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ABSTRACT 

Currently there is a global trend to eliminate the use of antibiotic growth promoters 

(AGP) in animal production due to the risk of creating reservoirs of antibiotic resistant bacteria.  

Previous studies have shown that the ability of AGP to promote growth is highly correlated with 

a decrease in the activity of bile salt hydrolase (BSH), an enzyme produced by commensal 

bacteria and whose actions may compromise host lipid metabolism; thus, BSH inhibitors could 

be a novel AGP alternative.  In this study, a recombinant bile salt hydrolase (rBSH) from 

Lactobacillus salivarius was produced in an E. coli expression system, purified, and 

enzymatically characterized.  Purification by nickel-nitrilotriacetic acid (Ni-NTA) affinity 

chromatography consistently yielded approximately 15 mg of rBSH per liter of induced culture.   

A standard 2-step BSH activity assay which estimates the amount of amino acids liberated from 

conjugated bile acids was used to determine substrate specificity of the BSH and the effect of 

pH, temperature, and dietary compounds on BSH activity.  The rBSH displayed its highest 

hydrolysis activity for glycochenodeoxycholic acid although there was no preference among 

other substrates tested.   Optimal activity was observed between pH of 5.0 and 6.0 and between 

temperatures of 35°C to 55°C.  Preliminary assays identified different dietary compounds that 

were potent inhibitors, including copper and zinc compounds which have previously been shown 

to boost feed efficiency and promote growth of poultry and swine.  Furthermore, a high-

throughput screening system (HTS) was developed for fast and efficient identification of potent 

BSH inhibitors.   This HTS system was utilized to screen a compound library comprised of 2,240 

biologically active and structurally diverse compounds.  The pilot screen led to 107 hits and a 

preliminary review of biochemical information of the corresponding compounds further 

narrowed down those of interest.  Several lead compounds have been validated by the standard 

2-step BSH activity assay and will be subjected to future in vivo analysis in a large-scale animal 
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study.  Overall, this study characterized a BSH with broad substrate specificity and developed 

and validated different strategies for identification of BSH inhibitors, the promising alternatives 

to AGP for enhancing the productivity and sustainability of food animals.       
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CHAPTER I 

LITERATURE REVIEW 

 

Antibiotic growth promoters:  history and mode of action 

The animal production industry is one that measures success in terms of quality.  In order 

to maximize efficiency, a balance must exist between growth and health.  One of the primary 

means that producers seek to ensure such quality in food animals is via antibiotic growth 

promoters (AGP).  Antibiotic growth promoters are subtherapeutic quantities of antibiotics, such 

as tetracycline or bacitracin, that are added to animal feed for enhancement of growth and feed 

conversion ratio (Marshall & Levy 2011).  Unlike antibiotics that are used for therapeutic 

treatment for sick animals or prophylactically for infection prevention, AGP are aimed at 

enriching feed utilization and early indications of improvement of production efficiency occurred 

as early as 1946 (Moore et al.).  However, AGP generally started being promoted in the mid-

1950s after it was found that they could improve the feed-to-weight ratio in poultry, swine, and 

beef cattle (Stokestad & Jukes 1950).  Since then, AGP have been widely used in the United 

States and elsewhere in agriculture as a means of propagating healthy and robust food animals.  

Other ancillary values of AGP may include environmental gains because of less nitrogen and 

phosphorous excretion, improved animal welfare, and even enhanced milk, wool, and egg 

production as well as fertility (Barton 2000).  Equally important, from an economic standpoint, 

AGP are attractive to producers because they can improve financial gains due to improved feed 

efficiency and reduced morbidity and mortality.  Recent estimates are difficult to gauge; 

however, a1999 book compiled by the Committee on Drug use in Food Animals et al. states that 

during some period of their lives nearly 100% of poultry, 90% of swine and veal calves, and 

60% of beef cattle are fed diets incorporating AGP (Animals, Panel on Animal Health et al. 
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1999), so clearly producers rely on these products to benefit their production systems.  Based on 

the wide-ranging effects that AGP confer to both animals and farmers, recent suggestions to curb 

their usage (as will be later discussed) are undoubtedly a cause for great concern among 

producers and consumers alike.  

Although precise mechanisms have yet to be elucidated, it is widely accepted that AGP 

achieve growth promoting effects because of their interactions with intestinal microflora.  This is 

supported by the fact that oral antibiotics fail to produce any growth promoting effects in germ 

free animals (Coates et al. 1963), and in fact, AGP tend to create intestinal conditions which 

approach those of germ free animals (Commission on Antimicrobial Feed Additives 1997).  The 

gastrointestinal (GI) tract of vertebrate animals is rife with diverse microflora, much of which is 

gram-positive bacteria, and as such are extremely influential to GI physiology, immunity, and 

nutrition (Dibner & Richards 2005).  Although commensal bacteria perform critical roles in 

nutrition and development, advantages may be countered by certain detrimental effects to the 

host.  Microflora provide benefits in the form of nutrients through the production and secretion 

of volatile fatty acids and vitamins, competitively exclude pathogenic bacteria from colonization, 

and are important in stimulating host intestinal immune defenses (Dibner & Richards 2005).  

Negative impacts are the result of competition for nutrients, secretion of toxic compounds, and 

undesired immunological responses in the GI tract (Gaskins et al. 2002).  Antibiotics, therefore, 

are important modulators of gut microflora and are implicated to improve host interactions with 

normal microflora by limiting nutrient competition and reducing harmful secondary metabolites 

that may weaken growth (Dibner & Richards 2005).   
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AGP and antibiotic resistance in zoonotic pathogens 

Any use of antibiotics, whether it is for therapeutic or subtherapeutic purposes, will 

create selection pressures for drug resistant bacteria.  Particularly as is the case for AGP, the 

large number of animals that receive a low-dosage of antibiotic in combination with a steady and 

prolonged delivery into the feed system generates selection pressure for emergence, persistence, 

and transmission of antibiotic resistant bacteria (Marshall & Levy 2011). If and when these 

resistant bacteria proliferate, modes of transmission from animal to humans can occur through 

direct contact with the colonized or infected animal or indirectly through the food chain (van den 

Bogaard & Stobberingh 1999).  The major concerns regarding animal derived antibiotic resistant 

zoonotic pathogens are aimed at enteric bacteria like E. coli, Salmonella, Campylobacter, and 

Enterococcus.  All could be commensals of food animals but have the potential to become 

dangerous human pathogens and evidence exists for isolates of antibiotic resistant pathogens 

after AGP treatment.  Not long after AGP became common additives to feed, tetracycline 

resistant E. coli isolates were detected from chickens and pigs (Smith 1967); soon after, 

antibiotic resistant Salmonella was reported (Anderson 1968).  Emerging multi-drug resistant 

Salmonella in the 1960s prompted the establishment of the Swann Committee to address the 

concerns of transferable animal derived human pathogens.  Their report recommended that AGP 

in a class also used for human therapy should be discontinued to prohibit drug-resistant 

infections (Swann 1969), yet these practices continued in the U.S. and Europe.  Both E. coli and 

Salmonella resistance is a continuing phenomenon (Folster et al. 2012; Ramos et al. 2012), and 

in the 1990s different concerns arose when Campylobacter isolates of poultry and swine were 

found to be resistant to erythromycin, ampicillin, streptomycin, and ciprofloxacin, among others 

(Lucey et al. 2000; Moore et al. 1996; Saenz et al. 2000).  In 1995 the Danish Veterinary 
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Laboratory documented vancomycin-resistant Enterococcus faecium in pigs and poultry 

receiving avoparcin laced feed (Barton 2000); Aarestrup et al. (1999) later found a high 

prevalence for E. faecium resistance to tylosin and virginiamycin in Norwegian swine and 

poultry.  Additionally, methicillin resistant Staphylococcus aureus (MRSA) colonization in food 

animals and their farmers has been implicated as a reservoir of animal derived MRSA that could 

contribute to human infection and for community acquired MRSA infections as a result of 

contaminated meat consumption (Khanna et al. 2008; Ogata et al. 2012; Oppliger et al. 2012). 

The last few decades have unveiled selective pressures of AGP on commensal and 

pathogenic flora of food animals (Akwar et al. 2007; Bager et al. 1997; Hummel et al. 1986; 

Levy 1976) and knowing that they can easily cross the human barrier is a formidable realization. 

A 2011 review published in Clinical Microbiology by Marshall and Levy lists crucial evidence 

of just such resistance transfer and it cites multiple studies confirming human colonization and 

infection of animal derived resistant bacteria.  Furthermore, estimates of AGP excretion back 

into the environment range from 75-90% (Costa et al. 2010; Kumar et al. 2005), constituting 

exposure of innumerable environmental bacteria to minute doses of antibiotics and generating 

the potential for widespread resistance selection, which may be further complicated by horizontal 

gene transfer as a means of resistance transmission.  Clearly, efforts need to be made to curtail 

this phenomenon, and discontinuing the use of AGP is likely a good means of doing so. 

 

The current status of AGP 

Because of the looming threat that using antibiotics as growth promoters in animals has 

aroused valid suspicion that human health could negatively be impacted, efforts have been made 

to generate awareness about the potentially dangerous practice as well as to limit and terminate 
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altogether the use of AGP.  The previously mentioned Swann Report resulted in changes in 

England, Canada, and some European countries, but failed to make an impact elsewhere.  Other 

councils and committees have drafted similar guidelines as to how AGP usage should be 

monitored or curtailed for preservation of public health, including  the Institute of Medicine, the 

Council for Agricultural Science and Technology, the Committee on Drug Use in Food Animals, 

and the Poultry Science Association (Dibner & Richards 2005); the World Health Organization 

(WHO) has also published several reports regarding antimicrobial usage in food animals in an 

ongoing effort to reduce their need in agriculture and aquaculture (WHO 1997; 2000; 2004; 

2006).  Leaders in the front to revolutionize safety practices in animal production, European 

Union (EU) countries were among the first to implement restrictive policies and create a standard 

by which agricultural practices may be modeled throughout other areas of the world.  Sweden 

was the first to ban AGP in 1986, followed by a ban on avoparcin in Denmark in 1995 and in 

1997 by all EU member states; Denmark further banned all AGP for swine at the weaning and 

finishing levels on January 1, 2001 (Dibner & Richards 2005).  Following bans on individual 

AGP in 1998 and 1999, the EU later banned all others as of January 1, 2006.    

With increased concern from public health officials, it is likely that the trend of phasing 

out or eliminating AGP will continue in the United States and elsewhere.  In 2000, the World 

Health Organization issued a report urging the need for national governments to “adopt a 

proactive approach to reduce the need for antimicrobials in animals and their contribution to 

antimicrobial resistance and to ensure their prudent use (including reducing overuse and misuse), 

as elements of a national strategy for the containment of antimicrobial resistance” (WHO 2000).   

The report further suggested that food producers voluntarily, but by legislation if necessary, 

terminate or speedily phase out AGP that are in a class used by humans and avoid the 
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prophylactic use of antimicrobials in animal management.  In 2010, the FDA issued a draft 

guidance in support of phasing out antimicrobials in food animals to reduce selection pressures 

and protect public health (Sharfstein 2010). This was followed by a court ruling in March of 

2012 that the FDA should begin retracting the allowance for the use of certain antibiotics used 

for production purposes in food animals except under veterinary supervision (Veterinary Record 

2012).  Clearly the impetus exists to discontinue using AGP, and sooner or later their removal 

will be dictated by both public demand and economic pressures to maintain export markets with 

countries that have already banned AGP as an agricultural practice.  While eliminating AGP is a 

good idea to prevent widespread resistance, it is clear that alternative strategies must be 

implemented to guarantee that animal health and nutrition are not compromised and to offset 

economic setbacks for animal producers. 

