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Abstract 

A code for asteroidal heat transfer and growth is optimized for performance. The 

Gauss elimination routine for the solver is replaced by a sparse matrix routine. Finite 

element matrix assembly operations are rewritten to reduce operations involving 3D 

arrays to 1D. Advantage is taken of the sparse matrix structure of finite element matrices 

in reducing 2D arrays to 1D. The number of vector touches are reduced to the extent 

possible, by carrying over statements from one iteration to the next. The number of do 

loops are reduced by merging several do loops into one. The optimization reduced the 

CPU time taken to run the code from 297 sec to 0.88 sec for a matrix size of 100, an 

improvement of 99.70%. More importantly, the algorithm was reduced from a O(n3) 

operation to a O(n) operation. Thus, the percent time difference between the optimized 

and unoptimized versions is greater at larger matrix sizes. At matrix sizes of 100, the 

number of floating point operations were reduced from 2.39 E+09 to 2.99E+07, an 

improvement of 98.75% and the performance was increased by about 4 times, from 8.06 

MFLOPS/s to 33.92 MFLOPS/s. Because of inefficiency in memory allocation, the 

maximum matrix size for the unoptimized code was limited to 200. This was increased to 

5,000,000 for the optimized code. A version of the code was implemented on NetSolve 

and added to the list of problems on netsolve.cs.utk.edu. Two sample movies were 

generated using OpenGL to explain the scientific significance of the code. With the 

implementation of the optimized code, applications to address scientific problems can 

now be envisioned that were previously thought to be prohibitive in terms of computer 

time. 
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I. Introduction 

There is a crucial disconnect in the way a scientist or engineer and a computer 

scientist approaches scientific programming. To the scientist, what matters is the ultimate 

solution. A computer scientist on the other hand cares more about the intricacies of the 

code, including its structure, organization and performance. In the field of high 

performance computing, incredible strides have been made in the last two decades. 

Yet, the tremendous increase in computing power, has hardly percolated to 

mainstream scientific computing. Scientists write code in a style resembling a 

mathematical derivation or an algorithm, without regard to performance issues. The 

primary motivation is the final solution: performance is hardly a consideration, until of 

course, the run time of the code is found to be unrealistically long. At this point, most 

scientists make mathematical approximations to simplify the complexity of the code, and 

use sample calculations or mathematical derivations to rationalize the simplification.  

 The resistance of scientists to high performance coding is due to the necessary 

overhead in understanding and implementing high performance codes. Standardized high 

level languages for high performance computing like HPF are available but the code 

needs to be converted from languages most scientific code is written in like Fortran and 

C. Message passing programming though available is tedious and hard to debug. Unless a 

direct scientific benefit is apparent, a scientist is unwilling to invest the time and effort to 

master performance issues. Another central issue seems to be whether high performance 

computing is at all necessary for most science applications. The answer to this is 

interesting: unless realistic in terms of computational time, a science application is not 

thought of or pursued. This results in a chicken-and-egg problem: because of the 
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overhead of migration, a high performance version of the code is not developed. Since, 

high performance codes are not available, scientific applications that are computationally 

intensive are not perceived to be realistic and hence not pursued. 

 The use of optimized software libraries is a step forward in the evolution of high 

performance scientific code. Yet, there are certain disadvantages to software libraries. 

They do require a degree of programming for incorporation. Moreover, certain software 

resources maybe available only on specific platforms, or on specific machines on the 

network. The evolution of Distributed Computing allows a user to use disparate 

computational resources over machines distributed over the local area network or the 

internet. The evolution of grid middleware, like NetSolve, serves as a layer between the 

application and the available software/hardware interface. The middleware Application 

Programming Interface (API) thus, allows user to access aggregate resources over the 

grid, without a corresponding requirement to understand computing issues, like 

networking, load balancing, fault tolerance, etc. Through the use of grid middleware, 

application programmers can now hope to have access to aggregate computational 

resources without the need to actually understand underlying supercomputing issues. In 

NetSolve, a subroutine can hence be optimized and registered as a grid software resource. 

Once this is done, the subroutine can be accessed in any code (in C, Fortran, Matlab or 

Mathematica) from multiple client machines across the grid. The development of grid 

middleware, thus presents the minimum computational overhead for the scientist or 

engineer, to extract performance as well as access to heterogeneous machines, software 

libraries and large computational resources. 
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II. Overview Of Asteroid Thermal Models 

Planetary Science: An Introduction 

The Sun is believed to have formed by the gravitational self-collapse of a cold 

dense interstellar molecular cloud. Conservation of angular momentum precludes a 

molecular cloud from collapsing into a single object of stellar dimensions: thus, the solar 

nebula is envisioned as a single central condensation surrounded by a flattened, 

rotationally supported structure termed an accretion disk. Disks evolve by dissipation of 

gravitational energy, kinetic energy and angular momentum: material either lose angular 

momentum to fall into the protostar or gain angular momentum and move outward. 

Formation of planets takes place in the accretion disk either by gravitational collapse 

(gaseous giant planets) or due to accumulation as a result of two-body collisions 

(terrestrial planets). The terrestrial planets comprise about 0.5% of the mass of the 

planetary system, and the planetary system in turn corresponds to ~0.1% of the mass of 

the Solar System. Yet, our investigation of Solar System formation centers in large 

measure around the study of the evolution of the terrestrial planet region, primarily due to 

the availability of a wealth of observational and cosmochemical data about the terrestrial 

planets. The problem of uniquely inverting these observations to infer conditions in the 

early Solar System is beyond our abilities, primarily due to a lack of understanding of 

“forward problems” and the paucity of observations. Yet, the idealized pursuit of 

uniqueness, through interdisciplinary study of various processes, defines the ultimate goal 

of a Planetary Scientist. While “requests for the luxury of uniqueness are premature” 

(Wetherill, 1980), it is nonetheless important to strive to eliminate or resolve different 

conclusions arrived at through different modes of enquiry.  
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Motivation: An Identified Demand For Cross-Disciplinary Research In Planetary 

Science 

There are two approaches in understanding the early history of the Solar System: 

the first involves theory based on mechanical and hydrodynamical models for the 

formation of the solar nebula (using observations of accretionary disks in other stellar 

systems), whereas the second focuses on materials shaped by processes in our own 

nebula, which range from the compositions and ages of components found in meteorites 

to observations about the Solar System as we see it today. To the extent that the different 

approaches address the same issue, they should yield consistent results. Yet, in reality, 

different methods often lead to conflicting conclusions that often stay unresolved because 

of the inadequate communication between workers across disciplines (Podosek and 

Cassen, 1994). Thus, there has been a growing recognition in Planetary Science of the 

need to communicate findings of a given discipline in a form that is accessible to other 

disciplinary scientists: which is the long term motivation behind the present work. 

 

Thermal Models As A Tool For Cross-Disciplinary Research 

A common cord that can be used to relate concepts as disparate as multibody 

dynamics of accretion and the geochronology of rocks is thermal modeling. Almost any 

process that relates to either asteroidal/planetary evolution or its cosmochemical record in 

extraterrestrial material (e.g. closure age and cooling rates of meteorites) can be traced to 

the heat budget of the relevant body. All figures and tables are attached in the Appendix 

at the end of the thesis. Fig. A1 shows a generalized sequence of events in the evolution 
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of asteroids and terrestrial planets. Thus, accretion is followed by heating that causes 

either melting, metamorphism or aqueous alteration, followed by cooling, fragmentation 

and reassembly. In the terrestrial planet feeding zones, asteroid-size bodies act as 

planetary building blocks. This is a generalized diagram: it is possible that some stages 

are bypassed in certain cases (like the incorporation of planetesimals into planets can take 

place before cooling, fragmentation and reaccretion). It is of interest to note that each of 

the stages (in Fig. A1) effect the heat budget of the body. Thus, a specific thermal 

evolution scenario can give information about the various stages. On the other hand, a 

particular experimental observation (or theoretical constraint) can be tied to a specific 

thermal evolution scenario. 

