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Abstract 
The capability to resolve the contributions from spectroscopically overlapping 

fluorophores has enabled significant breakthroughs in cellular imaging. However, 

commercial microscopes for this purpose use analog light detection with least squares 

curve-fitting analysis and improvements in sensitivity are needed. To this end, a 

microscope has been constructed with high throughput and single-photon detection 

capability.  The fluorescence is separated through use of a prism spectrometer or a 

series of dichroic mirrors into four spectral bands and detected using four single-photon 

avalanche diode (SPAD) detectors, which provide high-quantum efficiency in the red 

spectral region.  The detectors are connected to a time-correlated single photon 

counting module to provide sub-nanosecond temporal resolution for distinguishing 

fluorophores with different fluorescence lifetimes. Maximum-likelihood (ML) methods 

have been developed for analyzing the temporally and spectrally resolved photon count 

data from the SPADs to find the contributions from different fluorescent species and 

from background. Commercially available SPADs exhibit a count-rate dependent time 

shift in the impulse response function, and hence the instrument incorporates custom 

modified SPADs with improved timing stability.  Nevertheless, there is still some time 

shift, and hence the ML-analysis has been extended to include this as an adjustable 

parameter for each individual SPAD. Monte Carlo simulations have also been 

developed to enable studies of the number of photons needed to resolve specific 

fluorophores.
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Chapter I 

Introduction 

 

Multi-dimensional imaging, in which spectroscopic information is collected at each pixel 

of an image, is a developing tool that has already enabled breakthrough results in 

biophysical research [1].  This thesis presents research on improving the sensitivity of 

temporally and spectrally resolved imaging for applications that require resolution of 

signal contributions from fluorescent species with overlapping spectra.  One specific 

area in which this is important is when imaging intrinsically fluorescent proteins (IFPs).  

These are now widely used as noninvasive site-specific markers in cellular biophysics 

experiments.  In order to get more information from experiments, many applications 

require the imaging of multiple IFPs.  However, in high-sensitivity cellular imaging, clear 

separation of the variants of IFPs and auto-fluorescence remains a challenge. 

 

In order to achieve the goal of multi-dimensional imaging with high sensitivity, new 

instrumentation and data analysis methods must be developed.  To this end, the first 

key undertaking of this thesis is the setup of a confocal microscope with single-molecule 

detection sensitivity.  It employs a high throughput spectrometer and four single-photon 

avalanche diode (SPAD) detectors, which give high quantum efficiency in the red region 

of the spectrum and which have been modified to provide stable sub-nanosecond 

timing. The second key undertaking is the development of maximum-likelihood 
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techniques for resolving (i.e., linearly unmixing) the signal contributions from different 

species in the sample in experiments where there are low numbers of photons in a 

spectroscopic channel. 

 

In this thesis, Chapter 2 presents a brief background of the techniques and equipment.  

In Chapter 3, a more in-depth account is given on how linear unmixing is accomplished 

and why specific methods were used.  In Chapter 4, the setup of the experiment is 

brought into focus to give insight into important aspects and issues to avoid.  Also in 

Chapter 4, data acquisition will be examined, with emphasis on file types and how to 

process their embedded information.  With these initial steps of the experiment laid out, 

results are discussed in Chapter 5 as well as their meaning and importance.  Finally, 

concluding remarks are given in Chapter 6 along with suggestions for where the 

experiments could progress in the future. 
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Chapter II 

Background 

 

As stated in the introduction, fluorescence spectroscopy has become an essential tool in 

cellular and molecular imaging for biological and biophysical research.  As interest 

increases about the inner working of cellular processes, the development and 

application of fluorescent protein markers has also risen [2,3].  Their application 

includes the possibility to view several cellular processes at once, each specified with its 

own marker.  Although this idea promises great bounds for detailed information, it is 

hindered by the issue of crosstalk.  The emission spectra of most fluorophores are 

shaped with a steep increase towards the peak, corresponding to the onset at shorter 

wavelengths, followed by a long emission tail [4].  When fluorophores have spectra in 

similar wavelength regions, this tail generally overlaps with the spectra of other 

fluorophores and leads to crosstalk.  This crosstalk makes multispectral imaging difficult 

as it is nearly impossibly to see which signal comes from which fluorophore without 

further data processing.  In order to deal with this issue, the idea of linear unmixing 

arose, allowing researchers to measure and calibrate the crosstalk and then 

mathematically estimate the signal contributions from each of the fluorophores in the 

sample. 
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In this chapter, commercial systems are reviewed to give insight on the current state of 

technology.  The purpose of this research is then restated, with an emphasis on how to 

improve what is currently available.  From there, background information on the 

individual parts of the experiment is presented, together with explanation of why each is 

chosen.  These topics include SPADs, confocal microscopy, time-correlated single 

photon counting (TCSPC) modules, prism spectroscopy and interference filters, and 

maximum-likelihood estimation (MLE). 

 

2.1 Commercial instrumentation 

The main microscope systems currently available for fluorescence spectroscopy when 

there are fluorophores with overlapping spectra are the Zeiss META [5] and the Leica 

TCS series [6].  These systems have become very popular in the field, especially in the 

study of Förster resonance energy transfer (FRET) [7].  Due to their ease of use and 

integrated software, users can digitally set parameters for their experiments as the 

systems adjust wavelengths, take images, and analyze and plot data.  The Zeiss META 

takes advantage of nondescanned detectors to “fingerprint”, the excitation spectra.  This 

means that data from known samples are scanned and stored (as spectral fingerprints) 

to be compared later to unknown experimental samples.  By applying this and the 

“excitation lambda stacks” created in the experiment, Dickinson et al. were able to 

remove autofluorescence and create crosstalk-free images for dyes with closely 

overlapping emission spectra [8].  Excitation lambda stacks are generated by taking a 
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large number of images while varying the excitation wavelength. Nondescanned 

detection means that the beam of collected fluorescence does not return through the 

mirrors that raster scan the excitation beam, and this causes it to scan over a small area 

across the face of the detector. Hence detectors such as photomultipliers with a 

sufficiently large surface area must be used, rather than high quantum efficiency SPAD 

detectors, which have very small active areas. 

 

2.2 Current goals 

The systems described in Section 2.1, though very useful and implemented in 

numerous experimental setups, have their limitations and drawbacks.  One of these is 

that they cannot successfully resolve a mixture of fluorophores for low photon counts. 

As the counts get fewer and fewer, to the range of only 100 or less in any spectral 

channel, these systems fail (see discussion in Section 3.2).  The first goal of this thesis 

is to determine how to take the concept of linear unmixing and apply it with ML analysis 

to cases when few counts are collected in any single spectral channel. 

 

The second goal is to incorporate the capability for resolving spectrally similar 

fluorophores by also collecting fluorescence lifetime data, to enable unmixing of 

components with different fluorescence lifetimes. This is achieved by applying pulsed 

laser excitation and time-resolved photon detection.  The concept of using temporal 

resolution is used in fluorescence lifetime imaging microscopy (FLIM), and this has been 
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combined with resolution of the emission spectrum (spectral FLIM or SLIM).  Becker et 

al. have explored this multispectral FLIM idea in a 2007 paper [9].   

 

Because of the potential sensitivity involved with fluorescence detection, it is desirable 

to collect the maximum amount of photons, with as little going to waste as possible.  

The general idea and discussion of importance can be found in reference [1].  Thus the 

third goal of this work is to build a microscope with high collection efficiency of 

fluorescence, with high optical throughput, and which incorporates SPAD detectors with 

high quantum efficiency (QE). 

 

2.3 Single-photon avalanche diode detectors 

SPAD detectors were created to measure single photons in experiments, but with better 

efficiency than photomultipliers.  Avalanche photodiodes (APDs) typically have a large 

active area and are prone to thermally generated dark counts and hence they are 

suitable for use in applications where the light level is considerably higher.  

