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ABSTRACT 

Methods of developing and improving toxicity assays using genetically 

engineered bioluminescent bacteria PM6 and Shkl were investigated. The EC50 

values for three metals (zinc, copper, and lead) were determined using these two 

strains and were compared with the EC50 values calculated from the Microtox® 

assay, published inhibition to activated sludge specific oxygen uptake rate 

(SOUR) data (Madoni et al., 1999), and published ECso values from Microtox® 

for the same compounds (Kaiser and Devillers, 1994). This was done to evaluate 

the effectiveness of using strains PM6 and Shk l to predict toxic effects to 

activated sludge as indicated by respiration inhibition. A number of factors 

affecting toxicity assays were examined including temperature control, cell 

storage method (lyophilization and storage temperature), activation time, and 

mixing prior to luminescence measurement. 

A toxicity testing protocol developed by Lajoie et al. (2002) was used and 

adapted to this study. Based on the results of these experiments, it was concluded 

that toxicity assays using PM6 and Shk l provide EC50 values closer to respiration 

inhibition ECso values than Microtoxe. 
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Chapter 1 Introduction 

One of the most widely used biological wastewater treatment methods in 

the world is the activated sludge process. Other biological wastewater treatment 

methods include biological nitrogen removal, bioaugmentation, extended aeration't 

anaerobic processes, rotating biological contactors, sequencing batch reactors and 

trickling filters. Often there are toxicants encountered in the influent wastewater 

to treatment facilities that interfere with the normal operation of the processes. 

Examples of interferences are the inhibition of waste organics removal, 

modification of sludge compacting properties, formation of pin-floes, the 

reduction of solids separation efficiency, and the Joss of higher life fonns; these 

interferences ultimately lead to the degradation of the effluent quality. 

In the most severe instances, the activated sludge microorganisms may be 

completely inhibited, causing wastewater to be .discharged that has not been 

properly treated. Jonsson et al. (2000) reported that 45-60% of the Swedish 

municipal wastewater treatment plants investigated received wastewater 

containing inhibitory substances. Grau and Da-Rin (1997) reported that in Sao 

Paulo, Brazil, treatment efficiency of a biological wastewater treatment plant was 

significantly hindered for six months after toxic shocks occurred. Trapido et al., 



( 1994) reported that a daily discharge of 3 to 4 tons of phenolic compounds was 

released into the Gulf of Finland because of the inability to assess toxic effects. 

Effiuent violations can be avoided if the influent is screened for toxicity 

and protective action is taken (Love and Bott, 2004). One protective action that 

can be taken is the toxic stream can be diverted to a temporary holding basin and 

returned to the waste treatment system at a slower rate. This is to avoid high 

toxicant influx that may otherwise seriously affect wastewater treatment 

perfonnance. 

Bioluminescent bacteria are currently being used for monitoring municipal. 

wastewater treatment plant influent (Paxeus and Schroder, 1996). However, 

research conducted by Love and Bott (2000) established that no one device 

satisfies all of the criteria required for an effective upset early warning device 

(UEWD). The research states that it is unlikely that any one technology will 

provide the perfect solution to UEW detection; however, bioluminescent bacteria 

show promise as a potential technology for influent wastewater toxicity testing. 

The primary engineering application for bioluminescent bacteria is 

chemical sensing, because bioluminescent bacteria can form the basis of highly 

selective and sensitive chemical detectors with rapid response times. Therefore, 

the hypothesis of this research is that genetically engineered Pseudomonas spp. 

PM6 (WERF project no. 01-WSM-2A, 2004) and Shkl (Kelly et al., 1999), being 

bioluminescent bacteria derived from sludge bacteria, have quick responses to 
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toxicants that are similar to those of activated sludge microbial organisms. 

These properties make the development of toxicity assays to predict the effect of 

toxicity to activated sludge a promising alternative to current, ineffective 

methods. The present assays used to determine wastewater toxicity are not 

practical, robust, or cost-effective technologies to detect and mitigate upset events 

(Love and Bott, 2000). Therefore, to examine the effectiveness of using strains 

PM6 and Shk 1 to predict toxic effects to activated sludge, different assay 

protocols will be explored and EC5o values of strains PM6 and Shk 1 for different 

chemical compounds will be compared to EC50 values calculated from the 

Microtox® assay, published inhibition to activated sludge specific oxygen uptake 

rate (SOUR) data (Madoni et al., 1999), and published ECso values from 

Microtox• for the same compounds (Kaiser and Devillers, 1994). 
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Chapter 2 Background 

2. 1 Bioluminescence 

The abil ity of living organisms to emit light has manifested itself many 

t imes during the course of evolution. There are many different species that have 

the abi lity to emit light. They range from bacteria and fungi to fireflies and fish. 

Bacteria, however, are the most abundant of organi sms and are found in 

freshwater, marine, and terrestrial environments (Hastings, 1 983, 1996). The 

function of bioluminescence in bacteria is less straightforward than the functional 

importance of light emission of higher organisms, but Czyz et al . (2000) showed 

that bacterial bioluminescence stimulates DNA repair in Vibrio harveyi. Hastings 

and Nealson ( 1 977) also imply that biolwninescence helps to propagate bacteria. 

Hastings and Nealson also demonstrated that bacteria of the same species have 

both luminous and non-luminous fonns, indicating that bioluminescence is not 

essential for their existence. 

All known bioluminescent bacteria are Gram negative, in which the 

distinctive feature is the presence of a double membrane surrounding each 

bacterial cell .  All bacteria have inner cel l  membranes, but Gram negative bacteria 

have a unique outer membrane which can block certain compounds (e.g. some 

antibiotics) from entering the cell, and make Gram negative cells more resistant to 
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these compounds than Gram positive bacteria. Most infonnation on 

bioluminescent bacteria concerns only three genera: Photobacterium, 

Photorhabdus, and Vibrio. Their primary habitat is marine in free-living mode, 

and in symbiotic, saprophytic and parasitic relationships (Hastings et al., 1 977, 

1 983, 1996). 

Genes that code for the enzyme that catalyzes the light-emitting reaction 

(luciferase) and for the enzymes that convert the standard physiological 

metabolites into high-energy substrates (luciferins) are both required for the 

I uminescent reaction. The enzyme-catalyzed redox reaction is shown below 

(Figure 2. 1 ), where RCHO represents a generic long chain aldehyde. 

(electron transport chain) 

Substrate � NADH � FMNH2 -? cytochromes � 02 

Luc if erase .t 
I 

02 RCHO 
> II -->- III (bioluminescent branch) 

1 J 
dark light 

Figure 2. 1 :  Electron transport chain joined with bioluminescent system (Hastings 

and Nealson, 1977). 
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As depicted, the reaction involves the oxidation of FMNH2 and a Jong chain 

al iphatic aldehyde by molecular oxygen. FMNH2 binds to luc iferase, the enzyme 

that catalyzes this reaction and produces complex I, which reacts with molecular 

oxygen to produce complex II. When complex II decays, it reduces luciferase, 

but doesn't produce l ight. When complex I I  binds to a long-chain aldehyde 

(RCHO), complex I I I  i s  produced, which is an excited intennediate. When it 

decays, the aldehyde is oxidized to a fatty acid and light is emitted at 490 nm. 

The enzyme catalyzing this reaction is bacterial luciferase, a heterodimeric 

enzyme (aP) of 78 kDa containing two non-identical subunits, a and p, with 

-30% sequence identi ty and coded by the luxA and luxB genes, respectively. 

Four other genes are associated with the lux operon, luxC, D, and E (Baldwin et 

al., 1995, Hastings et al ., 1977, 1983, 1996, Meighen, 1994). 

A schematic of the lux operon used in the construction of Shkl and PM6 is 

shown in Figure 2.2., where there is a constitutive promoter upstream of the 5 lux 

genes, lu:xA and luxB code for a heterodimeric luciferase (mono-oxygenase ), luxC 

codes for a reductase, luxD codes for a transferase, and /u:xE codes for a 

synthetase (Nivens et al., 2004). luxC and /uxE code for polypeptides that are 

required for the conversion of fatty acids into the long-chain aldehyde required for 

the luminescent reaction. luxD brings carbon substrates from other metabol ic 

pathways to the l ight-producing reaction cycle. For chromosomal insertion, light 

levels are dependent on the insertion location of the plasmid and the intracellular 
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DNA constitutive 

Lipids 

I Trans/erase 

Myristoyl-ACP 

r 
.. 

Acetyl-CoA 

lux operon 

C D A B E 

Y /  
Synthetase/Reductase 

� 
Myrisitic Acid l Myristyl Aldehyde 

luciferase 

Light FMN 

Figure 2.2: The lux gene cassette and its associated products (adapted to this 

research from WERF project no. 0 l -WSM-2A, 2004). 
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FMNH2 and 02 levels. For plasmid insertions, the nature of the promoter can be 

control led more readily, but the light level sti ll depends on the 02 and FMNH2 

levels in the cell. The lux genes located on the plasmid used to construction PM6 

and Shk 1 are located dovmstream of a con stitutive plasmid maintenance promoter 

as shown in the figure, al lowing the production of light by expression of the lux 

genes without the addition of an inducer (WERF project no. 0 l -WSM-2A, 2004, 

Burlage et al., 1990). 