Thermal modeling has been used for the last three decades to study evolutionary 

histories of asteroids and meteorite parent bodies (Table A1). The heat transfer equation 

(for a detailed discussion, see Chapter III) is solved for an asteroidal body or a 

planetesimal. A Dirichlet boundary condition or a radiation boundary condition is used to 

simulate heat loss from the surface. Asteroid thermal models use parameters from 

accretion physics, models of asteroid fragmentation and nebular models in order to 

generate thermal evolution scenarios that can then be compared to meteorite and asteroid 

data. Thermal models use input parameters (like accretion rate and time, ambient 

temperature, degree of compaction, etc.) constrained from nebular models, accretion 

models, models of fragmentation and regolith formation, etc. The model strives to match 

the peak temperature constraint of the relevant type of body being modeled (For details, 

see McSween et al, 2003). The simulation provides as output, data like model cooling 

rates and model closure ages and volume proportion of petrologic types. These can be 
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compared with cosmochemical data like meteorite cooling rates and closure ages. If the 

match is unsatisfactory, the model is recalculated with a different set of input parameters 

and the processes until a satisfactory match is obtained. In essence, thermal models map a 

set of input parameters to a corresponding set of output parameters by balancing the peak 

temperature. Thus, they can sequester parameter sets that are compatible with one another 

from those that are not. For example, in modeling the HED parent body, 26Al chronology 

(relative to the formation of Calcium Aluminum inclusions in meteorites or CAIs) place 

volcanism at 2-3 Myrs (Srinivasan et al., 1999), whereas W-Hf systematics produces a 

time of core segregation between 6-15 Myrs (Lee and Halliday, 1999). Using thermal 

models, it is possible to assess that the older 26Al ages requires accretion to initiate at CAI 

formation and a magma ocean to form on Vesta. The younger W-Hf age would require 

accretion to take place ~2.5 Myrs after CAI formation and melting on the HED parent 

body to be restricted to <25%. Thus, a thermal model can translate two disparate 

chronologic ages and translate them into two different whole asteroid evolutionary 

scenarios. In other words, thermal models can be used as a platform to compare and put 

into context the various interdisciplinary approaches of studying the early Solar System. 

 

Probable Heat Sources: 26Al And Electromagnetic Induction Heating 

In 1955, Harold Urey recognized that “it is difficult to believe that heating by K, 

U and Th (or longlived radionuclides) is a feasible explanation for the high-temperature 

stage required to produce the meteorites.” He proceeded to perform the first back of the 

envelope calculation where he suggested that 26Al was a heat source for asteroidal 

heating (Urey, 1955), and perhaps inadvertently set into motion the subdiscipline of 
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asteroid thermal modeling. For about the next 30 years, thermal models were used as 

plausibility calculations for heat sources where the main aim was to realize peak 

temperatures for chondrite metamorphism in an asteroidal body. Of the many heat 

sources suggested to cause global metamorphism in the early solar system, all but, 

heating due to decay of 26Al and heating due to electromagnetic induction of asteroids, 

are considered implausible (See Wood and Pellas, 1991, for detailed discussion).   

The theory of electromagnetic induction heating, first proposed by Sonnett et al. 

(1968) was based on the physics of T-Tauri outflow (Kuhi, 1964). However, recent 

studies of T-Tauri stars moderate the conditions required for electromagnetic induction 

heating. First, the solar wind has been found to be anisotropic with a higher wind density 

at high latitudes, avoiding the equatorial region where planetesimals form (Edward et al., 

1987). Second, the mass loss from a T-Tauri star (and hence, rate of mass loss which 

governs the magnetic field of the plasma) has been revised from ~50% (Kuhi, 1964) to a 

few percent (DeCampli, 1981). The problem hinges on the choice of a reasonable 

parameter set where, as noted by Wood and Pellas (1991), most of the parameters are 

unconstrained. However, recent models (Herbert, 1989, Shimazu and Terasawa, 1995) do 

produce melting in asteroidal sized bodies. In the absence of any conclusive study to 

prove otherwise, we cannot rule out electromagnetic induction as a heat source in the 

early Solar System.  

In contrast, he case for 26Al has become increasing stronger over the last decade. 

26Al in the early solar system was widespread (MacPherson et al., 1995; Huss et al., 

2002), and its decay product has been found in most classes of chondrites (Lee et al., 

1976; Russell et al., 1996; Kita et al., 2000) and an achondrite (Srinivasan et al., 1999).  
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Reasons as to why evidence for 26Al might be obscured in other achondrites have been 

given (LaTourrette and Wasserburg, 1997; Ghosh and McSween, 1998).  This heat 

source appears capable of explaining the full range of temperature excursions of asteroids 

within the main belt (Grimm and McSween, 1993).  Although nebular heterogeneity of 

26Al has been suggested (Ireland and Fegley, 2000), the consistency of 26Al/27Al ratios in 

calcium-aluminum-rich inclusions (CAIs) and in chondrules, regardless of chondrite 

class, implies broad nebular homogeneity and indicates that differences in initial ratios 

reflect formation time (Huss et al., 2001). 

Laboratory studies of meteorites and spacecraft images of asteroids reveal the 

importance of impacts in the evolution of the asteroidal bodies (Keil et al., 1997). 

Impacts have been suggested as the heat source for global thermal metamorphism, 

igneous activity and aqueous alteration, as well as selective melting of asteriodal bodies 

(Wasson et al., 1987, Cameron et al., 1990, Rubin, 1995). Although hydrodynamic 

models show that some particles ejected in asteroidal collisions do indeed cause heating 

to metamorphic and melting temperature, most material does not undergo heating (Keil et 

al., 1997). Impacts are believed to have caused insufficient to cause global heating of 

entire asteroids: the temperature rise has been shown to be at best tens of degrees (e.g. 

Keil et al., 1997). This primarily stems from the fact that impact energy is proportional to 

gravitational potential energy that is negligible in bodies of asteroidal dimensions 

(Melosh, 1990). Selective melting has been proposed (Wasson, 1995 and references 

therein) for the proposed for the origin of silicate-bearing IAB, IIICD, and IIE iron 

meteorites. Impacts into megaregoliths of chondritic composition are postulated to cause 

Fe-FeS eutectic melting. The melt is thought of have separated from silicates that either 
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remained unmelted or underwent selective melting and fractionation. Repeated impacts 

of the regolith are hypothesized to have formed separate metal melt pools. However, the 

melt pools are believed to have solidified almost instantaneously preventing melt 

movement or collection into pools chiefly due to the short duration of the pressure and 

temperature pulse in impacts (Keil et al., 1997 and references therein). Moreover, impacts 

do not produce partial melts: either instantaneous whole rock melting takes place or 

melting at the scale of mineral grains is observed (Stoffler, 1988).  

 

Approaches To The Problem 

There exist three methods for numerical solution of the heat transfer: the classical 

series solution (e.g. Miyamoto, 1981; Bennett and McSween, 1996; Ackridge et al., 

1997), the finite difference method (e.g. Wood, 1979; Grimm and McSween, 1993) and 

the finite element method (e.g. Ghosh and McSween, 1998). The finite element method, 

which uses a basis function to minimize approximation error during numerical 

integration, has been found to be more accurate than either the finite difference method or 

the classical series solution (Baker and Pepper, 1991). Most models assume asteroidal 

accretion to be instantaneous. Ghosh and McSween (2000) presented a model for 

incremental accretion, and Ghosh et al. (2001) use results from an accretion model 

(Weidenschilling et al., 1997) in an incremental accretion thermal model. The thermal 

evolution of the asteroid can be roughly divided into accretion, heating (with or without 

melting and differentiation or aqueous alteration) and cooling. Workers for simplicity 

have simulated part of the process like (a) heating (with metamorphism) and cooling (e.g. 

Miyamoto, 1981), (b) heating (with melting and differentiation) and cooling (Ghosh and 
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McSween, 1998), (c) heating (with aqueous alteration) and cooling (e.g. Grimm and 

McSween, 1989) and (d) cooling (Haack et al., 1991). 

Depending upon the choice of parameters, boundary and initial conditions, 

numerical method and stages of asteroidal evolution, a plethora of thermal models have 

been presented in the last twenty-five years. Table A1 summarizes the evolution of 

thermal models over the last fifty years. 
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III. Problem Description And Algorithm Development 

Heat Transfer Equation 

The fundamental heat transfer equation in spherical coordinates is given as 

follows: 

v

radnl

c
Q

R
TR

dR
d

Rdt
dT

ρ
κ +

∂
∂

= )(1 2
2  

where T is temperature, R, the radius of the asteroid, t=time, κ = thermal diffusivity, 

Qradnl heat generated by radioactive decay, ρ = density, and cv = specific heat at constant 

volume. To appreciate the subtleties of the model, it is useful to understand how each 

term in the equation might affect the solution. The term on the left side is the rate of 

change of temperature (T) with time (t) in a layer of infinitesimal thickness at any 

arbitrary depth in the asteroid. The first term on the right side of the equation gives the 

amount of heat gained in (or lost by) the infinitesimal layer from the surrounding layers 

by conduction and is known as the conduction or diffusion term. In words, it means that 

the amount of heat transmitted in this fashion is proportional to the rate at which the 

product of thermal gradient (dT/ dR) and thermal diffusivity (κ) changes. Thermal 

diffusivities of rocks are typically low (around 10-7 m2 s-1) and are functions of 

temperature. The thermal diffusivities, as a function of temperature, for various rock 

types are taken from Yomogida and Matsui (1983).  The last term on the right side gives 

the amount of heat that is generated in the asteroid. Qradnl varies with the live 26Al and 

60Fe present and the absolute abundance of Al and Fe. It can be represented 

mathematically as: 

t
FeFe

t
AlAlradnl

FeAl eQAeQAQ λλ −− += 0000   
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where A0 = initial abundance, Q0 = initial heat production per unit volume and λ is the 

decay constant. 

