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ABSTRACT 

 

In this thesis, we study the nonlinear dynamics of calcium cycling within a 

cardiac cell. We develop piecewise smooth mapping models to describe intracellular 

calcium cycling in cardiac myocytes. Then, border-collision bifurcations that arise in 

these piecewise maps are investigated. These studies are carried out using both one-

dimensional and two-dimensional mapping models. Studies in this work lead to 

interesting insights on the stability of cardiac dynamics, suggesting possible mechanisms 

for cardiac alternans. Alternans is the precursor of sudden cardiac arrest, a leading cause 

of death in the United States. 
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CHAPTER I 

INTRODUCTION AND GENERAL INFORMATION 

 

 Every year, approximately 610,000 people die of heart disease in the United 

States—one out of every four deaths nationwide. On top of this staggering statistic, 

nearly 735,000 Americans have a heart attack each year [1]. These numbers are too large 

to ignore, providing insight into the fact that the heart is one of the most studied organs of 

the human body. The human heart is a four-chambered pump, consisting of two pumps 

arranged in series. Cardiac tissue is composed of cardiac muscle cells, which are both 

contractile and excitable. The excitability of these cardiac cells enables action potentials 

in a heart to propagate; however, the action potential causes cells to contract, which 

enables the pumping of blood throughout the body [2]. Cardiac action potentials begin in 

the sinoatrial (SA) node, and propagate as an electrical signal through the atria, 

atrioventricular (AV) node, and then into and throughout the ventricles. Heart disease 

causes wavebreaks, inducing potentially life-threatening reentrant arrhythmias [3]. 

 John Cain [4] proposed six ongoing challenge problems that seem tractable, and 

which draw from a variety of mathematical subdisciplines. Most of these challenges 

involve cardiac electrophysiology studying electrical wave propagation in heart tissue. In 

1952, Hodgkin and Huxley introduced a model of electrical propagation in the squid 

giant axon [5]. This model was deemed to be ahead of its time, and is the basis for most 

models proposed today. One such challenge proposed in Cain’s work is called the 

“Modeling Challenge”, wherein we try to keep the model minimally complicated so that 

it is amenable to mathematical analysis, but is sufficiently detailed so that it can 
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reproduce as much clinically relevant data as possible [4]. Another challenge proposed in 

Cain is referred to as the “Alternans Challenge”, which is to derive a mathematical 

criterion that accurately predicts the onset of alternans [4]. Investigating cardiac alternans 

may lead to a better understanding of the mechanisms of cardiac arrhythmias. In time, we 

can expect that this will result in the implementation of better algorithms for the 

prediction and prevention of diseases caused by and related to these arrhythmias [6]. 

These challenges are the driving pieces behind this thesis. 

 Recent studies have demonstrated that the dynamic properties of cardiac 

excitation-contraction coupling play significant roles in identifying heterogeneities which 

promote arrhythmogenesis [7-8]. The cause for these dynamics is related to action 

potential properties, including action potential duration (APD) restitution, intracellular 

calcium cycling dynamics, and wave conduction properties [3]. 

 When the pacing rate is slow, each individual stimulation gives rise to a single 

action potential (1:1 pattern); however, when the pacing rate becomes sufficiently fast, 

the 1:1 pattern might be replaced by a 2:2 pattern, which is known as electrical alternans 

[9-10]. This is observed when the APD alternates between short and long values. Due to 

the role that experiments have placed on alternans in developing ventricular arrhythmias, 

the Alternans Challenge proposed by Cain [4] is a crucial step in the detection and 

prevention of fatal arrhythmias [6]. These experiments have suggested that the 

elimination of cardiac alternans might prevent conduction block, thus preventing the 

occurrence of fibrillation [11-13]. Therefore, the overarching goal of this area of research 

is to understand the mechanism of alternans formation, which plays a vital role in the 

detection and prevention of fatal arrhythmias. It is well understood that alternans 
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develops under decremented pacing periods in cardiac tissue [6]. We couple this with the 

fact that the occurrence of ventricular arrhythmias has been linked to single-cell 

dynamics [14-15] to conclude that modeling the dynamics of a single cardiac cell under 

decrementing pacing periods will help us discover information regarding the onset of 

alternans.  

 At the cellular level, cardiac dynamics involves a bidirectional coupling between 

membrane voltage dynamics and intracellular calcium cycling [6]. Major interactions 

between action potential and Ca cycling in cardiac myocytes are illustrated in Figure 1 

below [16]. This illustration demonstrates a process called calcium-induced calcium 

release (CICR). During CICR, calcium promotes its own release from intracellular 

calcium stores—in the case of a cardiac cell, the sarcoplasmic reticulum (SR) [17]. The 

depolarization of the T-tubule by action potential causes opening of the L-type Ca 

channel, and thus Ca flows into the cell. The Ca that entered the cell stimulates a release 

of additional Ca from the SR via ryanodine receptors (RyR). The released Ca diffuses 

through the myoplasm and binds to myofilaments, causing contraction, before being 

eventually removed from the myoplasm by adenosine triphosphatases (ATPases), which 

pump the cytoplasmic Ca either back into the SR or out of the cell entirely [2]. 

Membrane voltage dynamics has been extensively investigated in the literature. 

Throughout this thesis, we will instead study intracellular calcium cycling dynamics 

under voltage clamp conditions. 

 There are several modeling approaches that have been proposed in describing the 

dynamic behaviors of the heart, including ionic models, simplified models, and mapping 

models [18]. Our choice for describing the dynamics of the heart is via mapping models.  
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Figure 1 Ca transport in ventricular myocytes. Inset shows the time course of an 

action potential, Ca transient and contraction measured in a rabbit ventricular 

myocyte at 37°C; copied from Bers et al. [16]. 
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First, we will develop a one-dimensional mapping model of intracellular calcium cycling 

and carry out a detailed bifurcation analysis of this model. Most experimental and 

theoretical studies assume that alternans in homogeneous cardiac tissue is determined 

only by the pacing period [6]. However, in order to reproduce experimentally obtained 

restitution data, the one-dimensional mapping should be replaced by a higher dimensional 

mapping [19]. This leads us to implement a two-dimensional mapping model, in which 

we utilize the intracellular calcium cycling and the diastolic interval to calculate action 

potential duration, which is presented in the second chapter.  
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CHAPTER II 

LITERATURE REVIEW 

        

 First, we observe the current literature regarding calcium cycling in a cardiac cell, 

concentrating on a paper written in 2007 by Qu et al. [3]. This article developed iterated 

mapping models to study the nonlinear dynamics of cardiac excitation-contraction 

coupling. Previous studies, which have modeled CICR, have assumed that APD is a 

function of the preceding diastolic interval (DI). From Figure 1, we can see that Ca also 

has an effect on APD. Therefore, it is justifiable to assume that APD is a function of both 

the preceding DI, as well as the peak cytoplasmic Ca of the current beat. Hence, we use 

an equation of the form: 

(2.1)          𝑎𝑛+1 = 𝑓(𝑑𝑛, 𝑐𝑛+1
𝑝 ), 

where 𝑎𝑛+1 is the APD of the (𝑛 + 1)st beat, 𝑐𝑛+1
𝑝

 is the peak cytoplasmic calcium of the 

(𝑛 + 1)st beat, and 𝑑𝑛 is the DI of the 𝑛th beat, and is taken to be: 

(2.2)          𝑑𝑛 = 𝑇 − 𝑎𝑛, 

where 𝑇 is the pacing period. 

 The relationship between APD and the previous DI is well-estimated from several 

experiments [20-21], and is known as the APD restitution function. The effect of Ca on 

APD, on the other hand, is a bit more irregular in that increased Ca can either shorten or 

lengthen APD, depending on the experimental conditions. To simplify the model, we 

separate Equation (2.1) into voltage dependent and Ca-dependent components, so that: 

(2.3)          𝑎𝑛+1 = 𝑓(𝑑𝑛) + 𝑝(𝑐𝑛+1
𝑝 )𝑎𝑛+1. 
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Currently, there is no experimental data to show the effect of Ca on APD, and so it was 

assumed in Qu et al. [3] that the magnitude of its effect is proportional to the APD of the 

same beat. Therefore, they defined 𝑝(𝑐𝑛+1
𝑝 ) proportional to the peak cytoplasmic Ca at 

each beat, so that: 

(2.4)          𝑝(𝑐𝑛+1
𝑝 ) = 𝛾𝑐𝑛+1

𝑝
, 

where 𝛾 is a parameter describing the strength of the Ca-to-APD coupling. According to 

the text [3], 𝛾 > 0 corresponds to positive Ca-to-APD coupling, and 𝛾 < 0 corresponds 

to negative Ca-to-APD coupling. In positive Ca-to-APD coupling, a large Ca release 

promotes Ca efflux via the electrogenic Na-Ca exchange, which generates an inward 

current and prolongs the APD, whereas a negative Ca-to-APD coupling occurs when a 

large Ca release inactivates the L-type Ca current more rapidly, possibly shortening the 

APD. 

 From Figure 2, we see that peak cytoplasmic Ca is the sum of diastolic 

cytoplasmic Ca (𝑐𝑛) and the total Ca released (𝑟𝑛+1) from the SR during the (𝑛 + 1)th 

beat. We calculate 𝑐𝑛+1
𝑝

using: 

(2.5)          𝑐𝑛+1
𝑝 = 𝑐𝑛 + 𝑟𝑛+1. 

We find diastolic cytoplasmic Ca (𝑐𝑛) by finding the difference between the total cellular 

Ca (𝑏𝑛) at the end of the 𝑛th beat, and Ca load in the SR (𝑙𝑛) in the 𝑛th beat as below: 

(2.6)          𝑐𝑛 = 𝑏𝑛 − 𝑙𝑛. 

Equations for total cellular Ca, SR Ca load, and Ca released from the SR will be 

introduced shortly. 
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 As aforementioned, the APD restitution function has been widely studied and 

compared with experimental results; thus, the APD restitution function will be given by 

(2.7)          𝑓(𝑑𝑛) = 𝐴0 [1 −
1

1+𝑒

(𝑑𝑛−𝐷0)
𝜏0

] + 𝐴1𝑒
−(𝑑𝑛−𝐷1)

2

𝜏1 , 

where 𝐴0, 𝐷0, 𝜏0, 𝐴1, 𝐷1, and 𝜏1 are parameters. We will show the specific values to fit 

the APD restitution function in Figure 3. We can update the SR Ca load at each beat 

using the following equation: 

(2.8)          𝑙𝑛+1 = 𝑙𝑛 − 𝑟𝑛+1 − 𝑧𝑛+1 + 𝑢𝑛+1. 

Here, we take the SR Ca load (𝑙𝑛) at the end of the 𝑛th beat, subtract the Ca released 

(𝑟𝑛+1) and the Ca leaked (𝑧𝑛+1) from the SR during the (𝑛 + 1)st beat, and finally add 

the Ca uptake (𝑢𝑛+1) during the (𝑛 + 1)st beat. 

