
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

5-2003

Thermal Evolution of Planetesimals and
Protoplanets in the Terrestrial Planet Region: Code
Optimization and Implementation on a
Distributed Grid using NetSolve
Amitabha Ghosh
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Ghosh, Amitabha, "Thermal Evolution of Planetesimals and Protoplanets in the Terrestrial Planet Region: Code Optimization and
Implementation on a Distributed Grid using NetSolve. " Master's Thesis, University of Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/1944

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268803532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Amitabha Ghosh entitled "Thermal Evolution of
Planetesimals and Protoplanets in the Terrestrial Planet Region: Code Optimization and
Implementation on a Distributed Grid using NetSolve." I have examined the final electronic copy of this
thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Computer Science.

Jack Dongarra, Major Professor

We have read this thesis and recommend its acceptance:

Allen J. Baker, Robert Ward

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate School:

I am submitting herewith a thesis written by Amitabha Ghosh entitled “Thermal
Evolution of Planetesimals and Protoplanets in the Terrestrial Planet Region: Code
Optimization and Implementation on a Distributed Grid using NetSolve”. I have
examined the final electronic copy of this thesis for form and content and recommend
that it be accepted in partial fulfillment of the requirements for the degree of Master of
Science, with a major in Computer Science.

 Jack Dongarra
 Major Professor

We have read this thesis
and recommend its acceptance:

 Allen J. Baker

 Robert Ward

 Accepted for the Council:

 Anne Mayhew

 Vice Provost and
Dean of Graduate Studies

(Original Signatures are on file with official student records.)

Thermal Evolution of Planetesimals and
Protoplanets in the Terrestrial Planet Region:
Code Optimization and Implementation on a

Distributed Grid using NetSolve

A Thesis
Presented for the

Master of Science Degree
The University of Tennessee, Knoxville

Amitabha Ghosh
May 2003

To Daisy

“Because The World Is Round,

It Turns Me On….
Because The Wind Is High,

It Blows My Mind….
Love Is Old, Love Is New.

Love Is All, Love Is You.” (Abbey Road, The Beatles)

 ii

Acknowledgements

 I would like to thank Dr. Jack Dongarra for motivating me in large part to pursue

this degree, for his encouragement and for patiently listening to my ideas. I would like to

acknowledge the help and friendship of some of the wonderful people I came to know in

the Computer Science department. I owe a special word of thanks to Dr. Allen J. Baker,

who steadfastly helped me with just about anything I needed. I would like to thank Dr.

Robert Ward for his help and support.

 iii

Abstract

A code for asteroidal heat transfer and growth is optimized for performance. The

Gauss elimination routine for the solver is replaced by a sparse matrix routine. Finite

element matrix assembly operations are rewritten to reduce operations involving 3D

arrays to 1D. Advantage is taken of the sparse matrix structure of finite element matrices

in reducing 2D arrays to 1D. The number of vector touches are reduced to the extent

possible, by carrying over statements from one iteration to the next. The number of do

loops are reduced by merging several do loops into one. The optimization reduced the

CPU time taken to run the code from 297 sec to 0.88 sec for a matrix size of 100, an

improvement of 99.70%. More importantly, the algorithm was reduced from a O(n3)

operation to a O(n) operation. Thus, the percent time difference between the optimized

and unoptimized versions is greater at larger matrix sizes. At matrix sizes of 100, the

number of floating point operations were reduced from 2.39 E+09 to 2.99E+07, an

improvement of 98.75% and the performance was increased by about 4 times, from 8.06

MFLOPS/s to 33.92 MFLOPS/s. Because of inefficiency in memory allocation, the

maximum matrix size for the unoptimized code was limited to 200. This was increased to

5,000,000 for the optimized code. A version of the code was implemented on NetSolve

and added to the list of problems on netsolve.cs.utk.edu. Two sample movies were

generated using OpenGL to explain the scientific significance of the code. With the

implementation of the optimized code, applications to address scientific problems can

now be envisioned that were previously thought to be prohibitive in terms of computer

time.

 iv

Table of Contents

CHAPTER PAGE

I. Introduction 1

II. Overview Of Asteroid Thermal Models 3

Planetary Science: An Introduction

Motivation: An Identified Demand For Cross-Disciplinary Research In

Planetary Science

Thermal Models As A Tool For Cross-Disciplinary Research

Probable Heat Sources: 26Al And Electromagnetic Induction Heating

Approaches To The Problem

III. Problem Description And Algorithm Development 11

Heat Transfer Equation

Finite Element Implementation

Boundary Conditions

Algorithm Development

Measuring Time, Flops And MFLOPS/s

IV. Replacing The (Gauss Elimination) Routine With A Sparse Tridiagonal

Solver 19

Exploiting Matrix Structure For Performance

Solver Used In Original Code

Using A Tridiagonal Solver

Result Of Replacing The Solver

Memory Utilization

V. Reducing All Finite Element Matrices To The Corresponding Sparse Matrix

Form 24

Limitations Of Previous Iteration

Bandedness And Symmetry Of Finite Element Matrices

Improvement In Run Time

 v

Reduction In Floating Point Operations: Transition Of The Code From O(n3)

To O(n)

Memory Optimization

VI. Memory Optimization: Optimizing The Matrix Assembly Process And Replacing

All 2D And 3D Matrix Arrays To 1D Form 27

Limitations Of Previous Iteration

The Matrix Assembly Process

Changes In Run Time, Memory Utilization, Flops And MFLOPS/s.

VII. Integration Of Do Loops To Enable Cache Reuse And Reduction Of Vector

Touches 29

Vector Touches And Code Performance

Cache Reuse And Code Performance

Optimization To Maximize Cache Reuse And Minimize Vector Touches

Improvement In Run Time, Flops And MFLOPS/s.

VIII. Summarizing The Optimization 32

Comparison Of The Original Code With The Optimized Version

Scientific Transparency Of Optimized Code

IX. Netsolve Implementation 34

Grid Computing And Netsolve

Implementation In Netsolve

Results

X. Visualization Using OpenGL 37

XI. Scientific Applications 38

List of References 39

Appendix 49

Vita 73

 vi

List of Figures

Figure Page

A1: Schematic diagram summarizing asteroidal evolution. 52

A2: Comparison of CPU time between Gauss elimination and the tridiagonal solver for

matrix sizes of 46 and 99. 53

A3: Comparison of CPU time between Gauss elimination and the tridiagonal solver for

matrix sizes of 46 and 151. 54

A4: Comparison of CPU time between Gauss elimination and the tridiagonal solver for

matrix sizes of 46 and 199. 55

A5: Summary of the variation of CPU time with matrix size for the Gauss elimination

and tridiagonal solver routines. 56

A6: Comparison of the number of floating point operations for the (entire) code with the

Gauss elimination and tridiagonal solver routines, respectively. 57

A7: Summary of performance (in MFLOPS/s) versus matrix size for the (entire) code

with the Gauss elimination solver and the Sparse Matrix solver as a function of matrix

size. 58

 vii

A8: Comparison of run times of the original code (with the Gauss elimination solver) and

the code with the tridiagonal solver. 59

A9: The performance of the code with all finite element matrices reduced to their

corresponding sparse matrix form. 60

A10: Comparison of the run time for code before and after reducing all finite element

matrices to the sparse matrix form. 61

A11: Comparison of floating point operations for code before and after reducing all finite

element matrices to the sparse matrix form. 62

A12: Plot of run time with matrix size after all finite element matrices were expressed in

the sparse matrix form, and after all 2D and 3D matrices are expressed as

a 1D arrays. 63

A13: Comparison of run time with matrix size after all finite element matrices were

expressed in the sparse matrix form, and after all 2D and 3D matrices are expressed as a

1D array, respectively. 64

A14: Comparison of the number of floating point operations with matrix size after all

finite element matrices were expressed in the sparse matrix form, and after all 2D and 3D

matrices are expressed as a 1D array, respectively. 65

 viii

A15: Comparison of run time for the code before and after optimizing to reduce the

number of vector touches and merging of do loops to enable cache reuse. 66

A16: Comparison of the number of floating point operations for the code before and after

optimizing to reduce the number of vector touches and merging of do loops to enable

cache reuse. 67

A17: Comparison of performance (in MFLOPS/s.) for the code before and after

optimizing to reduce the number of vector touches and merging of do loops to enable

cache reuse. 68

A18: Comparison of the run time of the original code and the final optimized version.

 69

A19: Comparison of the number of floating point operations of the original code and the

final optimized version. 70

A20: Comparison of performance in MFLOPS/s. of the original code and the final

optimized version. 71

A21: Run time versus matrix size for NetSolve implementation of code. 72

 ix

I. Introduction

There is a crucial disconnect in the way a scientist or engineer and a computer

scientist approaches scientific programming. To the scientist, what matters is the ultimate

solution. A computer scientist on the other hand cares more about the intricacies of the

code, including its structure, organization and performance. In the field of high

performance computing, incredible strides have been made in the last two decades.

Yet, the tremendous increase in computing power, has hardly percolated to

mainstream scientific computing. Scientists write code in a style resembling a

mathematical derivation or an algorithm, without regard to performance issues. The

primary motivation is the final solution: performance is hardly a consideration, until of

course, the run time of the code is found to be unrealistically long. At this point, most

scientists make mathematical approximations to simplify the complexity of the code, and

use sample calculations or mathematical derivations to rationalize the simplification.

 The resistance of scientists to high performance coding is due to the necessary

overhead in understanding and implementing high performance codes. Standardized high

level languages for high performance computing like HPF are available but the code

needs to be converted from languages most scientific code is written in like Fortran and

C. Message passing programming though available is tedious and hard to debug. Unless a

direct scientific benefit is apparent, a scientist is unwilling to invest the time and effort to

master performance issues. Another central issue seems to be whether high performance

computing is at all necessary for most science applications. The answer to this is

interesting: unless realistic in terms of computational time, a science application is not

thought of or pursued. This results in a chicken-and-egg problem: because of the

 1

overhead of migration, a high performance version of the code is not developed. Since,

high performance codes are not available, scientific applications that are computationally

intensive are not perceived to be realistic and hence not pursued.

 The use of optimized software libraries is a step forward in the evolution of high

performance scientific code. Yet, there are certain disadvantages to software libraries.

They do require a degree of programming for incorporation. Moreover, certain software

resources maybe available only on specific platforms, or on specific machines on the

network. The evolution of Distributed Computing allows a user to use disparate

computational resources over machines distributed over the local area network or the

internet. The evolution of grid middleware, like NetSolve, serves as a layer between the

application and the available software/hardware interface. The middleware Application

Programming Interface (API) thus, allows user to access aggregate resources over the

grid, without a corresponding requirement to understand computing issues, like

networking, load balancing, fault tolerance, etc. Through the use of grid middleware,

application programmers can now hope to have access to aggregate computational

resources without the need to actually understand underlying supercomputing issues. In

NetSolve, a subroutine can hence be optimized and registered as a grid software resource.

Once this is done, the subroutine can be accessed in any code (in C, Fortran, Matlab or

Mathematica) from multiple client machines across the grid. The development of grid

middleware, thus presents the minimum computational overhead for the scientist or

engineer, to extract performance as well as access to heterogeneous machines, software

libraries and large computational resources.

