
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

12-2004

Crown Reductions and Decompositions:
Theoretical Results and Practical Methods
William Henry Suters, III
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Suters, III, William Henry, "Crown Reductions and Decompositions: Theoretical Results and Practical Methods. " Master's Thesis,
University of Tennessee, 2004.
https://trace.tennessee.edu/utk_gradthes/2225

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268803779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by William Henry Suters, III entitled "Crown Reductions and
Decompositions: Theoretical Results and Practical Methods." I have examined the final electronic copy
of this thesis for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in Computer Science.

Michael A. Langston, Major Professor

We have read this thesis and recommend its acceptance:

Robert C. Ward, Bruce J. MacLennan

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by William Henry Suters, III entitled
“Crown Reductions and Decompositions: Theoretical Results and Practical Methods.”
I have examined the final electronic copy of this thesis for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the degree
of Master of Science, with a major in Computer Science.

Michael A. Langston

Major Professor

We have read this thesis and
recommend its acceptance:

Robert C. Ward

Bruce J. MacLennan

Acceptance for the Council:

Anne Mayhew

Vice Chancellor and Dean of Graduate Studies

(Original signatures are on file with official student records.)

Crown Reductions and Decompositions:

Theoretical Results and Practical

Methods

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

William Henry Suters, III

December 2004

Dedication

This thesis is dedicated to my wife, Dr. Leslie Suters.

ii

Acknowledgments

I wish to thank all of those who assisted in the completion of this thesis. In particular

I would like to thank my advisor Micahel Langston as well as Faisal Abu-Khzam and

the rest of Graph Algorithms Research Group. I would also like to thank Bill Cook for

sharing his LP codes. Finally, I wish to extend a special thank you to Michael Fellows

and Peter Shaw for their many helpful ideas and suggestions.

iii

Abstract

Two kernelization schemes for the vertex cover problem, an NP-hard problem in

graph theory, are compared. The first, crown reduction, is based on the identification of

a graph structure called a crown and is relatively new while the second, LP-kernelization

has been used for some time. A proof of the crown reduction algorithm is presented,

the algorithm is implemented and theorems are proven concerning its performance.

Experiments are conducted comparing the performance of crown reduction and LP-

kernelization on real world biological graphs. Next, theorems are presented that provide

a logical connection between the crown structure and LP-kernelization. Finally, an

algorithm is developed for decomposing a graph into two subgraphs: one that is a

crown and one that is crown free.

iv

Contents

1 Introduction 1

1.1 FPT Hierarchy . 2

1.2 Clique and Vertex Cover Problems . 4

1.3 Kernelization . 5

1.3.1 Reduction Rules . 6

1.3.2 Kernelization by High Degree . 8

1.3.3 LP-kernelization . 9

2 Crown Reduction 11

2.1 Definition . 11

2.2 Kernelization of Vertex Cover . 12

2.3 Algorithm . 14

2.3.1 Proof of the Crown Reduction Algorithm 15

2.3.2 Performance . 16

3 Experiments 19

v

3.1 LP-kernelization Can Outperform Crown Reduction 19

3.2 Crown Reductions Useful In Identifying “NO” Instances 21

3.3 Crown Reduction Augments LP-Kernelization 22

3.4 Dense Graphs and Kernelization . 23

4 Crown Decomposition 25

4.1 LP-kernelization: Finding Crowns . 25

4.1.1 Types of Crowns Identified . 28

4.1.2 Every Crown Identified by Some LP-Solution 30

4.1.3 Finding All Crowns in a Graph 31

4.2 Finding All Crowns in Polynomial Time 38

4.3 Crown Decomposition . 39

5 Conclusion 41

5.1 Comparison of LP and Crown Kernelization 41

5.2 Applications and Areas for Further Study 42

Bibliography 43

Appendix 47

Vita 62

vi

List of Tables

3.1 Graph sh2-5.dim with k = 450, n = 839 and 26612 edges. 20

3.2 Graph sh2-10.dim with k = 500, n = 839 and 129697 edges. 22

3.3 Graph sh3-5.dim with k = 1300, n = 2466 and 364703 edges. 23

vii

List of Figures

2.1 Flared and straight crowns of different widths. 13

4.1 LP-solution used to identify a crown. 26

4.2 A crown is missed by one optimal LP-solution and found by another. . . 28

4.3 Straightening a flared crown. 29

4.4 Two optimal LP-solutions, one with values restricted to 0, 0.5 and 1. . . 32

4.5 Two crowns, (I1,H1) and (I2,H2) reverse a straight crown. 36

viii

Chapter 1

Introduction

Since solutions to NP-hard problems have many important applications, a wide variety

of algorithmic techniques have been developed to deal with the computational challenge

they pose. One common approach is to develop polynomial-time methods that approx-

imate exact solutions. The approach of this paper is different; here we exploit the fact

that many problems have solution algorithms that are polynomial-time with respect to

all input parameters, with the exception of a single key parameter. These problems

become tractable when this key input parameter is fixed or bounded, as is often the

case in practice. This idea is motivated by the Graph Minor Theorem and its many

applications [5, 13, 17]. This strategy has matured considerably and such problems are

now called “fixed parameter tractable” (henceforth FPT).

Suppose (S, k) defines a problem where S is some structure of size n and k is a

parameter relevant to S. The problem in question is said to be FPT if it has a solution

1

algorithm whose run time is O(f(k)nc), where c is a constant that is independent of both

n and k. These algorithmic bounds mean that, when k is fixed, it is possible to find exact

solutions to the problem in polynomial time. Unfortunately, the associated constants

of proportionality are often large enough to make the FPT algorithm impractical to

implement. To help deal with this problem, it is critical to develop techniques to reduce

the size of the problem n and, more importantly, to reduce the size of the parameter k.

These techniques are collectively referred to as “kernelization.” Generally, the goal of

kernelization is to take the problem (S, k) and produce another instance of the problem

(S′, k′) where S′ has size n′ << n and where k′ ≤ k. This must be done in such a way

that (S′, k′) has a solution if and only if (S, k) has a solution. For more information on

FPT we refer to [10].

1.1 FPT Hierarchy

With the introduction of FPT problems, it is desirable to reconsider the classical poly-

nomial complexity hierarchy. The polynomial hierarchy places problems is the sequence

P ⊆ NP ⊆ ΣP
2 ⊆ ΣP

3 ⊆ · · · ⊆ PSPACE.

It is the case that some NP-hard problems are in FPT while others are fixed parameter

intractable. It should also be noted that all problems that are in P are also FPT since

they can be solved in polynomial time regardless of which parameter is fixed. Problems

2

can be broken into FPT hardness classes in a manner that is similar to the polynomial

hierarchy [10].

The FPT hierarchy is

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ XP.

To understand these categories it is helpful to define a decision circuit as a network of

logic gates with a sequence of input variables and one output. The gates are categorized

as being “large” or “small” depending on the number of input lines to the gate. This

determination is based on some arbitrary fixed size bound. The depth of the circuit is

the maximum number of gates on any path between the input and output. The weft

is maximum number of “large” gates on any path between the input and output. We

define LF(k,h) to be the parameterized language associated with the family of decision

circuits of weft k and depth h. Now, W [k] is the hardness class of problems that are

fixed parameter reducible to LF(k,h) for some h.

In general, each problem in the FPT hierarchy is characterized a solutions algorithm

with a run time that is O(f(k)ng(k)) for an arbitrary computable function f and where

the restrictions on g become more relaxed the higher the problem is in the hierarchy.

A problem is in XP if it has a solution algorithm with a run time that is O(f(k)ng(k))

for arbitrary computable functions f and g. Downey and Fellows present a complete

discussion of the FPT hierarchy as well as examples of problems that fall into the various

complexity classes [10].

3

1.2 Clique and Vertex Cover Problems

One NP-hard problem that has many applications in biology is the clique problem. An

instance of this problem is a graph G = (V,E) and a parameter k. The question is to

determine if there is a complete subgraph V ′ of size k. This problem is known to be

W [1]-complete [10], and so is not amenable to fixed parameter techniques. Now, let G∗

be the dual graph of G. Determining if there is an independent set of size k in the graph

G∗ is equivalent to finding a clique of size k in G. Thus, the independent set problem is

also W [1]-complete.

The situation is improved, however, by considering what is perhaps the best known

example of an FPT problem,vertex cover. There are also a myriad of known applications

for this foundational combinatorial problem [3]. If we can find a vertex cover of the graph

G∗ then the complement of the vertex cover is an independent set. We can use the FPT

character of the vertex cover problem to enable us to develop an efficient algorithm

to find large cliques. It should be noted that the fixed parameter in the vertex cover

problem is n−k, using the notation developed for the clique problem. This difference in

parameter is what allows us to describe a solution to a problem that is W [1]-complete

in terms of the solution to an FPT problem.