Figure 2 Graphical definitions of APD, DI, 

pacing period, T, diastolic Ca (𝑐𝑛) at the end of 

each beat, peak cytoplasmic Ca (𝑐𝑛
𝑝
), Ca released 

from SR (𝑟𝑛), and SR load (𝑙𝑛) at the end of each 

beat; copied from Qu et al. [3]. 
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 As evidenced experimentally, Ca released from the SR depends on SR Ca load 

and magnitude of L-type Ca current, which triggers Ca release from the SR during CICR 

[22]. However, the magnitude of the L-type Ca current during an action potential is 

dependent on the time of recovery from inactivation; thus, the amount of Ca released 

from the SR is directly related to the previous DI [23]. Therefore, in order to represent the 

dependence on SR Ca load and DI mathematically, we need to define the Ca released 

from the SR as: 

(2.9)          𝑟𝑛+1 = 𝑞(𝑑𝑛)𝑔(𝑙𝑛). 

Here, 𝑞(𝑑𝑛) represents the restitution properties of SR Ca release. From experimental 

data, Qu et al. [3] defined this function to be: 

(2.10)          𝑞(𝑑𝑛) = 1 − 𝜎𝑒
−
𝑑𝑛
𝜏𝑞 . 

The function 𝑔(𝑙𝑛) from above represents the dependence of the SR Ca release on the SR 

Ca load. Again, from experimental measurements, the following equation was used: 

(2.11)          𝑔(𝑙𝑛) = 𝑙𝑛 [1 −
1−𝛼

1+𝑒
𝑙𝑛−𝑙𝑐
𝛽

]. 

This function has been shown to fit experimental data by varying 𝛼, 𝛽, and 𝑙𝑐 [3]. 

 SR Ca leak is determined by SR Ca load, and so is included with the release 

function defined above, so that 𝑔(𝑙𝑛) represents both SR Ca leak and SR Ca release, 

based on SR Ca load. Uptake of Ca into the SR occurs via sarcoplasmic-endoplasmic 

reticulum Ca ATPase (SERCA) pumps (Figure 1) [16]. These pumps depend on basic 

cycle length, 𝑇, as well as the peak cytoplasmic Ca in the cell for a given beat. Hence: 

(2.12)          𝑢𝑛+1 = 𝑢(𝑇)ℎ(𝑐𝑛+1
𝑝 ). 
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In Equation (2.12), 𝑢(𝑇) shows the dependence on time duration of pumping, and is 

modeled using: 

(2.13)          𝑢(𝑇) = 1 − 𝜌𝑒
−
𝑇

𝜏𝑢, 

Now notice that ℎ(𝑐𝑛+1
𝑝 ) above is the SR Ca uptake function depending on peak 

cytoplasmic Ca. Qu et al. [3] assume this uptake function to be defined via: 

(2.14)          ℎ(𝑐𝑛+1
𝑝 ) = 𝜈𝑐𝑛+1

𝑝 [1 −
1

1+𝑒

𝑐𝑛+1
𝑝

−𝑐0
𝜃

], 

 Finally, we choose to update the total cellular Ca by using the following function: 

(2.15)          𝑏𝑛+1 = 𝑏𝑛 − 𝜅[𝑐𝑛 − 𝑐(𝑇)] + 𝜂(𝑎𝑛+1 − 𝑎𝑛), 

where 𝑐(𝑇) represents steady state cytoplasmic Ca at a given cycle length 𝑇, 𝜅 is a 

constant, and 𝜂 depends on positive/negative APD-to-Ca coupling, as 𝛾 did inversely. 

Notice then, at equilibrium, 𝑎𝑛+1 = 𝑎𝑛, and so the APD would have no effect on 

updating the total cellular Ca at each beat; however, at periodic or chaotic states, the 

amount of Ca can vary drastically from beat-to-beat. Lastly, they [3] defined the steady 

state cytoplasmic at a given cycle length 𝑇 using: 

(2.16)          𝑐(𝑇) = 𝑐1(1 + 휀𝑒
−
𝑇

𝜏𝑐), 

where 휀 and 𝜏𝑐 are constants. 

 Utilizing the equations established here to model the physiology of a cardiac cell, 

we can investigate several items. First, we can analyze stability of the model, which has 

been done by Qu et al. [3]. In this thesis, we simplify the model to study only the 

intracellular components to understand Ca cycling within the SR. We then proceed to 

study beat-to-beat Ca cycling, with period-dependent release and uptake. Finally, we  
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analyze APD and Ca cycling dynamics together, so that the APD at each beat depends on 

both DI as well as peak cytoplasmic Ca. An initial look at diastolic interval vs. action 

potential duration is shown in Figure 3. This plot does not include peak cytoplasmic Ca in 

updating the restitution function, but instead relies only on the previous DI. 

 There is, however, a process to follow in simulating these equations to understand 

cycling of Ca in the heart. Before we begin, we observe the variables and their 

representations in Table 1. This will allow us to keep track of what physiological process 

is being represented by each variable. Next, we define the selection of equations we are 

using in Mathematica. Obviously, for different simulations with different assumptions, 

these equations will have changing parameter values. These parameter values will be the 

influence on the dynamics of our system. Next, we define our initial conditions for our  

Figure 3 Diastolic interval plotted against APD, Equation 

(2.7). No dependence of peak cytoplasmic Ca on APD. 

Constants in 𝑓(𝑑𝑛) given by: 𝐴0 = 220; 𝑑0 = 40; 𝜏0 = 30; 

𝐴1 = 0. 
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Table 1 This table displays the variables used in Chapter 2, as well as each variable’s 

physiological representation. 

𝑎𝑛+1 APD of (n+1)st beat 

𝑏𝑛 Total cellular calcium of the nth beat 

𝑐𝑛+1
𝑝

 Peak cytoplasmic calcium of the (n+1)st beat 

𝑐𝑛 Cytoplasmic calcium at the end of the nth beat 

𝑑𝑛 DI of nth beat 

𝑙𝑛 SR calcium load at the end of the nth beat 

𝑟𝑛+1 SR calcium release during the (n+1)st beat 

𝑇 Basic cycle length, or pacing period 

𝑢𝑛+1 SR calcium uptake during the (n+1)st beat 

𝑧𝑛+1 SR calcium leak during the (n+1)st beat 

 

 

 

 

 

variables, which were always SR Ca load, total cellular Ca, and APD; these initial 

conditions are irrelevant because our mapping model will converge to the steady state 

regardless of initial conditions. All other variable values can be calculated using these 

initial conditions. We then cycled through our equations, again depending on our 

parameters and assumptions. In order to see convergence to the steady state, we 

simulated 250 beats at each pacing period, keeping all of the information from the last 

100 beats. We calculated the steady state cytoplasmic Ca first, followed by the portion of 

the Ca uptake function dependent on pacing period. Then we calculated the length of the 

diastolic interval, and used that information to find the Ca released from the SR in the 

(𝑛 + 1)st beat, in equations (2.10) and (2.11). Next, we found cytoplasmic Ca at the end 

of the 𝑛th beat, and proceeded to calculate the peak cytoplasmic Ca, the total cellular Ca, 

and the SR Ca load of the (𝑛 + 1)st beat. Finally, we calculated the APD of the (𝑛 + 1)st 

beat before cycling back through these equations in the same order. Again, for several of 
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the simulations implemented in this paper, we did not use each equation, in which case 

we would simply remove those steps of the process. 

 In the first simulation (results shown in Figure 4), we fixed the intracellular Ca 

level from beat to beat, and allowed for period-independent SR Ca release and uptake. 

Although there is no physiological evidence that this actually occurs in a cardiac cell [3], 

it is important to fully understand intracellular Ca cycling alone. The simplifications in 

this simulation result in a linear mapping model, where the restitution function is 

independent of the peak cytoplasmic Ca. Notice that here, since SR Ca release and uptake 

are period- independent, Equation (2.11) represents the SR Ca release, and Equation 

(2.14) represents SR Ca uptake, so that Equation (2.8) becomes: 

(2.17)          𝑙𝑛+1 = 𝑙𝑛 − 𝑔(𝑙𝑛) + ℎ(𝑐𝑛+1
𝑝 ). 

Also, because total cellular Ca is fixed, Equation (2.6) becomes: 

(2.18)          𝑐𝑛 = 𝑏 − 𝑙𝑛. 

This simulation gives the results shown in Figure 4. Parameters for 𝑔(𝑙𝑛) and ℎ(𝑐𝑛+1
𝑝 ) 

are given in the captions for Figure 4. 

 Now, we make the model more complex. In the previous simulation, we assumed 

the total cellular Ca to be constant, whereas now we assume the total cellular Ca is 

changing from beat to beat. Also, to make this simulation even more comparable to 

human physiology, we account for period-dependent SR Ca release and SR Ca uptake. 

This has been experimented under voltage clamp conditions, which was used as a basis 

for the development of this model [3]. Finally, because we are updating SR Ca release 

and uptake based on the pacing period, we analyze APD along with Ca cycling dynamics 
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A 

B 

Figure 4 Dynamics due to nonlinear, period-independent SR Ca release and uptake when 

total cellular Ca is constant. Total cellular Ca compared with SR Ca release and peak 

cytoplasmic Ca, given the following values for 𝑔(𝑙𝑛) and ℎ(𝑐𝑛+1
𝑝 ): (A) 𝛼 = 0.036; 𝑙𝑐 =

93.5;  𝛽 = 5;  𝜈 = 0.25; 𝑐0 = 50; 𝜃 = 20. (B) 𝛼 = 0.036; 𝑙𝑐 = 93.5;  𝛽 = 6;  𝜈 =
0.25; 𝑐0 = 50; 𝜃 = 4. 
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during this simulation. This is the most realistic simulation that can be accomplished 

using this model because we are updating each represented physiological aspect of the 

cardiac cell from beat to beat, including each beat’s APD, DI, total cellular Ca, SR Ca 

load, peak cytoplasmic Ca, etc. Here, we are updating the APD of each beat based on the 

previous DI, along with the peak cytoplasmic Ca. Thus, during this simulation, we are 

using each mathematical equation defined previously. Results are posted in Figure 5. 

 One interesting feature of these plots is the interval of quasiperiodicity in each. 

This occurs from 𝑇 = 220 until 𝑇 = 235 in each of the plots above, and leads to some 

interesting results in itself. Thus, we know that, by fixing 𝑇, we can plot any other two 

values and achieve a seemingly periodic result, for example APD vs. SR Ca released and 

APD vs. total cellular Ca, which are posted in Figure 6. 

 At the beginning of the chapter, we plotted the restitution function 𝑓(𝑑𝑛), and did 

not utilize Ca to calculate APD. Now, however, we include Ca in updating APD, thus 

calculating APD utilizing Equation (2.3). We were able to plot DI vs. APD, as before, 

using the same parameters in 𝑓(𝑑𝑛) as in Figure 3. Our results were quite interesting, 

comparing extremely well to the Ca-independent system, and can be seen in Figure 7. 

 One extremely fascinating output from these simulations is total cellular Ca vs. 