Oxygen, luciferase, aldehyde, and FMNH2 are the primary substances 

involved in the light-producing reactions. Mass transfer of the dissolved oxygen 

in the growth medium to the cel ls provides oxygen. The intracellular 

concentration of luciferase is dependent upon translation and transcription of the 

lux genes. Aldehyde is produced by the reduction of fatty acids, and FMNH2 is 

produced by biosynthesis and participates in the electron transport chain (Hastings 

et al. ,  1977, 1983,  1996). 

2. 1 . 1  Construction of Shk I and PM6 

Both Shk 1 and PM6 are bioluminescent Pseudomonads created by 

conjugal mating of naturally occurring wastewater treatment plant 

microorganisms with genetically engineered bioluminescent E. coli strains used to 

maintain a /za-containing plasmid, pUTK2. The source of the activated sludge 

used as a host strain for the creation of Shkl was the Eastman Chemical Company 
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(Kingsport, Tennessee) wastewater treatment plant (collected in April, 1 996); the 

bioluminescent transformant Shk l was obtained through generous donation from 

the Center for Environmental Biotechnology at the University of Tennessee. The 

source of the activated sludge for the creation of PM6 was the aeration basin of 

the Syracuse Metropolitan Area Wastewater Treatment Plant (METRO) in 

Syracuse, New York (WERF project no. 0 l -WSM-2A, 2004). As mentioned 

above, the activated sludge strains were mated with an engineered E. coli strain 

used to maintain the plasmid; the £. coli strain DH5 carries the bioluminescent 

genes on the plasmid pUTK2. 

Plasmids are self-replicating pieces of DNA not incorporated in the 

chromosomal DNA; the pUTK2 plasmid was created by conjugal mating of 

Alcaligenes strain AS (Shields et al ., 1985) with E. coli HB I O  1 (pUCD623), and 

subsequent mating with E. coli DH5 (Burlage et al ., 1 990). Thus, the strain of E. 

coli DH5 is the carrier for the plasmid pUTK2, which carries the entire 5 gene /u.r 

operon under the control of a constitutive promoter as well ac; a tetracycline­

resistance gene. 

By mating activated sludge microorganisms with E. coli DHS, the plasmid 

was taken up by some of the naturally-occurring activated sludge 

microorganisms. The bioluminescent transconjugant strains PM6 and Shk l were 

isolated on Pseudomonas isolation agar (to select against E. coli OHS) containing 

tetracycline (to select against natural strains that did not take up the plasmid). As 
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a result, the strains Shk 1 and PM6 are Pseudo monads that contain the lux genes 

on the pUTK.2 plasmid and therefore do not require an inducer to produce light. 

Strains created in this way produce light continuously during exponential growth 

and respond to toxicants in a "lights off" manner;· when a toxic compound is 

present in the environment of Shk 1 or PM6, light production is repressed. The 

exact mechanism of the repression is unknown but i s  probably related to a 

decrease in the intracellular level of FMNH2 as a general toxic response (Hastings 

et al., 1 985, Meighen, 1 991  ). 

2.2 Wastewater Treatment Systems 

There are four stages to wastewater treatment: primary, secondary, 

tertiary, and advanced (Metcalf et al ., 1 9 1 6). Not al l treatment plants incorporate 

process units to address each stage; some include only primary and secondary 

treatment for example. The activated sludge process is classified as a secondary 

treatment and has been used as treatment of both domestic and industrial 

wastewaters. Before entering the primary stage, the wastewater passes through a 

grit chamber where large solids are removed by sedimentation. During the 

primary stage, the wastewater is held for a few hours in the clarifier where solid 

particles are removed by sedimentation. After leaving this treatment tank, the 

wastewater enters the secondary treatment tank, where the activated sludge 

process takes place. Here the wastewater is combined with a mixture of mostly 
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aerobic bacteria and is aerated to promote heterotrophic aerobic metabolism. 

Most organic pollutants in the wastewater are biodegraded by the microorganisms 

and between 85 and 99% of the biochemical oxygen demand (BOD) i� removed. 

Additional removal of unwanted materials in wastewater can be achieved in 

tertiary and advanced treatment. 

2.3 Toxicity Test Protocols 

There are a variety of protocols that have been developed for testing 

toxicity. The most common protocols involve aquatic toxicity testing and are 

based on the fact that the response of living organisms that have been exposed t� 

toxicants depends on the concentration of the toxicant in the aqueous phase. 

Aquatic toxicity testing systems may be static, renewal, or flow-through. 

Static tests are composed of living organisms that are exposed to test materials in 

non-moving water, and there is no change of water for the duration of the test 

(Redmond et al., 1989). The renewal test is also conducted in non-moving water, 

but the test solutions and control water or media are renewed periodically by 

transferring the organisms to freshly prepared material (Benoit et al., 1 993 ). In 

the flow-through toxicity test, the test solution and control water or media are 

constantly flowing into and out of the container where the test organisms are kept 

(Bulich, 1979). 
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2.4 Methods for Wastewater Toxicity Assessment 

There are many existing methods that have been developed for wastewater 

toxicity assessment. These existing methods include chemical analysis, 

microscopic analysis, fish tests, microorganism-based non-microscopic methods 

including bioluminescence-based tests and respirometric inhibition methods. 

Online monitoring of influent toxicity for the purpose of avoiding biomass shock 

is seldom used, however, because existing toxicity methods (Ince et al., 1998, 

Kelly et al., 1 999) are difficult to adapt to continuous testing. 

Chemical analysis may include colorimetry and atomic adsorption for 

metals, and liquid or gas chromatography for organic compounds. Problems 

associated with chemical analysis by these methods include the complexity and 

uncertain identity of potential toxicants, high equipment and operating costs, and 

analysis times too slow for effective process control responses; a slow monitoring 

process does not leave sufficient time for flow diversion to temporary basins. 

Microscopic analysis is the visual inspection of the samples of activated 

sludge microorganisms taken from the aeration tank. Wastewater toxicity can 

sometimes be determined by the change in shape or observable characteristics of 

the microorganisms. The limitations for mic_roscopic analysis are the same as 

chemical analysis, in that the process is expensive, slow, and requires the 

expertise of trained personnel (Ince et al., 1998). 
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Fish have been used as test subjects because by definition, the mortality 

rate of fish i s  directly related to water.toxicity. Clesceri et al. ( 1 998) showed that 

there are a number of fish that can be used in toxicity tests, such as trout and 

minnows. The restrictions on this test are that the tests are again time-consuming 

and the results are dependent upon the size of the fish. Also, since fish are not 

native to activated sludge, the results of fish tests may not be useful for evaluating 

wastewater toxicity to activated sludge. 

Microorganism-based non-microscopic methods possess several 

advantages in wastewater toxicity testing over tests involving higher life forms, 

like the fish test. These advantages are convenient growing conditfons, a large 

number of test organisms, and small test organism size (Kustin and McLeod, 

1 977). A variety of microorganisms can be employed in these tests, such as 

bacteria, algae, phytoplankton, and yeast. These tests are based on the effect of 

toxicants on some observable characteristics of the microorganisms, including 

cellular growth, motility and chemoattraction, ATP level, intracellular protein 

formation, respiration rate, and bioluminescence. 

Respirometric inhibition is the most common method for testing 

wastewater toxicity to activated sludge (Love and Bott, 2004, Wong et al., 1 997) 

and is generally accepted as the standard to which other assay methods are 

compared. The oxygen consumption rate of activated sludge exposed to a 

wastewater sample is compared to a nontoxic control and EC5o values (50% 
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oxygen consumption reduction) evaluated. Toxicity is indicated by a decrease in 

respiration rate. 

·Another respirometry-based batchwise test used is the Polytox® test 

(Polybac Corporation, Bethlehem, PA). This test uses a freeze-dried blend of 1 2  

strains o f  organisms isolated from sludge cultures that are reconstituted in 

aqueous phase according to standard methods. These organi sms are then used to 

inoculate a reactor, where the oxygen uptake rate is measured and compared with 

results taken from a toxicant-free reactor. Other than the fact that the distribution 

of organisms used in the assay may be more consistent than those from a local 

wastewater treatment f�cil ity, the Polytox® test i s  essential ly an activated sludge 

respiration inhibition assay. 

There are many disadvantages to respiration inhibition methodology. The 

first is  that the warning of an influent disturbance does not directly identify the 

root of the problem. Respirometry can also take several minutes to provide 

sufficient information to confirm the influx of toxicity to a treatment system, 

possibly allowing ·a significant amount of toxicity to enter a plant before it is 

confinned. Also, some toxins can cause process performance problems at 

sublethal concentrations th�t do not significantly impede respiration rates but may 

lead to false negatives (Love and Bott, 2000). Iri addition, significant expense in 

t ime and money and operation difficulty are incurred with respiration inhibition 

assays (Slabbert, 1 988, Will iamson and Johnson, 1 98 1  ). These problems have 
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provided an impetus to the investigation into an inexpensive, simple and sensitive 

wastewater biomass activity monitoring system that would allow accurate 

predictions of the effect of influent toxicity on activated sludge wastewater 

treatment systems. 

Unlike respiration inhibition assays, the use of bioluminescent bacteria for 

toxicity measurements is relatively simple and rapid, it does not require the 

knowledge of the identity of the potential toxicants, and it can be used for online 

measurements (Girotti et al., 2002, Gu, et al ., 200 I ). Bio luminescent toxicity 

assessment methods include the use of naturally luminescent marine bacteria, 

from genera such as Photobacterium, Photorhabdus, and Vibrio, and bacteria that 

have been genetically engineered to produce bioluminescence, such as the two 

Pseudomonas strai�s (denoted �M6 and Shkl) generated by teams of researchers 

at the University of Tennessee and Syracuse Univers ity (WERF project no. 0I ­

WSM-2A, 2004, Kelly, 1999). 