Although eliminating AGP usage is a noble goal, there is obvious concern over the 

potentially negative consequences that may ensue from so suddenly ceasing to include these 

subtherapeutic antibiotics in animal feed.  Shortly after the early EU AGP ban there was a 

consequent rise in the use of therapeutic antibiotics to treat infection, generating alarm because 

they were those also used in human medicine (Casewell et al. 2003).  Likewise, after Denmark’s 

2001 ban of AGP there was an increase in tetracycline and sulphonamide resistance in S. 

typhimurium in both pigs and humans and more Campylobacter resistance to tetracycline and 

fluoroquinolones in humans than in animals (DANMAP 2001).  Animal welfare also seemed to 

suffer immediately following Denmark’s ban:  increased reports of morbidity and mortality were 

identified in pigs and attributed largely to enteric infections (Casewell et al. 2003) and clostridial 

necrotic enteritis emerged as well (Tornee 2002).  These immediate pitfalls were somewhat 

expected, but what enduring effects does AGP banning really introduce?  
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Denmark’s early ban of AGP even before the comprehensive ban in the entire EU 

presents us with a unique opportunity to gauge how large-scale bans in other countries may play 

out.   One of the most comprehensive studies was conducted by Aarestrup et al. (2010) and 

examined production, disease, and antibiotic use on swine farms from 1992 to 2008.  As to 

overall antimicrobial consumption per animal, there was a decrease by over 50% and long-term 

productivity actually improved despite an initial increase in diarrhea in weaning pigs and a 

consequent increase in therapeutic antibiotics.  A 2002 executive summary published by WHO 

also mentioned loss in productivity in weaner pigs and decreased feed efficiency in poultry 

production, but noted that in Denmark the termination of AGP led to a drastically reduced food 

animal pool of resistant enterococci and concluded that necrotic enteritis in broilers was only a 

minor problem since ionophores were still implemented for prophylaxis of coccidiosis.  The 

WHO further determined that discontinuing AGP is largely beneficial in reducing the total 

amount of antimicrobials given to food animals and consequently reducing antimicrobial 

resistance that threatens both animal and human health. Additionally, they estimate that 

economic impacts are relatively minor and in some cases offset by cost savings associated with 

not having to buy AGP, although they suggest that costs may have been substantial for some 

producers.   

Though the consensus in Denmark seems to favor the ban on AGP, Sweden has 

experienced more problems.  Sixteen years after their 1986 ban of AGP, the loss in swine 

production had not been fully recovered (Casewell et al. 2003) and total antimicrobial 

consumption was at the same level as before the ban (Aarestrup et al. 2010).  Considering this 

and the early difficulties experienced in Denmark, results seem mixed as to whether the ban is 

largely beneficial to animal production or compromising of animal welfare.  Therefore, how the 
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United States would respond to a total ban of AGP is unclear since antimicrobial consumption 

here is much higher than the EU mean value (Aarestrup et al. 2010).  Moving away from a 

reliance on AGP in animal production is in our best interest and may even benefit production 

long-term, but due to initial compromises in animal health, it would still be beneficial to institute 

alternatives to AGP that facilitate growth enhancement in their absence.  It is fair to assume that, 

at least initially, safe AGP alternatives would be a logical first step in the transition.   

 

Response of the intestinal microbiota to AGP 

 In order to implement alternatives, we must reexamine the mechanism of action of AGP.  

As previously discussed, it is proposed that AGP promote growth because of their effects on the 

GI microflora.  Specifically, the small intestine is a prime target of effect because 1) it is where 

most nutrients are absorbed and 2) here there is a high density of bacterial numbers (Rettedal et 

al. 2009).  Studies performed on swine and poultry to demonstrate the effects of antibiotics on 

intestinal microflora note interesting bacterial shifts (Collier et al. 2003; Dumonceaux et al. 

2006; Rettedal et al. 2009).  What seems to happen is that the abundance of some bacterial 

species increase in numbers while others decrease, and particularly Lactobacilli are affected.  

Collier et al. (2003) found that antibiotic rotations selected against three Lactobacilli, one 

Bacillus, and one Streptococcus species in pig ileal microbiota, while treatment with tylosin 

alone tended to increase lactobacilli concentration as a percentage of total bacteria here.  Also 

observed was an antibiotic-induced homogenization of the ileal microbiota, which could explain 

uniform growth enhancement seen in animals given AGP.  Similarly, Retedal et al. (2009) 

reported that inclusion of chlortetracycline in the diet influenced porcine ileal bacteria in such a 

way as to decrease the abundance of L. johnsonii and increase that of L. amylovorus.  Regarding 
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poultry, the observation has been made that dietary AGP improved weight gain and feed 

conversion ratios while diminishing ileal L. salivarius populations, indicating their potential 

detrimental effect on poultry nutrition (Dumonceaux et al. 2006; Guban et al. 2006).  By 

focusing on these small intestine microbes that are heavily influenced by AGP, beneficial 

commensals may be noted, but more importantly the opportunity arises to understand why 

certain species are deleterious to animal growth.  

 

Response of intestinal bile salt hydrolase activity to AGP 

Clearly a connection has been made between AGP, growth promotion, and intestinal 

bacterial populations, but the precise mechanism is yet to be delineated as to how these all 

coincide.   Strides have been made in uncovering this mystery, however, and it has been shown 

that the growth promoting effect of low-dose antibiotics does coincide with a decrease in bile salt 

hydrolase activity (BSH) in the gut (Feighner & Dashkevicz 1987; Guban et al. 2006; 

Hunkapillar et al. 2009; Knarreborg et al. 2004).  BSH is an enzyme produced by commensal 

bacteria in the host’s intestine whose main function is to transform conjugated bile salts into 

unconjugated bile salts.  Bile salts (also referred to as bile acids) are one of several components 

of bile and their amphipathic nature, which is facilitated by amino acid conjugation with glycine 

or taurine, significantly contributes to the emulsification of dietary lipids and micelle formation.  

BSH liberates this glycine or taurine moiety by hydrolysis of the amide bond and transforms a 

conjugated bile salt that is effective at solubilizing lipids into a deconjugated bile salt that is 

inefficient in lipid emulsification and undesirable for lipid digestion and absorption.  Because 

this results in altered lipid metabolism and micelle formation, normal host digestive functions 

may be impaired.  Indeed, because unconjugated bile acids are less water soluble, they are 
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readily excreted in the feces.  The potential for BSH producing bacteria to lower serum 

cholesterol by reducing its solubility and increasing the amount of free bile acids lost in the feces 

is debatable as a desirable trait of probiotics (Begley et al. 2006).  However, secondary bile acids 

that are produced from the multistep process of 7 α-dehydroxylation (alpha-dehydroxylation), 

subsequent to deconjugation, can accumulate and have been linked in humans to gallstones, 

colon cancer, and other gastrointestinal illnesses (Pavlović et al. 2012).  Regardless of whether 

or not humans may benefit from a BSH-mediated hypocholesterolemic effect, malabsorption of 

lipids may deter growth in production animals, particularly in poultry which derive a substantial 

percentage of energy from dietary lipids and thus rely on efficient fat digestion (Knarreborg et 

al., 2004). 

Feighner and Dashkevicz (1987) provided early evidence that antibiotic feed additives 

affect the transformation potential and hydrolysis activity of BSHs from intestinal contents of 

poultry.  By keying in on a more specific aspect of lipid metabolism, Knarreborg et al. (2004) 

demonstrated an enhanced bioavailability of α-tocopheryl (alpha-tocopherol) acetate in broilers 

given AGP, and this was attributed to a reduced concentration of unconjugated bile salts.  

Furthermore, Guban and colleagues (2006) correlated dietary supplementation of AGP to 

improved weight gain and fat digestibility in broilers, decreased population levels of 

Lactobacillus salivarius, and a reduced pool of deconjugated bile salts.  Based on these 

discoveries, the growth promoting effect of AGP likely is attributed to the reduced BSH activity, 

and thus the improvement of host lipid metabolism.  
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Functions and characteristics of bile salt hydrolase 

 Microbial BSH is a member of the choloylglycine hydrolase family of enzymes and is 

predominantly associated with gastrointestinal bacteria of both humans and animals. 

Additionally, it is classified as an N-terminal nucleophilic hydrolase and can recognize substrate 

at both the amino acid conjugate or steroid nucleus (Patel et al. 2010).  Bile salt hydrolase is 

particularly abundant in lactic acid fermenting probiotic stains like lactobacilli and bifidobacteria 

although certain pathogenic strains possess bsh homologs in their genomes (Begley et al. 2006).  

From studies which have purified and characterized BSH from different microorganisms, it is 

generally found that the enzyme is located intracellularly, oxygen insensitive, and optimally 

active at a slightly acidic pH (Pavlović et al. 2012).   

As previously stated, the enzymatic function of BSH is to catalyze deconjugation of bile 

salts, but there are several explanations as to how this benefits the bacteria that produce it.  One 

reason may be that BSH-producing strains derive nutritional advantages in the form of liberated 

amino acids released from the deconjugation reaction that could be used as carbon, nitrogen, and 

energy sources (Begley et al. 2006).  Another suggestion is that BSH facilitates cholesterol or 

bile incorporation into the bacterial membrane to improve its structural integrity against host 

immune defenses (Patel et al. 2010).  The most likely role for BSH activity, however, is that it 

aids in bile detoxification and gastrointestinal persistence (Kim & Lee 2005).  Bile is a natural 

detergent with antimicrobial activity which is largely aimed at dissolution of bacterial 

membranes (Begley et al. 2005) so naturally GI bacteria must have some mechanism to combat 

this threat and persist in their natural environment.  Bustos et al. (2012) investigated the role of 

BSH positive strains to withstand bile toxicity and proposed that by deconjugating primary bile 

acids, lactic acid bacteria were able to avoid intracellular acidification associated with 
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protonated, conjugated bile acids and subsequently avoid collapse of the proton motive force.  

Furthermore, in agreement with the previous work of Grill et al. (2000), it was found that BSH 

negative strains experienced significant cell death by cytoplasmic acidification after being 

exposed to both glyco- and tauro-conjugated bile acids whereas the BSH positive strains were 

only affected by high concentrations of glyco-conjugated bile acids, which are more toxic at 

acidic pH values.  This is not surprising since most BSH producing microbes prefer hydrolyzing 

glycine rather than taurine conjugates (Pavlović et al. 2012); however, some exceptions have 

been characterized (Hae-Keun et al. 2008; Chae et al. 2012). 