SR Ca released. This is one of the focal points of Figure 4, before pacing periods and 

APD were taken into account, as will be shown in Figure 8; also recall that for our results 

in Figure 4, we were assuming fixed intracellular Ca levels from beat to beat. We now 

take another look at the correlation between total cellular Ca and SR Ca released in 

Figure 8, hoping to gain some insight into this curious relationship. The results in Figure 

8 demonstrate the importance of APD and pacing period, 𝑇, on Ca cycling within the cell.  
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Figure 5 Dynamics due to nonlinear, period-dependent SR Ca release and uptake, varying 

total cellular Ca. Pacing period compared with APD, SR Ca release, total cellular Ca, and 

peak cytoplasmic Ca, given these values for parameters in the above equation: 𝛼 =
0.036; 𝑙𝑐 = 93.5;  𝛽 = 5;  𝜈 = 0.4; 𝑐0 = 50; 𝜃 = 20; 𝜅 = 0.2; 𝛾 = −0.002; 𝐴0 =
220; 𝑑0 = 40; 𝜏0 = 30; 𝜂 = 0; 𝜎 = 0.5; 𝜏𝑞 = 80; 𝜌 = 0.15; 𝜏𝑢 = 200; 𝑐0 = 20;  휀 =

2; 𝜏𝑐 = 300. 
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Figure 6 Quasiperiodicity dynamics due to nonlinear, period-dependent SR Ca release 

and uptake, varying total cellular Ca. APD compared with SR Ca release and total 

cellular Ca, given the same values for parameters as in Figure 5. Here, we set 𝑇 = 225. 

Instead of iterating through 250 beats and keeping information from the last 100, we 

iterated through 2500 beats and kept information from the last 2150. 

Figure 7 Diastolic interval plotted against APD, Equation (2.3). Includes dependence of 

peak cytoplasmic Ca on APD. Constants given in Figure 5. 
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Note that our parameters are essentially identical between Figure 4 and Figure 8, except 

that in the latter we are simulating other physiological aspects of the cardiac cell. 

  

A B 

Figure 8 Dynamics due to nonlinear, period-dependent SR Ca release and uptake, varying 

total cellular Ca. Total cellular Ca compared with SR Ca release, given the same values for 

parameters as in Figures 5 and 6.  (A) This simulation was run from 𝑇 = 80 to 𝑇 = 300, 

as in Figure 5. We record each beat’s total cellular Ca as well as SR Ca released, 

simulating 250 beats for each pacing period. (B) Here, we construct similarly to Figure 6, 

iterating 2500 beats and keeping the information from the last 2350. Again, we set 

𝑇 = 225. 
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CHAPTER III 

ONE-DIMENSIONAL MAPPING MODEL 

        

 Motivated by the theoretical study in Yorke et al. [24], we propose a piecewise 

return map to describe intracellular calcium cycling. We consider a piecewise return map 

on the peak calcium transients at beat n, which has been represented as 𝑐𝑛
𝑝
. We define the 

return map to be: 

(3.1)          𝑐𝑛+1
𝑝 = {

𝑔1[𝑐𝑛
𝑝] 𝑐𝑛

𝑝 > 𝐶0

𝑔2[𝑐𝑛
𝑝] 𝑐𝑛

𝑝 < 𝐶0
, 

where 

(3.2)          
𝑔1[𝐶𝑎] = 𝜇 ∗ 𝐵 + 𝑠1 ∗ (𝐶𝑎 − 𝐶0) + 𝐶1

𝑔2[𝐶𝑎] = 𝜇 ∗ 𝐵 + 𝑠2 ∗ (𝐶𝑎 − 𝐶0) + 𝐶1
. 

For simplicity in this model, we let 𝐶𝑎 represent peak calcium transients in the 

cytoplasm, and we let 𝐵 represent basic cycle length. There exists a threshold, 𝐶0, such 

that when 𝐶𝑎 > 𝐶0, the calcium recovery takes a shallow slope, 𝑠1, whereas it takes a 

steeper slope, 𝑠2, when 𝐶𝑎 < 𝐶0. The map, however, is continuous at 𝐶0, with a 

discontinuous, linear derivative. In studying the fixed points of our return map, we see 

that he fixed point at 𝐶0 satisfies 

𝐶0 = 𝜇 ∗ 𝐵 + 𝑠1 ∗ (𝐶0 − 𝐶0) + 𝐶1, 

so that 

𝐶0 − 𝐶1 = 𝜇 ∗ 𝐵. 

 We let 𝐶0 = 1.5 𝜇𝑀, and we let 𝐶1 = 0.5 𝜇𝑀. We suppose bifurcation occurs at 

200 ms, which then provides us with 𝜇 = 5 ∗ 10−3 𝜇𝑀/𝑚𝑠. According to Yorke et al. 
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[24], the map may exhibit different behaviors depending on the values of the two slopes, 

𝑠1 and 𝑠2. We set −1 < 𝑠1 < 1 to ensure stable periodic response under long pacing 

periods. We then examine the response for different values of 𝑠2. If 𝑠2 < −1 < 𝑠1 < 0 

and 𝑠1 ∗ 𝑠2 < 1, then a border-collision period-doubling bifurcation occurs. When 

𝑠2 < −1 < 𝑠1 < 0 and 𝑠1 ∗ 𝑠2 > 1, a period-1 response leads to no attractor. Finally, if 

0 < 𝑠1 < 1 and 𝑠2 < −1, a period-1 solution bifurcates to either a periodic attractor or a 

chaotic attractor [3,24]. We pay particular attention to the case 0 < 𝑠1 < 1 and 𝑠2 < −1. 

 We define the return map as follows: 

(3.3)          𝑔[𝐶𝑎] ≔ {
𝜇 ∗ 𝐵 + 𝑠1 ∗ (𝐶𝑎 − 𝐶0) + 𝐶1 𝐶𝑎 > 𝐶0

𝜇 ∗ 𝐵 + 𝑠2 ∗ (𝐶𝑎 − 𝐶0) + 𝐶1 𝐶𝑎 ≤ 𝐶0
. 

Notice that, since we are interested in the dynamics that result with varying 𝑠1 and 𝑠2 

values, we can set 𝐶0 = 0, so that we can observe a bifurcation at 𝐶𝑎 = 0, rather than at 

𝐶𝑎 = 1.5; after all, the dynamics will not be affected by a translation of the plot. We take 

a look at the modified system of equations: 

(3.4)          𝑔[𝐶𝑎] ≔ {
𝜇 ∗ 𝐵 + 𝑠1 ∗ 𝐶𝑎 + 𝐶1 𝐶𝑎 > 0
𝜇 ∗ 𝐵 + 𝑠2 ∗ 𝐶𝑎 + 𝐶1 𝐶𝑎 ≤ 0

. 

From Yorke et al. [24], where we are given the piecewise return map 

(3.5)          𝑓[𝑥] ≔ {
𝑎𝑥 + 𝜂 𝑥 ≤ 0
𝑏𝑥 + 𝜂 𝑥 > 0

, 

we know that the map 𝑓[𝑥] is invariant under the transformations 𝑥 → −𝑥, 𝜂 → −𝜂, 

𝑎 ↔ 𝑏. Thus, any bifurcation that occurs as 𝜂 increases (decreases) through zero also 

occurs as 𝜂 decreases (increases) through zero if we interchange the values of 𝑎 and 𝑏. 

From this, we know that our map given in Equation (3.4) is invariant under the 

transformations 𝐶𝑎 → −𝐶𝑎, 𝜇 ∗ 𝐵 + 𝐶1 → −(𝜇 ∗ 𝐵 + 𝐶1), 𝑠1 ↔ 𝑠2. Using these facts, 
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we can alter the function once again to obtain a left-to-right border-collision bifurcation 

given by: 

(3.6)          𝑔[𝐶𝑎] ≔ {
𝜇 ∗ 𝐵 + 𝑠1 ∗ 𝐶𝑎 + 𝐶1 𝐶𝑎 ≤ 0
𝜇 ∗ 𝐵 + 𝑠2 ∗ 𝐶𝑎 + 𝐶1 𝐶𝑎 > 0

. 

We can now apply the results from Yorke et al. [24] to the above Equation (3.6) to learn 

about the dynamics of the piecewise Equation (3.4) above. In the paper written by Yorke 

et al. [24], we have the piecewise equation given by Equation (3.5) here. In order to apply 

those results to our Equation (3.6) above, we define: 

(3.7)          

𝑥 = 𝐶𝑎;
𝑎 = 𝑠1;
𝑏 = 𝑠2;

𝜂 = 𝜇 ∗ 𝐵 + 𝐶1;

𝑓[𝑥] = 𝑔[𝐶𝑎].

 

 Thus, we have the family of skew tent maps for which the results are discussed in 

Yorke et al. [24]. Therefore, we are interested in the 𝑠1-𝑠2 region where 0 < 𝑠1 < 1 and 

𝑠2 < −1. Also, then, we have a bifurcation present itself at 0 = 𝜇 ∗ 𝐵 + 𝐶1 in our 

Equation (3.6), so that −𝐶1 = 𝜇 ∗ 𝐵. Because we need to translate our function in order 

to obtain the original function, given by Equation (3.3), we will have a bifurcation at 

𝐶0 = 𝜇 ∗ 𝐵 + 𝐶1, so that 𝐶0 − 𝐶1 = 𝜇 ∗ 𝐵, as stated previously. We then have the 

following results. 

 We know that we will obtain a period-1 response leading to a period-𝑚 attractor 

(2 ≤ 𝑚 ≤ 7) when 0 < 𝑠1 < 1 and 𝑠2 < −1 lie within specific regions which, 

according to Yorke et al. [24], are given by: 

𝑃𝑚 = {(𝑠1, 𝑠2)𝜖𝑅 ∶  −𝑠11−𝑚 < 𝑠2 <
𝑠1

1 − 𝑠1
(1−𝑠11−𝑚)}. 
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We see these regions given in Figure 9 below. The values of 𝑠1 and 𝑠2 which satisfy 

0 < 𝑠1 < 1 and 𝑠2 < −1 and lie outside of every 𝑃𝑚 for 2 ≤ 𝑚 ≤ 7 result in a period-1 

attractor leading to a chaotic attractor. As discovered in this study, as well as others [25-

26], we can also find interesting results in this chaotic region (shown in grey in Figure 9), 

which will be discussed in further detail later. 

 First, we study period-1 to period-𝑚 responses, starting with a period-2 attractor. 

We know that, if 0 < 𝑠1 < 1 and 𝑠2 < −1 are such that (𝑠1, 𝑠2)𝜖𝑃𝑚, then (𝑠1, 𝑠2) 

produce a period-m attractor; thus, in order to obtain a period-2 attractor, we need to 

satisfy: 

−𝑠11−2 < 𝑠2 <
𝑠1

1 − 𝑠1
(1−𝑠11−2). 

Hence, we must satisfy the inequality: 

−𝑠1−1 < 𝑠2 <
𝑠1

1 − 𝑠1
(1−𝑠1−1), 

and so, 

−
1

𝑠1
< 𝑠2 < −1. 