Microchannel plate photomultipliers (MCP-PMT), another possibility, are able to detect 

single photons, but have a rather low quantum efficiency of only 5–8%.  Because of 

these reasons, they were not considered for this experiment.  A brief description of what 

a SPAD is can be found in reference [10]: 

 



 

7 

“The SPAD is essentially a p-n junction reverse biased above the 

breakdown voltage such that the junction electric field is sufficiently high to 

sustain the flow of an avalanche current triggered by a photogenerated 

carrier.” 

 

Presently, single photon counting modules (SPCMs) containing a SPAD are 

commercially available from several vendors, but only the SPCM from Perkin Elmer 

provides high quantum efficiency (~65%) at the red wavelengths typically used in 

fluorescence microscopy. Unfortunately, the electronics within this module suffer from a 

count-rate dependent time-walk due to a slow pick-up in the active quenching circuit 

(AQC).  The function of the AQC is “to sense the rise of the avalanche pulse and react 

back on the SPAD, forcing, with a controlled bias-voltage source, the quenching and 

reset transitions in short times” [11].  The count-rate dependent time walk can be seen 

in Figure 1 and the effects of this time shift on an attempt to unmix a temporal spectrum 

can be seen in Figure 2. The optimized linear combination of fingerprint spectra does 

not match the spectral data from the mixture, as seen in the plot of the residues, 

because the average photon count rate during collection of the spectrum from the 

mixture differs from those of the fingerprint spectra. 

 

In order to remove this effect from the detectors, a modification is necessary.  Micro 

Photon Devices (MPD), a company based in Italy and established by Professor Sergio 
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Cova at the Poytechnico di Milano, produces SPAD photon counting modules with 

stable timing, albeit with lower quantum efficiency. Their modules incorporate the 

patented active quenching circuit shown in Figure 3, which alleviates the time-walk 

issue.  In short, a pick-up capacitor is placed in the circuitry to allow for a faster output 

pulse.  The Perkin Elmer SPCM modules were sent to MPD so that the high-QE SPADs 

from these modules could be incorporated into an active quenching circuit made by 

MPD. The timing jitter results measured by MPD are seen in Figure 4 [12]. 

 

As seen in Figure 3, the pick-up capacitor leads to a NIM pulse output, although a TTL 

pulse is also available. By comparison, the Perkin Elmer SPCM modules only provide a 

TTL pulse output. In order to achieve the fastest possible timing in the experiment, the 

NIM output must be used.  Unfortunately, the Picoquant TimeHarp 200 available in our 

lab for TCSPC only accepts TTL pulses, and when the Perkin Elmer SPAD with MPD 

AQC is used with TTL output pulses, a count-rate dependent time walk is still present.  

To address this issue, efforts are being made to replace the Time Harp 200 with the 

Picoquant HydraHarp, which is a later model unit for TCSPC, or to add a circuit to 

convert the NIM pulses to TTL pulses. In this thesis research, the remaining count-rate 

dependant time-walk is addressed by including an adjustable time-shift in the fingerprint 

spectra when analyzing the spectra of mixtures, as discussed in Section 3.3.
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Figure 2: Mixture vs fit from unmixing.  The time walk can be seen in the offset from the 
fit and data curve.  It is more distinct when looking at the residue. 
 

Figure 1: Measured timing jitter from unmodified Perkin-Elmer SPCM-AQR-14 exhibiting 
a time shift to later times with increasing mean count rate [12] 
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Figure 3: Schematic of modified SPAD detector [12] 
 

Figure 4: Time jitter measured in modified SPAD detector [12] 
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2.4 Confocal microscopy 

As the experiment calls for use of a small sample volume and, more importantly, the use 

of only photons generated by the fluorescence of the sample, confocal microscopy is 

the most suitable technique available. An example of a confocal setup can be seen in 

Figure 5. A pinhole placed within the microscope, after the dichroic mirror and tube lens, 

makes it possible to eliminate out-of-focus light from the detector.  This decreases any 

chance for stray light to enter into the system and skew the quality of the acquired data.  

As shown in Figure 5, in order for photons to reach the SPAD, they must originate from 

the confocal plane to be focused by the objective and tube lens through the pinhole.  

Any rays that are focused elsewhere will be rejected by the system as their paths are 

skewed away from the pinhole. 

 

For imaging, acquisition rates are limited by scanning speeds.  A good review of the 

different systems and their advantages/disadvantages can be found in reference [13].  

Along with an introduction to different techniques, the reference also advises on certain 

aspects to keep in mind to achieve better results when doing experiments.  These 

include, among others, the use of as few optical elements as possible, removing 

unwanted wavelengths with filters, and the use of high numerical aperture objectives to 

provide the greatest possible collection of the light.   
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Figure 5: Schematic for a confocal setup 
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2.5 Time-correlated single photon counting 

In order to unmix or resolve fluorophores by use of lifetime analysis, it is necessary to 

have temporal resolution of detected photons.  Two different experimental techniques 

for fluorescence lifetime measurements are possible: time-domain and frequency-

domain.  The frequency-domain technique is reported to exhibit an error 1.5–2 times 

larger than that of time-domain [15], which is still acceptable for many applications.  At 

larger photon fluxes, time-domain techniques are limited by pile-up, which is a form of 

electronic saturation, whereas frequency-domain techniques are only limited by the 

saturation of the detector itself [15].  As there is no need for high photon fluxes, and 

therefore no advantage to using frequency-domain techniques, the time-domain 

technique is used here in the form of TCSPC. This can then be applied to techniques 

such as FLIM or FRET [16].  The ability to tag each photon with the time delay since the 

preceding laser excitation pulse on a sub-nanosecond scale allows the sampleʼs 

fluorescence lifetime to be found.  Also, with the proper algorithms and equations, 

techniques can be formed that are much simpler in a visual sense to analyze the data.  

In particular, this can be seen in the AB-plots shown by Hanley to analyze FRET 

processes in the frequency domain [17]. 

 

For collection of signals from different emission wavelength bands, the signals from the 

four SPADs are combined through a router, which records which SPAD detects each 

photon.  It is then possible to take the separate wavelength bands and view the time-
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resolved contributions from each simultaneously, thereby providing a data set from 

which the fluorophores can be linearly unmixed, as discussed in Section 2.7.  The 

technique of recording a time and spectrally resolved data set using TCSPC (but without 

linear unmixing of contributions from different species) is reported in reference [14]. 

 

2.6 Prism spectroscopy and interference filters 

A spectrally resolved image shows at each pixel of the image the intensity for each band 

of emission wavelengths.  For acquiring the data, many techniques can be used, 

including wavelength scan, spatial scan, time scan, and various other methods.  In the 

wavelength-scan method, a whole image is measured one wavelength at a time.  In a 

spatial scan method, a dispersion prism or diffraction grating is placed in the setup to 

separate the emission spectra, which is collected all at once.  For collection of emission 

spectra in Fourier Transform spectroscopy, a time scan method is used, in which the 

image is measured after passing through an interferometer.  A mathematical 

transformation, such as a Fourier transform, is then applied to the data to see the 

spectrum at each pixel [18].  One group has used the wavelength-scan technique by 

introducing a liquid crystal tunable filter.  By establishing a spectral library, they were 

able to use the spectral information gathered to distinguish between closely related IFPs 

[19].  Due to the low speed of acquisition afforded by single-photon counting and the 

lack of added mathematical processes, a spatial scan method was chosen for this 

experiment. The microscope includes a 3-D piezo-stage for scanning the sample 
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position with respect to the confocal volume. However, for the purposes of studying 

linear unmixing of spectra with low numbers of collected photons, the spatial scanning is 

not used, and the collected data corresponds to that which would be acquired at a 

single pixel of an image. 

 

Two experimental configurations are studied in the research for this thesis. In the first 

experimental setup, a Brewster prism is used to disperse the fluorescence.  The prism 

is adjusted so that the incoming beam hits the prism face at Brewsterʼs angle 

€ 

θB = arctan n2 n1( )( ) , to ensure that the p-polarized reflection from the prism, according to 

Fresnelʼs equations, will go to zero.  If the polarization of the incoming beam is oriented 

to be p-polarized, the loss of signal through the prism will thus be minimized. 

