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ABSTRACT 

 This thesis explores the use of reconfigurable hardware in modeling chemical 

species reacting in a spatially homogeneous environment.  The time evolution of 

biochemical models is often evaluated using a deterministic approach that uses 

differential equations to describe the chemical interactions of the model.  However, such 

an approach treats species as continuous valued concentrations, is inaccurate for small 

species populations, and neglects the stochastic nature of biochemical systems.  The 

Stochastic Simulation Algorithm (SSA) developed by Gillespie is able to properly 

account for these inherent noise fluctuations.  This allows the SSA to accurately project 

the time evolution of a biochemical model.  Unfortunately, the SSA can be 

computationally intensive and require a substantial amount of time to complete.  

Therefore, it has been proposed that the SSA be implemented on a Field Programmable 

Gate Array (FPGA) to improve performance.  Employing an FPGA allows parallelism to 

be exploited within the SSA providing a speedup over software implementations 

executing instructions sequentially.  Recent work in this area has focused on 

implementing the SSA on an FPGA to simulate specific biochemical models.  However, 

this requires re-constructing and re-synthesizing the design in order to simulate a new 

biochemical system.  This work examines the use of a reconfigurable computing platform 

to allow an implementation of the SSA on an FPGA to simulate a variety of models.  The 

designs presented herein demonstrate a speedup of roughly 1.5X. 
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Chapter 1 

Introduction 

 The future of biochemical systems analysis is as promising as it is challenging.  

Accurately modeling complex biochemical systems is currently a daunting and time 

consuming task.  Efforts are underway to develop more efficient tools for modeling these 

systems while producing reliable data.  Some biochemical systems of interest include the 

transcription and translation of DNA during protein synthesis or the growth of a bacterial 

infection, as well as many others.  By understanding how cells operate and communicate, 

we can begin to predict the behavior of the underlying biochemical system.  Then 

methods can be developed to interrupt and control cellular processes, allowing advances 

in the field of gene therapy and medicine. 

 Biochemical systems, consisting of species reacting in a spatially homogeneous 

environment, are often formulated using a deterministic approach.  Such an approach 

represents species as continuous-valued concentrations and interactions between 

chemicals are modeled using ordinary differential equations.  A deterministic approach is 

effective for modeling many biological systems, although inaccuracies become apparent 

for systems with small populations of chemical species and systems affected by noise.  

Recent research has shown that noise may play a critical role in many biochemical 

systems [1,2].  Therefore a stochastic approach must be used to model noise-affected 

systems.  Within a stochastic approach, chemical species are represented as discrete-

valued populations and interactions between chemicals are represented as random 

processes. 
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The Chemical Master Equation (CME) is used to define the stochastic properties 

of a biochemical system.  The CME is typically an infinite set of differential equations, 

making it impractical to solve analytically for most complex systems.  The Stochastic 

Simulation Algorithm (SSA), developed by Daniel Gillespie, is mathematically 

equivalent to the behavior of the CME [3]. 

Gillespie’s algorithm simulates the execution of one chemical reaction at a time, 

and each simulation is a single sample of the model’s behavior.  In order to obtain 

statistically accurate results, the SSA must be executed several times to form a complete 

picture of the model’s behavior.  As a result, the SSA can be computationally intensive 

and time consuming, limiting its application to large-scale and biologically relevant 

models.  Endy and Brent have suggested that a stochastic simulation of the cell cycle of a 

single Escherichia coli cell may require 100 years of computation time on today’s 

standard PC [4]. 

To address these issues, this work presents a hardware-accelerated version of the 

SSA implemented on a Field Programmable Gate Array (FPGA).  By performing tasks in 

parallel that would normally be handled sequentially on a regular microprocessor, the 

workload is divided among several process modules and the overall performance of the 

SSA is improved.  Previous work in this area has yielded hardware simulators with 

impressive performance gains over software implemented simulators.  However, these 

performance gains come at a cost.  Previous designs from other researchers have focused 

on specific biochemical models, requiring varying levels of redesign when modeling 

different biochemical models.  In addition, some have introduced approximations to the 

SSA.  This work focuses on a hardware-accelerated simulator that is general purpose, 
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meaning several biochemical models can be simulated without the need to re-synthesis 

the design.  Furthermore, the hardware designs presented herein remain statistically true 

to Gillespie’s SSA.  Within this work, two approaches to a general-purpose hardware 

implementation of the SSA are offered.  The second chapter will provide a brief overview 

of the scope of the work.  This will include an introduction to biochemical systems and 

how they are modeled.  The third chapter will describe some of the previous work 

concerning hardware accelerated stochastic simulators.  Chapter four will delve into the 

specifics of one design of a general-purpose hardware accelerated exact stochastic 

simulator.  Chapter five will outline the details of a second design.  The final chapter will 

present some plausible avenues for future work, in addition to conclusions from this 

work. 
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Chapter 2 

Background 

2.1 Applying Ordinary Differential Equations to the Model 

 Traditionally, models of chemical species reacting within a spatially 

homogeneous environment are devised using a deterministic approach involving ordinary 

differential equations.  Such an approach treats species populations as continuous valued 

concentrations that are a function of time [3].  Through the use of software packages that 

include differential equation solvers (i.e. Matlab), a complex biological system can be 

modeled using ordinary differential equations (ODEs) and solved in less than a day.  

However, the results may not necessarily be accurate.  Ordinary differential equation 

models ignore the inherent stochastic nature of chemically reacting systems.  This hinders 

the application of ODEs to systems with small numbers of molecules.  In addition, it is 

possible for the results of an ODE model to suggest that species concentrations are real 

valued or below zero.  In actual chemical systems, it makes no sense to have any less 

than a whole molecule and it is impossible to have a negative amount of molecules.  The 

effects of these limitations can be devastating to modeling chemical systems since a 

species with a small population can have a significant impact on the trajectory of the 

system. 

 

2.2 Exact Stochastic Simulation 

 The Exact Stochastic Simulation Algorithm (SSA) was developed by Daniel T. 

Gillespie in the late 70’s as a way to accurately simulate chemically reacting systems 
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[3,7].  The SSA treats species populations as discrete values and properly handles the 

randomness and noise inherent in many chemically reacting systems.  In addition, the 

SSA exhibits the stochastic behavior evident in the time evolution of biochemical 

systems.  Gillespie formulated two methods to perform exact stochastic simulations, the 

First Reaction Method and the Direct Method.  Gibson and Bruck improved upon 

Gillespie’s First Reaction Method in 2000 to develop the Next Reaction Method [8].  The 

Optimized Direct Method developed in 2004 by Cao, Li, and Petzold further improved 

the performance of exact stochastic simulations [9].  The Sorting Direct Method, recently 

developed by James McCollum, further optimized stochastic simulations [20].  A paper 

outlining the Sorting Direct Method was recently accepted for publication in the Journal 

of Computational Biology and Chemistry.  All of the above algorithms simulate a 

possible time evolution of a chemically reacting system, determining a time for the 

occurrence of each reaction.  Each algorithm accomplishes this through the following 

steps, 

 

1: Initialization – An input model is read by the simulator and data structures are 

initialized. 

2: Propensity Calculation – Where necessary, the propensity of each reaction is 

calculated based on the reaction rate constant and the current species populations. 

3: Putative Time Estimation – Using the propensities and exponentially distributed 

random numbers, the time at which the next reaction will occur is determined. 

4: Reaction Selection – The next reaction to execute is selected. 
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5: Reaction Execution – The species populations and system time are updated 

according to the execution of the selected reaction. 

6: Termination – The program ends if the desired end time of the simulation has 

been reached.  Otherwise, the process returns to the Propensity Calculation step 

and continues executing. 

 

2.2.1 Explanation of Terms 

 The following terms are crucial to formulating an exact stochastic simulation 

algorithm and may require an explanation. 

Propensity, a, is associated with the probability that a reaction will occur.  It is 

based upon the stochastic reaction rate constant and the number of distinct molecular 

combinations of the reaction.  The stochastic reaction rate constant, c, is defined as the 

average probability that a molecular combination from a given reaction will collide and 

react in the next infinitesimal time interval.  The stochastic reaction rate constant is 

directly related to the deterministic reaction rate constant, k.  This relationship is altered 

for the case when identical reactant molecules collide and react.  The equation below 

depicts the correlation between the stochastic and deterministic reaction rate constants 

where n is the number of identical reactant molecules reacting together [7]. 

 

       (1) 
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 The number of distinct molecular combinations of a reaction depends on the type 

of reaction and the number of molecules, X, of each reactant of a given reaction.  Table 

2.1 shows the equations to some common reaction types along with the equations to 

calculate their propensities. 

Putative time, τ, refers to the amount of time it will take before a reaction occurs.  

The following will summarize the sampling of an exponential distribution with parameter 

ai in order to determine the putative time.  A uniformly distributed random number is 

scaled to fit an exponential distribution to find an exponential random number.  The 

exponential random number is then divided by a propensity value to find the putative 

time.  The following equation shows the calculation of putative time. 

 

    (2) 

 

Other terms, specific to a certain algorithm, will be clarified as needed. 

 

 

Table 2.1 – Propensity Equations 

Reaction Equation Propensity Equation 

A → B, k1 a0 = XA * k1 

A + B → C, k2 a1 = XA * XB * k2 

2A → B, k3 a2 = XA * (X A – 1) / 2 
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2.2.2 Gillespie’s First Reaction Method 

 The First Reaction Method was Daniel Gillespie’s first take on the SSA [3].  The 

Initialization step of this algorithm creates and loads variables to hold the species 

populations, reaction equations, and the current time.  Upon the initialization of the 

system, the Propensity Calculation step begins and the propensity of each reaction is 

calculated.  For each reaction during the Putative Time Estimation step, a potential time 

is calculated to determine when that reaction will occur in the future.  Each potential time 

is found by generating an exponential random number and dividing it by the propensity 

of the reaction.  The Reaction Selection step searches the list of putative times from each 

reaction; the reaction with the earliest time is labeled as the next reaction.  The Reaction 

Execution step adds the putative time of the selected reaction to the current time and 

updates the species populations by decrementing the values of the reactant populations 

and incrementing the values of the product populations.  This process is repeated until the 

desired end time is reached.  See figure 2.1 to find pseudo code for Gillespie’s First 

Reaction Method.  Gillespie’s First Reaction Method is an effective way to accurately 

model biochemical systems.  However generating an exponential random number for 

each reaction during each iteration severely limits the method’s performance. 

 

2.2.3 Gillespie’s Direct Method 

Gillespie formulated the Direct Method to improve the performance of the SSA 

[7].  The Initialization step of the Direct Method remains the same as in the First 

Reaction Method.  The Propensity Calculation step remains the same except for the 

requirement that all reaction propensities be summed together.  The Putative Time 
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Figure 2.1 – Pseudo Code for Gillespie’s First Reaction Method [7] 
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Estimation step is modified to find one potential time for when the next reaction will 

occur by generating one exponential random number and dividing by the total propensity 

of the system.  The Reaction Selection step generates a uniformly distributed number and 

multiplies it by the total propensity.  Then a linear search of the reaction propensities is 

performed, once the cumulative total of the evaluated propensities exceeds the product 

then the current reaction is set to be the next reaction executed.  The Reaction Execution 

step is also the same as in the First Reaction Method.  This process is repeated until the 

desired end time is reached.  The Direct Method is able to significantly improve the 

performance of the SSA by requiring the generation of only one exponential random 

number and one uniform random number per iteration, regardless of the size of the 

system.  See figure 2.2 for pseudo code of Gillespie’s Direct Method. 

 

2.2.4 Gibson and Bruck’s Next Reaction Method 

 Michael Gibson and Jehoshua Bruck recognized that the exact stochastic 

simulation algorithms originally proposed by Gillespie did not scale well to large systems 

with many reactions [8].  In an effort to create a more efficient SSA for exactly 

simulating chemical reactions, they devised the Next Reaction Method by enhancing the 

efficiency of the First Reaction Method.  The execution time of the First Reaction 

Method is hindered by the following three activities that are performed with every 

iteration and take time proportional to the number of reactions: (1) the propensity of each 

reaction must be calculated, (2) a putative time must be found for each reaction, and (3) 

the smallest putative time must be found.  The Next Reaction Method addresses each of 

these respective drawbacks by introducing a Dependency Graph, reusing putative time 
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Figure 2.2 – Pseudo Code for Gillespie’s Direct Method [7] 
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values, and utilizing an indexed priority queue.  The dependency graph is a data structure 

that chronicles which reaction propensities will be affected by the execution of a given 

reaction.  Therefore, the fewest possible number of reaction propensities are recalculated.  

Recall from section 2.2.2, a reaction’s putative time is related to its propensity.  This 

suggests that it is not necessary to update the putative time of a reaction whose propensity 

does not change.  Gibson and Bruck state that typical models contain loosely coupled 

reactions and require only a few propensities to be updated with each time step.  They 

make this claim to justify the use of an indexed priority queue to find the minimum 

putative time and subsequently the next reaction to execute.  Figure 2.3 shows pseudo 

code for the Next Reaction Method. 

 Gibson and Bruck also suggest applying the techniques of the Next Reaction 

Method to the Direct Method.  In addition to including a dependency graph to update the 

minimal number of variables, they propose using a complete tree data structure to 

efficiently find the total propensity and search for the next reaction to execute.  Although 

the details of such an algorithm are laid out, Gibson and Bruck chose not to submit a 

formal evaluation of such an algorithm. 

 

2.2.5 Cao, Li, and Petzold’s Optimized Direct Method 

 Yang Cao, Hong Li, and Linda Petzold addressed the widely held conception that 

the Next Reaction Method was more efficient than the Direct Method when dealing with 

large systems.  They developed the Optimized Direct Method to outperform the Next 

Reaction Method [9]. They begin with a comparison of the results from the two 

competing algorithms when simulating several actual biochemical models.  They 
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Figure 2.3 – Pseudo Code for Gibson and Bruck’s Next Reaction Method [8] 
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observed that the Next Reaction Method has an advantage over the Direct Method when 

the system is large with loosely coupled reactions, that is to say the execution of one 

reaction does not affect the propensity of many other reactions.  However, they 

determined that this is not always the case for practical problems.  They also concluded 

that much of the Next Reaction Method’s time was spent maintaining the indexed priority 

queue in order to determine the next reaction.  After an evaluation of the previous 

stochastic simulation algorithms, they set out to optimize the Direct Method.  They 

realized that in a large system some reactions are executed more frequently than others.  

For example, when simulating a heat shock response model that describes how E. Coli 

responds to a temperature increase, they found the six most frequent reactions accounted 

for 95% of all executed reactions [9].  When determining the next reaction in the original 

Direct Method, reaction propensities are compared sequentially based upon the reaction’s 

index.  This means a reaction’s index plays an important role in the search depth for the 

next reaction.  Their group devised a way to perform a few pre-simulations on a system 

to determine the most frequent reactions.  The reactions are then rearranged in decreasing 

order based on how often they execute.  This optimizes the average search depth required 

to find the next reaction.  They also appreciated the efficiency provided by a dependency 

graph.  By applying the idea of a dependency graph, developed by Gibson and Bruck [8], 

only propensities of reactions affected by another reaction’s execution must be 

recalculated.  When applied to the Direct Method, subtracting the old propensities and 

adding the new propensities of the affected reactions can determine the sum of the 

propensities.  Applying search depth reduction and inclusion of a dependency graph, 
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when appropriate, made the Optimized Direct Method much more efficient than the 

original Direct Method. 

 

2.3 Field Programmable Gate Arrays 

 A Field Programmable Gate Array (FPGA) is a semi-custom Application Specific 

Integrated Circuit (ASIC) that is user programmable [13].  FPGAs are prefabricated to 

consist of rows of logic blocks and programmable connection switches to specify 

interconnections.  Testing a design is simplified on an FPGA, since it can be 

electronically programmed, erased, and then reprogrammed in a short amount of time.  

This is also the basis for using FPGAs in reconfigurable computing.  A Hardware 

Description Language (HDL) or a schematic is used to define the desired functionality of 

an FPGA.    Typically, it is common to use an HDL to describe a large or complex 

design.  In addition, an HDL design can be targeted to multiple layouts (including FPGAs 

and ASICs).  The two most popular HDLs are VHDL and Verilog.  An HDL allows the 

user to define the timing constraints and concurrency within a design.  In order to prepare 

a design for an FPGA, the desired functionality is split into necessary blocks.  Each block 

represents some task used towards the overall functionality.  Each block is defined as an 

“entity” and the logic function of it is described in an HDL by a “process” that runs 

continuously.  It is also possible for an entity to declare a “component” of another entity 

in order to accomplish a task.  By declaring multiple processes on an FPGA, parallelism 

can be exploited within a design.  Processes executing simultaneously can streamline a 

design and offer a speedup over the same design implemented in software. 
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2.4 Pilchard Reconfigurable Computing Platform 

 The Pilchard Reconfigurable Computing Platform [5] was developed to interface 

an FPGA to a host computer.  The Computer Science and Engineering Department at the 

Chinese University of Hong Kong designed the Pilchard platform.  Previous systems that 

combined the capabilities of an FPGA with a host computer utilized the Peripheral 

Component Interconnect (PCI) bus to handle communication between the two.  The 

Pilchard platform uses a Dual In-line Memory Module (DIMM) slot of the host computer 

to interface with the FPGA.  Since the memory bus is faster than the PCI bus, the 

Pilchard platform is able to outperform comparable systems.  The host computer and 

FPGA are able to communicate at a maximum frequency of 133 MHz with sixty-four bit 

data.  This provides a maximum bandwidth of 1,064 MB/s.  The Pilchard platform uses a 

Xilinx Virtex XCV1000E FPGA with approximately one-million gate capacity.  The 

Virtex 1000E also contains 49,152 bytes of Block RAM [14].  The processor within the 

host computer is a Pentium III with a 933 MHz clock speed.  The time penalty incurred 

when loading a design onto the FPGA is only a few seconds and is design independent.  

Figure 2.4 shows the circuit board of the Pilchard platform. 

 

2.5 Computing Platform 

 The same computing platform was used to compare the performance of the 

hardware implementation of the SSA against software implementations of various SSA 

methods.  The computer that hosts the Pilchard Reconfigurable Computing Platform was 

also used to execute the software versions of the stochastic simulation algorithms.  The 
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Figure 2.4 – Pilchard Platform [5] 
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computer used a Pentium III operating at 933 MHz with 256 MB of Random Access 

Memory (RAM).  The operating system was Mandrake Linux version 8.2 with Linux 

kernel 2.4.18.  Each software implementation was compiled using gcc version 2.96 with 

optimization flags turned on. 
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Chapter 3 

Related Work 

 This chapter will provide an overview of the work done by others towards a 

hardware-accelerated stochastic simulator.  Typically, in the past, work in this area has 

focused on simulating specific biochemical models.  This is the case for all related works 

listed below.  Some groups have also introduced approximations into the SSA in favor of 

increasing the overall throughput of the system.  The first work examined comes from 

Salwinski and Eisenberg, it included an approximation to the SSA.  The work of Keane, 

Bradley, and Ebeling is considered next and it also contains an approximation to the SSA.  

The work of Yoshimi, Osana, Fukushima, and Amano is also considered. 

 

3.1 Salwinski and Eisenberg’s FPGA Approximation 

In 2004, Lukasz Salwinski and David Eisenberg examined the use of an FPGA to 

exploit the highly parallel nature of information flow within biochemical networks [6,16].  

They demonstrated that taking advantage of parallelism is an effective means of 

alleviating the high computational cost of performing stochastic simulations.  However, 

their hardware implementation introduced approximations and was not true to Gillespie’s 

original SSA.  Furthermore, all their designs were formulated to simulate specific 

models.  After simulating a system containing a single elementary bimolecular reaction 

and a system containing a simple equilibrium reaction, they tested the scalability of their 

approach.  They were able to simulate a prokaryotic gene expression circuit (eleven 

coupled reactions and twelve species) while maintaining the performance seen in their 
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previous designs.  They proposed simulation rates at least an order of magnitude greater 

than a software counterpart.  Their work served as a proof-of-principle that 

reprogrammable FPGAs have the potential to efficiently simulate the stochastic behavior 

of biological systems.  The work outlined in this paper remains mathematically 

equivalent to Gillespie’s original SSA as well as providing a general-purpose approach to 

simulating a variety of chemical systems. 

 

3.2 Keane, Bradley and Ebeling’s FPGA Approximation 

John Keane, Christopher Bradley, and Carl Ebeling developed an algorithm that 

approximates Gillespie’s SSA in order to reveal a fine-grained parallel structure that is 

well suited to a hardware implementation [10].  At first, their team considered 

implementing Gibson and Bruck’s Next Reaction Method [8].  However, they quickly 

realized the complexities involved with the algorithm would not complement the parallel 

capabilities of an FPGA.  Since their goal was to use fine-grained parallelism to 

accelerate simulations, they devised a strategy that approximated Gillespie’s Direct 

Method.  They began by describing hardware to handle each reaction, allowing each 

reaction to be simulated simultaneously.  They discretized the reaction processes in time, 

so reactions were only permitted at uniformly spaced discrete instants in time.  A 

Bernoulli random process was used to approximate a Poisson process, and the probability 

of an event at any given discrete time step was associated with the propensity of the 

reaction.  By utilizing a Bernoulli process to approximate the probability that a reaction 

will execute in a given time step, multiplications typically involved in propensity 
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calculations could be reduced to basic compare and AND operations.  The equation 

below represents a reaction’s propensity, where Xi are discrete uniform random numbers. 

 

 P[X0 < k0]  • P[X1 < S1] • P[X2 < S2] = kS1S2•∆t (1) 

 

Although they limited their example design to a second order system, they 

indicated their approach would generalize to higher order systems.  This strategy also 

eliminated the need to sum the propensities.  Since each reaction’s propensity was now 

based on the probability that the reaction would occur during a given time step, there was 

no longer a need to determine the next reaction executed by the system or a putative time 

for that matter.  This approach allowed multiple independent reactions and only one 

dependent reaction to be performed in each time step.  In the event of a collision, two or 

more dependent reactions occurring during a time step, the hardware paused and waited 

for the software to resolve the issue.  Their approach was model specific and required 

describing, synthesizing, and routing each new design.  However, they developed a 

compiler that read a model description in Systems Biology Markup Language (SBML) 

and generated a Verilog file containing the necessary modules of the system.  Once a 

model had been prepared for the hardware it could be reused with various initial 

conditions.  Several models of varying sizes were simulated using their FPGA approach 

and then compared to the performance of the same model simulated in software running 

the Next Reaction Method.  For the largest model simulated, a system containing sixty-

four species and thirty-two reactions, a speedup of 23.4 was achieved.  They defined 

speedup based upon the average number of reaction events computed per second.  
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However, their simulator did not capture the actual number of events and an estimate was 

used to determine the event rate.  In addition, the event rate they assigned to their 

hardware implementation neglected two sources of overhead, off-chip time step 

recalculations when collisions occurred and communications for data logging.  They went 

on to reveal that the I/O communication overhead accounted for nearly 70% of the 

simulation time; despite this they still chose to ignore it in their speedup calculations.  

The work described herein is general purpose and does not require the user to redesign 

any hardware.  In addition, the design is a statistically equivalent representation of 

Gillespie’s SSA.  Speedup values contained within this paper are based on the actual run 

time of the simulator. 

  

3.3 Yoshimi, Osana, Fukushima and Amano’s FPGA Simulation 

Yoshimi, Osana, Fukushima, and Amano also determined that simulations of 

biological models often exhibit a lot of fine grain processes frequently communicating 

with each other.  They realized that an FPGA could best utilize this fine grain parallelism 

inherent in biological systems [11].  To test their designs, they developed a 

reconfigurable platform called “ReCSiP.”  The ReCSiP contained a Xilinx Virtex II 

FPGA, and it interfaced to a host CPU via the PCI bus.  To show the performance of their 

simulator, they modeled the Lotka system outlined in Gillespie’s original paper on exact 

stochastic simulation [3,7].  The module designed to simulate the Lotka system consisted 

of two simulator modules, each containing two reactor modules, and a module to handle 

output control.  A look up table (LUT) of logarithmic values was employed within each 

simulator module to allow the putative time calculation to be sped up.  A portion of each 
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reactor module contained basic steps that were relevant to any simulation executing 

Gillespie’s SSA (putative time generation, random number generation, and reaction 

selection).  Therefore, this portion was applicable to any simulation on their system.  

However, the bulk of each reactor module in their design outlined the specifics of the 

model being simulated (species counts and reaction equation) and would need to be 

replaced with each new model.  The output of each reactor module was stored in a first-in 

first-out (FIFO) buffer, and the output control module transferred the data to SRAM.  

Each reactor module appeared to be self-contained and it is unclear how species 

populations were coordinated across the reactor modules.  Their simulation of the Lotka 

system were described in Verilog and could not be extended to larger chemical systems 

without modifying and resynthesizing several modules.  They claimed it took thirty-seven 

clock ticks to output updated species values and fifty-two clock ticks to output the 

putative time.  Furthermore, they claimed their reactor modules had thirty-seven pipeline 

stages to allow thirty-seven simulation processes to be executed in parallel.  Allowing 

thirty-seven simulation processes to be executed in parallel may be an indication of 

approximations being introduced into the system, but it is not entirely clear from the 

paper.  They declared a speedup of roughly 105 over a software implementation.  

However, this speedup was not based upon actual simulation run-time.  They chose to 

compare the throughput, or simulation iterations per second, of the hardware and 

software.  To arrive at the software throughput, they performed 500,000 reactions and 

timed the simulation.  However, the manner in which they determined the hardware 

throughput is not based upon simulation time.  The authors were unable to include every 

detail of their design and it is not clear if they included putative time generation in their 
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speedup value.  In addition, they did not specify what algorithm was implemented in 

software.  The designs presented here are general-purpose and do not require any 

redesign on the user’s part.  Therefore, the designs herein are applicable to larger models 

(within specified limits).  Also, speedup values are based upon actual simulation run 

time. 
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Chapter 4 

Register Based Design 

4.1 Partitioning of the Problem 

When the implementation of a general-purpose hardware-accelerated simulator 

was first considered, several questions arose.  Deciding upon the most efficient SSA to 

implement in hardware was the first step.  Since the improvements associated with the 

Next Reaction Method and the Optimized Direct Method are difficult to implement in 

hardware, these algorithms were avoided in the general-purpose hardware 

implementation.  Gillespie’s original Direct Method was the obvious choice.  It offered 

substantial performance improvement offer the First Reaction Method, but it did not 

significantly complicate the hardware design.  After selecting an algorithm to implement, 

the tasks were divided depending upon whether they should be performed in hardware or 

software.  The FPGA handled the calculation and summation of reaction propensities in 

addition to the generation of a uniform random variable and determining the next reaction 

to execute.  Both the CPU and FPGA kept a record of the species populations and 

updated the populations after the execution of each reaction.  The CPU performed this 

task primarily to aid in presenting the user with data as the algorithm progressed.  The 

generation of an exponential number and calculation of the subsequent time for the next 

reaction are performed in software.  This was a suitable choice, since it required floating 

point arithmetic that is not readily available in hardware (without consuming a large 

portion of the available resources). 
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One advantage of this design was that the selected reaction and the total 

propensity are the only two pieces of information that the FPGA must communicate to 

the microprocessor for each reaction executed.  This minimized communication between 

the FPGA and microprocessor, alleviating what is a typical bottleneck for reconfigurable 

computing designs. 

Another interesting advantage of the design was that the software converted all of 

the floating-point rate constants to integers at startup.  The software read in a chemical 

system and found the reaction rate constant with the lowest decimal value.  Then all 

reaction rate constants were multiplied by a factor that ensured each rate constant was an 

integer.  Reaction rate constants were defined to be sixteen bits wide, allowing rate 

constant values of up to 65,535.  The software alerted the user if a rate constant exceeded 

this limit upon adjusting it to an integer value.  As long as all integer valued reaction rate 

constants were within limit, no error was introduced into the reaction selection process.  

This is true since all reaction rate constants were scaled to integers according to the 

lowest rate constant.  Each rate constant, ki, was scaled by F, where F was the 

multiplication factor needed to represent the smallest rate constant as an integer.  

Therefore ki became F*ki.  This resulted in each reaction’s propensity, ai, becoming F*ai; 

the total propensity becoming F*aTOT; and the product of the total propensity and a 

uniform random number becoming F*aTOT*URV.  The reaction selection module still 

functioned properly since F could be factored out when searching the reaction 

propensities for the next reaction to execute.  Comparing F*aTOT*URV to the 

accumulation of F*ai was equivalent to comparing aTOT*URV to the accumulation of ai.  

This startup cost became negligible as the system was modeled over several iterations.  
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This allowed the FPGA to be implemented using only integer logic, avoiding a floating-

point arithmetic core and saving chip space.  A diagram of the division of responsibilities 

and communication between the software and the hardware is given in figure 4.1. 

The Register Based Design was the subject of a paper presented at the 2005 

Engineering of Reconfigurable Systems and Algorithms conference [21]. 

 

4.2 Software Design 

As evident in figure 4.1, the software played a complimentary role to the FPGA.  It was 

written in C++ to allow the user to specify the model file from which to read the specifics 

of the biochemical system.  This data was then stored in the appropriate data structures on 

the CPU side.  Once the entire model had been loaded, the initial species populations and 

reaction equations were passed to the FPGA.  The software facilitated the transmission of 

data between the FPGA and the user, in addition to allowing the user to assign various 

tasks to the FPGA.  A command interface was developed to aid in the communication 

between the CPU and the FPGA during simulation.  It permitted commands, as well as 

data, to be sent to and from the FPGA.  A full description of this interface will be 

presented in the Hardware Design section of this Chapter. 

Once a model had been fully defined in the hardware, the user could instruct the 

hardware to begin simulating the system.  In order to alleviate the need to pass a large 

amount of data between the FPGA and CPU, only the selected reaction and total 

propensity of each iteration must be transmitted.  By having the FPGA send the reaction 

selected, the CPU did not have to read and update the populations of all the system’s 

species.  It did require that the CPU store the species populations, and then adjust the 
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Figure 4.1 – Interaction Between Hardware and Software 

 



29 

population of the species affected by the execution of a given reaction.  The total 

propensity is used to generate the putative time for the iteration.  The results of up to 250 

iterations could be passed at a time to the CPU; this will be discussed further in the 

Hardware Design section of this Chapter.  The CPU continued collecting results from the 

FPGA until the desired number of iterations has elapsed. 

The software also played a crucial role in managing the time of the system.  In 

addition to generating a putative time for each iteration of the system, it also kept track of 

the overall system time.  The accumulation of the system time, along with the time 

evolution of the populations of relevant species, could be presented to the user to show a 

possible trajectory of the system. 

 

4.3 Hardware Design 

The first hardware implementation consisted of sixteen registers for species 

populations and twenty-two registers for reaction equations.  All of the specifics of a 

given model were stored on the FPGA via flip-flops.  This was not the most effective use 

of chip space, but it was a reasonable starting point for such a broad ranging approach. 

  Four of the species registers were a single bit allowing values of 0 or 1.  This 

was an effective way of handling any on/off type reactions commonly present in 

chemically reacting systems.  The remaining twelve species registers were twelve bits 

wide offering a maximum species population of 4,095.  This was sufficient for most 

systems that meet the limited reaction specifications discussed next. 

There were twenty-two modules dedicated to calculating reaction propensities in 

parallel; one for each of the twenty-two registers established to hold reaction equations.  
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To minimize the chip space required for propensity calculation, there were five variations 

of propensity calculators.  Two of the propensity calculators allowed only a single 

reactant of single bit-width, while eleven of the propensity calculators allowed only one 

reactant of any bit-width (up to twelve).  Two other propensity calculators allowed for 

reactions with up to two reactants where one reactant is of single bit-width.  In addition, 

there were six propensity calculators that allowed reactions to have up to two reactants of 

any bit-width (up to twelve).  Finally, there existed one propensity calculator that only 

handled the case when a species reacted with itself.  All reaction equations were able to 

produce at most two products.  It is important to note that when two of the same species 

reacted with one another, they were treated as separate reactants.  The same is true when 

two of the same species were produced by a reaction.  For example: 2A→B was treated 

as A+A→B, and A→2B was treated as A→B+B.  Figure 4.2 shows the components of 

the Register Based Design and it helps to illustrate the parallelism achieved. 

All of the variations discussed above, concerning the propensity calculator 

modules, were done in an attempt to allow as many registers as possible for holding 

reaction equations.  Different propensity calculator modules required a varying amount of 

input parameters and therefore necessitated dissimilar levels of complexity.  This related 

directly to chip space; more complex propensity calculators (any species reacting with 

any species) consumed more gates than a simple propensity calculator (a reaction with 

one reactant species that is of on/off type).  Since each propensity calculator was tied 

directly to a particular reaction equation, supporting various amounts of the different 

propensity calculators affected the number of total reaction equations that could be 

simulated.  However, care had to be taken to ensure that valid biochemical systems could 
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Figure 4.2 – Hardware Design Depicting Parallelism 
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still be simulated.  For instance, building a simulator to execute only single reactant 

equations would allow more total reaction equations in the system but it would not be an 

effective general-purpose simulator.  The diverse combination of propensity calculators 

was chosen for this simulator in order to maximize chip space and provide sufficient 

resources to simulate a range of models. 

Upon configuring the FPGA, a routine was executed on the host processor of the 

Pilchard.  The routine was written in C++ and enabled the user to interact with the FPGA.  

The user defined a chemically reacting system and wrote it to an input file.  The CPU 

read from this input file and sent the formatted data to the FPGA. 

Reaction rate constants typically vary among the reaction equations of a chemical 

system.  In addition, rarely are all of the rate constants integer values.  In order to 

maximize hardware performance, floating-point arithmetic was avoided.  Therefore, all 

reaction rate constants were converted to integer values prior to sending any data to the 

FPGA.  Once the model was initialized and integer values computed for the reaction rate 

constants, the model was passed to the FPGA.  Within the FPGA, resources were laid out 

to compute reaction propensities, sum all propensities, generate a uniform random 

number, select the next reaction to execute, and update species populations.  The reaction 

selection module sequentially searched the propensities to determine the next reaction to 

execute.  While the update module used the reaction selection index to decrement the 

reaction’s reactants and increment the reaction’s products.  The update module returned 

an updated value for each of the species populations, even if a species was unaffected by 

the execution of a given reaction.  Uniform random numbers were generated by use of a 

linear feedback shift register (LFSR) [17]. 
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The development of a command interface language enabled instructions and 

variables to be efficiently exchanged between the CPU and the FPGA and allowed for 

easy debugging of the hardware.  This command interface language required two 

addresses in the DIMM interconnection of the Pilchard, one for the CPU to send 

commands and variables and another for the FPGA to send back data.  A list of 

commands is given below. 

 

1: setspeciespop - Sent the index and population of a species to the FPGA. 

2: readspeciespop (debugging) - Sent the index of a species population to be read 

from the FPGA. 

3: setreaction - Sent a reaction equation along with its index to the FPGA. 

4: readreaction (debugging) - Sent the index of a reaction to be read from the 

FPGA. 

5: readpropensity (debugging) - Sent the index of a propensity to be read from the 

FPGA. 

6: readsum (debugging) - Read the total propensity from the FPGA. 

7: setseed - Sent the seed for the uniform random number generation on the FPGA. 

8: readURV (debugging) - Read the uniform random number generated on the 

FPGA. 

9: nextURV (debugging) - Instructed the linear feedback shift register (LFSR) on the 

FPGA to generate a new uniform random variable. 

10: readproduct (debugging) - Read the product of the uniform random number times 

the total propensity. 
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11: readrxselected (debugging)  - Read the index of the next reaction to be executed. 

12: updatespecies (debugging) - Updated the species populations on the FPGA 

according to the next reaction to be executed. 

13: step - Instructed the FPGA to determine and execute 250 reactions.  This 

command is discussed in detail later. 

 

Some commands listed above were developed for preliminary debugging 

purposes; this is indicated in the command descriptions above.  These debugging 

commands were removed from the final version in order to maximize the number of gates 

available to define a chemical system.  The commands listed above are crucial for 

interacting with the FPGA to model a chemical system.  The FPGA interacted with the 

host processor via a DIMM interface.  In order to read or write to the DIMM, the FPGA 

defined an eight bit wide address in the DIMM.  This allowed for 256 separate 

addressable locations in the DIMM.  Each of these addresses could hold sixty-four bits of 

data.  Refer to Chapter 2 for further description of the hardware platform. 

The step command was used to complete the iterations of a system model, so a 

more in depth view is provided below.  When the CPU issued a step command, pertinent 

data for 250 iterations was placed into 250 addresses of the DIMM following the 

selection of each executed reaction by the FPGA.  Each address contained the reaction 

selected along with the total propensity prior to the FPGA executing the reaction.  This 

command is repeated until the desired number of iterations is reached.  The step 

command executed 250 reactions in order to fully utilize the portion of the DIMM 

addressable by the FPGA.  Upon completing an instruction from the CPU, the FPGA 
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cleared the command from the DIMM address.  The CPU waited for this to occur 

indicating that the FPGA is finished.  If the command was a step, the CPU cycled through 

DIMM addresses from 0x2 to 0xFB.  At each address, the CPU used the total propensity 

to calculate an exponential random variable and a time until the next reaction.  The 

species values stored on the CPU were then updated according to the reaction index at the 

address.  The CPU then continued issuing the user’s commands to the FPGA.  Step 

commands were repeated until all iterations required of the system have been executed. 