 

Finite Element Implementation 

The simulation is based on the finite element method. The finite element method 

uses a basis function to minimize approximation error during numerical integration, and 

has been found to be more accurate than the finite difference method or the classical 

series solution (Baker and Pepper 1991). The mode of derivation of the Galerkin Weak 

Statement (and the subsequent matrix form of the equation) from the heat transfer 

equation is after Baker and Pepper (1991). The temperature is approximated by a trial 

function which does not coincide with the exact solution of the differential equation for a 

particular value of the spatial dimension, r.  

Hence,  

T(r) = TN(r) + eN(r), 

where T(r) is the exact solution, TN(r) is the numerical approximation, and eN(r) is the 

error. One of the primary concerns of a simulation is to minimize the approximation error  

eN(r). An estimate of the error can be found by substituting it in the differential equation 

(L(T) = 0) to be solved. 

 Thus, L(e) = L(T) – L(TN) 

 Since, L(T) = 0, L(eN) = -L(TN) 

  

 Thus, the trial function, when substituted in the differential equation does not 

equal zero, as required by the differential equation. This cannot be done because forcing 
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L(TN) to be equal to zero amounts to evaluating the exact solution. Instead, a rational 

approach is to make a measure of approximation error disappear in the overall integrated 

sense over the domain. This is done by setting the weighted residuals to go to zero over 

the entire domain represented by the following statement: 

∫Ω
= 0 )L(T)( Nxwi  for 1 <  i < N 

The weight function wi is made identical to the trial function. This is called the 

Galerkin criteria that ensure the minimization of approximation error since it is 

orthogonal (in the mathematical sense means that the distance between the curves of the 

exact solution and the approximation is minimum) to the trial function. After 

implementing the weak statement, first-order Lagrange interpolation polynomials are 

chosen as the trial functions. Subsequently the trial function is written as a basis function 

for each generic finite element. The matrix statement is written and the boundary 

conditions are implemented at the two boundaries of the linear domain. Since a sphere is 

symmetric about a radius (and considering the fact that the asteroid does not have any 

directional heterogeneity in thermal properties), the formulation of the heat transfer 

equation in polar coordinates makes the problem one-dimensional. A time Taylor series 

is written on the matrix statement and the trapezoidal rule is implemented. The asteroid 

goes through a complex history of melting, differentiation, and cooling. The values of 

thermal diffusivity and specific heat are updated  (as a function of temperature) for each 

time step.  
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2/2/ hh
exact

hh eTTeT +==+ , where Th and Th/2 are the solutions for a particular mesh 

size and its double mesh refinement, respectively, eh and eh/2 the errors for a particular 

mesh size and its double mesh refinement, respectively, and Texact the exact solution.  

Approximation error has the following functional form (Baker and Pepper 1991):  

klCe ek
h 2=  

Therefore, the relation between Th and Th/2 can be written as follows:  

2/22/ )12( hkhh eTT −=−  

Assuming ∆Th = Th -Th/2 can be written as follows, the error in the finer grid solution can 

be written as  

)12( 22/2/ −∆= khh Te  

The slope of a log–log plot of numerical error and length of a finite element (le) would be 

expressed as: 

slope = [log(eh/M) - log(eh/2M)]/[(log(le) - log(le/2))] 

For ideal convergence, the above expression should theoretically be equal to 2 for 

a linear basis approximation. Progressive mesh refinements were performed and the value 

of slope was found to equal to 2.05 (see Table A2). 

 

Boundary Conditions 

The heat flux at the center of the asteroid is assumed to be zero. The heat loss from the 

surface of the asteroid is governed by the radiation boundary condition and given by 

)(| 44
" nebulasurfRR

TT
k

e
dR
dT

−=
=

σ  
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where R’ is the radius at the surface, Tsurf temperature at the surface of the asteroid, Tnebula 

temperature of the surrounding nebula, e emissivity, and σ Stefan Boltzmann constant. 

Tnebula is assumed to be the same as the initial temperature throughout the time domain. 

The temperature of the nebula probably decreased with time, but at this time the rate of 

decrease is not unknown. Also, theoretical simulations, the basis of such calculations, are 

not anchored to meteorite evidence and cannot be standardized to a timescale relative to 

CAI formation, and as a result cannot be compared to the present asteroidal model (which 

is anchored to CAI formation). 

Grimm and McSween (1989), Miyamoto et al. (1981), etc., use a Dirichlet  

boundary condition according to which the temperature at the surface of the asteroid is 

set to be the same as the temperature of the surroundings. A Dirichlet boundary condition 

will result in lower peak temperatures and higher cooling rates. The deviation is 

proportional to the difference in surface temperature as calculated by the radiation 

boundary condition and the temperature of the nebula. 

 

Algorithm Development 

 The diffusion equation for heat transfer is solved using the finite element method 

for a symmetric spherical body. Linear 1-dimensional finite element basis matrices are 

used. A radiation boundary condition is used at the surface of the spherical body. Briefly, 

algorithm development can be summarized as follows: the Galerkin Weak Statement is 

written from the original equation as outlined in Baker and Pepper (1991). The weak 

statement is then transformed into a matrix statement of the form: 
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0}{}]{[)}({][ =−−= bQK
dt

tQdMWs  

where, [M]  and [K] = Square Matrices, and{Q}and {b}= Column Matrices. 

The Taylor Series is then written on the matrix statement to evaluate the temperature 

matrix {Q} at time t+1 given all matrices, given {Q} from time t, i.e. the previous 

timestep. 

The sample problem has two temporal domains: for the first time domain (6.6 

Million years [Myrs]), a moving boundary condition is used. At each step, the radius of 

the spherical body is increased and the finite element domain remapped. The radius of the 

spherical body increases from an initial radius of 10 km to a final radius of 90 km. In the 

second time domain (3.4 Myrs for present purposes), the radius of the body does not 

change. There are 3 time domains following time domain-2 if the asteroid if asteroidal 

temperatures are high enough to cause melting to deal with metal segregation and 

volcanism on the asteroid. In the present case, a scenario is assumed where the asteroid 

does not melt. 

The heat source for the system is the decay of 26Al, with a half life of ~0.72 Myrs. 

As the timeframe of the simulation is ~10 Myrs or ~14 half lives, the heat generated 

decreases by a factor of 2-14 during course of the simulation. The specific heat capacity is 

the weighted sum of the specific heats of constituent minerals that make up the rock. The 

specific heat of each mineral is a function of temperature. Thermal diffusivity is a 

function of temperature. 

 The original code has 45 finite elements in the first temporal domain, and 85 

finite elements in the second temporal domain. The first and second temporal domains 
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have 4000 and 300 timesteps, respectively. The code reads in and non-dimensionalizes 

the values of the physical parameters. The code initializes and assembles the finite 

element basis matrices for each domain. The matrix equation is then solved by Gauss 

elimination. 

 The algorithm can be summarized as follows: 

i) Basis matrix assembly for each finite element  

ii) Assemble [M], [K] and {b}from basis matrices 

iii) Using Taylor Series, construct input matrix for Gauss elimination from matrices in (ii) 

iv) Solve input matrix and obtain temperature at time t as output 

v) Use temperature at time t to reassemble matrices [K] and {b} (and [M} for time 

domain-1), i.e. go to (iii) 

 In this thesis, various measurements are made by varying the number of finite 

element domains: this changes the size of the finite element matrices. Thus, matrix size as 

referred to in this paper, refers to the number of finite element nodes, i.e. a matrix size of 

50 means that the number of finite element nodes is 50.  