 

The second experimental setup uses dichroic mirrors, which are longpass filters 

designed to reflect wavelengths below a certain design value.  They consist of 

alternating layers of optical coatings on a glass substrate, which selectively reinforce the 

reflection of specified wavelengths of light while transmitting others.  The thickness of 

the layers enables one to control the passband of the filter, hence they are available to 

reflect selected bands, or to simply act as longpass or shortpass filters. 
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2.7 Maximum-likelihood estimation 

The unmixing of spectral data becomes important when the species involved spectrally 

overlap.  The idea of linear unmixing has been reported earlier in remote sensing, where 

multiband images taken by satellites contain different components within the same 

scene.  As the image information is distributed across several or all of the channels, 

methods have been derived to interpret the image as a whole, with linear unmixing 

being one of the ideas constructed [2].  As with any mathematical problem, one needs 

at least as many equations as there are variables in order to find a unique solution.  In 

this case, the spectroscopic channels become the analog to equations as the 

contributions of each of the species in the mixture become the variables. 

 

Two methods are primarily used for linear unmixing.  These are nonlinear weighted 

least squares (LS) estimation and ML estimation.  ML estimation is a rigorous method 

for fitting data in which it is assumed that a Poissonian distribution of photon counts 

occurs in each spectroscopic channel.  Each variable has a set of possibilities that the 

algorithm iterates through, generating a potential fit for each possibility.  The parameters 

that give the most probable fit to the given data are thus found.  It is based on the 

concept of maximizing a likelihood function.   

 

LS is generally the more popular estimation method for unmixing This form of analysis 

makes an implicit assumption that the statistical errors in the data exhibit a Gaussian 
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distribution. Weights inversely proportional to the Gaussian variance at each point may 

be applied. This assumption of Gaussian distributed errors is generally valid for analog 

detection of light. However, the LS method has no basis of constructing confidence 

intervals.  MLE, on the other hand, can do this, as well as provide the following 

desirable properties: 

 

“sufficiency (complete information about the parameter of interest 

contained in its MLE estimator); consistency (true parameter value that 

generated the data recovered asymptotically, i.e. for data of sufficiently 

large samples); efficiency (lowest-possible variance of parameter 

estimates achieved asymptotically); and parameterization invariance 

(same MLE solution obtained independent of the parameterization used).” 

[20] 

 

Maus et al. did a study comparing MLE and nonlinear weighted LS, to see which 

performed better when measuring the fluorescence lifetimes of single molecules.  A total 

of 71 decay profiles were analyzed, ranging from 2500–60000 total counts in each.  

They found that the fit quality parameters of nonlinear LS are slightly below 1, indicating 

that there is improper weighting in the method.  They also notice that the MLE method 

estimates lifetimes to be 5% larger than LS, resulting from a more appropriate weighting 

and fitting of the decay channel region with only a small number of counts in the MLE 
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case.  As the total counts increase, the two methods begin to converge.  They conclude 

that the “superior performance of MLE over LS in analyzing low signal-to-noise 

fluorescence decays as found experimentally here is not only important for single-

molecule spectroscopy but for all other low signal applications of time-resolved 

fluorescence spectroscopy.” [21] 

 

Other methods have been attempted besides these two.  One, based on the classical 

least square estimation, involves using neighboring pixels in a matrix form to find the 

information embedded in the pixel of interest.  It is used for the purpose of remote 

sensing [22]. 

 

In related work, Enderlein et al. developed MLE methods for their work in 1996 to 

distinguish different types of molecules at the single-molecule level based on their 

fluorescence decay measurements.  As the time-resolved fluorescence measurements 

for Rhodamine 6G (R6G) and tetramethylrhodamine isothiocyanate (TRITC) molecules 

were analyzed, they became the first group to report single-molecule identification by 

fluorescence decay in a mixture.  By first taking pure-sample measurements of both 

R6G and TRITC, then making a mixture of the two dyes, they identified and counted 

single molecules of each species within the mixture to find the expected ratio of 

molecular species in the mixture. They found the following: 
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“We demonstrated the efficiency of the ML estimator for identifying single 

molecules using TCSPC measurements.  For the small numbers of 

processed bursts, the comparison with theoretical predictions is 

satisfactory.  By improving the photon detection efficiency in SMD 

experiments, it should be possible to decrease significantly the error rate 

for single molecule identification.” [23] 

 

Some groups, such as Hoppe et al. [24], have combined several techniques in an 

attempt to increase accuracy in their linear resolution.  In their work on three-

dimensional FRET microscopy reconstruction, they have included ML estimation by 

entropy maximization, LS minimization by steepest and conjugate gradient descents, 

the iterative constrained Tikhonov-Miller algorithm, and conjugate gradient minimization 

of maximum a posteriori functionals.  Although computationally rigorous, it yields superb 

results when applied properly [24]. 
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Chapter III 

Data analysis methods 

 

In this chapter, a discussion is made on how data from an experiment is prepared and 

analyzed.  The mathematics behind unmixing is explained in depth.  MLE methods, 

which were briefly introduced in Section 2.7, are investigated further.   

 

3.1 Mathematics of unmixing 

The most commonly used method to separate individual species in spectral imaging is 

weighted LS estimation (see Section 3.2).  It is the routine used by the commercial 

microscope devices discussed in Section 2.1.  Although it gives very respectable results 

in most cases with multiple fluorescent species present, it fails at low photon counts.  

This is due to its assumption of a Gaussian distribution of photon counts within each 

channel.  As is well known, photon statistics exhibit a Poissonian distribution.  In order 

to apply statistically rigorous unmixing techniques to an experiment for the low photon 

counts of an ultra-sensitive regime, a different method must be implemented.  The 

technique chosen here is that of the MLE method, which will be presented in Section 

3.3. 
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3.2 Weighted least squares unmixing 

As previously stated, weighted least squares is a commonly used method of unmixing.  

The reason it is not used here is because as the photon counts get less, in the range of 

100 photons, it systematically underestimates the error by ~5%.  When the counts drop 

below ~100 in any spectroscopic channel, it gives inaccurate results.  One starts with 

the following as a basis: 

€ 

χ 2 = wi yi − fi xi;a1,...,ak( )( )2
i=1

n

∑ ,       (1) 

with 

€ 

wi =1 σ i
2 =1 yi .         (2) 

The quantity 

€ 

χ 2 is the value that is to be minimized by adjustment of the fitting 

parameters 

€ 

a1,...,ak.  It consists of the sum over all n spectroscopic channels of the 

weighted residues, i.e., the differences between the number of photons 

€ 

yi in the 

spectroscopic channel 

€ 

xi and the value of the fitting function in that channel, 

€ 

fi xi;a1,...,ak( ) .  It is multiplied by the weighting term, made up of the reciprocal of the 

variance, which for Poissonian photon statistics equals the number of detected photons.  

The different spectroscopic channels 

€ 

xi include those obtained from different SPAD 

detectors for the different emission wavelength bands, for each of the different time 

delays following a laser excitation pulse, as collected by the instrumentation for TCSPC 

(i.e., by the Picoquant Time Harp 200). (That is, all differences in spectroscopic 

information are represented in one-dimensional form.) 
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For linear unmixing, the fitting function takes the following form: 

€ 

f (xi) = a j
j=1

k

∑ s j (xi) + b(xi) ,         (3) 

where 

€ 

a j  are the estimated numbers of photons from each of the k fluorescent species.  

These have normalized spectral signatures 

€ 

s j (xi), which are collected in calibration 

experiments.  The term 

€ 

b xi( ) is the expected background in each channel. 

 

Weighted least squares fitting fails when there are low numbers of detected photons in 

any given spectroscopic channel. For example, in the case where there are no photons 

detected, the Poissonian error in the number of detected photons is also zero and the 

weight at that point, given by Eqn. (2) is then infinite. If there are no photons detected in 

any one spectral/temporal channel of the data set, the corresponding infinity from     

Eqn. (2) is enough to skew all the results of the unmixing algorithm. 