 

4.4 Comparison of Results 

In order to test this hardware-accelerated approach to exact stochastic simulation, 

several exact stochastic simulation algorithms were utilized in software.  The algorithms 

chosen for comparison were: Gillespie’s First Reaction Method, Gillespie’s Direct 

Method, Gibson and Bruck’s Next Reaction Method, and Cao, Li, and Petzold’s 

Optimized Direct Method.  All of the software implementations were from pre-existing 

designs developed by James McCollum [18].  Each software algorithm was compiled and 

executed on the Pilchard’s host processor, discussed in Chapter 2.  Each algorithm was 

compiled using gcc version 2.96 with optimization flags turned on.  The performance of 

each, when given identical chemically reacting systems, was compared to the hardware 

version.  In the following tables, the hardware version is labeled “Hardware Direct.”  

Speedup values were calculated by dividing the execution time of the software method by 

the execution time of the accelerated hardware method.  Two actual biochemical systems 

were chosen to use as models to calculate the resulting speedup of the hardware 

implementation. 
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The first chemical system considered was an auto-regulated gene expression 

model based on the work of Simpson et al [2].  The system contained ten species and 

fourteen reaction equations.  The initial species populations and reactions are given in 

figure 4.3. 

Execution times for each method simulating this self-regulating system for 

100,000,000 iterations is given in Table 4.1 along with the associated speedup achieved 

by the hardware implementation. 

The second system considered was a model of genomically based oscillation, 

based on two mutually interacting genes.  This model comes from Vilar et al [12].  An 

activator provided positive feedback to the system, while a repressor provided negative 

feedback.  The system contained nine species and sixteen reaction equations.  The initial 

species populations and reactions are given in figure 4.4. 

 

 

Table 4.1 – Speedup Associated with Self Regulated Model 

Method Execution Time Speedup 

Hardware Direct 77.798  

First Reaction 814.033 10.46 

Direct 225.114 2.89 

Next Reaction 174.656 2.24 

Optimized Direct 109.410 1.41 
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Figure 4.3 – Self Regulated Model [2] 
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Figure 4.4 – Genomically Based Oscillation Model [12] 
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Execution times for each method simulating this genomically based oscillation 

model for 100,000,000 iterations is given in Table 4.2 along with the associated speedup 

achieved by the hardware implementation. 

It is clear that simulating chemically reacting systems on a reconfigurable 

computing platform provides a speedup over any of the methods executed in software.  

Furthermore, these results illustrate that employing FPGAs in stochastic simulation is an 

effective way to accelerate the simulation of useful biological systems. 

 

4.5 Difficulties and Design Limitations 

The register based hardware approach proved to be an effective way of 

accelerating exact stochastic simulation.  However, the design does contain some 

inefficiencies and limitations.  The primary bottlenecks of the design are processing 

within the CPU and communication between the FPGA and CPU.  Having the CPU 

 

 

Table 4.2 – Speedup Associated with Genomically Based Oscillation Model 

Method Execution Time Speedup 

Hardware Direct 78.259  

First Reaction 805.044 10.29 

Direct 230.558 2.95 

Next Reaction 252.125 3.22 

Optimized Direct 118.948 1.52 
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 to performance.  Since this cost is also associated with software implementations, it 

represents an area where speedup could be achieved in hardware.  This design also 

generate an exponentially distributed random number and the putative time is detrimental 

severely restricts the size of systems that can be simulated.  By limiting the system to 

only sixteen species and twenty-two reactions, it is difficult to find biologically relevant 

models to simulate.  The ability to handle more reactions in hardware could greatly 

improve performance.  This is partly evident by the results shown within this chapter.  It 

is feasible that the speedup value for the hardware implementation would increase further 

by modeling a system that fully utilizes the resources laid out in the hardware design.  

This is due to the hardware’s ability to perform several operations in parallel.  For 

biochemical systems that meet the system parameters (i.e. twenty-two reaction 

equations), the hardware exhibits a steady performance.  However, software is not able to 

scale in such a manner and performs steps sequentially.  In general, the performance of a 

software implementation of the SSA declines as more reaction equations are introduced. 

A summary of the device utilization can be seen in figure 4.5.  The number of 

slices in use, 98%, relates to the amount of chip space consumed for the design. In 

addition, a view of the timing constraints can be found in figure 4.6.  This figure shows 

the clock rate for communication between the FPGA and CPU.  It is labeled 

“clkdlhf_clkdiv,” and is found to be 127.663 nSec.  This yields a clock frequency of 

7.833 MHz, substantially lower than the Pilchard’s possible clock frequency of 133 MHz.  

It is clear that the current constraints of the register-based approach completely consume 

the chip space of the FPGA.  Therefore, there is no room to address the issues described 

above.  More species and reactions cannot be stored in hardware, and exponential random 
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Figure 4.5 – Register Based Approach Design Utilization Summary 
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Figure 4.6 – Timing Constraints of Register Based Design 
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number generation must remain a task for the CPU.  This is the motivation for a second 

approach to a general-purpose hardware accelerated SSA.  Blocks of Random Access 

Memory (BRAM) are available on the Pilchard reconfigurable platform.  These will 

allow the hardware to accept larger sized systems while, at the same time, reducing the 

chip space so exponential random numbers can be generated in hardware.  These 

techniques will be further discussed in Chapter 5. 

 Figure 4.7 presents the workload of the FPGA and the CPU scaled according to 

the simulation time required of various procedures.  It is evident that the FPGA and the 

CPU are performing tasks concurrently, however it is also clear that the CPU’s workload 

dominates the overall simulation time.  One strategy towards improved performance 

could be to speed up the floating-point arithmetic on the CPU, as well as employing a 

second processor to update species populations on the CPU side.  These enhancements 

might allow the simulation time required by the FPGA and CPU to be similar.  This in 

turn could provide an estimated speedup of 3X and beyond. 
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Figure 4.7 – Register Based Design Projected Workloads 
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Chapter 5 

Block RAM Based Design 

5.1 Partitioning of the Problem 

After completing the Register Based Design, a second pass at a general-purpose 

hardware accelerated exact stochastic simulator was attempted.  Two limitations of the 

Register Based Design were focused on: (1) moving more of the algorithm into hardware, 

primarily the generation of exponentially distributed random numbers and (2) simulating 

larger models that contain more reaction equations.  Having already developed a working 

knowledge of the Pilchard Reconfigurable Platform [5], it was used in the second design 

as well.  Since the previous design consumed all of the available chip space on the FPGA, 

a new approach required a better utilization of the resources available.  The blocks of 

random access memory (BRAM) present on the Pilchard board were a promising solution 

to optimize the use of the chip space available.  Storing species populations, reaction 

equations, and reaction propensities in BRAM would allow larger biochemical systems to 

be modeled while allowing more of the SSA to be defined in hardware.  Gillespie’s 

original Direct Method was still adequate to the design goals and was used in the second 

approach.  Much of the overall design remained the same as the Register Based Design 

discussed in Chapter 4.  All the tasks and interfacing were the same, except the CPU 

calculated the putative time for each reaction based upon an exponential random number 

generated by the FPGA. 

This design still required that the selected reaction and the total propensity be 

transmitted to the CPU from the FPGA.  However, the FPGA now had to transmit an 
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exponential random number for each iteration of the system as well.  Just as with the 

Register Based Design, the software converted all of the floating-point rate constants to 

integers at startup to avoid any floating arithmetic on the FPGA.  A diagram of the 

division of responsibilities and communication between the software and the hardware is 

given in figure 5.1.  The layout was very similar to the previous design with the exception 

that exponential random number generation was done on the FPGA. 

 

5.2 Software Design 

The software for this implementation was very similar to that of the previous 

design.  Some modifications were made, written in C++, to allow larger models and to 

read exponential random numbers from the FPGA.  Refer to the Software Design section 

of Chapter 4 for a thorough overview of the software’s role.  Since the BRAM design 

required more information be passed from the FPGA to the CPU with each iteration, the 

information (total propensity, next reaction, and an exponential random number) from up 

to 125 iterations could be passed at a time to the CPU.  The CPU’s behavior in this 

design mimicked that of the previous design, and results were collected from the FPGA 

until the desired number of iterations had elapsed. 

By moving the exponential random number generation to the FPGA, another 

modification had to be made to the software.  When generating a putative time for each 

iteration of the system, the CPU read the exponential random number from the FPGA and 

converted it from fixed point to floating point before dividing by the total propensity to 

find the time till the next reaction. 
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Figure 5.1 – Interaction Between Hardware and Software 
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5.3 Hardware Design 

The BRAM available on the Virtex 1000E FPGA was formatted to allow systems 

with a maximum of 127 species populations and sixty-three reaction equations to be 

simulated.  In addition, the BRAM was formatted to hold the resulting propensity 

associated with each reaction equation.  In stark contrast to the Register Based Design, all 

species populations were sixteen bits wide.  This led to a maximum species population of 

65,535.  The restrictions placed on defining a reaction equation were also lifted.  That is 

to say each reaction equation was able to consist of up to two reactants and two products, 

and the bit width of the reaction rate constant remained at sixteen.  This removed the 

need to have several variations of propensity calculators.  For the BRAM Based Design, 

each propensity calculator was built to be general-purpose and able to handle any of the 

cases discussed in the Register Based Design. 

Allowing more reaction equations to be simulated did introduce a substantial 

obstacle to maximizing performance.  Whereas in the Register Based Design each 

reaction equation had its own dedicated propensity calculator, the number of possible 

reaction equations in the BRAM Based Design prohibited such an approach.  The chip 

space required to instantiate sixty-three propensity calculators exceeded that which was 

available on the Pilchard.  The use of general-purpose propensity calculators and the 

introduction of other complications allowed eight propensity calculators to fit into the 

available space.  Therefore, each propensity calculator had to calculate the propensity for 

up to eight reaction equations.  This was an obvious drain on performance.  However, it 

did have a favorable effect as well.  As each propensity calculator cycled through its eight 

reaction equations, it accumulated the calculated propensities.  It stored the sum of the 
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propensities in registers after the first four reaction equations and after all eight reaction 

equations.  This led to a total of sixteen registers, two per propensity calculator, being 

used to store these Partial Sums.  Not only did this simplify the process of determining 

the total propensity (of all sixty-three reactions), it also aided in the selection of the next 

reaction. 

The use of the partial sums allowed the reaction selection module to operate as a 

mock search tree.  Figure 5.2 will give an idea of how they would be useful. 

It took two clock ticks to read data from BRAM, therefore it would be devastating 

if every propensity had to be read sequentially in order to determine the next reaction.  

The partial sums helped the reaction selection module narrow down the search to four 

propensities in BRAM.  This helped offset the cost of having each propensity calculator 

find the propensity of eight reaction equations. 

To update the species populations, the index of the selected reaction was used to 

read the corresponding reaction equation from BRAM to determine which species 

populations were affected.  The indices of the reactants and products were then used to 

find their populations, prior to execution of the reaction, in BRAM.  Registers were used 

to hold the reactant species populations after being decremented and the product species 

populations after being incremented.  These registers were then used to update the species 

populations of the appropriate BRAM.  The populations of reactants and products were 

updated sequentially.  At each stage of the update, the affected species population 

registers were updated to reflect the any change in pertinent species populations.  

Therefore if a species reacted with itself, its corresponding population in BRAM would 

be decremented twice.  This would also handle the case when a reaction produced two 
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Figure 5.2 – Partial Sums Use in Selecting Next Reaction 
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molecules of a given species, thus incrementing a population twice.  In addition, it makes 

it possible to effectively handle reaction equations that contain a species that serves as a 

reactant as well as a product.  In that situation, the species population will remain the 

same. 

The Intellectual Property (IP) block used to generate exponentially distributed 

random numbers was developed by James McCollum [17].  It used an LFSR and a look 

up table to interpolate a value along an exponential curve. 

Figure 5.3 shows the components of the BRAM Based Design and it helps to 

illustrate the parallelism achieved. 

The user interacted with the FPGA in the same manner as previously described in 

the Register Based Design.  A routine, written in C++, enabled the user to define a 

chemically reacting system for the CPU to read and then send the formatted data to the 

FPGA.  Again, all reaction rate constants were converted to integer values prior to 

sending any data to the FPGA in order to avoid floating point arithmetic.  Within the 

FPGA, resources were laid out to compute reaction propensities, sum all propensities, 

generate a uniform random number, select the next reaction to execute, generate an 

exponential random number, and update species populations. 

The command interface language developed for the Register Based Approach was 

reused with some modification.  The command interface language required two addresses 

in the DIMM interconnection of the Pilchard, one for the CPU to send commands and 

variables and another for the FPGA to send back data.  A list of valid commands for the 

BRAM Based Design is given below. 
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Figure 5.3 – BRAM Based Design Depicting Parallelism 
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1: setSP - Sent the index and population of a species to the FPGA. 

2: readSP (debugging) - Sent the index of a species population to be read from 

the FPGA. 

3: setRX - Sent a reaction equation along with its index to the FPGA. 

4: readRX (debugging) - Sent the index of a reaction to be read from the FPGA. 

5: readPROP (debugging) - Sent the index of a propensity to be read from the 

FPGA. 

6: readPSUM (debugging) - Read any of the partial sums generated by the 

propensity calculators, can also read total propensity from the FPGA. 

7: setseed - Sent the seed for the uniform random number generation on the 

FPGA. 

8: readURV (debugging) - Read the uniform random number generated on the 

FPGA. 

9: newURV (debugging) - Instructed the linear feedback shift register (LFSR) on 

the FPGA to generate a new uniform random variable. 

10: readPRODUCT (debugging) - Read the product of the uniform random 

number times the total propensity. 

11: readSELECTION (debugging)  - Read the index of the next reaction to be 

executed. 

12: readERV (debugging) - Read the exponential random number generated on 

the FPGA. 

13: initPROP (debugging) - Used to initiate the propensity calculators after 

loading details of the system. 
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14: step - Instructed the FPGA to determine and execute 250 reactions.  This 

command is discussed in detail later. 

 

Many commands listed above were developed for debugging purposes; this is 

indicated in the command descriptions above.  Many debugging commands were 

removed from the final version in order to maximize the number of gates available to 

define a chemical system. 

Recall from Chapter 4 that the FPGA interacts with the host processor via a 

DIMM interface with 256 separate addressable locations, each with sixty-four bits of 

data.  The step command of the BRAM version is similar to the Register Based Design.  

However, in this case, data for only 125 iterations is placed into DIMM.  This is because 

each iteration now required two addresses since the exponential random number is thirty-

two bits wide, the total propensity is clipped to thirty-two bits, and six bits were needed 

for the selected reaction remain to be sent.  Each iteration was given two addresses of the 

DIMM, therefore the 250 addresses of the DIMM that are readable by the CPU allowed 

the step command to perform 125 iterations at a time. 

Just as in the previous design, the FPGA cleared the command from the DIMM 

address upon completing an instruction from the CPU.  The CPU waited for this to occur 

indicating that the FPGA is finished.  If the command was a step, the CPU cycled through 

DIMM addresses from 0x2 to 0xFB in pairs.  The first address contained the total 

propensity and the exponential random number.  The CPU used this information to 

compute a time until the next reaction.  The second address contained the next reaction to 

be executed.  The species values stored on the CPU were then adjusted according to the 



55 

reaction index given.  The CPU then continued issuing the user’s commands to the 

FPGA.  Step commands were repeated until all iterations required of the system had been 

executed. 

 

5.4 Comparison of Results 

The BRAM Based Design will be compared to the following algorithms 

implemented in software: Gillespie’s First Reaction Method, Gillespie’s Direct Method, 

Gibson and Bruck’s Next Reaction Method, and Cao, Li, Petzold’s Optimized Direct 

Method, and McCollum’s Sorting Direct Method.  Once again, these were pre-existing 

software designs developed by James McCollum [18,20].  Two models that meet the 

criteria of the BRAM Based Design were chosen.  Using the above software 

implementations to simulate these systems generated the following results.  The results of 

the hardware-accelerated simulator are labeled “Hardware Direct.”  Each software 

algorithm was compiled and executed on the Pilchard’s host processor, discussed in 

Chapter 2.  Each algorithm was compiled using gcc version 2.96 with optimization flags 

turned on.  Two real biological models were used to test the BRAM Based Design.  Dr. 

Chris Cox at the University of Tennessee formulated each model [18].  The SBML 

description of each model can be found in Appendix E as well as an outline of the 

contents of an SBML model. 

The first chemical system considered was a simple model of a gene whose protein 

undergoes dimerization.  This model consisted of eight species and thirteen reaction 

equations.  The execution time of each method simulating the above system for 1,000,000 

iterations is given in Table 5.1. 
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Table 5.1 – Speedup Associated with Protein Dimerization 

Method Execution Time Speedup 

Hardware Direct 3.300  

First Reaction 19.250 5.83 

Direct 6.670 2.02 

Next Reaction 4.896 1.48 

Optimized Direct 4.036 1.22 

Sorting Direct 3.386 1.03 

 

 

The second chemical system modeled was tuberculosis.  It consisted of seventeen 

species and twenty-three reaction equations.  The execution time of each method 

simulating the above system for 1,000,000 iterations is given in Table 5.2. 

 In order to fit into the constraints of the hardware implementation, some 

modifications were made to the original tuberculosis SBML file.  The original system 

contained a reaction equation that produced more than two products.  Therefore in order 

for the model to fit into the hardware implementation, a dummy species and a dummy 

reaction equation had to be established.  When a reaction occurred with numerous 

products, a dummy species would be activated.  This dummy species would be associated 

with a dummy reaction equation with an extremely high rate constant, in order to be 

reasonably certain that the reaction would occur next.  The dummy reaction equation 

would then increment product species populations or possibly activate another dummy 
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Table 5.2 – Speedup Associated with Tuberculosis 

Method Execution Time Speedup 

Hardware Direct 3.32  

First Reaction 36.669 11.04 

Direct 10.254 3.09 

Next Reaction 10.656 3.21 

Optimized Direct 4.355 1.31 

Sorting Direct 4.291 1.29 

 

 

species/reaction equation.  This is a departure from the biologically relevance of the 

model, but it is effective at demonstrating the performance of the hardware 

implementation.  The original SBML file for Tuberculosis, along with the modified 

version, can be found in Appendix E. 

 Once again, the results from the two models simulated above suggest that the 

speedup achieved by the hardware implementation generally increases as the number of 

reaction equations increases.  This is due to the fact that resources have been laid out in 

hardware to handle any system within the parameters specified earlier.  The hardware’s 

execution time is relatively steady while the workload of a software-implemented method 

will usually increase with additional reaction equations. 
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5.5 Difficulties and Design Limitations 

Although the BRAM Based Design served to address some of the shortcomings of 

the Register Based Design, it also introduced some new limitations. 

The speedup achieved by the BRAM Based Design is below the speedup achieved 

by the Register Based Design.  However, in terms of future development of a hardware 

design, the BRAM Based Design offers the most potential.  Storing species populations 

and reaction equations in BRAM allowed large systems to be simulated, but accessing 

BRAM was time consuming.  Reading an address in BRAM required two clock ticks: (1) 

to set the address from which to read (2) to read the data from BRAM.  This slowed 

down performance due to the number of times BRAM must be read when calculating a 

propensity.  Simulating larger systems was naturally more complex.  As discussed earlier, 

modeling systems that contain up to sixty three reactions will not allow each reaction to 

have its own dedicated reaction propensity calculator running in parallel.  The solution to 

this problem was to have eight propensity calculators running in parallel, each one 

calculating the propensity of eight reaction equations sequentially.  This increased the 

number of clock ticks required to compute all the propensities.  The ability to model 

systems with more reaction equations also required more clock ticks for the reaction 

selection stage.  Since clock ticks relates directly to simulation time, performance was 

negatively affected.  In the Register Based Design, propensities were searched 

sequentially to find the next reaction to execute.  This line of attack was not as appealing 

when dealing with a system with sixty-three reactions.  The partial sums generated by the 

propensity calculators discussed in the Hardware Design section of this chapter were an 
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attempt to improve the search time required by the reaction selection module, but it 

remained a time consuming process. 

Moving the exponential random number generation to the FPGA reduced the 

amount of processing done by the CPU when calculating the putative time.  However, it 

required more information to be passed from the FPGA to the CPU.  As mentioned 

previously throughout this paper, communication between the FPGA and the CPU is a 

typical bottleneck of this design.  The CPU now not only had to compute the putative 

time via floating point arithmetic, but it also had to convert the exponential random 

number from fixed point to floating point notation.  In order to fully utilize the potential 

speedup of performing exponential random number generation in hardware, the inclusion 

of a floating-point core could be added to the FPGA.  This would allow the FPGA to not 

only calculate the putative time, but also maintain the system time.  This is discussed 

more in section 6.2 as a suggestion for future work.  Figure 5.4 depicts the device 

utilization summary of the BRAM Based Design.  At 77%, the chip is not full and future 

modifications can be made.  The clock rate for communication between the FPGA and 

CPU can be found in figure 5.5.  It is labeled “clkdlhf_clkdiv,” and is found to be 91.619 

nSec.  This yields a clock frequency of 10.915 MHz.  This is faster than the Register 

Based Design, but still well below the Pilchard’s possible clock frequency of 133 MHz.  

The workloads of the FPGA and CPU are shown in figure 5.6 scaled according to 

simulation times.  It can be seen that tasks are being performed concurrently, however the 

FPGA is now dominating simulation time.  Therefore, the BRAM Based Design would 

benefit from further optimizations on the hardware side. 
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Figure 5.4 – BRAM Based Design Utilization Summary 
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Figure 5.5 – Timing Constraints of BRAM Based Design 
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Figure 5.6 – BRAM Based Design Projected Workloads
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

This work has explored the possibility of a general-purpose hardware accelerator 

for stochastic simulation.  Two hardware-based approaches were given.  Both 

approaches, the Register Based Design and the BRAM Based Design, were shown to 

offer a speedup over several stochastic simulation algorithms implemented in software.  

Although the hardware designs outperformed all the software versions by up to 1.5X, 

work still remains to develop an optimized hardware version.  The topics listed below for 

future work could direct new hardware designs towards an optimized solution.  This 

could allow biological researchers to accurately model biochemical systems in order to 

develop the gene therapy and drugs of tomorrow. 

The use of FPGAs to accelerate the simulation of biological models appears to be 

a plausible option.  This work, along with related work in Chapter 3, has shown that 

FPGAs can play an important part towards speeding up the simulation times of biological 

models.  However, a general-purpose hardware design is essential in order for Biologists 

to consider using an FPGA for stochastic simulations.  This was precisely the goal of the 

research presented.  This work can now serve as a foundation upon which future general-

purpose designs will undoubtedly achieve superior performance and empower Biologists 

to accurately and quickly simulate biological models. 

 



64 

6.2 Hardware Improvements 

Performance improvement could be obtained by porting either of the hardware 

designs outlined within this paper, the Register Based Design or the BRAM Based 

Design, to an updated reconfigurable computing platform.  One such platform now 

available at the University of Tennessee, Knoxville is the Amirix AP130 [19].  This 

development board contains a Xilinx Virtex II Pro XC2VP30 FPGA.  The Virtex II Pro 

contains roughly the same number of gates as the Virtex 1000E, but it does have 

advantages.  Within the Virtex II Pro exist two IBM Power PC (PPC) 405 cores tightly 

coupled with the FPGA.  However, the PPC do not support floating point operations so 

putative time generation will still be a hindrance to performance.  The AP130 contains 

sixty-four MB of Synchronous Dynamic Random Access Memory (SDRAM) onboard in 

addition to 136 dedicated eighteen-bit multipliers on the Virtex II Pro [15].  Although the 

AP130 communicates with the host via the PC’s PCI bus, the above enhancements make 

the AP130 a worthy candidate for future endeavors.  As discussed earlier in Chapter 4, 

speeding up the floating-point arithmetic while also employing a second processor to 

update species populations on the CPU side could have a tremendous impact on the 

performance of the Register Based Design.  The AP130 could possibly reach these goals. 

Another hardware improvement might be to employ a larger FPGA.  Doing so 

with the Register Based Design would provide for more reaction equations to be 

simulated, however routing might become an issue and require a different approach.  

Implementing the BRAM Based Design onto a larger FPGA might be worth the effort.  

Increasing the available number of gates would allow more propensity calculators to be 

running in parallel, reducing the time needed to calculate all the reaction propensities.  In 
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addition, it might facilitate the inclusion of a floating point IP block onto the FPGA.  This 

would allow all putative time and even accumulated system time to be calculated on the 

FPGA.  The ability to perform putative time calculations and maintain the system time on 

the FPGA could allow the user to define a time interval for printing results as well as a 

time to end the simulation.  Then the FPGA would only have to communicate with the 

CPU after each time interval.  Furthermore, the species populations would not have to be 

tallied on the CPU side since the FPGA could transmit them along with the system time 

after each time interval. 

 

6.3 Design Improvements 

Each of the hardware designs explored during this paper had design choices that 

played a subtle role in the resulting performance.  For the Register Based Design, it might 

be beneficial to alter the reaction selection module from a sequential search.  This could 

be done in a fashion similar to that performed in the BRAM Based Design.  However, 

with only twenty-two reaction equations supported, a sequential reaction selection 

module is not a horrible choice.  Furthermore, the cost of ranking the reaction 

propensities might outweigh the gain associated with implementing a cleverer search 

routine.  A design improvement for the BRAM Based Design might be to include a 

variety of propensity calculators as was done in the Register Based Design.  This might 

release some of the chip space on the FPGA allowing more propensity calculators to be 

implemented thus reducing the time it takes to calculate all propensities. 
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6.4 Algorithm Improvements 

Improved stochastic simulation algorithms continue to surface.  Primarily the 

improvements are directed towards software implementations.  However, future 

algorithms may introduce enhancements that are readily adaptable to hardware.  In 

addition, some components of previous algorithms could play a positive role in hardware 

acceleration of stochastic simulations.  For instance, the use of a dependency graph [8] 

might have a positive impact on performance. 

 

6.5 Application Specific Integrated Circuit Design 

As one would expect, moving either of the designs mentioned within this paper to 

an application specific integrated circuit (ASIC) would improve performance.  Porting 

the design to an ASIC would offer a substantial increase in clock frequency, resulting in 

improved speedup values, as well as a dramatic increase in the number of available gates.  

However, production of an ASIC is not currently a feasible choice.  Aside from being 

very expensive to fabricate, they are not suitable to evolving designs [13].  Once a design 

is implemented in an ASIC, it is permanent.  This complicates the choice to utilize an 

ASIC for a design.  The designs presented herein would benefit from the increased clock 

frequency, but they would not maximize the chip space offered by an ASIC.  In order to 

do so, considerable testing and debugging of a design would be required.  There is 

promise in an ASIC design, but implementing the SSA in hardware is still a relatively 

new strategy and several obstacles remain before constructing a fully optimized hardware 

solution on an ASIC. 
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Appendix A 

Register Based Design VHDL 

parith.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY parith IS 
  PORT ( clk : IN STD_LOGIC; 
  we : OUT STD_LOGIC; 
  addr : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); 
  din : OUT STD_LOGIC_VECTOR(63 DOWNTO 0); 
  dout : IN STD_LOGIC_VECTOR(63 DOWNTO 0)); 
END parith; 
 
ARCHITECTURE rtl OF parith IS 
 
COMPONENT prop_1 
  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0) );  
END COMPONENT; 
 
COMPONENT prop_1_onoff 
  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) );  
END COMPONENT; 
 
COMPONENT prop_2 
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  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(25 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) );  
END COMPONENT; 
 
COMPONENT prop_2_onoff 
  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(25 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0) );  
END COMPONENT; 
 
COMPONENT prop_self 
  PORT ( clk  : IN STD_LOGIC; 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
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  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) );  
END COMPONENT; 
 
COMPONENT sumprop 
  PORT ( clk : IN STD_LOGIC; 
    p0 : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
    p1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
    p2 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p3 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p4 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p5 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p6 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p7 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p8 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p9 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p10 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p11 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p12 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p13 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p14 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p15 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p16 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p17 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p18 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p19 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p20 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p21 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  totalp : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) ); 
END COMPONENT; 
 
COMPONENT lfsr32 
  PORT ( in_clock : IN STD_LOGIC; 
  in_reset : IN STD_LOGIC; 
  in_seed  : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 
  out_random_number : OUT STD_LOGIC_VECTOR(31 DOWNT O 0) ); 
END COMPONENT; 
 
COMPONENT rxselect 
  PORT ( clk  : IN STD_LOGIC; 
  p0  : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
  p1  : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
  p2  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p3  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p4  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p5  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p6  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p7  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p8  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p9  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p10  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p11  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p12  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
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  p13  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p14  : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
  p15  : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  p16  : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  p17  : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  p18  : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  p19  : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  p20  : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  p21  : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  product : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  selection : OUT STD_LOGIC_VECTOR(4 DOWNTO 0) ); 
END COMPONENT; 
 
COMPONENT updatespecies  
  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction0 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction1 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction2 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction3 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction4 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction5 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction6 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction7 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction8 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction9 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction10 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction11 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction12 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction13 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction14 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction15 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction16 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction17 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction18 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction19 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction20 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction21 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  selection : IN STD_LOGIC_VECTOR(4 DOWNTO 0); 
  newspecies0 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
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  newspecies1 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
  newspecies2 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
  newspecies3 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
  newspecies4 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies5 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies6 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies7 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies8 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies9 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies10 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies11 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies12 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies13 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies14 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies15 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0) ); 
END COMPONENT; 
 
SIGNAL s_sp0  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
SIGNAL s_sp1  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
SIGNAL s_sp2  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
SIGNAL s_sp3  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
SIGNAL s_sp4  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp5  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp6  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp7  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp8  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp9  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp10  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp11  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp12  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp13  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp14  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_sp15  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_rx0  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx1  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx2  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx3  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx4  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx5  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx6  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx7  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx8  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx9  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx10  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx11  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx12  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
SIGNAL s_rx13  : STD_LOGIC_VECTOR(35 DOWNTO 0); 
SIGNAL s_rx14  : STD_LOGIC_VECTOR(35 DOWNTO 0); 
SIGNAL s_rx15  : STD_LOGIC_VECTOR(35 DOWNTO 0); 
SIGNAL s_rx16  : STD_LOGIC_VECTOR(35 DOWNTO 0); 
SIGNAL s_rx17  : STD_LOGIC_VECTOR(35 DOWNTO 0); 
SIGNAL s_rx18  : STD_LOGIC_VECTOR(35 DOWNTO 0); 
SIGNAL s_rx19  : STD_LOGIC_VECTOR(35 DOWNTO 0); 
SIGNAL s_rx20  : STD_LOGIC_VECTOR(35 DOWNTO 0); 
SIGNAL s_rx21  : STD_LOGIC_VECTOR(30 DOWNTO 0); 
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SIGNAL s_prop0  : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL s_prop1  : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL s_prop2  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop3  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop4  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop5  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop6  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop7  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop8  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop9  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop10  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop11  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop12  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop13  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop14  : STD_LOGIC_VECTOR(27 DOWNTO 0); 
SIGNAL s_prop15  : STD_LOGIC_VECTOR(39 DOWNTO 0); 
SIGNAL s_prop16  : STD_LOGIC_VECTOR(39 DOWNTO 0); 
SIGNAL s_prop17  : STD_LOGIC_VECTOR(39 DOWNTO 0); 
SIGNAL s_prop18  : STD_LOGIC_VECTOR(39 DOWNTO 0); 
SIGNAL s_prop19  : STD_LOGIC_VECTOR(39 DOWNTO 0); 
SIGNAL s_prop20  : STD_LOGIC_VECTOR(39 DOWNTO 0); 
SIGNAL s_prop21  : STD_LOGIC_VECTOR(39 DOWNTO 0); 
SIGNAL s_tprop  : STD_LOGIC_VECTOR(39 DOWNTO 0); 
SIGNAL s_lfsr_enable : STD_LOGIC; 
SIGNAL s_lfsr_reset : STD_LOGIC; 
SIGNAL s_seed  : STD_LOGIC_VECTOR(31 DOWNTO 0); 
SIGNAL s_URV  : STD_LOGIC_VECTOR(31 DOWNTO 0); 
SIGNAL s_product : STD_LOGIC_VECTOR(71 DOWNTO 0); 
SIGNAL s_rxselect : STD_LOGIC_VECTOR(4 DOWNTO 0); 
SIGNAL s_newsp0  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
SIGNAL s_newsp1  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
SIGNAL s_newsp2  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
SIGNAL s_newsp3  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
SIGNAL s_newsp4  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp5  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp6  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp7  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp8  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp9  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp10 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp11 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp12 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp13 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp14 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
SIGNAL s_newsp15 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 
BEGIN 
 
  m0 : prop_1_onoff PORT MAP(clk,s_sp0,s_sp1,s_sp2, s_sp3,s_rx0(20 
DOWNTO 0),s_prop0); 
  m1 : prop_1_onoff PORT MAP(clk,s_sp0,s_sp1,s_sp2, s_sp3,s_rx1(20 
DOWNTO 0),s_prop1); 
  m2 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx2(20 DOW NTO 0),s_prop2); 
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  m3 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx3(20 DOW NTO 0),s_prop3); 
  m4 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx4(20 DOW NTO 0),s_prop4); 
  m5 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx5(20 DOW NTO 0),s_prop5); 
  m6 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx6(20 DOW NTO 0),s_prop6); 
  m7 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx7(20 DOW NTO 0),s_prop7); 
  m8 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx8(20 DOW NTO 0),s_prop8); 
  m9 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx9(20 DOW NTO 0),s_prop9); 
  m10 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx10(20 DO WNTO 0),s_prop10); 
  m11 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx11(20 DO WNTO 0),s_prop11); 
  m12 : prop_1 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx12(20 DO WNTO 0),s_prop12); 
  m13 : prop_2_onoff PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx13(25 DO WNTO 0),s_prop13); 
  m14 : prop_2_onoff PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx14(25 DO WNTO 0),s_prop14); 
  m15 : prop_2 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx15(25 DO WNTO 0),s_prop15); 
  m16 : prop_2 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx16(25 DO WNTO 0),s_prop16); 
  m17 : prop_2 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx17(25 DO WNTO 0),s_prop17); 
  m18 : prop_2 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx18(25 DO WNTO 0),s_prop18); 
  m19 : prop_2 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx19(25 DO WNTO 0),s_prop19); 
  m20 : prop_2 PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx20(25 DO WNTO 0),s_prop20); 
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  m21 : prop_self PORT 
MAP(clk,s_sp4,s_sp5,s_sp6,s_sp7,s_sp8,s_sp9,s_sp10, s_sp11,s_sp12,s_sp13
,s_sp14,s_sp15,s_rx21(20 DOWNTO 0),s_prop21); 
  m22 : sumprop PORT 
MAP(clk,s_prop0,s_prop1,s_prop2,s_prop3,s_prop4,s_p rop5,s_prop6,s_prop7
,s_prop8,s_prop9,s_prop10,s_prop11,s_prop12,s_prop1 3,s_prop14,s_prop15,
s_prop16,s_prop17,s_prop18,s_prop19,s_prop20,s_prop 21,s_tprop); 
  m23 : lfsr32 PORT MAP(s_lfsr_enable,s_lfsr_reset, s_seed,s_URV); 
  m24 : rxselect PORT 
MAP(clk,s_prop0,s_prop1,s_prop2,s_prop3,s_prop4,s_p rop5,s_prop6,s_prop7
,s_prop8,s_prop9,s_prop10,s_prop11,s_prop12,s_prop1 3,s_prop14,s_prop15,
s_prop16,s_prop17,s_prop18,s_prop19,s_prop20,s_prop 21,s_product(71 
DOWNTO 32),s_rxselect); 
  m25 : updatespecies PORT 
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx0(30 DOW NTO 16),s_rx1(30 
DOWNTO 16),s_rx2(30 DOWNTO 16),s_rx3(30 DOWNTO 16), s_rx4(30 DOWNTO 
16),s_rx5(30 DOWNTO 16),s_rx6(30 DOWNTO 16),s_rx7(3 0 DOWNTO 
16),s_rx8(30 DOWNTO 16),s_rx9(30 DOWNTO 16),s_rx10( 30 DOWNTO 
16),s_rx11(30 DOWNTO 16),s_rx12(30 DOWNTO 16),s_rx1 3(35 DOWNTO 
16),s_rx14(35 DOWNTO 16),s_rx15(35 DOWNTO 16),s_rx1 6(35 DOWNTO 
16),s_rx17(35 DOWNTO 16),s_rx18(35 DOWNTO 16),s_rx1 9(35 DOWNTO 
16),s_rx20(35 DOWNTO 16),s_rx21(30 DOWNTO 
16),s_rxselect,s_newsp0,s_newsp1,s_newsp2,s_newsp3, s_newsp4,s_newsp5,s_
newsp6,s_newsp7,s_newsp8,s_newsp9,s_newsp10,s_newsp 11,s_newsp12,s_newsp
13,s_newsp14,s_newsp15); 
  