The most thoroughly studied bioluminescence-based system is the 

Microtoxf) assay, which is marketed by Strategic Diagnostics, Inc. (Newark, DE) 

and used for aquatic toxicity testing (Gu, 2000). The microorganism used in this 

assay is Vibrio fischeri. Freeze-dried cultures are purchased and resuspended, as 

needed, us ing the reconstitution solution, diluent solution, and an osmotic 

adjustment solution, all provided by the manufacturer. The toxicity assay is 

perfonned by mixing the reconstituted cells with test material, and measuring the 
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luminescence in an analyzer. The MicrotoxOmni software sold for use with this 

analyzer can be used to calculate EC50 values using the reduction in light (Azur 

Environmental, 1999). 

The main problem with the Microtox® assay is that V. fischeri is extremely 

sensitive to many toxicants compared to other methods and as a result, the 

response to toxicants is different from the response of the activated sludge· 

microbial community. Also, they are less sensitive to some compounds to which 

activated sludge is very sensitive. More disadvantages include the inability of 

analysis of anaerobic samples without first aerating the sample, the inability of 

turbid samples to be processed without removing particles larger than 50 µm, a 

time consuming correction procedure required for colored samples, and the 

necessity of performing the analysis at neutral pH (Love and Bott, 2000). Care 

should be exercised in interpreting Microtox® toxicity data because the degree to 

which V. fischeri represents an activated sludge community may be low (Reteuna 

et al., 1986). Therefore, application of the Microtox® toxicity test as a 

preventative influent toxicity monitoring method for wastewater treatment plants 

is limited and thus suitability is in question for predicting the possible toxic 

effects of wastewater on activated sludge. In addition, each time a toxicity test is 

performed, the procedure for batchwise preparation of the cells has to be repeated, 

making it difficult to adapt it to continuous toxicity screen. 
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The disadvantages associated with present commercially available toxicity 

assays and the quick responses by bioluminescent bacteria to toxicants similar to 

that of the activated sludge microbial organisms lead researchers to believe that 

toxicity of wastewater can be accurately represented by assays performed using 

the genetically engineered bioluminescent bacteria described above. In the 

following sections, the ability of two engineered strains, PM6 and Shk l ,  to predict 

toxic effects to activated sludge as indicated by respiration inhibition is 

investigated. Also, various methods of implementing PM6 and Shk l in toxicity 

assays are studied to determine the most simple, effe�tive, and accurate assay 

procedure. 
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Chapter 3 Materials and Methods 

The parameters used to evaluate the accuracy and precision of  the different 

protocols were the repression of light at a fixed concentration of a specific 

toxicant (zinc) and the EC50 values for three toxicants (zinc, copper, and lead) in 

aqueous solutions. The ECso value is the sample concentration which inhibits the 

test organism light output by 50%. Different bioreporter storage methods were 

studied as we�l as different mixing strategies and temperature control at various 

periods during the perfonnance of an assay. The ECso values produced from the 

assays were compared to EC50 values determined using the Microtox® assay, 

published inhibition to activated sludge specific oxygen uptake rate (SOUR) data 

(Madoni et al . ,  1 999), and published ECso values for the Microtox� assay (Kaiser 

and Devi llers, 1 994 ). 

Figure 3 . 1  shows a flow chart describing the steps taken in the course of this 

thesis work. The steps start with the growth of the PM6 cells obtained from Drs. 

Kelly and Lajoie at Syracuse University (WERF project no. 0 1 -WSM-2A, 2004) 

and the Shk l cells obtained from the Center for Environmental Biotechnology at 

the University of Tennessee. This is followed by the storage of the cells grown, 

fol lowed by the activation of the cells. This is then fol lowed by measurement of 

the bioluminescence repression in the cells, measurement of time stability in each 
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Growth of frozen PM6 and Shk I cells 

PM6 and Shk l cell storage at 4°C and by lyophilization 

Activation of 4 °C PM6 
cel ls at l 5°C, room 

temperature, and 3O°C 

! 
Measurement of  BR at I 5°C, 
room temperature, and 3O°C 

! 
Measurement 

of  time 
stability at 

room 
temperature 

! 
Toxicity. assay 
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of EC so values 

Activation of 
lyophilized PM6 cells 
at room temperature 

Activation of 4°C Shk l 
cells at I 5°C, room 

temperature, and 30°C 

! 
Measurement of BR at I 5°C, 
room temperature, and 30°C 

Measurement of 
time stabi lity at 
I 5°C and 30°C 

Microtox(A) 

toxicity assay 
and calculation 
of EC so values 

! 
Measurement 

of time 
stabi lity at 

room 
temperature 

! 
Toxicity assay 
and calculation 
of EC so values 

Figure 3.1 :  Flow chart showing steps taken in this course of study. 
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strain, and finally the toxicity assays performed. The usefulness of the EC so 

values calculated is evaluated by comparing EC5o values determined using the 

Microtox® assay, published inhibition to activated sludge specific oxygen uptake 

rate (SOUR) data (Madoni et al., 1999), and published ECso values for the 

Microtox® assay (Kaiser and Devillers, 1994). 

3. 1 Generation of Stock Cultures 

A starter culture of PM6 was obtained from Ors. Kelly and Lajoie at 

Syracuse University (WERF project no. 01-WSM-2A, 2004 ). A starter culture of 

Shk 1 was obtained from the culture collection of the Center for Environmental 

Biotechnology at the University of Tennessee. The gro\\-1h medium used for both 

PM6 and Shkl used throughout this research was Difeo nutrient broth (NB) 

obtained from Fisher Scientific (Atlanta, GA). 

Frozen cell suspension cultures of PM6 and Shk I were thawed and 20 µL 

of cell suspension of each strain was inoculated into I 00 mL sterile room 

temperature NB amended with 10 mg tetracycline/L. The tetracycline was added 

between I and 2 hours after inoculation to avoid a potentially long lag phase 

before the antibiotic resistant genes have adequate time to be expressed. Cells 

were grown in an incubator (Classic C24 Incubator Shaker, New Brunswick 

Scientific, Edison, NJ) at 200 rpm and 30°C. Every hour the optical density (OD) 

in each culture was measured using a Beckman DU 520 general purpose 
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laboratory UV /vis spectrophotometer at a wavelength of 600nm (Beckman 

Coulter Inc., Fullerton, CA), and the bioluminescence was measured using a 

luminometer (Sirius FB 1 5  2C Single Tube Luminometer, Zylux Corporation, Oak 

Ridge, TN). When the OD600 in each cell culture reached 1 .0, 1 5% (w/v) glycerol 

was added for freezing at -80°C. These tubes formed the base stock for all 

subsequent experiments. 

3.2 Cell Storage 

Each subsequent culture for use in toxicity assays was started by thawing 

the frozen cultures from the base stock and inoculating 20 µL of the thawed cell 

suspension into 1 00 mL sterile NB amended with I O  mg tetracycline/L as noted 

above. Cells were grown in an incubator at 200 rpm and 30 °C until the 00600 

reached 1 .0. Cells were then stored either by placing the growth flask in a 

refrigerator at 4°C or by lyophilizing the cells, as described below. 

3 .2. 1 Cells stored at 4
°
C 

Cell cultures were grown using the procedure given in section 3.2. When 

the OD600 reached 1 .0, each flask containing Shk I and PM6 cells was removed 

from the incubator and stored in a refrigerator at 4°C for approximately ten hours 

as was done in Lajoie et al. (2002). 
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3 .2.2 Lyophi l ized cel ls  

Cell cultures were gmwn from frozen base stock using the procedure 

given in section 3.2. When the OD6oo reached 1 .0, a I 000 µL aliquot was 

transferred into each of 1 8  1 .5 mL microcentrifuge tubes and centrifuged at 

1 4,000 x g for 8 minutes (Eppendorf Centrifuge 541 5C, Brinkman Instruments, 

Inc., Westbury, NY). The supernatant was then carefully removed from the pellet 

and discarded. The tubes were placed into a 600 mL Labconco flask and attached 

to a Labconco Freezone® 6 Liter Freezer Dry System (Labconco Corp., Kansas, 

MO) for approximately 8 hours to remove any remaining liquid from the pellets. 

After the 8 hours, the microcentrifuge tubes were capped and placed in a freezer 

at -20°C. Each 1.5 mL tube contained a small pellet of dried cel ls (app. 3 mg) at 

the bottom of the tube at the end of the lyophilization process. 

3.3 Cell Activation 

Cel ls stored at 4°C and lyophilized cells were activated for 20 minutes 

before the toxicity assay was performed. Activation is the period of time after 

cel ls are stored when they are combined with fresh nutrient broth and brought to a 

specified temperature (see also Figure 3. 1 ). 
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3 .3 . 1 Activation of cel ls stored at 4°C 

During the activation period, the temperature of both PM6 and Shk 1 cells 

that were stored at 4°C was either controlled at 1 5°C or 3O°C or left uncontrolled 

at room temperature (approximately 27°C). The activation procedure was based 

on a protocol published by Lajoie et al. (2002) and adapted to this work. The two 

controlled activation temperatures ( 1 5°C or 30°C) and the uncontrolled (room) 

temperature were paired with the same temperatures at which a model toxicity test 

was perfonned to form a total of 7 experiments. In each of these seven, 10  µL of 

P M6 or Shk 1 cells w� added to I 000 µL of sterile NB in a 1 .5 mL 

microcentrifuge tube and the solution was allowed to rest for 20 minutes (the 

period referred to as activation) after which the model toxicant (zinc) was added. 