 In a metagenomic analysis of BSH activity in the human gut, Jones et al. (2008) 

demonstrate that conjugated bile acid has been the selective pressure driving the gut-associated 

microbiome toward BSH activity.  Interestingly, to further improve their ability to thrive in the 

harsh conditions of the GI tract by mechanisms just described and perhaps those which are not 

fully understood, many bacterial strains possess more than one bsh homolog in their genomes 

(Pavlović et al. 2012).  Research has shown that there are five amino acid sites that are highly 

conserved in the catalytic site of BSH (Begley et al. 2006). Even with such strict conservation, 

among distinct functional BSHs in the same strain, there is variation in their relative activity and 

substrate preference (Coleman & Hudson 1995; Hae-Keun et al. 2008; Lambert et al. 2008; Ren 

et al. 2011; Chae et al. 2012).  In some cases multiple bsh genes from one strain show greater 

similarity to those from other strains or species than with each other, indicating that horizontal 

gene transfer may play a role in bsh acquisition (Lambert et al. 2008).  Ren and colleagues 

(2011) noted that differences in bsh gene expression and protein function may be the cause of 

regulation factors and that substrate specificity could be the result of currently unrecognized 

binding or catalytic sites.  
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CHAPTER II 

INTRODUCTION 

 

Antibiotic growth promoters (AGP) are defined as a group of antibiotics delivered in 

animal feed at subtherapeutic levels to increase feed efficiency and average daily weight gain in 

food animals (Dibner & Richards 2005).  For more than fifty years this has been a standard 

practice of animal husbandry and measurable benefits to animal production are still apparent.  

Although these benefits were once believed to come at no appreciable risk, epidemiological 

studies have  suggested that antibiotic resistant bacteria are associated with the use of AGP, so 

what was once regarded as a benign approach to produce robust food animals is now considered 

a hazard to public health (Marshall & Levy 2011).  Indeed, such resistant bacteria can be 

transferred to humans as a result of direct contact or through more complicated, indirect means 

(van den Bogaard & Stobberingh 1999).  Recognizing that zoonotic reservoirs of drug-resistant 

bacteria constitute definite concern for animal as well as human safety, the European Union 

banned all AGP in 2006 and this approach has now become a worldwide trend (Marshall & Levy 

2011).  The transition to AGP-free production systems was in many regards successful, yet it 

proved to be challenging for some countries where animal health was compromised as a result 

(Casewell et al. 2003).  Completely eradicating AGP will present obstacles on the level of farmer 

to feed industry; thus, in order to maintain high-quality food animals and current production 

levels, it is essential that valid alternatives to AGP be discovered which do not pose a threat to 

public health, are able to promote feed efficiency, and are economically viable. 

Understanding how AGP exert growth promotion is critical to developing effective 

replacements.  Although the exact mode of action is unclear, it is commonly accepted that AGP 

modulate the host intestinal microflora, as their antibacterial nature would suggest, and thereby 
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generate optimal conditions for animal growth to occur (Marshall & Levy 2011; Dibner & 

Richards 2005; Barton 2000).  Recent studies using swine and poultry have helped us to 

understand the relationships between AGP supplementation and gastrointestinal bacterial 

composition (Knarreborg et al. 2002; Collier et al. 2003; Dumonceaux et al. 2006; Wise & 

Siragusa et al. 2007; Rettedal et al. 2009; Danzeisen et al. 2011; La-ongkhum et al. 2011; Kim et 

al. 2012; Lin et al. 2013).  The results of such studies prove that AGP create bacterial shifts and 

alter the microbial diversity of the intestine, indicating that certain populations may be more 

favorable to animal growth than others.  Simultaneously, these findings suggest that populations 

reduced by AGP are potentially harmful to animal performance and could be targeted by non-

antibiotic therapy.      

Although the definitive gut microbial community required for AGP-mediated optimal 

growth promotion is still largely unknown, previous studies have shown that the ability of AGP 

to promote growth is highly correlated with a decrease in activity of bile salt hydrolase (BSH) 

(Feighner & Dashkevicz 1987; Knarreborg et al. 2004; Guban et al. 2006; Hunkapillar et al. 

2009).  BSH is an enzyme produced by commensal bacteria in the intestine whose main function 

is to convert conjugated bile salts into unconjugated bile salts.  The exact purpose for which 

microbes utilize this enzyme is still uncertain, but several theories exist to explain its importance; 

these include roles in bile detoxification, gastrointestinal persistence, microbial nutrition, and 

alterations to bacterial membrane characteristics (Begley et al. 2006).  Regardless of the natural 

function of BSH for its bacterial producers, the impact of BSH on the host is clear.  

Unconjugated bile acids are amphipathic and able to solubilize lipids for micelle formation, 

however, when the amide bond is hydrolyzed by BSH, the resulting unconjugated form is much 

less efficient at doing so.  Thus, BSH effectively transforms bile salts that promote efficient lipid 
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solubilization into those that adversely affect lipid metabolism and subsequent energy harvest.  

Therefore, the probable mechanism in which AGP promote growth is to inhibit the activity of 

BSH that are produced by gut microflora and consequently confer positive conditions for lipid 

metabolism and utilization.  Lactobacilli are the primary inhabitants of the chicken intestine and 

are primary BSH producers in the gut (Begley et al. 2006; Guban et al. 2006).  Notably, L. 

salivarius, the dominant Lactobacillus species present in the chicken intestine, was reduced in 

response to AGP treatment (Engberg et al. 2000; Knarreborg et al. 2002; Guban et al. 2006; 

Dumonceaux et al. 2006; Zhou et al. 2007).  Based on these findings, inhibition of BSH activity 

using specific inhibitors is likely a promising approach to improve growth performance of food 

animals. 

Recently, Wang et al. (2012) identified and characterized a bsh gene from L. salivarius 

B30514, a BSH producer isolated from chicken intestine (Stern et al. 2006).  Characterization of 

this BSH strongly supported our hypothesis for developing BSH inhibitor-based feed additives as 

alternatives to AGP and established a solid platform for us to discover novel BSH inhibitors.  In 

this project, the following three specific objectives were pursued:  

1. Purify recombinant BSH and perform enzymatic characterization. 

2. Determine the inhibitory effects of various dietary factors on BSH activity. 

3. Develop and perform a rapid, convenient, and high-throughput assay for discovery of       

      BSH inhibitors.  
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CHAPTER III 

MATERIALS AND METHODS 

 

 

Preparation of lysates for His-tagged BSH purification 

 The recombinant BSH (rBSH) used in this study was purified from an E. coli construct 

(JL885) expressing a bsh gene originally from L. salivarius B-30514(Wang et al., 2012).  To 

prepare cell lysate for rBSH purification, the JL885 stock was streaked on a Luria-Bertani (LB) 

agar plate supplemented with ampicillin (100 µg/ml [microgram/milliliter]).  After overnight 

growth, a single colony was picked and inoculated into 50 ml of LB broth containing 100 µg /ml 

of ampicillin.  The culture was grown in a rotary shaker at 37°C overnight.  All of the 50-ml 

overnight culture was transferred to 1L of LB broth containing 100 µg/ml of ampicillin and 

grown in a rotary shaker (250 rpm) at 37°C until the optical density at 600 nm (O.D.600) reached 

0.5-0.6 (~2 hr).  To induce the production of rBSH, isopropyl-beta-D-thiogalactopyranoside 

(IPTG) (100 mM) was added to a final concentration of 0.5mM to the remaining early-log phase 

culture.  After 3 hours of induction, the cells were harvested by centrifugation at 5,000 × g at 4°C 

(Avanti J-26 XP Centrifuge, Beckman Coulter) for 20 minutes, and the pellets were washed with 

cold phosphate buffered saline (PBS) (pH 7.0).  The PBS-washed cell pellets were resuspended 

in 30 ml of ice cold lysis buffer (50 mM sodium phosphate buffer, 300 mM NaCl, 10 mM 

imidazole, pH 7.0) supplemented with 2 mM beta-mercaptoethanol (β-ME), 5 mM of adenosine 

triphosphate (ATP), 5 mM of MgCl2 (magnesium chloride), and 1 mg/ml of lysozyme.  The 

resuspension was transferred into a clean polystyrene tube and put on ice for 1 hour. The cell 

suspension was disrupted by sonication for 5 cycles (alternating between 30 s on and 60 s off; 

50% duty) on ice/NaCl mixture. The lysate underwent centrifugation at 12,000 rpm for 30 
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minutes at 4°C using a Beckman centrifuge equipped with a JLA rotor. The supernatant (soluble 

fraction), containing rBSH, was transferred into a clean polystyrene tube for further purification. 

 

Purification of His-tagged rBSH by Ni-NTA affinity chromotagraphy 

Approximately 2.5 ml of settled nickel-nitrilotriacetic acid (Ni
2+ 

-NTA) agarose resin 

(Qiagen) was equilibrated with the same lysis buffer used for cell pellet resuspension by washing 

three times with 5 ml of lysis buffer and centrifugation at 3,000 rpm for 1 minute after each 

wash.  The above bacterial lysate was mixed with the lysis buffer-treated Ni-NTA agarose resin 

with gentle rocking for 60 minutes at 4°C.  The mixture was loaded into a column and the flow 

through was collected.  The column was washed with 5 bed volumes of wash buffer (50 mM 

sodium phosphate buffer, 300 mM NaCl, 60 mM imidazole, 10% glycerol, pH 7.0) 

supplemented with 2 mM β-ME, 5 mM of ATP, and 5 mM of MgCl2 with flow through 

collected.  The proteins bound to the Ni-NTA were then eluted from the column with 5 bed 

volumes of elution buffer (50 mM sodium phosphate buffer, 300 mM NaCl, 300mM imidazole, 

10% glycerol, pH 7.0) supplemented with 2 mM β-ME (2 µl/100 ml buffer) and approximately 1 

ml of eluent was collected per tube.  Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) with a 12% (wt/vol) polyacrylamide separating gel was performed to monitor 

production and purification of the rBSH. The rBSH-containing fractions were pooled and 

dialyzed against PBS buffer (50 mM, pH 7.0) containing 10% glycerol.  β-ME was then added to 

a final concentration of 2 mM.  The dialyzed rBSH was aliquoted into clean sterile tubes and 

stored at -80°C prior to use.  Protein concentration was measured by a bicinchoninic acid (BCA) 

protein assay kit (Pierce). 
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BSH activity assay 

Determination of BSH activity was performed by following a two-step procedure 

(Tanaka et al.,2000) to determine the amount of liberated amino acids from glycoconjugated and 

tauroconjugated bile salts (purchased from Sigma).   For the first step, the following components 

were combined in clean 1.5 ml plastic microcentrifuge tube to a final volume of 200 μl: 178 μl of 

reaction buffer (0.1 M sodium-phosphate, pH 6.0), 10 μl of purified rBSH (diluted to 1 µg/µl 

with reaction buffer), 10 μl of a particular conjugated bile salt (100 mM), and 2 μl 1M 

dithiothreitol (DTT).  This mixture was vortexed gently and incubated in a 37°C water bath for 

30 minutes.  Following incubation, 50 μl of reaction mix was immediately transferred to a clean 

microcentrifuge tube containing 50 μl of 15% (wt/vol) trichloroacetic acid (TCA) to stop the 

reaction.  After centrifugation at 12,000×g for 5 minutes to remove precipitate, 50 μl of 

supernatant was transferred to a clean 1.5 ml microcentrifuge tube for the second step.  To this, 

950 μl of ninhydrin reaction mix (0.25 ml of 1% [wt/vol] ninhydrin in 0.5 M sodium-citrate 

buffer [pH 5.5], 0.6 ml of glycerol, and 0.1 ml of 0.5 M sodium-citrate buffer [pH 5.5]) was 

added and vortexed to mix thoroughly.  The resulting reaction mix was incubated in a boiling 

water bath for 14 minutes and cooled on ice for 3 minutes to stop the reaction.  The absorbance 

at 570 nm (A570) was measured with a Smart Spec Plus spectrophotometer (Bio-Rad).  A control 

without BSH was set up simultaneously in each independent experiment.  A standard curve using 

glycine or taurine was performed for each independent assay.  All experiments were performed 

in triplicate.  The BSH activity was expressed as 1 μmol (micromole) of amino acids liberated 

from the substrate per minute per mg of BSH. 

