a bull’s-

eye pattern. 
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The shape of the search neighborhood is influenced by the data and the surface 

you are trying to create. A directional influence of data points from wind or topography 

can impact map accuracy. In our case study, we assumed that there were no directional 

influences, so points were considered equally in all directions. A search neighborhood 

with directional influences would likely be in the shape of an ellipse and should be 

parallel to the influential feature. Options within the neighborhood’s search area can 

restrict which data points within the shape are used, but the user can determine the 

minimum and maximum number of data points to consider. If the neighborhood is 

divided into sectors, each one will have the minimum and maximum values applied. We 

used a circular neighborhood with a single sector search, but multiple sector searches 

with different shapes are also options. 

Alternate methods of data collection can also be implemented to determine the 

effect on map accuracy. The data collection methods that we employed in the small plot 

could be implemented on a large-scale basis in future research initiatives. Any number of 

data collection methods could be tested including a unidirectional travel path in a spiral 

pattern. The shape of the field can play a role in driving pattern tests, which would likely 

be the case with a unidirectional spiral pattern. A uniform distance between passes in any 

of the driving pattern tests could make a difference in map accuracy. Currently there is no 

means to determine uniformity between passes. The use of a parallel tracking device, 

such as a light bar, could provide a user defined distance between each pass. Different 

distances could be tested to see which one creates the most accurate map.  

The primary focus of this case study was to investigate factors affecting the 

survey accuracy in the creation of spatial ECa maps. The survey protocol that we outlined 
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also contains an extensive procedure for implementing GPR. There is potential for future 

research as a continuation of the current protocol by incorporating GPR in areas that have 

been extensively studied and mapped with the EMI. The protocol will likely require 

additional revisions after more study and further implementation of GPR technology. One 

area that is not addressed in the survey protocol that is of interest to the precision 

agriculture community is the use of remote sensing data. Images from satellites and aerial 

photographs will allow producers to quickly view an entire farm and make management 

decisions based on the remotely sensed data. Remote sensing is not a direct contact 

measurement; but by relating soil moisture and plant nutrient levels to field 

measurements, a producer can make inferences about large plots of land.  

Using temporal ECa maps to direct soil sampling can be a precursive study for 

GPR. The survey protocol suggested in the beginning of this case study is still in the 

early stages of testing. With more input the protocol can only be improved and 

implemented across varying landscapes. The collection of soil cores in our case study 

helped us to make inferences about similar areas within the field. Without some form of 

ground truth verification, it is nearly impossible to determine what you are initially 

looking at in a GPR survey. Once the soil morphological properties are related to the 

GPR scans, classification becomes easier 

Some suggested improvements to the present method of ECa data collection 

involve bringing the data logger closer to the operator in order for progress to be 

monitored during the survey. Presently, the data logger is inaccessible during the survey. 

If problems occur during the survey for any reason, the operator is unaware until 

completion of the survey, possibly ninety minutes later. A battery level indicator would 
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also prevent lost time during surveying due to power loss during data collection. If the 

operator could view the progression of data during the survey, both of these problems 

would be minimal.  

The data from this case study indicate that a planned survey results in more 

accurate maps than non-planned surveys. The field scale studies typically involve more 

planning and time to investigate data accuracy issues. To reduce valuable time, a smaller 

plot was used to test data collection methods. On the loess/alluvium soils of southwest 

Tennessee, a mobile ECa data collection method in a planned bidirectional survey with no 

boundary pass and either IDW or OK as the interpolation algorithm produces the most 

accurate results. Due to the variability of results obtained in this case study; we are 

unable to recommend the use of a single interpolation algorithm in all scenarios. 
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Color Horizon Depth Texture Comments 
10YR 4/4 Ap 0-5 SiL MnO 

7.5YR 4/4 Bt1 5-15 SiL MnO,+4% clay content 

7.5YR 4/6 Bt2 15-21 SiCL MnO, clay films 

7.5YR 4/4 2Bt3 21-33 SiL Few MnO, sand increase, clay films, stripped 
areas, redox features 28” 