Therefore, we expect a period-2 response when 0 < 𝑠1 < 1 and −1 < 𝑠1𝑠2. Now if we 

fix 𝑠1, we should be able to find 𝑠2 values satisfying these inequalities. For now, we set 

𝑠1 = 0.3. Then 𝑠2 > −
1

0.3
, so that 𝑠2 > −

10

3
. Thus, when 𝑠1 = 0.3 and 𝑠2 = −2 > −

10

3
, 

we will observe a period-2 response, as shown in Figure 10A. Therefore, our results 

present exactly as we would expect, given the regions in Figure 9. 
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Figure 9 This figure shows regions in the (𝑠1, 𝑠2)-space. If (𝑠1, 𝑠2) is in the grey region, 

then Equation (3.3) has a chaotic attractor; however, when (𝑠1, 𝑠2) lies within one of the 

other labeled regions, we know that Equation (3.3) has an attracting period-𝑚 orbit; 

recreated from Yorke et al. [24]. 
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 We check more regions. We aim to obtain a period-3 response. By setting 

𝑠1 = 0.2, we know 

−𝑠11−3 < 𝑠2 <
𝑠1

1 − 𝑠1
(1−𝑠11−3) 

⇒ −0.2−2 < 𝑠2 <
0.2

1 − 0.2
(1−0.2−2) 

⇒−25 < 𝑠2 < −6. 

Hence, if we choose any 𝑠2 satisfying the above inequalities, we should obtain a period-3 

response. We choose 𝑠2 = −6.75, and our results are shown in Figure 10B. Following 

this same pattern, we were able to test period-1 solutions bifurcating to a period-𝑚 

attractor, for 𝑚 = 2,… ,7. Results are posted in Figure 10 with (𝑠1, 𝑠2)𝜖𝑃𝑚, for 𝑚 =

2,… ,5. 

 Let us now discuss some scenarios in which Equation (3.3) has a chaotic attractor. 

For every integer 𝑚 ≥ 2, let us assume that (𝑠1, 𝑠2)𝜖(0,1) × (−∞,−1) is a chaotic pair, 

so that Equation (3.3) will indeed have a chaotic attractor. We assume also that 

(𝑠1, 𝑠2)𝜖𝐶𝑚(𝑠1), where 𝐶𝑚(𝑠1) represents the component of the intersection of the 

vertical line through (𝑠1, 𝑠2) and the chaotic region that contains (𝑠1, 𝑠2), and the end 

points of 𝐶𝑚(𝑠1) are in 𝜕𝑃𝑚 and 𝜕𝑃𝑚+1 and are exactly (𝑠1, −𝑠11−𝑚) and (𝑠1,
𝑠1

1−𝑠1
(1 −

𝑠1−𝑚)). Then there exist intervals for 𝑠2 in 𝐶𝑚(𝑠1), depending on 𝑠1, such that one of 

the following must hold: 

(i) 2𝑘𝑚-piece chaotic attractor (for some 𝑘 ≥ 1); 

(ii) 𝑚-piece chaotic attractor; 
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Figure 10 This figure shows a period-1 attractor leading to a period-𝑚 response: (A) 

period-1 → period-2; 𝑠1 = 0.3, 𝑠2 = −2; (B) period-1 → period-3; 𝑠1 = 0.2, 𝑠2 =
−6.75; (C) period-1 → period-4; 𝑠1 = 0.4, 𝑠2 = −10; (D) period-1 → period-5; 𝑠1 =
0.4, 𝑠2 = −30. 

  

A 

D C 

B 
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(iii) one-piece chaotic attractor. 

Details of each of these cases, including in what intervals such results will occur in 

𝐶𝑚(𝑠1) for a given 𝑠1 and 𝑚, as well as dependencies on 𝑠1 in determining such 

intervals, have been provided previously and studied extensively by several researchers 

[24-26]. 

 Our first tested case will demonstrate a one-piece chaotic attractor. We choose 

𝑠1 = 0.4. In this case, we decide to examine a region inside of 𝐶3(0.4). We know that we 

must satisfy 

0.4

1 − 0.4
(1−0.4−3) < 𝑠2 < −0.41−3, 

and so 

−9.75 < 𝑠2 < −6.25 

must be satisfied. Therefore, we choose 𝑠2 = −9.5, and obtain the result shown in Figure 

11A, a one-piece chaotic attractor. 

 Next, we are working to find a 2𝑘𝑚-piece chaotic attractor. We set 𝑠1 = 0.3, and 

look into the region 𝐶2(0.3). Now, we know that 𝑠2 must satisfy the following 

inequalities in order to lie within this region: 

0.3

1 − 0.3
(1−0.3−2) < 𝑠2 < −0.31−2. 

Thus, 

−
13

3
< 𝑠2 < −

10

3
. 

We choose 𝑠2 = −3.5 in order to derive our desired 2𝑘𝑚-piece chaotic attractor, where 

𝑘 = 1 in this case. Thus, we should observe a 4-piece chaotic attractor (Figure 11B).  
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Figure 11 This figure shows a period-1 attractor leading to a chaotic response: (A) 

period-1 → 1-piece chaotic attractor; 𝑠1 = 0.4, 𝑠2 = −9.5; (B) period-1 → 4-piece 

chaotic attractor; 𝑠1 = 0.3, 𝑠2 = −3.4; (C) period-1 → 16-piece chaotic attractor; 

𝑠1 = 0.95, 𝑠2 = −1.07. Inset plot highlights the second of the four chaotic regions in the 

larger plot, demonstrating that this is truly a 16-piece chaotic attractor. 

  

A 

C 

B 
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 Our final result from the one-dimensional border-collision bifurcation analysis 

comes from the article written by Yorke et al. [24]. In their research, they deduce that we 

can find a 2𝑘𝑚-piece chaotic attractor when 𝑚 = 2 using their proposed theorems. At the 

conclusion of the study, they propose that 𝑠1 = 0.95 and 𝑠2 = −1.09 should provide a 

sixteen-piece chaotic attractor from Equation (3.3), so that 𝑘 = 3. In Figure 11C, we 

confirm their theoretical analysis by providing a plot showing this sixteen-piece chaotic 

attractor using our mapping model. 

 While this one-dimensional approach certainly provides us with some interesting 

results, many of these results do not actually occur physiologically. This is likely due to 

an oversimplification in the model, driving us to create a more complex two-dimensional 

model to describe intracellular calcium cycling.  
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CHAPTER IV 

TWO-DIMENSIONAL MAPPING MODEL 

        

 In this chapter, we develop a two-dimensional mapping model to examine 

calcium dynamics in a cardiac cell under voltage clamp conditions. First, we examine the 

equations from Qu et al. [3] presented previously in Chapter 2. Recall that: 

(4.1)          𝑙𝑛+1 = 𝑙𝑛 − 𝑟𝑛+1 − 𝑧𝑛+1 + 𝑢𝑛+1, 

and 

(4.2)          𝑏𝑛+1 = 𝑏𝑛 − 𝜅[𝑐𝑛 − 𝑐(𝑇)] + 𝜂(𝑎𝑛+1 − 𝑎𝑛). 

In our desired two-dimensional mapping model, we will assume constant action potential 

duration (APD) from beat to beat. Thus, 𝑎𝑛+1 − 𝑎𝑛 = 0, and so Equation (4.2) can be 

simplified to be 

(4.3)          𝑏𝑛+1 = 𝑏𝑛 − 𝜅[𝑐𝑛 − 𝑐(𝑇)]. 

As discussed in Chapter 2, we will assume that calcium leak will be included in our 

calcium release function. Since SR Ca release and uptake are period-independent, 

Equation (2.11) represents the SR Ca release, and Equation (2.14) represents SR Ca 

uptake, so that Equation (4.1) becomes 

(4.4)          𝑙𝑛+1 = 𝑙𝑛 − 𝑔(𝑙𝑛) + ℎ(𝑐𝑛+1
𝑝 ), 

as was written and discussed at length in Chapter 2. Combining Equations (4.3) and (4.4) 

leads to the two-dimensional return map given by 

(4.5)          {
𝑙𝑛+1 = 𝑙𝑛 − 𝑔(𝑙𝑛) + ℎ(𝑐𝑛+1

𝑝 )

𝑏𝑛+1 = 𝑏𝑛 − 𝜅[𝑐𝑛 − 𝑐(𝑇)]
, 
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where 𝑙𝑛 represents the calcium load in the sarcoplasmic reticulum (SR) at the end of the 

nth beat, 𝑏𝑛 represents the total cellular calcium at the end of the nth beat, 𝑐𝑛+1
𝑝

 represents 

peak cellular calcium during the (n+1)st beat, and 𝜅 is a constant, which we will take to 

be 0.5. We define 𝑐(𝑇) by 

(4.6)          𝑐(𝑇) = 28 (1 + 2𝑒−
𝑇

300), 

as in Chapter 2. Similarly, we define our functions 𝑔(𝑙𝑛) and ℎ(𝑐𝑛+1
𝑝 ) as written in 

Equation (2.11) and Equation (2.14), respectively, from Chapter 2: 

(4.7)          𝑔(𝑙𝑛) = 𝑙𝑛 [1 −
1 − 0.036

1 + 𝑒
𝑙𝑛−93.5

5

] 

(4.8)          ℎ(𝑐𝑛+1
𝑝 ) = 0.4𝑐𝑛+1

𝑝 [1 −
1

1 + 𝑒
𝑐𝑛+1
𝑝

−50

4

] 

 Before we begin discussing modifications made to this original model, we recall 

the table of variables that was presented in Chapter 2, as seen in Table 2. Observe the 

two-dimensional bifurcation diagram presented by the original system of equations.  

 

 

Table 2 This table displays the variables used in Chapter 4, as well as each variable’s 

physiological representation. 

𝑎𝑛+1 APD of (n+1)st beat 

𝑏𝑛 Total cellular calcium of the nth beat 

𝑐𝑛+1
𝑝

 Peak cytoplasmic calcium of the (n+1)st beat 

𝑐𝑛 Cytoplasmic calcium at the end of the nth beat 

𝑑𝑛 DI of nth beat 

𝑙𝑛 SR calcium load at the end of the nth beat 

𝑟𝑛+1 SR calcium release during the (n+1)st beat 

𝑇 Basic cycle length, or pacing period 

𝑢𝑛+1 SR calcium uptake during the (n+1)st beat 

𝑧𝑛+1 SR calcium leak during the (n+1)st beat 
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These diagrams are shown in Figure 12. In Figure 12A, we show the bifurcation diagram 

plotting 𝑏𝑛 vs. 𝑙𝑛, and then include the varying parameter, 𝑇, in Figure 12B. This gives us 

an idea of where we begin with our study, and we will continue to compare our modified 

system to these original bifurcation diagrams throughout this section. 

 We aim to develop a piecewise linear approximation of the model. First, we 

create a piecewise linear approximation to our function 𝑔(𝑙𝑛), as shown in Figure 13. In 

determining the linear approximation for 𝑔(𝑙𝑛), we first notice that there are three nearly 

linear parts presented in this original function, with respect to 𝑙𝑛. Thus, we define a slope 

for the first third of the graph, as well as a slope for the last third of the graph. Then, we 

select a reference point, in this case 𝑙𝑛 = 95. We find the slope at this point, and use that 

slope to determine the line tangent to 𝑔(𝑙𝑛) at 𝑙𝑛 = 95, going on to calculate where that 

tangent line intercepts with our two previous lines; we call these intersections thresholds, 

𝑡ℎ1 and 𝑡ℎ2. This gives rise to the function which will replace 𝑔(𝑙𝑛) in our model: 

          𝑔𝑙𝑖𝑛(𝑙𝑛) = {

3

40
𝑙𝑛 𝑙𝑛 < 𝑡ℎ1

5.0673𝑙𝑛 − 425.362 𝑡ℎ1 ≤ 𝑙𝑛 < 𝑡ℎ2
𝑙𝑛 𝑡ℎ2 ≤ 𝑙𝑛

.  