 

3.3 Maximum-likelihood methods 

MLE is more rigorous than the weighted least squares methods and hence is more 

accurate when applied to data with low photon counts. It explicitly accounts for the 

Poissonian statistics of the number of detected photons.  In the following paragraphs, 

the method is stated as it is implemented into a C++ algorithm used to unmix simulated 

or real data.   
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The program begins by reading in data from files (or by generating simulated data) and 

assigning the data to arrays as such: 

€ 

mi = m1,m2,...,mn( ) ;          (4a) 

€ 

mi
j( ) = m1

j( ),m2
j( ),...,mn

j( )( ), j =1,...,k ;        (4b) 

€ 

bi = b1,b2,...,bn( ) .          (4c) 

The individual terms 

€ 

mi , 

€ 

mi
( j ) and 

€ 

bi  are elements of arrays that represent the photon 

counts in each of the n spectroscopic channels (i.e., each emission wavelength band 

and temporal channel) for the mixture, the 

€ 

j =1,...,k  individual species, and the 

background, respectively.   

 

In the analysis, the total numbers of photons for each data set are needed, so they are 

evaluated as follows: 

€ 

M = mi
i=1

n

∑ ;           (5a) 

€ 

M j( ) = mi
j( )

i=1

n

∑ ;          (5b) 

€ 

B = bi
i=1

n

∑ .           (5c) 

The background counts are found by acquiring photon counts with nothing but water as 

the sample for the same data collection time as used for each of the 

€ 

j =1,...,k  known 

species. 
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In order to provide calibration curves, the data sets for the individual species are 

normalized: 

€ 

si
j( ) = mi

j( ) − bi( ) M j( ) − B( ).         (6) 

 

The variables to be optimized are then introduced: 

€ 

f = f 1( ), f 2( ),...( ),          (7) 

where 

€ 

f  is a 1D array that represents the fractional contributions of each of the k 

species in the mixture.  An important thing to consider is that the components of 

€ 

f  must 

sum to 1.  With the 

€ 

f  values, the total photon counts for the mixture, and the s values, a 

fit is constructed. The expected number of photon counts in the i-th spectroscopic 

channel is the sum of two components— the contribution from fluorescence and the 

contribution from background: 

€ 

µi = M − B ⋅ tM
tB

 

 
 

 

 
 ⋅ f j( )si

j( )

j=1

k

∑ +
tM
tB
⋅ bi,       (8a) 

where 

€ 

tM  is the data acquisition time for the mixture and 

€ 

tB  is that for the background.  

As the acquisition time for the background may differ from that for the mixture, the ratio 

€ 

tM
tB

 is formed that adjusts the contribution from background to that expected in the 

acquisition of data for the mixture.  
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As has been explained in Section 2.3, a count-rate dependent time shift occurs in the 

TTL pulses of the SPAD detectors.  Four extra adjustable parameters are introduced in 

the data analysis program to account for the possibility of different time shifts for each of 

the four SPAD detectors between the spectra of the individual species and the 

measured spectrum of the mixture.  The analysis with accounting for this time shift may 

be expressed as the following equation for the expected number of photon counts in the 

i-th spectroscopic channel:  

€ 

µi = M − B ⋅ tM
tB

 

 
 

 

 
 ⋅ f j( )si−Δ i

j( ) +
j=1

k

∑ tM
tB
⋅ bi−Δ i

,       (8b) 

where  

€ 

Δ i =

Δ1, i =1,...,n 4
Δ 2, i =1+ n 4,...,n 2
Δ 3, i =1+ n 2,...,3n 4
Δ 4 , i =1+ 3n 4,...,n

 

 
  

 
 
 

 

Once all the arrays have been created and initialized, the ML method is implemented as 

follows:  The probability (or likelihood) to obtain the data set measured for the mixture, 

€ 

mi = m1,m2,...,mn( ) , given that the fractional contributions are 

€ 

f  and that the counts in 

each spectroscopic channel follow Poissonian statistics is given by: 

€ 

L m;f( ) = exp −µi f( )[ ]{
i=1

n

∏ ⋅µi f( )mi mi!}.       (9) 
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The fractional contributions 

€ 

f  must be adjusted to maximize 

€ 

L m;f( ). In order to convert 

the product into a sum for faster computational evaluation, the natural logarithm of 

€ 

L m;f( ) is taken, giving the logarithmic likelihood function:   

 

€ 

S m;f( ) = mi lnµi f( ) −µi f( ) − ln mi!( )
i=1

n

∑ .       (10a) 

The last term can be dropped as the natural log of 

€ 

mi!( )  is a constant throughout each 

iteration of .  Hence, the quantity to be maximized in the algorithm is: 

€ 

′ S m;f( ) = mi lnµi f( ) −µi f( )
i=1

n

∑ .        (10b) 

The maximum is found by changing 

€ 

f  in each run and saving the values of each 

component of 

€ 

f  when a new maximum is found, i.e., the algorithm searches through a 

grid of possibilities for 

€ 

f  until the maximum is found. 

 

3.4 Testing the MLE unmixing method 

Before this algorithm is used in an actual experiment, it is a good idea to simulate the 

experiment and see how the method performs.  For this purpose, a Monte Carlo 

simulation has been created that takes parameters provided by experimental data, 

randomly generates a spectrum of a mixture, and then separately unmixes it. A version 

of the Monte Carlo simulation and data analysis software created in this thesis research 

is published online [28] and results from an earlier simulation are reported in Reference 

[1]. 
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Monte Carlo methods were originally formed to model phenomena with stochastic 

processes.  They generally incorporate computational algorithms based on random 

numbers to create simulations of systems with many coupled degrees of freedom.  In 

the present case, the simulation models Gaussian-shaped prompt curves, which are 

convolved with exponential decays to produce fluorescence decay profiles.  It simulates 

a spectral image, creating a multi-dimensional image of the brightness as well as a 

pixel-by-pixel temporal spectrum.  Pseudo-random numbers are used to add Poissonian 

shot noise to the numbers of photons in each spectral/temporal channel. Again using 

random numbers, it is also possible to create simulated electropherograms, which are 

patterns of fluorescence bands that would be found as the output of an experiment for 

chemical separation by electrophoresis.   

 

The code takes a straightforward approach to creating a simulated experiment.  First, 

bins of expected fluorescence for known species are introduced.  Lifetimes of the 

species can then be created by randomly populating the bins, thus maintaining a 

realistic ratio of one species to another if they were to be in a mixture.  This simulated 

data may be saved to hard disk or analyzed by the steps explained in Section 3.3, to 

produce fractional contributions for the species present.  To check how well the method 

performed, two error bars are created.  One graphs the Poissonian likelihood function, 

€ 

L m;f( ) while the other checks to make sure that the confidence of the results is within a 

specified limit. 
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Chapter IV 

Experiment 

 

This chapter introduces the experimental setups, along with what is used to gather the 

data and how it is handled.  Also discussed are alignment procedures and 

troubleshooting for data collection. Two experimental set ups have been studied in this 

thesis research. With the goal to create a high-throughput system with spectral 

dispersion, the first experimental set up included a low-loss Brewster prism, which acts 

as a spectrometer.  However, due to problems with the design that led to poor optical 

coupling of the fluorescence light onto the detectors, it was replaced by the second 

experimental set up, which is based on dichroic filters.  Both of these components are 

briefly discussed in Section 2.6.  Their applications to an experimental setup are 

explained in greater detail in the following subsections.  One main thing to keep in mind, 

referring back to the goals set forth in Section 2.2, is that the setup must incorporate a 

high-throughput layout that maximizes fluorescence collection to achieve ultra-sensitive 

detection. 

 

4.1 Excitation laser and optics 

The excitation laser and optics are common to both the prism and the dichroic filter 

experimental configurations and hence these are discussed first. The lasers and optical 

configuration described in this section were in place prior to this thesis research, 
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whereas the subsequent optical configurations described in the sections below were 

built as part of this thesis. 