 

Measuring Time, Flops And MFLOPS/s 

Performance data for the code is obtained using PAPI for torc9.cs.utk.edu. PAPI 

stands for Performance Application Programming Interface, and is developed at the 

Innovative Computing Laboratory at the University of Tennessee (PAPI website, 2003; 

PAPI User Guide, 2003; London et al., 2001a; London et al., 2001b; Dongarra et al., 

2001; Browne et al., 2000a; Browne et al., 2000b; Browne et al., 2000c). The project 

implements an API (Application Programming Interface) to access hardware 
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performance counters of various microprocessors. This is developed in part to enable 

application developers to identify code inefficiencies: so it is well suited to identify code 

inefficiencies in the present code for asteroidal heat transfer. Hardware counters exist on 

almost all platforms: the advantage of PAPI is that it is portable across multiple 

platforms. For more information, see icl.cs.utk.edu/papi and the PAPI User Guide. 

 The function PAPIF_flops in Fortran (corresponding to PAPI_flops in C) is used 

to measure the total process time in seconds, the number of floating point operations and 

MFLOPS/s. Unless specified otherwise, the measurements were made on torc9.cs.utk.edu 

(Operating system: Linux, Memory= 256 MB , Processor = 600 MHtz, Pentium III with 

512 KB L2 cache).  

The function PAPIF_flops is unavailable in cetus4a.cs.utk.edu since it has an 

UltraSparc processor. Ultrasparcs do not support PAPI_FLOPS. PAPI supports any event 

the processor supports.  Thus, since the PAPIF_flops call uses the event PAPI_FLOPS, 

this does not run on Cetus4a. PAPIF_flops works on SGI, Linux (Except AMD Athlons), 

Unios (Cray T3E), Windows (Except AMD Athlons), Itanium 1 & 2 and AIX boxes. 

Since the function PAPIF_flops is unavailable in Unix boxes, time is measured 

using the time function in fortran (elapsed (1) and elapsed (2) give the system and user 

CPU time) for cetus4a.cs.utk.edu (Operating System=Unix, Memory= 512 MB, 

Processor= 500 MHtz, UltraSparcIIe with 256 KB L2 cache). The System CPU time + 

User CPU time required for execution is measured for different problem sizes. 

Unless specified otherwise, time data is reported for cetus4a.cs.utk.edu and flops 

and MFLOPS/s data are reported for torc9.cs.utk.edu. 
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IV. Replacing The (Gauss Elimination) Routine With A Sparse Tridiagonal 

Solver 

Exploiting Matrix Structure For Performance 

The efficiency of any matrix algorithm depends on multiple factors. One of the 

most intuitive factors is identifying the amount of redundant arithmetic and storage for a 

given matrix algorithm. It is important to exploit matrix structure, particularly in case of 

sparse matrices, to optimize performance. Thus, matrix structure can be exploited for 

efficient storage and to reduce the number of redundant arithmetic operations. 

Specifically, the properties of bandedness and symmetry can be exploited to increase 

algorithm efficiency.  

 

Solver Used In Original Code 

In the heat transfer code, a system of linear equations need to be solved at every 

timestep. The solver routine used for this purpose is Gauss elimination. Since, the solver 

routine is invoked at every timestep, it is responsible for a considerable proportion of the 

floating point operations. Thus, optimization of the solver routine can yield a 

considerable boost to performance. 

The broad motivation behind Gauss elimination is to convert a given system of 

equations: Ax = b, to an equivalent triangular system. During the transformation process 

(to generate a tridiagonal system), partial pivoting is used to prevent error magnification. 

This upper triangular system is then solved by back substitution. Like matrix 

multiplication, it is a triple loop process. Thus, as in matrix multiplication, a block LU 

algorithm can be developed that will enhance performance. In terms of performance, 
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Gauss elimination is expensive, i.e. it is of the order O(n3), the number of flops being 

proportional to 2n3/3. 

 

Using A Tridiagonal Solver 

The matrix that was being solved using Gauss elimination was found to be 

tridiagonal and symmetric. This is because linear basis finite element matrices are 2 X 2 

square matrices. The finite element assembly of these matrices throughout the domain 

produces a tridiagonal matrix. Since the coefficients of matrix element (2,1) and (1,2) for 

each of the finite element basis matrices are equal, the coefficients of the lower and upper 

diagonals are the same: thus, resulting in a symmetric matrix. When the matrix A of the 

system Ax = b is symmetric as well as positive definite, pivoting is not necessary. This 

enables solutions that are elegant, as well as compact. Using the symmetric, positive 

definite and tridiagonal nature of matrix A, a sparse tridiagonal matrix solver was 

implemented from Golub and Van Loan (1996). 

Consider the system of [A]{x}= {f}, where [A] is n X n matrix and {x} and {f} 

are column matrices. The Gauss elimination code uses [A] and {f} as inputs. For the 

sparse tridiagonal solver, the diagonal of the matrix [A] was written as an array a (n) and 

the lower diagonal was written similarly as an array b (n-1). Since, matrix [A] is 

symmetric, the lower diagonal equals the upper diagonal. The underlying motivation of 

the algorithm is to reduce the tridiagonal system to an upper triangular system, and then 

using back substitution to compute the vector {x}. The new solver routine, thus takes {a}, 

{b}, {f} as inputs and solves for {x}. To optimize memory used, the vector {f} used, as 
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input is overwritten with {x}, the solution and returned as the output. Gauss elimination 

was O(n3), but the new solver is O(n), the number of flops being proportional to 8n.  

 

Result Of Replacing The Solver 

The implementation of the solver causes significant improvement in code run 

time. A comparison of the decrease in the run time of the Gauss elimination solver and 

the tridiagonal solver for various matrix sizes is shown in Fig. A2, A3 and A4. The 

overall results are summarized in Fig. A5. Each of the figures A2 – A5 plots CPU time 

on the Y-axis on a logarithmic scale. The X-axis plots the last 250 of the 4000 timesteps 

of time domain-1 followed by the first 250 timesteps of time domain-2. Thus, the left 

halves of these plots represent time domain-1 where matrix size is kept constant 45. The 

right half of the plot represents the first 250 timesteps of time domain-2: here the matrix 

size is varied from 99 to 149 to 199. The run time of the solver decreases from 8.81E-05 

seconds to 4.88E-03 sec., an improvement of 98.2% for a matrix size of 199. More 

importantly, the solver reduces from a O(n3) operation to a O(n) operation: thus, as n 

(where, size of A is (n,n)) increases from 46 to 199, the CPU time for Gauss elimination 

increases almost by two orders of magnitude. Since Gauss elimination is O(n3), 

increasing n from 46 to 199 (>4 times) should cause the time to increase by 

199/46=4.323= 81 which is broadly compatible with the results obtained in Fig. A5. CPU 

time for the new solver on the other hand is about a order of magnitude lower than that of 

Gauss elimination for n=46. More importantly, the increase in CPU time is not noticeable 

(particularly on a logarithmic scale for time in Fig. A2 – A5) for the sparse matrix solver 

since the solver is O(n), whereas Gauss elimination is O(n3). 
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A marked change in performance of the solver is achieved by substituting the 

tridiagonal solver: this is reflected in the performance for the overall code. Thus, for a 

matrix size of 199, the number of floating point operations for the overall code decreases 

by 30.8% (Fig. A6). This difference is comparatively lower for smaller matrix sizes as 

shown in Fig. A6. As explained in the previous paragraph, this is because the old solver 

routine was O(n3) and the new solver is O(n). 

Fig. A7 summarizes the MFLOPS/s versus problem size for the (entire) code with 

the Gauss elimination solver (Series–1) and the Sparse Matrix solver (Series-2). A slight 

degradation in performance of 2 MFLOPS/s is observed. This can be partly attributed to 

the sparse tridiagonal solver used in place of the Gauss elimination routine. The 

algorithm is such that it cannot be vectorized. A sample loop from the algorithm runs like 

this: 

do k = 2:n 
 b(k) = b(k) - e(k-1)*b(k-1) 
end do 

It is clear that unless b(k-1) is known, b(k) cannot be evaluated. Since all do loops 

in the algorithm are of this nature, this degrades performance. This results in a slightly 

lower MFLOPS/s measurement for the optimized code with the sparse tridiagonal solver. 

Because of the dependence, the calculation in the above loop has to be performed serially 

and cannot be vectorized. 