For the remainder of this paper, we will redefine our notation to simplify the vertex

cover problem. Given an undirected graph G and a parameter k, we seek to decide

whether G contains a set C of k or fewer vertices such that every edge in G has at least

one endpoint in C. Using a bounded search tree approach it is easy to show that the

4

vertex cover problems is FPT.

Step 1: Create an arbitrary ordering of the edges in the graph G.

Step 2: Select the first uncovered edge {u, v}. This edge must be covered by either u

or by v. Thus there are two possible cases; either u is in the vertex cover or v

is in the vertex cover. Form a new branch of the binary search tree for each of

these possibilities.

Step 3: Repeatedly apply rule 2 until either a vertex cover is found or all candidate

sets with k or fewer vertices have been eliminated.

Since the depth of the binary search tree is at most k, this algorithm has a running

time that is O(2k) and so the problem is FPT.

This produces a practical but inefficient method for solving the vertex cover problem

when k is fixed. Kernelization is used to simplify the problem as much as possible before

beginning the branching process. Once kernelization has been accomplished, vertex

cover can be solved in time O(1.2852k′

+ k′n) using the bounded search tree approach

[8].

1.3 Kernelization

The techniques for solving the vertex cover problem are aided by a variety of prepro-

cessing rules. All of these rules take the problem (G, k) where G has n vertices and

produce another instance of the problem (G′, k′) where G′ has n′ vertices with n′ < n

5

and k′ ≤ k. This is done in such a way that (G′, k′) has a solution if and only if (G, k)

has a solution. These rules are computationally inexpensive, requiring at most O(n2)

time with very modest constants of proportionality.

1.3.1 Reduction Rules

The first kernelization rules that we use are based on identifying low degree vertices.

These rules can be used to remove all vertices of degree < 3.

Rule 1: An isolated vertex u (vertex of degree 0) can not be in a vertex cover of optimal

size. Since there are no edges associated with such a vertex, there is no benefit

of including it in any vertex cover. Thus G′ is created by deleting u. This

reduces the problem size so that n′ = n − 1. This rule is applied repeatedly

until all isolated vertices are eliminated.

Rule 2: In the case of a pendant vertex u (vertex of degree 1), there is a vertex cover

of optimal size that does not contain the pendant vertex but does contain

its unique neighbor v. Thus, G′ is created by deleting both u and v and their

incident edges from G. It is then also possible to delete the neighbors of v whose

degrees drop to 0. This reduces the problem size so that n′ is n decremented

by the number of deleted vertices and reduces the parameter size to k′ = k−1.

This rule is applied repeatedly until all pendant vertices are eliminated.

Rule 3: If there is a degree-two vertex with adjacent neighbors then there is a vertex

cover of optimal size that includes both of these neighbors. If u is a vertex

6

of degree 2 and v and w are its adjacent neighbors then at least two of the

three vertices (u, v, and w) must be in any vertex cover. Choosing u to be one

of these vertices would only cover edges {u, v} and {u,w} while eliminating u

and including v and w could possibly cover not only these but additional edges.

Thus there is a vertex cover of optimal size that includes v and w but not u.

G′ is created by deleting u, v, w and their incident edges from G. It is then

also possible to delete the neighbors of v and w whose degrees drop to 0. This

reduces the problem size so that n′ is n decremented by the number of deleted

vertices and reduces the parameter size to k′ = k − 2. This rule is applied

repeatedly until all degree-two vertices with adjacent vertices are eliminated.

Rule 4: If there is a degree-two vertex, u, whose neighbors, v and w, are non-adjacent,

then u can be folded by contracting edges {u, v} and {u,w}. This is done by

replacing u, v and w with one vertex, u′, whose neighborhood is the union of

the neighborhoods of v and w in G. This reduces the problem size so that

n′ = n − 2. The parameter size is reduced to k′ = k − 1. This idea was first

proposed in [8], and warrants explanation. To illustrate, suppose u is a vertex

of degree 2 with neighbors v and w. If one neighbor of u is included in the cover

and is eliminated, then u becomes a pendant vertex and can also be eliminated

by including its other neighbor in the cover. Thus it is safe to assume that

there are two cases: first, u is in the cover while v and w are not; second v and

w are in the cover while u is not. If u′ is not included in an optimal vertex

7

cover of G′ then all the edges incident on u′ must be covered by other vertices.

Therefore v and w need not be included in an optimal vertex cover of G because

the remaining edges {u, v} and {u,w} can be covered by u. In this case, if the

size of the cover of G′ is k′ then the cover of G will have size k = k′ + 1 so

the decrement of k in the construction is justified. On the other hand, if u′

is included in an optimal vertex cover of G′ then at least some of its incident

edges must be covered by u′. Thus the optimal cover of G must also cover its

corresponding edges by either v or w. This implies that both v and w are in

the vertex cover. In this case, if the size of the cover of G′ is k′, then the cover

of G will also be of size k = k′ + 1. This rule is applied repeatedly until all

vertices of degree two are eliminated. If recovery of the computed vertex cover

is required, a record must be kept of this folding so that once the cover of G′

has been computed, the appropriate vertices can be included in the cover of G.

1.3.2 Kernelization by High Degree

This simple technique (see [6]) is based on the fact that vertices with degree > k must

be in any vertex cover of size ≤ k. If v is a vertex of degree > k and it is not included in

the vertex cover, then all of its neighbors must be included. Thus the size of the cover

would also be > k. This algorithm is applied repeatedly until all vertices of degree

> k are eliminated. This algorithm is superlinear (O(n2)) only because of the need to

compute the degree of each vertex.

The following result from [1] is used to bound the size of the kernel that results from

8

the application of this algorithm in combination with the preprocessing rules. Note that

if this algorithm and the preprocessing rules are applied, then each remaining vertex, v,

has degree, d(v), such that 3 ≤ d(v) ≤ k′. Using this it can be shown that n′ ≤ k′2

3 + k′.

Put together, these rules are straightforward to implement, but not especially effective

because they can require quadratic time (in n) and produce kernels of quadratic size (in

k).

1.3.3 LP-kernelization

One powerful, well-known kernelization technique is based on an integer programming

formulation of the optimization version of vertex cover. We assign a weight Xu ∈ {0, 1}

to each vertex u of the graph G = (V,E) so that the following conditions are met.

(1) Minimize
∑

u Xu.

(2) Satisfy Xu + Xv ≥ 1 whenever {u, v} ∈ E.

We can relax this to a linear programming problem by replacing the constraint

Xu ∈ {0, 1} with Xu ≥ 0. The linear programming problem can be solved using a

general LP package, or it can be posed as a network flow problem which can be solved

using network flow techniques.

The solution to the linear programming problem is used to kernelize the original

vertex cover problem in the following manner. Let P = {u ∈ V |Xu > 0.5}, Q = {u ∈

V |Xu = 0.5} and R = {u ∈ V |Xu < 0.5}. There is an optimal vertex cover that is a

superset of P and that is disjoint from R. This is a modification from [15] of a theorem

9

originally proved in [16]. Furthermore, there is a solution to this problem in which

Xu = 0 for all u ∈ R, Xu = 1 for all u ∈ P and Xu = 0.5 for all u ∈ Q.

The time complexity of LP-kernelization is O(n3) if a general LP package is used.

When a network flow approach is used, it is is O(m
√

n) where m is the number of edges

in G. If there is a vertex cover of size k, then the total of the weights assigned to vertices

in the LP-solution must be ≤ 2k. Thus, if the resulting weight total is > 2k then there

is no vertex cover of size k. This implies that LP-kernelization either results in a linear

kernel of size ≤ 2k or a “no” answer to the vertex cover problem.

10

Chapter 2

Crown Reduction

Although the LP-kernelization technique is very effective in reducing the size of the

vertex cover problem, its run time can still pose a significant computational challenge.

Thus it is desirable to find faster kernelization techniques that could be used both in

replacement of and in conjunction with LP-kernelization. The method we present in

this chapter, crown reduction, can be used to make the LP-kernelization process much

more efficient. All the vertices identified by a crown reduction could, potentially, be

identified by some LP-kernelization. Crown reduction is in practice much faster, but

produces more variable results than LP-kernelization.

2.1 Definition

This newer kernelization technique relies on the identification of a “crown structure” in

the graph [2]. The method identifies two vertex subsets, H and I, in such a way that

11

there is an optimal vertex cover that is both a superset of H and disjoint from I. To

define a crown, it is helpful to note that a matching is a collection of edges that do not

share any vertices. Letting N(S) denote the neighborhood of S, a crown is an ordered

pair (I,H) of subsets of vertices from a graph G that satisfies the following criteria:

(1) I 6= ∅ is an independent set of G,

(2) H = N(I), and

(3) there exists a matching M on the edges connecting I and H such that all

elements of H are matched.

H is called the head of the crown. The width of the crown is |H|.