7.5YR 4/6 2Bt/C 33-42 L Large E bodies, increased stripping, pref flow 
paths crotevena(few),concentrations >2%,clay 
films 

7.5YR 4/6 2BC 42-48 L(SiL) Less E bodies/stripping, few clay films, MnO 

7.5YR 4/4 2C1 48-54 SL Few MnO, pockets of clay accumulation are 
common 

7.5YR4/6 2C2 54-57 L Horizon may be a large pocket of clay 
accumulation within C  

7.5YR 4/6 2C3 57-67 SL Fe common, Mn few, small pockets of clay 
accumulation few in # 

7.5YR 4&5/6 2C4 67-78 LS Fe common, Mn few 

2.5YR 4/6 3B’t1 78-85 SCL Fe and Mn common 

(2.5)5YR4/6 3B’t2 85-95 SCL Fe and Mn common, stripped E bodies 

2.5YR 4/6 3BC 95-108 SL Stripping/E bodies are more prominent, iron 
conc. 

7.5YR 5/8 3C 108-165+  Pred. sand pocketed with small areas of clay 
accumulations, dominant color is 7.5YR 
5/8,areas of stripped material present 
throughout this horizon (7.5YR 8/2 & 8/3)   

Transect 1-1 
 
Parent material for this pedon is Loess over alluvium. Loess extended to a depth of 21 
inches where a more recent alluvial deposit extended to a depth of 78 inches. The parent 
material present at 78 inches is also alluvium, but it is different in lithology than the 2 
overlying parent materials. The layer that extends from 78 inches to 165 inches is marked 
by a developed paleosol at the upper boundary to 108 inches.  
 
 
 
Described by Kevin Raley 
Date:6-3-02 
 
 
EMI DATA 
Method Day one (mS/m) Day two (mS/m) 
Manual (EM31) 3.5 1.8 
Mobile (EM 31) 5.1 4.2 
Manual (EM 38) 7.5 5.5 

Lowest conductivity for the transect (expected and observed) 
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Color Horizon Depth Texture Comments 
(7.5)10YR 4/6 Ap 0-4 SiL(high 

end) 
Original surface may have been eroded. 
Roots are common, few crotovena 

7.5YR 4/4 Bt1 4-12 SiCL Clay films, MnO common, striped areas 

7.5YR 4/6 Bt2 12-20 SiCL Blind pores are common, few Fe conc., Mn 
conc. common, clay films abundant, strips 

7.5YR 4/6 Bt/E 20-34 SiCL A large volume of horizon is occupied by an 
E body(10YR 7/1),clay films abundant, blind 
pores common, Fe,Mn conc common 

7.5YR 4/4 BC 34-43 SiL Stripping, no reduced matrix, 
depletions(10YR 6/2) common within 
stripped matrix (10YR 7/1) Fe conc. 
common, blind pores, few clay films 

7.5YR 4/4 2Bw1 43-53 L(SiL) Sand increases(horizon may be a mixing 
zone, Fe Mn conc. common, stripped areas, 
blind pores, few faint depleted areas visible 

7.5YR 4/4 (3/4) 2Bw2 53-60 SiL Stripped areas, Fe Mn conc. common, may 
be part of mixed zone 

7.5YR 5/4 2Bw3 60-68 L Striped areas, few Mn Fe conc., clay films 
present but not abundant or thick 

5YR 5/6 2BC 68-73 SCL Striped areas, few large macropores, large 
red clay bodies (5YR 5/8) blind pores 
common. Mn Fe conc. common 

2.5YR 4/6 3Bt1 73-81 CL Mn Fe conc. common, large areas of 
preferential flow (stripped 7.5YR 7/1), few 
small macropores 

2.5YR 4/6 3Bt2 81-88 C Large areas of stripped pref flow within clay 
matrix, Fe conc. common, macropores 
common 

2.5YR 4/6 3Bt3 88-94 SC Lesser extent of stripping, Fe conc. common, 
mush less of volume is occupied by stripped 
areas, few blind pores 

(5)2.5YR 4/6 3C1 94-106 SL Few blind pores, Mn conc. present, Fe conc. 
common 

2.5YR 3/6 4C2 106-135 SL & LS Clay drops off (mainly sand), much deeper 
red 

2.5YR 5/6 4C3 135-159+ LS Few Mn conc. 