 

Memory Utilization 

 Figures A2 – A6 show performance results upto matrix sizes of 200. This is 

because jobs with a matrix size >200 were killed by the operating system for want of 
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memory. The machine the runs were attempted on has 256 Mbytes and 512 Mbytes of 

memory, for torc and cetus, respectively. The memory needed for a square matrix of 

dimension 500 X 500. For 25,000 real numbers, the total memory required should be 

200kbyte. So, accommodating a matrix of this size in memory should be trivial. This 

points to inefficiency in memory allocation. The code contains several 2D matrices and 

3D matrices that use up a lot of memory. These matrices have been defined for 

algorithmic clarity. Functionally, some of these matrices are redundant and some others 

can be rewritten efficiently based on the matrix structure. In the later chapters, the issue 

of memory allocation is addressed and the code is optimized for performance.  
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V. Reducing All Finite Element Matrices To The Corresponding Sparse Matrix 

Form 

Limitations Of Previous Iteration 

During the previous iteration, a Gauss elimination routine was replaced with an 

efficient tridiagonal solver. When compared in isolation, the tridiagonal solver has a 

considerably lower run time and fewer floating point operations compared to Gauss 

Elimination. However, the reduction in run time for the entire code was as little as 5%. 

Fig. A8 summarizes the results. For a matrix size of 150, the run time (of the entire code) 

decreases from 2381 to 2289 seconds, a decrease of 92 seconds or a decrease of 3.86%. 

As is clearly apparent from Fig. A8, the solver routine causes a reduction in run time for 

the entire code, but the improvement is insignificant (i.e. by 3.86% at matrix size of 150). 

The decrease in the number of floating point operations is slightly greater (Fig. A6). One 

of the reasons for the insignificant decrease in run time is that the optimized version with 

the sparse solver reduces the number of flops, but at the same time it decreases the 

MFLOPS/s: thus, the decrease in flops is somewhat offset by the corresponding decrease 

in the performance as measured in MFLOPS/s. 

 Significant performance optimization of a serial code can be achieved by 

exploitation of the matrix structure: specifically, the properties of bandedness and 

symmetry. In the previous chapter, matrix operations involving the solver were 

optimized. In the present chapter, finite element matrix operations will be optimized. 

Specifically, finite element basis matrix generation and matrix assembly operations will 

be optimized.  
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Bandedness And Symmetry Of Finite Element Matrices 

 Three finite element square matrices are formed at the end of the assembly 

process. These are matrices [K], [M] and {b}: for further details on these matrices, see 

Chapter 3. [K] and [M] are generated by the assembly of linear basis finite element 

matrices that are 2 X 2 matrices. The finite element assembly of these matrices 

throughout the domain produces a tridiagonal matrix. A tridiagonal matrix of N X N 

dimension can be effectively stored as three arrays: an array each for the diagonal, the 

upper diagonal and lower diagonal. Since the coefficients of matrix element (2,1) and 

(1,2) for each of the finite element basis matrices are equal, the coefficients of the lower 

and upper diagonals should be the same: thus, resulting in a symmetric matrix. Thus, for 

the matrices [K] and [M], the lower diagonal is equal to the upper diagonal. Thus, a 

tridiagonal, symmetric matrix of dimension N X N can be stored as two arrays of size N 

and N-1 respectively, instead of a 2D array of N2 numbers. 

 

Improvement In Run Time 

 After implementing this phase of optimization, significant improvements in run 

time was observed. Thus, for a matrix size of 85, the run time decreased from 499 

seconds to 1.66 seconds: a decrease of 99.7%. The run times as a function of matrix size 

for this phase of optimization is shown in Fig. A9. A corresponding comparison of the 

run time versus matrix size between the present and past iterations is summarized in Fig. 

10. 
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Reduction In Floating Point Operations: Transition Of The Code From O(n3) To O(n) 

Fig. A11 summarizes the reduction in floating point operations achieved during 

this iteration. Note that the number of floating point operations at matrix size 100, is an 

order of magnitude lower than the previous iteration. Perhaps, a more important result is 

seen in the slope of each of the curves in Fig. A11. Thus, the rate of increase of flops with 

matrix size is far gentler after the present iteration. This is because for the previous 

version, since it is a O(n3) operation, the slope is steep. For the present version, the slope 

is gradual, and although not discernable in a logarithmic plot, increases proportionately 

with increase in matrix size: therefore, the present version is O(n). This relationship will 

be more apparent in later figures (e.g. Fig. A12: with a linear scale on the X-axis that 

plots run time with matrix size). 

 

Memory Optimization 

 Some memory optimization did take place at this stage. Thus, the maximum 

problem size increases from 200 to 2000. Still, this is not an adequate improvement given 

that the total available memory is 256 and 512 Mbytes on torc and cetus, respectively. 

Thus, memory optimization will again be addressed in the following chapter. 
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VI. Memory Optimization: Optimizing The Matrix Assembly Process And 

Replacing All 2D And 3D Matrix Arrays To 1D Form 

Limitations Of Previous Iteration 

 In the last version, finite element matrices that were identified to be sparse were 

expressed as a linear arrays and a tridiagonal solver was implemented in place of a Gauss 

elimination routine. It was possible to run problems with matrix sizes upto 2000. Sizes 

>2000 could not be run on the Cetus machines because the memory requirements of the 

code exceeded available memory on the machine. This iteration deals with 

implementation of efficient memory management with the aim of attaining greater 

performance together with the ability of running larger problem sizes.  

 

The Matrix Assembly Process 

 In the present iteration, the matrix assembly process to generate the finite element 

matrices [K], [M] and {b} are rewritten to ensure that there are no two-dimensional or 

three-dimensional arrays. The matrix assembly process is both computationally and 

memory intensive. The assembly process for [K] and [M] entails the use of 3D matrices 

and three nested do loops that imply operations proportional to n3. For the column matrix 

{b}, the matrix operation process requires 2D matrices and two nested do loops: so the 

major drain on resources is the assembly of the square matrices. An optimization that 

collapses the do loops, and a formulation that avoids the use of 3D matrices should serve 

to improve memory utilization and performance.  After this iteration all matrices are 

expressed as one-dimensional arrays is sparse matrix form, where the diagonal and lower 

diagonal are stored as arrays of size n and n-1, respectively.  
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Changes In Run Time, Memory Utilization, Flops And MFLOPS/s. 

The run time of the code in this iteration for a problem size of 1000, was reduced 

from ~ 12 seconds to ~4 seconds, a reduction of 66%. The run time in seconds as a 

function of problem size for the present iteration is shown in Fig. A12. Fig. A13 shows 

the comparison in run time for the present iteration compared to the previous iteration. In 

contrast to Fig. A12, the X-axis for Fig. A13 is not linear but logarithmic. 

Significantly, the maximum problem size that could be run on Cetus increased 

from 2000 to 5,000,000, i.e. 2500 times: thus, as shown in Fig. A12 and A13, runs for 

large problem sizes could be undertaken. The number of floating point operations 

decreased significantly as shown in Fig. A14. Note that the Y-axis of Fig. A14 is 

logarithmic. Thus, at matrix size 1000, the floating point operations for the previous 

version is 9.49E+08. For the present version, the number of floating point operations is 

1.46E+08: thus, the number of floating point operations were reduced by 85%. Moreover, 

the problem is O(n) and thus the increase in matrix size causes almost a linear increase in 

run time as shown in Fig. A12.  

 A marked increase in MFLOPS/s is noticed. For the present version, with a 

problem size of 100, the speed is 32.94 MFLOPS/s (gradually decreasing to 26 

MFLOPS/s for matrix size of 100000), compared to a value of 8.06 MFLOPS/s. The 

collapsing of the multiple nested do loops to a single do loop was probably responsible 

for a degree of vectorization and contributed in part to the increase in the MFLOPS/s. 

measured for the optimized code. 
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VII. Integration Of Do Loops To Enable Cache Reuse And Reduction Of Vector 

Touches 

Vector Touches And Code Performance 

 In a matrix algorithm, an important consideration in terms of optimization is the 

amount of data that are moved around in the code. Data is moved around in chunks, and 

the time required to read or write a vector (referred to as a vector touch, defined as a 

vector load or store) to memory is significant. Rewriting the code such that the number of 

vector touches required is reduced causes significant savings in time to access vector data 

and can cause significant improvement in overall code execution. Instead of updating 

(and thereby accessing) a vector frequently, updates of a vector element can be written to 

a temporary scalar variable. The scalar can then be used to update the vector element at 

the end of the iteration. This lowers the number of vector touches and optimizes cache 

utilization since the vector has to be loaded (to be written or read) once. Thus, instead of 

loading a vector into the cache from memory multiple times, it is provident to minimize 

the number of loads from memory and maximize the number of times the data already 

loaded into cache is reused. 