 2

II. Overview Of Asteroid Thermal Models

Planetary Science: An Introduction

The Sun is believed to have formed by the gravitational self-collapse of a cold

dense interstellar molecular cloud. Conservation of angular momentum precludes a

molecular cloud from collapsing into a single object of stellar dimensions: thus, the solar

nebula is envisioned as a single central condensation surrounded by a flattened,

rotationally supported structure termed an accretion disk. Disks evolve by dissipation of

gravitational energy, kinetic energy and angular momentum: material either lose angular

momentum to fall into the protostar or gain angular momentum and move outward.

Formation of planets takes place in the accretion disk either by gravitational collapse

(gaseous giant planets) or due to accumulation as a result of two-body collisions

(terrestrial planets). The terrestrial planets comprise about 0.5% of the mass of the

planetary system, and the planetary system in turn corresponds to ~0.1% of the mass of

the Solar System. Yet, our investigation of Solar System formation centers in large

measure around the study of the evolution of the terrestrial planet region, primarily due to

the availability of a wealth of observational and cosmochemical data about the terrestrial

planets. The problem of uniquely inverting these observations to infer conditions in the

early Solar System is beyond our abilities, primarily due to a lack of understanding of

“forward problems” and the paucity of observations. Yet, the idealized pursuit of

uniqueness, through interdisciplinary study of various processes, defines the ultimate goal

of a Planetary Scientist. While “requests for the luxury of uniqueness are premature”

(Wetherill, 1980), it is nonetheless important to strive to eliminate or resolve different

conclusions arrived at through different modes of enquiry.

 3

Motivation: An Identified Demand For Cross-Disciplinary Research In Planetary

Science

There are two approaches in understanding the early history of the Solar System:

the first involves theory based on mechanical and hydrodynamical models for the

formation of the solar nebula (using observations of accretionary disks in other stellar

systems), whereas the second focuses on materials shaped by processes in our own

nebula, which range from the compositions and ages of components found in meteorites

to observations about the Solar System as we see it today. To the extent that the different

approaches address the same issue, they should yield consistent results. Yet, in reality,

different methods often lead to conflicting conclusions that often stay unresolved because

of the inadequate communication between workers across disciplines (Podosek and

Cassen, 1994). Thus, there has been a growing recognition in Planetary Science of the

need to communicate findings of a given discipline in a form that is accessible to other

disciplinary scientists: which is the long term motivation behind the present work.

Thermal Models As A Tool For Cross-Disciplinary Research

A common cord that can be used to relate concepts as disparate as multibody

dynamics of accretion and the geochronology of rocks is thermal modeling. Almost any

process that relates to either asteroidal/planetary evolution or its cosmochemical record in

extraterrestrial material (e.g. closure age and cooling rates of meteorites) can be traced to

the heat budget of the relevant body. All figures and tables are attached in the Appendix

at the end of the thesis. Fig. A1 shows a generalized sequence of events in the evolution

 4

of asteroids and terrestrial planets. Thus, accretion is followed by heating that causes

either melting, metamorphism or aqueous alteration, followed by cooling, fragmentation

and reassembly. In the terrestrial planet feeding zones, asteroid-size bodies act as

planetary building blocks. This is a generalized diagram: it is possible that some stages

are bypassed in certain cases (like the incorporation of planetesimals into planets can take

place before cooling, fragmentation and reaccretion). It is of interest to note that each of

the stages (in Fig. A1) effect the heat budget of the body. Thus, a specific thermal

evolution scenario can give information about the various stages. On the other hand, a

particular experimental observation (or theoretical constraint) can be tied to a specific

thermal evolution scenario.

Thermal modeling has been used for the last three decades to study evolutionary

histories of asteroids and meteorite parent bodies (Table A1). The heat transfer equation

(for a detailed discussion, see Chapter III) is solved for an asteroidal body or a

planetesimal. A Dirichlet boundary condition or a radiation boundary condition is used to

simulate heat loss from the surface. Asteroid thermal models use parameters from

accretion physics, models of asteroid fragmentation and nebular models in order to

generate thermal evolution scenarios that can then be compared to meteorite and asteroid

data. Thermal models use input parameters (like accretion rate and time, ambient

temperature, degree of compaction, etc.) constrained from nebular models, accretion

models, models of fragmentation and regolith formation, etc. The model strives to match

the peak temperature constraint of the relevant type of body being modeled (For details,

see McSween et al, 2003). The simulation provides as output, data like model cooling

rates and model closure ages and volume proportion of petrologic types. These can be

 5

compared with cosmochemical data like meteorite cooling rates and closure ages. If the

match is unsatisfactory, the model is recalculated with a different set of input parameters

and the processes until a satisfactory match is obtained. In essence, thermal models map a

set of input parameters to a corresponding set of output parameters by balancing the peak

temperature. Thus, they can sequester parameter sets that are compatible with one another

from those that are not. For example, in modeling the HED parent body, 26Al chronology

(relative to the formation of Calcium Aluminum inclusions in meteorites or CAIs) place

volcanism at 2-3 Myrs (Srinivasan et al., 1999), whereas W-Hf systematics produces a

time of core segregation between 6-15 Myrs (Lee and Halliday, 1999). Using thermal

models, it is possible to assess that the older 26Al ages requires accretion to initiate at CAI

formation and a magma ocean to form on Vesta. The younger W-Hf age would require

accretion to take place ~2.5 Myrs after CAI formation and melting on the HED parent

body to be restricted to <25%. Thus, a thermal model can translate two disparate

chronologic ages and translate them into two different whole asteroid evolutionary

scenarios. In other words, thermal models can be used as a platform to compare and put

into context the various interdisciplinary approaches of studying the early Solar System.

Probable Heat Sources: 26Al And Electromagnetic Induction Heating

In 1955, Harold Urey recognized that “it is difficult to believe that heating by K,

U and Th (or longlived radionuclides) is a feasible explanation for the high-temperature

stage required to produce the meteorites.” He proceeded to perform the first back of the

envelope calculation where he suggested that 26Al was a heat source for asteroidal

heating (Urey, 1955), and perhaps inadvertently set into motion the subdiscipline of

 6

asteroid thermal modeling. For about the next 30 years, thermal models were used as

plausibility calculations for heat sources where the main aim was to realize peak

temperatures for chondrite metamorphism in an asteroidal body. Of the many heat

sources suggested to cause global metamorphism in the early solar system, all but,

heating due to decay of 26Al and heating due to electromagnetic induction of asteroids,

are considered implausible (See Wood and Pellas, 1991, for detailed discussion).

The theory of electromagnetic induction heating, first proposed by Sonnett et al.

(1968) was based on the physics of T-Tauri outflow (Kuhi, 1964). However, recent

studies of T-Tauri stars moderate the conditions required for electromagnetic induction

heating. First, the solar wind has been found to be anisotropic with a higher wind density

at high latitudes, avoiding the equatorial region where planetesimals form (Edward et al.,

1987). Second, the mass loss from a T-Tauri star (and hence, rate of mass loss which

governs the magnetic field of the plasma) has been revised from ~50% (Kuhi, 1964) to a

few percent (DeCampli, 1981). The problem hinges on the choice of a reasonable

parameter set where, as noted by Wood and Pellas (1991), most of the parameters are

unconstrained. However, recent models (Herbert, 1989, Shimazu and Terasawa, 1995) do

produce melting in asteroidal sized bodies. In the absence of any conclusive study to

prove otherwise, we cannot rule out electromagnetic induction as a heat source in the

early Solar System.

In contrast, he case for 26Al has become increasing stronger over the last decade.

26Al in the early solar system was widespread (MacPherson et al., 1995; Huss et al.,

2002), and its decay product has been found in most classes of chondrites (Lee et al.,

1976; Russell et al., 1996; Kita et al., 2000) and an achondrite (Srinivasan et al., 1999).

 7

Reasons as to why evidence for 26Al might be obscured in other achondrites have been

given (LaTourrette and Wasserburg, 1997; Ghosh and McSween, 1998). This heat

source appears capable of explaining the full range of temperature excursions of asteroids

within the main belt (Grimm and McSween, 1993). Although nebular heterogeneity of

26Al has been suggested (Ireland and Fegley, 2000), the consistency of 26Al/27Al ratios in

calcium-aluminum-rich inclusions (CAIs) and in chondrules, regardless of chondrite

class, implies broad nebular homogeneity and indicates that differences in initial ratios

reflect formation time (Huss et al., 2001).

Laboratory studies of meteorites and spacecraft images of asteroids reveal the

importance of impacts in the evolution of the asteroidal bodies (Keil et al., 1997).

Impacts have been suggested as the heat source for global thermal metamorphism,

igneous activity and aqueous alteration, as well as selective melting of asteriodal bodies

(Wasson et al., 1987, Cameron et al., 1990, Rubin, 1995). Although hydrodynamic

models show that some particles ejected in asteroidal collisions do indeed cause heating

to metamorphic and melting temperature, most material does not undergo heating (Keil et

al., 1997). Impacts are believed to have caused insufficient to cause global heating of

entire asteroids: the temperature rise has been shown to be at best tens of degrees (e.g.

Keil et al., 1997). This primarily stems from the fact that impact energy is proportional to

gravitational potential energy that is negligible in bodies of asteroidal dimensions

(Melosh, 1990). Selective melting has been proposed (Wasson, 1995 and references

therein) for the proposed for the origin of silicate-bearing IAB, IIICD, and IIE iron

meteorites. Impacts into megaregoliths of chondritic composition are postulated to cause

Fe-FeS eutectic melting. The melt is thought of have separated from silicates that either

 8

remained unmelted or underwent selective melting and fractionation. Repeated impacts

of the regolith are hypothesized to have formed separate metal melt pools. However, the

melt pools are believed to have solidified almost instantaneously preventing melt

movement or collection into pools chiefly due to the short duration of the pressure and

temperature pulse in impacts (Keil et al., 1997 and references therein). Moreover, impacts

do not produce partial melts: either instantaneous whole rock melting takes place or

melting at the scale of mineral grains is observed (Stoffler, 1988).

Approaches To The Problem

There exist three methods for numerical solution of the heat transfer: the classical

series solution (e.g. Miyamoto, 1981; Bennett and McSween, 1996; Ackridge et al.,

1997), the finite difference method (e.g. Wood, 1979; Grimm and McSween, 1993) and

the finite element method (e.g. Ghosh and McSween, 1998). The finite element method,

which uses a basis function to minimize approximation error during numerical

integration, has been found to be more accurate than either the finite difference method or

the classical series solution (Baker and Pepper, 1991). Most models assume asteroidal

accretion to be instantaneous. Ghosh and McSween (2000) presented a model for

incremental accretion, and Ghosh et al. (2001) use results from an accretion model

(Weidenschilling et al., 1997) in an incremental accretion thermal model. The thermal

evolution of the asteroid can be roughly divided into accretion, heating (with or without

melting and differentiation or aqueous alteration) and cooling. Workers for simplicity

have simulated part of the process like (a) heating (with metamorphism) and cooling (e.g.