Transect 1-2 
 
Loess extends to 43 inches. At the boundary of the first lithologic discontinuity, there is evidence 
of restricted water movement as indicated by the presence of redox depletions in the BC horizon. 
The contrasting particle size between the loess/alluvium may be causing restriction of water flow. 
The parent material sequence is Loess over 2 recent (2,3) alluvial deposits over presumably 
tertiary alluvial deposits (4). The lower alluvium deposits were marked by the development of 
Paleosols at the upper boundaries (see colors). 
Described by: Kevin Raley 
Date: 6-4-02 
 
EMI DATA 
Method Day one (mS/m) Day two (mS/m) 
Manual (EM31) 5.1 4.2 
Mobile (EM 31) 6.57 5.88 
Manual (EM 38) 9.3 7.7 

Medium conductivity for the transect (expected and observed) 
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Color Horizon Depth Texture Comments 
10YR 4/4 Ap 0-4 SiCL Few Fe conc., roots common, few large macropores 

7.5YR 5/6 BA 4-13 SiL Few Mn Fe conc., roots common 

7.5YR 4/6 Bt/E 13-22 SiCL Large stripped E bodies (7.5YR 7/2), blind pores 
(few), Fe Mn conc. common 

7.5YR 4/6 Bt1 22-30 SiCL(SiL) Few large macropores, few stripped areas(7.5YR 
7/1), Fe and Mn conc. common, blind pores common, 
depletions common (7.5YR 6/2) 

7.5YR 3/4 Bt2 30-49 SiCL Few stripped areas, Fe Mn conc. common, depletions 
(7.5 YR 6/2) common 

7.5YR 4/6 Bt3 49-63 SiL Few striped areas, few Fe Mn conc., slight sand % 
increase 

5YR 4/6 2BC1 63-79 SiCl (CL) 7.5YR 6/2 depletions at lower bound, few large 
macropores, Fe conc. common, few stripped areas, 
blind pores common 

2.5YR 4/6 2Bt1 79-90 C Fe conc. common, few stripped areas, Mn conc. 
common at lower bound 85-90 inches 

2.5YR 5/6 2Bt2 90-110 C Fe, Mn conc. common, clay bands (2.5YR 4/6) are 
common within fine material (2.5YR 5/6) matrix 

2.5YR 4/8 3C1 110-122 SL Few Mn Fe conc. 

2.5YR 4/6 3C2 122-132 SL Few Mn conc. 

5YR 5/6 3C3 132-170+ SL Mn Fe conc. common 

Transect 1-3 
 
 
Loess extends to 63 inches. Bt3 horizon may be a mixing zone between loess and 
alluvium as there was a slight increase in sand. Bt1 and Bt2 horizons contain depletions. 
Makes sense considering contrasting particle size class at the lithologic discontinuity. 
Dominant particle size class in 1st alluvial layer is clay (79-110 inches). This layer shows 
evidence of paleosol development evident by 5 YR and 2.5YR hues. The 2nd lithologic 
discontinuity occurs at 110 inches. These layers are presumably tertiary aged sand 
deposits. The majority of the areas of preferential flow are found in the losseial parent 
material. 
 
Described by: Kevin Raley 
Date: 6-5-02  
 
 
EMI DATA 
Method Day one (mS/m) Day two (mS/m) 
Manual (EM31) 7.5 5.6 
Mobile (EM 31) 8.4 7.7 
Manual (EM 38) 10.3 8.4 

Highest conductivity for the transect (expected and observed) 



 

 74

 
Color Horizon Depth Texture Comments 
7.5YR 4/6 Ap 0-5 SiL (SiCL) Roots common, few large 

macropores(root channels),  

7.5YR 5/6 Bt1 5-23 SiCL Thick clay films, Mn Fe conc. 
common, few macropores at lower 
boundary 

7.5YR 4/6 Bt2 23-38 SiL(SiCL) Mn conc. common, few small areas of 
stripping, clay films 

7.5YR 4/4 2BC1 38-50 L Sand increase, large areas of stripping, 
Mn conc. common, Fe conc. few, few 
small macropores 

7.5YR 4/4 2BC2 50-65 SL Few areas of stripping, few Fe conc.  