  PROCESS (clk) 
 VARIABLE species0 : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE species1 : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE species2 : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE species3 : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE species4 : STD_LOGIC_VECTOR(11 DOWNTO 0);  
 VARIABLE species5 : STD_LOGIC_VECTOR(11 DOWNTO 0);  
 VARIABLE species6 : STD_LOGIC_VECTOR(11 DOWNTO 0);  
 VARIABLE species7 : STD_LOGIC_VECTOR(11 DOWNTO 0);  
 VARIABLE species8 : STD_LOGIC_VECTOR(11 DOWNTO 0);  
 VARIABLE species9 : STD_LOGIC_VECTOR(11 DOWNTO 0);  
 VARIABLE species10 : STD_LOGIC_VECTOR(11 DOWNTO 0) ; 
 VARIABLE species11 : STD_LOGIC_VECTOR(11 DOWNTO 0) ; 
 VARIABLE species12 : STD_LOGIC_VECTOR(11 DOWNTO 0) ; 
 VARIABLE species13 : STD_LOGIC_VECTOR(11 DOWNTO 0) ; 
 VARIABLE species14 : STD_LOGIC_VECTOR(11 DOWNTO 0) ; 
 VARIABLE species15 : STD_LOGIC_VECTOR(11 DOWNTO 0) ; 
 VARIABLE reaction0 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction1 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction2 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction3 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction4 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction5 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction6 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction7 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction8 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction9 : STD_LOGIC_VECTOR(30 DOWNTO 0) ; 
 VARIABLE reaction10 : STD_LOGIC_VECTOR(30 DOWNTO 0 ); 
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 VARIABLE reaction11 : STD_LOGIC_VECTOR(30 DOWNTO 0 ); 
 VARIABLE reaction12 : STD_LOGIC_VECTOR(30 DOWNTO 0 ); 
 VARIABLE reaction13 : STD_LOGIC_VECTOR(35 DOWNTO 0 ); 
 VARIABLE reaction14 : STD_LOGIC_VECTOR(35 DOWNTO 0 ); 
 VARIABLE reaction15 : STD_LOGIC_VECTOR(35 DOWNTO 0 ); 
 VARIABLE reaction16 : STD_LOGIC_VECTOR(35 DOWNTO 0 ); 
 VARIABLE reaction17 : STD_LOGIC_VECTOR(35 DOWNTO 0 ); 
 VARIABLE reaction18 : STD_LOGIC_VECTOR(35 DOWNTO 0 ); 
 VARIABLE reaction19 : STD_LOGIC_VECTOR(35 DOWNTO 0 ); 
 VARIABLE reaction20 : STD_LOGIC_VECTOR(35 DOWNTO 0 ); 
 VARIABLE reaction21 : STD_LOGIC_VECTOR(30 DOWNTO 0 ); 
 VARIABLE state  : STD_LOGIC_VECTOR(3 DOWNTO 0); 
 VARIABLE state2  : STD_LOGIC_VECTOR(7 DOWNTO 0); 
 VARIABLE product : STD_LOGIC_VECTOR(71 DOWNTO 0); 
 VARIABLE index  : STD_LOGIC_VECTOR(7 DOWNTO 0); 
 VARIABLE maxindex : STD_LOGIC_VECTOR(7 DOWNTO 0); 
 VARIABLE looping : STD_LOGIC; 
 
  BEGIN 
 IF (clk = '1' AND clk'EVENT) THEN  
  s_sp0 <= species0; s_sp1 <= species1; 
  s_sp2 <= species2; s_sp3 <= species3; 
  s_sp4 <= species4; s_sp5 <= species5; 
  s_sp6 <= species6; s_sp7 <= species7; 
  s_sp8 <= species8; s_sp9 <= species9; 
  s_sp10 <= species10; s_sp11 <= species11; 
  s_sp12 <= species12; s_sp13 <= species13; 
  s_sp14 <= species14; s_sp15 <= species15; 
  s_rx0 <= reaction0; s_rx1 <= reaction1; 
  s_rx2 <= reaction2; s_rx3 <= reaction3; 
  s_rx4 <= reaction4; s_rx5 <= reaction5; 
  s_rx6 <= reaction6; s_rx7 <= reaction7; 
  s_rx8 <= reaction8; s_rx9 <= reaction9; 
  s_rx10 <= reaction10; s_rx11 <= reaction11; 
  s_rx12 <= reaction12; s_rx13 <= reaction13; 
  s_rx14 <= reaction14; s_rx15 <= reaction15; 
  s_rx16 <= reaction16; s_rx17 <= reaction17; 
  s_rx18 <= reaction18; s_rx19 <= reaction19; 
  s_rx20 <= reaction20; s_rx21 <= reaction21; 
  product := s_URV * s_tprop; 
   
  -- SET ADDRESS FROM WHICH TO READ COMMAND 
  IF (state = "0000") THEN 
   state2 := "00000000"; 
   state := state + 1; 
   we <= '0'; 
   addr <= X"00"; 
   din <= (others => '0'); 
   s_lfsr_reset <= '0'; 
   s_lfsr_enable <= '0'; 
   index := X"02"; 
   maxindex := X"FC"; 
   looping := '0'; 
 
  -- INTERPRET COMMANDS 
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  ELSIF (state = "0001") THEN 
 
   -- LOOPING THROUGH 250 REACTIONS 
   IF (looping = '1') THEN 
    IF (index < maxindex) THEN 
     IF (state2 = "00000000") THEN 
      we <= '1'; 
      addr <= index; 
      din(63 DOWNTO 32) <= s_tprop(31 
DOWNTO 0); 
      din(4 DOWNTO 0) <= s_rxselect; 
      species0 := s_newsp0; 
      species1 := s_newsp1; 
      species2 := s_newsp2; 
      species3 := s_newsp3; 
      species4 := s_newsp4; 
      species5 := s_newsp5; 
      species6 := s_newsp6; 
      species7 := s_newsp7; 
      species8 := s_newsp8; 
      species9 := s_newsp9; 
      species10 := s_newsp10; 
      species11 := s_newsp11; 
      species12 := s_newsp12; 
      species13 := s_newsp13; 
      species14 := s_newsp14; 
      species15 := s_newsp15; 
      s_lfsr_reset <= '0'; 
      s_lfsr_enable <= '1'; 
      state2 := state2 + 1; 
     ELSIF (state2 = "00000001") THEN 
      we <= '0'; 
      s_lfsr_reset <= '0'; 
      s_lfsr_enable <= '0'; 
      state2 := state2 + 1; 
     ELSIF (state2 = "00000101") THEN 
      we <= '0'; 
      index := index + 1; 
      state2 := "00000000"; 
     ELSE 
      we <= '0'; 
      state2 := state2 + 1; 
     END IF; 
    ELSE 
     we <= '0'; 
     addr <= X"00"; 
     looping := '0'; 
     state := state + 1; 
    END IF; 
 
   -- NO-OP 
   ELSIF (dout = X"0000") THEN 
    we <= '0'; 
    addr <= X"00"; 
    state := "0000"; 
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   -- SETTING A SPECIES POPULATION 
   ELSIF (dout(63 DOWNTO 60) = "0001") THEN 
    we <= '0'; 
    addr <= X"00"; 
    IF (dout(59 DOWNTO 55) = "00000") THEN 
     species0 := dout(0 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "00001") THEN 
     species1 := dout(0 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "00010") THEN 
     species2 := dout(0 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "00011") THEN 
     species3 := dout(0 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "00100") THEN 
     species4 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "00101") THEN 
     species5 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "00110") THEN 
     species6 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "00111") THEN 
     species7 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "01000") THEN 
     species8 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "01001") THEN 
     species9 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "01010") THEN 
     species10 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "01011") THEN 
     species11 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "01100") THEN 
     species12 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "01101") THEN 
     species13 := dout(11 DOWNTO 0); 
    ELSIF (dout(59 DOWNTO 55) = "01110") THEN 
     species14 := dout(11 DOWNTO 0); 
    ELSE 
     species15 := dout(11 DOWNTO 0); 
    END IF; 
    state := state + 1; 
 
   -- READING A SPECIES POPULATION 
   ELSIF (dout(63 DOWNTO 60) = "0010") THEN 
    we <= '1'; 
    addr <= X"01"; 
    IF (dout(59 DOWNTO 55) = "00000") THEN 
     din(0 DOWNTO 0) <= species0; 
    ELSIF (dout(59 DOWNTO 55) = "00001") THEN 
     din(0 DOWNTO 0) <= species1; 
    ELSIF (dout(59 DOWNTO 55) = "00010") THEN 
     din(0 DOWNTO 0) <= species2; 
    ELSIF (dout(59 DOWNTO 55) = "00011") THEN 
     din(0 DOWNTO 0) <= species3; 
    ELSIF (dout(59 DOWNTO 55) = "00100") THEN 
     din(11 DOWNTO 0) <= species4; 
    ELSIF (dout(59 DOWNTO 55) = "00101") THEN 
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     din(11 DOWNTO 0) <= species5; 
    ELSIF (dout(59 DOWNTO 55) = "00110") THEN 
     din(11 DOWNTO 0) <= species6; 
    ELSIF (dout(59 DOWNTO 55) = "00111") THEN 
     din(11 DOWNTO 0) <= species7; 
    ELSIF (dout(59 DOWNTO 55) = "01000") THEN 
     din(11 DOWNTO 0) <= species8; 
    ELSIF (dout(59 DOWNTO 55) = "01001") THEN 
     din(11 DOWNTO 0) <= species9; 
    ELSIF (dout(59 DOWNTO 55) = "01010") THEN 
     din(11 DOWNTO 0) <= species10; 
    ELSIF (dout(59 DOWNTO 55) = "01011") THEN 
     din(11 DOWNTO 0) <= species11; 
    ELSIF (dout(59 DOWNTO 55) = "01100") THEN 
     din(11 DOWNTO 0) <= species12; 
    ELSIF (dout(59 DOWNTO 55) = "01101") THEN 
     din(11 DOWNTO 0) <= species13; 
    ELSIF (dout(59 DOWNTO 55) = "01110") THEN 
     din(11 DOWNTO 0) <= species14; 
    ELSE 
     din(11 DOWNTO 0) <= species15; 
    END IF; 
    state := state + 1; 
 
   -- SETTING A REACTION EQUATION 
   ELSIF (dout(63 DOWNTO 60) = "0011") THEN 
    we <= '0'; 
    addr <= X"00"; 
    IF (dout(59 DOWNTO 55) = "00000") THEN 
     reaction0(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "00001") THEN 
     reaction1(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "00010") THEN 
     reaction2(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "00011") THEN 
     reaction3(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "00100") THEN 
     reaction4(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "00101") THEN 
     reaction5(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "00110") THEN 
     reaction6(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "00111") THEN 
     reaction7(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "01000") THEN 
     reaction8(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
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    ELSIF (dout(59 DOWNTO 55) = "01001") THEN 
     reaction9(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "01010") THEN 
     reaction10(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "01011") THEN 
     reaction11(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "01100") THEN 
     reaction12(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    ELSIF (dout(59 DOWNTO 55) = "01101") THEN 
     reaction13(35 DOWNTO 26) := dout(41 
DOWNTO 32); reaction13(25 DOWNTO 0) := dout(25 DOWN TO 0); 
    ELSIF (dout(59 DOWNTO 55) = "01110") THEN 
     reaction14(35 DOWNTO 26) := dout(41 
DOWNTO 32); reaction14(25 DOWNTO 0) := dout(25 DOWN TO 0); 
    ELSIF (dout(59 DOWNTO 55) = "01111") THEN 
     reaction15(35 DOWNTO 26) := dout(41 
DOWNTO 32); reaction15(25 DOWNTO 0) := dout(25 DOWN TO 0); 
    ELSIF (dout(59 DOWNTO 55) = "10000") THEN 
     reaction16(35 DOWNTO 26) := dout(41 
DOWNTO 32); reaction16(25 DOWNTO 0) := dout(25 DOWN TO 0); 
    ELSIF (dout(59 DOWNTO 55) = "10001") THEN 
     reaction17(35 DOWNTO 26) := dout(41 
DOWNTO 32); reaction17(25 DOWNTO 0) := dout(25 DOWN TO 0); 
    ELSIF (dout(59 DOWNTO 55) = "10010") THEN 
     reaction18(35 DOWNTO 26) := dout(41 
DOWNTO 32); reaction18(25 DOWNTO 0) := dout(25 DOWN TO 0); 
    ELSIF (dout(59 DOWNTO 55) = "10011") THEN 
     reaction19(35 DOWNTO 26) := dout(41 
DOWNTO 32); reaction19(25 DOWNTO 0) := dout(25 DOWN TO 0); 
    ELSIF (dout(59 DOWNTO 55) = "10100") THEN 
     reaction20(35 DOWNTO 26) := dout(41 
DOWNTO 32); reaction20(25 DOWNTO 0) := dout(25 DOWN TO 0); 
    ELSE 
     reaction21(30 DOWNTO 0) := dout(30 DOWNTO 
0); 
    END IF; 
    state := state + 1; 
 
   -- READING A REACTION EQUATION 
 --  ELSIF (dout(63 DOWNTO 60) = "0100") THEN 
 --   we <= '1'; 
 --   addr <= X"01"; 
 --   IF (dout(59 DOWNTO 55) = "00000") THEN 
 --    din(30 DOWNTO 0) <= reaction0(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "00001") THEN 
 --    din(30 DOWNTO 0) <= reaction1(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "00010") THEN 
 --    din(30 DOWNTO 0) <= reaction2(30 DOWNTO 
0); 
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 --   ELSIF (dout(59 DOWNTO 55) = "00011") THEN 
 --    din(30 DOWNTO 0) <= reaction3(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "00100") THEN 
 --    din(30 DOWNTO 0) <= reaction4(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "00101") THEN 
 --    din(30 DOWNTO 0) <= reaction5(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "00110") THEN 
 --    din(30 DOWNTO 0) <= reaction6(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "00111") THEN 
 --    din(30 DOWNTO 0) <= reaction7(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "01000") THEN 
 --    din(30 DOWNTO 0) <= reaction8(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "01001") THEN 
 --    din(30 DOWNTO 0) <= reaction9(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "01010") THEN 
 --    din(30 DOWNTO 0) <= reaction10(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "01011") THEN 
 --    din(30 DOWNTO 0) <= reaction11(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "01100") THEN 
 --    din(30 DOWNTO 0) <= reaction12(30 DOWNTO 
0); 
 --   ELSIF (dout(59 DOWNTO 55) = "01101") THEN 
 --    din(41 DOWNTO 32) <= reaction13(35 DOWNTO 
25); din(25 DOWNTO 0) <= reaction13(25 DOWNTO 0); 
 --   ELSIF (dout(59 DOWNTO 55) = "01110") THEN 
 --    din(41 DOWNTO 32) <= reaction14(35 DOWNTO 
25); din(25 DOWNTO 0) <= reaction14(25 DOWNTO 0); 
 --   ELSIF (dout(59 DOWNTO 55) = "01111") THEN 
 --    din(41 DOWNTO 32) <= reaction15(35 DOWNTO 
25); din(25 DOWNTO 0) <= reaction15(25 DOWNTO 0); 
 --   ELSIF (dout(59 DOWNTO 55) = "10000") THEN 
 --    din(41 DOWNTO 32) <= reaction16(35 DOWNTO 
25); din(25 DOWNTO 0) <= reaction16(25 DOWNTO 0); 
 --   ELSIF (dout(59 DOWNTO 55) = "10001") THEN 
 --    din(41 DOWNTO 32) <= reaction17(35 DOWNTO 
25); din(25 DOWNTO 0) <= reaction17(25 DOWNTO 0); 
 --   ELSIF (dout(59 DOWNTO 55) = "10010") THEN 
 --    din(41 DOWNTO 32) <= reaction18(35 DOWNTO 
25); din(25 DOWNTO 0) <= reaction18(25 DOWNTO 0); 
 --   ELSIF (dout(59 DOWNTO 55) = "10011") THEN 
 --    din(41 DOWNTO 32) <= reaction19(35 DOWNTO 
25); din(25 DOWNTO 0) <= reaction19(25 DOWNTO 0); 
 --   ELSIF (dout(59 DOWNTO 55) = "10100") THEN 
 --    din(41 DOWNTO 32) <= reaction20(35 DOWNTO 
25); din(25 DOWNTO 0) <= reaction20(25 DOWNTO 0); 
 --   ELSE 
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 --    din(30 DOWNTO 0) <= reaction21(30 DOWNTO 
0); 
 --   END IF; 
 --   state := state + 1; 
 
 --  -- READING A PROPENSITY 
 --  ELSIF (dout(63 DOWNTO 60) = "0110") THEN 
 --   we <= '1'; 
 --   addr <= X"01"; 
 --   IF (dout(59 DOWNTO 55) = "00000") THEN 
 --    din(15 DOWNTO 0) <= s_prop0; 
 --   ELSIF (dout(59 DOWNTO 55) = "00001") THEN 
 --    din(15 DOWNTO 0) <= s_prop1; 
 --   ELSIF (dout(59 DOWNTO 55) = "00010") THEN 
 --    din(27 DOWNTO 0) <= s_prop2; 
 --   ELSIF (dout(59 DOWNTO 55) = "00011") THEN 
 --    din(27 DOWNTO 0) <= s_prop3; 
 --   ELSIF (dout(59 DOWNTO 55) = "00100") THEN 
 --    din(27 DOWNTO 0) <= s_prop4; 
 --   ELSIF (dout(59 DOWNTO 55) = "00101") THEN 
 --    din(27 DOWNTO 0) <= s_prop5; 
 --   ELSIF (dout(59 DOWNTO 55) = "00110") THEN 
 --    din(27 DOWNTO 0) <= s_prop6; 
 --   ELSIF (dout(59 DOWNTO 55) = "00111") THEN 
 --    din(27 DOWNTO 0) <= s_prop7; 
 --   ELSIF (dout(59 DOWNTO 55) = "01000") THEN 
 --    din(27 DOWNTO 0) <= s_prop8; 
 --   ELSIF (dout(59 DOWNTO 55) = "01001") THEN 
 --    din(27 DOWNTO 0) <= s_prop9; 
 --   ELSIF (dout(59 DOWNTO 55) = "01010") THEN 
 --    din(27 DOWNTO 0) <= s_prop10; 
 --   ELSIF (dout(59 DOWNTO 55) = "01011") THEN 
 --    din(27 DOWNTO 0) <= s_prop11; 
 --   ELSIF (dout(59 DOWNTO 55) = "01100") THEN 
 --    din(27 DOWNTO 0) <= s_prop12; 
 --   ELSIF (dout(59 DOWNTO 55) = "01101") THEN 
 --    din(27 DOWNTO 0) <= s_prop13; 
 --   ELSIF (dout(59 DOWNTO 55) = "01110") THEN 
 --    din(39 DOWNTO 0) <= s_prop14; 
 --   ELSIF (dout(59 DOWNTO 55) = "01111") THEN 
 --    din(39 DOWNTO 0) <= s_prop15; 
 --   ELSIF (dout(59 DOWNTO 55) = "10000") THEN 
 --    din(39 DOWNTO 0) <= s_prop16; 
 --   ELSIF (dout(59 DOWNTO 55) = "10001") THEN 
 --    din(39 DOWNTO 0) <= s_prop17; 
 --   ELSIF (dout(59 DOWNTO 55) = "10010") THEN 
 --    din(39 DOWNTO 0) <= s_prop18; 
 --   ELSIF (dout(59 DOWNTO 55) = "10011") THEN 
 --    din(39 DOWNTO 0) <= s_prop19; 
 --   ELSIF (dout(59 DOWNTO 55) = "10100") THEN 
 --    din(39 DOWNTO 0) <= s_prop20; 
 --   ELSE 
 --    din(39 DOWNTO 0) <= s_prop21; 
 --   END IF; 
 --   state := state + 1; 
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   -- READING THE SUM OF ALL PROPENSITIES 
 --  ELSIF (dout(63 DOWNTO 60) = "0111") THEN 
 --   we <= '1'; 
 --   addr <= X"01"; 
 --   din(39 DOWNTO 0) <= s_tprop; 
 --   state := state + 1; 
 
   -- SET SEED TO UNIFORM RANDOM NUMBER GENERATOR 
   ELSIF (dout(63 DOWNTO 60) = "1000") THEN 
    we <= '0'; 
    addr <= X"00"; 
    IF (state2 = "00000000") THEN 
     s_seed <= dout(31 DOWNTO 0); 
     s_lfsr_reset <= '1'; 
     state2 := state2 + 1; 
    ELSE 
     s_seed <= dout(31 DOWNTO 0); 
     s_lfsr_reset <= '1'; 
     s_lfsr_enable <= '1'; 
     state := state + 1; 
     state2 := "00000000"; 
    END IF; 
 
   -- READING UNIFORM RANDOM NUMBER 
 --  ELSIF (dout(63 DOWNTO 60) = "1001") THEN 
 --   we <= '1'; 
 --   addr <= X"01"; 
 --   din(31 DOWNTO 0) <= s_URV; 
 --   state := state + 1; 
 
   -- CALCULATE A UNIFORM RANDOM NUMBER 
 --  ELSIF (dout(63 DOWNTO 60) = "1010") THEN 
 --   we <= '0'; 
 --   addr <= X"00"; 
 --   s_lfsr_reset <= '0'; 
 --   s_lfsr_enable <= '1'; 
 --   state := state + 1; 
 
   -- READING PRODUCT OF TOTAL PROPENSITY * UNIFORM  
RANDOM NUMBER 
 --  ELSIF (dout(63 DOWNTO 60) = "1011") THEN 
 --   we <= '1'; 
 --   addr <= X"01"; 
 --   din(31 DOWNTO 0) <= s_product(71 DOWNTO 40); 
 --   state := state + 1; 
 
   -- READING THE REACTION THAT WAS SELECTED 
 --  ELSIF (dout(63 DOWNTO 60) = "1100") THEN 
 --   we <= '1'; 
 --   addr <= X"01"; 
 --   din(4 DOWNTO 0) <= s_rxselect; 
 --   state := state + 1; 
 
   -- UPDATE THE SPECIES POPULATIONS 
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 --  ELSIF (dout(63 DOWNTO 60) = "1101") THEN 
 --   we <= '0'; 
 --   addr <= X"00"; 
 --   species0 := s_newsp0; 
 --   species1 := s_newsp1; 
 --   species2 := s_newsp2; 
 --   species3 := s_newsp3; 
 --   species4 := s_newsp4; 
 --   species5 := s_newsp5; 
 --   species6 := s_newsp6; 
 --   species7 := s_newsp7; 
 --   species8 := s_newsp8; 
 --   species9 := s_newsp9; 
 --   species10 := s_newsp10; 
 --   species11 := s_newsp11; 
 --   species12 := s_newsp12; 
 --   species13 := s_newsp13; 
 --   species14 := s_newsp14; 
 --   species15 := s_newsp15; 
 --   state := state + 1; 
 
   -- STEP THROUGH 250 REACTIONS 
   ELSIF (dout(63 DOWNTO 60) = "1110") THEN 
    we <= '0'; 
    addr <= X"00"; 
    index := X"02"; 
    maxindex := dout(7 DOWNTO 0); 
    looping := '1'; 
    state2 := "00000000"; 
   END IF; 
 
  -- TELL CPU THAT FPGA IS DONE 
  ELSIF (state = "0010") THEN 
   we <= '1'; 
   addr <= X"00"; 
   din <= (others => '0'); 
   state := "0000"; 
  ELSE 
   we <= '0'; 
   addr <= X"00"; 
   state := state + 1; 
  END IF; 
  s_product <= product; 
 END IF; 
  END PROCESS;  
END rtl; 
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prop_1.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY prop_1 IS 
  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0) );  
END prop_1; 
 
ARCHITECTURE rtl OF prop_1 IS 
 
BEGIN 
 
  PROCESS(clk) 
 VARIABLE Y : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE prop : STD_LOGIC_VECTOR(27 DOWNTO 0); 
 
  BEGIN 
 IF (clk'EVENT AND clk='1') THEN 
  IF (reaction(20) = '1') THEN 
   prop(27 DOWNTO 0) := X"0000000"; 
  ELSIF (reaction(19 DOWNTO 16) < X"4") THEN 
   IF (reaction(19 DOWNTO 16) = X"0") THEN 
    Y(0 DOWNTO 0) := species0; 
   ELSIF (reaction(19 DOWNTO 16) = X"1") THEN 
    Y(0 DOWNTO 0) := species1; 
   ELSIF (reaction(19 DOWNTO 16) = X"2") THEN 
    Y(0 DOWNTO 0) := species2; 
   ELSIF (reaction(19 DOWNTO 16) = X"3") THEN 
    Y(0 DOWNTO 0) := species3; 
   END IF; 
   IF (Y(0) = '0') THEN 
    prop := X"0000000"; 
   ELSE 
    prop(27 DOWNTO 16) := X"000"; 
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    prop(15 DOWNTO 0) := reaction(15 DOWNTO 0); 
   END IF; 
  ELSE 
   IF (reaction(19 DOWNTO 16) = X"4") THEN 
    Y := species4; 
   ELSIF (reaction(19 DOWNTO 16) = X"5") THEN 
    Y := species5; 
   ELSIF (reaction(19 DOWNTO 16) = X"6") THEN 
    Y := species6; 
   ELSIF (reaction(19 DOWNTO 16) = X"7") THEN 
    Y := species7; 
   ELSIF (reaction(19 DOWNTO 16) = X"8") THEN 
    Y := species8; 
   ELSIF (reaction(19 DOWNTO 16) = X"9") THEN 
    Y := species9; 
   ELSIF (reaction(19 DOWNTO 16) = X"A") THEN 
    Y := species10; 
   ELSIF (reaction(19 DOWNTO 16) = X"B") THEN 
    Y := species11; 
   ELSIF (reaction(19 DOWNTO 16) = X"C") THEN 
    Y := species12; 
   ELSIF (reaction(19 DOWNTO 16) = X"D") THEN 
    Y := species13; 
   ELSIF (reaction(19 DOWNTO 16) = X"E") THEN 
    Y := species14; 
   ELSIF (reaction(19 DOWNTO 16) = X"F") THEN 
    Y := species15; 
   END IF; 
    
   prop := reaction(15 DOWNTO 0) * Y; 
  END IF; 
 
  propensity <= prop; 
 END IF; 
  END PROCESS;  
END rtl; 
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prop_1_onoff.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY prop_1_onoff IS 
  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) );  
END prop_1_onoff; 
 
ARCHITECTURE rtl OF prop_1_onoff IS 
 
BEGIN 
 
  PROCESS(clk) 
 VARIABLE X : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE prop : STD_LOGIC_VECTOR(15 DOWNTO 0); 
 
  BEGIN 
 IF (clk'EVENT AND clk='1') THEN 
  IF (reaction(20) = '1') THEN 
   prop(15 DOWNTO 0) := X"0000"; 
  ELSE 
   IF (reaction(19 DOWNTO 16) = X"0") THEN 
    X := species0; 
   ELSIF (reaction(19 DOWNTO 16) = X"1") THEN 
    X := species1; 
   ELSIF (reaction(19 DOWNTO 16) = X"2") THEN 
    X := species2; 
   ELSIF (reaction(19 DOWNTO 16) = X"3") THEN 
    X := species3; 
   END IF; 
   IF (X(0) = '1') THEN 
    prop := reaction(15 DOWNTO 0); 
   ELSE 
    prop(15 DOWNTO 0) := X"0000"; 
   END IF; 
  END IF; 
 
  propensity <= prop; 
 END IF; 
  END PROCESS;  
END rtl; 
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prop_2.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY prop_2 IS 
  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(25 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) );  
END prop_2; 
 
ARCHITECTURE rtl OF prop_2 IS 
 
BEGIN 
 
  PROCESS(clk) 
 VARIABLE REACTANT1 : STD_LOGIC_VECTOR(1 DOWNTO 0);  
 VARIABLE X,Y : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE prop : STD_LOGIC_VECTOR(39 DOWNTO 0); 
 
  BEGIN 
 IF (clk'EVENT AND clk='1') THEN 
  IF (reaction(25) = '1') THEN 
   REACTANT1 := "00"; 
  ELSIF (reaction(24 DOWNTO 21) < X"4") THEN 
   REACTANT1 := "01"; 
   IF (reaction(24 DOWNTO 21) = X"0") THEN 
    X(0 DOWNTO 0) := species0; 
   ELSIF (reaction(24 DOWNTO 21) = X"1") THEN 
    X(0 DOWNTO 0) := species1; 
   ELSIF (reaction(24 DOWNTO 21) = X"2") THEN 
    X(0 DOWNTO 0) := species2; 
   ELSIF (reaction(24 DOWNTO 21) = X"3") THEN 
    X(0 DOWNTO 0) := species3; 
   END IF; 
  ELSE 
   REACTANT1 := "10"; 
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   IF (reaction(24 DOWNTO 21) = X"4") THEN 
    X := species4; 
   ELSIF (reaction(24 DOWNTO 21) = X"5") THEN 
    X := species5; 
   ELSIF (reaction(24 DOWNTO 21) = X"6") THEN 
    X := species6; 
   ELSIF (reaction(24 DOWNTO 21) = X"7") THEN 
    X := species7; 
   ELSIF (reaction(24 DOWNTO 21) = X"8") THEN 
    X := species8; 
   ELSIF (reaction(24 DOWNTO 21) = X"9") THEN 
    X := species9; 
   ELSIF (reaction(24 DOWNTO 21) = X"A") THEN 
    X := species10; 
   ELSIF (reaction(24 DOWNTO 21) = X"B") THEN 
    X := species11; 
   ELSIF (reaction(24 DOWNTO 21) = X"C") THEN 
    X := species12; 
   ELSIF (reaction(24 DOWNTO 21) = X"D") THEN 
    X := species13; 
   ELSIF (reaction(24 DOWNTO 21) = X"E") THEN 
    X := species14; 
   ELSIF (reaction(24 DOWNTO 21) = X"F") THEN 
    X := species15; 
   END IF; 
  END IF; 
 
  IF (reaction(20) = '1') THEN 
   IF (REACTANT1 = "00") THEN 
    prop := X"0000000000"; 
   ELSIF (REACTANT1 = "01") THEN 
    IF (X(0) = '1') THEN 
     prop(39 DOWNTO 16) := X"000000"; 
     prop(15 DOWNTO 0) := reaction(15 DOWNTO 
0); 
    ELSE 
     prop := X"0000000000"; 
    END IF; 
   ELSE 
    prop(39 DOWNTO 28) := X"000"; 
    prop(27 DOWNTO 0) := reaction(15 DOWNTO 0) * X;  
   END IF; 
  ELSIF (reaction(25 DOWNTO 21) = reaction(20 DOWNT O 16)) 
THEN 
   Y := X - 1; 
   prop := reaction(15 DOWNTO 0) * X * Y; 
   prop(38 DOWNTO 0) := prop(39 DOWNTO 1); 
   prop(39) := '0'; 
  ELSE 
   IF (reaction(20 DOWNTO 16) = X"4") THEN 
    Y := species4; 
   ELSIF (reaction(20 DOWNTO 16) = X"5") THEN 
    Y := species5; 
   ELSIF (reaction(20 DOWNTO 16) = X"6") THEN 
    Y := species6; 
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   ELSIF (reaction(20 DOWNTO 16) = X"7") THEN 
    Y := species7; 
   ELSIF (reaction(20 DOWNTO 16) = X"8") THEN 
    Y := species8; 
   ELSIF (reaction(20 DOWNTO 16) = X"9") THEN 
    Y := species9; 
   ELSIF (reaction(20 DOWNTO 16) = X"A") THEN 
    Y := species10; 
   ELSIF (reaction(20 DOWNTO 16) = X"B") THEN 
    Y := species11; 
   ELSIF (reaction(20 DOWNTO 16) = X"C") THEN 
    Y := species12; 
   ELSIF (reaction(20 DOWNTO 16) = X"D") THEN 
    Y := species13; 
   ELSIF (reaction(20 DOWNTO 16) = X"E") THEN 
    Y := species14; 
   ELSIF (reaction(20 DOWNTO 16) = X"F") THEN 
    Y := species15; 
   END IF; 
   IF (REACTANT1 = "00") THEN 
    prop(39 DOWNTO 28) := X"000"; 
    prop(27 DOWNTO 0) := reaction(15 DOWNTO 0) * Y;  
   ELSIF (REACTANT1 = "01") THEN 
    IF (X(0) = '1') THEN 
     prop(39 DOWNTO 28) := X"000"; 
     prop(27 DOWNTO 0) := reaction(15 DOWNTO 
0) * Y; 
    ELSE 
     prop := X"0000000000"; 
    END IF; 
   ELSE 
    prop := reaction(15 DOWNTO 0) * X * Y; 
   END IF; 
  END IF; 
  
  propensity <= prop; 
 END IF; 
  END PROCESS;  
END rtl; 
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prop_2_onoff.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY prop_2_onoff IS 
  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(25 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0) );  
END prop_2_onoff; 
 
ARCHITECTURE rtl OF prop_2_onoff IS 
 
BEGIN 
 
  PROCESS(clk) 
 VARIABLE X : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE Y : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE prop : STD_LOGIC_VECTOR(27 DOWNTO 0); 
 
  BEGIN 
 IF (clk'EVENT AND clk='1') THEN 
  IF (reaction(20) = '1') THEN 
   IF (reaction(25) = '1') THEN 
    prop(27 DOWNTO 0) := X"0000000"; 
   ELSE 
    IF (reaction(24 DOWNTO 21) = X"0") THEN 
     X(0 DOWNTO 0) := species0; 
    ELSIF (reaction(24 DOWNTO 21) = X"1") THEN 
     X(0 DOWNTO 0) := species1; 
    ELSIF (reaction(24 DOWNTO 21) = X"2") THEN 
     X(0 DOWNTO 0) := species2; 
    ELSIF (reaction(24 DOWNTO 21) = X"3") THEN 
     X(0 DOWNTO 0) := species3; 
    END IF; 
    IF (X(0) = '0') THEN 
     prop(27 DOWNTO 0) := X"0000000"; 
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    ELSE 
     prop(27 DOWNTO 16) := X"000"; 
     prop(15 DOWNTO 0) := reaction(15 DOWNTO 
0); 
    END IF; 
   END IF; 
  ELSE 
   IF (reaction(19 DOWNTO 16) = X"4") THEN 
    Y := species4; 
   ELSIF (reaction(19 DOWNTO 16) = X"5") THEN 
    Y := species5; 
   ELSIF (reaction(19 DOWNTO 16) = X"6") THEN 
    Y := species6; 
   ELSIF (reaction(19 DOWNTO 16) = X"7") THEN 
    Y := species7; 
   ELSIF (reaction(19 DOWNTO 16) = X"8") THEN 
    Y := species8; 
   ELSIF (reaction(19 DOWNTO 16) = X"9") THEN 
    Y := species9; 
   ELSIF (reaction(19 DOWNTO 16) = X"A") THEN 
    Y := species10; 
   ELSIF (reaction(19 DOWNTO 16) = X"B") THEN 
    Y := species11; 
   ELSIF (reaction(19 DOWNTO 16) = X"C") THEN 
    Y := species12; 
   ELSIF (reaction(19 DOWNTO 16) = X"D") THEN 
    Y := species13; 
   ELSIF (reaction(19 DOWNTO 16) = X"E") THEN 
    Y := species14; 
   ELSIF (reaction(19 DOWNTO 16) = X"F") THEN 
    Y := species15; 
   END IF; 
   IF (reaction(25) = '1') THEN 
    prop := reaction(15 DOWNTO 0) * Y; 
   ELSE 
    IF (reaction(24 DOWNTO 21) = X"0") THEN 
     X(0 DOWNTO 0) := species0; 
    ELSIF (reaction(24 DOWNTO 21) = X"1") THEN 
     X(0 DOWNTO 0) := species1; 
    ELSIF (reaction(24 DOWNTO 21) = X"2") THEN 
     X(0 DOWNTO 0) := species2; 
    ELSIF (reaction(24 DOWNTO 21) = X"3") THEN 
     X(0 DOWNTO 0) := species3; 
    END IF; 
    IF (X(0) = '0') THEN 
     prop(27 DOWNTO 0) := X"0000000"; 
    ELSE 
     prop := reaction(15 DOWNTO 0) * Y; 
    END IF; 
   END IF; 
  END IF; 
  
  propensity <= prop; 
 END IF; 
  END PROCESS;  
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END rtl; 
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prop_self.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY prop_self IS 
  PORT ( clk  : IN STD_LOGIC; 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0); 
  propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) );  
END prop_self; 
 
ARCHITECTURE rtl OF prop_self IS 
 
BEGIN 
 
  PROCESS(clk) 
 VARIABLE X, Y : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE prop : STD_LOGIC_VECTOR(39 DOWNTO 0); 
 
  BEGIN 
 IF (clk'EVENT AND clk='1') THEN 
  IF (reaction(20) = '1') THEN 
   prop := X"0000000000"; 
  ELSE 
   IF (reaction(19 DOWNTO 16) = X"4") THEN 
    X := species4; 
   ELSIF (reaction(19 DOWNTO 16) = X"5") THEN 
    X := species5; 
   ELSIF (reaction(19 DOWNTO 16) = X"6") THEN 
    X := species6; 
   ELSIF (reaction(19 DOWNTO 16) = X"7") THEN 
    X := species7; 
   ELSIF (reaction(19 DOWNTO 16) = X"8") THEN 
    X := species8; 
   ELSIF (reaction(19 DOWNTO 16) = X"9") THEN 
    X := species9; 
   ELSIF (reaction(19 DOWNTO 16) = X"A") THEN 
    X := species10; 
   ELSIF (reaction(19 DOWNTO 16) = X"B") THEN 
    X := species11; 
   ELSIF (reaction(19 DOWNTO 16) = X"C") THEN 
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    X := species12; 
   ELSIF (reaction(19 DOWNTO 16) = X"D") THEN 
    X := species13; 
   ELSIF (reaction(19 DOWNTO 16) = X"E") THEN 
    X := species14; 
   ELSIF (reaction(19 DOWNTO 16) = X"F") THEN 
    X := species15; 
   END IF; 
 