 

 



19 

 

Effect of pH and temperature on the activity of rBSH 

 To determine the temperature dependence of rBSH activity, the assay was carried out as 

described above in 0.1 M sodium phosphate buffer (pH 6.0) at various temperatures ranging 

from 20 to 75°C.  Likewise, the optimal pH for rBSH activity was determined by performing the 

assay at pH values ranging from 3.0 to 8.0 using 0.1 M sodium citrate-citrate acid buffer (pH 3.0 

to 5.4) or 0.1 M sodium phosphate buffer (pH 6.0 to 8.0).  Both pH and temperature assays were 

performed using the standard procedure with glycocholic acid as the substrate.  All experiments 

were run in triplicate.  

 

Effect of dietary compounds on the activity of BSH 

 A panel of dietary compounds, many of which have been used as feed additives for food 

animals, was used in a BSH activity assay at a final concentration of 5 mM to determine if they 

were able to inhibit enzyme activity.  The following compounds were tested:  CuCl2 (copper 

chloride), ZnCl2 (zinc chloride), MnCl2 (manganese chloride), FeCl3 (ferric chloride), CaCl2 

(calcium chloride), MgCl2 (magnesium chloride), CoCl2 (cobalt chloride), KCl (potassium 

chloride), NaCl (sodium chloride), KI (potassium iodide), NaI (sodium iodide), Na2SeO3 

(sodium selenite), CuSO4 (cupric sulfate), FeSO4 (ferrous sulfate), MnSO4 (manganese sulfate), 

ZnSO4 (zinc sulfate), NaSO4 (sodium sulfate), MgSO4 (magnesium sulfate), KIO3 (potassium 

iodate), NaIO3 (sodium iodate), NaIO4 (sodium periodate), NaHCO3 (sodium bicarbonate), citric 

acid, ascorbic acid (vitamin C), cholecalciferol (vitamin D3), α-tocopherol (vitamin E), retinol 

(vitamin A), stearic acid, linolenic acid, linoleic acid, sodium acetate, sodium propionate, sodium 

lactate, and sodium butyrate.   We also tested the effect of several different switchgrass extracts 

on BSH activity.  Switchgrass (Panicum virgatum) is considered to be a potential feedstock used 
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to bioprocess liquid fuels like ethanol and is suggested as such under the UT Biofuels Initiative 

(Garland, UT Extension 2010).  Since cellulosic biomass is used directly for biofuel production, 

up to 20% of the extractives are left over, which could potentially be used in other applications to 

add value to the product as a whole.   The switchgrass extracts, which were previously dried and 

prepared using pressurized liquid extraction with water or 95% ethanol, were kindly provided by 

Dr. Niki Labbé of the UT Center for Renewable Carbon for use in our enzymatic assays.  

Prior to the addition of sodium glycocholate to the reaction mix, the rBSH was incubated 

with or without a particular compound for 30 minutes in a 37°C water bath.  Subsequently, the 

standard enzyme assay was performed as described above.  A control with no added compound 

was set up in each independent assay.  All assays were run in triplicate.  The percentage of 

inhibition was calculated by dividing the inhibited activity (calculated by subtracting the mean 

residual activity in the presence of a compound from the mean activity of the control) relative to 

the mean activity of the control and then multiplied by 100. 

 

Development of a high-throughput BSH assay 

 In order to move towards creating a rapid method of screening for BSH inhibitors, our 

standard BSH activity assay was adapted for use in a 96-well plate, similar to a procedure 

described by Tanaka et al. (2000) but with modifications. This is a precipitation assay which is 

based on the fact that hydrolysis of conjugated bile acid substrates will produce deconjugated 

bile acids which are insoluble at the reaction pH and can easily be visualized as a white 

precipitate; this feature provides a great advantage to develop a rapid and convenient HTS 

system to identify potent BSH inhibitors.  For initial assays, rBSH (10 μl [1μg/1μl]) was added to 

the bottom of a clear 96-well microtiter plate with a round bottom.  To this, 190 μl of reaction 
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mix (178 μl of reaction buffer [0.1 M sodium-phosphate, pH 6.0], 10 μl of a particular 

conjugated bile salt [100 mM], and 2 μl 1M DTT) was added for a total reaction volume of     

200 μl.  Plates were incubated at 37°C for up to 6 hours.  Precipitation of insoluble unconjugated 

bile salts was monitored every 30 minutes by visual observation concomitant to absorbance 

measurement at 600 nm (A600) using a microplate reader (model Multiskan EX; Thermo Fisher 

Scientific, Vantaa, Finland).  For subsequent assays, different parameters were altered to 

determine the optimal assay conditions.  BSH was added in 10 μl amounts diluted from stock 

concentration (8 μg/μl) from 2 to 300-fold; pH values of 6.0 or 6.5 were tested using 0.1 M 

sodium phosphate buffer (pH 6.0) or 0.05 M sodium phosphate buffer (pH 6.5); incubation was 

tested at room temperature (20°C), 37°C, or 40°C; glyco- and tauro-conjugated substrates were 

tested at final concentrations ranging from 0 mM to 50 mM.   

After the assay conditions were optimized for the 200 μl reaction in a 96-well plate, we 

confirmed the ability of this procedure to screen compounds for BSH inhibition by a proof of 

concept assay using known BSH inhibitors. Before adding the reaction mix, 10 μl of known 

inhibitor was added to the BSH in the bottom of each well and mixed gently by pipetting.  

Inhibitors were added at an initial 10 mM concentration and subjected to twofold serial dilutions 

up to 9 times through column 10 of the plate.  As a control, two columns on each plate served as 

controls:  a positive control with BSH and reaction mix only and a negative control with no 

added BSH or inhibitor.  Assays were performed in duplicate.  After all conditions were 

optimized, including use of inhibitors, the entire reaction was scaled down to a 50 µl total 

volume and modified accordingly for a future preliminary HTS library screen at Vanderbilt 

University.  An additional assay was performed using dimethyl sulfoxide (DMSO), the library 
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compound solvent, as a control to ensure that it did not negatively affect the ability of BSH to 

effectively hydrolyze substrate.  

 

High-throughput screening of BSH inhibitors 

 High-throughput screening (HTS) of BSH inhibitors was performed at the HTS facility at 

the Vanderbilt Institute of Chemical Biology (Nashville, TN).  The library (2,240 compounds in 

7 source plates from Spectrum) includes biologically active and structurally diverse compounds 

of known drugs, experimental bioactives, and pure natural products. All compounds tested were 

dissolved in DMSO at a concentration of 10 mM.  Briefly, 0.25 μl of a specific compound from 

the Spectrum Collection library was shot into the bottom of a clear 384-well microplate (Greiner 

cat # 781182) with flat bottom using the Echo 550/555 (Labcyte).    Next, 12.5 μl of BSH 

(diluted 50x from a stock concentration of 8 μg/μl) was added using the Multidrop Combi 

reagent dispenser (Thermo Scientific) and shaken for 5 minutes.  Finally, 37.5 μl of reaction mix 

(32 μl reaction buffer [0.1 M sodium-phosphate, pH 6.0], 2.5 μl of taurodeoxycholic acid [200 

mM], and 0.5 μl of 1M DTT) was added using the Multidrop Combi for a total reaction volume 

of 50 μl.  The plates were subsequently shaken for 5 minutes to insure thorough mixing and spun 

to pull any reaction mixture back into the bottom of the well before incubation.  Plates were 

incubated at 37°C with humidity and 5% CO2 and absorbance measured every hour at 600 nm 

(A600) for 4 hours using a SpectraMax M5 (Molecular Devices) with temperature controlled at 

37°C; visual observations were concomitantly documented for precipitation. The reader on the 

system is connected via intranet to the facility’s network, enabling automated data acquisition, 

analysis, visualization, and archival using a powerful management and chemiinformatics tool, 

Accelrys Pipeline Pilot; all data are stored in an Oracle database.  Each plate contained three 
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controls manually added with a multichannel pipette in a predetermined pattern to the side wells.  

Control 1 consisted of BSH, DMSO, and reaction mix; control 2 contained a known inhibitor, 

BSH, and reaction mix; control 3 contained DMSO and reaction mix only.  Validation plates 

were also tested using known inhibitors prior to HTS of the compound libraries to ensure 

reproducibility of the assay in a new setting. 

 

Selection and in vitro validation of identified BSH inhibitors. 

 A preliminary list of BSH inhibitor hits was generated after the above HTS based on the 

dynamics and magnitude of precipitation formation in each well (reflected by OD600).  Extensive 

review of relevant material safety data sheet (MSDS) and literature were performed for the hits 

with emphasis on availability, stability, toxicity, cost, and environmental impact.  Notably, the 

hit compounds belonging to an antimicrobial family were eliminated and will not be considered 

for further evaluation because of the well-known food safety issue related to antimicrobial 

growth promoters. 

 The selected BSH inhibitor candidates were subjected to further in vitro validation using 

the 96-well microplate assay and the standard 2-step BSH assay as described above. The 

standard BSH assay is essential to confirm if the identified compounds are indeed real BSH 

inhibitors because we cannot completely rule out a possibility that certain compounds may cause 

less or no precipitation in reaction mix in a BSH activity-independent manner. 
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CHAPTER IV 

RESULTS 

 

 

Expression and purification of rBSH from E. coli 

To obtain sufficient rBSH for enzymatic characterization and screening of BSH inhibitors 

for this project, large quantities of rBSH were produced and purified.  As early as one hour after 

IPTG induction, a significant amount of rBSH was produced, reflected by the presence of 

additional protein band with a molecular mass of 37 kDa on SDS-PAGE (Fig. 1, lane 3).  Using 

1-step Ni-NTA affinity chromatography, large quantities of high purity C-terminal His-tagged 

rBSH were obtained, as seen in different eluent fractions (Fig. 2, lanes 6-10).  Fractions 

displaying the highest BSH quantities (e.g lanes 6-8 in Fig. 2) were pooled together for dialysis 

against PBS.  From 1 liter of induced culture, the purification procedure yielded approximately 

15 mg of rBSH. 

 

Substrate preference of rBSH 

 Using the standard BSH activity assay, six different bile salts were tested to determine 

the substrate specificity (Table 1).  Overall, the rBSH displayed a broad substrate affinity and 

was able to hydrolyze both the glycine and taurine conjugates.  The highest hydrolysis activity 

occurred when glycochenodeoxycholic acid (defined as 100% activity) was used as the substrate.  

However, in examining the activities given other substrates, there was no clear preference for the 

other glycoconjugated bile salts compared to the three tauroconjugated bile salts tested.  The 

relative activities of the remaining bile salts ranged from 22.3% to 47.9% (Table 1).  

Furthermore, among the different substrates, the BSH showed no obvious preference among 

conjugated cholic, deoxycholic, or chenodeoxycholic acids.    