The only difference between the experiments was the activation and toxicity 

testing temperatures ( l  5°C and 30°C, and room temperature). The NB solution to 

which the cells were added for activation was maintained at either 1 5°C or 30°C 

or left uncontrolled at room temperature both before the 10 µL addition of the cell 

inoculum and for the 20 minute rest period. After the activation period, the 

toxicant was added and the temperature was maintained at either I 5°C or 30°C or 

left uncontrolled at room temperature. The activation (TCaa) and toxicity testing 

(TC10x) temperatures were combined to form the following set of seven 

experimental conditions: 

1 .  TCac1 controlled at 30°C, TC10x uncontrolled (room temp). 
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2. TCact controlled at l 5°C, TC10" uncontrolled (room temp.). 

3 .  TCact uncontrolled (room temp.), TC1ox controlled at 3O°C. 

4. TCact uncontrolled (room temp.), TC1ox controlled at 1 5°C. 

5. TCact and TC1ox both controlled at 3O°C. 

6. TCact and TC1ox both controlled at l 5°C. 

7. TCact and TC10'.'( both uncontrolled (room temp.). 

3 .3 .2 Activation of lyophilized cells 

Lyophi lized cells were removed from _the -2O°C freezer, and activated by 

adding I 000 µL of either sterile l 5°C NB or sterile room temperature NB to the 

1 .5 mL microcentrifuge tubes. The tubes were the11: incubated for 20 minutes at 

room temperature or l 5°C and the light level monitored to study the variability in 

the light level during the i ncubation period. 

In addition to the procedure described above, cells were mixed using a 

Vortex Genie vortex mixer (Model K-55O-G, Scientific Industries, Inc., Bohemia, 

NY) for 2 seconds prior to each luminescence measurement. Toxicity assays 

were not performed using lyophilized cells. 
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3.4 Effect of Temperature Control on the Variabil ity of 

Bioluminescence Repression and r 

A 6 ppm solution of the model toxicant zinc (as the ion Zn2+) was 

prepared by diluting a 50 ppm ZnCh stock solution. 1 00 µL of the 6 ppm Zn2+ 

solution and 1 70 µL of DI water were added to 1 2x75 mm Fisherbrand disposab)e 

culture tubes, followed by 30  µL of cel l culture (after activation, see Section 

3 .3 . 1 ). This gave samples with a final Zn2+ concentration  of 2 ppm. 

Bioluminescence was measured at 0 minutes (immediately after the toxicant was 

added) and at 7 minutes; bioluminescence repression (BR) and r were calculated 

by using the equations (3 . 1 )  and (3.3) respectively. The light intensity was 

corrected through the use of a control (0 ppm toxicant) sample. This correction 

factor (Rt) was used to compensate for the tendency of the light level of PM6 and 

Shk 1 to increase or decrease even in the absence of a toxicant. The correction 

factor Rt as well as BR and r are defined i n  equation 3 . 1 -3.3: 

BR = �  (3. 1 )  
/o., 

� = I,c 

Inc 

(3.2) 

r = <R. > - 1  
' BR 

(3.3) 
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where: 

115 = l ight intensity of sample at 7 minutes 

105 = initial (t=O) l ight intensity of sample 

11c = l ight intensity of control at 7 minutes 

loc = initial (t=O) l ight intensity of control 

BR and r1 were detennined from experiments where the temperature of 

the sterile NB and cell mixture was controlled at either 1 5°C or 30°C or left 

uncontrolled at room temperature, to detennine if temperature should be a 

controlled variable. I 5°C was chosen because thi s  i s  the temperature at which the 

Microtox® Acute Toxicity Assay is  perfonned, and the means of controlling the 

samples at this temperature was therefore available in the laboratory. 30°C was 

chosen because it i s  s lightly above room temperature and the vials of NB could be 

reproducibly maintained at this temperature using a heated water bath. The 

decision of whether temperature should be a controlled variable was determined 

by measuring r in each experiment and comparing its variance and coefficient of 

variation. 

The light level produced by each strain of cells needs to be fairly constant 

to perform a toxicity assay; if the baseline (control) is subject to a large standard 

deviation and if it varies significantly during the assay time, it wil l  be a poor 
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control and the toxicity assay will be imprecise. In order to detennine when the 

light level in each strain of cells was sufficiently constant, the J ight intensity of 

each sample was measured for 30 minutes at 2 minute intervals. Standard 

deviations of the appropriate variables (BR and r) were determined from the 

multiple measurements, and are indicated by vertical error bars in the figures. 

The luminometer was set to report light intensity in relative light units, or RLUs 

where I RLU = I photons.ls measured by the detector. 

3.5 Time Stability of PM6 and Shkl  Luminescence 

3 .5 . 1  Non-mixed cells 

PM6 and Shk I cells stored at 4 °C were activated using room temperature 

sterile NB and the light level was measured for 30 minutes at 2 minute intervals, 

without mi�ing the cells. Lyophilized cells were activated using both room 

temperature sterile NB and by controlling the temperature of the sterile NB at 

l 5°
C to study the effect of activation temperature. After 20 minutes activation, 

the light level was measured again without mixing the cells. 

3 .5 .2 Mixed cells 

In addition to the time stability of the light level of PM6 and Shk I non­

mixed cells, time stability of PM6 and Shkl luminescence was measured for 
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mixed ce!ls. Cells were activated using room temperature NB and the lyophilized 

cells using both room temperature sterile NB and l 5°C sterile NB were mixed 

using a vortex mixer for 2 seconds prior to each luminescence measurement. 

3.6 Determination of EC50 Values 

3 .6. 1 Toxicity assays for cells stored at 4°C 

Stock solutions of the salts of the three metals (zinc chloride (ZnCh), 

copper chloride (CuCh), and lead chloride (PbCh)) were prepared and a series of 

dilutions performed to achieve desired concentrations. 100 µL �f each dilution 

and 1 70 µL of DI water were added to 1 2x75 mm Fisherbrand disposable culture 

tubes, followed by 30 µL of cell culture (after activation). The final 

concentrations (the concentrations in the tubes after the final dilution) in the six 

samples for the toxicity assay for each heavy metal were as follows: 0, 0.4, 0. 8, 

1 .2, 1.6, and 2 ppm for Zn2+ (using a 50 ppm stock solution of ZnCh), 0, 5 .5, 7.0, 

8.7, 1 0.2, and 1 1 .8 ppm for Cu2+ (using a 50 ppm stock solution of CuCh), and 0, 

3 1 .03, 43.44, 55.85, 68.26, and 80.68 ppm for Pb2+ (using a 500 ·ppm stock 

solution of PbCh). The temperature of all solutions before inocuiation, during 

activation, and during exposure to the toxicants was the ambient room 

temperature (approximately 27°C) and was not controlled. BR and r were 
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calculated by equations (3. l )  and (3.3), respectively. EC50 values were calculated 

by generating a plot of log r values vs. log concentrations. 

Bay et al. ( 1989) predict a power curve relationship between concentration 

and response when life fonns are exposed to toxic chemicals, where response is 

measured as a ratio of activity lost to activity remaining. A log-log 

transfonnation would therefore be linear, making linear regression useful for 

characterizing toxic effects. The resulting linear equation, described in equations 

3.4-3.6, was used to predict the ECso values of each of the toxicants. Thi s  was 

done by setting In r, equal t� zero in equation 3.6. and solving for ln(c). The 

exponential of c is therefore the ECso value for the particular toxicant. 

b = })n(r, ) - m  �)n(c, ) 

ln l\ = m(ln(c)) +b 

where: 

(c,, ri> = set of each concentration and paired r value 
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(ln(c;), l n(f;)) = the natural log of the set of each concentration and paired r 

values 

f; = fitted r values 

m = slope defined in equation '3 .6 

b = intercept defined in equation 3 .6 

n = number of data points 

C = concentration values 

The quality of the equation fit to the data is indicated by the R2 value. 

This is used to measure the strength of the association between the two variables. 

This value is the fraction of the total squared error that is explained by the model. . .  

The fonnula used �o calculate this value is: 

where: 

" 
A 2 

2 
L.J (In r, - In r, ) 

R = 1 - _ 
L<ln r, - ln f)

2 

r = average of all calculated r values 
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The closer the R2 value is to unity, the better the fit of the equation to the 

data, meaning the larger proportion of variance in one variable that can be 

explained from knowledge of the second variable. 

The 95% confidence intervals for the ECso value from each regression 

were calculated using equations adapted to the Microtox® assay (Draper and 

Smith, 1 98 1  ). These equations are: 

� (I )2 (LWn c)r )
2 / 

� n c -
/ � 2 

S2 =  �r 

where: 

r o = the f corresponding to the EC so 

In r 0
= the mean of In (f) values 

N - 2  

N = the number o f  data pairs used for regression 

S = residual variance 

CF = confidence factor 

y = ln (f;) - ln fa 
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The product of CF and t.os (from t table, Walpole et al . ,  1 998) is added to 

and subtracted from In C0 to give the natural logs of the higher and lower 95% 

confidence limits on C0• The exponential is then taken of In C0 and its confidence 

limits. This interval is the expected deviation around each EC5o value calculated. 