 

An excitation beam of 608 nm is generated from a dye laser (Coherent 700 dye laser 

operating with Kiton Red dye), which is synchronously pumped by a 2W, 76 MHz, 1 ps, 

modelocked 532 nm laser (SpectraPhysics Vanguard 2000-76MHz HM532). Another 

dye laser operating with DCM-Special dye is also available and is used during optical 

alignment. The output beam from the dye laser is first passed through a bandpass filter 

to remove weak broadband fluorescence emission inherent in the dye laser.  During its 

path to the objective and sample on the coverslip, the power of the beam, typically on 

the scale of 10 mW, is attenuated to 600 μW.  Larger laser power yields intensities that 

would saturate the fluorescence excitation and increase photobleaching of the dye 

molecules in the sample. 

 

Photographs of the first experimental configuration are shown in Figures 6a-6d.  In 

Figure 6a, the coverslip for the sample, as well as the pinhole for the confocal 

microscope are seen.  The Brewster prism is shown in Figure 6b.  The mirrors for 

separation of the spectral bands to their respective detectors are shown in Figure 6c.  

The setup as a whole, including the detectors and the housing to protect ambient light 

from entering the system, are seen in Figure 6d. 
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Figure 6a: View of coverslip for confocal microscope in setup 

coverslip 

pinhole 
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Figure 6b: Brewster prism and focusing lenses 

SF-10 Brewster prism 
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Figure 6c: Mirror mount that systematically picks of selected wavelength bands to the 
series of detectors 
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Figure 6d: View of entire prism spectroscopy-based setup 
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Approximately 10% of the beam reflects from an uncoated fused-silica substrate (shown 

in Figure 5) and then enters the objective (Olympus UPlanApo 60x/1.2w ∞/0.13-0.21) 

and is focused onto the top surface of the coverslip.  A translation stage is then used to 

adjust the position of the coverslip so that the beam focuses 50 μm above this surface, 

inside the sample.  The fluorescence is collected by the same objective and the beam of 

fluorescence light then exits with a 9 mm diameter (the exit pupil diameter of the 

objective).  It passes through a holographic Raman notch filter (Kaiser Optical Systems) 

that blocks 608 nm wavelengths and hence removes the elastically scattered laser 

excitation light from the beam.  This beam of fluorescence light is then focused to a   

150 μm pinhole, which acts as a spatial filter for the confocal microscope. 

 

4.2 Prism configuration 

After the pinhole, the beam of fluorescence light expands to another lens, slightly offset 

from where it would collimate the beam so as to focus to a set of mirrors, as seen in 

Figure 7.  Immediately after the lens, the beam passes through a Brewster prism made 

of high dispersion SF-10 glass.  This provides spectral dispersion and expands the 

signal out into a spectrum, which is picked off by the mirrors to specified wavelength 

bands.  In this case, the bands are centered at 620 nm, 640 nm, 660 nm, and 700 nm.  

Provided that the polarization of the beam of fluorescence is preserved in the horizontal 

plane, Fresnel loss from the prism would be minimal and maintain optimal photon 

throughput, but fluorescence that is vertically polarized suffers Fresnel loss at the prism 
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surfaces.  Each path for the separate bands goes through a spherical concave mirror to 

expand the beam further and fill the area of the focusing lens placed before the 

detectors.  This is also seen in Figure 7. 

 

 

 

The prism spectrometer setup was unable to achieve the desired high throughput of 

collected fluorescence, because the fluorescence could not be focused onto the small 

active area of the SPAD detectors.  As the beam hits the concave lenses, it is still 

expanding in the horizontal axis from the Brewster prism.  This causes the signal from 

wavelengths outside the one in which the path is centered to be expanded to an 

elliptical beam at the focusing achromat.  Those wavelengths of the beam that enter the 

Figure 7: Schematic of original layout 
 
 

SF-10 
Brewster 
prism 
 

Sample 

Pinhole 

Mirrors 

Lenses 

SPAD detectors 

Lenses 
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edges of the achromat are skewed as they do not pass through the center of the 

concave lens.  This gives rise to coma and aberrations in the focusing of the beam at 

the SPAD detector, which has an active area of only 150 microns diameter.  Because of 

this, much of the signal is lost. 

  

One possible way to alleviate this is to rearrange the optics to allow for proper focusing 

at the detector.  However, this was not attempted due to time contraints and the 

necessary optics were not be available in the lab.  Another solution could be to add a 

second Brewster prism between the first and the detectors to re-collimate the beams of 

fluorescence, as shown in Figure 8 and as performed in Reference [1].  The spectra 

would be dispersed and collimated by the time it reaches the mirror mount.  This 

ensures that the spectral bands reflected to the detectors will be expanded properly by 

the concave lenses and focused tightly onto the active area.  However, there is a 

disadvantage in this approach in that there are now four prism surfaces that incur 

Fresnel loss for the p-polarized light, and this defeats the goal of high-throughput signal.  

Hence, in order to achieve high throughput, a second experimental configuration based 

on dichroic filters was set up. 
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Figure 8: Possible two prism setup 
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4.3 Interference filter configuration 

The second experimental setup is based on the use of dichroic filters to separate the 

beam of collected fluorescence into four bands. The configuration is seen in Figure 9 

and in the full schematic in Figure 10.  After passing through the pinhole, the beam is 

collimated with a lens.  It is then passed through a series of three dichroic mirrors, each 

with a different cutoff wavelength.  The bands are similar to the ones before, except that 

the path centered along 620 nm collects all wavelengths below a value of around 630 

nm rather than a small band.  The path centered along 700 nm similarly collects all the 

wavelengths above about 675 nm.  This should not be an issue for the 620 nm path, as 

the emission rarely dips much lower than 590 nm with a signal that is significant.  An 

issue does occur, however, with the 700 nm path, as there is Raman scatter from water 

in this beam of fluorescence, which affects the count rate.  This additional prompt 

component is calculated to be around 675 nm, just inside the range for the 700 nm 

band.  The calculation of this Raman shift is done with the equation 

€ 

hv = h vo − v'( ) where 

€ 

v  is the new wave number after the shift, 

€ 

vo  is the wave number from the initial 

wavelength, and 

€ 

v' is the shift caused by Raman scatter in water.  In this case, 

€ 

vo =1 608nm( ) and 

€ 

v'=1643.5m−1 [25].  Solving for 

€ 

v , one finds it is 675 nm.  It can be 

assumed that this offset is constant throughout the samples and therefore should not 

hinder the separation and identification of the dyes. 
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The signals of each path are focused by 10x microscope objectives to the custom-

modified SPAD detectors, which are briefly discussed in Section 2.3 and later in Section 

4.5.  The output signals generated by the incoming photons are then sent to a TCSPC 

module (Picoquant TimeHarp 200 with PRT 400 router).  This provides lifetime curves 

and temporal data for the emitted spectra, which are later analyzed by a computer 

algorithm to linearly resolve the fractional components of the dyes. 
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Figure 9: Current setup using dichroic mirrors 
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Figure 10: Schematic of new layout 
 
 



 

42 

4.4 Alignment 

One aspect to keep in mind is having the setup well aligned.  For the prism setup, the 

two dye lasers were first adjusted to emit at 620 nm and 660 nm.  The beams are 

combined to one collinear beam at a beam splitter, which enters the microscope and is 

reflected off the top surface of the coverslip, so that it follows a path through the pinhole 

to the prism. The two colors are the separated and take separate paths to the mirrors, 

which can be adjusted to pick off the laser light and reflect it to each beamʼs 

corresponding detector.  A mirror before the Brewster prism is then turned so that the 

beam from the 620 nm path enters the 660 nm path.  This shift puts the 660 nm beam 

along the 700 nm path, which then allows that detector to be aligned.  Finally, one of the 

dye lasers is tuned to 640 nm to align the last mirror, thus centering the last detector.   