25 

 

Effect of pH and temperature on rBSH activity 

 The effect of pH on rBSH activity was determined by conducting the standard activity 

assay at different pH values ranging from 3.0 to 8.0 using either 0.1 M sodium citrate-citrate acid 

buffer or 0.1 M sodium phosphate buffer (Fig. 3).  Optimal activity was observed between pH 

values of 5.0 and 6.0, with maximal activity occurring at a pH of 5.4.  Moderate activity was still 

evident at pH limits of 4.4 and 6.4, but as pH declined or increased beyond these measures, BSH 

activity greatly declined and was almost negligible at a pH of 8.0.  We also tested BSH activity 

at temperatures ranging from 25°C to 75°C and found that peak activity occurs at 41°C (Fig. 4).  

Activity was stable from 35°C to 55°C but experienced a dramatic drop when the temperature 

exceeded 55°C.  Following the 30 minute incubation, at our lowest temperature tested (22°C), 

BSH lost approximately 52% of its activity, whereas, at the upper extreme of 75°C the activity 

had diminished by nearly 90% of original activity. 

 

Identification of dietary compounds inhibitory to the activity of rBSH. 

 Various compounds that are used as dietary supplements in animal feeds were selected 

for determination of their ability to inhibit BSH activity.  As shown in Table 2, it is clear that 

several compounds, such as CuCl2, CuSO4, FeSO4, CoCl2, NaSeO3, NaIO4, KIO3, retinol, and 

linolenic acid, were potent inhibitors, having greater than 90% inhibition.    In contrast, some 

compounds tested actually improved the catalytic activity of the rBSH, such as citric acid (Table 

2).  In addition, several switchgrass extracts (Panicum virgatum) representing collection at 

different growth stages and location were screened.  All samples tested, which included both 

ethanol and water extracted components, enhanced BSH activity by 10.5 to 35.1% when tested at 

a 50-fold dilution (data not shown).   
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Optimization of a HTS system to determine BSH inhibitors 

 To determine optimal conditions for a HTS system, the standard BSH activity procedure 

was performed in a 96-well plate.   pH, temperature, substrate concentration, and incubation 

length were altered in separate assays for assessment.  As expected, a pH of 6.0 and an 

incubation temperature of 37°C, both of which are used in the standard 2-step assay, were 

conducive to efficient BSH hydrolysis.  However, regarding substrate choice, it was found that 

taurodeoxycholic acid rather than glycocholic acid was much better at eliciting an observable 

activity response; additionally, a final substrate concentration of 10 mM produced ideal results.  

An incubation length of 2 to 4 hours was targeted in order to get several progressive 

measurements during the development of precipitation; using 10 µl of undiluted BSH (8 µg/µl) 

caused the reaction to proceed too quickly so it was diluted by factors of 5 up to 300.  It was 

determined that a 50-fold dilution (10 µl) was sufficient to elicit adequate hydrolysis of substrate 

with maximal precipitation occurring after approximately 2 hours of incubation in a 200 µl total 

reaction volume.  Changes were easily able to be observed visually, as insoluble deconjugates 

precipitated and results were able to be corroborated by additional measurements using a 

microplate reader.  The control wells without the addition of BSH further confirmed our assay 

validity by remaining clear and consistently producing only a background spectrophotometric 

measurement.   

With the above parameters optimized, a proof-of-concept experiment using known BSH 

inhibitors was performed.  As shown in Fig. 5, in the presence of high levels of specific potent 

BSH inhibitor (e.g. A1-A5 & B1-B5 for NaIO4, E1-E4 & F1-F4 for NaIO3), the activity of BSH 

was inhibited, which was reflected by displaying clear, transparent wells.  In the presence of low 

concentrations of the BSH inhibitor and in the absence of the BSH inhibitor (right section except 
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the far right negative control wells, Fig. 5), the reaction mix became turbid due to the 

precipitation of unconjugated bile salts due to BSH activity.  The other two iodide compounds, 

NaI and KI, displayed lower inhibitory effect than NaIO4 and NaIO3 (Fig. 5), which is consistent 

with the results using quantitative 2-step assay (Table 2).  Although the copper and zinc 

compounds were potent inhibitors at higher concentrations in our 2-step assay (Table 2), they 

tended to form aggregates at high concentrations after prolonged incubation in the plate assay; 

furthermore, they were less inhibitive at lower concentrations than were the iodate compounds 

(Fig. 6, A-D rows).  Similarly, Na2SeO3 aggregated even at a starting concentration of 10 mM 

and 5 mM (Fig. 6).  After several stepwise dilutions this effect was diminished and Na2SeO3 still 

clearly inhibited BSH activity at low concentrations, but the aggregation potential negates its 

usefulness as a control compound (Fig. 6).   KIO3 appears to be an ideal control inhibitor for 

HTS due to its ability to inhibit BSH activity at low concentrations and consistently show a dose 

dependent response with high clarity (Fig. 6).  After modifying the dilution factor, it was 

subsequently concluded that a starting compound (KIO3) concentration of 10 mM (10 µl per 

well) was adequate to inhibit activity and 2-fold dilutions in nine successive wells were used to 

show a dose dependent response.   

The assay was further scaled down the assay to a 50 µl total reaction volume, which is 

required for HTS, using 384-well plates.  A prolonged incubation length (3-4 hours) was needed 

for precipitation to fully develop.  Additionally, an experiment was done to insure that DMSO, 

the solvent used for HTS library compounds, was itself not inhibitory to BSH.  It was found that 

there was negligible interference of DMSO (final concentration of 50 mM) on precipitation 

formation (data not shown). 
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HTS discovery of BSH inhibitors 

 At the HTS facility at the Vanderbilt Institute of Chemical Biology, all assays were 

performed in a scaled down 50 µl total reaction volume for use in a 384-well plate, the format of 

which their compound libraries are stored and routinely used for other HTS assays.  One day 

prior to screening of the compound libraries, validation assays containing different controls were 

carried out to ensure the system was optimal for actual inhibitor screening and that the optimized 

conditions translated well to this HTS format.  Several plate layouts were designed and included 

in selected controls were either KIO3 or NaIO4, inhibitors routinely used in the 96-well assays, 

and DMSO.  The results of these test plates indicated that the assay could clearly distinguish 

between wells with or without precipitation as a result of BSH hydrolysis.  Both negative 

controls (no BSH) and those using NaIO4 and KIO3 remained clear in stark contrast to positive 

controls (no inhibitor) that displayed obvious precipitation (also confirmed by reading on the 

Spectramax).  The simple checkerboard layout of one such validation plate (Fig. 7), shows that 

the assay could clearly distinguish between wells with or without precipitation as a result of BSH 

hydrolysis and indicate that DMSO has no negative impact of the ability of BSH to hydrolyze a 

bile acid substrate.  Thus, we were able to undergo a pilot screening of a 2,240-compound library 

composed of structurally and functionally diverse compounds.  It should be noted that for the 

actual HTS screen, BSH was diluted with buffer containing 3 mM of DTT to prevent oxidation 

of BSH enzyme during a prolonged incubation period between setup of assays; this modification 

improved enzyme stability and visible hydrolysis.  A total of 7 plates were used for this 

screening, which was very successful and has led to 107 hits that were considered potent 

inhibitors.  Hits were confirmed based on visual observation (Fig. 8) and corroborated via 

spectrophotometric measurement.   
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Preliminary review of biochemical information of the corresponding hits eliminated most 

of compounds and led to a 10-compound list (Table 3).  These 10 compounds were subjected to 

further validation using the plate assay as well as the 2-step activity assay to ascertain the 

quantitative inhibitory effect; these included phenethyl caffeate (also called ‘caffeic acid 

phenethyl ester’, CAPE), carnosic acid, chrysophanol, epicatechin monogallate, gossypetin, 

purpurogallin, riboflavin, theaflavanin, folic acid, and menadione.  The ten compounds selected 

for further testing were purchased directly from Vanderbilt, which have been solubilized in 

DMSO; compounds were stored at -20°C after arrival.  Ninety-six-well plate assays were first 

conducted to test repeatability of results from the original HTS screen.  Each compound was 

tested at an initial concentration of 10mM.  Although most compounds displayed inhibitory 

activity even after the first dilution, several did not display inhibitory effect as expected (folic 

acid, chrysophanol, CAPE, epicatechin monogallate, and theaflavanin), particularly since the 

library compounds were initially screened using 0.25 µl (10mM) rather than the 2.5 µl (10mM) 

we routinely use in our laboratory.  Plate assays were repeated to confirm these findings, and it 

was consistently noted that chrysophanol and folic acid had no inhibitory effect on BSH and 

CAPE, epicatechin monogallate, and theaflavanin appeared only to inhibit at the highest 

concentrations tested (final concentrations of 0.5, 0.25 mM).  Compounds showing greater 

inhibition included carnosic acid, menadione, gossypetin, and riboflavin (Fig. 9).   

In addition to the above precipitation-based microplate assay, each compound was 

subsequently tested in the 2-step assay to determine a quantitative inhibitive response when used 

at a higher concentration; CuCl2 was included as a known inhibitor control, as demonstrated in 

the preliminary screen of dietary feed additives.  It was exciting to note that several of the 

compounds, despite a lower capacity to offer visual proof of inhibition using the plate method, 
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actually were able to inhibit BSH activity at relatively high percentages (Table 4).  Notably, 

CAPE and epicatechin monogallate consistently inhibited activity by over 90%, indicating they 

are potent BSH inhibitors.  Riboflavin, gossypetin, menadione, and carnosic acid, also displayed 

high ranges of inhibition, consistent with the plate assay.  Several of these compounds of 

particular interest were also tested at higher dilutions.  CAPE still inhibited rBSH activity by 

more than 85% at a final concentration of 0.625 mM; carnosic acid and riboflavin each inhibited 

at rates over 90% at a final concentration of 0.625 mM and 0.05 mM, respectively.  However, 

chrysophanol was very poor at inhibiting BSH hydrolysis and folic acid actually enhanced 

activity.  This indicates that while the HTS plate method is mostly accurate at revealing genuine 

BSH inhibitors, it is best to clarify these results using the quantitative BSH assay.   
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CHAPTER V 

DISCUSSION 

 

Antibiotic growth promoters (AGP) have undoubtedly had a positive influence on animal 

production since their early facilitation in the 1950s; however, the current concern over antibiotic 

resistance of zoonotic origin is the driving impetus for their discontinuation.  Different products 

have been proposed as alternatives for AGP, including essential oils, prebiotics, probiotics, 

enzymes, and organic acids, among others, to change gut microbiota for enhanced animal health 

and growth performance (Huyghebaert et al. 2011); however, very limited data is available to 

justify the choice of specific bacterial species or products for such microbiota manipulation. 

Exogenous enzymes have garnered much attention as one alternative to AGP.  Generally, 

these target non-starch polysaccharides like hemicellulose and β[beta]-glucans and have been 

noted to improve performance via enhanced diet digestibility and may also beneficially 

manipulate host microflora and immunity (Bedford 2000; Huyghebaert et al. 2011).  Although 

some recent studies do suggest improvements in poultry and swine health and performance (Jo et 

al. 2012; Zou et al. 2013), there are other studies which note no significant effect of enzyme 

treatments and even negative impacts on performance (Yegani & Korver 2013; Karimi et al. 