Miyamoto, 1981), (b) heating (with melting and differentiation) and cooling (Ghosh and

 9

McSween, 1998), (c) heating (with aqueous alteration) and cooling (e.g. Grimm and

McSween, 1989) and (d) cooling (Haack et al., 1991).

Depending upon the choice of parameters, boundary and initial conditions,

numerical method and stages of asteroidal evolution, a plethora of thermal models have

been presented in the last twenty-five years. Table A1 summarizes the evolution of

thermal models over the last fifty years.

 10

III. Problem Description And Algorithm Development

Heat Transfer Equation

The fundamental heat transfer equation in spherical coordinates is given as

follows:

v

radnl

c
Q

R
TR

dR
d

Rdt
dT

ρ
κ +

∂
∂

=)(1 2
2

where T is temperature, R, the radius of the asteroid, t=time, κ = thermal diffusivity,

Qradnl heat generated by radioactive decay, ρ = density, and cv = specific heat at constant

volume. To appreciate the subtleties of the model, it is useful to understand how each

term in the equation might affect the solution. The term on the left side is the rate of

change of temperature (T) with time (t) in a layer of infinitesimal thickness at any

arbitrary depth in the asteroid. The first term on the right side of the equation gives the

amount of heat gained in (or lost by) the infinitesimal layer from the surrounding layers

by conduction and is known as the conduction or diffusion term. In words, it means that

the amount of heat transmitted in this fashion is proportional to the rate at which the

product of thermal gradient (dT/ dR) and thermal diffusivity (κ) changes. Thermal

diffusivities of rocks are typically low (around 10-7 m2 s-1) and are functions of

temperature. The thermal diffusivities, as a function of temperature, for various rock

types are taken from Yomogida and Matsui (1983). The last term on the right side gives

the amount of heat that is generated in the asteroid. Qradnl varies with the live 26Al and

60Fe present and the absolute abundance of Al and Fe. It can be represented

mathematically as:

t
FeFe

t
AlAlradnl

FeAl eQAeQAQ λλ −− += 0000

 11

where A0 = initial abundance, Q0 = initial heat production per unit volume and λ is the

decay constant.

Finite Element Implementation

The simulation is based on the finite element method. The finite element method

uses a basis function to minimize approximation error during numerical integration, and

has been found to be more accurate than the finite difference method or the classical

series solution (Baker and Pepper 1991). The mode of derivation of the Galerkin Weak

Statement (and the subsequent matrix form of the equation) from the heat transfer

equation is after Baker and Pepper (1991). The temperature is approximated by a trial

function which does not coincide with the exact solution of the differential equation for a

particular value of the spatial dimension, r.

Hence,

T(r) = TN(r) + eN(r),

where T(r) is the exact solution, TN(r) is the numerical approximation, and eN(r) is the

error. One of the primary concerns of a simulation is to minimize the approximation error

eN(r). An estimate of the error can be found by substituting it in the differential equation

(L(T) = 0) to be solved.

 Thus, L(e) = L(T) – L(TN)

 Since, L(T) = 0, L(eN) = -L(TN)

 Thus, the trial function, when substituted in the differential equation does not

equal zero, as required by the differential equation. This cannot be done because forcing

 12

L(TN) to be equal to zero amounts to evaluating the exact solution. Instead, a rational

approach is to make a measure of approximation error disappear in the overall integrated

sense over the domain. This is done by setting the weighted residuals to go to zero over

the entire domain represented by the following statement:

∫Ω
= 0)L(T)(Nxwi for 1 < i < N

The weight function wi is made identical to the trial function. This is called the

Galerkin criteria that ensure the minimization of approximation error since it is

orthogonal (in the mathematical sense means that the distance between the curves of the

exact solution and the approximation is minimum) to the trial function. After

implementing the weak statement, first-order Lagrange interpolation polynomials are

chosen as the trial functions. Subsequently the trial function is written as a basis function

for each generic finite element. The matrix statement is written and the boundary

conditions are implemented at the two boundaries of the linear domain. Since a sphere is

symmetric about a radius (and considering the fact that the asteroid does not have any

directional heterogeneity in thermal properties), the formulation of the heat transfer

equation in polar coordinates makes the problem one-dimensional. A time Taylor series

is written on the matrix statement and the trapezoidal rule is implemented. The asteroid

goes through a complex history of melting, differentiation, and cooling. The values of

thermal diffusivity and specific heat are updated (as a function of temperature) for each

time step.

 13

2/2/ hh
exact

hh eTTeT +==+ , where Th and Th/2 are the solutions for a particular mesh

size and its double mesh refinement, respectively, eh and eh/2 the errors for a particular

mesh size and its double mesh refinement, respectively, and Texact the exact solution.

Approximation error has the following functional form (Baker and Pepper 1991):

klCe ek
h 2=

Therefore, the relation between Th and Th/2 can be written as follows:

2/22/)12(hkhh eTT −=−

Assuming ∆Th = Th -Th/2 can be written as follows, the error in the finer grid solution can

be written as

)12(22/2/ −∆= khh Te

The slope of a log–log plot of numerical error and length of a finite element (le) would be

expressed as:

slope = [log(eh/M) - log(eh/2M)]/[(log(le) - log(le/2))]

For ideal convergence, the above expression should theoretically be equal to 2 for

a linear basis approximation. Progressive mesh refinements were performed and the value

of slope was found to equal to 2.05 (see Table A2).

Boundary Conditions

The heat flux at the center of the asteroid is assumed to be zero. The heat loss from the

surface of the asteroid is governed by the radiation boundary condition and given by

)(| 44
" nebulasurfRR

TT
k

e
dR
dT

−=
=

σ

 14

where R’ is the radius at the surface, Tsurf temperature at the surface of the asteroid, Tnebula

temperature of the surrounding nebula, e emissivity, and σ Stefan Boltzmann constant.

Tnebula is assumed to be the same as the initial temperature throughout the time domain.

The temperature of the nebula probably decreased with time, but at this time the rate of

decrease is not unknown. Also, theoretical simulations, the basis of such calculations, are

not anchored to meteorite evidence and cannot be standardized to a timescale relative to

CAI formation, and as a result cannot be compared to the present asteroidal model (which

is anchored to CAI formation).

Grimm and McSween (1989), Miyamoto et al. (1981), etc., use a Dirichlet

boundary condition according to which the temperature at the surface of the asteroid is

set to be the same as the temperature of the surroundings. A Dirichlet boundary condition

will result in lower peak temperatures and higher cooling rates. The deviation is

proportional to the difference in surface temperature as calculated by the radiation

boundary condition and the temperature of the nebula.

Algorithm Development

 The diffusion equation for heat transfer is solved using the finite element method

for a symmetric spherical body. Linear 1-dimensional finite element basis matrices are

used. A radiation boundary condition is used at the surface of the spherical body. Briefly,

algorithm development can be summarized as follows: the Galerkin Weak Statement is

written from the original equation as outlined in Baker and Pepper (1991). The weak

statement is then transformed into a matrix statement of the form:

 15

0}{}]{[)}({][=−−= bQK
dt

tQdMWs

where, [M] and [K] = Square Matrices, and{Q}and {b}= Column Matrices.

The Taylor Series is then written on the matrix statement to evaluate the temperature

matrix {Q} at time t+1 given all matrices, given {Q} from time t, i.e. the previous

timestep.

The sample problem has two temporal domains: for the first time domain (6.6

Million years [Myrs]), a moving boundary condition is used. At each step, the radius of

the spherical body is increased and the finite element domain remapped. The radius of the

spherical body increases from an initial radius of 10 km to a final radius of 90 km. In the

second time domain (3.4 Myrs for present purposes), the radius of the body does not

change. There are 3 time domains following time domain-2 if the asteroid if asteroidal

temperatures are high enough to cause melting to deal with metal segregation and

volcanism on the asteroid. In the present case, a scenario is assumed where the asteroid

does not melt.

The heat source for the system is the decay of 26Al, with a half life of ~0.72 Myrs.

As the timeframe of the simulation is ~10 Myrs or ~14 half lives, the heat generated

decreases by a factor of 2-14 during course of the simulation. The specific heat capacity is

the weighted sum of the specific heats of constituent minerals that make up the rock. The

specific heat of each mineral is a function of temperature. Thermal diffusivity is a

function of temperature.

 The original code has 45 finite elements in the first temporal domain, and 85

finite elements in the second temporal domain. The first and second temporal domains

 16

have 4000 and 300 timesteps, respectively. The code reads in and non-dimensionalizes

the values of the physical parameters. The code initializes and assembles the finite

element basis matrices for each domain. The matrix equation is then solved by Gauss

elimination.

 The algorithm can be summarized as follows:

i) Basis matrix assembly for each finite element

ii) Assemble [M], [K] and {b}from basis matrices

iii) Using Taylor Series, construct input matrix for Gauss elimination from matrices in (ii)

iv) Solve input matrix and obtain temperature at time t as output

v) Use temperature at time t to reassemble matrices [K] and {b} (and [M} for time

domain-1), i.e. go to (iii)

 In this thesis, various measurements are made by varying the number of finite

element domains: this changes the size of the finite element matrices. Thus, matrix size as

referred to in this paper, refers to the number of finite element nodes, i.e. a matrix size of

50 means that the number of finite element nodes is 50.

Measuring Time, Flops And MFLOPS/s

Performance data for the code is obtained using PAPI for torc9.cs.utk.edu. PAPI

stands for Performance Application Programming Interface, and is developed at the

Innovative Computing Laboratory at the University of Tennessee (PAPI website, 2003;

PAPI User Guide, 2003; London et al., 2001a; London et al., 2001b; Dongarra et al.,

2001; Browne et al., 2000a; Browne et al., 2000b; Browne et al., 2000c). The project

implements an API (Application Programming Interface) to access hardware

 17

performance counters of various microprocessors. This is developed in part to enable

application developers to identify code inefficiencies: so it is well suited to identify code

inefficiencies in the present code for asteroidal heat transfer. Hardware counters exist on

almost all platforms: the advantage of PAPI is that it is portable across multiple

platforms. For more information, see icl.cs.utk.edu/papi and the PAPI User Guide.

 The function PAPIF_flops in Fortran (corresponding to PAPI_flops in C) is used

to measure the total process time in seconds, the number of floating point operations and

MFLOPS/s. Unless specified otherwise, the measurements were made on torc9.cs.utk.edu

(Operating system: Linux, Memory= 256 MB , Processor = 600 MHtz, Pentium III with

512 KB L2 cache).

The function PAPIF_flops is unavailable in cetus4a.cs.utk.edu since it has an

UltraSparc processor. Ultrasparcs do not support PAPI_FLOPS. PAPI supports any event

the processor supports. Thus, since the PAPIF_flops call uses the event PAPI_FLOPS,

this does not run on Cetus4a. PAPIF_flops works on SGI, Linux (Except AMD Athlons),

Unios (Cray T3E), Windows (Except AMD Athlons), Itanium 1 & 2 and AIX boxes.