7.5YR 4/4(5/4) 2C1 65-77 SL No real evidence of pedogenesis, few 
Mn conc. 

7.5YR 5/4 2C2 77-89 S  

2.5YR 4/6 3C3 89-103 SCL(SL) Paleosol interface, clay increases 

2.5YR 4/8 3C4 103-118 SCL(SL)  

2.5YR 4/8(5/8) 3C5 118-133 SL(LS) Few faint areas of stripping 

2.5YR 5/8 3C6 133-162+ S  

Transect 2-4 
 
 
Loess extended to 38 inches. No drainage impediment observed in this profile. Parent 
material sequence is loess over alluvium (2, 3). Both alluvial deposits showed little 
evidence of pedogenesis. There is evidence of paleosol development at the boundary of 
the second lithologic discontinuity (3). Colors switch sharply from 7.5YR 5/4 to 2.5YR 
hues at this boundary (rubification). Underlying horizons show little pedogenic 
modification. 
 
 
Described by: Kevin Raley 
Date: 6-5-02 
 
 
EMI DATA 
Method Day one (mS/m) Day two (mS/m) 
Manual (EM31) 4.6 4.6 
Mobile (EM 31) 4.7 5.3 
Manual (EM 38) 7.0 8.0 

Lowest conductivity for transect (expected and observed) 
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Color Horizon Depth Texture Comments 
10YR 4/4 Ap 0-6 SiL Few Fe conc., roots common 

7.5YR 4/6 Bt1 6-18 SiCL Mn conc. common, in lower portion of 
horizon, few small macropores (2mm) 

7.5YR 4/6 Bt2 18-33 SiCL Mn conc. common, Fe conc. common 
in lower portion, clay films 5YR 4/4 
clearly evident throughout 

7.5YR 4/4 Bt3 33-42 SiCL(SiL) Mn Fe conc. common, sand is 
increasing, large areas of 7.5YR 7/1 
where stripping has occurred is 
common 

5YR 4/4 2BC1 42-62 L Mn Fe conc. common, few small 
diameter (2-3mm) macropores, large 
areas of stripping, E-bodies, mixing 
zone between parent materials @ 
upper 4 inches  

5YR 4/3 2BC2 62-70 L Mn conc. common, large stripped areas 
still present, E- bodies, large increase 
in sand 

5YR 4/6 2C1 70-81 SL(SCL) 7.5YR 7/3 stripped areas make-up a 
large portion of this horizon, sand 
increases sharply, Fe conc. common  

(10R)2.5YR 4/6 3C2 81-116 SC 2.5YR 4/2 Fe depletions are common, 
Fe conc. common, stripped areas are 
common (5YR 5/3)  

2.5YR4/8 3C3 116-131 SL(SCL) Large stripped areas common, Fe conc. 
common, few Mn conc.  

2.5YR 5/8 3C4 131-158+ LS (SL)  

Transect 2 Test Hole 
 
 
Parent material sequence is Loess over alluvium (2, 3). The 2nd lithologic discontinuity is 
marked by paleosol development at 81 inches. In this horizon, depletions are common 
indicating drainage impediment. Large areas of preferential flow begin at 33 inches and 
continue throughout the profile. These areas are marked stripped areas where coarser 
materials remain in the flow paths and the colors are significantly lighter. Drainage 
impediment at 81 inches may be caused by contrast in particle size with underlying 
horizon. 
 