A crown that is a subgraph of another crown is called a subcrown. A straight crown

is a crown (I,H) that satisfies the condition |I| = |H|. A flared crown is a crown (I,H)

that satisfies the condition |I| > |H|. Notice that if (I,H) is a crown, then I is an

independent set and H is a cutset between I and the rest of the graph. Examples are

flared and straight crowns of different widths are show in figure 2.1.

2.2 Kernelization of Vertex Cover

If we can identify a crown in a graph, then this structure can be used as a tool to

kernelize the vertex cover problem in a manner analogous to the pendant vertex rule

presented in chapter 1 (rule 2). This is shown in the following theorem.

12

Bold edges denote matchings.

Rest of Graph

H

I

Rest of Graph

I

H

Flared Crown of width 4 Straight Crown of width 3

Figure 2.1: Flared and straight crowns of different widths.

Theorem 1 If G is a graph with a crown (I,H), then there is a vertex cover of G of

minimum size that contains all the vertices in H and none of the vertices in I.

Proof. Since there is a matching M of the edges between I and H, any vertex cover

must contain at least one vertex from each matched edge. Thus the matching will

require at least |H| vertices in the vertex cover. This minimum number can be realized

by selecting H to be in the vertex cover. It is further noted that vertices from H can

be used to cover edges that do not connect I and H, while this is not true for vertices

in I. Thus, including the vertices from H does not increase, and may decrease, the

size of the vertex cover as compared to including vertices from I. Therefore, there is a

minimum-size vertex cover that contains all the vertices in H and none of the vertices

in I.

13

The kernelized graph G′ is produced by removing vertices in I and H and their

adjacent edges. The resulting problem size is n′ = n − |I| − |H| and the resulting

parameter size is k′ = k − |H|.

2.3 Algorithm

We now need a method for identifying crown structures in a graph. The following algo-

rithm can be used to find a crown in an arbitrary graph. Before stating the algorithm, it

is useful to note that a maximal matching is a matching to which no edges can be added

without forcing two edges to share a vertex and that a maximum matching is a matching

with the maximum possible number of edges. Letting NM (H) denote the neighbors of

H using only the edges contained in the matching M is helpful in the definition of the

algorithm.

Step 1: Find a maximal matching M1 of the graph, and identify the set of all unmatched

vertices as the set O of outsiders.

Step 2: Find a maximum auxiliary matching M2 of the edges between O and N(O).

Step 3: If every vertex in N(O) is matched by M2, then H = N(O) and I = O form a

crown, and we are done.

Step 4: Let I0 be the set of vertices in O that are unmatched by M2.

Step 5: Repeat steps 5a and 5b until n = N so that IN−1 = IN .

5a. Let Hn = N(In).

5b. Let In+1 = In ∪ NM2
(Hn).

14

Step 6: I = IN and H = HN form a flared crown.

Theorem 2 shows that the success of the algorithm in finding a crown depends on

which maximal matching, M1, is identified in step 1. In general, the algorithm will

succeed in finding a crown as long as at least one of the following conditions is met:

(1) I0 is nonempty in Step 4 or

(2) every vertex in N(O) is matched in Step 3 of the algorithm.

Crown reductions may be repeatedly applied to the same graph. When this is done it

may be helpful to use a different maximal matching for each repetition. Finally, it may

also be helpful to apply the reduction rules introduced in chapter 1 between repeated

applications of crown reduction.

2.3.1 Proof of the Crown Reduction Algorithm

We now present a theorem to demonstrate the correctness of the crown reduction algo-

rithm.

Theorem 2 The algorithm produces a crown as long as either (1) the set I0 of un-

matched outsiders is not empty or (2) every vertex in N(O) is matched by M2.

Proof. First, since M1 is a maximal matching, the set O, and consequently its subset

I, are both independent. Next consider the case where condition (2) holds. In this case

H = N(O) = N(I) and every vertex in H is matched by M2. Thus by definition, H

and I form a crown and we are done. Now consider the case where condition (1) holds.

15

Because of the definition of H, it is clear that H = N(IN−1) and since I = IN = IN−1

we know that H = N(I).

The third condition for a crown is proven by contradiction. Suppose there were

an element h ∈ H that were unmatched by M2. Then the construction of H would

produce an augmented (alternating) path of odd length. For h to be in H there must

have been an unmatched vertex in O that begins the path. Then the repeated step 4a

would always produce an edge that is not in the matching while the next step 4b would

produce an edge that is part of the matching. This process repeats until the vertex h

is reached. The resulting path begins and ends with unmatched vertices and alternates

between matched and unmatched edges. Such a path cannot exist if M2 is in fact a

maximum matching because we could increase the size of the matching by swapping the

matched and unmatched edges along the path. Therefore every element of H must be

matched by M2. The actual matching used in the crown is the matching M2 restricted

to edges between H and I.

2.3.2 Performance

The most computationally expensive part a crown reduction is finding the maximum

matching, M2, which is done in this case by recasting the maximum matching problem

on the bipartite graph of edges between O and N(O) as a network flow problem. This

network flow problem is then solved using the algorithm developed by Dinic [9] with a

run time bounded by O(m
√

n) for bipartite graphs with m being the number of edges

and n being the number of vertices [14]. In our case were are only performing the

16

network flow process on the bipartite graph with edges between O and N(O). Thus,

the time complexity of crown reduction is O(m∗
√

n∗), where m∗ is the number of edges

between O and N(O) and n∗ is the number of vertices in O and N(O). Recall, the

time complexity of LP-kernelization is O(n3) if a general LP package is used. When

a network flow approach is used, it is is O(m
√

n) where m is the number of edges in

G. Asymptotically, the behaviors of the crown reduction and LP-kernelization methods

are similar. In practice, however, m∗ and n∗ are generally much smaller than m and

n. Extensive experimental results indicate that crown reduction is in fact much faster

than LP-kernelization [2], especially on large problem instances.

It is important to note that if a maximum matching of size > k is found then there

is not a vertex cover of size ≤ k and the vertex cover problem has been solved with a

“no” instance. Therefore if either of the matchings M1 and M2 is larger than k, the

process can be halted. This fact also allows us to place an upper bound on the size of

the graph G′.

Theorem 3 If both the matchings M1 and M2 are of size less than or equal to k then

the graph G has at most 3k vertices that are not in the crown.

Proof. Since the size of the matching M1 is less than or equal to k, it contains at most

2k vertices. Thus, the set O contains at least n − 2k vertices. Since M2 is less than or

equal to k, there are at most k vertices in O that are matched by M2. Thus there are

at least n − 3k vertices that are in O that are unmatched by M2. These vertices are

included in I0 and are therefore in I. Thus the largest number of vertices in G that are

17

not included in I and H is 3k.

Both LP-kernelization and crown reduction result in kernels whose sizes are linear

in k. The kernel that results from LP-kernelization has size at most 2k. The kernel that

results from crown reduction is (perhaps loosely) bounded above by 3k. It should be

noted that the particular crown produced by crown reduction depends on the maximal

matching identified in step 1 of the algorithm. Thus, the crown reduction may be

repeated, potentially resulting in smaller and smaller kernels.

18

Chapter 3

Experiments

The following experiments were run on graphs resulting from experimental data from

computational biology, where clique is a common problem. Recall that clique is W [1]-

hard [10], however, it is possible to find a maximum clique in a graph, G, by finding a

minimum vertex cover of the dual graph, G∗.

3.1 LP-kernelization Can Outperform Crown Reduction

One of the applications to which we have applied our codes is the problem of find-

ing phylogenetic trees based on protein domains [7]. The graphs that we utilized were

obtained based on data from NCBI and SWISS-PROT, well known open-source repos-

itories of biological data. The results in table 3.1 indicates run times on graph sh2-5

derived from the sh2 protein domain. The number after the domain name indicates the

threshold used to convert the input into an unweighted graph.

19

Table 3.1: Graph sh2-5.dim with k = 450, n = 839 and 26612 edges.

Procedure Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Crown Reduction PP CR CR CR LP BR
followed by k = 438 k = 415 k = 415 k = 415 k = 302 cover

LP-Kernelization n = 810 n = 738 n = 733 n = 733 n = 496 found
Total time 49.25 t = 0.71 t = 1.39 t = 1.23 t = 1.19 t = 38.89 t = 5.84

LP-Kernelization PP LP BR
only k = 438 k = 301 cover

n = 810 n = 494 found
Total time 51.28 t = 0.70 t = 44.79 t = 5.79

Times are given in seconds. PP indicates preprocessing, CR indicates crown reduc-
tion, LP indicates LP-kernelization, and BR indicates branching.