 

Cache Reuse And Code Performance 

 In addition, the structure of the code was changed to maximize use of data loaded 

into the cache. Cache reuse and utilization is one of the basics of generating high 

performance code. The objective is to use data loaded in the cache multiple times, instead 

of reloading the data from memory into the cache (since the time overhead of accessing 

the cache is much smaller compared to the time overhead of accessing memory). 
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Optimization To Maximize Cache Reuse And Minimize Vector Touches 

In the asteroid heat transfer code, several do loops (11 to be precise) were merged 

into one do loop. The do loops cover different ranges: thus, the code had to be suitable 

modified to take care of this issue in the unified do loop. For example, some do loops 

start at 1 and continue until n+1, whereas others continue until n. Thus, the iteration n+1 

was hard coded outside the loop. This could as well have been incorporated inside the 

loop with conditional statements (i.e. if (i= n+1) do …..), but this causes the code to 

evaluate each of these conditional statements, where in most cases the operation will not 

be performed, causing a greater overhead. Loop unrolling was used in some do loops. 

Statements because of scientific clarity were written in several stages (like A= B * C, A = 

A * D, A= A / E, were rewritten as A= B * C * D / E). Blocks were tested in do loops, to 

ensure maximum reuse of data loaded in the cache. In contrast to matrix multiplication, 

where blocking is effective in optimization, since in this case, the arrays are one-

dimensional, blocking seemed to have little effect on performance.   

 

Improvement In Run Time, Flops And MFLOPS/s. 

 The percent improvement in run time with matrix size is caused by better 

utilization of data loaded in the cache. Thus, at smaller matrix sizes, there would be 

proportionately smaller number of cache misses: thus, the present optimization that 

reuses data loaded in the cache causes a lower proportionate improvement for smaller 

matrix sizes compared to larger matrix sizes where the optimization causes a larger 

proportionate improvement in cache utilization. Thus, the improvement in time is ~8% at 

 30



matrix sizes of 1000, and 18% at matrix sizes of 1,000,0000 (Fig. A15). The number of 

floating point operations decrease between 4 – 14% as shown in Fig. A16. Fig. A17 

shows that a marginal improvement in the speed measured in MFLOPS/s between 3 (at 

matrix size=100) – 15% (at matrix size = 100000). 
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VIII. Summarizing The Optimization 

Comparison Of The Original Code With The Optimized Version 
 

To summarize, the Gauss elimination routine for the solver is replaced by a sparse 

matrix routine. Finite element matrix assembly operations are rewritten to reduce 

operations involving 3D arrays to 1D. Advantage is taken of the sparse matrix structure 

of finite element matrices in reducing 2D arrays to 1D. The number of vector touches is 

reduced to the extent possible, by carrying over statements from one iteration to the next. 

The number of do loops are reduced by merging several do loops into one. The 

optimization reduced the CPU time taken to run the code, for a matrix size of 100, by 

99.70% as shown in Fig. A18. More importantly, the algorithm was reduced from a O(n3) 

operation to a O(n) operation: as the scale for the X-axis is logarithmic in Fig. A18, the 

difference in slope between the original and optimized versions is not apparent. This is 

shown better in Fig. A13, which is a plot of run time as a function of matrix size. Thus, 

the percent time difference between the optimized and unoptimized version is even 

greater at larger matrix sizes. The optimization in terms of reducing floating point 

operations is shown in Fig. A19. Thus, at matrix sizes of 100, the number of floating 

point operations were reduced from 2.39 E+09 to 2.99E+07, an improvement of 98.75%. 

The performance of the code as measured in MFLOPS/s. is shown in Fig. A20. The 

performance is seen to increase by about 4 times, from 8.06 MFLOPS/s to 33.92 

MFLOPS/s. Because of inefficiency in memory allocation, the maximum matrix size of 

the unoptimized code was limited to 200. For the optimized code, the problem size was 

increased to 5,000,000. 
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Scientific Transparency Of Optimized Code 

A major issue to the application programmer is whether the optimized code 

remains structured enough for ease of understanding. The optimized code with the 

implementation of sparse matrices for the solver and the finite element matrix operations 

is transparent and easy of understand. However, reduction of several do loops into one to 

reduce the number of vector touches, makes the code harder to read or understand. This is 

because all finite element matrix operations: from basis matrix generation, to finite 

element assembly and Taylor series are all compressed in a giant do loop. Also, the 

several do loops that are condensed into one, straddle slightly different iteration ranges, 

adding to the lack of transparency. In this case, some hard coding was required to be able 

to merge the loops. This integration of do loops, has a positive effect on code 

performance, but does compromise code clarity and readability. 

 33



IX. NetSolve Implementation 

Grid Computing And Netsolve 

One of the objectives of grid computing is to create a virtual computer out of a 

large collection of heterogeneous systems sharing various combinations of resources. 

This entails standardization of sharing of heterogeneous resources. Grids help users 

manage problems of resource availability, performance, and data storage. Grids are an 

emergent paradigm in computer science and specifically address the transparent use of 

non-local resources by researchers. In addition, Grids promise to deliver to end users far 

more power than is available in any single supercomputing installation There are 

several emerging Grid platforms (e.g. Globus, Legion, Nimrod). In the present 

study, NetSolve is used for implementation of the code on the distributed grid. For details 

on the Netsolve platform, please see: http:///www.cs.utk.edu/netsolve. NetSolve has well-

defined interfaces to high-performance linear algebra libraries and has been proven as 

a production platform with problems like IPARS and MCELL (Casanova and Dongarra, 

1997; Arnold, Casanova and Dongarra, 1998; Arnold et al., 2002; NetSolve website, 

2003). In addition, NetSolve can leverage other Grid platforms, like Globus, to provide 

extensive computational resources. 

 

Implementation In Netsolve 

 Using the problem description (pdf) file wizard on the NetSolve website 

(icl.cs.utk.edu/netsolve), the pdf file of the problem was created. The subroutine was 

copied to the directory NETSOLVE_ROOT/src/SampleNumericalSoftware and was 

compiled with the makefile in the directory to generate a library (.a) file. The file was 
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then uploaded (using the script of the NetSolve webpage) on the NetSolve agent 

(netsolve.cs.utk.edu) with hydra4d.cs.utk.edu as a server. (It was necessary to remove the 

lines in the pdf file starting with –L for it to work with Fortran). The fortran subroutine is 

of the form: 

Subroutine stratf77 (nodes, max) 
integer nodes  
double precision max 

 

It takes as argument the number of nodes, and returns the maximum temperature attained 

in any finite element node over the timeframe of the simulation. Time was measured by 

the time function in Unix. The results as a function of matrix size and time are 

summarized in the figure below. Note that the X-axis is logarithmic. 

 

Results 

 After implementation on the distributed grid, the run time of the code is of the 

same order as of a serial run of the optimized code (Compare Fig. A21 with A18). As 

expected, a single run of a serial code on a distributed grid shows a slight decrease in run 

time (~10% for a problem size of 1,000,000) because of the overhead of communication 

in the grid development. 

 A plethora of science applications of this routine can be visualized where the 

computational resources of the grid could be harnessed. For example, calculating the 

thermal history of the asteroid belt would entail tracking the heat balance for 1012 bodies, 

and as many runs of the code. One of ways, such large-scale applications of asteroid (and 

planetary) thermal modeling can be feasible, is the availability of this routine on a 
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computational grid environment. More details about possible science applications of the 

asteroid thermal evolution code is discussed in Chapter XI.
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X. Visualization Using OpenGL 

 A short movie was generated in OpenGL to illustrate the broad scientific results 

of the study. Temperature was plotted against distance from the center of the asteroid and 

many such plots over time were merged to make an mpeg movie file. Movie 1 

(www.cs.utk.edu/~aghosh/ghosh_movie1.mpeg) shows the evolution of asteroid 

temperature with growth (counterclockwise from top left) for Cases-1, 4, 6, and 2. The 

time for asteroidal growth decreases from Case-1 through Case-6. It is interesting to note 

that Cases-1 and 2 attain the highest temperature during the period of growth: previously, 

it was thought that asteroids attain their highest temperature after asteroidal growth 

terminates. The volume fraction of the coldest material is highest in Case 1 and lowest in 

Case 6. 