   Y := X - 1; 
   prop := reaction(15 DOWNTO 0) * X * Y; 
   prop(38 DOWNTO 0) := prop(39 DOWNTO 1); 
   prop(39) := '0'; 
  
  END IF; 
  
  propensity <= prop; 
 END IF; 
  END PROCESS;  
END rtl; 
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rxselect.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY rxselect IS 
  PORT ( clk  : IN STD_LOGIC; 
    p0 : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
    p1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
    p2 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p3 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p4 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p5 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p6 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p7 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p8 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p9 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p10 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p11 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p12 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p13 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p14 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p15 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p16 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p17 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p18 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p19 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p20 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p21 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    product  : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  selection : OUT STD_LOGIC_VECTOR(4 DOWNTO 0) ); 
END rxselect; 
 
ARCHITECTURE rtl OF rxselect IS 
 
BEGIN 
 
  PROCESS(clk) 
 VARIABLE rxselect : STD_LOGIC_VECTOR(4 DOWNTO 0); 
 
  BEGIN 
 IF (clk'EVENT AND clk='1') THEN 
  IF (product < p0) THEN 
   rxselect := "00000"; 
  ELSIF (product < (p0 + p1)) THEN 
   rxselect := "00001"; 
  ELSIF (product < (p0 + p1 + p2)) THEN 
   rxselect := "00010"; 
  ELSIF (product < (p0 + p1 + p2 + p3)) THEN 
   rxselect := "00011"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4)) THEN 
   rxselect := "00100"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5)) T HEN 
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   rxselect := "00101"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6)) THEN 
   rxselect := "00110"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7)) 
THEN 
   rxselect := "00111"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8)) THEN 
   rxselect := "01000"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9)) THEN 
   rxselect := "01001"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10)) THEN 
   rxselect := "01010"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11)) THEN 
   rxselect := "01011"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11 + p12)) THEN 
   rxselect := "01100"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11 + p12 + p13)) THEN 
   rxselect := "01101"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11 + p12 + p13 + p14)) THEN 
   rxselect := "01110"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15)) THEN 
   rxselect := "01111"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16))  THEN 
   rxselect := "10000"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 +  p17)) THEN 
   rxselect := "10001"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 +  p17 + p18)) THEN 
   rxselect := "10010"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 +  p17 + p18 + p19)) 
THEN 
   rxselect := "10011"; 
  ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 + 
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 +  p17 + p18 + p19 + 
p20)) THEN 
   rxselect := "10100"; 
  ELSE 
   rxselect := "10101"; 
  END IF; 
 
  selection <= rxselect; 
 END IF; 
  END PROCESS;  
END rtl; 
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sumprop.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY sumprop IS 
  PORT ( clk : IN STD_LOGIC; 
    p0 : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
    p1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
    p2 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p3 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p4 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p5 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p6 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p7 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p8 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p9 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p10 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p11 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p12 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p13 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p14 : IN STD_LOGIC_VECTOR(27 DOWNTO 0); 
    p15 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p16 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p17 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p18 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p19 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p20 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
    p21 : IN STD_LOGIC_VECTOR(39 DOWNTO 0); 
  totalp : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) ); 
END sumprop; 
 
ARCHITECTURE rtl OF sumprop IS 
 
BEGIN 
 
  PROCESS(clk) 
 VARIABLE sum : STD_LOGIC_VECTOR(39 DOWNTO 0); 
 
  BEGIN 
 IF (clk'EVENT AND clk='1') THEN 
  sum := p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8  + p9 + 
p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18  + p19 + p20 + p21; 
 
  totalp <= sum; 
 END IF; 
  END PROCESS;  
END rtl; 
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updatespecies.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY updatespecies IS 
  PORT ( clk  : IN STD_LOGIC; 
    species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 
  species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
  reaction0 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction1 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction2 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction3 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction4 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction5 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction6 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction7 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction8 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction9 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction10 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction11 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction12 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  reaction13 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction14 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction15 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction16 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction17 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction18 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction19 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction20 : IN STD_LOGIC_VECTOR(19 DOWNTO 0); 
  reaction21 : IN STD_LOGIC_VECTOR(14 DOWNTO 0); 
  selection : IN STD_LOGIC_VECTOR(4 DOWNTO 0); 
  newspecies0 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
  newspecies1 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
  newspecies2 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
  newspecies3 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0); 
  newspecies4 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies5 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies6 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
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  newspecies7 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies8 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies9 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); 
  newspecies10 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies11 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies12 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies13 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies14 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);  
  newspecies15 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0) ); 
END updatespecies; 
 
ARCHITECTURE rtl OF updatespecies IS 
 
BEGIN 
 
  PROCESS (clk) 
 VARIABLE rx  : STD_LOGIC_VECTOR(19 DOWNTO 0); 
 VARIABLE newsp0  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE newsp1  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE newsp2  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE newsp3  : STD_LOGIC_VECTOR(0 DOWNTO 0); 
 VARIABLE newsp4  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp5  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp6  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp7  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp8  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp9  : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp10 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp11 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp12 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp13 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp14 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 VARIABLE newsp15 : STD_LOGIC_VECTOR(11 DOWNTO 0); 
 
  BEGIN 
 IF (clk = '1' AND clk'EVENT) THEN 
  newsp0 := species0; 
  newsp1 := species1; 
  newsp2 := species2; 
  newsp3 := species3; 
  newsp4 := species4; 
  newsp5 := species5; 
  newsp6 := species6; 
  newsp7 := species7; 
  newsp8 := species8; 
  newsp9 := species9; 
  newsp10 := species10; 
  newsp11 := species11; 
  newsp12 := species12; 
  newsp13 := species13; 
  newsp14 := species14; 
  newsp15 := species15; 
 
  IF (selection = "00000") THEN 
   rx(4 DOWNTO 0) := "11111"; 
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   rx(19 DOWNTO 5) := reaction0; 
  ELSIF (selection = "00001") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction1; 
  ELSIF (selection = "00010") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction2; 
  ELSIF (selection = "00011") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction3; 
  ELSIF (selection = "00100") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction4; 
  ELSIF (selection = "00101") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction5; 
  ELSIF (selection = "00110") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction6; 
  ELSIF (selection = "00111") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction7; 
  ELSIF (selection = "01000") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction8; 
  ELSIF (selection = "01001") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction9; 
  ELSIF (selection = "01010") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction10; 
  ELSIF (selection = "01011") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction11; 
  ELSIF (selection = "01100") THEN 
   rx(4 DOWNTO 0) := "11111"; 
   rx(19 DOWNTO 5) := reaction12; 
  ELSIF (selection = "01101") THEN 
   rx := reaction13; 
  ELSIF (selection = "01110") THEN 
   rx := reaction14; 
  ELSIF (selection = "01111") THEN 
   rx := reaction15; 
  ELSIF (selection = "10000") THEN 
   rx := reaction16; 
  ELSIF (selection = "10001") THEN 
   rx := reaction17; 
  ELSIF (selection = "10010") THEN 
   rx := reaction18; 
  ELSIF (selection = "10011") THEN 
   rx := reaction19; 
  ELSIF (selection = "10100") THEN 
   rx := reaction20; 
  ELSE 
   rx(4 DOWNTO 0) := reaction21(9 DOWNTO 5); 
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   rx(19 DOWNTO 5) := reaction21; 
  END IF; 
  IF (rx(9) /= '1') THEN 
   CASE rx(8 DOWNTO 5) IS 
    WHEN X"0" => newsp0 := newsp0 - 1; 
    WHEN X"1" => newsp1 := newsp1 - 1; 
    WHEN X"2" => newsp2 := newsp2 - 1; 
    WHEN X"3" => newsp3 := newsp3 - 1; 
    WHEN X"4" => newsp4 := newsp4 - 1; 
    WHEN X"5" => newsp5 := newsp5 - 1; 
    WHEN X"6" => newsp6 := newsp6 - 1; 
    WHEN X"7" => newsp7 := newsp7 - 1; 
    WHEN X"8" => newsp8 := newsp8 - 1; 
    WHEN X"9" => newsp9 := newsp9 - 1; 
    WHEN X"A" => newsp10 := newsp10 - 1; 
    WHEN X"B" => newsp11 := newsp11 - 1; 
    WHEN X"C" => newsp12 := newsp12 - 1; 
    WHEN X"D" => newsp13 := newsp13 - 1; 
    WHEN X"E" => newsp14 := newsp14 - 1; 
    WHEN others => newsp15 := newsp15 - 1; 
   END CASE; 
  END IF; 
  IF (rx(4) /= '1') THEN 
   CASE rx(3 DOWNTO 0) IS 
    WHEN X"0" => newsp0 := newsp0 - 1; 
    WHEN X"1" => newsp1 := newsp1 - 1; 
    WHEN X"2" => newsp2 := newsp2 - 1; 
    WHEN X"3" => newsp3 := newsp3 - 1; 
    WHEN X"4" => newsp4 := newsp4 - 1; 
    WHEN X"5" => newsp5 := newsp5 - 1; 
    WHEN X"6" => newsp6 := newsp6 - 1; 
    WHEN X"7" => newsp7 := newsp7 - 1; 
    WHEN X"8" => newsp8 := newsp8 - 1; 
    WHEN X"9" => newsp9 := newsp9 - 1; 
    WHEN X"A" => newsp10 := newsp10 - 1; 
    WHEN X"B" => newsp11 := newsp11 - 1; 
    WHEN X"C" => newsp12 := newsp12 - 1; 
    WHEN X"D" => newsp13 := newsp13 - 1; 
    WHEN X"E" => newsp14 := newsp14 - 1; 
    WHEN others => newsp15 := newsp15 - 1; 
   END CASE; 
  END IF; 
  IF (rx(19) /= '1') THEN 
   CASE rx(18 DOWNTO 15) IS 
    WHEN X"0" => newsp0 := newsp0 + 1; 
    WHEN X"1" => newsp1 := newsp1 + 1; 
    WHEN X"2" => newsp2 := newsp2 + 1; 
    WHEN X"3" => newsp3 := newsp3 + 1; 
    WHEN X"4" => newsp4 := newsp4 + 1; 
    WHEN X"5" => newsp5 := newsp5 + 1; 
    WHEN X"6" => newsp6 := newsp6 + 1; 
    WHEN X"7" => newsp7 := newsp7 + 1; 
    WHEN X"8" => newsp8 := newsp8 + 1; 
    WHEN X"9" => newsp9 := newsp9 + 1; 
    WHEN X"A" => newsp10 := newsp10 + 1; 
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    WHEN X"B" => newsp11 := newsp11 + 1; 
    WHEN X"C" => newsp12 := newsp12 + 1; 
    WHEN X"D" => newsp13 := newsp13 + 1; 
    WHEN X"E" => newsp14 := newsp14 + 1; 
    WHEN others => newsp15 := newsp15 + 1; 
   END CASE; 
  END IF; 
  IF (rx(14) /= '1') THEN 
   CASE rx(13 DOWNTO 10) IS 
    WHEN X"0" => newsp0 := newsp0 + 1; 
    WHEN X"1" => newsp1 := newsp1 + 1; 
    WHEN X"2" => newsp2 := newsp2 + 1; 
    WHEN X"3" => newsp3 := newsp3 + 1; 
    WHEN X"4" => newsp4 := newsp4 + 1; 
    WHEN X"5" => newsp5 := newsp5 + 1; 
    WHEN X"6" => newsp6 := newsp6 + 1; 
    WHEN X"7" => newsp7 := newsp7 + 1; 
    WHEN X"8" => newsp8 := newsp8 + 1; 
    WHEN X"9" => newsp9 := newsp9 + 1; 
    WHEN X"A" => newsp10 := newsp10 + 1; 
    WHEN X"B" => newsp11 := newsp11 + 1; 
    WHEN X"C" => newsp12 := newsp12 + 1; 
    WHEN X"D" => newsp13 := newsp13 + 1; 
    WHEN X"E" => newsp14 := newsp14 + 1; 
    WHEN others => newsp15 := newsp15 + 1; 
   END CASE; 
  END IF; 
 
  newspecies0 <= newsp0; 
  newspecies1 <= newsp1; 
  newspecies2 <= newsp2; 
  newspecies3 <= newsp3; 
  newspecies4 <= newsp4; 
  newspecies5 <= newsp5; 
  newspecies6 <= newsp6; 
  newspecies7 <= newsp7; 
  newspecies8 <= newsp8; 
  newspecies9 <= newsp9; 
  newspecies10 <= newsp10; 
  newspecies11 <= newsp11; 
  newspecies12 <= newsp12; 
  newspecies13 <= newsp13; 
  newspecies14 <= newsp14; 
  newspecies15 <= newsp15; 
 END IF; 
  END PROCESS;  
END rtl; 
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lfsr32.vhd [17] 

library ieee; 
library work; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity lfsr32 is 
  port   ( in_clock          : in std_logic; 
    in_reset          : in std_logic; 
    in_seed           : in std_logic_vector(31 down to 0); 
    out_random_number : out std_logic_vector(31 dow nto 0)); 
end entity lfsr32; 
 
architecture a of lfsr32 is 
begin 
  process(in_clock) 
    variable var_current_number : std_logic_vector( 31 downto 0); 
    variable var_startup : natural; 
    variable var_next_bit : std_logic; 
  begin 
    if (in_clock = '1' and in_clock'event) then 
      if (in_reset='1' or var_startup=0) then 
 var_current_number := in_seed; 
 var_startup := 1; 
      else 
 var_next_bit := var_current_number(0) XOR  
   var_current_number(26) XOR  
   var_current_number(27) XOR  
   var_current_number(31); 
 var_current_number(31 downto 1) := var_current_num ber(30 downto 
0); 
 var_current_number(0) := var_next_bit; 
      end if; 
      out_random_number <= var_current_number; 
    end if; 
  end process; 
end architecture a; 
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Appendix B 

Register Based Design C++ 

hw.cc 

#include <stdio.h> 
#include <time.h> 
#include <stdlib.h> 
#include <string.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <sys/time.h> 
#include <fcntl.h> 
#include <sys/mman.h> 
#include <math.h> 
#include <iostream> 
#include <cstdlib> 
#include "iflib.h" 
 
using namespace std; 
 
#define NULLSPECIES 31  
#define NMAX 16 
#define MMAX 22 
#define PMAX 4095 
#define KMAX 65535 
 
class CR{ 
  public: 
 unsigned int reactants,products,fpk; 
 double k; 
 unsigned int *renum,*rewt,*prnum,*prwt; 
}; 
 
char *memp; 
int64 data; 
int fd,tprop[250],rxselect[250]; 
unsigned int n,m,seed,*X,iterations,num,*mon,thecou nt; 
CR *R; 
double thetime,tau; 
FILE *outFile; 
 
void init(void) { 
 fd = open(DEVICE, O_RDWR); 
 memp = (char *)mmap(NULL, MTRRZ, PROT_READ, MAP_PR IVATE, fd, 0); 
 if (memp  == MAP_FAILED) { 
  perror(DEVICE); 
  exit(1); 
 } 
 srand(time(NULL)); 
} 
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// Prints a number in Binary 
void printBinary(unsigned int val,int index){ 
 int count; 
 char chars[64]; 
 
 for(count=0;count<64;count++){ 
  chars[count]='0'; 
 } 
 count = 0; 
 do{ 
  if(val % 2 == 0) chars[count++] = '0'; 
  else chars[count++] = '1'; 
  val = val / 2; 
 }while(val); 
 count=index-1; 
 while(count >= 0){ 
  if((count+1) % 4 == 0) printf(" "); 
  printf("%c", chars[count--]); 
 } 
 printf("\n"); 
} 
 
void setspeciespop(int index, int value){ 
 if(index < 4){ 
  if(value > 1) value = 1; 
 } 
 data.w[1] = (0x1<<28) + (index<<23); 
 data.w[0] = value; 
 write64(data, memp+(0<<3)); 
  
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
} 
 
int readspeciespop(int index){ 
 data.w[1] = (0x2<<28) + (index<<23); 
 write64(data, memp+(0<<3)); 
  
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 return (data.w[0] & 0xFFF); 
} 
 
void setreaction(int index, int reactant1, int reac tant2, int product1, 
int product2, int rate){ 
 if((index<13)||(index==21)){ 
  data.w[1] = (0x3<<28) + (index<<23); 
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  data.w[0] = (product1<<26) + (product2<<21) + 
(reactant2<<16) + rate; 
 } 
 else{ 
  data.w[1] = (0x3<<28) + (index<<23) + (product1<< 5) + 
product2; 
  data.w[0] = (reactant1<<21) + (reactant2<<16) + r ate; 
 } 
 write64(data, memp+(0<<3)); 
  
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
} 
 
int readreaction(int index){ 
 data.w[1] = (0x4<<28) + (index<<24); 
 write64(data, memp+(0<<3)); 
  
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 return (((data.w[1]<<10) + (data.w[0]>>16)) & 0xFF FFF); 
} 
 
int readpropensity(int index){ 
 data.w[1] = (0x6<<28) + (index<<24); 
 write64(data, memp+(0<<3)); 
  
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 //return (((data.w[1]<<24) + data.w[0]>>8) & 0xFFF FFFFF); 
 return data.w[0]; 
} 
 
int readsum(void){ 
 data.w[1] = (0x7<<28); 
 write64(data, memp+(0<<3)); 
  
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 //return (((data.w[1]<<24) + data.w[0]>>8) & 0xFFF FFFFF); 
 return data.w[0]; 
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} 
 
void setseed(int seed){ 
 data.w[1] = (0x8<<28); 
 data.w[0] = seed; 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
} 
 
unsigned int readURV(void){ 
 data.w[1] = (0x9<<28); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 return (data.w[0]); 
} 
 
void nextURV(void){ 
 data.w[1] = (0xA<<28); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
} 
 
unsigned int readproduct(void){ 
 data.w[1] = (0xB<<28); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 return (data.w[0]); 
} 
 
int readrxselected(void){ 
 data.w[1] = (0xC<<28); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
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  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 return (data.w[0] & 0xF); 
} 
 
void updatespecies(void){ 
 data.w[1] = (0xD<<28); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
} 
 
void printresults(void){ 
 int i,j; 
  
 for(i=0;i<250;i++){ 
  if(tprop[i]==-1) break; 
  thetime+=(-
1/(double)tprop[i])*log((double)rand()/(double)RAND _MAX); 
  // Update species populations 
  for(j=0;j<R[rxselect[i]].reactants;j++){ 
   X[R[rxselect[i]].renum[j]]-=R[rxselect[i]].rewt[ j]; 
  } 
  for(j=0;j<R[rxselect[i]].products;j++){ 
   X[R[rxselect[i]].prnum[j]]+=R[rxselect[i]].prwt[ j]; 
  } 
   
  /* 
  fprintf(outFile,"%6d %8.6lf",thecount,thetime); 
  for(j=0;j<num;j++){ 
   fprintf(outFile," %4u",X[mon[j]]); 
  } 
  fprintf(outFile,"\n"); 
  thecount++; 
  */ 
 } 
} 
 
 
void step(int runs){ 
 int i,a=0; 
 
 while(runs>0){ 
  // Tell FPGA to begin executing reactions 
  data.w[1] = (0xE<<28); 
  if(runs>=250) data.w[0] = 252; 
  else data.w[0] = runs + 2; 
  write64(data, memp+(0<<3)); 
  // Print previous results, on first pass there ar e no 
previous results to print 
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  if(a==1) printresults(); 
  else a=1; 
  // Wait until FPGA is done 
  read64(&data, memp+(0<<3)); 
  while(data.w[1]!=0x0){ 
   read64(&data, memp+(0<<3)); 
  } 
  // Update total propensity and reaction selected arrays 
  //if(runs>=250){ 
   for(i=2;i<252;i++){ 
    read64(&data, memp+(i<<3)); 
    tprop[i-2] = data.w[1]; 
    rxselect[i-2] = data.w[0]; 
   } 
  /* 
  } 
  else{ 
   for(i=2;i<2+runs;i++){ 
    read64(&data, memp+(i<<3)); 
    tprop[i-2] = data.w[1]; 
    rxselect[i-2] = data.w[0]; 
   } 
   tprop[i] = -1; 
  } 
  */ 
 
  runs-=250; 
 } 
 printresults(); 
} 
 
int main (int argc, char **argv) 
{ 
 int 
species[16],i,j,k,l,x,reaction[16],propensity[16],s um,selection,reacdat
a[4]; 
 unsigned int kl_int,MF=1,URV,product; 
 double kl=1.0,y; 
 char temp[51],c=65; 
 FILE *inFile; 
 struct timeval ts,te; 
  
 outFile = fopen("results.txt","wt"); 
 
 if(argc>2){ 
  fprintf(stderr,"ERROR!  Expected usage: ./rchw [m odel 
file]\n"); 
  exit(1); 
 } 
 if(argc==2) strcpy(temp,argv[1]); 
 else{ 
  printf("Please enter the name of the model file t o read 
from: "); 
  if(fgets(temp,50,stdin)==NULL){ printf("\n"); exi t(0); } 
  temp[strlen(temp)-1]='\0'; 
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 } 
 inFile = fopen(temp,"r"); 
 while(inFile == NULL){ 
  fprintf(stderr,"ERROR!  Unable to open: %s\n",tem p); 
  printf("Please enter the name of the model file t o read 
from: "); 
  if(fgets(temp,50,stdin)==NULL){ printf("\n"); exi t(0); } 
  temp[strlen(temp)-1]='\0'; 
  inFile = fopen(temp,"r"); 
 } 
 
 init(); 
   
 // Clear BRAM 
 for(i=0;i<255;i++){ 
  data.w[1] = 0x0; 
  data.w[0] = 0x0; 
  write64(data, memp+(i<<3)); 
 } 
 
 gettimeofday(&ts,NULL); 
 
 // READ IN VARIABLES 
 fscanf(inFile,"%u",&n); 
 if(n>NMAX){ 
  fprintf(stderr,"ERROR!  Number of species exceeds  limit of 
%d\n",NMAX); 
  exit(1); 
 } 
 X = new unsigned int[n]; 
 for(i=0;i<n;i++){ 
  fscanf(inFile,"%u",&X[i]); 
  if((i<4)&&(X[i]>1)){ 
   X[i]=1; 
   fprintf(stderr,"WARNING!  Species 0->3 are one b it, 
so species %d has been set to 1\n",i); 
  } 
  if((i>3)&&(X[i]>PMAX)){ 
   X[i]=PMAX; 
   fprintf(stderr,"WARNING!  Species 4->15 are twel ve 
bits, so species %d has been set to %d\n",i,PMAX); 
  } 
 } 
 fscanf(inFile,"%u",&m); 
 if(m>MMAX){ 
  fprintf(stderr,"ERROR!  Number of reactions excee ds limit 
of %d\n",MMAX); 
  exit(1); 
 } 
 R = new CR[m]; 
 for(i=0;i<m;i++){ 
  fscanf(inFile,"%d",&R[i].reactants); 
  R[i].renum = new unsigned int[R[i].reactants]; 
  R[i].rewt = new unsigned int[R[i].reactants]; 
  k=0; 
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  for(j=0;j<R[i].reactants;j++){ 
   fscanf(inFile,"%u",&R[i].rewt[j]); 
   k+=R[i].rewt[j]; 
   fscanf(inFile,"%u",&R[i].renum[j]); 
  } 
  if(k>2){ 
   fprintf(stderr,"ERROR!  Number of reactants in 
reaction %d exceeds maximum of 2\n",i); 
   exit(1); 
  } 
  if((i<4)&&(k>1)){ 
   fprintf(stderr,"ERROR!  Reactions 0->3 have a li mit 
of 1 reactant, reaction %d exceeds that\n",i); 
   exit(1); 
  } 
  fscanf(inFile,"%d",&R[i].products); 
  R[i].prnum = new unsigned int[R[i].products]; 
  R[i].prwt = new unsigned int[R[i].products]; 
  k=0; 
  for(j=0;j<R[i].products;j++){ 
   fscanf(inFile,"%u",&R[i].prwt[j]); 
   k+=R[i].rewt[j]; 
   fscanf(inFile,"%u",&R[i].prnum[j]); 
  } 
  if(k>2){ 
   fprintf(stderr,"ERROR!  Number of products in 
reaction %d exceeds maximum of 2\n",i); 
   exit(1); 
  } 
  fscanf(inFile,"%lf",&R[i].k); 
  y=R[i].k - (unsigned int)(R[i].k); 
  if((y>0) && (y<kl)) kl=y; 
 } 
 if(fscanf(inFile,"%u",&num)==EOF){ 
  num=n; 
  mon=new unsigned int[num]; 
  for(i=0;i<num;i++){ mon[i]=i; } 
  seed=-1-(time(NULL)); 
  iterations=1000000; 
 } 
 else{ 
  mon=new unsigned int[num]; 
  for(i=0;i<num;i++){ fscanf(inFile,"%u",&mon[i]); } 
  if(fscanf(inFile,"%u",&seed)==EOF){ 
   seed=-1-(time(NULL)); 
   iterations=1000000; 
  } 
  else{ 
   if(fscanf(inFile,"%u",&iterations)==EOF){ 
iterations=1000000; } 
  } 
 } 
 
 // Determine multiplication factor of k in order t o use fixed 
point notation 
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 if(kl < 1){ 
  MF = 10000000; 
  if(kl < 0.0000001){ 
   MF = (unsigned int)(1.0/kl); 
  } 
  kl_int = (unsigned int)(kl * MF); 
  if((unsigned int)(kl * MF * 10)%10 >=5) kl_int +=  1; 
  for(i=0;i<6;i++){ 
   if(kl_int %10 > 0) break; 
   MF /= 10; 
   kl_int /= 10; 
  } 
 } 
 
 //Update fixed point k values for each reaction 
 for(i=0;i<m;i++){ 
  R[i].fpk = (unsigned int)(R[i].k * MF); 
  if((unsigned int)(R[i].k*MF * 10)%10 >= 5) R[i].f pk +=1; 
  if(R[i].fpk>KMAX){ 
   fprintf(stderr,"ERROR!  Rate constant of reactio n %d 
exceeds maximum of %d\n",i,KMAX); 
   exit(1); 
  } 
 } 
  
 setseed(seed); 
 thecount = 0; 
 thetime = 0.0; 
 
 /* 
 fprintf(outFile,"%6d  %8.6lf",thecount,thetime); 
 for(j=0;j<num;j++){ 
  fprintf(outFile,"  %6u",X[mon[i]]); 
 } 
 fprintf(outFile,"\n"); 
 thecount++; 
 */ 
 
 // Send initial species populations 
 for(i=0;i<n;i++){ 
  setspeciespop(i,X[i]); 
 } 
 for(i;i<NMAX;i++){ 
  setspeciespop(i,0); 
 } 
 
 // Send reaction equations 
 for(i=0;i<m;i++){ 
  for(j=0;j<4;j++){ reacdata[j]=NULLSPECIES; } 
  j=0; 
  for(k=0;k<R[i].reactants;k++){ 
   for(l=0;l<R[i].rewt[k];l++){ 
    reacdata[j++]=R[i].renum[k]; 
   } 
  } 
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  if(reacdata[1]==NULLSPECIES){ 
   reacdata[1]=reacdata[0]; 
   reacdata[0]=NULLSPECIES; 
  } 
  j=2; 
  for(k=0;k<R[i].products;k++){ 
   for(l=0;l<R[i].prwt[k];l++){ 
    reacdata[j++]=R[i].prnum[k]; 
   } 
  } 
 
 setreaction(i,reacdata[0],reacdata[1],reacdata[2], reacdata[3],R[i
].fpk); 
 } 
 for(i;i<MMAX;i++){ 
 
 setreaction(i,NULLSPECIES,NULLSPECIES,NULLSPECIES, NULLSPECIES,0); 
 } 
  
 step(iterations); 
  
 gettimeofday(&te,NULL); 
 printf("Run Time: %f\n",(double)(te.tv_sec-
ts.tv_sec)+0.000001*(double)(te.tv_usec-ts.tv_usec) ); 
 
 for(i=0;i<n;i++){ 
  printf("Species %d: %d\n",i,readspeciespop(i)); 
 } 
 
 munmap(memp, MTRRZ); 
 close(fd); 
 
 return 0; 
} 
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Appendix C 

BRAM Based Design VHDL 

parith.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY parith IS 
  PORT ( clk : IN STD_LOGIC; 
  we : OUT STD_LOGIC; 
  addr : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); 
  din : OUT STD_LOGIC_VECTOR(63 DOWNTO 0); 
  dout : IN STD_LOGIC_VECTOR(63 DOWNTO 0)); 
END parith; 
 
ARCHITECTURE rtl OF parith IS 
 
COMPONENT lfsr32 
 PORT ( 
  in_clock : IN STD_LOGIC; 
  in_reset : IN STD_LOGIC; 
  in_seed  : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 
  out_random_number : OUT STD_LOGIC_VECTOR(31 DOWNT O 0) ); 
END COMPONENT; 
 
COMPONENT exp_rand 
 PORT ( 
  in_clock : IN STD_LOGIC; 
  out_uniform_number : OUT STD_LOGIC_VECTOR(31 DOWN TO 
0); 
  out_random_number : OUT STD_LOGIC_VECTOR(31 DOWNT O 0) ); 
END COMPONENT; 
 
COMPONENT sumprop 
 PORT ( 
  clk  : IN STD_LOGIC; 
  PSUM1  : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  PSUM2  : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  PSUM3  : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  PSUM4  : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  PSUM5  : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  PSUM6  : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  PSUM7  : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  PSUM8  : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL2  : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL3  : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL4  : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL5  : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL6  : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL7  : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
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  TOTAL8  : OUT STD_LOGIC_VECTOR(47 DOWNTO 0) ); 
END COMPONENT; 
 
COMPONENT propcalc 
 PORT ( 
  clk  : IN STD_LOGIC; 
  POP1  : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
  POP2  : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
  RX  : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  PROPENSITY : OUT STD_LOGIC_VECTOR(47 DOWNTO 0) );  
END COMPONENT; 
 
COMPONENT dpram16_128 
 PORT ( 
  addra : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 
  addrb : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 
  clka : IN STD_LOGIC; 
  clkb : IN STD_LOGIC; 
  dina : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
  dinb : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
  douta : OUT STD_LOGIC_VECTOR(15 DOWNTO 0); 
  doutb : OUT STD_LOGIC_VECTOR(15 DOWNTO 0); 
  wea  : IN STD_LOGIC; 
  web  : IN STD_LOGIC ); 
END COMPONENT; 
 
COMPONENT dpram48_64 
 PORT ( 
  addra : IN STD_LOGIC_VECTOR(5 DOWNTO 0); 
  addrb : IN STD_LOGIC_VECTOR(5 DOWNTO 0); 
  clka : IN STD_LOGIC; 
  clkb : IN STD_LOGIC; 
  dina : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  dinb : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  douta : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  doutb : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  wea  : IN STD_LOGIC; 
  web  : IN STD_LOGIC ); 
END COMPONENT; 
 
SIGNAL s_lfsr_enable : STD_LOGIC; 
SIGNAL s_lfsr_reset  : STD_LOGIC; 
SIGNAL s_seed   : STD_LOGIC_VECTOR(31 DOWNTO 0); 
SIGNAL s_URV   : STD_LOGIC_VECTOR(31 DOWNTO 0); 
SIGNAL s_rxselect  : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL s_ERV_URV  : STD_LOGIC_VECTOR(31 DOWNTO 0); 
SIGNAL s_ERV   : STD_LOGIC_VECTOR(31 DOWNTO 0); 
 
SIGNAL SP1a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP1a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP1a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP1a_wea  : STD_LOGIC; 
SIGNAL SP1a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP1a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP1a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
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SIGNAL SP1a_web  : STD_LOGIC; 
 
SIGNAL SP1b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP1b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP1b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP1b_wea  : STD_LOGIC; 
SIGNAL SP1b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP1b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP1b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP1b_web  : STD_LOGIC; 
 
SIGNAL SP2a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP2a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP2a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP2a_wea  : STD_LOGIC; 
SIGNAL SP2a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP2a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP2a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP2a_web  : STD_LOGIC; 
 
SIGNAL SP2b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP2b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP2b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP2b_wea  : STD_LOGIC; 
SIGNAL SP2b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP2b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP2b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP2b_web  : STD_LOGIC; 
 
SIGNAL SP3a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP3a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP3a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP3a_wea  : STD_LOGIC; 
SIGNAL SP3a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP3a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP3a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP3a_web  : STD_LOGIC; 
 
SIGNAL SP3b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP3b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP3b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP3b_wea  : STD_LOGIC; 
SIGNAL SP3b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP3b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP3b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP3b_web  : STD_LOGIC; 
 
SIGNAL SP4a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP4a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP4a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP4a_wea  : STD_LOGIC; 
SIGNAL SP4a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP4a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP4a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP4a_web  : STD_LOGIC; 



122 

 
SIGNAL SP4b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP4b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP4b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP4b_wea  : STD_LOGIC; 
SIGNAL SP4b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP4b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP4b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP4b_web  : STD_LOGIC; 
 
SIGNAL SP5a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP5a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP5a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP5a_wea  : STD_LOGIC; 
SIGNAL SP5a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP5a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP5a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP5a_web  : STD_LOGIC; 
 
SIGNAL SP5b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP5b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP5b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP5b_wea  : STD_LOGIC; 
SIGNAL SP5b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP5b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP5b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP5b_web  : STD_LOGIC; 
 
SIGNAL SP6a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP6a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP6a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP6a_wea  : STD_LOGIC; 
SIGNAL SP6a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP6a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP6a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP6a_web  : STD_LOGIC; 
 
SIGNAL SP6b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP6b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP6b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP6b_wea  : STD_LOGIC; 
SIGNAL SP6b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP6b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP6b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP6b_web  : STD_LOGIC; 
 
SIGNAL SP7a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP7a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP7a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP7a_wea  : STD_LOGIC; 
SIGNAL SP7a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP7a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP7a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP7a_web  : STD_LOGIC; 
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SIGNAL SP7b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP7b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP7b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP7b_wea  : STD_LOGIC; 
SIGNAL SP7b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP7b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP7b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP7b_web  : STD_LOGIC; 
 
SIGNAL SP8a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP8a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP8a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP8a_wea  : STD_LOGIC; 
SIGNAL SP8a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP8a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP8a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP8a_web  : STD_LOGIC; 
 
SIGNAL SP8b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP8b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP8b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP8b_wea  : STD_LOGIC; 
SIGNAL SP8b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SP8b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP8b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SP8b_web  : STD_LOGIC; 
 
SIGNAL SPUS1_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SPUS1_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SPUS1_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);  
SIGNAL SPUS1_wea  : STD_LOGIC; 
SIGNAL SPUS1_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SPUS1_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SPUS1_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);  
SIGNAL SPUS1_web  : STD_LOGIC; 
SIGNAL SPUS2_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SPUS2_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SPUS2_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);  
SIGNAL SPUS2_wea  : STD_LOGIC; 
SIGNAL SPUS2_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SPUS2_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SPUS2_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);  
SIGNAL SPUS2_web  : STD_LOGIC; 
SIGNAL SPUS3_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SPUS3_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SPUS3_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);  
SIGNAL SPUS3_wea  : STD_LOGIC; 
SIGNAL SPUS3_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SPUS3_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SPUS3_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);  
SIGNAL SPUS3_web  : STD_LOGIC; 
SIGNAL SPUS4_addra : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SPUS4_dina : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SPUS4_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);  
SIGNAL SPUS4_wea  : STD_LOGIC; 
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SIGNAL SPUS4_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL SPUS4_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL SPUS4_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);  
SIGNAL SPUS4_web  : STD_LOGIC; 
 
SIGNAL RX1_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX1_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX1_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX1_wea : STD_LOGIC; 
SIGNAL RX1_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX1_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX1_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX1_web : STD_LOGIC; 
SIGNAL RX2_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX2_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX2_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX2_wea : STD_LOGIC; 
SIGNAL RX2_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX2_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX2_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX2_web : STD_LOGIC; 
SIGNAL RX3_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX3_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX3_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX3_wea : STD_LOGIC; 
SIGNAL RX3_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX3_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX3_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX3_web : STD_LOGIC; 
SIGNAL RX4_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX4_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX4_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX4_wea : STD_LOGIC; 
SIGNAL RX4_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX4_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX4_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX4_web : STD_LOGIC; 
SIGNAL RX5_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX5_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX5_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX5_wea : STD_LOGIC; 
SIGNAL RX5_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX5_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX5_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX5_web : STD_LOGIC; 
SIGNAL RX6_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX6_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX6_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX6_wea : STD_LOGIC; 
SIGNAL RX6_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX6_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX6_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX6_web : STD_LOGIC; 
SIGNAL RX7_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX7_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
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SIGNAL RX7_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX7_wea : STD_LOGIC; 
SIGNAL RX7_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX7_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX7_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX7_web : STD_LOGIC; 
SIGNAL RX8_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX8_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX8_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX8_wea : STD_LOGIC; 
SIGNAL RX8_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RX8_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX8_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RX8_web : STD_LOGIC; 
SIGNAL RXUS_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RXUS_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RXUS_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RXUS_wea : STD_LOGIC; 
SIGNAL RXUS_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL RXUS_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RXUS_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL RXUS_web : STD_LOGIC; 
 