Since the function PAPIF_flops is unavailable in Unix boxes, time is measured

using the time function in fortran (elapsed (1) and elapsed (2) give the system and user

CPU time) for cetus4a.cs.utk.edu (Operating System=Unix, Memory= 512 MB,

Processor= 500 MHtz, UltraSparcIIe with 256 KB L2 cache). The System CPU time +

User CPU time required for execution is measured for different problem sizes.

Unless specified otherwise, time data is reported for cetus4a.cs.utk.edu and flops

and MFLOPS/s data are reported for torc9.cs.utk.edu.

 18

IV. Replacing The (Gauss Elimination) Routine With A Sparse Tridiagonal

Solver

Exploiting Matrix Structure For Performance

The efficiency of any matrix algorithm depends on multiple factors. One of the

most intuitive factors is identifying the amount of redundant arithmetic and storage for a

given matrix algorithm. It is important to exploit matrix structure, particularly in case of

sparse matrices, to optimize performance. Thus, matrix structure can be exploited for

efficient storage and to reduce the number of redundant arithmetic operations.

Specifically, the properties of bandedness and symmetry can be exploited to increase

algorithm efficiency.

Solver Used In Original Code

In the heat transfer code, a system of linear equations need to be solved at every

timestep. The solver routine used for this purpose is Gauss elimination. Since, the solver

routine is invoked at every timestep, it is responsible for a considerable proportion of the

floating point operations. Thus, optimization of the solver routine can yield a

considerable boost to performance.

The broad motivation behind Gauss elimination is to convert a given system of

equations: Ax = b, to an equivalent triangular system. During the transformation process

(to generate a tridiagonal system), partial pivoting is used to prevent error magnification.

This upper triangular system is then solved by back substitution. Like matrix

multiplication, it is a triple loop process. Thus, as in matrix multiplication, a block LU

algorithm can be developed that will enhance performance. In terms of performance,

 19

Gauss elimination is expensive, i.e. it is of the order O(n3), the number of flops being

proportional to 2n3/3.

Using A Tridiagonal Solver

The matrix that was being solved using Gauss elimination was found to be

tridiagonal and symmetric. This is because linear basis finite element matrices are 2 X 2

square matrices. The finite element assembly of these matrices throughout the domain

produces a tridiagonal matrix. Since the coefficients of matrix element (2,1) and (1,2) for

each of the finite element basis matrices are equal, the coefficients of the lower and upper

diagonals are the same: thus, resulting in a symmetric matrix. When the matrix A of the

system Ax = b is symmetric as well as positive definite, pivoting is not necessary. This

enables solutions that are elegant, as well as compact. Using the symmetric, positive

definite and tridiagonal nature of matrix A, a sparse tridiagonal matrix solver was

implemented from Golub and Van Loan (1996).

Consider the system of [A]{x}= {f}, where [A] is n X n matrix and {x} and {f}

are column matrices. The Gauss elimination code uses [A] and {f} as inputs. For the

sparse tridiagonal solver, the diagonal of the matrix [A] was written as an array a (n) and

the lower diagonal was written similarly as an array b (n-1). Since, matrix [A] is

symmetric, the lower diagonal equals the upper diagonal. The underlying motivation of

the algorithm is to reduce the tridiagonal system to an upper triangular system, and then

using back substitution to compute the vector {x}. The new solver routine, thus takes {a},

{b}, {f} as inputs and solves for {x}. To optimize memory used, the vector {f} used, as

 20

input is overwritten with {x}, the solution and returned as the output. Gauss elimination

was O(n3), but the new solver is O(n), the number of flops being proportional to 8n.

Result Of Replacing The Solver

The implementation of the solver causes significant improvement in code run

time. A comparison of the decrease in the run time of the Gauss elimination solver and

the tridiagonal solver for various matrix sizes is shown in Fig. A2, A3 and A4. The

overall results are summarized in Fig. A5. Each of the figures A2 – A5 plots CPU time

on the Y-axis on a logarithmic scale. The X-axis plots the last 250 of the 4000 timesteps

of time domain-1 followed by the first 250 timesteps of time domain-2. Thus, the left

halves of these plots represent time domain-1 where matrix size is kept constant 45. The

right half of the plot represents the first 250 timesteps of time domain-2: here the matrix

size is varied from 99 to 149 to 199. The run time of the solver decreases from 8.81E-05

seconds to 4.88E-03 sec., an improvement of 98.2% for a matrix size of 199. More

importantly, the solver reduces from a O(n3) operation to a O(n) operation: thus, as n

(where, size of A is (n,n)) increases from 46 to 199, the CPU time for Gauss elimination

increases almost by two orders of magnitude. Since Gauss elimination is O(n3),

increasing n from 46 to 199 (>4 times) should cause the time to increase by

199/46=4.323= 81 which is broadly compatible with the results obtained in Fig. A5. CPU

time for the new solver on the other hand is about a order of magnitude lower than that of

Gauss elimination for n=46. More importantly, the increase in CPU time is not noticeable

(particularly on a logarithmic scale for time in Fig. A2 – A5) for the sparse matrix solver

since the solver is O(n), whereas Gauss elimination is O(n3).

 21

A marked change in performance of the solver is achieved by substituting the

tridiagonal solver: this is reflected in the performance for the overall code. Thus, for a

matrix size of 199, the number of floating point operations for the overall code decreases

by 30.8% (Fig. A6). This difference is comparatively lower for smaller matrix sizes as

shown in Fig. A6. As explained in the previous paragraph, this is because the old solver

routine was O(n3) and the new solver is O(n).

Fig. A7 summarizes the MFLOPS/s versus problem size for the (entire) code with

the Gauss elimination solver (Series–1) and the Sparse Matrix solver (Series-2). A slight

degradation in performance of 2 MFLOPS/s is observed. This can be partly attributed to

the sparse tridiagonal solver used in place of the Gauss elimination routine. The

algorithm is such that it cannot be vectorized. A sample loop from the algorithm runs like

this:

do k = 2:n
 b(k) = b(k) - e(k-1)*b(k-1)
end do

It is clear that unless b(k-1) is known, b(k) cannot be evaluated. Since all do loops

in the algorithm are of this nature, this degrades performance. This results in a slightly

lower MFLOPS/s measurement for the optimized code with the sparse tridiagonal solver.

Because of the dependence, the calculation in the above loop has to be performed serially

and cannot be vectorized.

Memory Utilization

 Figures A2 – A6 show performance results upto matrix sizes of 200. This is

because jobs with a matrix size >200 were killed by the operating system for want of

 22

memory. The machine the runs were attempted on has 256 Mbytes and 512 Mbytes of

memory, for torc and cetus, respectively. The memory needed for a square matrix of

dimension 500 X 500. For 25,000 real numbers, the total memory required should be

200kbyte. So, accommodating a matrix of this size in memory should be trivial. This

points to inefficiency in memory allocation. The code contains several 2D matrices and

3D matrices that use up a lot of memory. These matrices have been defined for

algorithmic clarity. Functionally, some of these matrices are redundant and some others

can be rewritten efficiently based on the matrix structure. In the later chapters, the issue

of memory allocation is addressed and the code is optimized for performance.

 23

V. Reducing All Finite Element Matrices To The Corresponding Sparse Matrix

Form

Limitations Of Previous Iteration

During the previous iteration, a Gauss elimination routine was replaced with an

efficient tridiagonal solver. When compared in isolation, the tridiagonal solver has a

considerably lower run time and fewer floating point operations compared to Gauss

Elimination. However, the reduction in run time for the entire code was as little as 5%.

Fig. A8 summarizes the results. For a matrix size of 150, the run time (of the entire code)

decreases from 2381 to 2289 seconds, a decrease of 92 seconds or a decrease of 3.86%.

As is clearly apparent from Fig. A8, the solver routine causes a reduction in run time for

the entire code, but the improvement is insignificant (i.e. by 3.86% at matrix size of 150).

The decrease in the number of floating point operations is slightly greater (Fig. A6). One

of the reasons for the insignificant decrease in run time is that the optimized version with

the sparse solver reduces the number of flops, but at the same time it decreases the

MFLOPS/s: thus, the decrease in flops is somewhat offset by the corresponding decrease

in the performance as measured in MFLOPS/s.

 Significant performance optimization of a serial code can be achieved by

exploitation of the matrix structure: specifically, the properties of bandedness and

symmetry. In the previous chapter, matrix operations involving the solver were

optimized. In the present chapter, finite element matrix operations will be optimized.

Specifically, finite element basis matrix generation and matrix assembly operations will

be optimized.

 24

Bandedness And Symmetry Of Finite Element Matrices

 Three finite element square matrices are formed at the end of the assembly

process. These are matrices [K], [M] and {b}: for further details on these matrices, see

Chapter 3. [K] and [M] are generated by the assembly of linear basis finite element

matrices that are 2 X 2 matrices. The finite element assembly of these matrices

throughout the domain produces a tridiagonal matrix. A tridiagonal matrix of N X N

dimension can be effectively stored as three arrays: an array each for the diagonal, the

upper diagonal and lower diagonal. Since the coefficients of matrix element (2,1) and

(1,2) for each of the finite element basis matrices are equal, the coefficients of the lower

and upper diagonals should be the same: thus, resulting in a symmetric matrix. Thus, for

the matrices [K] and [M], the lower diagonal is equal to the upper diagonal. Thus, a

tridiagonal, symmetric matrix of dimension N X N can be stored as two arrays of size N

and N-1 respectively, instead of a 2D array of N2 numbers.

Improvement In Run Time

 After implementing this phase of optimization, significant improvements in run

time was observed. Thus, for a matrix size of 85, the run time decreased from 499

seconds to 1.66 seconds: a decrease of 99.7%. The run times as a function of matrix size

for this phase of optimization is shown in Fig. A9. A corresponding comparison of the

run time versus matrix size between the present and past iterations is summarized in Fig.

10.

 25

Reduction In Floating Point Operations: Transition Of The Code From O(n3) To O(n)

Fig. A11 summarizes the reduction in floating point operations achieved during

this iteration. Note that the number of floating point operations at matrix size 100, is an

order of magnitude lower than the previous iteration. Perhaps, a more important result is

seen in the slope of each of the curves in Fig. A11. Thus, the rate of increase of flops with

matrix size is far gentler after the present iteration. This is because for the previous

version, since it is a O(n3) operation, the slope is steep. For the present version, the slope

is gradual, and although not discernable in a logarithmic plot, increases proportionately

with increase in matrix size: therefore, the present version is O(n). This relationship will

be more apparent in later figures (e.g. Fig. A12: with a linear scale on the X-axis that

plots run time with matrix size).

Memory Optimization

 Some memory optimization did take place at this stage. Thus, the maximum

problem size increases from 200 to 2000. Still, this is not an adequate improvement given

that the total available memory is 256 and 512 Mbytes on torc and cetus, respectively.

Thus, memory optimization will again be addressed in the following chapter.