Movie 2 (www.cs.utk.edu/~aghosh/ghosh_movie2.mpg) shows the comparative 

thermal evolution with and without a regolith. (Regolith is a thin layer of ultrafine soil 

that is formed by meteorite impacts and subsequently churning of the soil on 

atmosphereless bodies like the Moon, and asteroids.) The movie shows the growth and 

temperature history for  (counterclockwise from top left) Case 1, Case 6, Case 6 with 

regolith and Case 1 with regolith. Regolith is added after the body stops growing. Note 

that there is a big difference in the thermal history on adding a regolith to Case 6 since 

the regolith is added to the asteroid when the heat source is potent. In Case 1 where 

regolith is added after the heat source is virtually dead, there is no difference in thermal 

evolution.
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XI. Scientific Applications 

 Numerical modeling to address scientific questions is necessarily limited by the 

computational constraints. Thus, important problems that could be better understood but 

are prohibitive, in terms of computing time and memory requirements, are not pursued 

because such an attempt is thought to be unrealistic. The generation of an optimized code 

does not just help in handling better the problem for which it is developed: it also can 

bring along new applications that could not be thought of previously.  

The present code is used to study the thermal history of 6 Hebe, an asteroid. The 

optimized code was conceived in order to pave the way for an accurate thermal evolution 

model of Mars, a body with 30 times the radius of Hebe and with greater evolutional 

complexity including volcanism and core separation. In addition to achieving this end, 

the code can also be applied to studying the thermal history of the asteroid belt, which 

initiates with 1012 bodies of radius 1 km and grows by collision due to mutual attractions. 

In a multivariate problem, the output is dependent on the values of multiple input 

parameters, the values of which may be bracketed by an error bar. Thus, it is often of 

interest to bracket the level of uncertainty of the output, given the uncertainty of input 

parameters. Such problems can be computed elegantly in the Grid environment using 

NetSolve.
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Table 1A: Chronological summary of published asteroid thermal evolution models  
Model     Description 
________________________________________________________________________ 
Urey  (1955) First feasibility calculation of 26Al as an asteroid heat source  
Sonnett et al. (1968) First proposal for electromagnetic induction heating of asteroids 
Herndon and Herndon (1977) Feasibility study of 26Al as an asteroid heat source 
Fujii et al. (1979) Comparison of internal and external heating models for asteroids 
Minster and Allegre (1979) 26Al heating model for the H-chondrite parent body 
Wood (1979) Model to reproduce metallographic cooling rates of iron meteorites 
Miyamoto et al. (1981) 26Al heating model to constraine sizes of Oc parent bodies using  

cooling rates, isotopic closure ages, and fall statistics 
Yomogida and Matsui (1984) 26Al heating model for small, unsintered asteroids 
Grimm (1985) Model of asteroid metamorphism with fragmentation and reassembly 
Grimm and McSween (1989) 26Al heating model of ice-bearing planetesimals, to 

 account for aqueous alteration in Cc 
Herbert (1989) Model of electromagenetic induction heating which causes melting 
Haack et al. (1990) Thermal model of a differentiated asteroid based on decay of long- 

lived radionuclides 
Miyamoto (1991) 26Al heating model to account for aqueous alteration in Cc asteroids 
Grimm and McSween (1993) Explanation of inferred thermal stratification of the  

asteroid belt based on heliocentric accretion and 26Al heating 
Shimazu and Terasawa (1995) Model of electromagnetic induction heating 
Bennett and McSween (1996) Updated 26Al heating model for Oc asteroids, using  

revised chronology and thermophysical properties 
Akridge et al. (1998) Model for 26Al heating of 6 Hebe with a megaregolith 
Ghosh and McSween (1998) 26Al heating model of HED parent body 4 Vesta 
Wilson et al. (1999) Overpressure and explosion resulting from heating Cc asteroids 
Young et al. (1999) 26Al heating model of Cc asteroids with fluid flow, to explain  

oxygen isotope fractionations 
Cohen and Coker (2000) Short- and long-lived radionuclide heating model of Cc  

parent bodies used to study racemization of amino acids 
Wilson and Keil (2000) Thermal effects of magma migration in 4 Vesta 
Ghosh et al. (2001) Effect of incremental accretion on inferred thermal distribution of  
      asteroids in the main belt 
________________________________________________________________________ 
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Table 2A: Verification of Numerical Error by Adjusting Coarseness of the Mesh 
 