 

The setup with dichroics filters is aligned systematically by first placing and aligning the 

700 nm band detector.  Then dichroic mirrors and their respective detectors are placed 

in decreasing order of wavelength, from 660 nm to 640 nm to 620 nm.  Reflected laser 

light from the tuned dye lasers is used to give a general alignment for the detectors.  As 

the paths are now defined for both layouts, a sample of moderately concentrated dye, 

100 nM Alexa 610, is put on the coverslip.  The excitation beam, now back to 608 nm, is 

focused into the sample so that the detectors can be adjusted to get a maximum count 

rate for the fluorescence.  Once this is done, the alignment process is completed and 

the setup is ready to start acquiring data. 
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4.5 Electronics and data file structure 

With the optical layout complete, it is important to consider the electronic devices 

involved in the experiment that will allow for spectral detection with temporal resolution.  

As described in Section 2.3, SPADs are the most appropriate choice for an experiment 

of this type.  Section 2.3 also explains that the detectors used in this setup are custom 

modified to proved stable sub-nanosecond timing and a higher QE in the deep red 

region of the spectrum.  The increased QE in the red is an advantage in that the dyes 

typically used in fluorescence microscopy emit in that spectral region.  The stable sub-

nanosecond timing allows for better spectral resolution.  In turn, this allows the lifetimes 

of the samples to become a parameter in the unmixing of the contributions from the 

fluorophores that are present. 

 

As seen in the optical setup (Section 4.3), TCSPC modules are used to route the signals 

produced from the four SPAD detectors.  These can run in two separate modes, 

specified before data acquisition.  They can either determine and histogram the photon 

arrival times with respect to a sync signal from a photo diode powered by the 76 MHz 

laser pulses.  The fluorescence lifetime of the sample can then be determined from the 

histogram.  The histogram can be exported to a text file and then sent to a C++ 

executable that reads in the files and applies a maximum-likelihood algorithm to 

spectrally resolve the fluorophores into their fractional contributions. 
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The other way of collecting data is the “time-tagged time-resolved” (TTTR) mode, which 

stores the data as a “.t3r” file.  This is a binary file with a particular format. Each record 

of data includes the time of arrival for the photon with respect to a 100 ns internal clock 

(the macro time), the time with respect to the prior laser pulse sync-signal with 34 ps 

quantization (the micro time), and which SPAD channel the photon signal came from 

(the router information).  

 

A Labview program with C dll library calls was created as part of this thesis research to 

read in the “.t3r” file record-by-record, so that a desired number of photons or data 

collection duration may be analyzed. Hence the program splits the files to see the 

relevant data, then combines them into the maximum-likelihood algorithm so the MLE 

method can once again find the fractional contributions to each fluorophore in the 

sample.  The advantage to this method is that a macro-time window can be adjusted 

after the data has been collected to select the number of photons that are passed to the 

ML analysis.  This aids in evaluation of the ML method for varying levels of signal, i.e., 

for varying numbers of photons.  

 

Long data collection runs for each individual fluorophore must be gathered to be 

normalized and give the fingerprint spectral profiles for the unmixing process.  A run for 

the background must also be acquired to allow for proper calibration of the individual 
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dyes and the mixtures created.  Different quantities of dye mixtures are also be used to 

provide linear trends for concentration patterns, as discussed in Section 5.2. 
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Chapter V 

Experimental Results 

 

In this chapter, results from experimental data are analyzed and discussed.  The 

chapter first explains how the dye solutions are created and prepared for use in the 

experiment.  Once they are prepared, concentrations are prepared that allow for results 

that would correspond to mixtures investigated by previously reported Monte Carlo 

simulations [1].  As the experiment and dyes have been assembled, data is acquired 

and analyzed.  Expected results are calculated to give an accuracy check to the 

experimentally fitted data.  These values are then compared and shown graphically.  

Finally, discussion is given on the possible sources of errors and what can be done to 

reduce errors. 

 

5.1 Sample Preparation 

The dyes used for the experiments in this thesis are Texas Red, Alexa 610, and Alexa 

633.  The dyes were made by diluting solutions, bought from Invitrogen, with water, and 

then analyzed in a spectrometer to find their absorbance.  From this and their extinction 

coefficients, the concentrations of the stock solutions of the dyes can be calculated and 

then diluted as necessary.  The formula used is the Beer-Lambert Law: 

€ 

A = εlc ,           (11) 
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where 

€ 

A  is the absorbance (dimensionless) , 

€ 

ε is the extinction coefficient or molar 

absorptivity (in L mol-1 cm-1), 

€ 

l is the path length (in cm), and 

€ 

c is the concentration (in 
mol L-1).  
 

With the use of the emission and excitation spectra of each dye, downloaded from the 

website of Invitrogen, the spectral behavior of the dyes if they are together in a mixture 

can be seen graphically in Figures 11 and 12.  Figure 11 shows the absorption spectra 

of each dye and the 608 nm laser excitation wavelength. 

 

Each dye is excited with a different magnitude at this wavelength.  With this fraction 

known, the emission in each channel can be found with the assumption that the 

fluorescence quantum efficiencies are the same.  These expected curves are seen in 

Figure 12. The emission spectra of each dye are separated into 4 bands, equivalent to 

those in the experiment (see Section 4.3). 
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Figure 12: Emission bands in all four channels for the three dyes used in the experiment 

Figure 11: Excitation curves for dyes used in experiment, showing the 608nm laser 
beam will excite all three 
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By integrating the curves, the contributions of each dye in each separate spectral 

channel can be found.  The result is seen in Figure 13. 

 

Figures 11-13 show the theoretical combination of dyes given a normalized spectrum for 

each dye.  For this reason, it is important to understand that only the magnitudes of the 

spectra are shown and that the dyes are not shown with equal concentrations. 

 

The spectral unmixing also uses time-resolved data, to help unmix the contributions of 

dyes with different fluorescence lifetimes. Figure 14 shows the actual (unnormalized) 

calibration curves collected for the three dyes and for the background, which are used to 

find the normalized fingerprint spectra by use of Equation (6). 

 

An average count rate of the dyes can be observed.  This allows the dyes to be diluted 

to concentrations in a given range that give similar count rates.  The concentrations 

used in the experiment are as follows: 

 

 Texas Red – 190pM  (1068 counts/s) 

 Alexa Red – 10pM  (2144 counts/s) 

 Alexa 633 – 188pM  (2257 counts/s) 



 

50 

 
Figure 13: Contribution of each dye in spectral bands 
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 Figure 14: Contribution of each dye into separate bands 
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5. 2 Results and Discussion 

As mentioned in Section 4.5, varying quantities of dye contributions need to be mixed 

and analyzed in order to obtain a set of results from which self-consistency in the 

analysis results can be demonstrated.  This is desirable to check the validity of the 

method.  Data was acquired for 17 separate runs at varying fractions of species.  A 

constant volume was maintained in each run at 30 μL.  Figure 15 describes these 

values and the length of the collection time for each run. 

 

As can be seen in Figure 15, the first runs with single species have longer collection 

times than the mixtures.  This is because the calibration curves to be used as ideal 

samples in the ML estimation need to be as precise as possible, as the MLE method 

does not account for shot noise in the fingerprint calibration spectra.  In addition, shot 

noise can play a part in the acquired data, so shorter collection times for the runs to be 

unmixed aids in minimizing this influence.  Further analysis indicates that an even 

longer collection time than used is desirable for the calibration curves to further reduce 

this effect. 
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collection time 
(in seconds) 

Texas Red (μL) Alexa 610 (μL) Alexa 633 (μL) Water (μL) 

90 10 0 0 20 

90 0 10 0 20 

90 0 0 10 20 

90 0 0 0 30 

45 4 16 0 10 

45 8 12 0 10 

45 12 8 0 10 

45 16 4 0 10 

45 4 0 16 10 

45 8 0 12 10 

45 12 0 8 10 

45 16 0 4 10 

45 0 4 16 10 

45 0 8 12 10 

45 0 12 8 10 

45 0 16 4 10 

45 10 10 10 0 
 

 

Figure 15: Combinations of dyes used for data collection 
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With Figure 15 as a guideline for forming the mixtures, data is collected and run through 

a Labview program to be unmixed within C dll files.  A part of the front panel of the 

Labview vi can be seen in Figure 16.  An example of the fit produced can be seen in 

Figure 17, with the residue of the experiment vs. fitted data shown in Figure 18.  The 

residues are randomly distributed about the origin, which indicates a good quality of fit, 

within the precision afforded by the photon statistics.  