This 𝑔𝑙𝑖𝑛(𝑙𝑛) is the equation plotted in purple in Figure 13 above. 

 One observation made in substituting this 𝑔𝑙𝑖𝑛(𝑙𝑛) equation into the analysis done 

in Chapter 2 of this text is that, while 𝑇 ≥ 150, 𝑙𝑛 never rises above 90. Thus, we run 

simulations excluding the third linear part of 𝑔𝑙𝑖𝑛(𝑙𝑛), and observe no difference in our 

results. Thusly, we instead define 𝑔𝑙𝑖𝑛(𝑙𝑛) to be: 

(4.9)          𝑔𝑙𝑖𝑛(𝑙𝑛) = {

3

40
𝑙𝑛 𝑙𝑛 < 𝑡ℎ1

5.0673𝑙𝑛 − 425.362 𝑡ℎ1 ≤ 𝑙𝑛

. 
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Figure 12 Our original two-dimensional map is plotted here. (A) Bifurcation 

diagram showing 𝑏𝑛 vs. 𝑙𝑛; (B) Bifurcation diagram showing bifurcation with 

respect to varying parameter 𝑇. 

B 

A 
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Figure 13 This figure shows a piecewise linear approximation of our function 𝑔(𝑙𝑛) from 

the text. This approximation uses 𝑙𝑛 = 95 as a reference point, then calculates the 

intersections of the line tangent to 𝑔(𝑙𝑛) at 𝑙𝑛 = 95 and two other predetermined lines. 

The original function is shown in blue; the approximation is in purple. 

 

 

We will label 

𝑔1(𝑙𝑛) =
3

40
𝑙𝑛, 

and 

𝑔2(𝑙𝑛) = 5.0673𝑙𝑛 − 425.362, 

to which we will refer later. We insert Equation (4.9) into Equation (4.5) to obtain the 

now piecewise return map: 

(4.10)          {
𝑙𝑛+1 = 𝑙𝑛 − 𝑔𝑙𝑖𝑛(𝑙𝑛) + ℎ(𝑐𝑛+1

𝑝 )

𝑏𝑛+1 = 𝑏𝑛 − 𝜅[𝑐𝑛 − 𝑐(𝑇)]
. 

We use this system of equations to observe our new bifurcation diagram, which is shown 

in Figure 14. The first thing that we notice in Figure 14 is that our plot seems to have   
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Figure 14 This figure demonstrates our new bifurcation diagram 

after changing 𝑔 to a piecewise linear function, and then scaling 

with respect to 𝑇. 

Figure 15 This figure demonstrates our new bifurcation 

diagram after changing 𝑔 to a piecewise linear function. 
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shifted due to the linearization of our 𝑔 function. Therefore, in order to keep consistent 

with our original model, we rescale our model with respect to 𝑇. This transformation will 

aim to shift our bifurcation point back to approximately 300ms, which is where we 

started in Figure 12. Thus, we redefine our 𝑐(𝑇) function in the following respect: 

(4.11)          𝑐(𝑇) = 28(1 + 2𝑒−
645
300

𝑇

300 ). 

This rescaling provides us with the plot shown in Figure 15. 

 Next, we define a linear approximation for our ℎ function. We observe that ℎ is 

essentially asymptotic to a linear function; however, we observe in our model that 𝑐𝑛+1
𝑝

 

largely satisfies 40 ≤ 𝑐𝑛+1
𝑝 ≤ 140. Thus, we derive a strong approximation within this 

range. We proceed with a similar strategy to that which we utilized in approximating our 

𝑔 function above. We again define a reference point, 𝑐𝑛+1
𝑝 = 100. Next, we calculate the 

derivative of ℎ at our reference point and find that ℎ′(100) ≈ 0.5099. We calculate the 

𝑦-intercept to find our new linear approximation function will be defined to be 

(4.12)          ℎ𝑙𝑖𝑛(𝑐𝑛+1
𝑝 ) = 0.5099𝑐𝑛+1

𝑝 − 14.0207. 

This approximation is shown in Figure 16, with the original function ℎ shown in blue and 

the linear approximation ℎ𝑙𝑖𝑛 shown in purple. We insert Equation (4.12) into our already 

modified Equation (4.10) to obtain the piecewise return map: 

(4.13)          {
𝑙𝑛+1 = 𝑙𝑛 − 𝑔𝑙𝑖𝑛(𝑙𝑛) + ℎ𝑙𝑖𝑛(𝑐𝑛+1

𝑝
)

𝑏𝑛+1 = 𝑏𝑛 − 𝜅[𝑐𝑛 − 𝑐(𝑇)]
. 

 Recall c(T) here has been changed to that found in Equation (4.11). However, this 

previous rescaling attempt shows, in Figure 17, that we did not quite finish with our 
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Figure 16 This figure shows a linear approximation of our function ℎ(𝑐𝑛+1
𝑝 ) from the 

text. This approximation uses 𝑐𝑛+1
𝑝 = 100 as a reference point, then calculates the line 

tangent to ℎ(𝑐𝑛+1
𝑝 ) at 𝑐𝑛+1

𝑝 = 100. The original function is shown in blue; the 

approximation is in purple. 
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rescaling efforts. Once again, we aim to rescale with respect to 𝑇 so that our bifurcation 

occurs at approximately 300ms. Thus, our function 𝑐(𝑇) becomes 

(4.14)          𝑐(𝑇) = 28(1 + 2𝑒−
(
645
300

)(
320
300

)𝑇

300 ). 

Substituting Equation (4.14) into Equation (4.13) provides us with the results shown in 

Figure 18. 

 Lastly, before we proceed to our analysis, we will define a linear map to 

approximate our newest 𝑐(𝑇) function found in Equation (4.14) in order to obtain a true 

piecewise linear return map. In creating this approximation, we select two reference 

points, 𝑇 = 200 and 𝑇 = 350, and calculate the values of 𝑐(200) and 𝑐(350). Then, we 

derive the line passing through (200, 𝑐(200)) and (350, 𝑐(350)). This process leads us 

to the linear approximation shown in Figure 19, which is given by the function 

(4.15)          𝑐𝑙𝑖𝑛(𝑇) = −0.0552𝑇 + 51.1833. 

When we substitute Equation (4.15) into Equation (4.13), we have a piecewise linear 

return map, which can be written 

(4.16)          {
𝑙𝑛+1 = 𝑙𝑛 − 𝑔𝑙𝑖𝑛(𝑙𝑛) + ℎ𝑙𝑖𝑛(𝑐𝑛+1

𝑝 )

𝑏𝑛+1 = 𝑏𝑛 − 𝜅[𝑐𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
. 

 Now we pause to compare our original bifurcation diagram to our result thus far. 

Notice that, due to our rescaling of 𝑐, when we substitute 𝑐𝑙𝑖𝑛 into our system, we still 

have a bifurcation occurring at approximately 𝑇 = 320ms, which is a fair approximation 

to our original system. In Figure 20, we show our modified system exactly as it compares  
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Figure 17 This figure demonstrates our new bifurcation diagram after changing 𝑔 to a 

piecewise linear function, rescaling with respect to 𝑇, and then changing ℎ to a linear 

function. 

 

 

 

 
Figure 18 This figure demonstrates our new bifurcation diagram after changing 𝑔 to a 

piecewise linear function, rescaling with respect to 𝑇, changing ℎ to a linear function, and 

rescaling with respect to 𝑇 once more. 
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Figure 19 This figure shows a linear approximation of our function 𝑐(𝑇) from the text. 

This approximation uses 𝑇 = 200 and 𝑇 = 350 as reference points, then calculates the 

line passing through these points. The original function is shown in blue; the 

approximation is in purple. 

 

 

 

to Figure 12, plotting 𝑏𝑛 vs. 𝑙𝑛 in Figure 20A, and including our parameter 𝑇 in Figure 

20B. Observe now that Figure 20 shows our linear two-dimensional piecewise return 

map, as desired. 

 Before continuing, we redefine Equation (4.16) by creating a pure two-

dimensional mapping model. Thus, we aim to substitute some combination of 𝑙𝑛 and 𝑏𝑛 

in place of 𝑐𝑛+1
𝑝

 and 𝑐𝑛. We notice, from Chapter 2: 

(4.17)          𝑐𝑛 = 𝑏𝑛 − 𝑙𝑛 

(4.18)         𝑐𝑛+1
𝑝 = 𝑐𝑛 + 𝑟𝑛+1. 

In our model, we know that 𝑟𝑛+1 = 𝑔𝑙𝑖𝑛(𝑙𝑛), and so we can substitute Equation (4.17) 

into Equation (4.18) to see that 
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Figure 20 This figure demonstrates our new bifurcation diagrams of our two-dimensional 

piecewise linear map. This is what occurs after changing 𝑔 to a piecewise linear function, 

rescaling with respect to 𝑇, changing ℎ to a linear function, and rescaling with respect to 

𝑇 once more, then finally changing 𝑐(𝑇) to a linear function as well. (A) Bifurcation 

diagram showing bifurcation with respect to varying parameter 𝑇; (B) Bifurcation 

diagram showing 𝑏𝑛 vs. 𝑙𝑛. 

 

  

A 

B 
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𝑐𝑛+1
𝑝

= 𝑏𝑛 − 𝑙𝑛 + 𝑔𝑙𝑖𝑛(𝑙𝑛). 

Then, Equation (4.16) becomes: 

(4.19)          {
𝑙𝑛+1 = 𝑙𝑛 − 𝑔𝑙𝑖𝑛(𝑙𝑛) + ℎ𝑙𝑖𝑛(𝑏𝑛 − 𝑙𝑛 + 𝑔𝑙𝑖𝑛(𝑙𝑛))

𝑏𝑛+1 = 𝑏𝑛 − 𝜅[𝑏𝑛 − 𝑙𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
, 

which is a two-dimensional piecewise linear return map, with varying parameter 𝑇. 

 Now we begin an analysis of this system, similar to that presented in Banerjee et 

al. [27]. In order to continue with this analysis, we check all of the conditions that must 

hold. We notice that our map, which we will define to be 𝐺(𝑙𝑛, 𝑏𝑛; 𝑇), is indeed a two-

dimensional piecewise smooth map and depends on a single parameter 𝑇. We seek to 

define a boundary, denoted 𝛤𝑇, given by a smooth curve 𝑙𝑛 = 𝐻(𝑏𝑛; 𝑇), that divides the 

phase plane into two regions 𝑅𝐴 and 𝑅𝐵. We observe this curve to be given by 𝑙𝑛 =

𝑡ℎ1 ≈ 85.2. This map will then be 

(4.20)          𝐺(𝑙𝑛, 𝑏𝑛; 𝑇) ≔ {
𝐺1(𝑙𝑛, 𝑏𝑛; 𝑇) (𝑙𝑛, 𝑏𝑛)𝜖𝑅𝐴
𝐺2(𝑙𝑛, 𝑏𝑛; 𝑇) (𝑙𝑛, 𝑏𝑛)𝜖𝑅𝐵

. 