Another confidence interval was calculated by col lecting all EC50 values 

for all repl icates on all days. This interval represents the expected deviation 

around the reported EC5o value accounting for daily variations in temperature, 

technique, etc. and is given in equation 3 . 1 1 .  

" (x -xi 
s = L---' -­

i-1 n - 1  

CI = X ± (t
0
, )(j

.Jn
> 

where: 

s = standard deviation 

x; = each ECso value calculated 

x =  mean of EC5o values 

n = number of data points used 

CI = confidence interval 
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t .os = value from t table (Walpole et al., 1998) 

Toxicity assays were randomized by perfonning the assay in triplicate on 

the same day over a span of several hours and repeating this process over a span 

of five days. Assays were perfonned on day I ,  3 and 5 with day I representing 

the day after the cells were stored at 4°C. The cells were stored in the evening of 

one day and assays perfonned the following morning so day I represents the 

elapsed time after storage of about I O  hours. 

3.6.2 Microtox toxicity assays 

Experiments were also run using the Microtox® Acute Test on a Microbics 

M500 Analyzer (Microtox®, Strategic Diagnostics, Inc. , Newark, DE) to 

determine ECso values for Zn2+, Cu2+ and Pb2+. 50 ppm stock solutions of the 

salts ZnCh and CuCh and a 500 ppm stock solution of the salt PbCh were made 

and used in these experiments. First, ten Microtox� cuvettes were placed in wells 

A I through 85 in the analyzer (see Figure 3.2). Then, 1.5 mL aliquots of 

Microtox• diluent were dispensed into two 12x75mm Fisherbrand disposable 

culture tubes and placed in arbitrarily chosen wells E3 and E4 (see Figure 3.2) for 

five minutes to bring the temperature of the diluent down to l 5°C, which is 

controlled by the analyzer. Then, two Microtox® SOLO reagent vials were taken 

out of the -20°C freezer and each vial reconstituted using the 1 .5 mL Microtox• 
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0 .. ..;--- "Read" well 

Figure 3.2 : The setup of the Microbics M500 Analyzer. 
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diluent in wells EJ and E4 according to the manufacturer's specifications. The 

two tubes (E3 and E4) were then combined into one, and 500 µL of the combined 

reagent was added to each of five Microtox® cuvettes, in wells 8 I through 85 

(see Figure 3.2) and let sit for 15 minutes. _ 1000 µL of Microtox® diluent was then 

added to each of four Microtox• cuvettes, in wells A I through A4. 2500 µL of 50 

ppm ZnCh was added to cuvette A5 along with 250 µL Microtox® osmotic 

adjusting solution (MOAS) using a I 000 µL pipettor and was mixed by filling and 

dispensing the pipettor 2-3 times. 1 000 µL of AS was then pipetted into A4 and 

mixed using the pipettor. I 000 µL of A4 was pipetted into A3 and mixed using 

the pipettor, and I 000 µL of A3 was pipetted into A2 and mixed using the 

pipettor. 1 000 µL was discarded from A2 and 750 µL discarded from AS. The 

toxicant was allowed to sit for 5 minutes for temperature equilibration. After the 

fifteen minutes required for reagent light level stabilization, vial 8 I was placed in 

the "read" well (Figure 3.2) and the "set" button pushed to set the analyzer so the 

light level in each cuvette read is expressed relative to that in B I .  A reading of 

I 00 on subsequent samples indicates the light level is equal to the original light 

level in 8 I .  Each of the five cuvettes, B I  through B5 should therefore read 

approximately 100 before the toxicant is added. The Microtox• Basic Test timing 

program on the computer connected to the analyzer was started and cuvettes Bl  

through B5 placed in  the read well and the light level measured when prompted. 

Then, 500 µL of Al  was pipetted into B l ,  A2 into 82, on through to A5, B5. 
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After 5 minutes, cuvettes B 1' through B5 were read again when prompted by the 

timing program. The ECso values were then calculated. This experiment was 

then performed again using a 50 ppm solution of CuCh and a 500 ppm solution of 

PbCh. The results were then compared with the ECso values detennined from the 

Shk 1 assays, PM6 assays, SOUR (M_adoni et al ., 1999), and the literature data for 

Microtox® (Kaiser and Devillers, 1994). 
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Chapter 4 Results and Discussion 

The commercially available assays for testing wastewater toxicity and 

determining measured EC50 values for specific toxicants are expensive, time 

consuming, and in some cases require knowing the identity of the toxicants. This 

research has been dedicated to finding an alternative to the present commercially 

available assays while keeping the cost low, requiring no previous knowledge of 

the toxicants, and not requiring a lot of time to perform the assay. 

Several experiments w�re conducted to determine the efficacy of 

measuring ECso values using Shkl and PM6. Results were compared to ECso 

values determined from the Microtox® assay, published inhibition to activated 

sludge specific oxygen uptake rate (SOUR) data (Madoni et al., 1 999), and 

published ECso values for Microtox® (Kaiser and Devillers, 1 994). Experiments 

were performed using aqueous solutions of zinc chloride, copper(II) chloride, and 

lead(II) chloride. EC50 values for Zn2+, Cu2+, and Pb2+ were calculated based on 

the experimental data. These three metals were chosen because they represent 

some of the materials for which the EPA requires testing in wastewater. 

There were some experiments where the concentration of the toxicant was 

either too low or too high to yield meaningful data; these experiments did not 

produce an EC5o value because the bioluminescence repression was either greater 
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than 1.0 (bioluminescence increased leading to a negative r value) or so high the 

log of the r values did not span zero. EC50 values cannot be calculated with 

negative r values because the log of r is n_eeded to calculate the EC so values and 

the log of a negative number is undefined. Therefore, for the purpose of this 

thesis, the data from these experiments was discarded and is not shown. 

4. 1 Effects of Temperature Control and PM6 and Shkl 

Bioluminescence Repression 

Biolwninescence repression (BR) and r (equations 3 . 1 and 3 .2) were the 

dependent variables chosen for PM6 and Shk 1 cells to determine when and if 

temperature should be controlled during toxicity testing with these cells. BR was 

calculated because it is used to calculate r, and r is used to determine the EC50 

value. There were two opportunities for temperature control in the assays being 

developed in this study, during "activation" of the stored (refrigerated) cells and 

during toxicity testing ( exposure to toxicant). The purpose of the set of 

experiments described in this section was to determine if temperature control at 

various assay points would lead to better assay accuracy as indicated by the 

standard deviation and coefficient of variance in r and BR. 

Cells were activated and the toxicity testing performed according to the 

method of Lajoie et al. (2002). This method specifies that the cells stored at 4°C 
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be activated by inoculating 1 0  µL into 1000 µL of sterile NB and letting the 

solution rest for 20 minutes; th is stage is ref erred to as the activation stage. After 

20 minutes, 30 µL of activated cells were injected into 270 µL of the test media 

for a contact time of seven minutes. This stage is ref erred to as the toxicity 

testing  stage. Temperature control at either l 5°C, room temperature, .or 30°C was 

investigated during activation (TCac,), during toxicity testing (TC10x), during both 

(TCboth), or not at all (TCnone)- l 5°C was chosen because that is the temperature at 

which the Microtox toxicity assay is conducted and 30°C was chosen because it is 

sl ightly above room temperature (27°C) and can be controlled by a heated water 

bath. Figure 4. 1 shows the average BR and standard deviation for the r values 

determined during the temperature control at different steps of the assay for PM6. 

BR was measured after seven minutes exposure time and the average and standard 

deviation of the 36 replicates was calculated for each experiment. There is a 

significant difference in the averages of the means, as they range from 0.942 to 

1 0.02 for the PM6 experiments performed at 15°C (see Tables 4. 1 and 4.2) and 

range from 4.05 to 10.02 for the PM6 experiments performed at 30°C (see Tables 

4.3 and 4.4). There is also a difference in  the standard deviations (based on 36 

replicates performed as 4 replicates each day on 3 different days from 3 different 

frozen culture tubes) as they range from 1 . 1 7  to 6.3 1 for the PM6 experiments 

perfonned at 1 5°C (see Tables 4. 1 and 4.2) �d range from 4.04 to 1 1 .48 for the 

PM6 experiments performed at 30°C (see Tables 4.3 and 4.4). However, when 
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Figure 4. 1 :  Average BR and standard deviation for r at the temperatures at which 
assays were controlled for PM6. 
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Table 4. 1: Calculated BR values with temperature control at different steps 
during the assay for PM6 at I 5°C. 

PM6 BR- 15  degrees Celcius 
BR-TCnonc BR-TCac/ BR-TC1oxi. BR-TCboth

j 

Var 0.0 1 2  0.086 0. 1 73 0. 1 39 
Stdev 0. 1 1 1  0.293 0.4 1 5  0.373 
Mean 0. 1 82 0.507 0.680 0.836 
cov 0.607 0.577 0.6 1 1 0.446 

Where: ( 1 )  Temperature control led during activation step alone. 
(2) Temperature controlJed during toxicity testing alone. 
(3) Temperature control led during both activation step and during toxicity 

testing. 

Table 4.2: Calculated r values with temperature control _at different steps 
during the assay for PM6 at 1 5°C. 

PM6 f- 1 5  degrees Celcius 
f-TCnonc f-TCact f-TC,ox f-TCboth 

Var 25.2 39.8 28. 1 1 .36 
Stdev 5.02 6.3 1 5.30 1 . 1 7  
Mean 10.0 3.22 4.39 0.942 
cov 0.50 1 1 .96 1 .2 1  1 .24 

Table 4.3: Calculated BR values with temperature control at different steps 
during th� assay for PM6 at 30°C. 