 

The results compared to the expected values can be seen in Figures 19-22. In order to 

make these graphs, the expected contributions from each of the dyes within the mixture 

need to be derived.  Two runs of 90 seconds each were taken for each calibration 

curve.  The average number of counts found for each dye is found and then divided by 

the run time.  This gives the count rate for the individual fluorophores.  The data 

acquired in the experiment for the pure samples inherently has background present.  It 

is thus already accounted for and does not need any further attention. 
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Figure 16: Screenshot of Labview program, demonstrating the output 
 



 

56 

 

 

 

 Figure 18: Residue of fit vs. measured data from Figure 16 

Figure 17: Fit (gray) vs. measured mixture (red) from Labview program.  In this figure, 
results for 12 μL of Texas Red and 8 μL of Alexa 633 are shown. 
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In order to find the contribution of a dye to a mixture consisting of an equal volume of all 

3 dyes in a sample, the equation is simply the count rate for the specific dye divided by 

the sum of the count rates for all the dyes. For example,  

 

 contribution 1 = count rate 1 / (count rate 1 + count rate 2 + count rate 3) 

 

The same proportional method of analysis can be applied to the mixtures consisting of 

various quantities of each fluorophore.  It can be assumed that the 10 μL of water in 

each run is negligible for the following reason.  If water is present, it further dilutes the 

individual dyes equally in ratio.  As only the ratios of the numbers of photons from each 

of the dyes are of interest, and these ratios are the same within the mixture with lesser 

concentrations, additional consideration is unnecessary.  It can then be assumed that 

only the dyes are present in the mixture for this purpose.  In this case, the contribution 

of a specific dye in a sample would be equal to its fraction of volume in the sample 

(without the water present) times its count rate.  This is then divided by the total dyes in 

the sample, with respect to their individual fractions.  An example to see the fractional 

contribution of Alexa 610 in a sample with 4μL of Alexa 610 and 16μL of Alexa 633 

would be as follows: 

 

 contrib. 610 = 4/20*count rate 610 / (4/20*count rate 610 + 16/20*count rate 633) 
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Figure 19: Calculated and fitted contributions for various quantities of Texas Red and 
Alexa 610 in a solution 
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Figure 20: Calculated and fitted contributions for various quantities of Texas Red and 
Alexa 633 in a solution 
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Figure 21: Calculated and fitted contributions for various quantities of Alexa 610 and 
Alexa 633 in a solution 
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Figure 22: Equal volume contributions from each dye, showing calculated and fitted 
fractions of each in solution 
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Figure 17 clearly shows that the fit found by the ML algorithm is very close to that of the 

measured data.  The fractional contributions found in Figures 19-22, however, indicate 

that for some of the mixtures it is not perfect with respect to accuracy.  As the fit is 

almost identical to the measured data, one may conclude that the errors in the MLE 

analysis are random and possibly due to the level of shot noise present in the data. 

 

Also, two distinct reasons for systematic errors come to mind.  One involves an excess 

of shot noise.  The MLE analysis assumes that the calibration curves are without noise.  

If there is any variance in the calibration curves, the MLE analysis is less likely to find 

accurate results.  In this case, Poissonian shot noise could be enough to skew the 

pureness of the calibration curves.  In order to alleviate this effect, collection times for 

the calibration runs should be increased to 3 or 5 minutes, to minimize the influence of 

shot noise. 

 

Another possibility for systematic error is equipment malfunction.  When doing these 

experiments, the dye laser was fluctuating in power, most probably caused by a change 

in humidity and temperature in the laboratory.  These laser power fluctuations could 

cause inaccuracy in the calibration curves and, as above, lead to inaccurate MLE 

predictions. 
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Chapter VI 

Conclusion 

 

As each problem that occurred in this research brought a new knowledge, the final state 

came to be a solid and valid form.  A confocal microscope for multiple wavelength time-

resolved fluorescence detection with high throughput was built and a successful 

procedure was developed for unmixing the signal contributions of multiple fluorophores 

with overlapping spectral signatures.  As expected, the precision of the unmixing 

becomes poorer for lower numbers of photons. Nevertheless, Figure 16 shows that the 

fit is accurate in comparison to the measured data. The number of counts per spectral 

band was in the range of 102— 103, which was the target requirement for a low photon 

count, as stated in the application for the grant to the National Institutes of Health, which 

provided partial support for this research.  The results prove the usefulness of 

maximum-likelihood based unmixing for ultra-sensitive experiments.   

 

The unmixing algorithm also proves useful when trying to conserve time for data 

analysis.  Besides the general experimental set up, which accounts for approximately 5 

minutes to create a slide, apply the wanted mixture, focus the laser into the sample, and 

record the data, the unmixing analysis is very quick.  By simply loading the files into a 

Labview program and pressing Run, the process takes less than a second to analyze 

and unmix the species as well as graph out the findings and individual data curves. This 
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allows for many acquisitions to be taken and analyzed in a short period of time. 

 

It is important to consider what can be done in the future to extend these methods.  One 

of the first things that should be examined is how to apply rigorous error analysis.  This 

will provide error bars for the fitted data, and thereby give insight as to how accurate the 

method performed. For the same purposes, studies using the Monte Carlo simulation 

should be extended to find the errors for particular combinations of dyes and the limits 

for unmixing in the ultrasensitive regime. However, simulation results should be 

compared to what is experimentally found. 

 

Generalization of the method to other experimental configurations should be considered. 

One possibility is to bypass the use of an external counter and time-correlated single 

photon counting module and use the “smart” pixel 32x1 SPAD array developed by Tisa 

et al. [26].  They have created a detection head with internal electronics that time-tag 

single photons down to 3.2 μs.  It combines ultra-sensitive detection (45% quantum 

efficiency) and high-speed acquisition (up to 312.5 kframe/s using a 10 MHz system 

clock).  As the entire system is integrated, the pixel counts can be added from all 

channels to form one large SPAD, capable of viewing and entire spectra at once.  This 

can prove useful as it cuts down optical components in the experimental layout. On the 

same lines, an EMCCD camera can provide fast frame rate acquisition for single-photon 

sensitivity experiments.  The fluorescence can be focused onto a single line of pixels on 
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the camera, making it possible to take very fast frame rate measurements of the spectra 

by shifting the image to adjacent pixels as the new image is being acquired (the “fast 

kinetics” mode of data collection).  A great advantage here is that the quantum 

efficiency is 95%, compared to the ~65% QE from the modified SPADs.  The same 

maximum-likelihood data analysis method can be used, and the spectra can then be 

unmixed into the corresponding fractions of each species involved. 

 

Another experimental option is to use two or more excitation wavelengths, as was done 

in reference [1].  A second excitation wavelength applied to the sample at ~630 nm will 

provide for another reference point in the data as the dyes are excited differently at each 

wavelength.  This can further aid in distinguishing between the species as the emission 

peaks are more distinct than the emission tails. 

 

Finally, an option to potentially add to the system is the phasor approach developed by 

Grattonʼs group [27].  It builds up decays from vectors created by the image.  Provided 

the modulation and phase of the emission with respect to the excitation can be found, 

the lifetime of each sample can be plotted onto a semicircular graph.  As each dye has a 

unique lifetime, the possibility arises to use these as calibration plots for unmixing for a 

sample solution with multiple dyes present.  This method could be coupled with the 

current ML method to possibly allow for greater accuracy, or to provide a check for 

consistency. 