Notice that we will write 𝐺(𝑙𝑛, 𝑏𝑛; 𝑇) as 

(4.21)          (
𝑙𝑛+1
𝑏𝑛+1

) ≔

{
 
 

 
 (
𝑙𝑛 − 𝑔1(𝑙𝑛) + ℎ𝑙𝑖𝑛(𝑏𝑛 − 𝑙𝑛 + 𝑔1(𝑙𝑛))

𝑏𝑛 − 𝜅[𝑏𝑛 − 𝑙𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
) 𝑙𝑛 < 𝑡ℎ1

(
𝑙𝑛 − 𝑔2(𝑙𝑛) + ℎ𝑙𝑖𝑛(𝑏𝑛 − 𝑙𝑛 + 𝑔2(𝑙𝑛))

𝑏𝑛 − 𝜅[𝑏𝑛 − 𝑙𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
) 𝑡ℎ1 ≤ 𝑙𝑛

. 

We observe that the functions defined in Equation (4.21) are both continuous and have 

continuous derivatives. The map 𝐺 is continuous as well, with discontinuous derivative at 

the line 𝛤𝑇, which we refer to as the border. The one-sided partial derivatives at 𝛤𝑇 are 

finite, and so we have satisfied all of the conditions required to perform our analysis. 

Now, we aim to study the bifurcations of this system as the parameter 𝑇 is varied. 
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 A common procedure in studying border-collision bifurcations depends only on 

the local properties of the map in the neighborhood of the border [27], and so we will 

study the border-collision bifurcations presented here using normal forms, which is the 

piecewise affine approximations of 𝐺 in the neighborhood of the border. We, however, 

already have affine functions, and so we aim to convert Equation (4.21) into matrix-

vector form. First, we will look to expand Equation (4.21), so that we can write it in such 

a form. By setting 𝜅 = 0.5, Equation (4.21) becomes 

(
𝑙𝑛+1
𝑏𝑛+1

) =

{
 
 

 
 

(

37

40
𝑙𝑛 + ℎ𝑙𝑖𝑛 (𝑏𝑛 −

37

40
𝑙𝑛)

𝑏𝑛 − 0.5[𝑏𝑛 − 𝑙𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
) 𝑙𝑛 < 𝑡ℎ1

(
−4.0673𝑙𝑛 + 425.362 + ℎ𝑙𝑖𝑛(𝑏𝑛 + 4.0673𝑙𝑛 − 425.362)

𝑏𝑛 − 0.5[𝑏𝑛 − 𝑙𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
) 𝑡ℎ1 ≤ 𝑙𝑛

 

=

{
 
 

 
 

(

37

40
𝑙𝑛 + 0.5099 (𝑏𝑛 −

37

40
𝑙𝑛) − 14.0207

𝑏𝑛 − 0.5[𝑏𝑛 − 𝑙𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
) 𝑙𝑛 < 𝑡ℎ1

(
−4.0673𝑙𝑛 + 425.362 + 0.5099(𝑏𝑛 + 4.0673𝑙𝑛 − 425.362) − 14.0207

𝑏𝑛 − 0.5[𝑏𝑛 − 𝑙𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
) 𝑡ℎ1 ≤ 𝑙𝑛

 

= {
(
0.4534𝑙𝑛 + 0.5099𝑏𝑛 − 14.0207

𝑏𝑛 − 0.5[𝑏𝑛 − 𝑙𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
) 𝑙𝑛 < 𝑡ℎ1

(
−1.9934𝑙𝑛 + 0.5099𝑏𝑛 + 194.4492

𝑏𝑛 − 0.5[𝑏𝑛 − 𝑙𝑛 − 𝑐𝑙𝑖𝑛(𝑇)]
) 𝑡ℎ1 ≤ 𝑙𝑛

 

= {
(
0.4534𝑙𝑛 + 0.5099𝑏𝑛 − 14.0207

0.5𝑙𝑛 + 0.5𝑏𝑛 − 0.0276𝑇 + 25.5917
) 𝑙𝑛 < 𝑡ℎ1

(
−1.9934𝑙𝑛 + 0.5099𝑏𝑛 + 194.4492
0.5𝑙𝑛 + 0.5𝑏𝑛 − 0.0276𝑇 + 25.5917

) 𝑡ℎ1 ≤ 𝑙𝑛

. 

Hence, we see that 

(4.22)          𝐺(𝑙𝑛, 𝑏𝑛; 𝑇) ≔ {
(
0.4534𝑙𝑛 + 0.5099𝑏𝑛 − 14.0207

0.5𝑙𝑛 + 0.5𝑏𝑛 − 0.0276𝑇 + 25.5917
) 𝑙𝑛 < 𝑡ℎ1

(
−1.9934𝑙𝑛 + 0.5099𝑏𝑛 + 194.4492
0.5𝑙𝑛 + 0.5𝑏𝑛 − 0.0276𝑇 + 25.5917

) 𝑡ℎ1 ≤ 𝑙𝑛

. 
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 In order to obtain a normal form for this system, we need to first shift our 

bifurcation to the origin. Thus, we define 𝑙𝑛 = 𝑙𝑛 − 𝐻(𝑏𝑛; 𝑇), �̃�𝑛 = 𝑏𝑛, and so we obtain 

new variables: 

𝑙𝑛 = 𝑙𝑛 − 𝑡ℎ1;  �̃�𝑛 = 𝑏𝑛. 

This 𝑇-independent change of variables moves the border to the �̃�𝑛-axis. Then the map 

𝐺(𝑙𝑛, 𝑏𝑛; 𝑇) can be rewritten as 

𝐺(𝑙𝑛 + 𝑡ℎ1, �̃�𝑛; 𝑇) = 𝐹(𝑙𝑛, �̃�𝑛; 𝑇), 

where the border is 𝑙𝑛 = 𝑡ℎ1. We notice that when 𝑇 = 𝑏𝑖𝑓𝑇 ≈ 320, the map 𝐹(𝑙𝑛, �̃�𝑛; 𝑇) 

has a fixed point 𝑇0 on the border; that is, 

𝑇0 = (0, �̃�𝑛(𝑏𝑖𝑓𝑇)) = 𝐹(0, �̃�𝑛(𝑏𝑖𝑓𝑇); 𝑏𝑖𝑓𝑇). 

Therefore, we claim that a bifurcation occurs at the point (𝑡ℎ1, 𝑏𝑖𝑓𝑏𝑛; 𝑏𝑖𝑓𝑇), and so we 

implement yet another change of variables to obtain: 

{

𝑙�̅� = 𝑙𝑛;

�̅�𝑛 = �̃�𝑛 − 𝑏𝑖𝑓𝑏𝑛;

�̅� = 𝑇 − 𝑏𝑖𝑓𝑇 .

 

Hence, from where we began to where we are now with our variables, we have: 

{

𝑙�̅� = 𝑙𝑛 − 𝑡ℎ1;

�̅�𝑛 = 𝑏𝑛 − 𝑏𝑖𝑓𝑏𝑛;

�̅� = 𝑇 − 𝑏𝑖𝑓𝑇 .

 

This transformation puts the bifurcation point at the origin; we call this new map 

�̅�(𝑙�̅�, �̅�𝑛; �̅�). Now, for this system to be in normal form, we should have a unit vector in 

the �̅�𝑛 direction map to a unit vector in the 𝑙�̅� direction. This fact will provide us with a 

very simple matrix that we will use to compare traces and determinants of the left side 
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and right side of the border, now 𝑙�̅� = 0, which will hopefully shed some light on the 

border-collision bifurcations that we will obtain from this system. 

 Before we look at our �̅� map, we look at our original 𝐺 map in matrix-vector 

form. Notice from Equation (4.22) that we have 

𝐺(𝑙𝑛, 𝑏𝑛; 𝑇) ≔ {
(
0.4534𝑙𝑛 + 0.5099𝑏𝑛 − 14.0207

0.5𝑙𝑛 + 0.5𝑏𝑛 − 0.0276𝑇 + 25.5917
) 𝑙𝑛 < 𝑡ℎ1

(
−1.9934𝑙𝑛 + 0.5099𝑏𝑛 + 194.4492
0.5𝑙𝑛 + 0.5𝑏𝑛 − 0.0276𝑇 + 25.5917

) 𝑡ℎ1 ≤ 𝑙𝑛

, 

so that 

(4.23) (
𝑙𝑛+1
𝑏𝑛+1

) = {
(
0.4534 0.5099
0.5 0.5

) (
𝑙𝑛
𝑏𝑛
) + 𝑇 (

0
−0.0276

) + (
−14.0207
25.5917

) 𝑙𝑛 < 𝑡ℎ1

(
−1.9934 0.5099
0.5 0.5

) (
𝑙𝑛
𝑏𝑛
) + 𝑇 (

0
−0.0276

) + (
194.4492
25.5917

) 𝑡ℎ1 ≤ 𝑙𝑛

 

From Equation (4.23) above, we perform transformations to our variables to obtain: 

(
𝑙�̅�+1 + 𝑡ℎ1
�̅�𝑛+1 + 𝑏𝑖𝑓𝑏𝑛

)

=

{
 
 

 
 (

0.4534 0.5099
0.5 0.5

) (
𝑙�̅� + 𝑡ℎ1
�̅�𝑛 + 𝑏𝑖𝑓𝑏𝑛

) + 𝑇 (
0

−0.0276
) + (

−14.0207
25.5917

) 𝑙�̅� < 0

(
−1.9934 0.5099
0.5 0.5

) (
𝑙�̅� + 𝑡ℎ1
�̅�𝑛 + 𝑏𝑖𝑓𝑏𝑛

) + 𝑇 (
0

−0.0276
) + (

194.4492
25.5917

) 0 ≤ 𝑙�̅�

=

{
 
 
 
 

 
 
 
 (

0.4534 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + (

0.4534 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

)

+𝑇 (
0

−0.0276
) + (

−14.0207
25.5917

)

𝑙�̅� < 0

(
−1.9934 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + (

−1.9934 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

)

+𝑇 (
0

−0.0276
) + (

194.4492
25.5917

)

0 ≤ 𝑙�̅�

 



 

 45 

=

{
 
 
 
 

 
 
 
 (

0.4534 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + (

0.4534 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

)

+(𝑇 − 𝑏𝑖𝑓𝑇) (
0

−0.0276
) + 𝑏𝑖𝑓𝑇 (

0
−0.0276

) + (
−14.0207
25.5917

)

𝑙�̅� < 0

(
−1.9934 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + (

−1.9934 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

)

+(𝑇 − 𝑏𝑖𝑓𝑇) (
0

−0.0276
) + 𝑏𝑖𝑓𝑇 (

0
−0.0276

) + (
194.4492
25.5917

)

0 ≤ 𝑙�̅�

 

=

{
 
 
 
 

 
 
 
 (

0.4534 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + (

0.4534 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

)

+�̅� (
0

−0.0276
) + 𝑏𝑖𝑓𝑇 (

0
−0.0276

) + (
−14.0207
25.5917

)

𝑙�̅� < 0

(
−1.9934 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + (

−1.9934 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

)