PM6 BR-30 degrees Celcius 
BR-TCnonc BR-TCact BR-TCtox BR-TCboth 

Var 0.0 1 2  0. 1 42 0.004 0. 1 1 5 
Stdev 0. 1 1 1  0.377 0.064 0.339 
Mean 0. 1 82 0.800 0. 1 30 0.480 
COY 0.607 0.473 0.492 0.706 
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Table 4.4: Calculated r values with temperature control at d ifferent steps during 
the assay for PM6 at 30°C. 

PM6 r -30 degrees Celcius 
r-TCnonc f-TCact r-TC,o" f-TCboth 

Var 25.2 28 .3 22.9 1 3 .0 
Stdev 5.02 5.32 4.78 - 3.60 
Mean 10.0 4.74 1 1 .5 4.05 
cov 0.501 1 . 1 2  0.4 1 7  0.890 

the coefficient of variation (COV) is calculated (which is the standard deviation 

normalized by the mean), the differences between the assays (as indicated by the 

range of COV values) is much smaller. The COV values range from 0.50 1 to 

1 .96 for the PM6 experiments performed at l 5°C (see Tables 4 . 1 and 4.2) and 

range from 0.50 1 to 1 . 1 2  for PM6 experiments performed at 30°C (see Tables 4.3 

and 4.4), with the smallest COV recorded for r when no temperature control at all 

was used. The degree to which the errors in the assays are indistinguishable can 

also be judged by examining the error bars (which are drawn two standard 

deviations long, centered on the mean) in Figure 4. 1 ;  the error bars overlap for all 

four pennutations of the assay at each temperature. For these reasons, it was 

judged that use of temperature control for PM6 during activation and/or toxicity 

testing does not improve the accuracy of the assay and there is no benefit in  

controlling the temperature for PM6 toxicity assays. 

Figure 4.2 shows the average BR and standard deviation for the r values 

determined during the temperature control at different steps of the assay for Shk l . 
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BR was measured after seven minutes exposure tim e  and the average and standard 

deviation of 36 replicates (chosen as discussed above) was calculated for each 

experiment. As for PM6, there is a significant differen�e in the averages of the 

means, as they range from 1.59 to 8.44 for the Shk I experiments performed at 

15°C (see Tables 4.5 and 4.6) and range from 3.76 to 8.24 for th e Shk l 

experi ments performed at 30
°
C (see Tables 4.7 and 4.8). There is also a 

difference in the standard deviations as they range from 1.05 to 5 .14 for the Shk I 

experiments performed at I 5°
C (see Tables 4.5 and 4.6) a nd range from 3.67 to 

8.7 1 for the Shkl experiments performed at 30°C (see Tables 4.7 and 4.8). 
. . 

However, when the COV is calculated for Shkl as was done for PM6 above, the 

difference between the assays is again much smaller; the COV values range from 

0.450 to 1.02 for the Shkl experiments performed at I 5°
C (see Tables 4.5 and 

4.6) and range from 0.877 to 1.49 for the Shk I experiments performed at 30
°
C 

see Tables 4. 7 and 4.8). Examining the standard deviations and means in Figure 

4 .2, it is again observed that the error bars overlap in nearly all cases, the 

exception being the two cases where temperature was controlled either during 

activation alone or during toxicity testing alone for Shk I at_ I 5°C. However, in 

this case, the error bars are very close to overlapping each other. Based on the 

above observations, it was judged that temperature control does not improve the 

assay accuracy when Shk I is used, as was the case for PM6. 
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Table 4.5: Calculated BR values with temperature control at different steps 
during the assay for Shk 1 at l 5°C.  

Shk l BR- 15  degrees Celcius 
BR-TCnonc BR-TCact BR-TC10" BR-TCboth 

Var 0.044 0.008 0.028 0.0 1 4  
Stdev 0.209 0.088 0. 1 66 0. 1 1 9 
Mean 0.390 0. 1 46 0.559 0.32 1  
cov 0.534 0.606 0.297 0.370 

Table 4.6: Calculated r values with temperature control at different steps during 
the assay for Shk 1 at 1 5°C. 

Shk l r - 1 5 degrees Celcius 
f-TCnonc r-TCact r-TCtox r-TCboth 

Var 1 4 .8 26.4 1 .94 1 . 1 0  

Stdev 3 .85 5. 14  1 .39 1 .05 
Mean 3.76 8.44 1 .59 2.33 
cov 1 .02 0.609 0�876 0.450 

Table 4.7: Calculated BR values with temperature control at different steps 
during the assay for Shk 1 at 30°C. 

Shkl BR-30 degrees Celcius 
BR-TCnonc BR-TCact BR-TCtox BR-TCoo,h 

Var 0.044 0.347 0.023 0.093 
Stdev 0.209 0.589 0. 1 5 1  0.305 
Mean 0.390 0.872 0. 1 76 0.392 
cov 0.534 0.675 0.86 1 0.779 
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Table 4.8 : Calculated r values with temperature control at d ifferent steps during 
the assay for Shk 1 at 30°C. 

Shk l r -30 degrees Celcius 
f-TCnonc f-TCact f-TCtox r-rcbolh 

Var 1 4.8 50.6 75.9 1 3 .5 
Stdev 3 .85 7. 1 1  8.7 1 3 .67 
Mean 3 .76 4.77 8.24 4.18  
cov 1 .02 1 .49 1 .06 0.877 

4.2 Time .Stability of PM.6 and Shkl Luminescence 

The time stabil ity of the l ight output of both strains was tested to 

determine if and when the light level after activation of each strain of cells was 

fairly constant because if the baseline (control) is subject to a large standard 

devi�tion, it will be a very poor control and the toxicity assay wil l  be imprecise. 

Also, the effect of mixing was studied to determine if this would lead to a more 

stable light level. As noted earl ier, oxygen dissolved in the media is needed by 

the light-producing reaction and mixing would affect the dissolved oxygen level 

in the samples. 

As shown in section 4. 1 ,  there was no reason to control temperature during 
. l 

toxicity testing for cells stored at 4°C at room temperatures around 27°C because 

temperature control does not lead to more accurate BR or r values for PM6 or 

Shk 1 .  Therefore, temperature was not controlled in further experiments for the 

cells stored at 4°C; experiments were simply conducted at room temperature. 
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Luminescence for PM6 and Shk 1 cells that were not mixed prior to luminescence 

measurement was measured after activating 10  µL of the cells stored at 4°C with 

I 000 µL of room temperature sterile NB. Lyophilized cel l s  were activated using 

1 000 µL of both room temperature sterile NB and 1 5°C steri le NB because it was 

unknown how the lyophilized cells would react to the different temperatures. 

PM6 and Shkl cells that were mixed were done so by using a Vortex Genie 

vortex mixer (Model K-550-G, Scientific Industries, Inc., Bohemia, NY) for two 

seconds immediately prior to luminescence measurement. The light level was 

measured for �th the cells  stored at 4°C and the lyophilized cells, with and 

without mixing, for thirty minutes at two minute intervals as described in  section 

3 .4. Activation for longer than 30 minutes was not considered because longer 

activation times make the assay less convenient; the Microtox® Acute Toxicity 

Assay uses an activation time of 1 5  minutes. Figures 4.3 - 4.6 display the 

luminescence of each strain Shk 1 ,  PM6 and lyophilized PM6 as a function of 

time . . The optimal time to conduct the toxicity assay would be when the light 

level of the cells is fairly constant for at least 7 minutes; a standard exposure time 

of 7 minutes was set by Lajoie et al. (2002) to obtain reproducible results from 

toxicity assays. Error bars are shown in all non-mixed and mixed cells, PM6 cells 

stored at 4°C and activated at room temperature, Shk 1 cel ls stored at 4°C and 

activated at room temperature, lyophilized PM6 cells activated at 1 5°C, and 
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cells were placed on the vortex mixer for two seconds prior to 
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lyophilized PM6 cells activated at room temperature. The error bars indicate the 

standard deviations of six replicates that were performed on one day. 

Figure 4.3 displays the bioluminescence of mixed and non-mixed PM6 

cells that were stored at 4°C and activated at room temperature.- The results show 

that between 0 minutes (immediately after the cells were activated) and 30 

minutes the luminescence of non-mixed PM6 cells steadily increases between 0 

minutes and 30 minutes from l x l 05 RLU to approximately 6x l 05 RLU. Although 

the light level of the PM6 cells does not approach a plateau, assays were 

conducted after 20 minutes activation so that the toxicity assay is performed 

within 30 minutes for convenience. The cells that were mixed by the vortex 

mix�r two seconds immediately prior to luminescence measurement display a 

steady increase in luminescence from 0 minutes to 20 minutes, followed by the 

leveling out of the light level at 4.0x 1 05 RLU (see Figure 4.3). The standard 

deviations of the light level of both the cells that were not mixed and those that 

were mixed are approximate]y the same. Although the mixed cells di_splay a 

lower luminescence than· the non-mixed cells, there is only a slight difference. 

The mixed cells also follow data reported by Lajoie et al. (2002) in which 

luminescence plateaus after 20 minutes. The standard deviations of mixed cells 

and non-mixed cells are also comparable; therefore mixed PM6 cells would be a 

plausible option to perform toxicity assays. While mixing seemed to have a 
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beneficial effect in  this particular experiment, other assay results to follow do not 

indicate mixing led to a more stable light level. Therefore, in  the interest of 

finding a uniform assay procedure for both strains, mixing was not used with the 

PM6 toxicity tests discussed below (section 4.3). 