In this implementation, the high degree kernelization and low degree reduction rules

introduced in chapter 1 have been combined into a single preprocessing step. An attempt

has been made to represent the manner in which these methods could be applied to a

practical problem. Preprocessing is always the initial reduction attempted. Further,

a single crown reduction can remove several vertices, resulting in a reduction in the

degree of many of the remaining vertices. Thus, a reapplication of preprocessing may

be productive. Since preprocessing is inexpensive, it is always run after a each iteration

of crown reduction. The resulting reduction in graph size and run time are included

in the time results for the associated crown reduction. Crown reduction is repeatedly

applied until the first time it fails to further reduce the graph. Finally, LP-kernelization

is applied to the graph to determine if further reductions are possible and the problem is

then solved using a branching approach. For the purposes of comparison, the same graph

20

is reduced again using preprocessing followed only by LP-kernelization and branching,

without the benefit of crown reduction.

Notice, in the case of the sh2-5 graph in table 3.1, that while a both methods

produced similar results, and the method without crown reduction had fewer steps, the

total time was slightly shorter with crown reduction. Also notice that LP-kernelization

was successful in further reducing the graph after the application of repeated crown

reductions. This is an unusual case, for reasons that will be explored in chapter 4.

Since there is an element of chance in the crown reduction algorithm, it is possible

that if this experiment were repeated the results would be different. However, the fact

remains that the failure of crown reduction to reduce a graph does not imply that

LP-kernelization will also fail.

3.2 Crown Reductions Useful In Identifying “NO” Instances

In contrast to the sh2-5 graph, there are examples where crown reduction can reduce

a graph further than LP-kernelization. Such an example is the sh2-10 graph produced

from the same data as sh2-5 with a different threshold value. The results for sh2-

10 are show in table 3.2. This is an example in which not only did a sequence of

crown reductions simplify the graph more than an LP-kernelization, crown reductions

where able to completely solve the problem. This shows one of the strengths of crown

reductions; it gives a relatively inexpensive method for attempting to identify “no”

instances of the vertex cover problem.

21

Table 3.2: Graph sh2-10.dim with k = 500, n = 839 and 129697 edges.

Procedure Step 1 Step 2 Step 3 Step 4 Step 5

Crown Reduction PP CR CR CR CR
k = 340 k = 188 k = 188 k = 74 no cover
n = 678 n = 471 n = 462 n = 295 instance

Total time 4.66 t = 1.07 t = 1.39 t = 1.61 t = 0.53 t = 0.06

LP-Kernelization PP LP BR
only k = 340 k = 300 no cover

n = 678 n = 573 instance
Total time 64.11 t = 1.06 t = 56.01 t = 7.04

Times are given in seconds. PP indicates preprocessing, CR indi-
cates crown reduction, LP indicates LP-kernelization, and BR indicates
branching.

3.3 Crown Reduction Augments LP-Kernelization

An example with more typical behavior is the graph, sh3-5, derived from data gathered

about the sh3 protein domain. A comparison of the performance of the crown reduction

and LP-kernelization is given in table 3.3. Although both methods produce similar

reductions in the graph, crown reduction is significantly faster. Because of the expense of

performing an LP-kernelization, it is helpful to note that crown reductions could be used

in place of LP-kernelization or as a method to reduce the graph before attempting LP-

kernelization. In this case, the time for doing preprocessing and three crown reductions

was 45.49 seconds. The LP-kernelization that followed did not produce any further

reduction and took 1847.62 seconds. If LP-kernelization was done without any preceding

crown reductions the time required was 2416.33 seconds. Thus using crown reduction

22

Table 3.3: Graph sh3-5.dim with k = 1300, n = 2466 and 364703 edges.

Procedure Step 1 Step 2 Step 3 Step 4 Step 5

Crown Reduction PP CR CR CR LP
k = 1272 k = 1261 k = 1261 k = 1261 k = 1261
n = 2398 n = 2312 n = 2305 n = 2305 n = 2305

Total time 1893.11 t = 7.76 t = 12.58 t = 12.66 t = 12.49 t = 1847.62

LP-Kernelization PP LP
only k = 1272 k = 1263

n = 2398 n = 2309
Total time 2424.14 t = 7.81 t = 2416.33

Times are given in seconds. PP indicates preprocessing, CR indi-
cates crown reduction, LP indicates LP-kernelization, and BR indicates
branching.

in place of LP-kernelization can dramatically reduce run times. Using crown reduction

prior to LP-kernelization usually produces more modest reductions in run time. Despite

the reductions to the graph, the kernel remains quite large. Due to the computational

cost, branching was not attempted on this kernel.

3.4 Dense Graphs and Kernelization

Neither crown reduction nor LP-kernelization is likely to work well for densely connected

graphs. One example of this is the graph RMA-85-280. This graph is derived from

microarray data, where a maximum clique corresponds to a set of putatively co-regulated

genes. This graph has 1737 vertices and 1011051 edges, over 67% of the edges in a

completely connected graph with the same number of vertices. When searching for

23

a vertex cover of size k = 1457, an initial preprocessing step reduced n to 1210 and

k to 930. After this, neither crown reduction nor LP-kernelization were successful in

producing further reductions. The run time for crown reduction was 6.84 seconds while

LP-kernelization took 164.45 seconds. Thus, it may be useful to use crown reduction

as a test to determine if an LP-kernelization is likely to be successful in reducing the

graph.

For very large dense graphs, it may not even be practical to run LP-kernelization.

The run time and memory requirements for LP-kernelization increase rapidly as the

number of edges increases. One example of this is the graph U74-0.5-369. This graph is

based on similar data to RMA-85-280 and has 5680 vertices and 13736738 edges, over

85% of the edges in a complete graph with the same number of vertices. Preprocessing

reduced n to 3447 and k to 3078. Subsequent attempts at crown reductions where unsuc-

cessful in further reducing the problem, but only took 92.23 seconds. LP-kernelization

was rendered impractical due to its excessive memory and time requirements. Thus,

particularly for large dense graphs, crown reduction may be a practical alternative when

LP-kernelization is too expensive.

24

Chapter 4

Crown Decomposition

Because the crown reduction and LP-kernelization are based on different algorithmic

techniques, there was considerable suspicion that the methods would prove to be orthog-

onal [12]. This is not the case, however. The sets P and R identified by LP-kernelization

turn out, surprisingly, to be a crown. Since LP-kernelization is less variable than our

crown reduction algorithm, it can be used to decompose a graph into a crown and a

subgraph that contains no crowns. This is what we refer to as a crown decomposition.

The results of this chapter are also presented in [4].

4.1 LP-kernelization: Finding Crowns

The fact that LP-kernelization is, in fact, another method of crown reduction is proven

by the following theorem and an example is shown in figure 4.1

25

0.1

0.5 0.5

0.5

R

P

Q

0.2 0.1

0.8
0.9

0.9

Figure 4.1: LP-solution used to identify a crown.

Theorem 4 If LP-kernelization is applied to a graph G and finds a set R of vertices

to exclude from the vertex cover and a set P of vertices to include in the cover, then

(R,P) is a crown.

Proof. Let us look at the requirements for a crown. Since Xu < 0.5 for all vertices

u ∈ R, we know, because of the edge constraint Xu + Xv ≥ 1, that there cannot be any

edges {u, v} with both u and v in R. Thus R is an independent set.

Suppose there is a vertex u ∈ P where u /∈ N(R). Then every neighbor v of u

has Xv ≥ 0.5. Thus we could improve the LP solution by imposing Xu = 0.5 without

violating any of the constraints Xu + Xv ≥ 1. This cannot happen so we can conclude

that P ⊆ N(R). Similarly, suppose there is a u ∈ N(R) where u /∈ P . Then Xu ≤ 0.5

while u has a neighbor v where Xv < 0.5. The edge {u, v} must violate the constraint

26

Xu + Xv ≥ 1. This too cannot happen, so we conclude that N(R) ⊆ P and thus

P = N(R).

Let M be a maximum matching on the edges between R and P . We now show that

every vertex in P must be matched by contraction. Let C0 ⊂ P be the set of vertices

in P that are unmatched by M and suppose C0 6= ∅. Let D0 = N(C0) ∩ R and C1 =

NM (D0)∪C0. Repeat this process, setting Dn = N(Cn)∩R and Cn+1 = NM (Dn)∪Cn,

until C = CN+1 = CN and D = DN .

Since M is a maximum matching, alternating paths with an odd number of edges

that begin and end at unmatched vertices are impossible. Thus any alternating path

beginning with a vertex in C0 has an even number of edges (and an odd number of

vertices), beginning and ending in C. Since very vertex in D must be part of such an

alternating path, this implies that C must be larger than D. This can be most easily

seen by noting that the matching M gives a natural one to one association between

the elements of D and NM (D). If this were not true an alternating path with an

odd number of edges would result. Furthermore C0 6= ∅ and NM (D) are disjoint and

C = NM (D) ∪ C0. Thus C is larger than D.

Notice that for any set P ′ ⊂ P we know that N(P ′) ∩ R must be larger than P ′

since otherwise we could improve the LP solution by setting Xu = 0.5 for all u ∈ P ′

and u ∈ N(P ′) ∩ R. However we have already shown that C ⊂ P is larger than

N(C) ∩ R = D so this is a contradiction. Thus C0 = ∅ and every vertex in P must be

matched. Therefore (R,P) is a crown.