+�̅� (
0

−0.0276
) + 𝑏𝑖𝑓𝑇 (

0
−0.0276

) + (
194.4492
25.5917

)

0 ≤ 𝑙�̅�

 

Therefore, we have 

(
𝑙�̅�+1
�̅�𝑛+1

)

=

{
 
 
 
 

 
 
 
 (

0.4534 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + (

0.4534 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) − (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

)

+�̅� (
0

−0.0276
) + 𝑏𝑖𝑓𝑇 (

0
−0.0276

) + (
−14.0207
25.5917

)

𝑙�̅� < 0

(
−1.9934 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + (

−1.9934 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) − (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

)

+�̅� (
0

−0.0276
) + 𝑏𝑖𝑓𝑇 (

0
−0.0276

) + (
194.4492
25.5917

)

0 ≤ 𝑙�̅�

 

=

{
 
 
 
 

 
 
 
 (

0.4534 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + �̅� (

0
−0.0276

) + 𝑏𝑖𝑓𝑇 (
0

−0.0276
)

+ (
0.4534 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) − (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) + (
−14.0207
25.5917

)

𝑙�̅� < 0

(
−1.9934 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + �̅� (

0
−0.0276

) + 𝑏𝑖𝑓𝑇 (
0

−0.0276
)

+(
−1.9934 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) − (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) + (
194.4492
25.5917

)

0 ≤ 𝑙�̅�

. 
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However, since 

𝑏𝑖𝑓𝑇 (
0

−0.0276
) + (

0.4534 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) − (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) + (
−14.0207
25.5917

) = 0 

and 

𝑏𝑖𝑓𝑇 (
0

−0.0276
) + (

−1.9934 0.5099
0.5 0.5

) (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) − (
𝑡ℎ1
𝑏𝑖𝑓𝑏𝑛

) + (
194.4492
25.5917

) = 0, 

we see that our return map �̅� becomes 

(4.24)          �̅�(𝑙�̅�, �̅�𝑛; �̅�) ≔

{
 
 

 
 (

0.4534 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + �̅� (

0
−0.0276

) 𝑙�̅� < 0

(
−1.9934 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + �̅� (

0
−0.0276

) 0 ≤ 𝑙�̅�

. 

We can use this Equation (4.24) to observe the bifurcation phenomenon around the 

origin, as shown in Figure 21. Notice that the border-collision bifurcation has not 

changed in any regard, except that it has been shifted to the origin rather than at our 

original bifurcation point. 

 Because our goal is to turn this system into normal form, we need to perform a 

linear transformation on �̅� so that it takes the form: 

𝐺2(𝑥𝑛, 𝑦𝑛; 𝜇) ≔ {
(
𝜏𝐿 1
−𝛿𝐿 0

) (
𝑥𝑛
𝑦𝑛
) + 𝜇 (

1
0
) 𝑥𝑛 < 0

(
𝜏𝑅 1
−𝛿𝑅 0

) (
𝑥𝑛
𝑦𝑛
) + 𝜇 (

1
0
) 0 ≤ 𝑥𝑛

. 

Therefore, we aim to find a matrix ℒ such that the following transformation holds: 

(
�̅�𝑛
�̅�𝑛
) = ℒ (

𝑙�̅�
�̅�𝑛
). 

This would allow 

 (
�̅�𝑛+1
�̅�𝑛+1

) = ℒ (
𝑙�̅�+1
�̅�𝑛+1

) 
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Figure 21 This figure demonstrates our new, translated bifurcation diagrams of our two-

dimensional piecewise linear map. This is what occurs after changing 𝑔 to a piecewise 

linear function, rescaling with respect to 𝑇, changing ℎ to a linear function, and rescaling 

with respect to 𝑇 once more, changing 𝑐(𝑇) to a linear function as well, and finally 

shifting the bifurcation point to the origin. (A) Bifurcation diagram showing bifurcation 

with respect to varying parameter 𝑇; (B) Bifurcation diagram showing 𝑏𝑛 vs. 𝑙𝑛. 

B 

A 
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=

{
 
 

 
 ℒ (

0.4534 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + ℒ�̅� (

0
−0.0276

) 𝑙�̅� < 0

ℒ (
−1.9934 0.5099
0.5 0.5

) (
𝑙�̅�
�̅�𝑛
) + ℒ�̅� (

0
−0.0276

) 0 ≤ 𝑙�̅�

 

=

{
 
 

 
 ℒ (

0.4534 0.5099
0.5 0.5

) ℒ−1ℒ (
𝑙�̅�
�̅�𝑛
) + �̅�ℒ (

0
−0.0276

) 𝑙�̅� < 0

ℒ (
−1.9934 0.5099
0.5 0.5

) ℒ−1ℒ (
𝑙�̅�
�̅�𝑛
) + �̅�ℒ (

0
−0.0276

) 0 ≤ 𝑙�̅�

 

=

{
 
 

 
 ℒ (

0.4534 0.5099
0.5 0.5

) ℒ−1 (ℒ (
𝑙�̅�
�̅�𝑛
)) + �̅�ℒ (

0
−0.0276

) 𝑙�̅� < 0

ℒ (
−1.9934 0.5099
0.5 0.5

) ℒ−1 (ℒ (
𝑙�̅�
�̅�𝑛
)) + �̅�ℒ (

0
−0.0276

) 0 ≤ 𝑙�̅�

. 

Thus, we have 

(4.25)          (
�̅�𝑛+1
�̅�𝑛+1

) = {
ℒ (
0.4534 0.5099
0.5 0.5

) ℒ−1 (
�̅�𝑛
�̅�𝑛
) + �̅�ℒ (

0
−0.0276

) �̅�𝑛 < 0

ℒ (
−1.9934 0.5099
0.5 0.5

) ℒ−1 (
�̅�𝑛
�̅�𝑛
) + �̅�ℒ (

0
−0.0276

) 0 ≤ �̅�𝑛

. 

Now, we find ℒ so that 

ℒ (
0.4534 0.5099
0.5 0.5

) ℒ−1 = (
𝜏𝐿 1
−𝛿𝐿 0

), 

and 

ℒ (
−1.9934 0.5099
0.5 0.5

) ℒ−1 = (
𝜏𝑅 1
−𝛿𝑅 0

). 

Notice, then, that when ℒ = (
𝐿11 𝐿12
𝐿21 𝐿22

) and ℒ−1 =
1

𝐿11𝐿22−𝐿12𝐿21
(
𝐿22 −𝐿12
−𝐿21 𝐿11

), we 

have a system of four equations with four unknowns. Our system of equations to solve 

becomes: 
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{
 
 
 
 

 
 
 
 

1

𝐿11𝐿22 − 𝐿21𝐿12
(−𝐿21(0.4534𝐿11 + 0.5𝐿12) + 𝐿11(0.5099𝐿11 + 0.5𝐿12)) = 1

1

𝐿11𝐿22 − 𝐿21𝐿12
(−𝐿12(0.4534𝐿21 + 0.5𝐿22) + 𝐿11(0.5099𝐿21 + 0.5𝐿22)) = 0

1

𝐿11𝐿22 − 𝐿21𝐿12
(−𝐿21(−1.9934𝐿11 + 0.5𝐿12) + 𝐿11(0.5099𝐿11 + 0.5𝐿12)) = 1

1

𝐿11𝐿22 − 𝐿21𝐿12
(−𝐿12(−1.9934𝐿21 + 0.5𝐿22) + 𝐿11(0.5099𝐿21 + 0.5𝐿22)) = 0

. 

This becomes 

{
 

 
−𝐿21(0.4534𝐿11 + 0.5𝐿12) + 𝐿11(0.5099𝐿11 + 0.5𝐿12) = 𝐿11𝐿22 − 𝐿21𝐿12

−𝐿12(0.4534𝐿21 + 0.5𝐿22) + 𝐿11(0.5099𝐿21 + 0.5𝐿22) = 0

−𝐿21(−1.9934𝐿11 + 0.5𝐿12) + 𝐿11(0.5099𝐿11 + 0.5𝐿12) = 𝐿11𝐿22 − 𝐿21𝐿12
−𝐿12(−1.9934𝐿21 + 0.5𝐿22) + 𝐿11(0.5099𝐿21 + 0.5𝐿22) = 0

. 

In solving this system of equations, we find that there are infinitely many solutions, 

dependent on 𝐿11. The solution to this system is given by 

{

𝐿11 = 𝐿11
𝐿12 = 0

𝐿21 = −0.5𝐿11
𝐿22 = 0.5099𝐿11

. 

By defining 𝐿11 = 1, we find the matrix ℒ to be 

ℒ = (
1 0

−0.5 0.5099
). 

Therefore, we see that our Equation (4.25) has been transformed to become 

(4.26)          (
�̅�𝑛+1
�̅�𝑛+1

) = {
(
0.9534 1
0.02825 0

) (
�̅�𝑛
�̅�𝑛
) + �̅� (

0
−0.0141

) �̅�𝑛 < 0

(
−1.4934 1
1.25165 0

) (
�̅�𝑛
�̅�𝑛
) + �̅� (

0
−0.0141

) 0 ≤ �̅�𝑛

. 

Hence, we have 

(4.27)          {

𝜏𝐿 = 0.9534
𝛿𝐿 = −0.02825
𝜏𝑅 = −1.4934
𝛿𝑅 = −1.25165
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Recall that our goal is to transform our system into the form 

𝐺2(𝑥𝑛, 𝑦𝑛; 𝜇) ≔ {
(
𝜏𝐿 1
−𝛿𝐿 0

) (
𝑥𝑛
𝑦𝑛
) + 𝜇 (

1
0
) 𝑥𝑛 < 0

(
𝜏𝑅 1
−𝛿𝑅 0

) (
𝑥𝑛
𝑦𝑛
) + 𝜇 (

1
0
) 0 ≤ 𝑥𝑛

. 

Therefore, in order to transform this �̅� into normal form, we perform a final change of 

variables to our Equation (4.26), given by 

{

𝑥𝑛 = �̅�𝑛
𝑦𝑛 = �̅�𝑛 + 0.0141�̅�

𝜇 = −0.0141�̅�

. 

This will provide us with the new map: 

(4.28)          (
𝑥𝑛+1
𝑦𝑛+1

) = 𝐺2(𝑥𝑛, 𝑦𝑛; 𝜇) ≔ {
(
0.9534 1
0.02825 0

) (
𝑥𝑛
𝑦𝑛
) + 𝜇 (

1
0
) 𝑥𝑛 < 0

(
−1.4934 1
1.25165 0

) (
𝑥𝑛
𝑦𝑛
) + 𝜇 (

1
0
) 0 ≤ 𝑥𝑛

, 

which is indeed the normal form of our original piecewise linear map. Notice, as shown 

in Figure 22, that putting our system into normal form switches the bifurcation direction. 

Recall, however, from the previous chapter that our bifurcation is invariant under this 

change. The traces and determinants shown above will provide us information regarding 

the type of border-collision bifurcation to expect. We refer to Banerjee et al. [27] to gain 

insight into our anticipated bifurcation. 