SIGNAL P1_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P1_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P1_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P1_wea : STD_LOGIC; 
SIGNAL P1_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P1_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P1_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P1_web : STD_LOGIC; 
SIGNAL P2_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P2_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P2_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P2_wea : STD_LOGIC; 
SIGNAL P2_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P2_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P2_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P2_web : STD_LOGIC; 
SIGNAL P3_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P3_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P3_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P3_wea : STD_LOGIC; 
SIGNAL P3_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P3_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P3_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P3_web : STD_LOGIC; 
SIGNAL P4_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P4_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P4_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P4_wea : STD_LOGIC; 
SIGNAL P4_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P4_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P4_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P4_web : STD_LOGIC; 
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SIGNAL P5_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P5_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P5_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P5_wea : STD_LOGIC; 
SIGNAL P5_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P5_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P5_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P5_web : STD_LOGIC; 
SIGNAL P6_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P6_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P6_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P6_wea : STD_LOGIC; 
SIGNAL P6_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P6_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P6_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P6_web : STD_LOGIC; 
SIGNAL P7_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P7_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P7_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P7_wea : STD_LOGIC; 
SIGNAL P7_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P7_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P7_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P7_web : STD_LOGIC; 
SIGNAL P8_addra : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P8_dina : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P8_douta : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P8_wea : STD_LOGIC; 
SIGNAL P8_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL P8_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P8_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL P8_web : STD_LOGIC; 
 
SIGNAL PSUM1_1 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM1_2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM2_1 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM2_2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM3_1 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM3_2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM4_1 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM4_2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM5_1 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM5_2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM6_1 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM6_2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM7_1 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM7_2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM8_1 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PSUM8_2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL TPROP2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL TPROP3 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL TPROP4 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL TPROP5 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL TPROP6 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL TPROP7 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
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SIGNAL TPROP8 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 
SIGNAL LBOUND_1 : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL LBOUND_2 : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL LBOUND_3 : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL LBOUND_4 : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL LBOUND_5 : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL LBOUND_6 : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL LBOUND_7 : STD_LOGIC_VECTOR(5 DOWNTO 0); 
SIGNAL LBOUND_8 : STD_LOGIC_VECTOR(5 DOWNTO 0); 
 
SIGNAL PC1_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC1_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC1_RX : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC1_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC2_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC2_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC2_RX : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC2_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC3_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC3_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC3_RX : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC3_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC4_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC4_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC4_RX : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC4_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC5_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC5_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC5_RX : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC5_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC6_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC6_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC6_RX : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC6_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC7_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC7_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC7_RX : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC7_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC8_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC8_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL PC8_RX : STD_LOGIC_VECTOR(47 DOWNTO 0); 
SIGNAL PC8_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 
SIGNAL R1I  : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL R1V  : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL R2I  : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL R2V  : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL P1I  : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL P1V  : STD_LOGIC_VECTOR(15 DOWNTO 0); 
SIGNAL P2I  : STD_LOGIC_VECTOR(6 DOWNTO 0); 
SIGNAL P2V  : STD_LOGIC_VECTOR(15 DOWNTO 0); 
 
SIGNAL product : STD_LOGIC_VECTOR(79 DOWNTO 0); 
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BEGIN 
 
  ERV : exp_rand  PORT MAP ( 
 in_clock => clk, 
 out_uniform_number => s_ERV_URV, 
 out_random_number => s_ERV 
  ); 
 
  URV : lfsr32 PORT MAP ( 
 in_clock => s_lfsr_enable, 
 in_reset => s_lfsr_reset, 
 in_seed => s_seed, 
 out_random_number => s_URV 
  ); 
 
  SP1adpram : dpram16_128 PORT MAP ( 
 addra => SP1a_addra, 
 addrb => SP1a_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP1a_dina, 
 dinb => SP1a_dinb, 
 douta => SP1a_douta, 
 doutb => SP1a_doutb, 
 wea => SP1a_wea, 
 web => SP1a_web 
  ); 
 
  SP1bdpram : dpram16_128 PORT MAP ( 
 addra => SP1b_addra, 
 addrb => SP1b_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP1b_dina, 
 dinb => SP1b_dinb, 
 douta => SP1b_douta, 
 doutb => SP1b_doutb, 
 wea => SP1b_wea, 
 web => SP1b_web 
  ); 
 
  SP2adpram : dpram16_128 PORT MAP ( 
 addra => SP2a_addra, 
 addrb => SP2a_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP2a_dina, 
 dinb => SP2a_dinb, 
 douta => SP2a_douta, 
 doutb => SP2a_doutb, 
 wea => SP2a_wea, 
 web => SP2a_web 
  ); 
 
  SP2bdpram : dpram16_128 PORT MAP ( 
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 addra => SP2b_addra, 
 addrb => SP2b_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP2b_dina, 
 dinb => SP2b_dinb, 
 douta => SP2b_douta, 
 doutb => SP2b_doutb, 
 wea => SP2b_wea, 
 web => SP2b_web 
  ); 
 
  SP3adpram : dpram16_128 PORT MAP ( 
 addra => SP3a_addra, 
 addrb => SP3a_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP3a_dina, 
 dinb => SP3a_dinb, 
 douta => SP3a_douta, 
 doutb => SP3a_doutb, 
 wea => SP3a_wea, 
 web => SP3a_web 
  ); 
 
  SP3bdpram : dpram16_128 PORT MAP ( 
 addra => SP3b_addra, 
 addrb => SP3b_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP3b_dina, 
 dinb => SP3b_dinb, 
 douta => SP3b_douta, 
 doutb => SP3b_doutb, 
 wea => SP3b_wea, 
 web => SP3b_web 
  ); 
 
  SP4adpram : dpram16_128 PORT MAP ( 
 addra => SP4a_addra, 
 addrb => SP4a_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP4a_dina, 
 dinb => SP4a_dinb, 
 douta => SP4a_douta, 
 doutb => SP4a_doutb, 
 wea => SP4a_wea, 
 web => SP4a_web 
  ); 
 
  SP4bdpram : dpram16_128 PORT MAP ( 
 addra => SP4b_addra, 
 addrb => SP4b_addrb, 
 clka => clk, 
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 clkb => clk, 
 dina => SP4b_dina, 
 dinb => SP4b_dinb, 
 douta => SP4b_douta, 
 doutb => SP4b_doutb, 
 wea => SP4b_wea, 
 web => SP4b_web 
  ); 
 
  SP5adpram : dpram16_128 PORT MAP ( 
 addra => SP5a_addra, 
 addrb => SP5a_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP5a_dina, 
 dinb => SP5a_dinb, 
 douta => SP5a_douta, 
 doutb => SP5a_doutb, 
 wea => SP5a_wea, 
 web => SP5a_web 
  ); 
 
  SP5bdpram : dpram16_128 PORT MAP ( 
 addra => SP5b_addra, 
 addrb => SP5b_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP5b_dina, 
 dinb => SP5b_dinb, 
 douta => SP5b_douta, 
 doutb => SP5b_doutb, 
 wea => SP5b_wea, 
 web => SP5b_web 
  ); 
 
  SP6adpram : dpram16_128 PORT MAP ( 
 addra => SP6a_addra, 
 addrb => SP6a_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP6a_dina, 
 dinb => SP6a_dinb, 
 douta => SP6a_douta, 
 doutb => SP6a_doutb, 
 wea => SP6a_wea, 
 web => SP6a_web 
  ); 
 
  SP6bdpram : dpram16_128 PORT MAP ( 
 addra => SP6b_addra, 
 addrb => SP6b_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP6b_dina, 
 dinb => SP6b_dinb, 
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 douta => SP6b_douta, 
 doutb => SP6b_doutb, 
 wea => SP6b_wea, 
 web => SP6b_web 
  ); 
 
  SP7adpram : dpram16_128 PORT MAP ( 
 addra => SP7a_addra, 
 addrb => SP7a_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP7a_dina, 
 dinb => SP7a_dinb, 
 douta => SP7a_douta, 
 doutb => SP7a_doutb, 
 wea => SP7a_wea, 
 web => SP7a_web 
  ); 
 
  SP7bdpram : dpram16_128 PORT MAP ( 
 addra => SP7b_addra, 
 addrb => SP7b_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP7b_dina, 
 dinb => SP7b_dinb, 
 douta => SP7b_douta, 
 doutb => SP7b_doutb, 
 wea => SP7b_wea, 
 web => SP7b_web 
  ); 
 
  SP8adpram : dpram16_128 PORT MAP ( 
 addra => SP8a_addra, 
 addrb => SP8a_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP8a_dina, 
 dinb => SP8a_dinb, 
 douta => SP8a_douta, 
 doutb => SP8a_doutb, 
 wea => SP8a_wea, 
 web => SP8a_web 
  ); 
 
  SP8bdpram : dpram16_128 PORT MAP ( 
 addra => SP8b_addra, 
 addrb => SP8b_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SP8b_dina, 
 dinb => SP8b_dinb, 
 douta => SP8b_douta, 
 doutb => SP8b_doutb, 
 wea => SP8b_wea, 
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 web => SP8b_web 
  ); 
 
  SPUS1dpram : dpram16_128 PORT MAP ( 
 addra => SPUS1_addra, 
 addrb => SPUS1_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SPUS1_dina, 
 dinb => SPUS1_dinb, 
 douta => SPUS1_douta, 
 doutb => SPUS1_doutb, 
 wea => SPUS1_wea, 
 web => SPUS1_web 
  ); 
 
  SPUS2dpram : dpram16_128 PORT MAP ( 
 addra => SPUS2_addra, 
 addrb => SPUS2_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SPUS2_dina, 
 dinb => SPUS2_dinb, 
 douta => SPUS2_douta, 
 doutb => SPUS2_doutb, 
 wea => SPUS2_wea, 
 web => SPUS2_web 
  ); 
 
  SPUS3dpram : dpram16_128 PORT MAP ( 
 addra => SPUS3_addra, 
 addrb => SPUS3_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SPUS3_dina, 
 dinb => SPUS3_dinb, 
 douta => SPUS3_douta, 
 doutb => SPUS3_doutb, 
 wea => SPUS3_wea, 
 web => SPUS3_web 
  ); 
 
  SPUS4dpram : dpram16_128 PORT MAP ( 
 addra => SPUS4_addra, 
 addrb => SPUS4_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => SPUS4_dina, 
 dinb => SPUS4_dinb, 
 douta => SPUS4_douta, 
 doutb => SPUS4_doutb, 
 wea => SPUS4_wea, 
 web => SPUS4_web 
  ); 
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  RX1dpram : dpram48_64 PORT MAP ( 
 addra => RX1_addra, 
 addrb => RX1_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => RX1_dina, 
 dinb => RX1_dinb, 
 douta => RX1_douta, 
 doutb => RX1_doutb, 
 wea => RX1_wea, 
 web => RX1_web 
  ); 
  RX2dpram : dpram48_64 PORT MAP ( 
 addra => RX2_addra, 
 addrb => RX2_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => RX2_dina, 
 dinb => RX2_dinb, 
 douta => RX2_douta, 
 doutb => RX2_doutb, 
 wea => RX2_wea, 
 web => RX2_web 
  ); 
 
  RX3dpram : dpram48_64 PORT MAP ( 
 addra => RX3_addra, 
 addrb => RX3_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => RX3_dina, 
 dinb => RX3_dinb, 
 douta => RX3_douta, 
 doutb => RX3_doutb, 
 wea => RX3_wea, 
 web => RX3_web 
  ); 
 
  RX4dpram : dpram48_64 PORT MAP ( 
 addra => RX4_addra, 
 addrb => RX4_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => RX4_dina, 
 dinb => RX4_dinb, 
 douta => RX4_douta, 
 doutb => RX4_doutb, 
 wea => RX4_wea, 
 web => RX4_web 
  ); 
 
  RX5dpram : dpram48_64 PORT MAP ( 
 addra => RX5_addra, 
 addrb => RX5_addrb, 
 clka => clk, 
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 clkb => clk, 
 dina => RX5_dina, 
 dinb => RX5_dinb, 
 douta => RX5_douta, 
 doutb => RX5_doutb, 
 wea => RX5_wea, 
 web => RX5_web 
  ); 
 
  RX6dpram : dpram48_64 PORT MAP ( 
 addra => RX6_addra, 
 addrb => RX6_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => RX6_dina, 
 dinb => RX6_dinb, 
 douta => RX6_douta, 
 doutb => RX6_doutb, 
 wea => RX6_wea, 
 web => RX6_web 
  ); 
 
  RX7dpram : dpram48_64 PORT MAP ( 
 addra => RX7_addra, 
 addrb => RX7_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => RX7_dina, 
 dinb => RX7_dinb, 
 douta => RX7_douta, 
 doutb => RX7_doutb, 
 wea => RX7_wea, 
 web => RX7_web 
  ); 
 
  RX8dpram : dpram48_64 PORT MAP ( 
 addra => RX8_addra, 
 addrb => RX8_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => RX8_dina, 
 dinb => RX8_dinb, 
 douta => RX8_douta, 
 doutb => RX8_doutb, 
 wea => RX8_wea, 
 web => RX8_web 
  ); 
 
  RXUSdpram : dpram48_64 PORT MAP ( 
 addra => RXUS_addra, 
 addrb => RXUS_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => RXUS_dina, 
 dinb => RXUS_dinb, 
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 douta => RXUS_douta, 
 doutb => RXUS_doutb, 
 wea => RXUS_wea, 
 web => RXUS_web 
  ); 
 
  P1dpram : dpram48_64 PORT MAP ( 
 addra => P1_addra, 
 addrb => P1_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => P1_dina, 
 dinb => P1_dinb, 
 douta => P1_douta, 
 doutb => P1_doutb, 
 wea => P1_wea, 
 web => P1_web 
  ); 
 
  P2dpram : dpram48_64 PORT MAP ( 
 addra => P2_addra, 
 addrb => P2_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => P2_dina, 
 dinb => P2_dinb, 
 douta => P2_douta, 
 doutb => P2_doutb, 
 wea => P2_wea, 
 web => P2_web 
  ); 
 
  P3dpram : dpram48_64 PORT MAP ( 
 addra => P3_addra, 
 addrb => P3_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => P3_dina, 
 dinb => P3_dinb, 
 douta => P3_douta, 
 doutb => P3_doutb, 
 wea => P3_wea, 
 web => P3_web 
  ); 
 
  P4dpram : dpram48_64 PORT MAP ( 
 addra => P4_addra, 
 addrb => P4_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => P4_dina, 
 dinb => P4_dinb, 
 douta => P4_douta, 
 doutb => P4_doutb, 
 wea => P4_wea, 
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 web => P4_web 
  ); 
 
  P5dpram : dpram48_64 PORT MAP ( 
 addra => P5_addra, 
 addrb => P5_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => P5_dina, 
 dinb => P5_dinb, 
 douta => P5_douta, 
 doutb => P5_doutb, 
 wea => P5_wea, 
 web => P5_web 
  ); 
 
  P6dpram : dpram48_64 PORT MAP ( 
 addra => P6_addra, 
 addrb => P6_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => P6_dina, 
 dinb => P6_dinb, 
 douta => P6_douta, 
 doutb => P6_doutb, 
 wea => P6_wea, 
 web => P6_web 
  ); 
 
  P7dpram : dpram48_64 PORT MAP ( 
 addra => P7_addra, 
 addrb => P7_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => P7_dina, 
 dinb => P7_dinb, 
 douta => P7_douta, 
 doutb => P7_doutb, 
 wea => P7_wea, 
 web => P7_web 
  ); 
 
  P8dpram : dpram48_64 PORT MAP ( 
 addra => P8_addra, 
 addrb => P8_addrb, 
 clka => clk, 
 clkb => clk, 
 dina => P8_dina, 
 dinb => P8_dinb, 
 douta => P8_douta, 
 doutb => P8_doutb, 
 wea => P8_wea, 
 web => P8_web 
  ); 
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  PROP1 : propcalc PORT MAP ( 
 clk => clk, 
 POP1 => PC1_POP1, 
 POP2 => PC1_POP2, 
 RX => PC1_RX, 
 PROPENSITY => PC1_PROP 
  ); 
 
  PROP2 : propcalc PORT MAP ( 
 clk => clk, 
 POP1 => PC2_POP1, 
 POP2 => PC2_POP2, 
 RX => PC2_RX, 
 PROPENSITY => PC2_PROP 
  ); 
 
  PROP3 : propcalc PORT MAP ( 
 clk => clk, 
 POP1 => PC3_POP1, 
 POP2 => PC3_POP2, 
 RX => PC3_RX, 
 PROPENSITY => PC3_PROP 
  ); 
 
  PROP4 : propcalc PORT MAP ( 
 clk => clk, 
 POP1 => PC4_POP1, 
 POP2 => PC4_POP2, 
 RX => PC4_RX, 
 PROPENSITY => PC4_PROP 
  ); 
 
  PROP5 : propcalc PORT MAP ( 
 clk => clk, 
 POP1 => PC5_POP1, 
 POP2 => PC5_POP2, 
 RX => PC5_RX, 
 PROPENSITY => PC5_PROP 
  ); 
 
  PROP6 : propcalc PORT MAP ( 
 clk => clk, 
 POP1 => PC6_POP1, 
 POP2 => PC6_POP2, 
 RX => PC6_RX, 
 PROPENSITY => PC6_PROP 
  ); 
 
  PROP7 : propcalc PORT MAP ( 
 clk => clk, 
 POP1 => PC7_POP1, 
 POP2 => PC7_POP2, 
 RX => PC7_RX, 
 PROPENSITY => PC7_PROP 
  ); 
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  PROP8 : propcalc PORT MAP ( 
 clk => clk, 
 POP1 => PC8_POP1, 
 POP2 => PC8_POP2, 
 RX => PC8_RX, 
 PROPENSITY => PC8_PROP 
  ); 
 
  TOTALPROP : sumprop PORT MAP ( 
 clk => clk, 
 PSUM1 => PSUM1_2, 
 PSUM2 => PSUM2_2, 
 PSUM3 => PSUM3_2, 
 PSUM4 => PSUM4_2, 
 PSUM5 => PSUM5_2, 
 PSUM6 => PSUM6_2, 
 PSUM7 => PSUM7_2, 
 PSUM8 => PSUM8_2, 
 TOTAL2 => TPROP2, 
 TOTAL3 => TPROP3, 
 TOTAL4 => TPROP4, 
 TOTAL5 => TPROP5, 
 TOTAL6 => TPROP6, 
 TOTAL7 => TPROP7, 
 TOTAL8 => TPROP8 
  ); 
 
  PROCESS (clk) 
 VARIABLE state : STD_LOGIC_VECTOR(7 DOWNTO 0); 
 VARIABLE state2 : STD_LOGIC_VECTOR(7 DOWNTO 0); 
 VARIABLE count : STD_LOGIC_VECTOR(5 DOWNTO 0); 
 VARIABLE looping : STD_LOGIC; 
 VARIABLE index : STD_LOGIC_VECTOR(7 DOWNTO 0); 
 VARIABLE maxindex : STD_LOGIC_VECTOR(7 DOWNTO 0); 
 VARIABLE theproduct : STD_LOGIC_VECTOR(79 DOWNTO 0 ); 
 
 VARIABLE v_PSUM1_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM1_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM2_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM2_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM3_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM3_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM4_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM4_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM5_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM5_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM6_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM6_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM7_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM7_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM8_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PSUM8_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PC1_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC1_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
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 VARIABLE v_PC1_RX  : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PC2_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC2_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC2_RX  : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PC3_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC3_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC3_RX  : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PC4_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC4_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC4_RX  : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PC5_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC5_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC5_RX  : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PC6_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC6_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC6_RX  : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PC7_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC7_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC7_RX  : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_PC8_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC8_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0 ); 
 VARIABLE v_PC8_RX  : STD_LOGIC_VECTOR(47 DOWNTO 0) ; 
 VARIABLE v_RX   : STD_LOGIC_VECTOR(5 DOWNTO 0); 
 VARIABLE v_R1V   : STD_LOGIC_VECTOR(15 DOWNTO 0); 
 VARIABLE v_R2V   : STD_LOGIC_VECTOR(15 DOWNTO 0); 
 VARIABLE v_P1V   : STD_LOGIC_VECTOR(15 DOWNTO 0); 
 VARIABLE v_P2V   : STD_LOGIC_VECTOR(15 DOWNTO 0); 
 
  BEGIN 
 IF (clk = '0' AND clk'EVENT) THEN  
  LBOUND_1 <= "000000"; 
  LBOUND_2 <= "001000"; 
  LBOUND_3 <= "010000"; 
  LBOUND_4 <= "011000"; 
  LBOUND_5 <= "100000"; 
  LBOUND_6 <= "101000"; 
  LBOUND_7 <= "110000"; 
  LBOUND_8 <= "111000"; 
 
  theproduct := s_URV * TPROP8; 
   
  -- SET ADDRESS FROM WHICH TO READ COMMAND 
  IF (state = "00000000") THEN 
   we <= '0'; 
   addr <= X"00"; 
   din <= (others => '0'); 
 
   s_lfsr_reset <= '0'; 
   s_lfsr_enable <= '0'; 
 
   index := X"02"; 
   maxindex := X"FC"; 
   looping := '0'; 
   count := "000000"; 
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   SPUS1_wea <= '0'; 
   SPUS1_addra <= "0000000"; 
   SPUS1_dina <= (others => '0'); 
   SPUS2_wea <= '0'; 
   SPUS2_addra <= "0000000"; 
   SPUS2_dina <= (others => '0'); 
   SPUS3_wea <= '0'; 
   SPUS3_addra <= "0000000"; 
   SPUS3_dina <= (others => '0'); 
   SPUS4_wea <= '0'; 
   SPUS4_addra <= "0000000"; 
   SPUS4_dina <= (others => '0'); 
   SP1a_wea <= '0'; 
   SP1a_addra <= "0000000"; 
   SP1a_dina <= (others => '0'); 
   SP1b_wea <= '0'; 
   SP1b_addra <= "0000000"; 
   SP1b_dina <= (others => '0'); 
   RX1_wea <= '0'; 
   RX1_addra <= "000000"; 
   RX1_dina <= (others => '0'); 
   P1_wea <= '0'; 
   P1_addra <= "000000"; 
   P1_dina <= (others => '0'); 
   SP2a_wea <= '0'; 
   SP2a_addra <= "0000000"; 
   SP2a_dina <= (others => '0'); 
   SP2b_wea <= '0'; 
   SP2b_addra <= "0000000"; 
   SP2b_dina <= (others => '0'); 
   RX2_wea <= '0'; 
   RX2_addra <= "000000"; 
   RX2_dina <= (others => '0'); 
   P2_wea <= '0'; 
   P2_addra <= "000000"; 
   P2_dina <= (others => '0'); 
   SP3a_wea <= '0'; 
   SP3a_addra <= "0000000"; 
   SP3a_dina <= (others => '0'); 
   SP3b_wea <= '0'; 
   SP3b_addra <= "0000000"; 
   SP3b_dina <= (others => '0'); 
   RX3_wea <= '0'; 
   RX3_addra <= "000000"; 
   RX3_dina <= (others => '0'); 
   P3_wea <= '0'; 
   P3_addra <= "000000"; 
   P3_dina <= (others => '0'); 
   SP4a_wea <= '0'; 
   SP4a_addra <= "0000000"; 
   SP4a_dina <= (others => '0'); 
   SP4b_wea <= '0'; 
   SP4b_addra <= "0000000"; 
   SP4b_dina <= (others => '0'); 
   RX4_wea <= '0'; 
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   RX4_addra <= "000000"; 
   RX4_dina <= (others => '0'); 
   P4_wea <= '0'; 
   P4_addra <= "000000"; 
   P4_dina <= (others => '0'); 
   SP5a_wea <= '0'; 
   SP5a_addra <= "0000000"; 
   SP5a_dina <= (others => '0'); 
   SP5b_wea <= '0'; 
   SP5b_addra <= "0000000"; 
   SP5b_dina <= (others => '0'); 
   RX5_wea <= '0'; 
   RX5_addra <= "000000"; 
   RX5_dina <= (others => '0'); 
   P5_wea <= '0'; 
   P5_addra <= "000000"; 
   P5_dina <= (others => '0'); 
   SP6a_wea <= '0'; 
   SP6a_addra <= "0000000"; 
   SP6a_dina <= (others => '0'); 
   SP6b_wea <= '0'; 
   SP6b_addra <= "0000000"; 
   SP6b_dina <= (others => '0'); 
   RX6_wea <= '0'; 
   RX6_addra <= "000000"; 
   RX6_dina <= (others => '0'); 
   P6_wea <= '0'; 
   P6_addra <= "000000"; 
   P6_dina <= (others => '0'); 
   SP7a_wea <= '0'; 
   SP7a_addra <= "0000000"; 
   SP7a_dina <= (others => '0'); 
   SP7b_wea <= '0'; 
   SP7b_addra <= "0000000"; 
   SP7b_dina <= (others => '0'); 
   RX7_wea <= '0'; 
   RX7_addra <= "000000"; 
   RX7_dina <= (others => '0'); 
   P7_wea <= '0'; 
   P7_addra <= "000000"; 
   P7_dina <= (others => '0'); 
   SP8a_wea <= '0'; 
   SP8a_addra <= "0000000"; 
   SP8a_dina <= (others => '0'); 
   SP8b_wea <= '0'; 
   SP8b_addra <= "0000000"; 
   SP8b_dina <= (others => '0'); 
   RX8_wea <= '0'; 
   RX8_addra <= "000000"; 
   RX8_dina <= (others => '0'); 
   P8_wea <= '0'; 
   P8_addra <= "000000"; 
   P8_dina <= (others => '0'); 
   RXUS_wea <= '0'; 
   RXUS_addra <= "000000"; 
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   RXUS_dina <= (others => '0'); 
 
   state := state + 1; 
   state2 := "00000000"; 
 
  -- INTERPRET COMMANDS 
  ELSIF (state = "00000001") THEN 
 
   -- LOOPING THROUGH 250 REACTIONS 
   IF (looping = '1') THEN 
    IF (index < maxindex) THEN 
     IF (state2 = "00000000") THEN 
      we <= '0'; 
      addr <= X"00"; 
      P1_wea <= '0'; 
      P2_wea <= '0'; 
      P3_wea <= '0'; 
      P4_wea <= '0'; 
      P5_wea <= '0'; 
      P6_wea <= '0'; 
      P7_wea <= '0'; 
      P8_wea <= '0'; 
 
      SPUS1_wea <= '0'; 
      SPUS2_wea <= '0'; 
      SPUS3_wea <= '0'; 
      SPUS4_wea <= '0'; 
      SP1a_wea <= '0'; 
      SP1b_wea <= '0'; 
      SP2a_wea <= '0'; 
      SP2b_wea <= '0'; 
      SP3a_wea <= '0'; 
      SP3b_wea <= '0'; 
      SP4a_wea <= '0'; 
      SP4b_wea <= '0'; 
      SP5a_wea <= '0'; 
      SP5b_wea <= '0'; 
      SP6a_wea <= '0'; 
      SP6b_wea <= '0'; 
      SP7a_wea <= '0'; 
      SP7b_wea <= '0'; 
      SP8a_wea <= '0'; 
      SP8b_wea <= '0'; 
 
      RX1_wea <= '0'; 
      RX1_addra <= LBOUND_1 + count; 
      RX2_wea <= '0'; 
      RX2_addra <= LBOUND_2 + count; 
      RX3_wea <= '0'; 
      RX3_addra <= LBOUND_3 + count; 
      RX4_wea <= '0'; 
      RX4_addra <= LBOUND_4 + count; 
      RX5_wea <= '0'; 
      RX5_addra <= LBOUND_5 + count; 
      RX6_wea <= '0'; 
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      RX6_addra <= LBOUND_6 + count; 
      RX7_wea <= '0'; 
      RX7_addra <= LBOUND_7 + count; 
      RX8_wea <= '0'; 
      RX8_addra <= LBOUND_8 + count; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00000001") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RX1_wea <= '0'; 
      RX1_addra <= LBOUND_1 + count; 
      RX2_wea <= '0'; 
      RX2_addra <= LBOUND_2 + count; 
      RX3_wea <= '0'; 
      RX3_addra <= LBOUND_3 + count; 
      RX4_wea <= '0'; 
      RX4_addra <= LBOUND_4 + count; 
      RX5_wea <= '0'; 
      RX5_addra <= LBOUND_5 + count; 
      RX6_wea <= '0'; 
      RX6_addra <= LBOUND_6 + count; 
      RX7_wea <= '0'; 
      RX7_addra <= LBOUND_7 + count; 
      RX8_wea <= '0'; 
      RX8_addra <= LBOUND_8 + count; 
 
      SP1a_wea <= '0'; 
      SP1b_wea <= '0'; 
      SP1a_addra <= RX1_douta(46 DOWNTO 
40); 
      SP1b_addra <= RX1_douta(38 DOWNTO 
32); 
      SP2a_wea <= '0'; 
      SP2b_wea <= '0'; 
      SP2a_addra <= RX2_douta(46 DOWNTO 
40); 
      SP2b_addra <= RX2_douta(38 DOWNTO 
32); 
      SP3a_wea <= '0'; 
      SP3b_wea <= '0'; 
      SP3a_addra <= RX3_douta(46 DOWNTO 
40); 
      SP3b_addra <= RX3_douta(38 DOWNTO 
32); 
      SP4a_wea <= '0'; 
      SP4b_wea <= '0'; 
      SP4a_addra <= RX4_douta(46 DOWNTO 
40); 
      SP4b_addra <= RX4_douta(38 DOWNTO 
32); 
      SP5a_wea <= '0'; 
      SP5b_wea <= '0'; 
      SP5a_addra <= RX5_douta(46 DOWNTO 
40); 
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      SP5b_addra <= RX5_douta(38 DOWNTO 
32); 
      SP6a_wea <= '0'; 
      SP6b_wea <= '0'; 
      SP6a_addra <= RX6_douta(46 DOWNTO 
40); 
      SP6b_addra <= RX6_douta(38 DOWNTO 
32); 
      SP7a_wea <= '0'; 
      SP7b_wea <= '0'; 
      SP7a_addra <= RX7_douta(46 DOWNTO 
40); 
      SP7b_addra <= RX7_douta(38 DOWNTO 
32); 
      SP8a_wea <= '0'; 
      SP8b_wea <= '0'; 
      SP8a_addra <= RX8_douta(46 DOWNTO 
40); 
      SP8b_addra <= RX8_douta(38 DOWNTO 
32); 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00000010") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RX1_wea <= '0'; 
      RX1_addra <= LBOUND_1 + count; 
      RX2_wea <= '0'; 
      RX2_addra <= LBOUND_2 + count; 
      RX3_wea <= '0'; 
      RX3_addra <= LBOUND_3 + count; 
      RX4_wea <= '0'; 
      RX4_addra <= LBOUND_4 + count; 
      RX5_wea <= '0'; 
      RX5_addra <= LBOUND_5 + count; 
      RX6_wea <= '0'; 
      RX6_addra <= LBOUND_6 + count; 
      RX7_wea <= '0'; 
      RX7_addra <= LBOUND_7 + count; 
      RX8_wea <= '0'; 
      RX8_addra <= LBOUND_8 + count; 
 
      SP1a_wea <= '0'; 
      SP1b_wea <= '0'; 
      SP1a_addra <= RX1_douta(46 DOWNTO 
40); 
      SP1b_addra <= RX1_douta(38 DOWNTO 
32); 
      SP2a_wea <= '0'; 
      SP2b_wea <= '0'; 
      SP2a_addra <= RX2_douta(46 DOWNTO 
40); 
      SP2b_addra <= RX2_douta(38 DOWNTO 
32); 
      SP3a_wea <= '0'; 
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      SP3b_wea <= '0'; 
      SP3a_addra <= RX3_douta(46 DOWNTO 
40); 
      SP3b_addra <= RX3_douta(38 DOWNTO 
32); 
      SP4a_wea <= '0'; 
      SP4b_wea <= '0'; 
      SP4a_addra <= RX4_douta(46 DOWNTO 
40); 
      SP4b_addra <= RX4_douta(38 DOWNTO 
32); 
      SP5a_wea <= '0'; 
      SP5b_wea <= '0'; 
      SP5a_addra <= RX5_douta(46 DOWNTO 
40); 
      SP5b_addra <= RX5_douta(38 DOWNTO 
32); 
      SP6a_wea <= '0'; 
      SP6b_wea <= '0'; 
      SP6a_addra <= RX6_douta(46 DOWNTO 
40); 
      SP6b_addra <= RX6_douta(38 DOWNTO 
32); 
      SP7a_wea <= '0'; 
      SP7b_wea <= '0'; 
      SP7a_addra <= RX7_douta(46 DOWNTO 
40); 
      SP7b_addra <= RX7_douta(38 DOWNTO 
32); 
      SP8a_wea <= '0'; 
      SP8b_wea <= '0'; 
      SP8a_addra <= RX8_douta(46 DOWNTO 
40); 
      SP8b_addra <= RX8_douta(38 DOWNTO 
32);  
 
      v_PC1_POP1 := SP1a_douta; 
      v_PC1_POP2 := SP1b_douta; 
      v_PC1_RX := RX1_douta; 
      v_PC2_POP1 := SP2a_douta; 
      v_PC2_POP2 := SP2b_douta; 
      v_PC2_RX := RX2_douta; 
      v_PC3_POP1 := SP3a_douta; 
      v_PC3_POP2 := SP3b_douta; 
      v_PC3_RX := RX3_douta; 
      v_PC4_POP1 := SP4a_douta; 
      v_PC4_POP2 := SP4b_douta; 
      v_PC4_RX := RX4_douta; 
      v_PC5_POP1 := SP5a_douta; 
      v_PC5_POP2 := SP5b_douta; 
      v_PC5_RX := RX5_douta; 
      v_PC6_POP1 := SP6a_douta; 
      v_PC6_POP2 := SP6b_douta; 
      v_PC6_RX := RX6_douta; 
      v_PC7_POP1 := SP7a_douta; 
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      v_PC7_POP2 := SP7b_douta; 
      v_PC7_RX := RX7_douta; 
      v_PC8_POP1 := SP8a_douta; 
      v_PC8_POP2 := SP8b_douta; 
      v_PC8_RX := RX8_douta; 
      state2 := state2 + 1; 
     ELSIF (state2 = "00000011") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00000100") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00000101") THEN 
      we <= '0'; 
      addr <= X"00"; 
 
      P1_wea <= '1'; 
      P1_addra <= LBOUND_1 + count; 
      P1_dina <= PC1_PROP; 
      P2_wea <= '1'; 
      P2_addra <= LBOUND_2 + count; 
      P2_dina <= PC2_PROP; 
      P3_wea <= '1'; 
      P3_addra <= LBOUND_3 + count; 
      P3_dina <= PC3_PROP; 
      P4_wea <= '1'; 
      P4_addra <= LBOUND_4 + count; 
      P4_dina <= PC4_PROP; 
      P5_wea <= '1'; 
      P5_addra <= LBOUND_5 + count; 
      P5_dina <= PC5_PROP; 
      P6_wea <= '1'; 
      P6_addra <= LBOUND_6 + count; 
      P6_dina <= PC6_PROP; 
      P7_wea <= '1'; 
      P7_addra <= LBOUND_7 + count; 
      P7_dina <= PC7_PROP; 
      P8_wea <= '1'; 
      P8_addra <= LBOUND_8 + count; 
      P8_dina <= PC8_PROP; 
      IF (count = "000000") THEN 
       v_PSUM1_1 := PC1_PROP; 
       v_PSUM2_1 := PC2_PROP; 
       v_PSUM3_1 := PC3_PROP; 
       v_PSUM4_1 := PC4_PROP; 
       v_PSUM5_1 := PC5_PROP; 
       v_PSUM6_1 := PC6_PROP; 
       v_PSUM7_1 := PC7_PROP; 
       v_PSUM8_1 := PC8_PROP; 
       state2 := "00000000"; 
       count := count + 1; 
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      ELSIF (count < "000100") THEN 
       v_PSUM1_1 := v_PSUM1_1 + 
PC1_PROP; 
       v_PSUM2_1 := v_PSUM2_1 + 
PC2_PROP; 
       v_PSUM3_1 := v_PSUM3_1 + 
PC3_PROP; 
       v_PSUM4_1 := v_PSUM4_1 + 
PC4_PROP; 
       v_PSUM5_1 := v_PSUM5_1 + 
PC5_PROP; 
       v_PSUM6_1 := v_PSUM6_1 + 
PC6_PROP; 
       v_PSUM7_1 := v_PSUM7_1 + 
PC7_PROP; 
       v_PSUM8_1 := v_PSUM8_1 + 
PC8_PROP; 
       state2 := "00000000"; 
       count := count + 1; 
      ELSIF (count = "000100") THEN 
       v_PSUM1_2 := v_PSUM1_1 + 
PC1_PROP; 
       v_PSUM2_2 := v_PSUM2_1 + 
PC2_PROP; 
       v_PSUM3_2 := v_PSUM3_1 + 
PC3_PROP; 
       v_PSUM4_2 := v_PSUM4_1 + 
PC4_PROP; 
       v_PSUM5_2 := v_PSUM5_1 + 
PC5_PROP; 
       v_PSUM6_2 := v_PSUM6_1 + 
PC6_PROP; 
       v_PSUM7_2 := v_PSUM7_1 + 
PC7_PROP; 
       v_PSUM8_2 := v_PSUM8_1 + 
PC8_PROP; 
       state2 := "00000000"; 
       count := count + 1; 
      ELSIF (count < "000111") THEN 
       v_PSUM1_2 := v_PSUM1_2 + 
PC1_PROP; 
       v_PSUM2_2 := v_PSUM2_2 + 
PC2_PROP; 
       v_PSUM3_2 := v_PSUM3_2 + 
PC3_PROP; 
       v_PSUM4_2 := v_PSUM4_2 + 
PC4_PROP; 
       v_PSUM5_2 := v_PSUM5_2 + 
PC5_PROP; 
       v_PSUM6_2 := v_PSUM6_2 + 
PC6_PROP; 
       v_PSUM7_2 := v_PSUM7_2 + 
PC7_PROP; 
       v_PSUM8_2 := v_PSUM8_2 + 
PC8_PROP; 
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       state2 := "00000000"; 
       count := count + 1; 
      ELSE 
       v_PSUM1_2 := v_PSUM1_2 + 
PC1_PROP; 
       v_PSUM2_2 := v_PSUM2_2 + 
PC2_PROP; 
       v_PSUM3_2 := v_PSUM3_2 + 
PC3_PROP; 
       v_PSUM4_2 := v_PSUM4_2 + 
PC4_PROP; 
       v_PSUM5_2 := v_PSUM5_2 + 
PC5_PROP; 
       v_PSUM6_2 := v_PSUM6_2 + 
PC6_PROP; 
       v_PSUM7_2 := v_PSUM7_2 + 
PC7_PROP; 
       v_PSUM8_2 := v_PSUM8_2 + 
PC8_PROP; 
       state2 := state2 + 1; 
       count := "000000"; 
      END IF; 
 