27

4.1.1 Types of Crowns Identified

We now determine the types of crowns that can be identified by LP-kernelization. This

task is complicated by the fact that LP-solutions are not unique. Different optimal LP-

solution techniques may produce different results on the same graph. An example of

this nonuniqueness is shown in figure 4.2. In order to characterize the types of crowns

identified by LP-kernelization, it is useful to prove the following lemma which helps

refine the relationship between straight and flared crowns.

Lemma 1 If (I,H) is a flared crown then there is another crown (I ′,H) that is straight

and where I ′ ⊂ I.

Proof. Since (I,H) is a crown there is a matching M on the edges between I and H

so that all elements of H are matched. Since (I,H) is flared there must be at least one

unmatched vertex in I. Let I ′ be the set of matched vertices in I. It is clear that I ′ ⊂ I

and that I ′ is an independent set. It is also clear that M is a matching between I ′ and

1

0

Two LP−solutions of total weight 3.

0 0 0.50.50.5

0.50.50.511

Figure 4.2: A crown is missed by one optimal LP-solution and found by another.

28

H and that every vertex in H is matched. Thus (I ′,H) is a crown. Finally, the M

forms a one-to-one association between the vertices in I ′ and H. Thus |I ′| = |H| and

the crown is straight.

This lemma allows us to break a flared crown into two subcrowns. There is a straight

subcrown and a flared subcrown. We are now ready to prove that LP-kernelization

eliminates all flared crowns from the graph. It does this by either finding all of the

flared crowns, or by straightening the flared crown by identifying the flared part of the

crown, but leaving the straight subcrown unrecognized. An example of this is showing

in figure 4.3. One solution technique may identify an entire flared crown, while another

technique may only straighten the crown.

Theorem 5 If LP-kernelization is performed then only straight crowns remain.

Staight Subcrown

Rest of Graph

Flared Subcrown

Figure 4.3: Straightening a flared crown.

29

Proof. Suppose there is a crown (I,H) with |I| > |H| that is not identified by LP-

kernelization. Vertices u not removed by LP-kernelization are given weights Xu = 0.5.

Thus Xu = 0.5 for every u ∈ I ∪ H. Since |I| > |H| we can improved the LP-solution

by assigning Xu = 1 for every u ∈ H and Xv = 0 for every v ∈ I.

We must demonstrate that this new weight assignment is an LP-solution by showing

that it still meets the edge constraints. Since N(I) = H the condition Xu + Xv ≥ 1

is satisfied by for all edges (u, v) where either u or v is in I. Next consider edges that

have an endpoint in H but not in I. These edges have had their total weight increased

and so still meet the edge constraints. Finally, edges that do not connect either to I or

to H are unaffected by the new weights and so still satisfy the edge constraints.

4.1.2 Every Crown Identified by Some LP-Solution

Even though a given LP-solution may or may not recognize a particular straight crown,

there is an LP-solution that does. This is proven in the following theorem.

Theorem 6 If (I,H) is a crown, then there is an optimal LP-solution that identifies a

crown of which (I,H) is a subcrown.

Proof. Suppose there is a particular optimal LP-solution that does not identify a crown

with (I,H) as a subcrown. This implies that the crown must be straight and |I| = |H|

by Theorem 5. Let us construct another LP-solution by assigning Xv = 0 for all v ∈ I

and Xu = 1 for all u ∈ H and leaving the weight of the other vertices unchanged.

We first show that it is an LP-solution by showing that it still meets the edge

30

constraints. Since N(I) = H the condition Xu + Xv ≥ 1 is satisfied by for all edges

(u, v) where either u or v is in I. Next consider edges that have an endpoint in H but

not in I. These edges have had their total weight increased and so still meet the edge

constraints. Finally, edges that do not connect either to I or to H are unaffected by

the new weights and so still satisfy the edge constraints.

Finally, we need to show that the solution is optimal. Since |I| = |H| the value of

the objective function
∑

u∈V Xu is unchanged. Therefore this is a new solution to the

LP-problem which identifies the crown.

4.1.3 Finding All Crowns in a Graph

Even though each crown has an LP-solution that would identify it, we need to determine

if there is a particular LP-solution that would eliminate all crowns from the graph. We

present a lemma and series of theorems that can be used to design a procedure for

identifying all crowns in a graph.

First, we need to show that if a crown is identified and removed from a graph and

a second crown is identified among the remaining vertices, then these two crowns can

be combined to form a single crown. To do this it is useful to prove the following

lemma that allows us to restrict the number of values that must be considered in the

LP-solution. It is previously known that there are optimal solutions to the LP-problem

that only use weights 0, 0.5, and 1 [15, 16]. Nevertheless, it is useful to recast this

result here in term of crowns, using Theorem 4, and then to demonstrate a method for

modifying any LP-solution to use only these weights. An example of the application of

31

Rest of Graph

1

0.5 0.5

0.5

0.5 0.5

0 00 0.1

0.9
11

0.2 0.1

0.5

Crown Crown

0.90.8

Rest of Graph

Figure 4.4: Two optimal LP-solutions, one with values restricted to 0, 0.5 and 1.

this lemma is shown in figure 4.4.

Lemma 2 If there is an optimal solution to the LP-kernelization problem that assigns

weight Xu to each vertex u ∈ V and we define R = {u ∈ V |Xu < 0.5}, Q = {u ∈

V |Xu = 0.5}, and P = {u ∈ V |Xu > 0.5}, then there is another optimal solution to the

LP-kernelization problem that assigns weights X ′
u = 0 if u ∈ R, X ′

u = 0.5 if u ∈ Q, and

X ′
u = 1 if u ∈ P .

Proof. By Theorem 4 we know that (R,P) forms a crown and so there is a matching M

between R and P so that every element in P is matched. The total weight contribution

of R ∪ P must be at least |M | = |P | in any LP-solution since the edges in M must

have total edge weight ≥ 1. We can achieve this lower bound by making the weight

assignments X ′
u = 0 if u ∈ R and X ′

u = 1 if u ∈ P . The weights of the remaining

32

vertices are unchanged by the assignment X ′
u = 0.5 if u ∈ Q, so the total edge weight

of the graph is either unchanged or reduced by these assignments.

We now show that this new assignment is in fact an LP-solution by considering the

edge constraints. The edge constraints are met for all edges {u, v} with u ∈ P , since in

this case X ′
u = 1. Edges {u, v} with u ∈ R must have v ∈ P and so we have already

met the edge constraint. This is because (R,P) is a crown and so N(R) = P . Finally,

we consider edges {u, v} with u ∈ Q. Such an edge cannot have v ∈ R since N(R) = P

and so we only need to examine cases where v ∈ P or v ∈ Q. If v ∈ P then we have

already met the edge constraint. If v ∈ Q then X ′
u = 0.5 and X ′

v = 0.5 and so the edge

constraint is met in this final case.

Now we prove that if a crown is identified and removed from a graph and a second

crown is identified among the remaining vertices, then these two crowns can be combined

to form a single crown.

Theorem 7 Suppose a graph G = (V,E) has a crown (I,H) identified by LP- kernel-

ization and that when (I,H) is removed the induced subgraph G′ = (V ′, E′) has another

crown (I ′,H ′), then (I ∪ I ′,H ∪ H ′) forms a crown in G.

Proof. Let S be the optimal LP-solution for G where Xv = 0 for every v ∈ I, Xu = 1

for every u ∈ H, and Xw = 0.5 for every w /∈ H ∪ I. We know that such an optimal

LP-solution exists by Lemma 2.

We construct a new optimal LP-solution S′. For any u ∈ V we set X ′
u as follows:

(1) If u ∈ H ∪ H ′ then X ′
u = 1.

33

(2) If u ∈ I ∪ I ′ then X ′
u = 0.

(3) If u /∈ H ∪ H ′ ∪ I ∪ I ′ then X ′
u = 0.5.

Notice that all of the vertices in I ′ ∪ H ′ remain when (I,H) is removed so I ′ ∪ H ′

and I ∪ H are disjoint. We already know that I and H are disjoint and that I ′ and H ′

are disjoint. This implies that I, H, I ′, and H ′ are all mutually disjoint. Thus there

are no contradictions in the definition of S′.

We now show that S′ is in fact an LP-solution by verifying the edge constraints for

an arbitrary edge (u, v) ∈ E.

Case 1: One of the endpoints is in H ∪ H ′. Without loss of generality assume

v ∈ H ∪ H ′, then X ′
v = 1 and the edge constraint is met.

Case 2: One of the endpoints is in I. Without loss of generality assume u ∈ I. We

know that v ∈ H since N(I) = H. Thus the problem reduces to case 1 and the edge

constraint is met.

Case 3: One of the endpoints is in I ′. Without loss of generality assume u ∈ I ′.