 
Described by: Kevin Raley 
Date 6-6-02  
 
 
EMI DATA 
Method Day one (mS/m) Day two (mS/m) 
Manual (EM31)  6.3 
Mobile (EM 31) 6.7 7.7 
Manual (EM 38)  12.5 

Medium conductivity for transect (expected and observed) 
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 Horizon Depth Texture Comments 
(7.5)10YR 4/4 Ap 0-7 SiL Roots and root channels common 

 

7.5YR 4/6 Bt1 7-19 SiCL Few Mn and Fe conc., root channels 
common, clay films, (clear evidence of 
illuvaiation) 

7.5YR 4/4  Bt2 19-34 SiCL Mn conc. common, clay increases 
slightly, few Fe conc., clay 
pockets/films clearly present 

7.5YR 4/4 Bt3 34-56 SiL(SiCL) Clay films present but decreasing in 
amount, Mn conc., common, small and 
large stripped areas (7.5YR 7/1) 

7.5YR 4/4 BC1 56-69 SiL Few large dia. Macropores (4mm), Mn 
conc. common, Fe conc. few, slight 
sand increase, stripped areas common 
but decreasing in number 

5YR 4/4 2BC2 69-85 L(CL) Stripped areas common, horizon is 
pocketed with E bodies, significant 
increase in sand 

2.5YR 4/6 2BC3 85-93 CL Fe, Mn conc. common, large stripped 
areas, 5YR 4/2 depletions are common, 
small diameter macropores (2mm) 
common 

2.5YR 4/8 2C1 93-105 SCL Small stripped areas common, Mn Fe 
conc. common, heavy pick up in sand, 
large diameter macropores common 
(4mm) 

2.5YR 3/6 2C2 105-113 SCL Large stripped areas common, clay 
increases dramatically, Mn conc. 
common, may be 2nd alluvial layer 

2.5YR 5/6 2C3 113-138 SC Fe conc. common, horizon is 
dominated by large preferential flow, 
depletions(2.5YR 5/2) few, areas of 
clay films evidence of clay movement 
(paled) subsoil 

2.5YR 4/6 2C4 138-153 SCL Fe Mn conc. common, 2.5 YR 5/2 
depletions common, stripped areas 
common, small diameter macropores 
common 

5Yr 4/6 2C5 153-162+ SL Fe Mn conc. common 

Transect 2-6 
 
Loess extends to 69 inches. Possibly 3 separate Alluvial deposits under-lying the loess 
(85-105, 105-138, 138-162+). Each alluvial layer shows an increase in clay near the upper 
boundary and horizons adjacent to strongly contrasting particle size class show water 
movement restriction (85-93, 113-138). Unsure as to whether or not deeper tertiary 
material has been reached. 
Described by: Kevin Raley 
Date: 6-6-02 
EMI DATA 
Method Day one (mS/m) Day two (mS/m) 
Manual (EM31) 7.7 7.5 
Mobile (EM 31) 7.7 8.1 
Manual (EM 38) 9.5 10.3 

Highest conductivity for transect (expected and observed) 
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GPR Protocol 

1) The geophysical team calibrates the GPR over an object of known depth. This 

calibration enables the team to reference the depth of GPR scans for the survey 

area. Soil samples are used to calibrate the equipment, but they are not as reliable 

as other methods. 

2)  The GPR is recalibrated on-site in accordance with the operating manual. The 

mobile GPR system allows for coverage of an entire field instead of a few 

selected transects. The GPR system is also linked to a differential global 

positioning system (DGPS) for positional accuracy. A handheld GPS unit is used 

for navigating the field and determining what areas are left unsurveyed.  

3) The GPR scans are thoroughly examined in the lab for any anomalies or 

recognizable patterns. The examination of the GPR data also includes 

classification by a fuzzy neural network (F-NN) program specifically designed for 

such applications. The end product of the classification program is a map of 

similar properties within a field. Once relationships are established to soil 

properties in that field, it is essentially a type of soil map. 

 

An all-terrain vehicle (ATV) pulls survey tools that were designed and built by 

Leonard (2001) to mobilize the geophysical equipment. A non-metallic cart is used as the 

towed field carrier for the EMI survey. The conductivity meter is placed far enough back 

from the ATV so electrical noise and metal parts do not affect the measurements. A non-

metallic skid was also designed and built to house a single 200 MHz antenna for field 
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towing. These tools reduce the number of operators from two or more to one and 

significantly reduce time in the field. 