     ELSIF (state2 = "00000110") THEN 
      P1_wea <= '0'; 
      P2_wea <= '0'; 
      P3_wea <= '0'; 
      P4_wea <= '0'; 
      P5_wea <= '0'; 
      P6_wea <= '0'; 
      P7_wea <= '0'; 
      P8_wea <= '0'; 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
     ELSIF (state2 = "00000111") THEN 
      we <= '1'; 
      addr <= index; 
      din(63 DOWNTO 32) <= TPROP8(31 
DOWNTO 0); 
      din(31 DOWNTO 0) <= s_ERV; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00001000") THEN 
      we <= '0'; 
      addr <= X"00"; 
      index := index + 1; 
      state2 := state2 + 1; 
  
     ELSIF (state2 = "00001001") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00001010") THEN 
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      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00001011") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00001100") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00001101") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00001110") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00001111") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00010000") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00010001") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00010010") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00010011") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00010100") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00010101") THEN 
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      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00010110") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00010111") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00011000") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00011001") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00011010") THEN 
      we <= '0'; 
      addr <= X"00"; 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00011011") THEN 
      we <= '1'; 
      addr <= index; 
      din(63 DOWNTO 32) <= product(63 
DOWNTO 32); 
      din(31 DOWNTO 6) <= 
"00000000000000000000000000"; 
      din(5 DOWNTO 0) <= s_rxselect; 
      RXUS_wea <= '0'; 
      RXUS_addra <= s_rxselect; 
      v_RX := s_rxselect; 
 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00011100") THEN 
      we <= '0'; 
      addr <= X"00"; 
 
      s_lfsr_reset <= '0'; 
      s_lfsr_enable <= '1'; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '0'; 
      SPUS2_wea <= '0'; 
      SPUS3_wea <= '0'; 
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      SPUS4_wea <= '0'; 
 
      SPUS1_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS2_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS3_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS4_addra <= RXUS_douta(22 DOWNTO 
16); 
 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00011101") THEN 
      we <= '0'; 
      addr <= X"00"; 
      s_lfsr_reset <= '0'; 
      s_lfsr_enable <= '0'; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '0'; 
      SPUS2_wea <= '0'; 
      SPUS3_wea <= '0'; 
      SPUS4_wea <= '0'; 
 
      SPUS1_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS2_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS3_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS4_addra <= RXUS_douta(22 DOWNTO 
16); 
 
      IF (RXUS_douta(46 DOWNTO 40) = 
"1111111") THEN 
       state2 := state2 + 2; 
      ELSE 
       v_R1V := SPUS1_douta - 1; 
       state2 := state2 + 1; 
      END IF; 
 
     ELSIF (state2 = "00011110") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '1'; 
      SPUS1_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS1_dina <= v_R1V; 
      SPUS2_wea <= '1'; 
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      SPUS2_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS2_dina <= v_R1V; 
      SPUS3_wea <= '1'; 
      SPUS3_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS3_dina <= v_R1V; 
      SPUS4_wea <= '1'; 
      SPUS4_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS4_dina <= v_R1V; 
      SP1a_wea <= '1'; 
      SP1a_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP1a_dina <= v_R1V; 
      SP1b_wea <= '1'; 
      SP1b_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP1b_dina <= v_R1V; 
      SP2a_wea <= '1'; 
      SP2a_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP2a_dina <= v_R1V; 
      SP2b_wea <= '1'; 
      SP2b_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP2b_dina <= v_R1V; 
      SP3a_wea <= '1'; 
      SP3a_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP3a_dina <= v_R1V; 
      SP3b_wea <= '1'; 
      SP3b_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP3b_dina <= v_R1V; 
      SP4a_wea <= '1'; 
      SP4a_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP4a_dina <= v_R1V; 
      SP4b_wea <= '1'; 
      SP4b_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP4b_dina <= v_R1V; 
      SP5a_wea <= '1'; 
      SP5a_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP5a_dina <= v_R1V; 
      SP5b_wea <= '1'; 
      SP5b_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP5b_dina <= v_R1V; 
      SP6a_wea <= '1'; 
      SP6a_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP6a_dina <= v_R1V; 
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      SP6b_wea <= '1'; 
      SP6b_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP6b_dina <= v_R1V; 
      SP7a_wea <= '1'; 
      SP7a_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP7a_dina <= v_R1V; 
      SP7b_wea <= '1'; 
      SP7b_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP7b_dina <= v_R1V; 
      SP8a_wea <= '1'; 
      SP8a_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP8a_dina <= v_R1V; 
      SP8b_wea <= '1'; 
      SP8b_addra <= RXUS_douta(46 DOWNTO 
40); 
      SP8b_dina <= v_R1V; 
 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00011111") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '0'; 
      SPUS2_wea <= '0'; 
      SPUS3_wea <= '0'; 
      SPUS4_wea <= '0'; 
      SP1a_wea <= '0'; 
      SP1b_wea <= '0'; 
      SP2a_wea <= '0'; 
      SP2b_wea <= '0'; 
      SP3a_wea <= '0'; 
      SP3b_wea <= '0'; 
      SP4a_wea <= '0'; 
      SP4b_wea <= '0'; 
      SP5a_wea <= '0'; 
      SP5b_wea <= '0'; 
      SP6a_wea <= '0'; 
      SP6b_wea <= '0'; 
      SP7a_wea <= '0'; 
      SP7b_wea <= '0'; 
      SP8a_wea <= '0'; 
      SP8b_wea <= '0'; 
       
      SPUS1_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS2_addra <= RXUS_douta(38 DOWNTO 
32); 
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      SPUS3_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS4_addra <= RXUS_douta(22 DOWNTO 
16); 
 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00100000") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '0'; 
      SPUS2_wea <= '0'; 
      SPUS3_wea <= '0'; 
      SPUS4_wea <= '0'; 
       
      SPUS1_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS2_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS3_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS4_addra <= RXUS_douta(22 DOWNTO 
16); 
 
      IF (RXUS_douta(38 DOWNTO 32) = 
"1111111") THEN 
       state2 := state2 + 2; 
      ELSE 
       v_R2V := SPUS2_douta - 1; 
       state2 := state2 + 1; 
      END IF; 
 
     ELSIF (state2 = "00100001") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '1'; 
      SPUS1_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS1_dina <= v_R2V; 
      SPUS2_wea <= '1'; 
      SPUS2_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS2_dina <= v_R2V; 
      SPUS3_wea <= '1'; 
      SPUS3_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS3_dina <= v_R2V; 
      SPUS4_wea <= '1'; 
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      SPUS4_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS4_dina <= v_R2V; 
      SP1a_wea <= '1'; 
      SP1a_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP1a_dina <= v_R2V; 
      SP1b_wea <= '1'; 
      SP1b_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP1b_dina <= v_R2V; 
      SP2a_wea <= '1'; 
      SP2a_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP2a_dina <= v_R2V; 
      SP2b_wea <= '1'; 
      SP2b_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP2b_dina <= v_R2V; 
      SP3a_wea <= '1'; 
      SP3a_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP3a_dina <= v_R2V; 
      SP3b_wea <= '1'; 
      SP3b_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP3b_dina <= v_R2V; 
      SP4a_wea <= '1'; 
      SP4a_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP4a_dina <= v_R2V; 
      SP4b_wea <= '1'; 
      SP4b_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP4b_dina <= v_R2V; 
      SP5a_wea <= '1'; 
      SP5a_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP5a_dina <= v_R2V; 
      SP5b_wea <= '1'; 
      SP5b_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP5b_dina <= v_R2V; 
      SP6a_wea <= '1'; 
      SP6a_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP6a_dina <= v_R2V; 
      SP6b_wea <= '1'; 
      SP6b_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP6b_dina <= v_R2V; 
      SP7a_wea <= '1'; 
      SP7a_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP7a_dina <= v_R2V; 
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      SP7b_wea <= '1'; 
      SP7b_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP7b_dina <= v_R2V; 
      SP8a_wea <= '1'; 
      SP8a_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP8a_dina <= v_R2V; 
      SP8b_wea <= '1'; 
      SP8b_addra <= RXUS_douta(38 DOWNTO 
32); 
      SP8b_dina <= v_R2V; 
 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00100010") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '0'; 
      SPUS2_wea <= '0'; 
      SPUS3_wea <= '0'; 
      SPUS4_wea <= '0'; 
      SP1a_wea <= '0'; 
      SP1b_wea <= '0'; 
      SP2a_wea <= '0'; 
      SP2b_wea <= '0'; 
      SP3a_wea <= '0'; 
      SP3b_wea <= '0'; 
      SP4a_wea <= '0'; 
      SP4b_wea <= '0'; 
      SP5a_wea <= '0'; 
      SP5b_wea <= '0'; 
      SP6a_wea <= '0'; 
      SP6b_wea <= '0'; 
      SP7a_wea <= '0'; 
      SP7b_wea <= '0'; 
      SP8a_wea <= '0'; 
      SP8b_wea <= '0'; 
       
      SPUS1_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS2_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS3_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS4_addra <= RXUS_douta(22 DOWNTO 
16); 
 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00100011") THEN 
      we <= '0'; 
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      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '0'; 
      SPUS2_wea <= '0'; 
      SPUS3_wea <= '0'; 
      SPUS4_wea <= '0'; 
       
      SPUS1_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS2_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS3_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS4_addra <= RXUS_douta(22 DOWNTO 
16); 
 
      IF (RXUS_douta(30 DOWNTO 24) = 
"1111111") THEN 
       state2 := state2 + 2; 
      ELSE 
       v_P1V := SPUS3_douta + 1; 
       state2 := state2 + 1; 
      END IF; 
 
     ELSIF (state2 = "00100100") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '1'; 
      SPUS1_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS1_dina <= v_P1V; 
      SPUS2_wea <= '1'; 
      SPUS2_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS2_dina <= v_P1V; 
      SPUS3_wea <= '1'; 
      SPUS3_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS3_dina <= v_P1V; 
      SPUS4_wea <= '1'; 
      SPUS4_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS4_dina <= v_P1V; 
      SP1a_wea <= '1'; 
      SP1a_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP1a_dina <= v_P1V; 
      SP1b_wea <= '1'; 
      SP1b_addra <= RXUS_douta(30 DOWNTO 
24); 
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      SP1b_dina <= v_P1V; 
      SP2a_wea <= '1'; 
      SP2a_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP2a_dina <= v_P1V; 
      SP2b_wea <= '1'; 
      SP2b_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP2b_dina <= v_P1V; 
      SP3a_wea <= '1'; 
      SP3a_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP3a_dina <= v_P1V; 
      SP3b_wea <= '1'; 
      SP3b_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP3b_dina <= v_P1V; 
      SP4a_wea <= '1'; 
      SP4a_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP4a_dina <= v_P1V; 
      SP4b_wea <= '1'; 
      SP4b_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP4b_dina <= v_P1V; 
      SP5a_wea <= '1'; 
      SP5a_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP5a_dina <= v_P1V; 
      SP5b_wea <= '1'; 
      SP5b_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP5b_dina <= v_P1V; 
      SP6a_wea <= '1'; 
      SP6a_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP6a_dina <= v_P1V; 
      SP6b_wea <= '1'; 
      SP6b_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP6b_dina <= v_P1V; 
      SP7a_wea <= '1'; 
      SP7a_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP7a_dina <= v_P1V; 
      SP7b_wea <= '1'; 
      SP7b_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP7b_dina <= v_P1V; 
      SP8a_wea <= '1'; 
      SP8a_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP8a_dina <= v_P1V; 
      SP8b_wea <= '1'; 
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      SP8b_addra <= RXUS_douta(30 DOWNTO 
24); 
      SP8b_dina <= v_P1V; 
 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00100101") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '0'; 
      SPUS2_wea <= '0'; 
      SPUS3_wea <= '0'; 
      SPUS4_wea <= '0'; 
      SP1a_wea <= '0'; 
      SP1b_wea <= '0'; 
      SP2a_wea <= '0'; 
      SP2b_wea <= '0'; 
      SP3a_wea <= '0'; 
      SP3b_wea <= '0'; 
      SP4a_wea <= '0'; 
      SP4b_wea <= '0'; 
      SP5a_wea <= '0'; 
      SP5b_wea <= '0'; 
      SP6a_wea <= '0'; 
      SP6b_wea <= '0'; 
      SP7a_wea <= '0'; 
      SP7b_wea <= '0'; 
      SP8a_wea <= '0'; 
      SP8b_wea <= '0'; 
       
      SPUS1_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS2_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS3_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS4_addra <= RXUS_douta(22 DOWNTO 
16); 
 
      state2 := state2 + 1; 
 
     ELSIF (state2 = "00100110") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '0'; 
      SPUS2_wea <= '0'; 
      SPUS3_wea <= '0'; 
      SPUS4_wea <= '0'; 
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      SPUS1_addra <= RXUS_douta(46 DOWNTO 
40); 
      SPUS2_addra <= RXUS_douta(38 DOWNTO 
32); 
      SPUS3_addra <= RXUS_douta(30 DOWNTO 
24); 
      SPUS4_addra <= RXUS_douta(22 DOWNTO 
16); 
 
      IF (RXUS_douta(22 DOWNTO 16) = 
"1111111") THEN 
       state2 := X"00"; 
       index := index + 1; 
      ELSE 
       v_P2V := SPUS4_douta - 1; 
       state2 := state2 + 1; 
      END IF; 
 
     ELSIF (state2 = "00100111") THEN 
      we <= '0'; 
      addr <= X"00"; 
      RXUS_wea <= '0'; 
      RXUS_addra <= v_RX; 
 
      SPUS1_wea <= '1'; 
      SPUS1_addra <= RXUS_douta(22 DOWNTO 
16); 
      SPUS1_dina <= v_P2V; 
      SPUS2_wea <= '1'; 
      SPUS2_addra <= RXUS_douta(22 DOWNTO 
16); 
      SPUS2_dina <= v_P2V; 
      SPUS3_wea <= '1'; 
      SPUS3_addra <= RXUS_douta(22 DOWNTO 
16); 
      SPUS3_dina <= v_P2V; 
      SPUS4_wea <= '1'; 
      SPUS4_addra <= RXUS_douta(22 DOWNTO 
16); 
      SPUS4_dina <= v_P2V; 
      SP1a_wea <= '1'; 
      SP1a_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP1a_dina <= v_P2V; 
      SP1b_wea <= '1'; 
      SP1b_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP1b_dina <= v_P2V; 
      SP2a_wea <= '1'; 
      SP2a_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP2a_dina <= v_P2V; 
      SP2b_wea <= '1'; 
      SP2b_addra <= RXUS_douta(22 DOWNTO 
16); 



161 

      SP2b_dina <= v_P2V; 
      SP3a_wea <= '1'; 
      SP3a_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP3a_dina <= v_P2V; 
      SP3b_wea <= '1'; 
      SP3b_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP3b_dina <= v_P2V; 
      SP4a_wea <= '1'; 
      SP4a_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP4a_dina <= v_P2V; 
      SP4b_wea <= '1'; 
      SP4b_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP4b_dina <= v_P2V; 
      SP5a_wea <= '1'; 
      SP5a_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP5a_dina <= v_P2V; 
      SP5b_wea <= '1'; 
      SP5b_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP5b_dina <= v_P2V; 
      SP6a_wea <= '1'; 
      SP6a_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP6a_dina <= v_P2V; 
      SP6b_wea <= '1'; 
      SP6b_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP6b_dina <= v_P2V; 
      SP7a_wea <= '1'; 
      SP7a_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP7a_dina <= v_P2V; 
      SP7b_wea <= '1'; 
      SP7b_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP7b_dina <= v_P2V; 
      SP8a_wea <= '1'; 
      SP8a_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP8a_dina <= v_P2V; 
      SP8b_wea <= '1'; 
      SP8b_addra <= RXUS_douta(22 DOWNTO 
16); 
      SP8b_dina <= v_P2V; 
 
      index := index + 1; 
      state2 := X"00"; 
     END IF; 
    ELSE 
     we <= '0'; 
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     addr <= X"00"; 
 
     --JUST ADDED 
     SPUS1_wea <= '0'; 
     SPUS2_wea <= '0'; 
     SPUS3_wea <= '0'; 
     SPUS4_wea <= '0'; 
     SP1a_wea <= '0'; 
     SP1b_wea <= '0'; 
     SP2a_wea <= '0'; 
     SP2b_wea <= '0'; 
     SP3a_wea <= '0'; 
     SP3b_wea <= '0'; 
     SP4a_wea <= '0'; 
     SP4b_wea <= '0'; 
     SP5a_wea <= '0'; 
     SP5b_wea <= '0'; 
     SP6a_wea <= '0'; 
     SP6b_wea <= '0'; 
     SP7a_wea <= '0'; 
     SP7b_wea <= '0'; 
     SP8a_wea <= '0'; 
     SP8b_wea <= '0'; 
 
     looping := '0'; 
     state := state + 1; 
    END IF; 
 
   -- NO-OP 
   ELSIF (dout(63 DOWNTO 59) = "00000") THEN 
    we <= '0'; 
    addr <= X"00"; 
    state := "00000000"; 
 
   -- SETTING SPECIES POPULATIONS 
   ELSIF (dout(63 DOWNTO 59) = "00001") THEN 
    we <= '0'; 
    addr <= X"00"; 
    SPUS1_wea <= '1'; 
    SPUS1_addra <= dout(57 DOWNTO 51); 
    SPUS1_dina <= dout(15 DOWNTO 0); 
    SPUS2_wea <= '1'; 
    SPUS2_addra <= dout(57 DOWNTO 51); 
    SPUS2_dina <= dout(15 DOWNTO 0); 
    SPUS3_wea <= '1'; 
    SPUS3_addra <= dout(57 DOWNTO 51); 
    SPUS3_dina <= dout(15 DOWNTO 0); 
    SPUS4_wea <= '1'; 
    SPUS4_addra <= dout(57 DOWNTO 51); 
    SPUS4_dina <= dout(15 DOWNTO 0); 
    SP1a_wea <= '1'; 
    SP1a_addra <= dout(57 DOWNTO 51); 
    SP1a_dina <= dout(15 DOWNTO 0); 
    SP1b_wea <= '1'; 
    SP1b_addra <= dout(57 DOWNTO 51); 
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    SP1b_dina <= dout(15 DOWNTO 0); 
    SP2a_wea <= '1'; 
    SP2a_addra <= dout(57 DOWNTO 51); 
    SP2a_dina <= dout(15 DOWNTO 0); 
    SP2b_wea <= '1'; 
    SP2b_addra <= dout(57 DOWNTO 51); 
    SP2b_dina <= dout(15 DOWNTO 0); 
    SP3a_wea <= '1'; 
    SP3a_addra <= dout(57 DOWNTO 51); 
    SP3a_dina <= dout(15 DOWNTO 0); 
    SP3b_wea <= '1'; 
    SP3b_addra <= dout(57 DOWNTO 51); 
    SP3b_dina <= dout(15 DOWNTO 0); 
    SP4a_wea <= '1'; 
    SP4a_addra <= dout(57 DOWNTO 51); 
    SP4a_dina <= dout(15 DOWNTO 0); 
    SP4b_wea <= '1'; 
    SP4b_addra <= dout(57 DOWNTO 51); 
    SP4b_dina <= dout(15 DOWNTO 0); 
    SP5a_wea <= '1'; 
    SP5a_addra <= dout(57 DOWNTO 51); 
    SP5a_dina <= dout(15 DOWNTO 0); 
    SP5b_wea <= '1'; 
    SP5b_addra <= dout(57 DOWNTO 51); 
    SP5b_dina <= dout(15 DOWNTO 0); 
    SP6a_wea <= '1'; 
    SP6a_addra <= dout(57 DOWNTO 51); 
    SP6a_dina <= dout(15 DOWNTO 0); 
    SP6b_wea <= '1'; 
    SP6b_addra <= dout(57 DOWNTO 51); 
    SP6b_dina <= dout(15 DOWNTO 0); 
    SP7a_wea <= '1'; 
    SP7a_addra <= dout(57 DOWNTO 51); 
    SP7a_dina <= dout(15 DOWNTO 0); 
    SP7b_wea <= '1'; 
    SP7b_addra <= dout(57 DOWNTO 51); 
    SP7b_dina <= dout(15 DOWNTO 0); 
    SP8a_wea <= '1'; 
    SP8a_addra <= dout(57 DOWNTO 51); 
    SP8a_dina <= dout(15 DOWNTO 0); 
    SP8b_wea <= '1'; 
    SP8b_addra <= dout(57 DOWNTO 51); 
    SP8b_dina <= dout(15 DOWNTO 0); 
 
    state := state + 1; 
 
   -- READING A SPECIES POPULATION 
   ELSIF (dout(63 DOWNTO 59) = "00010") THEN 
    IF (state2 = "00000000") THEN 
     state2 := state2 + 1; 
     we <= '0'; 
     addr <= X"00"; 
 
     SP1a_wea <= '0'; 
     SP1a_addra <= dout(57 DOWNTO 51); 
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    ELSE  
     we <= '1'; 
     addr <= X"01"; 
     SP1a_wea <= '0'; 
     SP1a_addra <= dout(57 DOWNTO 51); 
     din(63 DOWNTO 16) <= X"000000000000"; 
     din(15 DOWNTO 0) <= SP1a_douta; 
     state2 := "00000000"; 
     state := state + 1; 
    END IF; 
 
   -- SETTING A REACTION EQUATION 
   ELSIF (dout(63 DOWNTO 59) = "00011") THEN 
    we <= '0'; 
    addr <= X"00"; 
    RX1_wea <= '1'; 
    RX1_addra <= dout(56 DOWNTO 51); 
    RX1_dina <= dout(47 DOWNTO 0); 
    RX2_wea <= '1'; 
    RX2_addra <= dout(56 DOWNTO 51); 
    RX2_dina <= dout(47 DOWNTO 0); 
    RX3_wea <= '1'; 
    RX3_addra <= dout(56 DOWNTO 51); 
    RX3_dina <= dout(47 DOWNTO 0); 
    RX4_wea <= '1'; 
    RX4_addra <= dout(56 DOWNTO 51); 
    RX4_dina <= dout(47 DOWNTO 0); 
    RX5_wea <= '1'; 
    RX5_addra <= dout(56 DOWNTO 51); 
    RX5_dina <= dout(47 DOWNTO 0); 
    RX6_wea <= '1'; 
    RX6_addra <= dout(56 DOWNTO 51); 
    RX6_dina <= dout(47 DOWNTO 0); 
    RX7_wea <= '1'; 
    RX7_addra <= dout(56 DOWNTO 51); 
    RX7_dina <= dout(47 DOWNTO 0); 
    RX8_wea <= '1'; 
    RX8_addra <= dout(56 DOWNTO 51); 
    RX8_dina <= dout(47 DOWNTO 0); 
    RXUS_wea <= '1'; 
    RXUS_addra <= dout(56 DOWNTO 51); 
    RXUS_dina <= dout(47 DOWNTO 0); 
    state := state + 1; 
 
   -- READING A REACTION EQUATION 
   ELSIF (dout(63 DOWNTO 59) = "00100") THEN 
    IF (state2 = "00000000") THEN 
     state2 := state2 + 1; 
     we <= '0'; 
     addr <= X"00"; 
 
     RX1_wea <= '0'; 
     RX1_addra <= dout(56 DOWNTO 51); 
    ELSE  
     we <= '1'; 
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     addr <= X"01"; 
     RX1_wea <= '0'; 
     RX1_addra <= dout(56 DOWNTO 51); 
     din(63 DOWNTO 48) <= X"0000"; 
     din(47 DOWNTO 0) <= RX1_douta(47 DOWNTO 
0); 
     state2 := "00000000"; 
     state := state + 1; 
    END IF; 
 
   -- READING A PROPENSITY  
   ELSIF (dout(63 DOWNTO 59) = "00101") THEN 
    IF (state2 = "00000000") THEN 
     state2 := state2 + 1; 
     we <= '0'; 
     addr <= X"00"; 
 
     P1_wea <= '0'; 
     P1_addra <= dout(56 DOWNTO 51); 
     P2_wea <= '0'; 
     P2_addra <= dout(56 DOWNTO 51); 
     P3_wea <= '0'; 
     P3_addra <= dout(56 DOWNTO 51); 
     P4_wea <= '0'; 
     P4_addra <= dout(56 DOWNTO 51); 
     P5_wea <= '0'; 
     P5_addra <= dout(56 DOWNTO 51); 
     P6_wea <= '0'; 
     P6_addra <= dout(56 DOWNTO 51); 
     P7_wea <= '0'; 
     P7_addra <= dout(56 DOWNTO 51); 
     P8_wea <= '0'; 
     P8_addra <= dout(56 DOWNTO 51); 
    ELSE  
     we <= '1'; 
     addr <= X"01"; 
     IF (dout(56 DOWNTO 51) < X"08") THEN 
      P1_wea <= '0'; 
      P1_addra <= dout(56 DOWNTO 51); 
      din(63 DOWNTO 48) <= X"0000"; 
      din(47 DOWNTO 0) <= P1_douta(47 
DOWNTO 0); 
     ELSIF (dout(56 DOWNTO 51) < X"10") THEN 
      P2_wea <= '0'; 
      P2_addra <= dout(56 DOWNTO 51); 
      din(63 DOWNTO 48) <= X"0000"; 
      din(47 DOWNTO 0) <= P2_douta(47 
DOWNTO 0); 
     ELSIF (dout(56 DOWNTO 51) < X"18") THEN 
      P3_wea <= '0'; 
      P3_addra <= dout(56 DOWNTO 51); 
      din(63 DOWNTO 48) <= X"0000"; 
      din(47 DOWNTO 0) <= P3_douta(47 
DOWNTO 0); 
     ELSIF (dout(56 DOWNTO 51) < X"20") THEN 
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      P4_wea <= '0'; 
      P4_addra <= dout(56 DOWNTO 51); 
      din(63 DOWNTO 48) <= X"0000"; 
      din(47 DOWNTO 0) <= P4_douta(47 
DOWNTO 0); 
     ELSIF (dout(56 DOWNTO 51) < X"28") THEN 
      P5_wea <= '0'; 
      P5_addra <= dout(56 DOWNTO 51); 
      din(63 DOWNTO 48) <= X"0000"; 
      din(47 DOWNTO 0) <= P5_douta(47 
DOWNTO 0); 
     ELSIF (dout(56 DOWNTO 51) < X"30") THEN 
      P6_wea <= '0'; 
      P6_addra <= dout(56 DOWNTO 51); 
      din(63 DOWNTO 48) <= X"0000"; 
      din(47 DOWNTO 0) <= P6_douta(47 
DOWNTO 0); 
     ELSIF (dout(56 DOWNTO 51) < X"38") THEN 
      P7_wea <= '0'; 
      P7_addra <= dout(56 DOWNTO 51); 
      din(63 DOWNTO 48) <= X"0000"; 
      din(47 DOWNTO 0) <= P7_douta(47 
DOWNTO 0); 
     ELSE 
      P8_wea <= '0'; 
      P8_addra <= dout(56 DOWNTO 51); 
      din(63 DOWNTO 48) <= X"0000"; 
      din(47 DOWNTO 0) <= P8_douta(47 
DOWNTO 0); 
     END IF; 
     state2 := "00000000"; 
     state := state + 1; 
    END IF; 
 
 --  -- READING A PARTIAL SUM 
 --  ELSIF (dout(63 DOWNTO 59) = "00110") THEN 
 --   we <= '1'; 
 --   addr <= X"01"; 
 --   din(63 DOWNTO 48) <= X"0000"; 
 --   CASE dout(58 DOWNTO 51) IS 
 --   WHEN X"11" => 
 --    din(47 DOWNTO 0) <= v_PSUM1_1; 
 --   WHEN X"12" => 
 --    din(47 DOWNTO 0) <= v_PSUM1_2; 
 --   WHEN X"21" => 
 --    din(47 DOWNTO 0) <= v_PSUM2_1; 
 --   WHEN X"22" => 
 --    din(47 DOWNTO 0) <= v_PSUM2_2; 
 --   WHEN X"31" => 
 --    din(47 DOWNTO 0) <= v_PSUM3_1; 
 --   WHEN X"32" => 
 --    din(47 DOWNTO 0) <= v_PSUM3_2; 
 --   WHEN X"41" => 
 --    din(47 DOWNTO 0) <= v_PSUM4_1; 
 --   WHEN X"42" => 
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 --    din(47 DOWNTO 0) <= v_PSUM4_2; 
 --   WHEN X"51" => 
 --    din(47 DOWNTO 0) <= v_PSUM5_1; 
 --   WHEN X"52" => 
 --    din(47 DOWNTO 0) <= v_PSUM5_2; 
 --   WHEN X"61" => 
 --    din(47 DOWNTO 0) <= v_PSUM6_1; 
 --   WHEN X"62" => 
 --    din(47 DOWNTO 0) <= v_PSUM6_2; 
 --   WHEN X"71" => 
 --    din(47 DOWNTO 0) <= v_PSUM7_1; 
 --   WHEN X"72" => 
 --    din(47 DOWNTO 0) <= v_PSUM7_2; 
 --   WHEN X"81" => 
 --    din(47 DOWNTO 0) <= v_PSUM8_1; 
 --   WHEN X"82" => 
 --    din(47 DOWNTO 0) <= v_PSUM8_2; 
 --   WHEN OTHERS => 
 --    din(47 DOWNTO 0) <= TPROP8; 
 --   END CASE; 
 --   state := state + 1; 
    
   -- SET SEED TO UNIFORM RANDOM NUMBER GENERATOR 
   ELSIF (dout(63 DOWNTO 59) = "00111") THEN 
    we <= '0'; 
    addr <= X"00"; 
    CASE state2 IS 
    WHEN "00000000" => 
     s_seed <= dout(31 DOWNTO 0); 
     s_lfsr_reset <= '1'; 
     state2 := state2 + 1; 
    WHEN OTHERS => 
     s_seed <= dout(31 DOWNTO 0); 
     s_lfsr_reset <= '1'; 
     s_lfsr_enable <= '1'; 
     state := state + 1; 
     state2 := "00000000"; 
    END CASE; 
    
 --  -- READING UNIFORM RANDOM NUMBER 
 --  ELSIF (dout(63 DOWNTO 59) = "01000") THEN 
 --   we <= '1'; 
 --   addr <= X"01"; 
 --   din(63 DOWNTO 32) <= X"00000000"; 
 --   din(31 DOWNTO 0) <= s_URV; 
 --   state := state + 1; 
 
 --  -- CALCULATE A NEW UNIFORM RANDOM NUMBER 
 --  ELSIF (dout(63 DOWNTO 59) = "01001") THEN 
 --   we <= '0'; 
 --   addr <= X"00"; 
 --   s_lfsr_reset <= '0'; 
 --   s_lfsr_enable <= '1'; 
 --   state := state + 1; 
 



168 

   -- READING PRODUCT 
   ELSIF (dout(63 DOWNTO 59) = "01010") THEN 
    we <= '1'; 
    addr <= X"01"; 
    din(63 DOWNTO 48) <= X"0000"; 
    din(47 DOWNTO 0) <= product(79 DOWNTO 32); 
    state := state + 1; 
    
   -- READING SELECTED REACTION 
   ELSIF (dout(63 DOWNTO 59) = "01011") THEN 
    we <= '1'; 
    addr <= X"01"; 
    din(63 DOWNTO 8) <= X"00000000000000"; 
    din(7 DOWNTO 6) <= "00"; 
    din(5 DOWNTO 0) <= s_rxselect; 
    state := state + 1; 
    
 --  -- READING EXPONENTIAL RANDOM NUMBER 
 --  ELSIF (dout(63 DOWNTO 59) = "01100") THEN 
 --   we <= '1'; 
 --   addr <= X"01"; 
 --   din(63 DOWNTO 32) <= s_ERV_URV; 
 --   din(31 DOWNTO 0) <= s_ERV; 
 --   state := state + 1; 
 
   -- INITIALIZING PROPENSITY CALCULATORS 
   ELSIF (dout(63 DOWNTO 59) = "01101") THEN 
    we <= '0'; 
    addr <= X"00"; 
    IF (state2 < "00000010") THEN 
     P1_wea <= '0'; 
     P2_wea <= '0'; 
     P3_wea <= '0'; 
     P4_wea <= '0'; 
     P5_wea <= '0'; 
     P6_wea <= '0'; 
     P7_wea <= '0'; 
     P8_wea <= '0'; 
 
     RX1_wea <= '0'; 
     RX1_addra <= LBOUND_1 + count; 
     RX2_wea <= '0'; 
     RX2_addra <= LBOUND_2 + count; 
     RX3_wea <= '0'; 
     RX3_addra <= LBOUND_3 + count; 
     RX4_wea <= '0'; 
     RX4_addra <= LBOUND_4 + count; 
     RX5_wea <= '0'; 
     RX5_addra <= LBOUND_5 + count; 
     RX6_wea <= '0'; 
     RX6_addra <= LBOUND_6 + count; 
     RX7_wea <= '0'; 
     RX7_addra <= LBOUND_7 + count; 
     RX8_wea <= '0'; 
     RX8_addra <= LBOUND_8 + count; 
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     state2 := state2 + 1; 
 
    ELSIF (state2 < "00000100") THEN 
     RX1_wea <= '0'; 
     RX1_addra <= LBOUND_1 + count; 
     RX2_wea <= '0'; 
     RX2_addra <= LBOUND_2 + count; 
     RX3_wea <= '0'; 
     RX3_addra <= LBOUND_3 + count; 
     RX4_wea <= '0'; 
     RX4_addra <= LBOUND_4 + count; 
     RX5_wea <= '0'; 
     RX5_addra <= LBOUND_5 + count; 
     RX6_wea <= '0'; 
     RX6_addra <= LBOUND_6 + count; 
     RX7_wea <= '0'; 
     RX7_addra <= LBOUND_7 + count; 
     RX8_wea <= '0'; 
     RX8_addra <= LBOUND_8 + count; 
 
     SP1a_wea <= '0'; 
     SP1b_wea <= '0'; 
     SP1a_addra <= RX1_douta(46 DOWNTO 40); 
     SP1b_addra <= RX1_douta(38 DOWNTO 32); 
     SP2a_wea <= '0'; 
     SP2b_wea <= '0'; 
     SP2a_addra <= RX2_douta(46 DOWNTO 40); 
     SP2b_addra <= RX2_douta(38 DOWNTO 32); 
     SP3a_wea <= '0'; 
     SP3b_wea <= '0'; 
     SP3a_addra <= RX3_douta(46 DOWNTO 40); 
     SP3b_addra <= RX3_douta(38 DOWNTO 32); 
     SP4a_wea <= '0'; 
     SP4b_wea <= '0'; 
     SP4a_addra <= RX4_douta(46 DOWNTO 40); 
     SP4b_addra <= RX4_douta(38 DOWNTO 32); 
     SP5a_wea <= '0'; 
     SP5b_wea <= '0'; 
     SP5a_addra <= RX5_douta(46 DOWNTO 40); 
     SP5b_addra <= RX5_douta(38 DOWNTO 32); 
     SP6a_wea <= '0'; 
     SP6b_wea <= '0'; 
     SP6a_addra <= RX6_douta(46 DOWNTO 40); 
     SP6b_addra <= RX6_douta(38 DOWNTO 32); 
     SP7a_wea <= '0'; 
     SP7b_wea <= '0'; 
     SP7a_addra <= RX7_douta(46 DOWNTO 40); 
     SP7b_addra <= RX7_douta(38 DOWNTO 32); 
     SP8a_wea <= '0'; 
     SP8b_wea <= '0'; 
     SP8a_addra <= RX8_douta(46 DOWNTO 40); 
     SP8b_addra <= RX8_douta(38 DOWNTO 32); 
     state2 := state2 + 1; 
 
    ELSIF (state2 = "00000100") THEN 
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     RX1_wea <= '0'; 
     RX1_addra <= LBOUND_1 + count; 
     RX2_wea <= '0'; 
     RX2_addra <= LBOUND_2 + count; 
     RX3_wea <= '0'; 
     RX3_addra <= LBOUND_3 + count; 
     RX4_wea <= '0'; 
     RX4_addra <= LBOUND_4 + count; 
     RX5_wea <= '0'; 
     RX5_addra <= LBOUND_5 + count; 
     RX6_wea <= '0'; 
     RX6_addra <= LBOUND_6 + count; 
     RX7_wea <= '0'; 
     RX7_addra <= LBOUND_7 + count; 
     RX8_wea <= '0'; 
     RX8_addra <= LBOUND_8 + count; 
 