Since (I,H) is removed before (I ′,H ′) is identified, there are two possibilities v ∈ I ∪H

or v /∈ I ∪ H. If v ∈ I ∪ H, we know that N(I) = H and u /∈ H so we can restrict our

attention to the case were v ∈ H. Thus the problem reduces to case 1 and the edge

constraint is met. If v /∈ I ∪ H then v is a vertex in G′ and in this graph N(I ′) = H ′.

Thus v ∈ H ′, the problem reduces to case 1 and the edge constraint is met.

Case 4: Neither u nor v is in H ∪ H ′ ∪ I ∪ I ′. In this case X ′
u = 0.5 and X ′

v = 0.5

and the edge constraint is met.

34

Finally, we show that S′ is an optimal LP-solution for G. We know that S is an

optimal LP-solution for G. Notice that the total edge weight in S is |H| + 0.5|V −

(H ∪ I)| = |H| + 0.5|V ′| and that an optimal LP-solution for G′ has total edge weight

0.5|V ′|. Also notice that since (I ′,H ′) is a crown, there is another optimal LP-solution

that identifies this crown and uses weights 0, 1, and 0.5. We know this is possible

by the proof of Lemma 2. The total edge weight of this new LP-solution for G′ is

|H ′| + 0.5|V ′ − (H ′ ∪ I ′)|. However, since these are both optimal solutions for G′ we

know that 0.5|V ′| = |H ′| + 0.5|V ′ − (H ′ ∪ I ′)|.

Now consider the total edge weight for S′ which is |H∪H ′|+0.5|V −(H∪H ′∪I∪I ′)| =

|H ∪ H ′| + 0.5|V − (H ∪ I) − (H ′ ∪ I ′)| = |H ∪ H ′| + 0.5|V ′ − (H ′ ∪ I ′)|. Since H, H ′

are disjoint, we know that |H ∪ H ′| = |H| + |H ′|. Thus the total edge weight for S′ is

|H| + |H ′| + 0.5|V ′ − (H ′ ∪ I ′)| = |H| + 0.5|V ′| which is the total edge weight for S.

Thus, both S and S′ are optimal LP-solutions for G. Thus by Theorem 4 we know that

the sets identified by S′, namely I ∪ I ′ and H ∪ H ′ must form a crown.

Finally, we need to show that identifying two different crowns cannot result in any

serious conflicts. That is, if a graph has two different crowns, then the two crowns can

be combined to form a single crown. This is not a matter of simply taking the union

of the two crowns. There may be vertices in the independent set of one crown that

are included in the cutset of the other crown. Such conflicts always occur in straight

crowns that are subcrowns of the two original crown and that can be reversed without

disrupting the crown properties. An example is shown in figure 4.5.

35

21

1

2H

Rest of Graph

Subcrown
Reversible

H

Rest of Graph

Subcrown
Reversible

II

Figure 4.5: Two crowns, (I1,H1) and (I2,H2) reverse a straight crown.

Theorem 8 If (I1,H1) and (I2,H2) are crowns of a graph G that are identified by

two different LP-solutions, then there is a crown (I,H) that contains all the vertices in

I1 ∪ I2 ∪ H1 ∪ H2 and where I1 ⊆ I and H1 ⊆ H.

Proof. For each vertex u in G, let X1
u designate the weight of u in an optimal LP-

solution that identifies (I1,H1) so that X1
u = 0 if and only if u ∈ I1, X1

u = 1 if and

only if u ∈ H1, and X1
u = 0.5 otherwise. We know such a solution exists by Lemma 2.

Similarly find X2
u for an optimal LP-solution that identifies (I2,H2).

We now create another optimal LP-solution by defining, for each vertex u, X∗
u =

X1
u
+X2

u

2 . Notice the total weight
∑

u X∗
u =

∑
u X1

u =
∑

u X2
u is still optimal. If {u, v} is

an edge in G, the X∗
u +X∗

v = X1
u
+X2

u

2 + X1
v
+X2

v

2 ≥ 1 since X1
u +X1

v ≥ 1 and X2
u +X2

v ≥ 1.

Thus X∗ defines an optimal LP-solution. By Lemma 2 we can modify these values so

that X∗
u = 0, 0.5, or 1 for all vertices u in G.

36

The only vertices in the original two crowns that do not have X∗ weights of 1 or 0

are those in I1∩H2 and I2∩H1. Let G′ be the graph that remains when all vertices with

X∗ weights of 0 or 1 are removed from the original graph. In this graph let u ∈ I1 ∩H2

and v be a neighbor of u. Since u ∈ I1 and H1 = N(I1) we know v ∈ H1. Thus

X1
v = 1 and since we know X∗

v = 0.5 we also know X2
v = 0. Therefore v ∈ I2 and

v ∈ H1 ∩ I2. Thus N(I1 ∩H2) ⊆ (I2 ∩H1) in graph G′. A similar argument shows that

N(I2 ∩ H1) ⊆ (I1 ∩ H2) in G′.

Finally, we show that (I1 ∩H2, I2∩H1) forms a straight crown that can be reversed.

Notice that if |I1 ∩H2| ≤ |I2 ∩H1| we would not increase the size of the LP-solution by

assigning weight 1 to the vertices in I1 ∩ H2 and 0 to the vertices in I2 ∩ H1. On the

other hand if |I2∩H1| ≤ |I1∩H2| then we would not increase the size of the LP-solution

by assigning weight 1 to the vertices in I2 ∩H1 and 0 to the vertices inI1∩H2. In either

case we have a new LP-solution that identifies (I1 ∩ H2, I2 ∩ H1) as a crown but X∗

does not. By Theorem 5, this implies that (I1 ∩ H2, I2 ∩ H1) is a straight crown. Since

N(I1 ∩H2) ⊆ (I2 ∩H1) and N(I2 ∩H1) ⊆ (I1 ∩H2) in G′ we know that this crown has

no neighbors. Thus it can be reversed without loss of generality.

We select the independent set of the straight crown to be I1 ∩ H2 and the cutset of

the straight crown to be I2∩H1 so that the weight agree with the crown (I1,H1). Notice

that all of the remaining vertices in the two original crowns were identified by the LP-

solution defined by X∗. Thus, by Theorem 7, we can union the crown identified by X∗

and the straight crown to obtain (I,H) where I = I1∪(I2−I1) and H = H1∪(H2−I1).

37

4.2 Finding All Crowns in Polynomial Time

We can now use the results we have just proven to produce a polynomial time algorithm

that will find all possible crowns in an arbitrary graph.

Theorem 9 There is a polynomial time algorithm for processing a graph G to produce

an induced subgraph G′ that has no crowns.

Proof. We present such a polynomial time algorithm.

Step 1: Perform LP-kernelization. By Theorem 5, this can be used to eliminate all

flared crowns by either removing the entire crown, or by removing enough

vertices so that all the crowns are straight. Let G1 = (V1, E1) be graph induced

by the set of vertices that remain in the kernel. Since these vertices were not

removed by LP-kernelization, we know that Xu = 0.5 for all u ∈ V1. We also

know that the total weight in the optimal LP-solution for G1 is 0.5|V1|.

Step 2: Pick a vertex w ∈ V1 and test it to see if it is in the independent set of some

crown by finding the optimal solution of the following LP-problem.

Assign a value Xu ≥ 0 to each vertex u ∈ V1 so that the following conditions

hold.

(1) Minimize
∑

u∈V1
Xu.

(2) Satisfy Xu + Xv ≥ 1 whenever uv ∈ E1.

(3) Xw = 0

Step 3: If the total weight is still 0.5|G1|, then this too is an optimal solution of the

38

original LP-problem and we have identified a straight crown. We remove the

straight crown from the graph in the usual manner producing an induced sub-

graph G2 = (V2, E2) where we know that Xu = 0.5 for all u ∈ V2 and the total

weight in the optimal LP-solution for G2 is 0.5|V2|. If the total weight is larger,

then we have not identified a crown and we let G2 = G1.

We repeatedly apply steps 2 and 3 until all vertices have been checked or eliminated,

producing the graph G′. Theorem 7 guarantees that removing a crown does not create

new crowns from vertices not previously in a crown. Theorem 8 guarantees that the

order in which crowns are identified does not significantly change the final result.

Thus we only need to check each vertex once and when this process is complete,

there can be no crowns and we will have identified all possible crowns in the graph.

The total run time of the LP-solution procedure is O(mn3/2) where m is the number of

edges and n is the number of vertices in G if the network flow approach is used. This

is a worst case scenario, in which the original graph has no crowns, and the process is

repeated n times, once for each vertex.

4.3 Crown Decomposition

The algorithm in Theorem 9 allows us to find a single large crown that breaks the

graph into a crown and a subgraph without any crowns. We state this in the form of

the following corollary.

39

Corollary 1 The union of the crowns found in the algorithm in Theorem 9 forms a

single large crown and is, up to reversals of straight crowns, unique.

Proof. Theorems 7 and 8.