Figure 4.4 displays the bioluminescence of mixed and non-mixed Shk 1 

cel ls that were stored at 4°C and activated at room temperature. The results show 

that between O m inutes (immediately after cel ls were activated) and 30 minutes 

the luminescence of Shk 1 cell s  steadily increases from I x  I 05
· RLU to 1 x 1 06 RLU. 

Although the luminescence of Shk 1 cells does not level off, but increases steadily, 

assays were stil l  performed between io minutes and 27 minutes afte� activation 

according to the protocol published by Lajoie et al. (2002). The cells that were 

mixed by the vortex mixer two seconds immediately prior to luminescence 

measurement generally display the same characteristics as those that were not 

mixed, a steady increase in luminescence from O minutes to 30 minutes, and the 

standard deviations of both the mixed cell s  and the non-mixed cells were similar. 

There is a small difference in the luminescence of mixed cel l s  and non-mixed 

cells, with the non-mixed cell s  displaying lower light levels. Mixed Shk 1 cells 

would therefore be an option to perform toxicity assays; however since both the 

mixed cells and the non-mixed cells steadily increase in luminescence from 0 

minutes to 30 minutes and the standard deviations of both are approximately the 

same, mixed cell s  were not used for toxicity assays. 
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The data reported here does not appear to agree with that reported in the 

study performed by Lajoie et al. (2002). Lajoie et al. state �hat _ _ Jhe 

"bioluminescence increased rapidly (minutes) after inoculation:' and "continued to 

increase for the first 20 min, and then remained at a fairly ���ady value for up to 

2 h before beginning to increase again". The data reported h�re indicates that the 

bioluminescence i�creases steadily from O minutes tQ 30 !lli��!_es and does not 

reach the plateau indicated by Lajoie et al. at 20 minutes. H_?�ever, Lajoie et al. 

do not actually show the light levels and only describe this p�e_nomenon so it is 
.· .. �• 

. -

not possible to judge to what extent a plateau was reached in:_tbeir work. 
·-

However, if a pronounced plateau was present as was implied in the work of. 

Lajoie et al., this may be because the Shk I cells used in the st®Y performed by 

Lajoie et al. were stored at 4°C for longer than the Shk 1 �ells-used in this study. 

The Shk I cells used in the study performed by Lajoie et al. · ��re stored at 4 °C 

anywhere from I day to 40 days, and the Shk I cell s  used in this time stabil ity 

study were stored at 4 °C overnight ( approximately I O  hours). There may be other 

differences between the assays (e.g., a variation in room tempe�ature that leads to 

. -:. -.. � 

an unexpected difference between the two studies), but otherthan these possible 

explanations, it is impossible to say definitively what is the cause of the difference 

between the two studies based solely on this data. 

Figure 4.5 displays the bioluminescence of lyophilized mixed and non-

mixed PM6 cells that were activated at 1 5°C. The results show that between O 
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minutes (immediately after cells were activated) and 30 minutes the luminescence 

of  lyophilized cells that were not mixed fi rst increases between O minutes and I O  

minutes from 3x1 04 RLU and 6.5x l 04 RLU. In contrast to the cells stored at 4°C 

(see Figure 4.3), the luminescence then decreases from I O  minutes to 30 minutes. 

Also, as shown in Figure 4.5, each measurement of the luminescence of 

lyophilized PM6 cells between O minutes and 30 minutes that were activated at 

I 5°
C is at least an order of magnitude smaller than each luminescence 

measurement of the cells stored at 4°C. Although there is a significant difference 

in the magnitude of the light level emitted by the cells, light levels-on the order of 

I 04 are probably feasible for a successful assay (although more light is always 

preferred); the instrument background (no light) reading is usually around I 02• 

Comparing the PM6 4°C and lyophilized cells, the COV for lyophilized PM6 

cells activated at 1 5°C at 20 minutes is approximately 0.74 while t�at for those 

stored at 4°C is approximately OJ 1 .  While this illustrat�s that the lyophilization­

based assay leads to higher errors about the mean that the cold-storage based 

method, the difference in COV is no greater than that previously judged as 

insignificant in the studies of temperature control above. While the use of 

lyophilized cells may prove in the future to be a more effective method of storing 

PM6 cells, this was not pursued further in this study. 

The cells that were mixed two seconds immediately prior to luminescence 

measurement display a luminescence o f  1 .0x l 02 RLU. The luminescence of 
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lyophil ized cells is expected to be lower than the cells that were not lyophilized. 

This is likely because of the "death" of some of the bacterial cells during the 

lyophilization process making the cell density lower, thus making 

bioluminescence lower. In the case of the mixed and Iyophilized cells, the light 

level was even lower than for the PM6 cells stored by refrigeration only. This is 

interesting, because it was originally thought that mixing would cause the light 

level to increase due to the increase in oxygen mass transfer to the liquid phase. 

This was observed in each case where cells were mixed; the light level decreased 

significantly when compared to the case in which no mixing occurred. It is not 

known why this occurred. The standard deviations of the lyophilized PM6 cells 

that were mixed are lower than the standard deviations of the cells that were not 

mixed, however the bioluminescem:e of  the cells that were mixed is so small it is 

hard to detect a change in l ight level over time. This difficulty arises at light 

levels under 200 RLU because the EC5o value is 50% of the luminescence at 0 

minutes, and luminescence under t 00 RLU is close to the same order as that 

produced by the ·dark current of the instrument (around 1 02
). The low light level 

was observed from O minutes to 30 minutes and still did not increase after 6 hours 

(data not shown). These reasons (a lower luminescence of PM6 cells that were 

lyophilized and activated at l 5°C compared to PM6 cells that were stored at 4°C, 

a steady decrease in luminescence from I O  to 30 minutes, and the lower 

magnitude of luminescence) would probably make PM6 cells lyophilized in the 

56 



manner reported here and activated at 1 5°C a poor choice for a control because 

the cells that were not mixed have a large standard deviation and the basal light 

level of the cells that were mixed was so low that BR cannot be accurately 

detected. 

Figure 4.6 displays the bioluminescence of lyophil ized mixed and non­

mixed PM6 cells that were activated at room temperature. The results show that 

between O minutes (immediately after cells were activated) and 30 minutes the 

luminescence of lyophilized PM6 cells first increases between O_ minutes and 1 5  

minutes from 1 x 1 05 RLU to 2x 1 05 RLU similar to the case at l 5°C then decreases 

between 1 5  minutes and 30 minutes. Although the basal light level varies 

significantly, it can be compared with Shk 1 cells act ivated at room temperature 

where the basal light level also varies and does not plateau. The COV for PM6 

cells stored at 4°C and the COV for lyophil ized PM6 cells activated at room 

temperature are comparable. For example, the COV for PM6 cells stored at 4°C 

at 20 minutes of activation time is 0.3 1 ,  and the COV for lyophilized PM6 cells 

activated at room temperature at 20 minutes is 0.35. Therefore, since there is a 

correction factor that partially accounts for the varying basal light level and the 

COV for PM6 cells stored at 4°C and lyophilized PM6 cells activated at room 

temperature, the results are promising and toxicity assays using lyophilized PM6 

cells activated at room temperature should be explored. However, further work 

with the lyophilized, unmixed cells was not performed in this study. The 
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lyophilized PM6 cells that were mixed using a vortex mixer for two se�onds 

immediately prior to luminescence measurement exhibited less variation in the 

mean light level during the activation period (see Figure 4.6). However,. the 

mixed cells have a larger standard deviation than the non-mixed cells do and the -

error bars for the mixed cell s  bracket an RLU value of 0. Therefore, as was the 

case for lyophilized cells activated at I 5°C, mixing is not recommended for 

lyophilized cel ls activated at room temperature . . 

4.3 Toxicity Assays 

4.3 . 1 Toxicity assays for lyophil ized cells 

Although the light level of the non-mixed lyophil ized cells is at least an 

order of magnitude smaller than the cells stored at 4°C anywhere within the 30 

minute time interval during which light stabil ity was studied, the varying basal 

l ight level is comparable to the Shk l cells stored at 4°C and activated at room 

temperature and can be accounted for in the calculation of the correction factor as 

easi ly as that of Shk 1 .  Therefore toxicity assays for (non-mixed) lyophil ized cells 

should be explored in further studies, but are not examined further in this ·study. 

Mixing leads to a very low l ight level in one case and high standard deviation in 

another and should not �e used when using lyophi lized cells. 
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4.3 .2 Toxicity assays for PM6 and Shk l cel ls 

Toxicity assays were perfonned using PM6 and Shk 1 ce1 1s tested against 

toxicants Zn2+, Cu2+, and Pb2+. Bay et al . (1989) state that a power curve 

relationship between concentration and response is expected when life forms are 

exposed to toxic chemicals, where response is measured as a ratio of activity lost 

to activity remaining. A log-log transfonn is therefore predicted to be a linear 

function, making linear regression useful for characterizing toxic effects as 

described in section 3.6. 1. The exponential relationship between concentration 

and response is shown in Figure 4. 7 for PM6 exposed to Zn2+. The log-log 

transformation of Figure 4. 7 is sho\\n in Figure 4.8 showing the transformation to 

give a roughly linear relationship, as predicted. The EC5o values of the three 

heavy metals were calculated using equations 3 .4-3.6 and the data is tabulated in 

Table 4.9. The results of the bioassays of heavy metals were highly reproducible 

between replicates. This reproducibility is shown in the small standard deviations 

of the calculated EC so values. At very low concentrations, it was observed that 

the exposure of PM6 and Shkl to two of the metal ions (Cu2+ and Pb2+) led to BR 

greater than 1 .0 (bioluminescence increased leading to a negative f value). An 

example of this is shown in Table 4. 10 for PM6 cells exposed to Cu2+. As shO\m, 

a concentration of 4.25 ppm Cu2+ leads to a bioluminescence increase above the 

control value instead of a decrease. 
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Table 4.9. Comparison of Shk 1 and PM6 EC so and Microtox® ECso values. 