No. of elements T  Est. Error Est. T(exact)  Slope 
 
15         946.40 
30         940.57  1.94       938.63 
60         939.16  0.47       938.69  2.05 
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Figure A1: Schematic diagram summarizing asteroidal evolution. Note that a generic 
asteroid might not go through all the stages. Also, current state of knowledge cannot 
distinguish whether some stages were sequential or partly contemporaneous, e.g. it is 
likely that heating took place during as well as after the period of accretion was over. 
Also, the relative timing of certain stages might be different. For example, fragmentation 
and reassembly could have taken place during or after cooling. 
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Figure A2: Comparison of CPU time between Gauss elimination and the tridiagonal 
solver for matrix sizes of 46 and 99. The X-axis plots the number of timesteps for the 
heat transfer code. The graph shows approximately 250 timesteps in each of the two 
domains. The Y-axis shows the CPU time in logarithmic scale. For approximately, the 
left half portion of the graph, the code is in time domain-1, where the size of A = [46,46]. 
and on the right half the code is in domain-2 where the matrix size is [99,99]. Series 1 
represents the CPU time for the new routine (blue in color). Series 2 represents the CPU 
time for the old Gauss elimination routine (pink in color). The diagram shows that CPU 
time used for Gauss elimination increases by about one order of magnitude as the size of 
A increases from (46X46) to (99X99). In case of the tridiagonal solver, the increase is at 
best insignificant, given the logarithmic scale of the Y-axis. 
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Figure A3: Comparison of CPU time between Gauss elimination and the tridiagonal 
solver for matrix sizes of 46 and 151. The X-axis plots the number of timesteps for the 
heat transfer code. The Y-axis shows the CPU time in logarithmic scale. The matrix size 
on the left half of the plot is [46,46] and on the right half is [151,151]. Series 1 represents 
the CPU time for the new routine (blue in color). Series 2 represents the CPU time for the 
old Gauss elimination routine (pink in color). The diagram shows that CPU time used for 
Gauss elimination increases by more than an order of magnitude as the size of A 
increases from (46X46) to (151X151). In case, of the tridiagonal solver, the increase in 
CPU time is insignificant. 
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Figure A4: Comparison of CPU time between Gauss elimination and the tridiagonal 
solver for matrix sizes of 46 and 199. The X-axis plots the number of timesteps for the 
heat transfer code. The Y-axis shows the CPU time in logarithmic scale. The left half of 
the plot is [46,46] and on the right half is [199,199]. Series 1 represents the CPU time for 
the new routine (blue in color). Series 2 represents the CPU time for the old Gauss 
elimination routine (pink in color). The diagram shows that CPU time used for Gauss 
elimination increases by about two orders of magnitude as the size of A increases from 
(46X46) to (199X199). In case, of the new solver, the increase in CPU time is 
insignificant. 
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Figure A5: Summary of the variation of CPU time with matrix size for the Gauss 
elimination and tridiagonal solver routines. The X-axis plots the last 250 timesteps of 
time domain-1, followed by the first 250 timesteps of time domain-2. The Y-axis plots 
CPU time in seconds on a logarithmic scale. As n (where, size of A is (n,n)) increases 
from 46 to 199, the CPU time for Gauss elimination increases almost by two orders of 
magnitude. Series 1 (blue) represents the tridiagonal solver. Series 2 (pink), Series 3 
(yellow) and Series 4 (light blue) represent outputs for Gauss elimination where the size 
of the matrix in time domain 2 are 99, 149, 199, respectively. In time domain 1, Series-2, 
3 and 4 have a matrix size of 46. Since Gauss elimination is O(n3), increasing n from 46 
to 199 (>4 times) should cause the time to increase by 199/46=4.323= 81. CPU time for 
the new solver on the other hand is about a order of magnitude lower than that of Gauss 
elimination for n=46. More importantly, the increase in CPU time is not noticeable for 
the sparse matrix solver since the solver is O(n), whereas Gauss elimination is O(n3). 
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Figure A6: Comparison of the number of floating point operations for the (entire) code 
with the Gauss elimination and tridiagonal solver routines, respectively. Series-1 (blue) 
represents the code with the Gauss elimination, whereas Series-2 (pink) represents the 
code with the tridiagonal solver. Since the sparse matrix solver is O(n), a larger percent 
difference is observed at higher matrix sizes compared to Gauss elimination. 
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Figure A7: Summary of performance (in MFLOPS/s) versus matrix size for the (entire) 
code with the Gauss elimination solver and the Sparse Matrix solver as a function of 
matrix size. Series-1 (blue) represents the code with the Gauss elimination, whereas 
Series-2 (pink) represents the code with the tridiagonal solver. A slight degradation in 
performance of ~2 MFLOPS/s is observed. This can be attributed to the sparse 
tridiagonal solver used in place of the Gauss elimination routine. The algorithm for the 
tridiagonal solver decreases the number of flops, since it produces operations that are 
dependent on previous set of operations. Thus, one iteration of the do loop cannot initiate 
until the last iteration is completed, since the present iteration uses a variable calculated 
in the last iteration. As a result, the code is strictly serial and cannot be vectorized. The 
Gauss elimination algorithm has considerable independent floating point operations that 
can be executed independently. Thus, the code can be vectorized to some extent.
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With and without tridiagonal Solver
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Figure A8: Comparison of run times of the original code (with the Gauss elimination 
solver) and the code with the tridiagonal solver. The X-axis and Y-axis plot matrix size 
and CPU time in seconds, respectively. The blue line (series 1) signifies the run time in 
the original code, the pink line (series 2) indicates the run time using the tridiagonal 
solver in place of Gauss elimination. The yellow line (series 3) calculates the difference 
in run time or the improvement of series 2 over series 1. As is clearly apparent, the solver 
routine causes a reduction in run time for the entire code, but the improvement is 
insignificant. 
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Figure A9: The performance of the code with all finite element matrices reduced to their 
corresponding sparse matrix form. The X-axis and Y-axis plot matrix size and CPU time 
in seconds, respectively. For a matrix size of 85, the run time decreases from 499 seconds 
to 1.66 seconds: a decrease of 99.7%. Note that the sparse matrix optimization frees up 
memory in the code and enables the maximum matrix size to increase from about 200 to 
2000. As expected if the operations were O(n), the increase in matrix size causes almost a 
linear increase in time. 
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Figure A10: Comparison of the run time for code before and after reducing all finite 
element matrices to the sparse matrix form. The X-axis and Y-axis plot matrix size and 
the number of floating point operations, respectively. The X-axis and Y-axis plot matrix 
size and CPU time in seconds, respectively. The plot above summarizes the difference in 
time between the previous version of the code (with the sparse solver: Series-2) and the 
present version (sparse solver and sparse matrix representation of finite element matrices: 
Series-1). Note that the scale for the Y-axis is logarithmic. Also, note that the change of 
run time for Series-1 is far more gradual, whereas for Series-2 is very steep. In the former 
case, the code is O(n) and in the latter case, the code is O(n3). 
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Figure A11: Comparison of floating point operations for code before and after reducing 
all finite element matrices to the sparse matrix form. The X-axis and Y-axis plot matrix 
size and CPU time in seconds, respectively. Series-1 (blue) represents the optimized code 
whereas Series-2 (pink) represents the code from the previous iteration. For a matrix size 
of 100, the optimized code reduces the number of floating point operations by an order of 
magnitude. For larger matrix sizes, because the optimized code is O(n) and the 
unoptimized code was O(n3), the difference in the number of flops between the optimized 
and unoptimized code will be much larger. 
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Figure A12: Plot of run time with matrix size after all finite element matrices were 
expressed in the sparse matrix form, and after all 2D and 3D matrices are expressed as a 
1D arrays. The X-axis and Y-axis plot matrix size and CPU time in seconds, respectively. 
Thus, after this iteration all matrices are expressed as one-dimensional arrays is sparse 
matrix form, where the diagonal and lower diagonal are stored as arrays of size n and n-1, 
respectively. The run time of the code was reduced by 66%: thus, for a problem size of 
1000, the run time was reduced from ~ 12 seconds to ~4 seconds. Significantly, the 
maximum problem size that could be run on Cetus increased from 2000 to 5,000,000, i.e. 
2500 times. The problem is O(n) and thus the increase in matrix size causes almost a 
linear increase in time.
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Figure A13: Comparison of run time with matrix size after all finite element matrices 
were expressed in the sparse matrix form, and after all 2D and 3D matrices are expressed 
as a 1D array, respectively. The figure shows matrix size versus time for the present 
version (Series-2: pink in color) compares to the previous version (Series-1: blue in 
color). Note that scales on the X- and Y-axis are logarithmic. Note that Series-2 (present 
version) is offset to the left of Series-1 (previous version). This means that run time for 
the same problem size is lower for the optimized version. For the previous version, runs 
could be made for matrix sizes of upto 2000. For the present version, matrix sizes can be 
increased upto 1,000,000. 
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Figure A14: Comparison of the number of floating point operations with matrix size after 
all finite element matrices were expressed in the sparse matrix form, and after all 2D and 
3D matrices are expressed as a 1D array, respectively. The X-axis and Y-axis plot matrix 
size and the number of floating point operations per second, respectively. The figure 
summarizes the decrease in the number of floating point operations between the present 
version (Series-2: pink in color) and the previous version (Series-1: blue in color). Note 
that the Y-axis is logarithmic. Thus, at matrix size 1000, the flops for the previous 
version is 9.49E+08. For the present version, the number of flops is 1.46E+08: thus the 
present optimization reduces the number of flops by 85%. 
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Figure A15: Comparison of run time for the code before and after optimizing to reduce 
the number of vector touches and merging of do loops to enable cache reuse. The X-axis 
and Y-axis plot matrix size and CPU time in seconds, respectively. The optimized code is 
represented by Series-2 (pink in color), whereas the previous version of the code is 
represented by Series-1 (blue in color). The improvement in time is ~8% at matrix sizes 
of 1000, and 18% at matrix sizes of 1,000,0000.  
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Figure A16: Comparison of the number of floating point operations for the code before 
and after optimizing to reduce the number of vector touches and merging of do loops to 
enable cache reuse. The X-axis and Y-axis plot matrix size and the number of floating 
point operations, respectively. The optimized code is represented by Series-2 (pink in 
color), whereas the previous version of the code is represented by Series-1 (blue in color). 
The number of flops is observed decrease between 4 – 14%. 
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Figure A17: Comparison of performance (in MFLOPS/s.) for the code before and after 
optimizing to reduce the number of vector touches and merging of do loops to enable 
cache reuse. The X-axis and Y-axis plot matrix size and performance in 
MFLOPS/second, respectively. The optimized code is represented by Series-1 (blue in 
color), whereas the previous version of the code is represented by Series-2 (pink in 
color). There is a marginal improvement in the speed measured in MFLOPS/s between 3 
(at matrix size=100) – 15% (at matrix size = 100000). 
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Figure A18: Comparison of the run time of the original code and the final optimized 
version. The X-axis and Y-axis plot matrix size and CPU time, respectively. Note that the 
X-axis is logarithmic. The original code is represented by Series-1 (blue in color), while 
the optimized version is represented by Series-2 (pink in color). The optimization 
reduced the CPU time taken to run the code from 297 sec to 0.88 sec for a matrix size of 
100, an improvement of 99.70%. More importantly, the algorithm was reduced from a 
O(n3) operation to a O(n) operation. Thus, the percent time difference between the 
optimized and unoptimized versions will be greater at larger matrix sizes.
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Figure A19: Comparison of the number of floating point operations of the original code 
and the final optimized version. The X-axis and Y-axis plot matrix size and the number 
of floating point operations, respectively. Note that the X-axis is logarithmic. The 
original code is represented by Series-1 (blue in color), while the optimized version is 
represented by Series-2 (pink in color). At matrix sizes of 100, the number of floating 
point operations were reduced from 2.39 E+09 to 2.99E+07, an improvement of 98.75%. 
As, the algorithm is reduced from a O(n3) operation to a O(n) operation; the difference 
between the optimized and unoptimized versions is even greater at larger matrix sizes.
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Figure A20: Comparison of performance in MFLOPS/s. of the original code and the final 
optimized version. The X-axis and Y-axis plot matrix size and performance in 
MFLOPS/second, respectively. Note that the X-axis is logarithmic. The original code is 
represented by Series-1 (blue in color), while the optimized version is represented by 
Series-2 (pink in color). At matrix sizes of 100, the performance increased by about 4 
times, from 8.06 MFLOPS/s to 33.92 MFLOPS/s 
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NetSolve implementation
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Figure A21: Run time versus matrix size for NetSolve implementation of the code. The 
X-axis and Y-axis plot matrix size and CPU time in seconds, respectively. The results as 
a function of matrix size and time are summarized in the figure below. Note that the X-
axis is logarithmic.  
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