     SP1a_wea <= '0'; 
     SP1b_wea <= '0'; 
     SP1a_addra <= RX1_douta(46 DOWNTO 40); 
     SP1b_addra <= RX1_douta(38 DOWNTO 32); 
     SP2a_wea <= '0'; 
     SP2b_wea <= '0'; 
     SP2a_addra <= RX2_douta(46 DOWNTO 40); 
     SP2b_addra <= RX2_douta(38 DOWNTO 32); 
     SP3a_wea <= '0'; 
     SP3b_wea <= '0'; 
     SP3a_addra <= RX3_douta(46 DOWNTO 40); 
     SP3b_addra <= RX3_douta(38 DOWNTO 32); 
     SP4a_wea <= '0'; 
     SP4b_wea <= '0'; 
     SP4a_addra <= RX4_douta(46 DOWNTO 40); 
     SP4b_addra <= RX4_douta(38 DOWNTO 32); 
     SP5a_wea <= '0'; 
     SP5b_wea <= '0'; 
     SP5a_addra <= RX5_douta(46 DOWNTO 40); 
     SP5b_addra <= RX5_douta(38 DOWNTO 32); 
     SP6a_wea <= '0'; 
     SP6b_wea <= '0'; 
     SP6a_addra <= RX6_douta(46 DOWNTO 40); 
     SP6b_addra <= RX6_douta(38 DOWNTO 32); 
     SP7a_wea <= '0'; 
     SP7b_wea <= '0'; 
     SP7a_addra <= RX7_douta(46 DOWNTO 40); 
     SP7b_addra <= RX7_douta(38 DOWNTO 32); 
     SP8a_wea <= '0'; 
     SP8b_wea <= '0'; 
     SP8a_addra <= RX8_douta(46 DOWNTO 40); 
     SP8b_addra <= RX8_douta(38 DOWNTO 32); 
 
     v_PC1_POP1 := SP1a_douta; 
     v_PC1_POP2 := SP1b_douta; 
     v_PC1_RX := RX1_douta; 
     v_PC2_POP1 := SP2a_douta; 
     v_PC2_POP2 := SP2b_douta; 
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     v_PC2_RX := RX2_douta; 
     v_PC3_POP1 := SP3a_douta; 
     v_PC3_POP2 := SP3b_douta; 
     v_PC3_RX := RX3_douta; 
     v_PC4_POP1 := SP4a_douta; 
     v_PC4_POP2 := SP4b_douta; 
     v_PC4_RX := RX4_douta; 
     v_PC5_POP1 := SP5a_douta; 
     v_PC5_POP2 := SP5b_douta; 
     v_PC5_RX := RX5_douta; 
     v_PC6_POP1 := SP6a_douta; 
     v_PC6_POP2 := SP6b_douta; 
     v_PC6_RX := RX6_douta; 
     v_PC7_POP1 := SP7a_douta; 
     v_PC7_POP2 := SP7b_douta; 
     v_PC7_RX := RX7_douta; 
     v_PC8_POP1 := SP8a_douta; 
     v_PC8_POP2 := SP8b_douta; 
     v_PC8_RX := RX8_douta; 
     state2 := state2 + 1; 
    ELSIF (state2 = "00000110") THEN 
     state2 := "00000000"; 
     P1_wea <= '1'; 
     P1_addra <= LBOUND_1 + count; 
     P1_dina <= PC1_PROP; 
     P2_wea <= '1'; 
     P2_addra <= LBOUND_2 + count; 
     P2_dina <= PC2_PROP; 
     P3_wea <= '1'; 
     P3_addra <= LBOUND_3 + count; 
     P3_dina <= PC3_PROP; 
     P4_wea <= '1'; 
     P4_addra <= LBOUND_4 + count; 
     P4_dina <= PC4_PROP; 
     P5_wea <= '1'; 
     P5_addra <= LBOUND_5 + count; 
     P5_dina <= PC5_PROP; 
     P6_wea <= '1'; 
     P6_addra <= LBOUND_6 + count; 
     P6_dina <= PC6_PROP; 
     P7_wea <= '1'; 
     P7_addra <= LBOUND_7 + count; 
     P7_dina <= PC7_PROP; 
     P8_wea <= '1'; 
     P8_addra <= LBOUND_8 + count; 
     P8_dina <= PC8_PROP; 
     IF (count = "000000") THEN 
      v_PSUM1_1 := PC1_PROP; 
      v_PSUM2_1 := PC2_PROP; 
      v_PSUM3_1 := PC3_PROP; 
      v_PSUM4_1 := PC4_PROP; 
      v_PSUM5_1 := PC5_PROP; 
      v_PSUM6_1 := PC6_PROP; 
      v_PSUM7_1 := PC7_PROP; 
      v_PSUM8_1 := PC8_PROP; 
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      count := count + 1; 
     ELSIF (count < "000100") THEN 
      v_PSUM1_1 := v_PSUM1_1 + PC1_PROP; 
      v_PSUM2_1 := v_PSUM2_1 + PC2_PROP; 
      v_PSUM3_1 := v_PSUM3_1 + PC3_PROP; 
      v_PSUM4_1 := v_PSUM4_1 + PC4_PROP; 
      v_PSUM5_1 := v_PSUM5_1 + PC5_PROP; 
      v_PSUM6_1 := v_PSUM6_1 + PC6_PROP; 
      v_PSUM7_1 := v_PSUM7_1 + PC7_PROP; 
      v_PSUM8_1 := v_PSUM8_1 + PC8_PROP; 
      count := count + 1; 
     ELSIF (count = "000100") THEN 
      v_PSUM1_2 := v_PSUM1_1 + PC1_PROP; 
      v_PSUM2_2 := v_PSUM2_1 + PC2_PROP; 
      v_PSUM3_2 := v_PSUM3_1 + PC3_PROP; 
      v_PSUM4_2 := v_PSUM4_1 + PC4_PROP; 
      v_PSUM5_2 := v_PSUM5_1 + PC5_PROP; 
      v_PSUM6_2 := v_PSUM6_1 + PC6_PROP; 
      v_PSUM7_2 := v_PSUM7_1 + PC7_PROP; 
      v_PSUM8_2 := v_PSUM8_1 + PC8_PROP; 
      count := count + 1; 
     ELSIF (count < "000111") THEN 
      v_PSUM1_2 := v_PSUM1_2 + PC1_PROP; 
      v_PSUM2_2 := v_PSUM2_2 + PC2_PROP; 
      v_PSUM3_2 := v_PSUM3_2 + PC3_PROP; 
      v_PSUM4_2 := v_PSUM4_2 + PC4_PROP; 
      v_PSUM5_2 := v_PSUM5_2 + PC5_PROP; 
      v_PSUM6_2 := v_PSUM6_2 + PC6_PROP; 
      v_PSUM7_2 := v_PSUM7_2 + PC7_PROP; 
      v_PSUM8_2 := v_PSUM8_2 + PC8_PROP; 
      count := count + 1; 
     ELSE 
      v_PSUM1_2 := v_PSUM1_2 + PC1_PROP; 
      v_PSUM2_2 := v_PSUM2_2 + PC2_PROP; 
      v_PSUM3_2 := v_PSUM3_2 + PC3_PROP; 
      v_PSUM4_2 := v_PSUM4_2 + PC4_PROP; 
      v_PSUM5_2 := v_PSUM5_2 + PC5_PROP; 
      v_PSUM6_2 := v_PSUM6_2 + PC6_PROP; 
      v_PSUM7_2 := v_PSUM7_2 + PC7_PROP; 
      v_PSUM8_2 := v_PSUM8_2 + PC8_PROP; 
      state := state + 1; 
      count := "000000"; 
     END IF; 
    ELSE 
     state2 := state2 + 1; 
    END IF; 
 
   -- STEP THROUGH 125 REACTIONS 
   ELSIF (dout(63 DOWNTO 59) = "01110") THEN 
 --   we <= '0'; 
 --   addr <= X"00"; 
    index := X"02"; 
    maxindex := dout(7 DOWNTO 0); 
    looping := '1'; 
    we <= '1'; 
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    addr <= X"01"; 
    din(63 DOWNTO 40) <= X"000000"; 
    din(39 DOWNTO 32) <= index; 
    din(31 DOWNTO 8) <= X"000000"; 
    din(7 DOWNTO 0) <= maxindex; 
    state2 := "00000000"; 
 
   END IF; 
 
  -- TELL CPU THAT FPGA IS DONE 
  ELSIF (state = "0010") THEN 
   we <= '1'; 
   addr <= X"00"; 
   din <= (others => '0'); 
   SPUS1_wea <= '0'; 
   SPUS2_wea <= '0'; 
   SPUS3_wea <= '0'; 
   SPUS4_wea <= '0'; 
   SP1a_wea <= '0'; 
   SP1b_wea <= '0'; 
   SP2a_wea <= '0'; 
   SP2b_wea <= '0'; 
   SP3a_wea <= '0'; 
   SP3b_wea <= '0'; 
   SP4a_wea <= '0'; 
   SP4b_wea <= '0'; 
   SP5a_wea <= '0'; 
   SP5b_wea <= '0'; 
   SP6a_wea <= '0'; 
   SP6b_wea <= '0'; 
   SP7a_wea <= '0'; 
   SP7b_wea <= '0'; 
   SP8a_wea <= '0'; 
   SP8b_wea <= '0'; 
   RX1_wea <= '0'; 
   RX2_wea <= '0'; 
   RX3_wea <= '0'; 
   RX4_wea <= '0'; 
   RX5_wea <= '0'; 
   RX6_wea <= '0'; 
   RX7_wea <= '0'; 
   RX8_wea <= '0'; 
   RXUS_wea <= '0'; 
   P1_wea <= '0'; 
   P2_wea <= '0'; 
   P3_wea <= '0'; 
   P4_wea <= '0'; 
   P5_wea <= '0'; 
   P6_wea <= '0'; 
   P7_wea <= '0'; 
   P8_wea <= '0'; 
   state := "00000000"; 
  ELSE 
   we <= '0'; 
   addr <= X"00"; 
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   state := state + 1; 
  END IF; 
 
  product <= theproduct; 
  PSUM1_1 <= v_PSUM1_1; PSUM1_2 <= v_PSUM1_2; PSUM2 _1 <= 
v_PSUM2_1; PSUM2_2 <= v_PSUM2_2;  
  PSUM3_1 <= v_PSUM3_1; PSUM3_2 <= v_PSUM3_2; PSUM4 _1 <= 
v_PSUM4_1; PSUM4_2 <= v_PSUM4_2; 
  PSUM5_1 <= v_PSUM5_1; PSUM5_2 <= v_PSUM5_2; PSUM6 _1 <= 
v_PSUM6_1; PSUM6_2 <= v_PSUM6_2; 
  PSUM7_1 <= v_PSUM7_1; PSUM7_2 <= v_PSUM7_2; PSUM8 _1 <= 
v_PSUM8_1; PSUM8_2 <= v_PSUM8_2; 
 
  PC1_POP1 <= v_PC1_POP1; PC1_POP2 <= v_PC1_POP2; P C1_RX <= 
v_PC1_RX; 
  PC2_POP1 <= v_PC2_POP1; PC2_POP2 <= v_PC2_POP2; P C2_RX <= 
v_PC2_RX; 
  PC3_POP1 <= v_PC3_POP1; PC3_POP2 <= v_PC3_POP2; P C3_RX <= 
v_PC3_RX; 
  PC4_POP1 <= v_PC4_POP1; PC4_POP2 <= v_PC4_POP2; P C4_RX <= 
v_PC4_RX; 
  PC5_POP1 <= v_PC5_POP1; PC5_POP2 <= v_PC5_POP2; P C5_RX <= 
v_PC5_RX; 
  PC6_POP1 <= v_PC6_POP1; PC6_POP2 <= v_PC6_POP2; P C6_RX <= 
v_PC6_RX; 
  PC7_POP1 <= v_PC7_POP1; PC7_POP2 <= v_PC7_POP2; P C7_RX <= 
v_PC7_RX; 
  PC8_POP1 <= v_PC8_POP1; PC8_POP2 <= v_PC8_POP2; P C8_RX <= 
v_PC8_RX; 
 
 
 END IF; 
  END PROCESS; 
 
 
-- PROCESS TO DETERMINE THE ADDRESS OF THE NEXT REA CTION 
  PROCESS (clk) 
 VARIABLE nextreac : STD_LOGIC_VECTOR(5 DOWNTO 0); 
 VARIABLE v_rxselect : STD_LOGIC_VECTOR(5 DOWNTO 0) ; 
 VARIABLE baddr : STD_LOGIC_VECTOR(5 DOWNTO 0); 
 VARIABLE count : STD_LOGIC_VECTOR(5 DOWNTO 0); 
 VARIABLE apro : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 VARIABLE rx_state : STD_LOGIC_VECTOR(3 DOWNTO 0); 
 VARIABLE pcolumn : STD_LOGIC_VECTOR(3 DOWNTO 0); 
 
  BEGIN 
 IF (clk'EVENT AND clk='1') THEN 
  P1_web <= '0'; P2_web <= '0'; P3_web <= '0'; P4_w eb <= '0'; 
  P5_web <= '0'; P6_web <= '0'; P7_web <= '0'; P8_w eb <= '0'; 
 
  IF (product(79 DOWNTO 32) < PSUM1_2) THEN 
   --IF (pcolumn /= X"1") THEN 
   -- pcolumn := X"1"; 
   -- rx_state := X"0"; 
   --END IF; 
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   CASE rx_state IS 
   WHEN "0000" => 
    apro := product(79 DOWNTO 32); 
    rx_state := rx_state + 1; 
    count := "000000"; 
   WHEN "0001" => 
    IF (apro < PSUM1_1) THEN 
     baddr := "000000"; 
    ELSE 
     baddr := "000100"; 
     apro := apro - PSUM1_1; 
    END IF; 
    P1_addrb <= baddr; 
    rx_state := rx_state + 1; 
   WHEN "0010" => 
    P1_addrb <= baddr + count; 
    rx_state := rx_state + 1; 
   WHEN "0011" => 
    IF (apro < P1_doutb) THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSIF (count = "000011") THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSE 
     apro := apro - P1_doutb; 
     count := count + 1; 
     P1_addrb <= baddr + count; 
     rx_state := X"2"; 
    END IF; 
   WHEN "0100" => 
     v_rxselect := nextreac; 
     rx_state := X"0"; 
   WHEN OTHERS => 
    P1_addrb <= baddr + count; 
    rx_state := X"0"; 
   END CASE; 
 
  ELSIF (product(79 DOWNTO 32) < TPROP2) THEN 
   --IF (pcolumn /= X"2") THEN 
   -- pcolumn := X"2"; 
   -- rx_state := X"0"; 
   --END IF; 
   CASE rx_state IS 
   WHEN "0000" => 
    apro := product(79 DOWNTO 32) - PSUM1_2; 
    rx_state := rx_state + 1; 
    count := "000000"; 
   WHEN "0001" => 
    IF (apro < PSUM2_1) THEN 
     baddr := "001000"; 
    ELSE 
     apro := apro - PSUM2_1; 
     baddr := "001100"; 
    END IF; 
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    P2_addrb <= baddr; 
    rx_state := rx_state + 1; 
   WHEN "0010" => 
    P2_addrb <= baddr + count; 
    rx_state := rx_state + 1; 
   WHEN "0011" => 
    IF (apro < P2_doutb) THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSIF (count = "000011") THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSE 
     apro := apro - P2_doutb; 
     count := count + 1; 
     P2_addrb <= baddr + count; 
     rx_state := X"2"; 
    END IF; 
   WHEN "0100" => 
     v_rxselect := nextreac; 
     rx_state := X"0"; 
   WHEN OTHERS => 
    P2_addrb <= baddr + count; 
    rx_state := X"0"; 
   END CASE; 
 
  ELSIF (product(79 DOWNTO 32) < TPROP3) THEN 
   --IF (pcolumn /= X"3") THEN 
   -- pcolumn := X"3"; 
   -- rx_state := X"0"; 
   --END IF; 
   CASE rx_state IS 
   WHEN "0000" => 
    apro := product(79 DOWNTO 32) - TPROP2; 
    rx_state := rx_state + 1; 
    count := "000000"; 
   WHEN "0001" => 
    IF (apro < PSUM3_1) THEN 
     baddr := "010000"; 
    ELSE 
     apro := apro - PSUM3_1; 
     baddr := "010100"; 
    END IF; 
    P3_addrb <= baddr; 
    rx_state := rx_state + 1; 
   WHEN "0010" => 
    P3_addrb <= baddr + count; 
    rx_state := rx_state + 1; 
   WHEN "0011" => 
    IF (apro < P3_doutb) THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSIF (count = "000011") THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
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    ELSE 
     apro := apro - P3_doutb; 
     count := count + 1; 
     P3_addrb <= baddr + count; 
     rx_state := X"2"; 
    END IF; 
   WHEN "0100" => 
     v_rxselect := nextreac; 
     rx_state := X"0"; 
   WHEN OTHERS => 
    P3_addrb <= baddr + count; 
    rx_state := X"0"; 
   END CASE; 
 
  ELSIF (product(79 DOWNTO 32) < TPROP4) THEN 
   --IF (pcolumn /= X"4") THEN 
   -- pcolumn := X"4"; 
   -- rx_state := X"0"; 
   --END IF; 
   CASE rx_state IS 
   WHEN "0000" => 
    apro := product(79 DOWNTO 32) - TPROP3; 
    rx_state := rx_state + 1; 
    count := "000000"; 
   WHEN "0001" => 
    IF (apro < PSUM4_1) THEN 
     baddr := "011000"; 
    ELSE 
     apro := apro - PSUM4_1; 
     baddr := "011100"; 
    END IF; 
    P4_addrb <= baddr; 
    rx_state := rx_state + 1; 
   WHEN "0010" => 
    P4_addrb <= baddr + count; 
    rx_state := rx_state + 1; 
   WHEN "0011" => 
    IF (apro < P4_doutb) THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSIF (count = "000011") THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSE 
     apro := apro - P4_doutb; 
     count := count + 1; 
     P4_addrb <= baddr + count; 
     rx_state := X"2"; 
    END IF; 
   WHEN "0100" => 
     v_rxselect := nextreac; 
     rx_state := X"0"; 
   WHEN OTHERS => 
    P4_addrb <= baddr + count; 
    rx_state := X"0"; 
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   END CASE; 
 
  ELSIF (product(79 DOWNTO 32) < TPROP5) THEN 
   --IF (pcolumn /= X"5") THEN 
   -- pcolumn := X"5"; 
   -- rx_state := X"0"; 
   --END IF; 
   CASE rx_state IS 
   WHEN "0000" => 
    apro := product(79 DOWNTO 32) - TPROP4; 
    rx_state := rx_state + 1; 
    count := "000000"; 
   WHEN "0001" => 
    IF (apro < PSUM5_1) THEN 
     baddr := "100000"; 
    ELSE 
     apro := apro - PSUM5_1; 
     baddr := "100100"; 
    END IF; 
    P5_addrb <= baddr; 
    rx_state := rx_state + 1; 
   WHEN "0010" => 
    P5_addrb <= baddr + count; 
    rx_state := rx_state + 1; 
   WHEN "0011" => 
    IF (apro < P5_doutb) THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSIF (count = "000011") THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSE 
     apro := apro - P5_doutb; 
     count := count + 1; 
     P5_addrb <= baddr + count; 
     rx_state := X"2"; 
    END IF; 
   WHEN "0100" => 
     v_rxselect := nextreac; 
     rx_state := X"0"; 
   WHEN OTHERS => 
    P5_addrb <= baddr + count; 
    rx_state := X"0"; 
   END CASE; 
 
  ELSIF (product(79 DOWNTO 32) < TPROP6) THEN 
   --IF (pcolumn /= X"6") THEN 
   -- pcolumn := X"6"; 
   -- rx_state := X"0"; 
   --END IF; 
   CASE rx_state IS 
   WHEN "0000" => 
    apro := product(79 DOWNTO 32) - TPROP5; 
    rx_state := rx_state + 1; 
    count := "000000"; 
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   WHEN "0001" => 
    IF (apro < PSUM6_1) THEN 
     baddr := "101000"; 
    ELSE 
     apro := apro - PSUM6_1; 
     baddr := "101100"; 
    END IF; 
    P6_addrb <= baddr; 
    rx_state := rx_state + 1; 
   WHEN "0010" => 
    P6_addrb <= baddr + count; 
    rx_state := rx_state + 1; 
   WHEN "0011" => 
    IF (apro < P6_doutb) THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSIF (count = "000011") THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSE 
     apro := apro - P6_doutb; 
     count := count + 1; 
     P6_addrb <= baddr + count; 
     rx_state := X"2"; 
    END IF; 
   WHEN "0100" => 
     v_rxselect := nextreac; 
     rx_state := X"0"; 
   WHEN OTHERS => 
    P6_addrb <= baddr + count; 
    rx_state := X"0"; 
   END CASE; 
 
  ELSIF (product(79 DOWNTO 32) < TPROP7) THEN 
   --IF (pcolumn /= X"7") THEN 
   -- pcolumn := X"7"; 
   -- rx_state := X"0"; 
   --END IF; 
   CASE rx_state IS 
   WHEN "0000" => 
    apro := product(79 DOWNTO 32) - TPROP6; 
    rx_state := rx_state + 1; 
    count := "000000"; 
   WHEN "0001" => 
    IF (apro < PSUM7_1) THEN 
     baddr := "110000"; 
    ELSE 
     apro := apro - PSUM7_1; 
     baddr := "110100"; 
    END IF; 
    P7_addrb <= baddr; 
    rx_state := rx_state + 1; 
   WHEN "0010" => 
    P7_addrb <= baddr + count; 
    rx_state := rx_state + 1; 
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   WHEN "0011" => 
    IF (apro < P7_doutb) THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSIF (count = "000011") THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSE 
     apro := apro - P7_doutb; 
     count := count + 1; 
     P7_addrb <= baddr + count; 
     rx_state := X"2"; 
    END IF; 
   WHEN "0100" => 
     v_rxselect := nextreac; 
     rx_state := X"0"; 
   WHEN OTHERS => 
    P7_addrb <= baddr + count; 
    rx_state := X"0"; 
   END CASE; 
 
  ELSE 
   --IF (pcolumn /= X"8") THEN 
   -- pcolumn := X"8"; 
   -- rx_state := X"0"; 
   --END IF; 
   CASE rx_state IS 
   WHEN "0000" => 
    apro := product(79 DOWNTO 32) - TPROP7; 
    rx_state := rx_state + 1; 
    count := "000000"; 
   WHEN "0001" => 
    IF (apro < PSUM8_1) THEN 
     baddr := "111000"; 
    ELSE 
     apro := apro - PSUM8_1; 
     baddr := "111100"; 
    END IF; 
    P8_addrb <= baddr; 
    rx_state := rx_state + 1; 
   WHEN "0010" => 
    P8_addrb <= baddr + count; 
    rx_state := rx_state + 1; 
   WHEN "0011" => 
    IF (apro < P8_doutb) THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSIF (count = "000011") THEN 
     nextreac := baddr + count; 
     rx_state := rx_state + 1; 
    ELSE 
     apro := apro - P8_doutb; 
     count := count + 1; 
     P8_addrb <= baddr + count; 
     rx_state := X"2"; 
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    END IF; 
   WHEN "0100" => 
     v_rxselect := nextreac; 
     rx_state := X"0"; 
   WHEN OTHERS => 
    P8_addrb <= baddr + count; 
    rx_state := X"0"; 
   END CASE; 
 
  END IF; 
 
  s_rxselect <= v_rxselect; 
 END IF; 
  END PROCESS; 
 
END rtl;
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propcalc.vhd 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY propcalc IS 
  PORT ( 
 clk   : IN STD_LOGIC; 
 POP1  : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
 POP2  : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 
 RX   : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
 PROPENSITY : OUT STD_LOGIC_VECTOR(47 DOWNTO 0) ); 
END propcalc; 
 
ARCHITECTURE rtl OF propcalc IS 
 
BEGIN 
 
  PROCESS(clk) 
 VARIABLE X,Y : STD_LOGIC_VECTOR(15 DOWNTO 0); 
 VARIABLE prop : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 
  BEGIN 
 IF (clk'EVENT AND clk='0') THEN 
   X := POP1; 
   IF (RX(47 DOWNTO 40) = RX(39 DOWNTO 32)) THEN 
     Y := X - 1; 
   ELSE 
    Y := POP2; 
   END IF; 
   prop := RX(15 DOWNTO 0) * X * Y; 
   IF (RX(47 DOWNTO 40) = RX(39 DOWNTO 32)) THEN 
    prop(46 DOWNTO 0) := prop(47 DOWNTO 1); 
    prop(47) := '0'; 
   END IF; 
   PROPENSITY <= prop; 
 END IF; 
  END PROCESS;  
END rtl; 
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sumprop.vhd 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
ENTITY sumprop IS 
  PORT ( clk : IN STD_LOGIC; 
    PSUM1 : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
    PSUM2 : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
    PSUM3 : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
    PSUM4 : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
    PSUM5 : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
    PSUM6 : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
    PSUM7 : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
    PSUM8 : IN STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL2 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL3 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL4 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL5 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL6 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL7 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0); 
  TOTAL8 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0) ); 
END sumprop; 
 
ARCHITECTURE rtl OF sumprop IS 
 
BEGIN 
  PROCESS(clk) 
 VARIABLE sum2 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 VARIABLE sum3 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 VARIABLE sum4 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 VARIABLE sum5 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 VARIABLE sum6 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 VARIABLE sum7 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
 VARIABLE sum8 : STD_LOGIC_VECTOR(47 DOWNTO 0); 
  BEGIN 
 IF (clk'EVENT AND clk='1') THEN 
  sum2 := PSUM1 + PSUM2; 
  sum3 := PSUM1 + PSUM2 + PSUM3; 
  sum4 := PSUM1 + PSUM2 + PSUM3 + PSUM4; 
  sum5 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5; 
  sum6 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5 + P SUM6; 
  sum7 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5 + P SUM6 + 
PSUM7; 
  sum8 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5 + P SUM6 + 
PSUM7 + PSUM8; 
   
  TOTAL2 <= sum2; TOTAL3 <= sum3; TOTAL4 <= sum4; 

TOTAL5 <= sum5; TOTAL6 <= sum6; TOTAL7 <= sum7; 
TOTAL8 <= sum8; 

 
 END IF; 
  END PROCESS;  
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END rtl; 
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lfsr32.vhd [17] 

library ieee; 
library work; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity lfsr32 is 
  port   ( in_clock          : in std_logic; 
    in_reset          : in std_logic; 
    in_seed           : in std_logic_vector(31 down to 0); 
    out_random_number : out std_logic_vector(31 dow nto 0)); 
end entity lfsr32; 
 
architecture a of lfsr32 is 
begin 
  process(in_clock) 
    variable var_current_number : std_logic_vector( 31 downto 0); 
    variable var_startup : natural; 
    variable var_next_bit : std_logic; 
  begin 
    if (in_clock = '1' and in_clock'event) then 
      if (in_reset='1' or var_startup=0) then 
 var_current_number := in_seed; 
 var_startup := 1; 
      else 
 var_next_bit := var_current_number(0) XOR  
   var_current_number(26) XOR  
   var_current_number(27) XOR  
   var_current_number(31); 
 var_current_number(31 downto 1) := var_current_num ber(30 downto 
0); 
 var_current_number(0) := var_next_bit; 
      end if; 
      out_random_number <= var_current_number; 
    end if; 
  end process; 
end architecture a; 
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exp_rand.vhd [17] 

library ieee; 
library work; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity exp_rand is 
  port ( in_clock : in std_logic; 
  out_uniform_number : out std_logic_vector(31 down to 0); 
  out_random_number : out std_logic_vector(31 downt o 0)); 
end entity; 
 
architecture a of exp_rand is 
  component linear_interp  
    port (in_clk : in std_logic; 
   in_rand : in std_logic_vector(15 downto 0); 
   in_min : in std_logic_vector(15 downto 0); 
   in_diff : in std_logic_vector(15 downto 0); 
   in_urn : in std_logic_vector(31 downto 0); 
   out_urn : out std_logic_vector(31 downto 0); 
   out_interp : out std_logic_vector(31 downto 0));  
  end component; 
 
  component lfsr32  
    port   ( in_clock          : in std_logic; 
      in_reset          : in std_logic; 
      in_seed           : in std_logic_vector(31 do wnto 0); 
      out_random_number : out std_logic_vector(31 d ownto 0)); 
  end component; 
   
  component negative_log_lut  
    port(index : in std_logic_vector(7 downto 0); 
 in_urn : in std_logic_vector(31 downto 0); 
 out_urn : out std_logic_vector(31 downto 0); 
  min : out std_logic_vector(15 downto 0); 
  diff : out std_logic_vector(15 downto 0)); 
  end component; 
 
  signal sig_0 : std_logic; 
  signal sig_expseed : std_logic_vector(31 downto 0 ); 
  signal sig_urn : std_logic_vector(31 downto 0); 
  signal sig_outurn : std_logic_vector(31 downto 0) ; 
  signal sig_min : std_logic_vector(15 downto 0); 
  signal sig_diff : std_logic_vector(15 downto 0); 
 
begin 
  sig_0 <= '0'; 
  sig_expseed <= "10101010101010101010101010101010" ; 
 
  m0 : lfsr32 
    port map(in_clock,sig_0,sig_expseed,sig_urn); 
 
  m1 : linear_interp 
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    port map(in_clock,sig_urn(15 downto 0),sig_min,  
sig_diff,sig_outurn,out_uniform_number,out_random_n umber); 
 
  m2 : negative_log_lut 
    port map(sig_urn(23 downto 
16),sig_urn,sig_outurn,sig_min,sig_diff); 
 
end;   
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negative_log_lut.vhd [17] 

library ieee; 
library work; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity negative_log_lut is 
  port(index : in std_logic_vector(7 downto 0); 
  in_urn : in std_logic_vector(31 downto 0); 
  out_urn : out std_logic_vector(31 downto 0); 
       min : out std_logic_vector(15 downto 0); 
       diff : out std_logic_vector(15 downto 0)); 
end entity; 
  
architecture a of negative_log_lut is 
begin 
  process(index) 
  begin 
 out_urn <= in_urn; 
    case index is 
      when "00000000" => 
        diff <= "0100111010001101"; 
        min <=  "1011000101110010"; 
      when "00000001" => 
        diff <= "0001011000101110"; 
        min <= "1001101101000011"; 
      when "00000010" => 
        diff <= "0000110011111001"; 
        min <= "1000111001001010"; 
      when "00000011" => 
        diff <= "0000100100110100"; 
        min <= "1000010100010101"; 
      when "00000100" => 
        diff <= "0000011100100011"; 
        min <= "0111110111110001"; 
      when "00000101" => 
        diff <= "0000010111010101"; 
        min <= "0111100000011100"; 
      when "00000110" => 
        diff <= "0000010011101110"; 
        min <= "0111001100101101"; 
      when "00000111" => 
        diff <= "0000010001000101"; 
        min <= "0110111011100111"; 
      when "00001000" => 
        diff <= "0000001111000100"; 
        min <= "0110101100100010"; 
      when "00001001" => 
        diff <= "0000001101011111"; 
        min <= "0110011111000011"; 
      when "00001010" => 
        diff <= "0000001100001100"; 
        min <= "0110010010110110"; 
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      when "00001011" => 
        diff <= "0000001011001000"; 
        min <= "0110000111101101"; 
      when "00001100" => 
        diff <= "0000001010001111"; 
        min <= "0101111101011110"; 
      when "00001101" => 
        diff <= "0000001001011111"; 
        min <= "0101110011111110"; 
      when "00001110" => 
        diff <= "0000001000110101"; 
        min <= "0101101011001001"; 
      when "00001111" => 
        diff <= "0000001000010000"; 
        min <= "0101100010111001"; 
      when "00010000" => 
        diff <= "0000000111110000"; 
        min <= "0101011011001000"; 
      when "00010001" => 
        diff <= "0000000111010100"; 
        min <= "0101010011110100"; 
      when "00010010" => 
        diff <= "0000000110111010"; 
        min <= "0101001100111001"; 
      when "00010011" => 
        diff <= "0000000110100100"; 
        min <= "0101000110010101"; 
      when "00010100" => 
        diff <= "0000000110001111"; 
        min <= "0101000000000101"; 
      when "00010101" => 
        diff <= "0000000101111101"; 
        min <= "0100111010001000"; 
      when "00010110" => 
        diff <= "0000000101101100"; 
        min <= "0100110100011100"; 
      when "00010111" => 
        diff <= "0000000101011100"; 
        min <= "0100101110111111"; 
      when "00011000" => 
        diff <= "0000000101001110"; 
        min <= "0100101001110001"; 
      when "00011001" => 
        diff <= "0000000101000001"; 
        min <= "0100100100101111"; 
      when "00011010" => 
        diff <= "0000000100110101"; 
        min <= "0100011111111010"; 
      when "00011011" => 
        diff <= "0000000100101001"; 
        min <= "0100011011010000"; 
      when "00011100" => 
        diff <= "0000000100011111"; 
        min <= "0100010110110001"; 
      when "00011101" => 
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        diff <= "0000000100010101"; 
        min <= "0100010010011011"; 
      when "00011110" => 
        diff <= "0000000100001100"; 
        min <= "0100001110001110"; 
      when "00011111" => 
        diff <= "0000000100000100"; 
        min <= "0100001010001010"; 
      when "00100000" => 
        diff <= "0000000011111100"; 
        min <= "0100000110001110"; 
      when "00100001" => 
        diff <= "0000000011110100"; 
        min <= "0100000010011010"; 
      when "00100010" => 
        diff <= "0000000011101101"; 
        min <= "0011111110101100"; 
      when "00100011" => 
        diff <= "0000000011100110"; 
        min <= "0011111011000101"; 
      when "00100100" => 
        diff <= "0000000011100000"; 
        min <= "0011110111100101"; 
      when "00100101" => 
        diff <= "0000000011011010"; 
        min <= "0011110100001010"; 
      when "00100110" => 
        diff <= "0000000011010100"; 
        min <= "0011110000110110"; 
      when "00100111" => 
        diff <= "0000000011001111"; 
        min <= "0011101101100110"; 
      when "00101000" => 
        diff <= "0000000011001010"; 
        min <= "0011101010011100"; 
      when "00101001" => 
        diff <= "0000000011000101"; 
        min <= "0011100111010111"; 
      when "00101010" => 
        diff <= "0000000011000000"; 
        min <= "0011100100010110"; 
      when "00101011" => 
        diff <= "0000000010111100"; 
        min <= "0011100001011010"; 
      when "00101100" => 
        diff <= "0000000010111000"; 
        min <= "0011011110100001"; 
      when "00101101" => 
        diff <= "0000000010110100"; 
        min <= "0011011011101101"; 
      when "00101110" => 
        diff <= "0000000010110000"; 
        min <= "0011011000111101"; 
      when "00101111" => 
        diff <= "0000000010101100"; 
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        min <= "0011010110010001"; 
      when "00110000" => 
        diff <= "0000000010101000"; 
        min <= "0011010011101000"; 
      when "00110001" => 
        diff <= "0000000010100101"; 
        min <= "0011010001000010"; 
      when "00110010" => 
        diff <= "0000000010100010"; 
        min <= "0011001110100000"; 
      when "00110011" => 
        diff <= "0000000010011111"; 
        min <= "0011001100000001"; 
      when "00110100" => 
        diff <= "0000000010011100"; 
        min <= "0011001001100101"; 
      when "00110101" => 
        diff <= "0000000010011001"; 
        min <= "0011000111001100"; 
      when "00110110" => 
        diff <= "0000000010010110"; 
        min <= "0011000100110110"; 
      when "00110111" => 
        diff <= "0000000010010011"; 
        min <= "0011000010100010"; 
      when "00111000" => 
        diff <= "0000000010010000"; 
        min <= "0011000000010001"; 
      when "00111001" => 
        diff <= "0000000010001110"; 
        min <= "0010111110000010"; 
      when "00111010" => 
        diff <= "0000000010001100"; 
        min <= "0010111011110110"; 
      when "00111011" => 
        diff <= "0000000010001001"; 
        min <= "0010111001101101"; 
      when "00111100" => 
        diff <= "0000000010000111"; 
        min <= "0010110111100101"; 
      when "00111101" => 
        diff <= "0000000010000101"; 
        min <= "0010110101100000"; 
      when "00111110" => 
        diff <= "0000000010000011"; 
        min <= "0010110011011101"; 
      when "00111111" => 
        diff <= "0000000010000001"; 
        min <= "0010110001011100"; 
      when "01000000" => 
        diff <= "0000000001111111"; 
        min <= "0010101111011101"; 
      when "01000001" => 
        diff <= "0000000001111101"; 
        min <= "0010101101100000"; 
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      when "01000010" => 
        diff <= "0000000001111011"; 
        min <= "0010101011100101"; 
      when "01000011" => 
        diff <= "0000000001111001"; 
        min <= "0010101001101011"; 
      when "01000100" => 
        diff <= "0000000001110111"; 
        min <= "0010100111110100"; 
      when "01000101" => 
        diff <= "0000000001110101"; 
        min <= "0010100101111110"; 
      when "01000110" => 
        diff <= "0000000001110100"; 
        min <= "0010100100001010"; 
      when "01000111" => 
        diff <= "0000000001110010"; 
        min <= "0010100010010111"; 
      when "01001000" => 
        diff <= "0000000001110000"; 
        min <= "0010100000100110"; 
      when "01001001" => 
        diff <= "0000000001101111"; 
        min <= "0010011110110111"; 
      when "01001010" => 
        diff <= "0000000001101101"; 
        min <= "0010011101001001"; 
      when "01001011" => 
        diff <= "0000000001101100"; 
        min <= "0010011011011100"; 
      when "01001100" => 
        diff <= "0000000001101011"; 
        min <= "0010011001110001"; 
      when "01001101" => 
        diff <= "0000000001101001"; 
        min <= "0010011000000111"; 
      when "01001110" => 
        diff <= "0000000001101000"; 
        min <= "0010010110011111"; 
      when "01001111" => 
        diff <= "0000000001100111"; 
        min <= "0010010100111000"; 
      when "01010000" => 
        diff <= "0000000001100101"; 
        min <= "0010010011010010"; 
      when "01010001" => 
        diff <= "0000000001100100"; 
        min <= "0010010001101110"; 
      when "01010010" => 
        diff <= "0000000001100011"; 
        min <= "0010010000001010"; 
      when "01010011" => 
        diff <= "0000000001100010"; 
        min <= "0010001110101000"; 
      when "01010100" => 