2013).  This lack of consistency is a notable drawback for dietary enzyme inclusion, and 

although it may improve nutrient digestibility, results will be highly variable depending on 

enzyme source, dietary form and quality, as well as dosage, intestinal uptake and availability, 

and animal age and breed.  Furthermore, many performance studies do not address how 

exogenous enzymes affect the intestinal microflora; improved digestion rates because of enzyme 

supplementation undoubtedly reduce the available substrate available for gastrointestinal 

bacteria, which could target harmful bacteria, but also negatively impact beneficial populations.   
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Probiotics, the live bacterial organisms, have also been extensively evaluated as potential 

AGP alternatives, particularly for poultry, and improvements in performance, gut mucosal 

immunity, and nutrient digestibility have been noted (Mountzouris et al., 2010).  However, 

introducing live microorganisms into the gut environment could potentially have unforeseen 

consequences.  Indeed, AGP generally target intestinal populations of gram-positive bacteria, 

including lactobacilli which have been commonly used as probiotic strains (Barton 2000; 

Gaskins et al. 2002; Sharifi et al., 2012); thus, there seems to be some disparity in the ultimate 

efficacy increased numbers may have on gastrointestinal health.  Certainly many considerations 

must be weighed, and administration level and frequency could be a point of contention.  For 

example, Mountzouris et al. (2010) tested the growth-promoting efficacy of a 5-bacterial strain 

probiotic and concluded that treatment at the lowest inclusion level tested resulted in the best 

performance, while higher levels actually lowered ileal digestibility coefficients.  Additionally, 

bird age and diet likely will pose challenges in developing probiotic strategies.  In a study 

conducted to evaluate differences between flavomycin and probiotics on dietary fat utilization, 

Sharifi et al. (2012) observed that “probiotics caused significant growth-depressing effects, 

inferior feed conversion, and reduced fat and GE [gross energy] digestibility irrespective of the 

source of dietary fat.”  They proposed that increased lactobacilli numbers greatly enhanced the 

deconjugation of bile salts caused by BSH activity, thereby reducing the ability to digest fat; 

furthermore, the young age of the birds meant they had limited pancreatic lipase secretion which 

rendered the effects of the probiotics disadvantageous. Therefore, the overall beneficial effects 

associated with specific probiotics should be carefully evaluated. Understanding the science of 

potential negative traits of probiotics can help us develop ‘negative-traits-mitigation’ strategies 
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to optimize probiotic products for enhanced growth performance of food animals and 

profitability of the feed additive industry. 

Various studies link AGP induced growth promotion with altered gastrointestinal (GI) 

microflora, but data are limited to provide compelling justification for which bacterial species 

should be modulated (Marshall & Levy 2011; Dibner & Richards 2005; Barton 2000).  Perhaps, 

then, it would be feasible to approach this issue at the cellular level by targeting general 

enzymatic activities and metabolite production influenced by AGP usage.  One such avenue 

worth pursuing is examination of bile salt hydrolase (BSH).  In 1987, Feighner and Dashkevicz 

observed an inverse relationship between BSH activity and growth performance in poultry 

supplemented with subtherapeutic doses of antibiotics; they further suggested that specific 

enzyme inhibitors could enhance growth and feed conversion in livestock and negate the need 

for antibiotic feed additives.  Although other studies have since corroborated these findings and 

agree that AGP usage decreases gut BSH activity (Guban et al. 2006; Knarreborg et al. 2004), 

there is a lack of published information regarding relevant attempts to identify BSH inhibitors.  

Alternatively, there is mounting evidence that AGP use greatly influences intestinal populations 

of Lactobacillus, prime BSH-producing commensals, by reduction of overall numbers or 

modulation of strain abundance (Knarreborg et al. 2002; Dumonceaux et al. 2006; Rettedal et al. 

2009); specifically, AGP use in broilers is associated with decreased populations of L. salivarius 

(Engberg et al. 2000; Knarreborg et al. 2002; Guban et al. 2006; Dumonceaux et al. 2006; Zhou 

et al. 2007).   Furthermore, Guban et al. (2006) proposed that because of its capacity for 

deconjugating bile salts and promoting decreased weight gain, L. salivarius would be a prime 

target to eliminate from the broiler intestine.  Building off of these published findings, in this 

study, a recombinant BSH (rBSH) from a chicken L. salivarius strain (Wang et al. 2012) was 
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used to perform preliminary enzyme characterization and initiate the discovery of BSH inhibitors 

via a standard quantitative assay as well as an efficient high-throughput screening (HTS) 

procedure. 

 Biochemical characterization of the rBSH from L. salivarius NRRL B-30514 revealed 

unique functional qualities.  Six different bile salts were tested to determine substrate preference.  

Although the enzyme showed the highest activity for glycochenodeoxycholic acid, the relative 

activities of the other glycine and taurine-conjugated bile salts were similar when compared to 

one another. Additionally, there was no major difference in activity against cholic, deoxycholic, 

or chenodeoxycholic acids.  Bile salt hydrolase enzymes produced by commensal bacteria tend 

to either have a broad or narrow substrate range and most often they have higher efficiencies at 

hydrolyzing glycoconjugated bile salts (Begley et al. 2006).  The rBSH used in this study 

displayed a broad substrate range and was able to efficiently hydrolyze both glyco- and 

tauroconjugated bile salts.  Its maximal activity occurred at a pH of 5.4, falling under the slightly 

acidic pH optima to which most BSH enzymes conform (Pavlović et al. 2012).  Interestingly, 

BSHs from different strains of the same species can have surprisingly different biochemical 

preferences.  Specifically, two BSH1 enzymes from L. salivarius UCC118 and JCM1046 had 

variable specific activities on a range of glycine and taurine conjugated bile salts (Fang et al. 

2009).  Although the rBSHNRRL B-30514 in this study effectively hydrolyzed a wide range of 

substrates, Bsh1UCC118  preferred glycoconjugated bile acids and showed limited activity for 

tauroconjugated bile acids whereas Bsh1JCM1046  had higher catalytic activities when the substrate 

was tauroconjugated.  Both BSH1 enzymes had broad pH optima, but maximum activity 

occurred at a pH of 5.5 or 6.5 for Bsh1JCM1046 and Bsh1UCC118, respectively.  These differences in 

substrate specificity and other hydrolysis kinetics may be linked to the internal deletion of 8 
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amino acid residues of Bsh1UCC118, considered to be in the conserved active site (Fang et al. 

2009).  Thus, our understanding of differences in phenotypic functionality of BSH enzymes from 

L. salivarius, or from any species in general, would likely benefit from future structural and 

comparative sequence analyses that may reveal key residues in the active site or other binding 

sites which may help to explain biochemical preferences. 

 As shown in this study, the rBSH of L. salivarius was able to efficiently hydrolyze a 

broad range of substrates.  This particular enzyme trait makes it an ideal candidate when 

screening for inhibitors, since any potential inhibitor would have to target a wide range of BSH 

enzymes, each with different substrate preferences and hydrolyzing capabilities.  From our initial 

screen using different feed additives and dietary trace minerals, we discovered several inhibitors 

with moderate or potent inhibition.  Of particular interest among these are the copper and zinc 

compounds.  Research has shown that adding high concentrations of dietary copper and zinc can 

improve growth performance and feed efficiency of poultry (Ewing et al. 1998; Miles et al. 

1998; Arias & Koutsos 2006; Liu et al. 2011) and swine (Smith et al. 1997; Armstrong et al. 

2004; Jacela et al. 2010; Shelton et al. 2011); in addition, supplementary zinc can improve the 

carcass traits and meat quality of broilers (Liu et al. 2011).  As of now, there is a lack of 

compelling scientific evidence used to explain a specific mechanism of action for how copper 

and zinc act as growth promoters, although it is loosely assumed to arise from their antimicrobial 

properties (Jacela et al. 2010).  However, there is an additive effect of adding high 

concentrations of copper along with AGP in the diet (Jacela et al. 2010), which suggests that 

there are other mechanisms at work outside of its antimicrobial effect.  Potentially the reason that 

copper and zinc can mimic the effects of AGP when given in high doses is that they are acting as 

intestinal BSH inhibitors and improving lipid digestion through maintenance of the pool of 
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conjugated bile salts.  While it is tempting to assume that high concentrations of copper and zinc 

would make adequate AGP replacements, there are several concerns about high levels of these 

metals being used long-term in animal feed.  The obvious problem is potential copper/zinc 

toxicosis due to prolonged exposure; likely the threshold for effective metabolism and absorption 

would depend on animal type and age as well as the dietary source.  Additionally, higher nutrient 

composition in the feed will be reflected in an increased amount excreted in the feces.  This can 

have undesirable repercussions on the environment, particularly for soil where manure with 

accumulated levels of copper and zinc are applied (Jacela et al. 2010), and it has been suggested 

that plants could develop toxicities if bulk quantities of manure were applied to a limited land 

area for an extended duration (Singh 2005).  Furthermore, metals that are frequently added in 

animal feed may co-select for antibiotic resistant bacteria, as Cavaco et al. (2011) observed that 

zinc resistance of zoonotic derived Staphylococcus aureus has a strong association with 

methicillin resistance.  For these reasons, careful consideration should be given when choosing 

novel inhibitors, such that negative impact to both animal and environment is minimized. 

  Besides copper and zinc, various other compounds in the preliminary screen also 

exhibited a large inhibitory effect on rBSH hydrolysis.  Retinol, a fat-soluble vitamin important 

for growth, vision, and immunity, was found to be a potent inhibitor, but it can potentially 

accumulate to toxic levels in many animal species so prolonged supplementation would not be a 

good option (National Academic Press, 1987).  A panel of iodate compounds also showed great 

inhibition (Table 2), but again, these warrant cautious justification for use as AGP alternatives.  

It is possible that high dietary concentrations of iodine may have multiple host effects, some of 

which may be undesirable.  As constituents of thyroid hormones, prolonged administration of 

iodate compounds at high levels could increase basal metabolic rate and consequently lead to 
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weight loss, negating the effect of inhibiting BSH activity.  One additive with potential from the 

preliminary screen is linolenic acid, which inhibited rBSH activity by approximately 90%.  

Linolenic acid (or α-linolenic acid) is one of several omega-3 polyunsaturated fatty acids which, 

collectively, are precursors of immune and inflammation mediators and play important roles in 

regulating membrane fluidity and in disease prevention and intervention (Connor 2000).  From a 

human perspective, supplementing chickens with α-linolenic acid may benefit poultry consumers 

since it can enhance omega-3 long chain polyunsaturated fatty acid levels in chicken tissues 

(Kartikasari et al. 2012; Haug et al. 2012).  In addition, linolenic acid can affect bone strength as 

Tarleton et al. (2013) found that supplementing free-range hens with α-linolenic acid improved 

skeletal health and reduced keel fractures.  However, this evidence needs corroboration since a 

previous, similar study found no effect of omega-3 supplementation on bone health as well as 

increased mortality compared to birds in a control group (Toscano et al. 2012).  Moreover, 

although there is little published information regarding solely how linolenic acid affects growth 

performance, it has been shown that feeding diets rich in fish oil omega-3 polyunsaturated fatty 

acids improves body weight gain in poultry (Geier et al. 2009).  Research regarding other 

omega-3 supplementation may be warranted.  