 26

VI. Memory Optimization: Optimizing The Matrix Assembly Process And

Replacing All 2D And 3D Matrix Arrays To 1D Form

Limitations Of Previous Iteration

 In the last version, finite element matrices that were identified to be sparse were

expressed as a linear arrays and a tridiagonal solver was implemented in place of a Gauss

elimination routine. It was possible to run problems with matrix sizes upto 2000. Sizes

>2000 could not be run on the Cetus machines because the memory requirements of the

code exceeded available memory on the machine. This iteration deals with

implementation of efficient memory management with the aim of attaining greater

performance together with the ability of running larger problem sizes.

The Matrix Assembly Process

 In the present iteration, the matrix assembly process to generate the finite element

matrices [K], [M] and {b} are rewritten to ensure that there are no two-dimensional or

three-dimensional arrays. The matrix assembly process is both computationally and

memory intensive. The assembly process for [K] and [M] entails the use of 3D matrices

and three nested do loops that imply operations proportional to n3. For the column matrix

{b}, the matrix operation process requires 2D matrices and two nested do loops: so the

major drain on resources is the assembly of the square matrices. An optimization that

collapses the do loops, and a formulation that avoids the use of 3D matrices should serve

to improve memory utilization and performance. After this iteration all matrices are

expressed as one-dimensional arrays is sparse matrix form, where the diagonal and lower

diagonal are stored as arrays of size n and n-1, respectively.

 27

Changes In Run Time, Memory Utilization, Flops And MFLOPS/s.

The run time of the code in this iteration for a problem size of 1000, was reduced

from ~ 12 seconds to ~4 seconds, a reduction of 66%. The run time in seconds as a

function of problem size for the present iteration is shown in Fig. A12. Fig. A13 shows

the comparison in run time for the present iteration compared to the previous iteration. In

contrast to Fig. A12, the X-axis for Fig. A13 is not linear but logarithmic.

Significantly, the maximum problem size that could be run on Cetus increased

from 2000 to 5,000,000, i.e. 2500 times: thus, as shown in Fig. A12 and A13, runs for

large problem sizes could be undertaken. The number of floating point operations

decreased significantly as shown in Fig. A14. Note that the Y-axis of Fig. A14 is

logarithmic. Thus, at matrix size 1000, the floating point operations for the previous

version is 9.49E+08. For the present version, the number of floating point operations is

1.46E+08: thus, the number of floating point operations were reduced by 85%. Moreover,

the problem is O(n) and thus the increase in matrix size causes almost a linear increase in

run time as shown in Fig. A12.

 A marked increase in MFLOPS/s is noticed. For the present version, with a

problem size of 100, the speed is 32.94 MFLOPS/s (gradually decreasing to 26

MFLOPS/s for matrix size of 100000), compared to a value of 8.06 MFLOPS/s. The

collapsing of the multiple nested do loops to a single do loop was probably responsible

for a degree of vectorization and contributed in part to the increase in the MFLOPS/s.

measured for the optimized code.

 28

VII. Integration Of Do Loops To Enable Cache Reuse And Reduction Of Vector

Touches

Vector Touches And Code Performance

 In a matrix algorithm, an important consideration in terms of optimization is the

amount of data that are moved around in the code. Data is moved around in chunks, and

the time required to read or write a vector (referred to as a vector touch, defined as a

vector load or store) to memory is significant. Rewriting the code such that the number of

vector touches required is reduced causes significant savings in time to access vector data

and can cause significant improvement in overall code execution. Instead of updating

(and thereby accessing) a vector frequently, updates of a vector element can be written to

a temporary scalar variable. The scalar can then be used to update the vector element at

the end of the iteration. This lowers the number of vector touches and optimizes cache

utilization since the vector has to be loaded (to be written or read) once. Thus, instead of

loading a vector into the cache from memory multiple times, it is provident to minimize

the number of loads from memory and maximize the number of times the data already

loaded into cache is reused.

Cache Reuse And Code Performance

 In addition, the structure of the code was changed to maximize use of data loaded

into the cache. Cache reuse and utilization is one of the basics of generating high

performance code. The objective is to use data loaded in the cache multiple times, instead

of reloading the data from memory into the cache (since the time overhead of accessing

the cache is much smaller compared to the time overhead of accessing memory).

 29

Optimization To Maximize Cache Reuse And Minimize Vector Touches

In the asteroid heat transfer code, several do loops (11 to be precise) were merged

into one do loop. The do loops cover different ranges: thus, the code had to be suitable

modified to take care of this issue in the unified do loop. For example, some do loops

start at 1 and continue until n+1, whereas others continue until n. Thus, the iteration n+1

was hard coded outside the loop. This could as well have been incorporated inside the

loop with conditional statements (i.e. if (i= n+1) do …..), but this causes the code to

evaluate each of these conditional statements, where in most cases the operation will not

be performed, causing a greater overhead. Loop unrolling was used in some do loops.

Statements because of scientific clarity were written in several stages (like A= B * C, A =

A * D, A= A / E, were rewritten as A= B * C * D / E). Blocks were tested in do loops, to

ensure maximum reuse of data loaded in the cache. In contrast to matrix multiplication,

where blocking is effective in optimization, since in this case, the arrays are one-

dimensional, blocking seemed to have little effect on performance.

Improvement In Run Time, Flops And MFLOPS/s.

 The percent improvement in run time with matrix size is caused by better

utilization of data loaded in the cache. Thus, at smaller matrix sizes, there would be

proportionately smaller number of cache misses: thus, the present optimization that

reuses data loaded in the cache causes a lower proportionate improvement for smaller

matrix sizes compared to larger matrix sizes where the optimization causes a larger

proportionate improvement in cache utilization. Thus, the improvement in time is ~8% at

 30

matrix sizes of 1000, and 18% at matrix sizes of 1,000,0000 (Fig. A15). The number of

floating point operations decrease between 4 – 14% as shown in Fig. A16. Fig. A17

shows that a marginal improvement in the speed measured in MFLOPS/s between 3 (at

matrix size=100) – 15% (at matrix size = 100000).

 31

VIII. Summarizing The Optimization

Comparison Of The Original Code With The Optimized Version

To summarize, the Gauss elimination routine for the solver is replaced by a sparse

matrix routine. Finite element matrix assembly operations are rewritten to reduce

operations involving 3D arrays to 1D. Advantage is taken of the sparse matrix structure

of finite element matrices in reducing 2D arrays to 1D. The number of vector touches is

reduced to the extent possible, by carrying over statements from one iteration to the next.

The number of do loops are reduced by merging several do loops into one. The

optimization reduced the CPU time taken to run the code, for a matrix size of 100, by

99.70% as shown in Fig. A18. More importantly, the algorithm was reduced from a O(n3)

operation to a O(n) operation: as the scale for the X-axis is logarithmic in Fig. A18, the

difference in slope between the original and optimized versions is not apparent. This is

shown better in Fig. A13, which is a plot of run time as a function of matrix size. Thus,

the percent time difference between the optimized and unoptimized version is even

greater at larger matrix sizes. The optimization in terms of reducing floating point

operations is shown in Fig. A19. Thus, at matrix sizes of 100, the number of floating

point operations were reduced from 2.39 E+09 to 2.99E+07, an improvement of 98.75%.

The performance of the code as measured in MFLOPS/s. is shown in Fig. A20. The

performance is seen to increase by about 4 times, from 8.06 MFLOPS/s to 33.92

MFLOPS/s. Because of inefficiency in memory allocation, the maximum matrix size of

the unoptimized code was limited to 200. For the optimized code, the problem size was

increased to 5,000,000.

 32

Scientific Transparency Of Optimized Code

A major issue to the application programmer is whether the optimized code

remains structured enough for ease of understanding. The optimized code with the

implementation of sparse matrices for the solver and the finite element matrix operations

is transparent and easy of understand. However, reduction of several do loops into one to

reduce the number of vector touches, makes the code harder to read or understand. This is

because all finite element matrix operations: from basis matrix generation, to finite

element assembly and Taylor series are all compressed in a giant do loop. Also, the

several do loops that are condensed into one, straddle slightly different iteration ranges,

adding to the lack of transparency. In this case, some hard coding was required to be able

to merge the loops. This integration of do loops, has a positive effect on code

performance, but does compromise code clarity and readability.

 33

IX. NetSolve Implementation

Grid Computing And Netsolve

One of the objectives of grid computing is to create a virtual computer out of a

large collection of heterogeneous systems sharing various combinations of resources.

This entails standardization of sharing of heterogeneous resources. Grids help users

manage problems of resource availability, performance, and data storage. Grids are an

emergent paradigm in computer science and specifically address the transparent use of

non-local resources by researchers. In addition, Grids promise to deliver to end users far

more power than is available in any single supercomputing installation There are

several emerging Grid platforms (e.g. Globus, Legion, Nimrod). In the present

study, NetSolve is used for implementation of the code on the distributed grid. For details

on the Netsolve platform, please see: http:///www.cs.utk.edu/netsolve. NetSolve has well-

defined interfaces to high-performance linear algebra libraries and has been proven as

a production platform with problems like IPARS and MCELL (Casanova and Dongarra,

1997; Arnold, Casanova and Dongarra, 1998; Arnold et al., 2002; NetSolve website,

2003). In addition, NetSolve can leverage other Grid platforms, like Globus, to provide

extensive computational resources.

Implementation In Netsolve

 Using the problem description (pdf) file wizard on the NetSolve website

(icl.cs.utk.edu/netsolve), the pdf file of the problem was created. The subroutine was

copied to the directory NETSOLVE_ROOT/src/SampleNumericalSoftware and was

compiled with the makefile in the directory to generate a library (.a) file. The file was

 34

then uploaded (using the script of the NetSolve webpage) on the NetSolve agent

(netsolve.cs.utk.edu) with hydra4d.cs.utk.edu as a server. (It was necessary to remove the

lines in the pdf file starting with –L for it to work with Fortran). The fortran subroutine is

of the form:

Subroutine stratf77 (nodes, max)
integer nodes
double precision max

It takes as argument the number of nodes, and returns the maximum temperature attained

in any finite element node over the timeframe of the simulation. Time was measured by

the time function in Unix. The results as a function of matrix size and time are

summarized in the figure below. Note that the X-axis is logarithmic.

Results

 After implementation on the distributed grid, the run time of the code is of the

same order as of a serial run of the optimized code (Compare Fig. A21 with A18). As

expected, a single run of a serial code on a distributed grid shows a slight decrease in run

time (~10% for a problem size of 1,000,000) because of the overhead of communication

in the grid development.

 A plethora of science applications of this routine can be visualized where the

computational resources of the grid could be harnessed. For example, calculating the

thermal history of the asteroid belt would entail tracking the heat balance for 1012 bodies,

and as many runs of the code. One of ways, such large-scale applications of asteroid (and

planetary) thermal modeling can be feasible, is the availability of this routine on a

 35

computational grid environment. More details about possible science applications of the

asteroid thermal evolution code is discussed in Chapter XI.

 36

X. Visualization Using OpenGL

 A short movie was generated in OpenGL to illustrate the broad scientific results

of the study. Temperature was plotted against distance from the center of the asteroid and

many such plots over time were merged to make an mpeg movie file. Movie 1

(www.cs.utk.edu/~aghosh/ghosh_movie1.mpeg) shows the evolution of asteroid

temperature with growth (counterclockwise from top left) for Cases-1, 4, 6, and 2. The

time for asteroidal growth decreases from Case-1 through Case-6. It is interesting to note

that Cases-1 and 2 attain the highest temperature during the period of growth: previously,

it was thought that asteroids attain their highest temperature after asteroidal growth

terminates. The volume fraction of the coldest material is highest in Case 1 and lowest in

Case 6.