193 

        diff <= "0000000001100000"; 
        min <= "0010001101000111"; 
      when "01010101" => 
        diff <= "0000000001011111"; 
        min <= "0010001011101000"; 
      when "01010110" => 
        diff <= "0000000001011110"; 
        min <= "0010001010001001"; 
      when "01010111" => 
        diff <= "0000000001011101"; 
        min <= "0010001000101011"; 
      when "01011000" => 
        diff <= "0000000001011100"; 
        min <= "0010000111001111"; 
      when "01011001" => 
        diff <= "0000000001011011"; 
        min <= "0010000101110011"; 
      when "01011010" => 
        diff <= "0000000001011010"; 
        min <= "0010000100011001"; 
      when "01011011" => 
        diff <= "0000000001011001"; 
        min <= "0010000010111111"; 
      when "01011100" => 
        diff <= "0000000001011000"; 
        min <= "0010000001100111"; 
      when "01011101" => 
        diff <= "0000000001010111"; 
        min <= "0010000000001111"; 
      when "01011110" => 
        diff <= "0000000001010110"; 
        min <= "0001111110111000"; 
      when "01011111" => 
        diff <= "0000000001010101"; 
        min <= "0001111101100010"; 
      when "01100000" => 
        diff <= "0000000001010100"; 
        min <= "0001111100001110"; 
      when "01100001" => 
        diff <= "0000000001010100"; 
        min <= "0001111010111010"; 
      when "01100010" => 
        diff <= "0000000001010011"; 
        min <= "0001111001100110"; 
      when "01100011" => 
        diff <= "0000000001010010"; 
        min <= "0001111000010100"; 
      when "01100100" => 
        diff <= "0000000001010001"; 
        min <= "0001110111000011"; 
      when "01100101" => 
        diff <= "0000000001010000"; 
        min <= "0001110101110010"; 
      when "01100110" => 
        diff <= "0000000001001111"; 
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        min <= "0001110100100010"; 
      when "01100111" => 
        diff <= "0000000001001111"; 
        min <= "0001110011010011"; 
      when "01101000" => 
        diff <= "0000000001001110"; 
        min <= "0001110010000100"; 
      when "01101001" => 
        diff <= "0000000001001101"; 
        min <= "0001110000110111"; 
      when "01101010" => 
        diff <= "0000000001001100"; 
        min <= "0001101111101010"; 
      when "01101011" => 
        diff <= "0000000001001100"; 
        min <= "0001101110011110"; 
      when "01101100" => 
        diff <= "0000000001001011"; 
        min <= "0001101101010010"; 
      when "01101101" => 
        diff <= "0000000001001010"; 
        min <= "0001101100000111"; 
      when "01101110" => 
        diff <= "0000000001001010"; 
        min <= "0001101010111101"; 
      when "01101111" => 
        diff <= "0000000001001001"; 
        min <= "0001101001110100"; 
      when "01110000" => 
        diff <= "0000000001001000"; 
        min <= "0001101000101011"; 
      when "01110001" => 
        diff <= "0000000001001000"; 
        min <= "0001100111100011"; 
      when "01110010" => 
        diff <= "0000000001000111"; 
        min <= "0001100110011011"; 
      when "01110011" => 
        diff <= "0000000001000110"; 
        min <= "0001100101010100"; 
      when "01110100" => 
        diff <= "0000000001000110"; 
        min <= "0001100100001110"; 
      when "01110101" => 
        diff <= "0000000001000101"; 
        min <= "0001100011001000"; 
      when "01110110" => 
        diff <= "0000000001000101"; 
        min <= "0001100010000011"; 
      when "01110111" => 
        diff <= "0000000001000100"; 
        min <= "0001100000111110"; 
      when "01111000" => 
        diff <= "0000000001000011"; 
        min <= "0001011111111010"; 
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      when "01111001" => 
        diff <= "0000000001000011"; 
        min <= "0001011110110111"; 
      when "01111010" => 
        diff <= "0000000001000010"; 
        min <= "0001011101110100"; 
      when "01111011" => 
        diff <= "0000000001000010"; 
        min <= "0001011100110010"; 
      when "01111100" => 
        diff <= "0000000001000001"; 
        min <= "0001011011110000"; 
      when "01111101" => 
        diff <= "0000000001000001"; 
        min <= "0001011010101111"; 
      when "01111110" => 
        diff <= "0000000001000000"; 
        min <= "0001011001101110"; 
      when "01111111" => 
        diff <= "0000000001000000"; 
        min <= "0001011000101110"; 
      when "10000000" => 
        diff <= "0000000000111111"; 
        min <= "0001010111101110"; 
      when "10000001" => 
        diff <= "0000000000111111"; 
        min <= "0001010110101111"; 
      when "10000010" => 
        diff <= "0000000000111110"; 
        min <= "0001010101110000"; 
      when "10000011" => 
        diff <= "0000000000111110"; 
        min <= "0001010100110010"; 
      when "10000100" => 
        diff <= "0000000000111101"; 
        min <= "0001010011110100"; 
      when "10000101" => 
        diff <= "0000000000111101"; 
        min <= "0001010010110110"; 
      when "10000110" => 
        diff <= "0000000000111100"; 
        min <= "0001010001111010"; 
      when "10000111" => 
        diff <= "0000000000111100"; 
        min <= "0001010000111101"; 
      when "10001000" => 
        diff <= "0000000000111100"; 
        min <= "0001010000000001"; 
      when "10001001" => 
        diff <= "0000000000111011"; 
        min <= "0001001111000110"; 
      when "10001010" => 
        diff <= "0000000000111011"; 
        min <= "0001001110001010"; 
      when "10001011" => 
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        diff <= "0000000000111010"; 
        min <= "0001001101010000"; 
      when "10001100" => 
        diff <= "0000000000111010"; 
        min <= "0001001100010101"; 
      when "10001101" => 
        diff <= "0000000000111001"; 
        min <= "0001001011011011"; 
      when "10001110" => 
        diff <= "0000000000111001"; 
        min <= "0001001010100010"; 
      when "10001111" => 
        diff <= "0000000000111001"; 
        min <= "0001001001101001"; 
      when "10010000" => 
        diff <= "0000000000111000"; 
        min <= "0001001000110000"; 
      when "10010001" => 
        diff <= "0000000000111000"; 
        min <= "0001000111111000"; 
      when "10010010" => 
        diff <= "0000000000110111"; 
        min <= "0001000111000000"; 
      when "10010011" => 
        diff <= "0000000000110111"; 
        min <= "0001000110001000"; 
      when "10010100" => 
        diff <= "0000000000110111"; 
        min <= "0001000101010001"; 
      when "10010101" => 
        diff <= "0000000000110110"; 
        min <= "0001000100011010"; 
      when "10010110" => 
        diff <= "0000000000110110"; 
        min <= "0001000011100100"; 
      when "10010111" => 
        diff <= "0000000000110110"; 
        min <= "0001000010101110"; 
      when "10011000" => 
        diff <= "0000000000110101"; 
        min <= "0001000001111000"; 
      when "10011001" => 
        diff <= "0000000000110101"; 
        min <= "0001000001000011"; 
      when "10011010" => 
        diff <= "0000000000110101"; 
        min <= "0001000000001110"; 
      when "10011011" => 
        diff <= "0000000000110100"; 
        min <= "0000111111011001"; 
      when "10011100" => 
        diff <= "0000000000110100"; 
        min <= "0000111110100101"; 
      when "10011101" => 
        diff <= "0000000000110100"; 
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        min <= "0000111101110001"; 
      when "10011110" => 
        diff <= "0000000000110011"; 
        min <= "0000111100111101"; 
      when "10011111" => 
        diff <= "0000000000110011"; 
        min <= "0000111100001010"; 
      when "10100000" => 
        diff <= "0000000000110011"; 
        min <= "0000111011010111"; 
      when "10100001" => 
        diff <= "0000000000110010"; 
        min <= "0000111010100100"; 
      when "10100010" => 
        diff <= "0000000000110010"; 
        min <= "0000111001110010"; 
      when "10100011" => 
        diff <= "0000000000110010"; 
        min <= "0000111000111111"; 
      when "10100100" => 
        diff <= "0000000000110001"; 
        min <= "0000111000001110"; 
      when "10100101" => 
        diff <= "0000000000110001"; 
        min <= "0000110111011100"; 
      when "10100110" => 
        diff <= "0000000000110001"; 
        min <= "0000110110101011"; 
      when "10100111" => 
        diff <= "0000000000110000"; 
        min <= "0000110101111010"; 
      when "10101000" => 
        diff <= "0000000000110000"; 
        min <= "0000110101001001"; 
      when "10101001" => 
        diff <= "0000000000110000"; 
        min <= "0000110100011001"; 
      when "10101010" => 
        diff <= "0000000000110000"; 
        min <= "0000110011101001"; 
      when "10101011" => 
        diff <= "0000000000101111"; 
        min <= "0000110010111001"; 
      when "10101100" => 
        diff <= "0000000000101111"; 
        min <= "0000110010001010"; 
      when "10101101" => 
        diff <= "0000000000101111"; 
        min <= "0000110001011011"; 
      when "10101110" => 
        diff <= "0000000000101110"; 
        min <= "0000110000101100"; 
      when "10101111" => 
        diff <= "0000000000101110"; 
        min <= "0000101111111101"; 
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      when "10110000" => 
        diff <= "0000000000101110"; 
        min <= "0000101111001111"; 
      when "10110001" => 
        diff <= "0000000000101110"; 
        min <= "0000101110100000"; 
      when "10110010" => 
        diff <= "0000000000101101"; 
        min <= "0000101101110011"; 
      when "10110011" => 
        diff <= "0000000000101101"; 
        min <= "0000101101000101"; 
      when "10110100" => 
        diff <= "0000000000101101"; 
        min <= "0000101100011000"; 
      when "10110101" => 
        diff <= "0000000000101101"; 
        min <= "0000101011101010"; 
      when "10110110" => 
        diff <= "0000000000101100"; 
        min <= "0000101010111101"; 
      when "10110111" => 
        diff <= "0000000000101100"; 
        min <= "0000101010010001"; 
      when "10111000" => 
        diff <= "0000000000101100"; 
        min <= "0000101001100100"; 
      when "10111001" => 
        diff <= "0000000000101100"; 
        min <= "0000101000111000"; 
      when "10111010" => 
        diff <= "0000000000101011"; 
        min <= "0000101000001100"; 
      when "10111011" => 
        diff <= "0000000000101011"; 
        min <= "0000100111100001"; 
      when "10111100" => 
        diff <= "0000000000101011"; 
        min <= "0000100110110101"; 
      when "10111101" => 
        diff <= "0000000000101011"; 
        min <= "0000100110001010"; 
      when "10111110" => 
        diff <= "0000000000101011"; 
        min <= "0000100101011111"; 
      when "10111111" => 
        diff <= "0000000000101010"; 
        min <= "0000100100110100"; 
      when "11000000" => 
        diff <= "0000000000101010"; 
        min <= "0000100100001010"; 
      when "11000001" => 
        diff <= "0000000000101010"; 
        min <= "0000100011011111"; 
      when "11000010" => 
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        diff <= "0000000000101010"; 
        min <= "0000100010110101"; 
      when "11000011" => 
        diff <= "0000000000101001"; 
        min <= "0000100010001011"; 
      when "11000100" => 
        diff <= "0000000000101001"; 
        min <= "0000100001100010"; 
      when "11000101" => 
        diff <= "0000000000101001"; 
        min <= "0000100000111000"; 
      when "11000110" => 
        diff <= "0000000000101001"; 
        min <= "0000100000001111"; 
      when "11000111" => 
        diff <= "0000000000101001"; 
        min <= "0000011111100110"; 
      when "11001000" => 
        diff <= "0000000000101000"; 
        min <= "0000011110111101"; 
      when "11001001" => 
        diff <= "0000000000101000"; 
        min <= "0000011110010100"; 
      when "11001010" => 
        diff <= "0000000000101000"; 
        min <= "0000011101101100"; 
      when "11001011" => 
        diff <= "0000000000101000"; 
        min <= "0000011101000100"; 
      when "11001100" => 
        diff <= "0000000000101000"; 
        min <= "0000011100011011"; 
      when "11001101" => 
        diff <= "0000000000100111"; 
        min <= "0000011011110100"; 
      when "11001110" => 
        diff <= "0000000000100111"; 
        min <= "0000011011001100"; 
      when "11001111" => 
        diff <= "0000000000100111"; 
        min <= "0000011010100100"; 
      when "11010000" => 
        diff <= "0000000000100111"; 
        min <= "0000011001111101"; 
      when "11010001" => 
        diff <= "0000000000100111"; 
        min <= "0000011001010110"; 
      when "11010010" => 
        diff <= "0000000000100110"; 
        min <= "0000011000101111"; 
      when "11010011" => 
        diff <= "0000000000100110"; 
        min <= "0000011000001000"; 
      when "11010100" => 
        diff <= "0000000000100110"; 
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        min <= "0000010111100010"; 
      when "11010101" => 
        diff <= "0000000000100110"; 
        min <= "0000010110111100"; 
      when "11010110" => 
        diff <= "0000000000100110"; 
        min <= "0000010110010101"; 
      when "11010111" => 
        diff <= "0000000000100110"; 
        min <= "0000010101101111"; 
      when "11011000" => 
        diff <= "0000000000100101"; 
        min <= "0000010101001001"; 
      when "11011001" => 
        diff <= "0000000000100101"; 
        min <= "0000010100100100"; 
      when "11011010" => 
        diff <= "0000000000100101"; 
        min <= "0000010011111110"; 
      when "11011011" => 
        diff <= "0000000000100101"; 
        min <= "0000010011011001"; 
      when "11011100" => 
        diff <= "0000000000100101"; 
        min <= "0000010010110100"; 
      when "11011101" => 
        diff <= "0000000000100100"; 
        min <= "0000010010001111"; 
      when "11011110" => 
        diff <= "0000000000100100"; 
        min <= "0000010001101010"; 
      when "11011111" => 
        diff <= "0000000000100100"; 
        min <= "0000010001000101"; 
      when "11100000" => 
        diff <= "0000000000100100"; 
        min <= "0000010000100001"; 
      when "11100001" => 
        diff <= "0000000000100100"; 
        min <= "0000001111111101"; 
      when "11100010" => 
        diff <= "0000000000100100"; 
        min <= "0000001111011000"; 
      when "11100011" => 
        diff <= "0000000000100100"; 
        min <= "0000001110110100"; 
      when "11100100" => 
        diff <= "0000000000100011"; 
        min <= "0000001110010001"; 
      when "11100101" => 
        diff <= "0000000000100011"; 
        min <= "0000001101101101"; 
      when "11100110" => 
        diff <= "0000000000100011"; 
        min <= "0000001101001001"; 
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      when "11100111" => 
        diff <= "0000000000100011"; 
        min <= "0000001100100110"; 
      when "11101000" => 
        diff <= "0000000000100011"; 
        min <= "0000001100000011"; 
      when "11101001" => 
        diff <= "0000000000100011"; 
        min <= "0000001011100000"; 
      when "11101010" => 
        diff <= "0000000000100010"; 
        min <= "0000001010111101"; 
      when "11101011" => 
        diff <= "0000000000100010"; 
        min <= "0000001010011010"; 
      when "11101100" => 
        diff <= "0000000000100010"; 
        min <= "0000001001110111"; 
      when "11101101" => 
        diff <= "0000000000100010"; 
        min <= "0000001001010101"; 
      when "11101110" => 
        diff <= "0000000000100010"; 
        min <= "0000001000110010"; 
      when "11101111" => 
        diff <= "0000000000100010"; 
        min <= "0000001000010000"; 
      when "11110000" => 
        diff <= "0000000000100010"; 
        min <= "0000000111101110"; 
      when "11110001" => 
        diff <= "0000000000100001"; 
        min <= "0000000111001100"; 
      when "11110010" => 
        diff <= "0000000000100001"; 
        min <= "0000000110101010"; 
      when "11110011" => 
        diff <= "0000000000100001"; 
        min <= "0000000110001001"; 
      when "11110100" => 
        diff <= "0000000000100001"; 
        min <= "0000000101100111"; 
      when "11110101" => 
        diff <= "0000000000100001"; 
        min <= "0000000101000110"; 
      when "11110110" => 
        diff <= "0000000000100001"; 
        min <= "0000000100100101"; 
      when "11110111" => 
        diff <= "0000000000100001"; 
        min <= "0000000100000100"; 
      when "11111000" => 
        diff <= "0000000000100000"; 
        min <= "0000000011100011"; 
      when "11111001" => 
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        diff <= "0000000000100000"; 
        min <= "0000000011000010"; 
      when "11111010" => 
        diff <= "0000000000100000"; 
        min <= "0000000010100001"; 
      when "11111011" => 
        diff <= "0000000000100000"; 
        min <= "0000000010000001"; 
      when "11111100" => 
        diff <= "0000000000100000"; 
        min <= "0000000001100000"; 
      when "11111101" => 
        diff <= "0000000000100000"; 
        min <= "0000000001000000"; 
      when "11111110" => 
        diff <= "0000000000100000"; 
        min <= "0000000000100000"; 
      when "11111111" => 
        diff <= "0000000000100000"; 
        min <= "0000000000000000"; 
      when others => 
        diff <= (others => '0'); 
        min <= (others => '0'); 
    end case; 
  end process; 
end; 
 

linear_interp.vhd [17] 

library ieee; 
library work; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity linear_interp is 
  port (in_clk : in std_logic; 
 in_rand : in std_logic_vector(15 downto 0); 
 in_min : in std_logic_vector(15 downto 0); 
 in_diff : in std_logic_vector(15 downto 0); 
 in_urn : in std_logic_vector(31 downto 0); 
 out_urn : out std_logic_vector(31 downto 0); 
 out_interp : out std_logic_vector(31 downto 0)); 
end entity linear_interp; 
 
architecture a of linear_interp is 
begin 
  process(in_clk)  
    variable product : std_logic_vector(31 downto 0 ); 
    variable min_extend : std_logic_vector(31 downt o 0); 
  begin 
    if (in_clk='1' and in_clk'event) then 
  out_urn <= in_urn; 
      product := in_rand * in_diff; 
      min_extend(31 downto 16) := in_min; 
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      min_extend(15 downto 0) := (others => '0'); 
      out_interp <= min_extend + product; 
    end if; 
  end process; 
end architecture a; 
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Appendix D 

BRAM Based Design C++ 

hw.cc 

#include <stdio.h> 
#include <time.h> 
#include <stdlib.h> 
#include <string.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <sys/time.h> 
#include <fcntl.h> 
#include <sys/mman.h> 
#include <math.h> 
#include <iostream> 
#include <cstdlib> 
#include "iflib.h" 
 
using namespace std; 
 
#define NULLSPECIES 127 
#define NULLRX 63 
#define NMAX 127 
#define MMAX 63 
#define PMAX 65535 
#define KMAX 65535 
 
class CR{ 
  public: 
 int reactants,products,fpk; 
 double k; 
 int renum[2],rewt[2],prnum[2],prwt[2]; 
}; 
 
char *memp; 
int64 data; 
int fd,N,M,*X,SUMS[256],TPROP[125],RXSELECT[125],ER V[125]; 
int seed,iterations,C,*mon,thecount; 
CR *R; 
double thetime; 
FILE *outFile; 
 
void init(void) { 
 fd = open(DEVICE, O_RDWR); 
 memp = (char *)mmap(NULL, MTRRZ, PROT_READ, MAP_PR IVATE, fd, 0); 
 if (memp  == MAP_FAILED) { 
  perror(DEVICE); 
  exit(1); 
 } 
 srand(time(NULL)); 
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} 
 
void setSP(int index,unsigned int population){ 
 
 data.w[1] = (0x1<<27) + (index<<19); 
 data.w[0] = population; 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
} 
 
void readSP(int index, unsigned int *dataA, unsigne d int *dataB){ 
 data.w[1] = (0x2<<27) + (index<<19); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 *dataA = (unsigned int)data.w[1]; 
 *dataB = (unsigned int)data.w[0]; 
} 
 
void setRX(int index, int reac1, int reac2, int pro 1, int pro2, int k){ 
 data.w[1] = (0x3<<27) + (index<<19) + (reac1<<8) +  reac2; 
 data.w[0] = (pro1<<24) + (pro2<<16) + k; 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
} 
 
void readRX(int index, unsigned int *dataA, unsigne d int *dataB){ 
 data.w[1] = (0x4<<27) + (index<<19); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 *dataA = (unsigned int)data.w[1]; 
 *dataB = (unsigned int)data.w[0]; 
} 
 
void readPROP(int index, unsigned int *dataA, unsig ned int *dataB){ 
 data.w[1] = (0x5<<27) + (index<<19); 



206 

 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 *dataA = (unsigned int)data.w[1]; 
 *dataB = (unsigned int)data.w[0]; 
} 
 
void readPSUM(int index1, int index2, unsigned int *dataA, unsigned int 
*dataB){ 
 data.w[1] = (0x6<<27) + (index1<<23) + (index2<<19 ); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 *dataA = (unsigned int)data.w[1]; 
 *dataB = (unsigned int)data.w[0]; 
} 
 
void setSEED(int seed){ 
 data.w[1] = (0x7<<27); 
 data.w[0] = seed; 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
} 
 
void readURV(unsigned int *dataA, unsigned int *dat aB){ 
 data.w[1] = (0x8<<27); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 *dataA = (unsigned int)data.w[1]; 
 *dataB = (unsigned int)data.w[0]; 
} 
 
void newURV(void){ 
 data.w[1] = (0x9<<27); 
 write64(data, memp+(0<<3)); 
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 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
} 
 
void readPRODUCT(unsigned int *dataA, unsigned int *dataB){ 
 data.w[1] = (0xA<<27); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 *dataA = (unsigned int)data.w[1]; 
 *dataB = (unsigned int)data.w[0]; 
} 
 
void readSELECTION(unsigned int *dataA, unsigned in t *dataB){ 
 data.w[1] = (0xB<<27); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 *dataA = (unsigned int)data.w[1]; 
 *dataB = (unsigned int)data.w[0]; 
} 
 
void readERV(unsigned int *dataA, unsigned int *dat aB){ 
 data.w[1] = (0xC<<27); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
  read64(&data, memp+(0<<3)); 
 } 
 
 read64(&data, memp+(1<<3)); 
 *dataA = (unsigned int)data.w[1]; 
 *dataB = (unsigned int)data.w[0]; 
} 
 
void initPROP(void){ 
 data.w[1] = (0xD<<27); 
 write64(data, memp+(0<<3)); 
 
 read64(&data, memp+(0<<3)); 
 while(data.w[1]!=0x0){ 
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  read64(&data, memp+(0<<3)); 
 } 
} 
 
void printresults(void){ 
 int i,j; 
 
 for(i=0;i<125;i++){ 
  // UPDATE PUTATIVE TIME 
  thetime+=((double)ERV[i]/536870911.0)/(double)TPR OP[i]; 
  thecount++; 
   
   
  // UPDATE SPECIES POPULATIONS 
  for(j=0;j<R[RXSELECT[i]].reactants;j++){ 
   X[R[RXSELECT[i]].renum[j]]-=R[RXSELECT[i]].rewt[ j]; 
  } 
  for(j=0;j<R[RXSELECT[i]].products;j++){ 
   X[R[RXSELECT[i]].prnum[j]]+=R[RXSELECT[i]].prwt[ j]; 
  } 
   
 
  // PRINT TO AN OUTPUT FILE 
  /* 
  fprintf(outFile,"%6d %8.6lf",thecount,thetime); 
  for(j=0;j<C;j++){ 
   fprintf(outFile," %4u",X[mon[j]]); 
  } 
  fprintf("outFile,"\n"); 
  */ 
 } 
} 
 
void step(int runs){ 
 int i,j=0,a=0; 
 
 while(runs>0){ 
  data.w[1] = (0xE<<27); 
  if(runs>=125) data.w[0] = 252; 
  else data.w[0] = (runs*2)+2; 
  write64(data, memp+(0<<3)); 
  if(a==1) printresults(); 
  else a=1; 
 
  read64(&data, memp+(0<<3)); 
  while(data.w[1]!=0x0){ 
   read64(&data, memp+(0<<3)); 
  } 
 
  for(i=2;i<252;i++){ 
   read64(&data,memp+(i<<3)); 
   TPROP[(i>>1)-1] = data.w[1]; 
   ERV[(i>>1)-1] = data.w[0]; 
 
   i++; 
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   read64(&data,memp+(i<<3)); 
   RXSELECT[((i-1)>>1)-1] = data.w[0]; 
  } 
  runs -= 125; 
 } 
 printresults(); 
} 
 
     
int main (int argc, char **argv) 
{ 
 unsigned int dataA, dataB; 
 int i, j, k, kl_int, MF=1, tprop, reac1, reac2, pr o1, pro2; 
 char modelfile[51]; 
 double kl=1.0,y; 
 struct timeval ts,te; 
 FILE *inFile; 
 
 init(); 
  
 seed = -1; 
 iterations = 1000000; 
 
 // OPEN A FILE FOR ANY WRITING OF RESULTS 
 outFile = fopen("results.txt","wt"); 
 
 // ANALYZE COMMAND LINE ARGUMENTS 
  
 for(i=1;i<argc;i++){ 
  if((strcmp(argv[i],"-h")==0)||(strcmp(argv[i],"-- h")==0)){ 
   fprintf(stderr,"Expected usage: ./rchw [-m] [mod el 
file] [-i] [iterations] [-s] [seed]\n"); 
   exit(1); 
  } 
  else{ 
   if(strcmp(argv[i],"-m")==0){ 
    strcpy(modelfile,argv[++i]); 
   } 
   else{ 
    if(strcmp(argv[i],"-i")==0){ 
     iterations = atoi(argv[++i]); 
    } 
    else{ 
     if(strcmp(argv[i],"-s")==0){ 
      seed = atoi(argv[++i]); 
     } 
     else{ 
      fprintf(stderr,"ERROR!  Expected 
usage: ./rchw [-m] [model file] [-i] [iterations] [ -s] [seed]\n"); 
      exit(1); 
     } 
    } 
   } 
  } 
 } 
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 inFile = fopen(modelfile,"r"); 
 while(inFile == NULL){ 
  printf("Please enter the name of the model file t o read 
from: "); 
  fgets(modelfile,50,stdin); 
  if(modelfile[0]==10) exit(0); 
  modelfile[strlen(modelfile)-1]='\0'; 
  inFile = fopen(modelfile,"r"); 
 } 
  
 
 // CLEAR BRAM 
 for(i=0;i<255;i++){ 
  data.w[1] = 0x0; 
  data.w[0] = 0x0; 
  write64(data, memp+(i<<3)); 
 } 
 
 // STORE INITIAL TIME OF START OF SIMULATION 
 gettimeofday(&ts,NULL); 
 
  
 ////////////////////////////////////////////////// ///////////////
/////////////// 
 // READING MODEL FILE AND STORING VARIABLES INTO S OFTWARE 
////////////////////// 
 ////////////////////////////////////////////////// ///////////////
/////////////// 
 
 // READING AND STORING SPECIES POPULATIONS 
 fscanf(inFile,"%d",&N); 
 if(N>NMAX){ 
  fprintf(stderr,"ERROR!  The number of species in this model 
exceeds %d\n",NMAX); 
  exit(1); 
 } 
 X = new int[N]; 
 for(i=0;i<N;i++){ 
  fscanf(inFile,"%d",&X[i]); 
  if(X[i]>PMAX){ 
   X[i]=PMAX; 
   fprintf(stderr,"WARNING!  Species %d exceeds max imum 
and has been set to %d\n",i,PMAX); 
  } 
 } 
 
 gettimeofday(&ts,NULL); 
 
 // READING AND STORING REACTION EQUATIONS 
 fscanf(inFile,"%d",&M); 
 if(M>MMAX){ 
  fprintf(stderr,"ERROR!  The number of reactions i n this 
model exceeds %d\n",MMAX); 
  exit(1); 
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 } 
 R = new CR[M]; 
 for(i=0;i<M;i++){ 
 
  // READING EACH REACTION'S REACTANTS 
  fscanf(inFile,"%d",&R[i].reactants); 
  k=0; 
  for(j=0;j<R[i].reactants;j++){ 
   fscanf(inFile,"%d",&R[i].rewt[j]); 
   k+=R[i].rewt[j]; 
   fscanf(inFile,"%d",&R[i].renum[j]); 
  } 
  for(j;j<2;j++){ 
   R[i].rewt[j]=0; 
   R[i].renum[j]=NULLSPECIES; 
  } 
  if(k>2){ 
   fprintf(stderr,"ERROR!  The number of reactants in 
reaction %d exceeds 2\n",i); 
   exit(1); 
  } 
 
  // READING EACH REACTION'S PRODUCTS 
  fscanf(inFile,"%d",&R[i].products); 
  k=0; 
  for(j=0;j<R[i].products;j++){ 
   fscanf(inFile,"%d",&R[i].prwt[j]); 
   k+=R[i].prwt[j]; 
   fscanf(inFile,"%d",&R[i].prnum[j]); 
  } 
  for(j;j<2;j++){ 
   R[i].prwt[j]=0; 
   R[i].prnum[j]=NULLSPECIES; 
  } 
  if(k>2){ 
   fprintf(stderr,"ERROR!  The number of products i n 
reaction %d exceeds 2\n",i); 
   exit(1); 
  } 
 
  // READING EACH REACTION'S K 
  fscanf(inFile,"%lf",&R[i].k); 
  y = R[i].k - (int)R[i].k; 
  if((y>0) && (y<kl)) kl=y; 
 } 
 
 // READING SPECIES TO BE MONITORED 
 fscanf(inFile,"%d",&C); 
 mon = new int[C]; 
 for(i=0;i<C;i++){ 
  fscanf(inFile,"%d",&mon[i]); 
 } 
 
 // DETERMING MULTIPLICATION FACTOR (MF) TO CHANGE K VALUES TO 
FIXED POINT 
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 if(kl < 1){ 
  MF = 10000000; 
  if(kl < 0.0000001){ 
   MF = (int)(1.0/kl); 
  } 
  kl_int = (int)(kl * MF); 
  if((int)(kl * MF * 10)%10 >= 5) kl_int += 1; 
  for(i=0;i<6;i++){ 
   if(kl_int %10 > 0) break; 
   MF /= 10; 
   kl_int /= 10; 
  } 
 } 
 
 // UPDATE FIXED POINT K VALUE FOR EACH REACTION 
 for(i=0;i<M;i++){ 
  R[i].fpk = (int)(R[i].k * MF); 
  if((int)(R[i].k * MF * 10) % 10 >= 5) R[i].fpk +=  1; 
  if(R[i].fpk > KMAX){ 
   fprintf(stderr,"ERROR!  Fixed point rate constan t of 
reaction %d exceeds %d\n",i,KMAX); 
   exit(1); 
  } 
 } 
  
 
 ////////////////////////////////////////////////// ///////////////
/////////////// 
 // READY TO INTERFACE WITH FPGA 
//////////////////////////////////////////////// 
 ////////////////////////////////////////////////// ///////////////
/////////////// 
 
 setSEED(seed); 
 // Set species populations 
 for(i=0;i<N;i++){ 
  setSP(i,X[i]); 
 } 
 for(i;i<NULLSPECIES;i++){ 
  setSP(i,0); 
 } 
 setSP(NULLSPECIES,1); 
 
 // Set reaction equations 
 for(i=0;i<M;i++){ 
  if(R[i].rewt[0]==2){ 
   reac1 = R[i].renum[0]; 
   reac2 = R[i].renum[0]; 
  } 
  else{ 
   reac1 = R[i].renum[0]; 
   reac2 = R[i].renum[1]; 
  } 
  if(R[i].prwt[0]==2){ 
   pro1 = R[i].prnum[0]; 
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   pro2 = R[i].prnum[0]; 
  } 
  else{ 
   pro1 = R[i].prnum[0]; 
   pro2 = R[i].prnum[1]; 
  } 
  setRX(i,reac1,reac2,pro1,pro2,R[i].fpk); 
 } 
 for(i;i<=NULLRX;i++){ 
  setRX(i,NULLSPECIES,NULLSPECIES,NULLSPECIES,NULLS PECIES,0); 
 } 
 
 step(iterations); 
  
 gettimeofday(&te,NULL); 
 printf("te = %6d.%6d\nts = 
%6d.%6d\n",te.tv_sec,te.tv_usec,ts.tv_sec,ts.tv_use c); 
 
 for(i=0;i<N;i++){ 
  readSP(i,&dataA,&dataB); 
  printf("Species[%d] = %10d\n",i,dataB); 
 } 
 
 munmap(memp, MTRRZ); 
 
 return 0; 
} 
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Appendix E 

SBML Models 

SBML Content Outline 

[Number of species] 
[Population of each species, all separated by a spa ce] 
[Number of reactions] 
[Reaction equations defined in form outlined below]  
[# Reactants] [Weight] [Index] [# Products] [Weight ] [Index] [k] 
[Number of species to be monitored] 
[Indices of species populations to be monitored] 
 

 

When defining a reaction equation, “Index” refers to index of a species involved in a 

reaction equation while “Weight” refers to the number of that species acting as a reactant 

or product in a given reaction equation.  A weight and an index are defined for the 

number of reactants as well as the number of products.
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Protein Dimerization [18] 

8 
1 1 0 0 0 0 0 0 
13 
1 1 0 2 1 0 1 2 0.01 
1 1 2 0 6e-3 
1 1 2 2 1 2 1 4 3e-2 
1 1 4 0 4e-4 
2 1 6 1 1 1 1 7 0.0016 
1 1 7 2 1 1 1 6 0.2 
1 1 1 2 1 1 1 3 0.002 
1 1 7 2 1 7 1 3 0.1 
1 1 3 0 6e-3 
1 1 3 2 1 3 1 5 3e-2 
1 1 5 0 4e-4 
1 2 4 1 1 6 0.016 
1 1 6 1 2 4 1 
8 
0 1 2 3 4 5 6 7  
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Original Tuberculosis SBML [18] 
17 
10 0 0 10 0 0 10 20 0 0 0 0 0 0 1 0 1 
23 
1 1 16 2 1 0 1 16 10 
2 1 0 1 3 2 1 3 1 1 16 
2 1 0 1 4 2 1 4 1 1 32 
2 1 0 1 5 2 1 5 1 1 16 
2 1 1 1 3 2 1 3 1 2 0.6 
2 1 1 1 4 2 1 4 1 2 0.6 
2 1 1 1 5 2 1 5 1 2 0.78 
1 1 2 0 4 
1 1 3 1 1 4 100 
1 1 4 1 1 3 1 
1 1 4 1 1 5 0.5 
1 1 5 1 1 4 10 
2 1 6 1 7 1 1 8 1 
1 2 1 1 1 13 10 
1 1 13 1 2 1 10 
2 1 13 1 14 1 1 15 5 
1 1 15 2 1 13 1 14 10 
2 1 15 1 9 2 1 8 1 15 10 
1 1 8 1 1 9 10 
1 1 9 1 1 10 4 
1 1 10 1 1 11 6 
1 1 11 3 1 12 1 6 1 7 1 
1 1 12 0 100 
17 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  
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Modified Tuberculosis SBML [18] 
18 
10 0 0 10 0 0 10 20 0 0 0 0 0 0 1 0 1 0 
24 
1 1 16 2 1 0 1 16 10 
2 1 0 1 3 2 1 3 1 1 16 
2 1 0 1 4 2 1 4 1 1 32 
2 1 0 1 5 2 1 5 1 1 16 
2 1 1 1 3 2 1 3 1 2 0.6 
2 1 1 1 4 2 1 4 1 2 0.6 
2 1 1 1 5 2 1 5 1 2 0.78 
1 1 2 0 4 
1 1 3 1 1 4 100 
1 1 4 1 1 3 1 
1 1 4 1 1 5 0.5 
1 1 5 1 1 4 10 
2 1 6 1 7 1 1 8 1 
1 2 1 1 1 13 10 
1 1 13 1 2 1 10 
2 1 13 1 14 1 1 15 5 
1 1 15 2 1 13 1 14 10 
2 1 15 1 9 2 1 8 1 15 10 
1 1 8 1 1 9 10 
1 1 9 1 1 10 4 
1 1 10 1 1 11 6 
1 1 11 2 1 12 1 17 1 
1 17 2 1 6 1 7 655 
1 1 12 0 100 
17 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  
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