 The preliminary screen also identified several compounds which actually enhance BSH 

activity.  While these are not necessarily of interest relative to this study, compounds that 

improve the ability of BSH to hydrolyze conjugated bile salts could have potential human 

applications.  The capacity to hydrolyze bile salts has frequently been a criterion for probiotic 

strain selection because of the potential to lower blood cholesterol levels (Begley et al. 2006).  

As previously stated, deconjugated bile salts are less soluble and consequently less likely to be 

reabsorbed.  This lowers cholesterol solubility and absorption, and excretion in the feces will 
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necessitate an increased demand for cholesterol for de novo synthesis of more bile salts.  

Additionally, conjugated bile salts help expedite lipid metabolism and act as signaling molecules 

to regulate endocrine function and glucose homeostasis (Jones et al. 2008; Pavlović et al. 2012), 

so BSH has the potential to significantly impact host physiology and thereby reduce the risk of 

metabolic disorders such as diabetes and obesity.  The BSH enhancing compounds, therefore, 

could be used as a novel food additive to increase the activity of BSH in the intestine and 

facilitate health improvements in persons who are hypercholesterolemic or overweight.   

Because of the potentially confounding effects associated with several of the inhibitors 

discovered in the preliminary screen of dietary factors, the best way to identify powerful, safe, 

and cost-effective BSH inhibitors should involve large scale screening of diverse compounds 

including emerging feed additives.  An understanding of what contributes to successful enzyme 

inhibition, for example, competitive binding to the active site or allosteric hindrance, may lead to 

the utilization of computational techniques to identify these.  However, homology modeling and 

molecular docking would both require an accessible three-dimensional structure of important 

BSH enzymes, and many of these are currently unavailable, including one for the enzyme in this 

study.  Therefore, high-throughput screening (HTS) such as that used in drug discovery is 

currently the most promising avenue to pursue regarding BSH inhibitor identification.  

Additionally, HTS is beneficial because automating the BSH assay can greatly improve time 

efficiency and save money due to a lesser quantity of reagents needed.  For example, scaling the 

reaction down from a total volume of 200 µl to 50 µl reduces reagent use by 75%, and although 

the precipitation-based method requires four hours of incubation, setup and preparation times are 

comparable to the 2-step method.  The end result is that thousands of compounds are screened 
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simultaneously compared to only a handful; it would take weeks, if not months, to achieve these 

results using the standard assay, which relies on manual pipetting vs. a bulk reagent dispenser.      

Capitalizing on this idea, we successfully developed and validated such a HTS system in 

this project.  Although conjugated bile salts are soluble in aqueous solutions, upon hydrolysis via 

BSH, the resulting deconjugated version is insoluble and leads to significant precipitation that is 

evident to the naked eye.  This unique feature allowed us to modify our quantitative 2-step 

screen for a scaled down version that was amenable for use in multiple settings.  Specifically, the 

convenience of this precipitation-based screen allowed us to travel to the nearest HTS center to 

the University of Tennessee which is located at Vanderbilt University’s Institute of Chemical 

Biology.  There we were able to test out this new system by screening a diverse compound 

library for novel BSH inhibitors.  

Overall, the ability of the HTS system to detect rBSH inhibitors proved to be a reliable 

means of inhibitor detection.  The concept adapted well to Vanderbilt’s 384-well plate format in 

which their libraries are routinely screened for multiple purposes, and the opportunity to utilize 

some of their advanced instrumentation, namely the Echo 550/555, contributed greatly to the 

convenience and rapidity with which this assay could be carried out.  There are some minor 

complications that need to be addressed to improve efficacy of future screens.  Notably, not all of 

our featured compounds reacted as expected once validation assays were attempted.  

Chrysophanol and folic acid, both recognized as inhibitors in the library screen, subsequently 

only inhibited activity to a very small extent or even improved hydrolysis of substrate, 

respectively.  It is possible that these were false positives since we only had the time and 

resources to do one all-encompassing screen.  A second re-screen, including only a subset of 

compounds of interest, would have been beneficial in confirming our suspected compounds as 
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legitimate inhibitors.    Another possibility is that binding affinity of chrysophanol and folic acid 

to BSH may be lower than that of other compounds, and the extended shaking step at Vanderbilt 

could have improved the compound-enzyme interaction, whereas we rely only on manual 

pipetting to mix the two in our 96-well plate version; the additional large surface area to volume 

ratio of the wells of the 384-well plate could have contributed in this sense as well.   

Finally, it must be resolved why some of the compounds were positive HTS hits with 

further validation by standard 2-step BSH assay but produce confounding results when using the 

96-well plate assay in our laboratory.  For example, the cloudy appearance of wells including 

CAPE and epicatechin monogallate belied their potency as tested in the 2-step assay.  Since this 

effect was clearly not noted at Vanderbilt during the initial library screen, likely the solution 

stability or chemical properties may have been altered in transit or as a result of the freeze/thaw 

process which affected the way it behaved during the reaction.  Organic compounds dissolved in 

DMSO can dissolute or precipitate out after repeated freeze/thaw cycles or water uptake 

(Oldenburg et al. 2005).  Should CAPE, for example, have experienced partial dissolution, upon 

introduction into the aqueous buffer a precipitate may have formed which would be confused as 

precipitation as a result of bile salt deconjugation.     Although it may be a far-reaching 

conjecture, large-scale screening could be amenable to the discovery of compounds that behave 

in this fashion and create downstream confusion.  More consideration should be given to these 

and other possibilities that would ultimately lead to contradictions in assay results interpretation.           

The Spectrum Collection library that was screened contained a wide range of structurally 

diverse compounds, including drug components, natural products, and other bioactive 

constituents.  Although the library did contain known antibiotics which are obviously not of 

interest to us, the fact that many of them did inhibit rBSH activity is in support of our belief that 
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AGP contribute to decreased BSH activity and improved animal growth performance.  We 

further investigated and validated ten promising hits (Table 3).  Out of these ten compounds, 

several were strong inhibitors that possess intriguing beneficial qualities.   Carnosic acid and 

epicatechin monogallate are both nutraceuticals with noted antioxidant and neuroprotective 

effects (Terrao et al. 1994; Azad et al. 2011; Kelsey et al. 2010; Morán et al. 2012; Xiang et al. 

2012).  Additionally, carnosic acid is an anti-inflammatory (Kuo et al. 2011) and epicatechin 

monogallate displays some chemopreventive (Du et al. 2012) and antimicrobial properties 

(Hamilton-Miller & Shah 2000).  Similarly, gossypetin was among the powerful inhibitors and 

also is noted to be both anti-inflammatory (Trendafilova et al. 2011) and an antioxidant 

(Mounnissamy et al. 2002).  Each of these compounds warrants further animal research, and 

should availability permit, growth performance studies could reveal more as to their potential 

use.  However, two particular compounds stood out as potent inhibitors with definite novel 

potential as feed additives that could replace AGP: riboflavin and phenethyl caffeate (CAPE).  

Riboflavin, or vitamin B2, plays a key role in energy metabolism and is a conenzyme in 

numerous redox reactions (Combs 2012).  Aside from contributions to animal physiology, it is 

water-soluble and causes no known toxicities from supplementation at upper limits (National 

Academic Press 1987), although even at the lowest concentrations tested, riboflavin was still an 

extremely potent BSH inhibitor.  Because it is an FDA-approved feed additive with well-

established metabolic function and would be readily available to incorporate into feed, riboflavin 

likely may be an acceptable candidate to improve growth performance for food animals.  CAPE, 

on the other hand, is an emerging plant bioactive studied because it has antioxidant (Altuğ et al. 

2008; Lee (b) et al. 2008; Dos Santos & Monte-Alto-Costa 2013), anticarcinogenic (Chung et al. 

2004; Chan et al. 2012;), anti-inflammatory (da Cunha et al. 2004; Yilmaz et al. 2005; Dos 
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Santos & Monte-Alto-Costa 2013), immunomodulatory (Chan et al. 2012;), and antimicrobial 

(Yilmaz et al. 2005) effects.   It is a phenolic component of propolis and can be directly extracted 

or artificially synthesized by several methods (Akyol et al. 2012).  Although much research has 

been done to characterize the aforementioned effects of CAPE, no published data exist 

concerning its effects on growth performance of food animals.  Because CAPE can inhibit BSH 

at low concentrations (0.625 mM), a trial of this natural product as a feed supplement would 

certainly be highly warranted.  

This initial 2,240 compound screen was undoubtedly a step in the right direction towards 

identifying AGP replacements.  The HTS protocol may have some limitations, but nevertheless 

proved that it could successfully identify compounds that were potent BSH inhibitors.  Future 

chemical screens will be performed on libraries of over 50,000 small molecule candidates which 

may reveal more novel BSH inhibitors.  Having a greater number of applicable compounds will 

allow us to choose those with the most redeemable qualities that would include animal and 

environmental safety, cost, and availability.  A comparison of BSH inhibitors (riboflavin and 

CAPE) versus AGP will be useful for assessing performance improvements relative to the cost of 

supplementation.  Likely it will be challenging to compete with the low price of AGP 

supplementation.  One study reported that the cost of AGP ranged from $1.25 to $3.00 per ton of 

feed, and for chickens specifically the cost of AGP per bird was $0.0093 (Graham et al. 2007).  

However, despite that low price, the authors noted that the improved production performance 

was still not enough to offset the cost of AGP use.  Potent BSH inhibitors, therefore, may be able 

to compensate for price via larger improvements to animal health and performance.  Based on 

the in vitro data, it is estimated that riboflavin and CAPE could be delivered in the feed at 10 

mg/kg and 20 mg/kg, respectively, to exert efficient inhibition of BSH activity.  This is 
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comparable to AGP dosages that range from one up to 100 mg/kg in the feed depending on 

compound and animal type (van den Bogaard & Stobberingh 1999).  Particularly, riboflavin, a 

very potent BSH inhibitor, is a widely available product and if purchased in bulk, may come 

closer to approaching the cost of AGP supplementation.  Future HTS screens could also reveal 

BSH inhibitors that are broadly recognized compounds that would be especially cost effective.  

Furthermore, consumers may be willing to pay slightly more for products coming from animals 

reared without the use of AGP, which is stigmatized in today’s market.  

The long term goal of this study is, of course, to undertake a large-scale animal study 

using poultry as our model to test some of these novel inhibitors, including riboflavin and CAPE. 

While in vitro studies are absolutely useful for gathering preliminary data, intestinal in vivo 

conditions are certainly more complex.  Particularly, to be an effective inhibitor of intracellular 

BSH enzymes, our chemical compounds would need to traverse the cell envelope effectively by 

a means comparable to many clinical antibiotics.  Additionally, in vivo stability and 

bioavailability must be addressed in order to establish the validity and practicality of utilizing 

such inhibitors as a legitimate alternative to AGP.  Moreover, growth performance parameters 

like body weight gain, feed intake, and feed conversion ratio will need to be measured as well as 

morphological characteristics of the intestinal tract and meat and carcass quality.  This will help 

to rule out or identify any negative physiological consequences associated with prolonged use of 

a particular BSH inhibitor.  For example, because the BSH inhibitors should improve lipid 

metabolism, it is important to determine that energy harvest and weight gain is partitioned 

adequately and not skewed toward excess fat deposition, which would be undesirable for 

consumers.  If potent inhibitors are identified which do result in improved performance and 

carcass characteristics, it may also be beneficial to do an additional study assessing the sensory 
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evaluation of meat to ensure that there is no negative effect on meat flavor, odor, or tenderness.  