This is equivalent to the following corollary that allows us to decompose every graph

into a large crown and a subgraph that has no crowns.

Corollary 2 Every graph G can be decomposed in to two subgraphs, C and K where C

is a crown and K has no crowns.

Decomposing graphs into crowns and subgraphs that are crown free is not only

useful in reducing the kernel size of the vertex cover problem. It may also be helpful in

kernelizing a variety of packing problems, the n − k coloring problem and many other

NP-hard problems [11]. Because the notion of crown decompositions is so new, there

may well be other applications that have yet to surface.

40

Chapter 5

Conclusion

The results of this paper are both theoretical and practical. We have introduced

the crown structure and presented two methods for identifying these structures. One

method, LP-kernelization, was already in use and the other, crown reduction, is a more

recent innovation. Once either method has been implemented and a crown structure

identified, the structure can be used to reduce the size of instances of the vertex cover

problem. Further, we have produced an algorithm for decomposing a graph into a single

crown and a crown free subgraph.

5.1 Comparison of LP and Crown Kernelization

Since both LP-kernelization and Crown decomposition can be used to identify crown

structures, it is helpful to compare their strengths and weaknesses. LP-kernelization

provides a thorough but computationally expensive investigation of the graph, identify-

41

ing or straightening all flared crowns. This produces a kernel size that is O(k2) where

k is the size of the vertex cover. Crown reduction on the other hand is a much less

expensive method whose results are somewhat less predictable. A kernel size that is

O(k3) is guaranteed on a single iteration. Unlike LP-kernelization, crown reduction may

be repeatedly applied. In general it would seem to be good practice to seek to kernelize

a problem using one or more crown reductions. This is particularly true when a rapid

identification of a “no” instance is possible. Afterward, depending on the size of the

kernel required and the results of the crown reductions, a decision could be made on

the benefits of attempting LP-kernelization.

5.2 Applications and Areas for Further Study

Finding solutions of the clique problem is of great interest in computational biology.

The kernelization of vertex cover via the identification of crown structures is a useful

tool in reducing the computational expense of solving these problems. In addition, there

are variations on the crown structure that could be investigated, such as double crowns,

and crowns with particular subgraph (such as K3 or P2) in place of the vertices of the

independent set. Extensions of these ideas may be useful in kernelizing other NP-hard

problems such as set cover and hitting set. Finally, decomposing graphs into crowns

and subgraphs that are crown free may be helpful in kernelizing a variety of packing

problems [11]. Because the notion of crown decompositions is so new, there may well

be other applications that have yet to surface.

42

Bibliography

43

Bibliography

[1] F. N. Abu-Khzam. Topics in Graph Algorithms: Structural Results and Algorithmic

Techniques, with Applications. PhD thesis, Dept. of Computer Science, University

of Tennessee, 2003.

[2] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters, and

C. T. Symons. Kernelization algorithms for the vertex cover problem: Theory and

experiments. In Proceedings, Workshop on Algorithm Engineering and Experiments

(ALENEX), 2004.

[3] F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons. Scalable par-

allel algorithms for FPT problems. Technical Report UT-CS-04-524, Department

of Computer Science, University of Tennessee, 2004.

[4] F. N. Abu-Khzam, M. A. Langston, and W. H. Suters. Fast, effective vertex cover

kernelization: A tale of two algorithms. In Proceedings, ACS/IEEE International

Conference on Computer Systems and Applications (AICCSA), 2005.

44

[5] D. Bienstock and M. A. Langston. Algorithmic implications of the graph minor

theorem. In Handbook of Operations Research and Management Science: Network

Models, pages 481–502. North-Holland, 1995.

[6] J. F. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal on Com-

puting, 22:560–572, 1993.

[7] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon. Solving

large FPT problems on coarse grained parallel machines. Journal of Computer and

System Sciences, 67:691–706, 2003.

[8] J. Chen, I. Kanj, and W. Jia. Vertex cover: further observations and further

improvements. Journal of Algorithms, 41:280–301, 2001.

[9] E. A. Dinic. Algorithm for solution of a problem of maximum flows in networks

with power estimation. Soviet Math. Dokl., 11:1277–1280, 1970.

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,

1999.

[11] M. R. Fellows. personal correspondence.

[12] M. R. Fellows. Blow-ups, win/wins, and crown rules: Some new directions in FPT.

Lecture Notes in Computer Science, 2880:1–12, 2003.

[13] M. R. Fellows and M. A. Langston. Nonconstructive tools for proving polynomial-

time decidability. Journal of the ACM, 35:727–739, 1988.

45

[14] D. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS, 1997.

[15] S. Khuller. The vertex cover problem. ACM SIGACT News, 33:31–33, June 2002.

[16] G.L. Nemhauser and L. E. Trotter. Vertex packings: Structural properties and

algorithms. Mathematical Programming, 8:232–248, 1975.

[17] N. Robertson and P. D. Seymour. Graph minors XXIII, the disjoint paths problem.

Journal of Combinatorial Theory, Series B, pages 65–110, 1995.

46

Appendix

47

Instructions

The following code implements the crown reduction algorithm. It is broken into two

parts. The first, crown1.c, takes an input graph and an integer k as arguments. The

input file must be in DIMACS-A format. It finds a maximal matching of the graph

and produces a network flow problem that can be solved to find the needed maximum

matching. There are several software packages that can be used to solve the network

flow problem. The output of crown1.c is formatted for the Dinic package and the output

file is named “dinic.in”. The second program, crown2.c, completes the crown reduction.

It takes an integer k, the same input file as crown1.c and the names of two output

files as arguments. The first output file will contain the resulting cover. The other will

contain a record of the reduction performed in order to allow for the later reconstruction

of a vertex cover. This program also requires the output file from the Dinic package,

“dinic.out.”

48

Crown1.c

/* crown1--the initial step in a crown reduction algorithm */

/* This program takes an integer k as an argument and attempts */

/* to find a crown that can be used to find a vertex cover of */

/* size less than or equal to k. It also takes the name of a */

/* DIMACS-A (DIMACS without the characters) file that describes */

/* the graph as an argument. The output is a related network */

/* flow problem in strict DIMACS format that can be solved to */

/* find a needed maximum matching. This output is stored in */

/* dinic.in. The maximum matching can be found using */

/* the program dinic. Once this has been done the remaining */

/* parts of the crown algorithm are performed in program */

/* crown2. */

/* Henry Suters, June 16, 2003 */

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

int n, k, edges, i, j, u, v, outedges, matchcount;

int **graph;

int *degree, *matched;

FILE *in, *out, *outsiders, *tmp;

/* get and check arguments */

if (argc < 3) {

fprintf(stderr, "Usage: %s k input_file \n", *argv);

exit(1);

}

k = atoi(argv[1]);

49

in = fopen(argv[2], "r");

if (in == NULL) {

perror("Unable to open file for input\n");

exit(1);

}

out = fopen("dinic.in", "w");

if (out == NULL) {

perror("Unable to open file for output\n");

exit(1);

}

outsiders = fopen("crown.outside", "w");

if (outsiders == NULL) {

perror("Unable to open file for output\n");

exit(1);

}

/* allocate data structures */

fscanf(in, "%d %d\n", &n, &edges);

graph = (int **) malloc(n * sizeof(int *));

if (graph == NULL){

perror("Out of memory\n");

exit(1);

}

for (i = 0; i < n; i++){

graph[i] = (int *) calloc(n, sizeof(int));

if (graph[i] == NULL){

perror("Out of memory\n");

exit(1);

}

}

degree = (int *) calloc(n, sizeof(int));

if (degree == NULL){

perror("Out of memory\n");

exit(1);

}

matched = (int *) calloc(n, sizeof(int));

50

if (matched == NULL){

perror("Out of memory\n");

exit(1);

}

/* read in graph data and find maximal matching */

matchcount = 0;

for (i = 0; i < edges; i++){

fscanf(in, "%d %d\n", &u, &v);

graph[u][degree[u]] = v;

graph[v][degree[v]] = u;

degree[u]++;

degree[v]++;

if(matched[u] == 0 && matched[v] == 0){

matched[u] = 1;

matched[v] = 1;

matchcount++;

}

}

fclose(in);

/* is there a vertex cover of size <= k? */

if (matchcount <= k){

/* determine the number of edges in subgraph defined by outsiders */

/* and their neighbors. */

outedges = 0;

for(i = 0; i < n; i++)

if (matched[i] == 0)

outedges += degree[i];

/* print problem line of DIMACS format */

fprintf(out, "p max %d %d\n", n + 2, outedges + n);

fprintf(out, "n %d s\n", n+1);

fprintf(out, "n %d t\n", n+2);

/* print edge lines of DIMACS format */

/* note: cardmp numbers verticies 1 through n */

51

for(i = 0; i < n; i++)

if(matched[i] == 0){

fprintf(outsiders, "%d ", i);

fprintf(out, "a %d %d 1\n", n+1, i+1);

for(j = 0; j < degree[i]; j++)

fprintf(out, "a %d %d 1\n", i+1, graph[i][j]+1);