 According to this text, we first examine the determinants of the left and right 

sides, 𝛿𝐿 and 𝛿𝑅, respectively. Observe from (4.27) above that both of our determinants 

are negative. This implies that the eigenvalues are both real for all values of 𝜏𝐿 and 𝜏𝑅 

[27], more specifically for 𝜏𝐿 = 0.9534 and 𝜏𝑅 = −1.4934, as in this case. Therefore, 

there can be no coexisting attractors anywhere in the parameter space. We also know 

from [27] that the region of stability of the period-2 attractor is given by the conditions 



 

 51 

 

 

 

 

 

 

 

 

 

 

Figure 22 The normalized version of our two-dimensional piecewise return map. Notice 

the bifurcation occurs at the origin. We also notice that the bifurcation changes from 

being right-to-left to left-to-right when it takes this normal form. 
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(4.29)          1 − 𝜏𝐿𝜏𝑅 + 𝛿𝐿 + 𝛿𝑅 + 𝛿𝐿𝛿𝑅 > 0 

for 𝜆1 < 1 and 

(4.30)          1 + 𝜏𝐿𝜏𝑅 − 𝛿𝐿 − 𝛿𝑅 + 𝛿𝐿𝛿𝑅 > 0 

for 𝜆2 > −1. These are readily satisfied as follows: 

1 − (0.9534)(−1.4934) + (−0.02825) + (−1.25165) + (−0.02825)(−1.25165) 

= 1.1783 > 0, 

satisfying condition (4.29), and 

1 + (0.9534)(−1.4934) − (−0.02825) − (−1.25165) + (−0.02825)(−1.25165) 

= 0.8915 > 0, 

which satisfies condition (4.30). Therefore, we can expect to observe a period-1 attractor 

bifurcating into a period-2 response as our plot crosses the threshold 𝜇 = 0, as we 

observe in Figure 22. 

 Now we want to observe some different results based on the theoretical analysis 

of Banerjee et al. [27]. According to this study, we will observe a period-1 to period-2 

response when the determinants are both negative, and conditions (4.29) and (4.30) are 

satisfied. Thus, we observe what results when one of these is not satisfied. Let us define 

(4.31)          {

𝜏𝐿 = 0.5534
𝛿𝐿 = −0.02825
𝜏𝑅 = −5.4934
𝛿𝑅 = −0.25165

. 

Then we would have the following system in normal form: 

(4.32)          𝐺2(𝑥𝑛, 𝑦𝑛; 𝜇) ≔ {
(
0.5534 1
0.02825 0

) (
𝑥𝑛
𝑦𝑛
) + 𝜇 (

1
0
) 𝑥𝑛 < 0

(
−5.4934 1
0.25165 0

) (
𝑥𝑛
𝑦𝑛
) + 𝜇 (

1
0
) 0 ≤ 𝑥𝑛

. 
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We notice that both determinants are still negative, and so we would expect a period-1 to 

period-2 response as long as conditions (4.29) and (4.30) are satisfied, while we can 

expect chaos otherwise. We check these conditions: 

1 − (0.5534)(−5.4934) + (−0.02825) + (−0.25165) + (−0.02825)(−0.25165) 

= 3.7673 > 0, 

satisfying condition (4.29). However, when we examine condition (4.30), we see 

1 + (0.5534)(−5.4934) − (−0.02825) − (−0.25165) + (−0.02825)(−0.25165) 

= −1.7530 < 0, 

so that condition (4.30) is not satisfied. This results in Figure 23, which shows chaos, as 

we would expect. 

 Thus, we see results that were predicted in the theoretical study by Banerjee et al. 

[27] when we keep negative determinants. Now we are interested in what results if we 

were to obtain positive determinants in our system. Banerjee et al. [27] show a variety of 

possible results when we have positive determinants. The parameter plot that was 

proposed in this study is shown in Figure 24. Notice from this plot that if we fix our 

determinants to be positive, we will obtain these different results by varying the values of 

𝜏𝐿 and 𝜏𝑅, or the left and right traces. Therefore, we set our determinants to be 

(4.33)          {
𝛿𝐿 = 0.02825
𝛿𝑅 = 0.55165

. 

 The first result that we hope to obtain is shown in region 1a in Figure 24. This 

region should produce no attractor to a period-1 attractor. We see, then, that 

1.02825 = 1 + 𝛿𝐿 < 𝜏𝐿 

and 
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Figure 23 This bifurcation diagram occurs when 𝜏𝐿 = 0.5534, 𝜏𝑅 = −5.4934, 𝛿𝐿 =
−0.02825, and 𝛿𝑅 = −0.25165. As expected, when conditions (4.29) and (4.30) are not 

met, we result in chaos. 
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Figure 24 This figure shows the parameter map for the two-dimensional piecewise 

linear system of equations with positive determinants; copied from Banerjee et al. [27]. 
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−1.4878 = −2√𝛿𝑅 < 𝜏𝑅 < 0 

must hold. We define 𝜏𝐿 = 1.1 and 𝜏𝑅 = −0.0534 to satisfy these conditions. We see the 

result in Figure 25A, which indeed shows no attractor leading to a period-1 attractor. 

 The next result that we hope to obtain is shown in region 1c in Figure 24. We 

expect this region to produce no attractor leading to a chaotic attractor. We see, then, that 

the following should hold: 

1.02825 = 1 + 𝛿𝐿 < 𝜏𝐿 

and 

𝜏𝑅 < −(1 + 𝛿𝑅) = −1.55165. 

We define 𝜏𝐿 = 1.1 and 𝜏𝑅 = −5.534 to satisfy these conditions. We see the result in 

Figure 25B, which indeed shows no attractor leading to a chaotic attractor. 

 Another result that we can obtain is shown in region 2 in Figure 24. We expect 

this region to produce a period-1 attractor leading to a chaotic attractor. We see, then, that 

the following should hold: 

0.3362 = 2√𝛿𝐿 < 𝜏𝐿 < 1 + 𝛿𝐿 = 1.02825 

and 

𝜏𝑅 < −(1 + 𝛿𝑅) = −1.55165 

We define 𝜏𝐿 = 0.9534 and 𝜏𝑅 = −1.9534 to satisfy these conditions. We see the result 

in Figure 25C, showing a period-1 attractor leading to a chaotic attractor. 

 Lastly, we want to obtain the results shown in region 3 in Figure 24. We expect 

this region to produce a period-1 attractor leading to a period-1 attractor. We know that 

the following should hold: 
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A B 

C D 

Figure 25 For these figures, we defined positive determinants, given by Equation 

(4.33), so that 𝛿𝐿 = 0.02825 and 𝛿𝑅 = 0.55165. Then we define different trace values 

for each situation. (A) 𝜏𝐿 = 1.1, 𝜏𝑅 = −0.0534; (B) 𝜏𝐿 = 1.1; 𝜏𝑅 = −5.534; (C) 

𝜏𝐿 = 0.9534; 𝜏𝑅 = −1.9534; (D) 𝜏𝐿 = 0.9534; 𝜏𝑅 = −1.4934. 



 

 58 

0.3362 = 2√𝛿𝐿 < 𝜏𝐿 < 1 + 𝛿𝐿 = 1.02825 

and 

−1.55165 = −(1 + 𝛿𝑅) < 𝜏𝑅 < (1 + 𝛿𝑅) = 1.55165 

We define 𝜏𝐿 = 0.9534 and 𝜏𝑅 = −1.4934 to satisfy these conditions. We see the result 

in Figure 25D, showing a period-1 attractor leading to a chaotic attractor, as expected. 

With Figure 25, we have provided several examples in support of their theoretical 

analysis. 
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CHAPTER V 

SUMMARY AND CONCLUSION 

        

 In this thesis, we have developed mathematical models to describe calcium 

cycling within a cardiac cell. The ability to simulate calcium cycling is significant in the 

relevance of predicting alternans, which would ultimately assist in preventing sudden 

cardiac arrest, one of the leading causes of death in the United States. Alternans triggers 

arrhythmias such as ventricular fibrillation within the heart, and is a harbinger for sudden 

cardiac arrest.  

 In Chapter 3, a one-dimensional mapping model was developed based on the 

simplified assumption that the total calcium concentration within the cell is constant. 

Thus, the model describes the regulation of the peak cytoplasmic calcium in one 

heartbeat as a function of that in the previous beat. We then explored the bifurcation 

patterns of the developed mapping model using the outcomes in Yorke et al. [24]. This 

model provided us with some interesting results about the wide range of bifurcations that 

might occur when increasing the pacing period of our one-dimensional linear mapping 

model. 

 In Chapter 4, a two-dimensional mapping model was developed, which allows 

variation of the total calcium concentration within the cell. The modeling scheme was 

adopted from Qu et al. [3]. State variables of the model include the calcium load in the 

sarcoplasmic reticulum at the end of each beat as well as the total cellular calcium at the 

end of each beat. In order to investigate border-collision bifurcations, we carried out a 

piecewise linear approximation of the model in Qu et al. [3]. Numerical results showed 
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that the piecewise linear functions approximate the original functions well. We then 

transformed the two-dimensional piecewise linear model into the normal form outlined in 

Banerjee and Grebogi [27]. Bifurcation patterns in the two-dimensional model were 

explored to show that there exists a plethora of possible instabilities in calcium cycling. 

This information might encourage us to study the eigenvalues of continuous maps at the 

bifurcation point for both calcium cycling models and those describing voltage dynamics, 

as other recent research suggests [28-29]. 

 There are a few modifications, which we would like to suggest for future 

research. First, the second model would be much more reliable if we had not performed 

the linear approximations to experimental data. Studying the original system of 

equations, we could have used affine approximations near the threshold and studied 

bifurcation phenomenon that occurred locally. This could have provided much more 

realistic information regarding the onset of alternans based on calcium cycling in a 

cardiac cell. 

 Another modification that could be made to the two-dimensional model is to 

propose an even more complex model, relying on more than the generalized processes 

that were described in this thesis. Calcium flow in a cardiac cell is much more 

complicated than simply measuring the total cellular calcium and the amount of calcium 

within the SR at the end of a beat. There are L-type calcium channels that open at the 

voltage stimulation, allowing calcium to flow into the cell, as well as sodium-calcium 

exchanges and ATPases which have a great deal to do with the amount of calcium in the 

cytoplasm at a given time. Rather than including these processes individually, our model 

generalizes calcium flowing into and out of the cell by only observing the difference in 
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total cellular calcium between beats, and even this value is only dependent on the length 

of the pacing period. There is clearly much more going on inside of the cell which is not 

represented in these simplified models. 

 A final modification, which we would like to suggest for both of these models, is 

the dependence on APD. Although we are observing the onset of arrhythmias at 

sufficiently fast pacing periods, we are not observing the dependence of this calcium 

cycling on the voltage dynamics of the cell. Research suggests that the voltage dynamics 

of a cardiac cell are dependent on the ionic flow within the cell. Thus, we should expect 

that bifurcation diagrams involving APD will be directly related to the results of these 

calcium cycling models. 

 The goal of this thesis was to observe border-collision bifurcations in calcium 

cycling models. The results that were obtained from both of these models suggest that, 

while alternans is the main focus of current research, there may in fact be a wide range of 

arrhythmias that can occur in the heart before the onset of sudden cardiac arrest. 

Additional experimental analysis is required to either confirm or deny the bifurcation 

phenomenon observed in this thesis. 
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