 

66 

References 

 



 

67 

[1] Davis LM, Shen G.  “Extension of multidimensional microscopy to ultra-sensitive 

applications with maximum-likelihood analysis.”  Proceedings of SPIE  Vol. 6443 (2007) 

64430N 1-12 

 

[2]  Zimmermann, T.  “Spectral imaging and linear unmixing in light microscopy.” 

Microscopy Techniques (Advances in Biochemical Engineering / Biotechnology)  Ed. 

Jens Rietdorf.  New York: Springer, 2005.  245-266  

 

[3]  Lippincott-Schwartz J, Patterson GH.  “Development and use of fluorescent protein 

markers in living cells.”  Science  Vol. 300  Issue 5616  April 4, 2003: 87-91 

 

[4]  Lakowicz, JR.  Principles of Fluorescence Spectroscopy 2nd Edition.  New York:  

Springer, 2004 

 

[5]  Weisshart K, Jungel V, Briddon SJ.  “The LSM META ConfoCor 2 system: An 

integrated imaging and spectroscopic platform for single-molecule detection.”  Current 

Pharmaceutical Biotechnology  Vol. 5  Issue 2  April 2004: 135-154 

 

[6]  Zucker RM, Price O.  “Evaluation of confocal microscopy system performance.”  

Cytometry  Vol. 44  Issue 4  August 1, 2001: 273-294 

 



 

68 

[7]  Dinant C, van Royen ME, Vermeulen W, Houtsmuller AB.  “Fluorescence resonance 

energy transfer of GFP and YFP by spectral imaging and quantitative acceptor 

photobleaching.”  Journal of Microscopy-Oxford  Vol. 231  Issue 1  July 2008: 97-104 

 

[8]  Dickinson ME, Simbuerger E, Zimmermann B, Waters CW, Fraser SE.  “Multiphoton 

excitation spectra in biological samples.”  Journal of Biomedical Optics  Vol. 8  Issue 3  

July 2003: 329-338 

 

[9]  Becker W, Bergmann A, Biskup C.  “Multispectral fluorescence lifetime imaging by 

TCSPC.”  Microscopy Research and Technique  Vol. 70  Issue 5  May 2007:  403-409 

 

[10]  Li LQ, Davis LM.  “Single-photon avalanche-diode for single-molecule detection.”  

Review of Scientific Instruments  Vol. 64  Issue 6  June 1993: 1524-1529 

 

[11]  Cova S, Ghioni M, Lacaita A, Samori C, Zappa F.  “Avalanche photodiodes and 

quenching circuits for single-photon detection.”  Applied Optics  Vol. 35  Issue 12  April 

20, 1996:  1956-1976 

 

[12]  Giudice A, Biasi R, Rech I, Marangoni S, Labanca I, Simmerle G, Ghioni M, Cova 

S.  “Versatile electronic module for the operation of any silicon single photon avalanche 

diode.”  Journal of Modern Optics  Vol. 56  Issue 2-3  2009: 317-325 



 

69 

[13]  Stephens DJ, Allan VJ.  “Light microscopy techniques for live cell imaging.”  

Science  Vol. 300  Issue 5616  April 4, 2003: 82-86 

 

[14]  Wahl M, Koberling F, Patting M, Rahn H, Erdmann R.  “Time-resolved confocal 

fluorescence imaging and spectroscopy system with single molecule sensitivity and 

sub-micrometer resolution.”  Current Pharmaceutical Biotechnology  Vol. 5  Issue 3  

June 2004: 299-308 

 

[15]  Pelet S, Previte MJR, Kim D, Kim KH, Su TTJ, So PTC.  “Frequency domain 

lifetime and spectral imaging microscopy.”  Microscopy Research and Technique  Vol. 

69  Issue 11  November 2006: 861-874 

 

[16]  Ramadass R, Becker D, Jendrach M, Bereiter-Hahn J.  “Spectrally and spatially 

resolved fluorescence lifetime imaging in living cells: TRPV4-microfilament interactions.”  

Archives of Biochemistry and Biophysics  Vol. 463  Issue 1  July 1, 2007: 27-36 

 

[17]  Hanley QS, “Spectrally resolved fluorescent lifetime imaging.”  Journal of the Royal 

Society Interface  Vol. 6  Supplement 1  February 6, 2009:  S83-S92 

 

[18]  Garini Y, Young IT, McNamara G.  “Spectral imaging: Principles and applications.”  

Cytometry Part A  Vol. 69A  Issue 8  August 2006: 735-747 



 

70 

[19]  Lansford R, Bearman G, Fraser SE.  “Resolution of multiple green fluorescent 

protein color variants and dyes using two-photon microscopy and imaging 

spectroscopy.”  Journal of Biomedical Optics  Vol. 6  Issue 3  July 2001: 311-318 

 

[20]  Myung, IJ.  “Tutorial on maximum likelihood estimation.”  Journal of Mathematical 

Psychology  Vol. 47  Issue 1  February 2003: 90-100 

 

[21]  Maus M, Cotlet M, Hofkens J, Gensch T, De Schryver FC, Schaffer J, Seidel CAM.  

“An experimental comparison of the maximum likelihood estimation and nonlinear least 

squares fluorescence lifetime analysis of single molecules.”  Analytical Chemistry  Vol. 

73  Issue 9  May 1, 2001: 2078-2086 

 

[22]  King RL, Younan NH.  “Pixel unmixing via information of neighboring pixels.”  

GIScience and Remote Sensing  Vol. 43  Issue 4  October-December 2006: 310-322 

 

[23]  Enderlein J, Goodwin PM, VanOrden A, Ambrose WP, Erdmann R, Keller RA.  “A 

maximum likelihood estimator to distinguish single molecules by their fluorescence 

decays.”  Chemical Physics Letters  Vol. 270  Issue 5-6  May 30, 1997: 464-470 

 



 

71 

[24]  Hoppe AD, Shorte SL, Swanson JA, Heintzannz R.  “Three-dimensional FRET 

reconstruction microscopy for analysis of dynamic molecular interactions in live cells.”  

Biophysical Journal  Vol. 95  Issue 1  July 1, 2008: 400-418 

 

[25]  Chaplin M.  “Water absorption spectrum.”  Water Structure and Science  2009.  

London South Bank University.  May 21, 2009.  

<http://www.lsbu.ac.uk/water/vibrat.html> 

 

[26]  Tisa S, Guerrieri F, Zappa F.  “SPAD detection head with 32 fully-parallel channels 

for time-tagging single-photons at 3 μs.”  Proceedings of SPIE  Vol. 7222 (2009), 

72221H 1-11 

 

[27]  Digman MA, Caiolfa VR, Zamai M, Gratton E.  “The phasor approach to 

fluorescence lifetime imaging analysis.”  Biophysical Journal  Vol. 94  Issue 2  January 

15, 2008: L14-L16 

 

[28]  “Extension of multidimensional microscopy to ultra-sensitive applications with 

maximum-likelihood analysis”.  2009.  University of Tennessee Space Institute.  22 July, 

2009.  <http://ldavis.utsi.edu/Max-likelihood%20unmixing.htm> 



 

72 

Vita 

I was born in 1984 in York, Pennsylvania.  I always knew I would end up doing 

something in math or music.  It seems as if math won the battle for now.  I finished my 

Bachelor of Science degree at James Madison University in the major or Physics.  And 

now I am at the University of Tennessee Space Institute, writing a thesis on spectral 

fluorescence lifetime imaging. All throughout high school and college, Iʼve been in and 

out of the hospital, getting surgery on my brain and spine.  Yet it has never stopped me 

from achieving what I have and never stopped me from becoming the person I wanted 

to be.  For that, I take pride in my achievements and for getting to where I am this day.  I 

can only hope that I continue to prosper as the future unfolds. 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2009

	High-sensitivity spectral fluorescence lifetime imaging for resolving spectroscopically overlapping species
	Justin Lee Crawford
	Recommended Citation


	Microsoft Word - thesis of justin crawford.doc