Movie 2 (www.cs.utk.edu/~aghosh/ghosh_movie2.mpg) shows the comparative

thermal evolution with and without a regolith. (Regolith is a thin layer of ultrafine soil

that is formed by meteorite impacts and subsequently churning of the soil on

atmosphereless bodies like the Moon, and asteroids.) The movie shows the growth and

temperature history for (counterclockwise from top left) Case 1, Case 6, Case 6 with

regolith and Case 1 with regolith. Regolith is added after the body stops growing. Note

that there is a big difference in the thermal history on adding a regolith to Case 6 since

the regolith is added to the asteroid when the heat source is potent. In Case 1 where

regolith is added after the heat source is virtually dead, there is no difference in thermal

evolution.

 37

XI. Scientific Applications

 Numerical modeling to address scientific questions is necessarily limited by the

computational constraints. Thus, important problems that could be better understood but

are prohibitive, in terms of computing time and memory requirements, are not pursued

because such an attempt is thought to be unrealistic. The generation of an optimized code

does not just help in handling better the problem for which it is developed: it also can

bring along new applications that could not be thought of previously.

The present code is used to study the thermal history of 6 Hebe, an asteroid. The

optimized code was conceived in order to pave the way for an accurate thermal evolution

model of Mars, a body with 30 times the radius of Hebe and with greater evolutional

complexity including volcanism and core separation. In addition to achieving this end,

the code can also be applied to studying the thermal history of the asteroid belt, which

initiates with 1012 bodies of radius 1 km and grows by collision due to mutual attractions.

In a multivariate problem, the output is dependent on the values of multiple input

parameters, the values of which may be bracketed by an error bar. Thus, it is often of

interest to bracket the level of uncertainty of the output, given the uncertainty of input

parameters. Such problems can be computed elegantly in the Grid environment using

NetSolve.

 38

List of References

 39

References

Akridge G., Benoit P. H., and Sears D. W. G. (1998) Regolith and megaregolith

formation of H-chondrites: Thermal constraints on the parent body. Icarus, 132, 185-195.

Arnold, D. C., Casanova H., Dongarra, J. (1998) Innovations of the NetSolve Grid

System, Concurrency- Practice and Experience

Arnold D., Agrawal S., Blackford S., Dongarra J., Miller M., Seymour K., Vadhiyar S.,

Sagi K., Shi Z (2002) User's Guide to NetSolve v1.4.1. ICL Technical Report No. ICL-

UT-02-05 June, 2002.

Baker, A. J. and Pepper D. W. (1991) Finite Element 1-2-3, McGraw Hill, New York.

Bennett M. E., and McSween H. Y. Jr. (1996) Revised model calculations for the thermal

histories of ordinary chondrite parent bodies. Meteorit. Planet. Sci., 31, 783-792.

Browne S., Dongarra J., Garner N., London K., and Mucci P. (2000a), A Scalable Cross-

Platform Infrastructure for Application Performance Tuning Using Hardware Counters,

Proc. SC 2000, November 2000.

Browne S., Dongarra J., Garner N., London K., and Mucci P. (2000b) A Portable

Programming Interface for Performance Evaluation on Modern Processors. University of

Tennessee Technical Report, Knoxville, Tennessee, July 2000.

 40

Browne S., Dongarra J., Garner N., Ho G., and Mucci P. (2000c) A Portable

Programming Interface for Performance Evaluation on Modern Processors. The

International Journal of High Performance Computing Applications 14:3, 189 - 204.

Cohen B. A. and Coker R. F. (2000) Modeling of liquid water on CM meteorite parent

bodies and implications for amino acid racemization. Icarus, 145, 369-381.

DeCampli W. M. (1981) T Tauri winds. Astrophys. J., 244, 124-146.

Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D. (2001) Using PAPI for

Hardware Performance Monitoring on Linux Systems. Conference on Linux Clusters:

The HPC Revolution, Urbana, Illinois, June 25-27, 2001.

Fujii N., Miyamoto M., and Ito K. (1979) The role of external heating and thermal

metamorphism of chondritic parent body. Planet. Sci., 1, 84.

Ghosh A. and McSween H. Y. Jr. (1998) A thermal model for the differentiation of

asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187-206.

Ghosh A. and McSween H. Y. Jr. (2000) The effect of incremental accretion on the

thermal modeling of Asteroid 6 Hebe. Meteoritics and Planetary Science, A59.

 41

Ghosh A. Weidenschilling S. J., and McSween H. Y. Jr. (2001) Thermal consequences of

the multizone accretion code on the structure of the asteroid belt. In Lunar and Planetary

Science XXXII, CD #1760. Lunar and Planetary Institute, Houston.

Ghosh A. and McSween H. Y. Jr. (2003) Importance of the accretion process in

asteroidal thermal evolution: Heat transfer in asteroid 6 Hebe. Meteoritics and Planetary

Science, in Press.

Golub, G. H. and Van Loan, C.(1998) Matrix Computations.

Grimm R. E. (1985) Penecontemporaneous metamorphism, fragmentation, and

reassembly of ordinary chondrite parent bodies. J. Geophys. Res., 90, 2022-2028.

Grimm R. E. and McSween H. Y. Jr. (1989) Water and the thermal evolution of

carbonaceous chondrite parent bodies. Icarus, 82, 244-280.

Grimm R. E. and McSween H. Y. Jr. (1993) Heliocentric zoning of the asteroid belt by

alumimun-26 heating. Science, 259, 653-655.

Haack H., Rasmussen K. L., and Warren P. H. (1990) Effects of regolith/megaregolith

insulation on the cooling histories of differentiated asteroids. J. Geophys. Res., 95, 5111-

5124.

 42

Herbert F. (1989) Primoridal electrical induction heating of asteroids. Icarus, 78, 402-

410.

Herndon J. M. and Herndon M. A. (1977) Aluminum-26 as a planetoid heat source in the

early solar system. Meteoritics, 12, 459-465.

Huss G. R., MacPherson G. J., Wasserburg G. J., Russell S. S., and Srinivasan G. (2001)

Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated

ordinary chondrites. Meteorit. Planet. Sci., 36, 975-997.

Keil K., Stoffler D., Love S. G., and Scott E. R. D. (1997) Constraints on the role of

impact heating and melting in asteroids. Meteorit. Planet. Sci., 32, 349-363.

Kita N. T., Nagahara H., Togashi S., and Morishita Y. (2000) A short duration of

chondrule formation in the solar nebula: Evidence from 26Al in Semarkona

ferromagnesian chondrules. Geochim. Cosmochim. Acta, 64, 3913-3922.

Kuhi L. V. (1964) Mass Loss from T Tauri Stars. Astrophysical J., vol. 140, p.1409.

LaTourette T. and Wasserburg G. J. (1997) Mg diffusion in anorthite: Implications for

the formation of early solar system planetesimals. Earth Planet. Sci. Lett., 158, 91-108.

 43

Lee T., Papanastassiou D. A., and Wasserburg G. J. (1976) Demonstration of 26Mg

excess in Allende and evidence for 26Al. Geophys. Res. Lett., 3, 41-44.

Lee D. and Halliday A.(1999) Accretion Rates and the Tungsten and Lead Isotopic

Compositions of the Earth and Moon. 29th LPSC, abstract no. 1540.

London, K., Dongarra, J., Moore, S., Mucci, P., Seymour, K., Spencer, T. (2001a) End-

user Tools for Application Performance Analysis, Using Hardware Counters,

International Conference on Parallel and Distributed Computing Systems, Dallas, TX,

August 8-10, 2001.

Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D. (2001) Using PAPI for

Hardware Performance Monitoring on Linux Systems. Conference on Linux Clusters:

The HPC Revolution, Urbana, Illinois, June 25-27, 2001.

London, K., Moore, S., Mucci, P., Seymour, K., Luczak, R. (2001b) The PAPI Cross-

Platform Interface to Hardware Performance Counters. Department of Defense Users'

Group Conference Proceedings , Biloxi, Mississippi, June 18-21, 2001.

MacPherson G. J., Davis A. M., and Zinner E. K. (1995) The distribution of aluminum-

26 in the early solar system – a reappraisal. Meteorit. Planet. Sci., 30, 365-386.

 44

McSween H. Y. Jr., Sears D. W. G., and Dodd R. T. (1988) Thermal metamorphism. In

Meteorites and the Early Solar System (J. F. Kerridge and M. S. Matthews, eds.), pp.

102-113. University of Arizona Press, Tucson.

McSween H. Y. Jr,, Ghosh A., Grimm R. E., Wilson L. and Young E. (2003) Thermal

Evolution Models of Asteroids. Asteroid-III. Univ. of Arizona Press, In Press.

Melosh H. J. (1990) Giant impacts and the thermal state of the early Earth. In Origin of

the Earth (H. E. Newsom and J. H. Jones, eds.), pp. 69-84. Oxford University Press, New

York.

Minster J. F. and Allegre C. J. (1979) 87Rb-87Sr chronology of H chondrites: Constraint

and speculations on the early evolution of their parent body. Earth Planet. Sci. Lett., 42,

333-347.

Miyamoto M. (1991) Thermal metamorphism of CI and CM carbonaceous chondrites: A

internal heating model. Meteoritics, 26, 111-115.

Miyamoto M., Fujii N., and Takeda H. (1981) Ordinary chondrite parent body: An

internal heating model. Proc. Lunar Planet. Sci. Conf. 12th, pp. 1145-1152.

NetSolve website (2003) http://icl.cs.utk.edu/netsolve

PAPI website (2003) http://icl.cs.utk.edu/papi

 45

PAPI User Guide (2003) website:

http://icl.cs.utk.edu/projects/papi/files/documentation/PAPI_USER_GUIDE_23.pdf

Podosek F. and Cassen P. (1997) Theorerical, observational and isotopic estimates of the

lifetime of the solar nebula. Meteoritics, 29, 6.

Rubin A. E. (1995) Petrologic evidence for collisional heating of chondritic asteroids.

Icarus, 113, 156-167.

Shimazu H. and Terasawa T. (1995) Electromagnetic induction heating of meteorite

parent bodies by the primordial solar wind. J. Geophys. Res., 100, 16,923-16,930.

Sonnett C. P., Colburn D. S., and Schwartz K. (1968) Electrical heating of meteorite

parent bodies and planets by dynamo induction from a premain sequence T Tauri “solar

wind.” Nature, 219, 924-926.

Srinivasan G., Goswami J. N., and Bhandari N. (1999) 26Al in eucrite Piplia Kalan:

Plausible heat source and formation chronology. Science, 284, 1348-1350.

Stoeffler D., Bischoff A., Buchwald V., Rubin A. E. (1988) Shock effects in meteorites.

Meteorites and the Early Solar System. (Eds. Kerridge J. and Matthews J.) Univ. of

Arizona Press, Tucson.