System Modifications 

The geophysical instruments are sensitive to temperature, moisture, and 

atmospheric conditions, which make finding an acceptable time to survey challenging. 

The occurrence of extreme hot or cold conditions can cause the internal tape drive on the 

GPR to drag or stop working completely. The ATV is retrofitted to decrease the 

occurrence of extreme temperatures that exceed the GPR manufacturer’s recommended 

operating range of 0-350C. Temperatures routinely exceed the operating range of the 

GPR equipment during acceptable survey times, and data must be collected regardless of 

the conditions. The survey equipment is housed in a van box (fig. A.1) on the ATV, 

which serves as a protective shield from moisture and dust during field surveying. The 

box is insulated on the inside with a thin reflective material that has a high insulation 

resistance (R) value to keep the box cool in the summer and warm in the winter. Four 

holes are cut into the sides of the van box to allow for additional ventilation if needed.  

Supplying power to the equipment during field data collection is also a problem. 

The traditional GPR survey uses two deep cycle marine batteries connected in parallel 

but provides power for a limited amount of time. The mobile GPR system employs a 120-

VAC system for delivering power. An inverter supplies 1200-W of continuous power and 

2400-W of peak power in two outlets. Connection to the power inverter is achieved using 

00 gauge wire and LC-10 brass quick connectors. This allows the operator to easily hook 

up to the power supply of the ATV for the operation of survey equipment. As long as the 
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ATV is running, the battery remains charged, which provides an unlimited supply of 

power to the equipment. The inverter is protected from harsh field conditions by a 

polyvinyl chloride (PVC) box (fig. A.2). A 12-VDC fan circulates air inside the box. 

Vent holes in either side allow air in after it passes through vacuum cleaner filters. The 

box is sealed on three sides with weather stripping held in place by caulk.  

A laptop computer contained within the van box records geographical location 

data from the GPS that is positioned directly above the GPR antenna (fig. A.3). The 

computer runs a program that places a marker into the GPR file at a set interval 

throughout the course of the survey. The program eliminates the use of survey flags, 

removing a step in the pre-survey stage of data collection. The operator can view the 

output of the GPR unit or laptop by using a keyboard/video/monitor (KVM) switch, 

which resides in the van box. The KVM switch allows the operator to control both 

computers with a standard PS/2 mini-keyboard and mouse. Hot keys on the keyboard 

allow for easy switching between user interfaces on the laptop and GPR equipment. A 

single monitor is positioned so that the operator can view it at any time during data 

collection. A mounting bracket (fig. A.4) and protective box (fig. A.5) were designed and 

built so the operator could easily check the progress of data collection while continuing to 

drive the ATV. Figure A.6 represents an overview of the entire survey setup including 

equipment housed in the van box and on the ATV. 

The extremely large amounts of data that are gathered by the GPR in a single day 

would take many hours for researchers to manually process and interpret. The errors 

associated with manual processing and interpretation of radargrams are often the limiting 
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factors in successfully surveying large areas with GPR. On-going research in pattern 

recognition software by Odhiambo et al. (2002) shows promise for quickly and 

accurately classifying soil profiles captured through GPR imagery. The unsupervised 

neural network (NN) classification of GPR data will only be based on data from a single 

file. As we build a database of GPR scans, a supervised NN will be able to classify data 

based on information and patterns that occur in previous scans. There is also a possibility 

to incorporate this classification method in real time for precision agriculture 

applications. 
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Figure A.1-- Mobile survey setup 



 

 83

 

 

3/4” PVC
1/4” PVC

1/4” PVC 1/4” PVC

Fan

Fan Cover

Bottom View

Side View

Top View

Back View

 
Figure A.2-- Inverter box design 
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Figure A.3-- Mobile GPR components 
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Figure A.4-- Mounting bracket for system monitor box 
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Figure A.5-- System monitor box design 
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Figure A.6-- Survey schematic 
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