}

else

fprintf(out, "a %d %d 1\n", i+1, n+2);

fprintf(outsiders, "\n");

tmp = fopen("tmp", "w");

if (tmp == NULL) {

perror("Unable to open file for input\n");

exit(1);

}

fprintf(tmp, "%d\n%d\n", n, k);

fclose(tmp);

}

else {

printf("There is no vertex cover of size %d\n", k);

tmp = fopen("tmp", "w");

if (tmp == NULL) {

perror("Unable to open file for input\n");

exit(1);

}

fprintf(tmp, "%d\n%d\n", -1, 0);

fclose(tmp);

}

fclose(outsiders);

fclose(out);

/* release memory */

for (i = 0; i < n; i++)

52

free(graph[i]);

free(graph);

free(degree);

free(matched);

return 0;

}

53

Crown2.c

/* crown2--the final step in a crown reduction algorithm */

/* This program takes an integer k as an argument and attempts */

/* to find a crown that can be used to find a vertex cover of */

/* size less than or equal to k. It also takes the names of */

/* two files as arguments. The first is the name of a DIMACS-A */

/* (DIMACS without the characters) file that describes the */

/* graph. This should be the same file used in crown1. The */

/* second is the name of the output file. The output is the */

/* remainder of the graph to be searched for a vertex cover in */

/* DIMACS-A format. The program also requires an input file, */

/* dinic.out, that contains the DIMACS file that defines is */

/* solution to a network flow problem used to find a */

/* maximum matching on an appropriate subgraph. This file can */

/* be generated using crown1 and dinic. The finally, the */

/* program produces a recover file, crown.recover, that can be */

/* used to recover the vertex cover once it has been found. */

/* Henry Suters, June 10, 2003 */

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

int n, k, edges, i, j, u, v, done;

int newedges, transcount, junk2, matchsize, num_neighbors;

int **graph;

int *match, *I, *H, *translate, *Outsider, *Neighbor;

char junk;

FILE *in, *out, *matchin, *recover, *outsiders, *tmp;

/* get and check arguments */

if (argc < 5) {

54

fprintf(stderr, "Usage: %s k input_file output_file cover_file\n", *argv);

exit(1);

}

k = atoi(argv[1]);

in = fopen(argv[2], "r");

if (in == NULL) {

perror("Unable to open file for input\n");

exit(1);

}

matchin = fopen("dinic.out", "r");

if (matchin == NULL) {

perror("Unable to open file for input\n");

exit(1);

}

outsiders = fopen("crown.outside", "r");

if (outsiders == NULL) {

perror("Unable to open file for input\n");

exit(1);

}

out = fopen(argv[3], "w");

if (out == NULL) {

perror("Unable to open file for output\n");

exit(1);

}

recover = fopen(argv[4], "w");

if (recover == NULL) {

perror("Unable to open file for output\n");

exit(1);

}

/* allocate data structures */

fscanf(in, "%d %d\n", &n, &edges);

graph = (int **) malloc(n * sizeof(int *));

if (graph == NULL){

55

perror("Out of memory\n");

exit(1);

}

for (i = 0; i < n; i++){

graph[i] = (int *) calloc(n, sizeof(int));

if (graph[i] == NULL){

perror("Out of memory\n");

exit(1);

}

}

match = (int *) calloc(n, sizeof(int));

if (match == NULL){

perror("Out of memory\n");

exit(1);

}

translate = (int *) calloc(n, sizeof(int));

if (translate == NULL){

perror("Out of memory\n");

exit(1);

}

I = (int *) calloc(n, sizeof(int));

if (I == NULL){

perror("Out of memory\n");

exit(1);

}

H = (int *) calloc(n, sizeof(int));

if (H == NULL){

perror("Out of memory\n");

exit(1);

}

Outsider = (int *) calloc(n, sizeof(int));

if (H == NULL){

perror("Out of memory\n");

exit(1);

}

Neighbor = (int *) calloc(n, sizeof(int));

56

if (H == NULL){

perror("Out of memory\n");

exit(1);

}

/* read in graph data */

for (i = 0; i < edges; i++){

fscanf(in, "%d %d\n", &u, &v);

graph[u][v] = 1;

graph[v][u] = 1;

}

fclose(in);

/* read in maximum matching data */

/* note: dinic numbers verticies 1 through n */

fscanf(matchin, "%c %d\n", &junk, &i);

for(i = 0; i < n; i++)

match[i] = -1;

matchsize = 0;

while(!feof(matchin)){

fscanf(matchin, "%c %d %d %d\n", &junk, &u, &v, &junk2);

if(u != n+1 && v != n+2){

matchsize++;

match[v-1] = u-1;

match[u-1] = v-1;

}

}

fclose(matchin);

if (matchsize <= k){

/* read in outsiders and find unmatched outsiders*/

if (matchsize > 0){

while (!feof(outsiders)){

fscanf(outsiders, "%d", &i);

57

Outsider[i] = 1;

for (j = 0; j < n; j++)

if (graph[i][j] == 1)

Neighbor[j] = 1;

if (match[i] == -1)

I[i] = 1;

}

}

fclose(outsiders);

/* count neighbors */

num_neighbors = 0;

for (i = 0; i < n; i++)

num_neighbors += Neighbor[i];

/* determine crown */

if (num_neighbors == matchsize){

printf("Simple Crown\n");

/* we already have a crown */

free(I);

free(H);

I = Outsider;

H = Neighbor;

}

else{

printf("Complex Crown\n");

/* we need to isolate a crown */

free(Neighbor);

free(Outsider);

done = 0;

while(done == 0){

done = 1;

for(i = 0; i < n; i++)

if(I[i] == 1){

for(j = 0; j < n; j++)

if(graph[i][j] == 1 && H[j] == 0){

done = 0;

H[j] = 1;

58

if (I[j] == 1) printf("error %d\n", j);

}

}

for(i = 0; i < n; i++)

if (H[i] == 1)

I[match[i]] = 1;

}

}

/* determine vertices in cover, not in cover, or yet to be determined */

transcount = 0;

newedges = 0;

fprintf(recover, "%d\n", n);

for(i = 0; i < n; i++){

/* if a vertex is in H then it is in the vertex cover */

if(H[i] == 1){

fprintf(recover, "%d ", 1);

k--;

}

/* if a vertex is in I then it is not in the vertex cover */

if(I[i] == 1)

fprintf(recover, "%d ", -1);

/* if a vertex is not in either H or I then its status is undetermined */

/* count the number of undetermined verticies and uncovered edges */

/* determine the compacted numbering of vertices in this subgraph */

if (H[i] == 0 && I[i] == 0){

fprintf(recover, "%d ", 0);

translate[i] = transcount;

transcount++;

for(j = i + 1; j < n; j++)

if(graph[i][j] == 1 && H[j] == 0 && I[j] == 0)

newedges++;

}

}

59

fprintf(recover, "\n");

fclose(recover);

/* print out the new graph */

fprintf(out, "%d %d\n", transcount, newedges);

for(i = 0; i < n; i++)

for(j = i + 1; j < n; j++)

if (graph[i][j] == 1 && H[i] == 0 && I[i] == 0 && H[j] == 0 && I[j] == 0)

fprintf(out, "%d %d\n", translate[i], translate[j]);

fclose(out);

}

else{

printf("There is no vertex cover of size %d\n", k);

tmp = fopen("tmp", "w");

if (tmp == NULL) {

perror("Unable to open file for input\n");

exit(1);

}

fprintf(tmp, "%d\n%d\n", -1, 0);

fclose(tmp);

}

/* release memory */

for (i = 0; i < n; i++)

free(graph[i]);

free(graph);

free(I);

free(H);

free(match);

free(translate);

printf("The new cover size is %d out of %d verticies\n", k, transcount);

tmp = fopen("tmp", "w");

if (tmp == NULL) {

perror("Unable to open file for input\n");

60

exit(1);

}

fprintf(tmp, "%d\n%d\n", transcount, k);

fclose(tmp);

return 0;

}

61

Vita

William Henry Suters, III was born in Berea, Kentucky, on January 28, 1967. He

attended the community school in Berea and graduated from Berea College in 1989 with

a BA with a double major in mathematics and physics. He then attended graduate

school in mathematics at Duke University where he earned an M.A. in 1991 and a

Ph.D. in 1994. After receiving his doctorate, he obtained a faculty position at Carson-

Newman College in Jefferson City, Tennessee, where he currently teaches mathematics

and computer science courses and holds the rank of associate professor. In 2002 he

began pursuing an M.S. degree in computer science at the University of Tennessee.

62

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2004

	Crown Reductions and Decompositions: Theoretical Results and Practical Methods
	William Henry Suters, III
	Recommended Citation

	thesis.dvi