It is hoped that subsequent studies will be able to address the above concerns and corroborate the 

performance-boosting benefits of novel BSH inhibitors.    
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Table 1. Activity of rBSH for different bile salts. 

 

a 
The following bile salts were used to determine the hydrolysis activity of rBSH: 

glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), glycocholic acid 

(GCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic acid (TDCA), and taurocholic 

acid (TCA)  

  

Substrate
a 

BSH activity (µmol/min/mg) Relative activity (%) 

GCDCA 

GDCA 

GCA 

TCDCA 

TDCA 

TCA 

17.7 ± 1.18 

4.0 ± 0.54 

7.7 ± 0.48 

8.0 ± 2.37 

8.5 ± 2.26 

5.6 ± 0.33 

100 

22.3 

41.9 

45.1 

47.9 

31.4 
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Table 2. Effect of different compounds on rBSH activity.
a
 

 

Compound % Inhibition 

CuCl2 98.1 

KIO3 96.5 

NaIO4 96.4 

FeSO4 96.1 

CoCl2 95.9 

Na2SeO3 93.1 

Retinol 93.1 

CuSO4 91.7 

Linolenic acid 90.1 

ZnSO4 89.5 

NaIO3 86.4 

Linoleic acid 84.7 

MnSO4 83.1 

CaCl2 22.4 

FeCl3 73.0 

ZnCl2 68.3 

MnCl2 68.1 

KI 36.8 

Cholecalciferol 36.0 

Sodium acetate 32.7 

NaI 31.8 

Sodium proprionate 31.4 

MgSO4 31.3 

Sodium butyrate 29.0 

NaSO4 27.7 

NaCl 27.7 

KCl 25.9 

MgCl2 25.7 

CaCl2 22.4 

Ascorbic acid 21.8 

NaHCO3 20.6 

Sodium lactate 15.4 

α-tocopherol -1.0 

Stearic acid -9.4 

Citric acid -38.9 
a 
The final concentration of all compounds in the reaction mix is 5 mM. 
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Table 3. The ten promising hits of BSH inhibitors discovered from HTS using a small compound 

library (2,240 compounds from Spectrum). 

 

 

 

  

Compound 

Name 

Structure Formula 

(MW) 

Source      Features References 

Epicatechin 

monogallate 

 

C22H18O10 

(442.38) 

Tea pigment antioxidant; 

chemopreventive;  

Du et al. 2012; 

Hamilton-Miller et al. 

2000; Terao et al. 

1994 

Carnosic acid 

 

C20H28O4 

(332.44) 

Salvia spp, 

Rosmarinus 

officinalis 

Potent antioxidant; 

anti-inflammatory; 

neuroprotective 

Morán et al. 2012; 

Xiang et al. 2012; 

Azad et al.  2011; 

Kuo et al.  2011 

Theaflavanin 

 

C20H16O8 

(384.34) 

Semi-

synthetic 

analog of 

theaflavin 

Anti-inflammatory; 

antiviral and 

antibacterial  

Zu et al. 2012; Betts 

et al. 2011; Aneja et 

al. 2011 

Chrysophanol 

 

C15H10O4 

(254.24) 

Cassia and 

Rumex spp. 

Anti-inflammatory; 

anticarcinogenic; 

anti-diabetic 

properties 

Lee et al. 2011; Kim 

et al.  2010; Lee et al.  

2008 

 

 

Phenethyl 

caffeate 

(CAPE) 

 

C17H16O4 

(284.31) 

Natural 

component 

of propolis 

from 

honeybee 

hives 

Antioxidant; 

anticarcinogenic; 

anti-inflammatory; 

immuno-

modulatory; 

antimicrobial 

Chan et al.  2012; 

Altuğ et al.  2008; 

Lee(b) et al.  2008; 

Yilmaz et al.  2005; 

Chung et al.  2004; da 

Cunha et al.  2004 
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Table 3. Continued 

 

Compound 

Name 

Structure Formula 

(MW) 

Source Features References 

Gossypetin 

 

C15H10O8 

(318.24) 

Widespread 

in plants 

Antioxidant; anti-

inflammatory 

Trendafilova et al.  

2011; Mounnissamy 

et al.  2002 

 

Purpurogallin 

 

C11H8O5 

(220.18) 

Gall of 

Dryophanta 

divisa 

Antioxidant; anti-

inflammatory; 

hepatoprotective; 

cardioprotective; 

antibacterial 

activity 

Kim (b) et al.  2012; 

Inamori et al. 1997; 

Wu et al. 1996; 

Prasad et al. 1994; 

Wu et al. 1994; Wu et 

al. 1991 

 

Folic acid 

 

C19H19N7O6 

(441.40) 

Liver, 

kidney, 

green plants 

and fungi 

Vitamin used for 

nucleotide 

biosynthesis; upper 

limits considered 

nontoxic; no 

environmental risks 

associated with use 

in animal nutrition 

EFSA 2012; National 

Academic Press 1987 

 

Riboflavin 

 

C17H20N4O6 

(376.37) 

Retina, 

whey and 

urine 

Vitamin that has a 

role in energy 

metabolism; 

coenzyme in 

numerous redox 

reactions; upper 

limits considered 

nontoxic 

Combs & Gerald 

2012; National 

Academic Press 1987 

Menadione 

 

C11H8O2 

(172.18) 

Asplenium 

and Juglans 

spp. 

Vitamin important 

in process of blood 

clotting and calcium 

metabolism; used as 

a nutritional 

supplement in 

chicken and turkey 

feed; can be added 

as high as 1000 

times the dietary 

requirement without 

resulting in adverse 

effects 

FDA 2012; Pillai et 

al.  2008 

 

 

 

  



62 

 

Table 4. Validation of the selected BSH inhibitors determined by HTS.
*
 
 

 

Compound % Inhibition 

CAPE 96.4  

Carnosic Acid 96.8 

Chrysophanol
a 

3.7  

Epicatechin monogallate 98.6 

Folic Acid
b 

-10.8 

Gossypetin 97.3 

Menadione 87.2 

Purpurogallin 83.0 

Riboflavin
c 

94.5 

Theaflavanin 18.1 

 
* 
Unless specified, the final concentration of compound in the reaction mix was 5mM. 

a
The final  concentration of chrysophanol in reaction mix was  1.25 mM. 

b
The final  concentration of folic acid in reaction mix was 1.5 mM. 

c 
The final  concentration of riboflavin in reaction mix was 1 mM. 
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Figure 1.  Production and purification of rBSH (SDS-PAGE analysis). Lane 1 is a prestained 

molecular marker.  Lane 2 is whole-cell lysate of noninduced E. coli, followed by whole-cell 

lysate of E. coli induced with 0.5 mM IPTG after 1 hr (Lane 3), 1.5 hrs (Lane 4), 2 hrs (Lane 5), 

2.5 hrs (Lane 6), and 3 hrs (Lane 7).  Lane 8 is rBSH purified by Ni-NTA affinity 

chromatography.  
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Figure 2.  SDS-PAGE analysis of stepwise purification of the rBSH.  Lane 1, a prestained 

molecular marker; lane 2, induced whole-cell lysate of E. coli; lane 3, flow-through fraction; lane 

4, wash fraction.  Lanes 5-10 indicate eluents 1 through 6, respectively.  
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Figure 3. The effect of pH on rBSH activity.  rBSH activity was measured in 0.1 M sodium 

citrate-citrate acid buffer for pH values ranging from 3.0 to 5.4 and in 0.1 M sodium phosphate 

buffer for pH values ranging from 6.0 to 8.0. Each bar represents the mean BSH activity ± 

standard deviation at each pH tested. 
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Figure 4. The effect of temperature on rBSH activity.  rBSH activity was measured over a range 

of temperatures (20°C-75°C) in 0.1 M sodium phosphate buffer (pH 6.0).  Each bar represents 

the mean BSH activity ± standard deviation of each temperature.  
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Figure 5.  Validation of microplate method for screening BSH inhibitors using HTS.  A panel of 

iodine compounds were used to validate the microplate precipitation-based assay using a 200 µl 

of total reaction volume. All compounds were added at a final concentration of 0.5 mM in 

column 1 with 2-fold serial dilution through column 10.  Rows A and B: NaIO4; C and D: NaI; E 

and F: NaIO3; G and H: KI.  A 12.5 µl volume of BSH (50-fold diluted from a stock 

concentration of 8 μg/μl) was added in column wells 1-11.  Column 12 served as a negative 

control with no enzyme and compound added.    
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Figure 6.  Microplate precipitation-based assay for four dietary compounds that display potent 

inhibitory effect on BSH using the standard BSH assay.  Using 200 µl of total reaction volume, 

all compounds were added at a final concentration of 0.5 mM in column 1 with 2-fold serial 

dilution through column 10.  Rows A and B: CuCl2; C and D: ZnSO4; E and F: KIO3; G and H: 

Na2SeO3.  A 12.5 µl volume of BSH (50-fold diluted from a stock concentration of 8 μg/μl) was 

added in column wells 1-11.  Column 12 served as a negative control with no enzyme and 

compound added.    
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Figure 7. Validation of HTS protocol for screening BSH inhibitors.  (A) Design of validation 

plate:  blue boxes are activity controls (BSH, reaction mix containing substrate, and solvent 

DMSO) and yellow boxes are inhibition controls (BSH, reaction mix containing substrate, and 

NaIO3). (B) Results of the validation assay indicate that DMSO had no adverse effects on BSH 

activity (cloudy wells with precipitate) when compared to the wells containing a known inhibitor 

NaIO3 (clear wells).   

A 

B 
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Figure 8. Representative result of one plate from HTS of BSH inhibitors.  (A) Plate layout for 

HTS inhibitor screening.  Pink boxes indicate test wells that contain a library compound of 

interest, BSH, and reaction mix containing substrate.  Library compounds were shot into the well 

bottom using Echo 550/555 and enzyme and reaction mix were added using Multidrop Combi.  

Controls were added manually to the side wells:  blue boxes indicate activity controls (BSH, 

reaction mix containing substrate, and solvent DMSO), yellow boxes correspond to inhibition 

controls (BSH, reaction mix containing substrate, and NaIO3), and white boxes are negative 

controls with no BSH added but include reaction mix with substrate and DMSO. (B) The HTS 

results represented by one 384-well plate.  Control wells indicate the assay proceeded normally.  

The wells in columns 3-22 that appeared clear, regardless of alternative color due to compound, 

and had low absorbance readings were considered hits (putative BSH inhibitors).  

A 

B 
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Figure 9. Validation of four rBSH inhibitors identified by HTS using the 96-well plate assay. 

Using 50 µl of total reaction volume, all compounds were added at a final concentration of 0.5 

mM in column 1 with 2-fold serial dilution through column 10.  Rows A and B: carnosic acid; C 

and D: menadione; E and F: gossypetin; G and H: riboflavin.  BSH was added  at a fixed 

concentration in column wells 1-11.  Column 12 served as a negative control with no enzyme 

and compound added.  After 4 hours of incubation, gossypetin and riboflavin display the greatest 

inhibition, through well 8.  Menadione and carnosic acid inhibited activity at the three and five 

highest concentrations tested, respectively. 
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