 46

Urey H. (1955) The cosmic abundances of potassium, uranium, and thorium and the heat

balances of the Earth, the Moon and Mars. Proc. Natl. Acad. Sci. U.S., 41, 127-144.

User’s Guide to Netsolve V1.4 by Dorian Arnold, Sudesh Agrawal, Susan Blackford,

Jack Dongarra, Michelle Miller, Sathish Vahdiyar, Kiran Sagi, Zhiao Shi. University of

Tennessee, CS Department Techincal Report No. UT-CS-01-467 July, 2001.

Weidenschilling S. J., Spaute D., Davis D. R., Mazari F., and Ohtsuki K. (1997)

Accretional evolution of a planetesimal swarm. Icarus,128, 429-455.

Wetherill G. W. (1980) Formation of terrestrial planets. Ann. Rev. Astron. Astrophys.,18,

77-213.

Wilson L. and Keil K. (2000) Crust development on differentiated asteroids. In Lunar

and Planetary Science XXXI, CD #1576. Lunar and Planetary Institute, Houston.

Wilson L., Keil K., Browning L. B., Krot A. N., and Bourcher W. (1999) Early aqueous

alteration, explosive disruption, and reprocessing of asteroids. Meteorit. Planet. Sci., 34,

541-557.

 47

Wood J. A. (1979) Review of the metallographic cooling rates of meteorites and a new

model for the planetesimals in which they formed. In Asteroids (T. Gehrels, ed.), pp. 849-

891. University of Arizona Press, Tucson.

Yomogida K. and Matsui T. (1984) Multiple parent bodies of ordinary chondrites. Earth

Planet. Sci. Lett., 68, 34-42.

Young E. D., Ash R. D., England P., and Rumble D. III (1999) Fluid flow in chondrite

parent bodies: deciphering the compositions of planetesimals. Science, 286, 1331-1335.

 48

Appendix

 49

Table 1A: Chronological summary of published asteroid thermal evolution models
Model Description
__
Urey (1955) First feasibility calculation of 26Al as an asteroid heat source
Sonnett et al. (1968) First proposal for electromagnetic induction heating of asteroids
Herndon and Herndon (1977) Feasibility study of 26Al as an asteroid heat source
Fujii et al. (1979) Comparison of internal and external heating models for asteroids
Minster and Allegre (1979) 26Al heating model for the H-chondrite parent body
Wood (1979) Model to reproduce metallographic cooling rates of iron meteorites
Miyamoto et al. (1981) 26Al heating model to constraine sizes of Oc parent bodies using

cooling rates, isotopic closure ages, and fall statistics
Yomogida and Matsui (1984) 26Al heating model for small, unsintered asteroids
Grimm (1985) Model of asteroid metamorphism with fragmentation and reassembly
Grimm and McSween (1989) 26Al heating model of ice-bearing planetesimals, to

 account for aqueous alteration in Cc
Herbert (1989) Model of electromagenetic induction heating which causes melting
Haack et al. (1990) Thermal model of a differentiated asteroid based on decay of long-

lived radionuclides
Miyamoto (1991) 26Al heating model to account for aqueous alteration in Cc asteroids
Grimm and McSween (1993) Explanation of inferred thermal stratification of the

asteroid belt based on heliocentric accretion and 26Al heating
Shimazu and Terasawa (1995) Model of electromagnetic induction heating
Bennett and McSween (1996) Updated 26Al heating model for Oc asteroids, using

revised chronology and thermophysical properties
Akridge et al. (1998) Model for 26Al heating of 6 Hebe with a megaregolith
Ghosh and McSween (1998) 26Al heating model of HED parent body 4 Vesta
Wilson et al. (1999) Overpressure and explosion resulting from heating Cc asteroids
Young et al. (1999) 26Al heating model of Cc asteroids with fluid flow, to explain

oxygen isotope fractionations
Cohen and Coker (2000) Short- and long-lived radionuclide heating model of Cc

parent bodies used to study racemization of amino acids
Wilson and Keil (2000) Thermal effects of magma migration in 4 Vesta
Ghosh et al. (2001) Effect of incremental accretion on inferred thermal distribution of
 asteroids in the main belt
__

 50

Table 2A: Verification of Numerical Error by Adjusting Coarseness of the Mesh

No. of elements T Est. Error Est. T(exact) Slope

15 946.40
30 940.57 1.94 938.63
60 939.16 0.47 938.69 2.05

 51

Figure A1: Schematic diagram summarizing asteroidal evolution. Note that a generic
asteroid might not go through all the stages. Also, current state of knowledge cannot
distinguish whether some stages were sequential or partly contemporaneous, e.g. it is
likely that heating took place during as well as after the period of accretion was over.
Also, the relative timing of certain stages might be different. For example, fragmentation
and reassembly could have taken place during or after cooling.

 52

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
3700 3800 3900 4000 4100 4200 4300

timesteps

C
PU

 ti
m

e

Series1

Series2

Figure A2: Comparison of CPU time between Gauss elimination and the tridiagonal
solver for matrix sizes of 46 and 99. The X-axis plots the number of timesteps for the
heat transfer code. The graph shows approximately 250 timesteps in each of the two
domains. The Y-axis shows the CPU time in logarithmic scale. For approximately, the
left half portion of the graph, the code is in time domain-1, where the size of A = [46,46].
and on the right half the code is in domain-2 where the matrix size is [99,99]. Series 1
represents the CPU time for the new routine (blue in color). Series 2 represents the CPU
time for the old Gauss elimination routine (pink in color). The diagram shows that CPU
time used for Gauss elimination increases by about one order of magnitude as the size of
A increases from (46X46) to (99X99). In case of the tridiagonal solver, the increase is at
best insignificant, given the logarithmic scale of the Y-axis.

 53

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
3700 3800 3900 4000 4100 4200 4300

timesteps in the code

C
PU

 ti
m

e

Series1

Series2

Figure A3: Comparison of CPU time between Gauss elimination and the tridiagonal
solver for matrix sizes of 46 and 151. The X-axis plots the number of timesteps for the
heat transfer code. The Y-axis shows the CPU time in logarithmic scale. The matrix size
on the left half of the plot is [46,46] and on the right half is [151,151]. Series 1 represents
the CPU time for the new routine (blue in color). Series 2 represents the CPU time for the
old Gauss elimination routine (pink in color). The diagram shows that CPU time used for
Gauss elimination increases by more than an order of magnitude as the size of A
increases from (46X46) to (151X151). In case, of the tridiagonal solver, the increase in
CPU time is insignificant.

 54

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
3700 3800 3900 4000 4100 4200 4300

timesteps

C
PU

 ti
m

e
Series1
Series2

Figure A4: Comparison of CPU time between Gauss elimination and the tridiagonal
solver for matrix sizes of 46 and 199. The X-axis plots the number of timesteps for the
heat transfer code. The Y-axis shows the CPU time in logarithmic scale. The left half of
the plot is [46,46] and on the right half is [199,199]. Series 1 represents the CPU time for
the new routine (blue in color). Series 2 represents the CPU time for the old Gauss
elimination routine (pink in color). The diagram shows that CPU time used for Gauss
elimination increases by about two orders of magnitude as the size of A increases from
(46X46) to (199X199). In case, of the new solver, the increase in CPU time is
insignificant.

 55

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
3700 3800 3900 4000 4100 4200 4300

timesteps

U
se

r+
Sy

st
em

 C
PU

 ti
m

e

Series1

Series2

Series3

Series4

Figure A5: Summary of the variation of CPU time with matrix size for the Gauss
elimination and tridiagonal solver routines. The X-axis plots the last 250 timesteps of
time domain-1, followed by the first 250 timesteps of time domain-2. The Y-axis plots
CPU time in seconds on a logarithmic scale. As n (where, size of A is (n,n)) increases
from 46 to 199, the CPU time for Gauss elimination increases almost by two orders of
magnitude. Series 1 (blue) represents the tridiagonal solver. Series 2 (pink), Series 3
(yellow) and Series 4 (light blue) represent outputs for Gauss elimination where the size
of the matrix in time domain 2 are 99, 149, 199, respectively. In time domain 1, Series-2,
3 and 4 have a matrix size of 46. Since Gauss elimination is O(n3), increasing n from 46
to 199 (>4 times) should cause the time to increase by 199/46=4.323= 81. CPU time for
the new solver on the other hand is about a order of magnitude lower than that of Gauss
elimination for n=46. More importantly, the increase in CPU time is not noticeable for
the sparse matrix solver since the solver is O(n), whereas Gauss elimination is O(n3).

 56

Replacing the solver routine

0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

16000000000

100 110 120 130 140 150 160 170 180 190 200

Matrix size (n)

Fl
oa

tin
g

po
in

t o
pe

ra
tio

ns

Series1
Series2

Figure A6: Comparison of the number of floating point operations for the (entire) code
with the Gauss elimination and tridiagonal solver routines, respectively. Series-1 (blue)
represents the code with the Gauss elimination, whereas Series-2 (pink) represents the
code with the tridiagonal solver. Since the sparse matrix solver is O(n), a larger percent
difference is observed at higher matrix sizes compared to Gauss elimination.

 57

4

4.5

5

5.5

6

6.5

7

7.5

8

100 110 120 130 140 150 160 170 180 190 200

Matrix Size (n)

M
FL

O
PS

/s
ec

Series1
Series2

Figure A7: Summary of performance (in MFLOPS/s) versus matrix size for the (entire)
code with the Gauss elimination solver and the Sparse Matrix solver as a function of
matrix size. Series-1 (blue) represents the code with the Gauss elimination, whereas
Series-2 (pink) represents the code with the tridiagonal solver. A slight degradation in
performance of ~2 MFLOPS/s is observed. This can be attributed to the sparse
tridiagonal solver used in place of the Gauss elimination routine. The algorithm for the
tridiagonal solver decreases the number of flops, since it produces operations that are
dependent on previous set of operations. Thus, one iteration of the do loop cannot initiate
until the last iteration is completed, since the present iteration uses a variable calculated
in the last iteration. As a result, the code is strictly serial and cannot be vectorized. The
Gauss elimination algorithm has considerable independent floating point operations that
can be executed independently. Thus, the code can be vectorized to some extent.

 58

With and without tridiagonal Solver

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160

Matrix size (n)

tim
e

(in
 s

ec
.)

Series1
Series2
Series3

Figure A8: Comparison of run times of the original code (with the Gauss elimination
solver) and the code with the tridiagonal solver. The X-axis and Y-axis plot matrix size
and CPU time in seconds, respectively. The blue line (series 1) signifies the run time in
the original code, the pink line (series 2) indicates the run time using the tridiagonal
solver in place of Gauss elimination. The yellow line (series 3) calculates the difference
in run time or the improvement of series 2 over series 1. As is clearly apparent, the solver
routine causes a reduction in run time for the entire code, but the improvement is
insignificant.