Heavy Shkl ECso PM6 ECso SOUR1 Microtox® Microtox® 

Metal (95% conf. (95% conf. ECso ECso (95% (5 min. lit. 
Ion interval) interval) (ppm) conf. data3

) 

(ppm) (ppm) interval)2 (ppm) 
(ppm) 

Zn
i+ 1. 10 1.34 0.0- 1.0 28.0 1 13.8-55.5 

( 1 .05- 1. 15). (0.45-2.23) (26.75-29.26) 

(0.37- 1.85)' (0. 73-2.28) 

cov 0. 12 1 1.95 

cu
z+ 2.65 3 .37  0.0- 1.0 4.07  0.72-2.46 

(2.48-2.82) ( 1.7 1-5 .03) (2.47-5 .68) 
(0.94-4.60) (1 .6 1-5.40) 

cov 0. 186 1.44 

PbH 4.96 4.67 10.0- 1.24 2.56 
( 4.53-5.40) (2�94-6.40) 15.0 (0. 1 8-2.29) 
(0.93-9.50) (0. 73-8.  73) 

cov 0.209 0. 182 

Where: 

• = Confidence interval of the average of EC50 values. 
· = Average of the confidence intervals calculated for each EC50 value. 

1: Estimated from Madoni et al., 1999. 
2: This study. 
3:  Kaiser and Devillers, 1994. 
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Table 4. 1 0: Calculated BR and r values for PM6 exposed to low [Cu2+] leading 
to negative r values. 

concentration In [Cui+
] RLU RLU BR r In r 

ofCu2• (initial) (final) 
(ppm) 

0 9752 14894 
2. 13 0.755 8756 1655 5  1.89 -0. 1 92 UNDEF. 
4.25 1.45 8724 1 6326 1.87 -0. 1 84 UNDEF. 
6. 14 1 .82 9274 12456 1.34 0. 1 37 - 1 .99 
8.03 2.08 8967 5269 0.588 1.60 0 .469 
1 0.4 2.34 8086 1605 0. 198 6. 69 1.90 

Where: 

UNDEF = UNDEFINED 
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4.3 .3 Microtox® toxicity assays 

Microtox toxicity assays were perfonned as described in section 3 .6.3 .  

The EC50 values calculated from this assay are l isted in Table 4.9. Also listed in 

Table 4.9 are the EC50 values from the published inhibition to activated sludge 

specific oxygen uptake rate (SOUR) data (Madoni et al . ,  1 999), and published 

EC50 values for the Microtox® assay from the l iterature (Kaiser and Devillers, 

1 994). The Microtox® assay uses a 5 minute contact time with the toxicant, while 

for the PM6 and Shk 1 assays, a 7 minute contact time was established by Lajoie 

et al. (2002). The 7 minute contact time after adding the toxicant to the Shkl  and 

PM6 assays was not varied in this study, because for the purpose of detecting 

toxicants in wastewater in time to serve a preventative function, a rapid and 

reproducible response is desirable. 

Compared to the specific oxygen uptake rate (SOUR) data estimated from 

Madoni et al . ( 1 999), the experimental results (Table 4.9) show that of the three 

heavy metals tested, two (Zn2+ and Cu2+) showed a PM6 and Shk 1 EC so larger 

than the SOUR EC50 data, meaning that Zn2+ and Cu2+ �re_ less sensitive to PM6 

and Shk 1 than they are to inhibition to respiration, and one (Pb2+) showed PM6 

and Shk I EC so values smaller than the SOUR EC so values, meaning that Pb2+ is 

more sensitive to Microtox® than it is to PM6 and Shk 1 .  The EC50 values for 

Zn2+ and Cu2+ calculated from the Microtox® assay and the Microtox® literature 

values are both larger than the SOUR EC50 data, meaning that Zn2+ and Cu2+ are 
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less sensitive to Microtox® than they are to inh ibition to respiration also. 

However, there is an order of magnitude difference between the PM6 and Shk l 

EC5o values calculated for Zn2+ and those from Microtox®. For example, the 

SOUR EC50 values for Zn2
+ estim�ted from Madoni et al . ( 1 999) are between 0.0 

and 1 .0 ppm, the PM6 and Shk I ECso values calculat�d are 1 . 1 0  ppm and 1 .34 

ppm respectively. As shown in Table 4.9, the calculated Microtox® EC50 value is 

2 8 .0 1  ppm and the literature value for Microtox® is between 1 3 .8  and 55.5 ppm. 

Therefore, even though neither Shk l and PM6 nor Microtox® are as sensitive to 

SOUR data for Zn2+, Shk l and PM6 are more sensitive than Microtox®. The 

SOUR EC50 value data for Cu2+ is between 0.0 and 1 .0 ppm and PM6, Shk 1 ,  and 

· the EC50 value calculated from the Microtox® assay are larger than that interval. 

The EC50 value for Cu2+ for Shk l  is 2.65 ppm, for PM6 is 3 .37 ppm, and for the 

Microtoxe assays is 4.07 ppm, meaning PM6, Shk I and Microtox® are all less 

sensitive to Cul+ than inhibition to respiration is. However, unlike Zn2+ and cu2+, 

PM6, Shk. l ,  and Microtox® are all more sensitive to Pb2+ than inhibition to 

respiration. As shown in Table 4.9, the SOUR EC5o values for Pb2+ estimated 

from Madoni et al. (1 999) is  between 1 0.0 and 1 5.0 ppm, Shk l is 4.96 ppm, PM6 

is 4.67 ppm, and Microtox® is 1 .24 ppm. The EC50 values for Shk l , PM6, and 

Microtox• for Pb2+ being less than the EC50 value for SOUR data means that 

Shk I ,  PM6 and Microtox� are more sensitive to Pb2+ than inhibition to 

respiration. 
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Therefore, for the three metals examined in this research (Zn 2+, Cu2+
, and 

Pb2+), the assays performed with PM6 and Shk 1 are more appropriate for 

predicting respiration inhibition EC50 values than the Microtox® assay; due to the 

sensitivity of the PM6 and Shk l assays to the toxicants chosen, the EC50 values 

calculated for these strains are closer to values for inhibition to respiration than 

the Microtox® assays. 
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Chapter 5 Conclusion 

The objective of this research was to develop an accurate toxicity assay 

using genetically engineered bioluminescent bacteria PM6 and Shk 1 .  Different 

assay protocols were explored and EC5o values of strains PM6 and Shk 1 for three 

chemical compounds (ZnCh, CuCli, PbCh) were compared to ECso values from 

the Microtox® assay, published inhibition to activated sludge specific oxygen 

uptake rate (SOUR) data (Madoni et al ., 1 999), and published ECso values from 

Microtoxi, for the same compounds (Kaiser and Devillers, 1 994). 

The toxicity assay protocol used in this study was based on one developed 

by Lajoie et al. (2002) and was adapted to this study. Temperature control during 

activation and exposure to the toxicant was studied to detennine if the accuracy of 

the original protocol of Lajoie et al . could be improved. However, it was 

detennined that temperature control did not lead to an improvement in the 

accuracy of the assay. Experiments to detennine the appropriate time interval for 

cell activation indicated that the activation time originally selected by Lajoie et al. 

(20 minute) was appropriate. The time stability experiments also showed that 

mixing the cells for 2 seconds immediately prior to measurement of luminescence 

does not significantly change the results in comparison to non-mixed cells for the 

PM6 and Shkl cells stored at 4°C, with the exception that the light level was 

slightly more constant for PM6 cells after mixing. The lyophilized cells that were 
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activated at 1 5°C and mixed display a luminescence close to the dark current of 

the lwninometer, and the lyophil ized cells that were activated at room temperature 

and mixed display a higher standard deviation than the lyophilized cells that were 

not mixed. Therefore the final protocol specified in this  work used no 

temperature control or mixing, and a 20 minute act ivation period. The protocol 

proved adequate in determining ECso values comparable to those determined from 

inhibition to respiration assays. Toxicity assays were also performed using the 

Microtox® analyzer and ECso values calculated. When compared with Microtox®, 

the Shk l and PM6 assays disp-lay EC so values closer to respiration inhibition EC5o 

values. 

Future work should include lyophilizing Shk l cells and performing time 

stabil ity studies and toxicity assays, and performing toxicity assays using 

lyophilized PM6 cells. There are various procedures for lyophi l ization that could 

be tried to potentially stabilize and increase the l ight  level of reconstituted cel ls. 

Various lyoprotectants have been studied in the research literature; in the original 

study on which the Microtox® assay i s  based, skim milk was used (Bulich, 1 979). 

If an assay based on lyophil ized PM6 or Shk l is desired in future work, the 

effects of lyoprotectant addition should be studied. 
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