 59

0

5

10

15

20

25

0 500 1000 1500 2000 2500

Size of matrix (n)

Ti
m

e
(in

 s
ec

on
ds

)

Series1

Figure A9: The performance of the code with all finite element matrices reduced to their
corresponding sparse matrix form. The X-axis and Y-axis plot matrix size and CPU time
in seconds, respectively. For a matrix size of 85, the run time decreases from 499 seconds
to 1.66 seconds: a decrease of 99.7%. Note that the sparse matrix optimization frees up
memory in the code and enables the maximum matrix size to increase from about 200 to
2000. As expected if the operations were O(n), the increase in matrix size causes almost a
linear increase in time.

 60

1

10

100

1000

10000

0 500 1000 1500 2000 2500

Matrix size (n)

tim
e

(in
 s

ec
.)

Series1
Series2

Figure A10: Comparison of the run time for code before and after reducing all finite
element matrices to the sparse matrix form. The X-axis and Y-axis plot matrix size and
the number of floating point operations, respectively. The X-axis and Y-axis plot matrix
size and CPU time in seconds, respectively. The plot above summarizes the difference in
time between the previous version of the code (with the sparse solver: Series-2) and the
present version (sparse solver and sparse matrix representation of finite element matrices:
Series-1). Note that the scale for the Y-axis is logarithmic. Also, note that the change of
run time for Series-1 is far more gradual, whereas for Series-2 is very steep. In the former
case, the code is O(n) and in the latter case, the code is O(n3).

 61

100000000

1000000000

1E+10

1E+11

0 500 1000 1500 2000 2500

Matrix Size (n)

flo
ps

Series1
Series2

Figure A11: Comparison of floating point operations for code before and after reducing
all finite element matrices to the sparse matrix form. The X-axis and Y-axis plot matrix
size and CPU time in seconds, respectively. Series-1 (blue) represents the optimized code
whereas Series-2 (pink) represents the code from the previous iteration. For a matrix size
of 100, the optimized code reduces the number of floating point operations by an order of
magnitude. For larger matrix sizes, because the optimized code is O(n) and the
unoptimized code was O(n3), the difference in the number of flops between the optimized
and unoptimized code will be much larger.

 62

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200000 400000 600000 800000 1000000 1200000

Matrix size (n)

R
un

 ti
m

e
(s

ec
on

ds
)

Figure A12: Plot of run time with matrix size after all finite element matrices were
expressed in the sparse matrix form, and after all 2D and 3D matrices are expressed as a
1D arrays. The X-axis and Y-axis plot matrix size and CPU time in seconds, respectively.
Thus, after this iteration all matrices are expressed as one-dimensional arrays is sparse
matrix form, where the diagonal and lower diagonal are stored as arrays of size n and n-1,
respectively. The run time of the code was reduced by 66%: thus, for a problem size of
1000, the run time was reduced from ~ 12 seconds to ~4 seconds. Significantly, the
maximum problem size that could be run on Cetus increased from 2000 to 5,000,000, i.e.
2500 times. The problem is O(n) and thus the increase in matrix size causes almost a
linear increase in time.

 63

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000

Matrix size (n) [log scale]

Ti
m

e
in

 s
ec

. [
lo

g
sc

al
e] Series1

Series2

Figure A13: Comparison of run time with matrix size after all finite element matrices
were expressed in the sparse matrix form, and after all 2D and 3D matrices are expressed
as a 1D array, respectively. The figure shows matrix size versus time for the present
version (Series-2: pink in color) compares to the previous version (Series-1: blue in
color). Note that scales on the X- and Y-axis are logarithmic. Note that Series-2 (present
version) is offset to the left of Series-1 (previous version). This means that run time for
the same problem size is lower for the optimized version. For the previous version, runs
could be made for matrix sizes of upto 2000. For the present version, matrix sizes can be
increased upto 1,000,000.

 64

10000000

100000000

1000000000

10000000000

0 2000 4000 6000 8000 10000 12000

Matrix Size (n)

flo
ps

Series1
Series2

Figure A14: Comparison of the number of floating point operations with matrix size after
all finite element matrices were expressed in the sparse matrix form, and after all 2D and
3D matrices are expressed as a 1D array, respectively. The X-axis and Y-axis plot matrix
size and the number of floating point operations per second, respectively. The figure
summarizes the decrease in the number of floating point operations between the present
version (Series-2: pink in color) and the previous version (Series-1: blue in color). Note
that the Y-axis is logarithmic. Thus, at matrix size 1000, the flops for the previous
version is 9.49E+08. For the present version, the number of flops is 1.46E+08: thus the
present optimization reduces the number of flops by 85%.

 65

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200000 400000 600000 800000 1000000 1200000

Matrix size n

Ti
m

e
in

 s
ec

on
ds

Series1
Series2

Figure A15: Comparison of run time for the code before and after optimizing to reduce
the number of vector touches and merging of do loops to enable cache reuse. The X-axis
and Y-axis plot matrix size and CPU time in seconds, respectively. The optimized code is
represented by Series-2 (pink in color), whereas the previous version of the code is
represented by Series-1 (blue in color). The improvement in time is ~8% at matrix sizes
of 1000, and 18% at matrix sizes of 1,000,0000.

 66

Reduction in flops

0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

16000000000

0 20000 40000 60000 80000 100000 120000

Matrix size (n)

Fl
oa

tin
g

po
in

t o
pe

ra
tio

ns

Series1
Series2

Figure A16: Comparison of the number of floating point operations for the code before
and after optimizing to reduce the number of vector touches and merging of do loops to
enable cache reuse. The X-axis and Y-axis plot matrix size and the number of floating
point operations, respectively. The optimized code is represented by Series-2 (pink in
color), whereas the previous version of the code is represented by Series-1 (blue in color).
The number of flops is observed decrease between 4 – 14%.

 67

25

26

27

28

29

30

31

32

33

34

35

0 20000 40000 60000 80000 100000 120000

Matrix Size (n)

M
FL

O
PS

/s
Series1
Series2

Figure A17: Comparison of performance (in MFLOPS/s.) for the code before and after
optimizing to reduce the number of vector touches and merging of do loops to enable
cache reuse. The X-axis and Y-axis plot matrix size and performance in
MFLOPS/second, respectively. The optimized code is represented by Series-1 (blue in
color), whereas the previous version of the code is represented by Series-2 (pink in
color). There is a marginal improvement in the speed measured in MFLOPS/s between 3
(at matrix size=100) – 15% (at matrix size = 100000).

 68

0

500

1000

1500

2000

2500

3000

3500

4000

10 100 1000 10000 100000 1000000

Matrix size (n)

Ti
m

e
in

 s
ec

on
ds

Series1
Series2

Figure A18: Comparison of the run time of the original code and the final optimized
version. The X-axis and Y-axis plot matrix size and CPU time, respectively. Note that the
X-axis is logarithmic. The original code is represented by Series-1 (blue in color), while
the optimized version is represented by Series-2 (pink in color). The optimization
reduced the CPU time taken to run the code from 297 sec to 0.88 sec for a matrix size of
100, an improvement of 99.70%. More importantly, the algorithm was reduced from a
O(n3) operation to a O(n) operation. Thus, the percent time difference between the
optimized and unoptimized versions will be greater at larger matrix sizes.

 69

0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

16000000000

10 100 1000 10000 100000

Matrix size (n)

flo
ps

Series1
Series2

Figure A19: Comparison of the number of floating point operations of the original code
and the final optimized version. The X-axis and Y-axis plot matrix size and the number
of floating point operations, respectively. Note that the X-axis is logarithmic. The
original code is represented by Series-1 (blue in color), while the optimized version is
represented by Series-2 (pink in color). At matrix sizes of 100, the number of floating
point operations were reduced from 2.39 E+09 to 2.99E+07, an improvement of 98.75%.
As, the algorithm is reduced from a O(n3) operation to a O(n) operation; the difference
between the optimized and unoptimized versions is even greater at larger matrix sizes.

 70

0

5

10

15

20

25

30

35

40

10 100 1000 10000 100000

Matrix Size (n)

M
FL

O
PS

/s

Series1
Series2

Figure A20: Comparison of performance in MFLOPS/s. of the original code and the final
optimized version. The X-axis and Y-axis plot matrix size and performance in
MFLOPS/second, respectively. Note that the X-axis is logarithmic. The original code is
represented by Series-1 (blue in color), while the optimized version is represented by
Series-2 (pink in color). At matrix sizes of 100, the performance increased by about 4
times, from 8.06 MFLOPS/s to 33.92 MFLOPS/s

 71

NetSolve implementation

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 100 1000 10000 100000 1000000
Matrix Size (n)

Ti
m

e
in

 s
ec

on
ds

Figure A21: Run time versus matrix size for NetSolve implementation of the code. The
X-axis and Y-axis plot matrix size and CPU time in seconds, respectively. The results as
a function of matrix size and time are summarized in the figure below. Note that the X-
axis is logarithmic.

 72

 73

VITA

Amitabha Ghosh was born in Calcutta, India in 1970. He completed his B.Sc. in

Geological Sciences and M.Sc. in Applied Geology from the Indian Institute of

Technology, Kharagpur, India, in 1991 and 1993, respectively. He completed his Ph.D.

degree in Geological Sciences from the University of Tennessee in 1997. In July 1997, he

served in Mars Pathfinder Mission Operations as part of the Mineralogy Science

Operation Group. As member of the Mars Pathfinder Mission, he conducted chemical

analysis of rocks and soil in the landing site. He analyzed the first ever-Martian rock, and

was the recipient of the NASA Mars Pathfinder Group Achievement Award for work

during the mission. He is currently working on data analysis for THEMIS instrument on

the Mars Odyssey Mission (2001 – 2005).

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2003

	Thermal Evolution of Planetesimals and Protoplanets in the Terrestrial Planet Region: Code Optimization and Implementation on a Distributed Grid using NetSolve
	Amitabha Ghosh
	Recommended Citation

	A Thesis
	II. Overview Of Asteroid Thermal Models
	
	Planetary Science: An Introduction
	Motivation: An Identified Demand For Cross-Disciplinary Research In Planetary Science
	Thermal Models As A Tool For Cross-Disciplinary Research

	Probable Heat Sources: 26Al And Electromagnetic Induction Heating
	Approaches To The Problem
	Heat Transfer Equation
	
	Finite Element Implementation
	Boundary Conditions

	Algorithm Development
	
	
	Measuring Time, Flops And MFLOPS/s
	
	
	
	Exploiting Matrix Structure For Performance
	Bandedness And Symmetry Of Finite Element Matrices
	Improvement In Run Time
	Memory Optimization
	The Matrix Assembly Process

	VII. Integration Of Do Loops To Enable Cache Reuse And Reduction Of Vector Touches
	
	Vector Touches And Code Performance
	Optimization To Maximize Cache Reuse And Minimize Vector Touches

	VIII. Summarizing The Optimization
	
	Comparison Of The Original Code With The Optimized Version

	Grid Computing And Netsolve
	
	Implementation In Netsolve

	The present code is used to study the thermal history of 6 Hebe, an asteroid. The optimized code was conceived in order to pave the way for an accurate thermal evolution model of Mars, a body with 30 times the radius of Hebe and with greater evolutional
	List of References�References
	Table 1A: Chronological summary of published asteroid thermal evolution models

