
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2005

Reconfigurable Hardware Acceleration of Exact Stochastic Reconfigurable Hardware Acceleration of Exact Stochastic

Simulation Simulation

Brandon Parks Thurmon
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Thurmon, Brandon Parks, "Reconfigurable Hardware Acceleration of Exact Stochastic Simulation. "
Master's Thesis, University of Tennessee, 2005.
https://trace.tennessee.edu/utk_gradthes/2550

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268803355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2550&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2550&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Brandon Parks Thurmon entitled "Reconfigurable

Hardware Acceleration of Exact Stochastic Simulation." I have examined the final electronic

copy of this thesis for form and content and recommend that it be accepted in partial fulfillment

of the requirements for the degree of Master of Science, with a major in Electrical Engineering.

Gregory D. Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Donald W. Bouldin, Chris D. Cox

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Brandon Parks Thurmon entitled
“Reconfigurable Hardware Acceleration of Exact Stochastic Simulation.” I have
examined the final electronic copy of this thesis for form and content and recommend
that it be accepted in partial fulfillment of the requirements for the degree of Master of
Science, with a major in Electrical Engineering.

 Gregory D. Peterson
 Gregory D. Peterson, Major Professor

We have read this thesis
and recommend its acceptance:

Donald W. Bouldin
Donald W. Bouldin

Chris D. Cox
Chris D. Cox

 Accepted for the Council:

 Anne Mayhew
 Vice Chancellor and
 Dean of Graduate Studies

(Original signatures are on file with official student records.)

Reconfigurable Hardware Acceleration of Exact Stochastic Simulation

A Thesis
Presented for the
Master of Science

Degree
The University of Tennessee

Brandon Parks Thurmon
August 2005

ii

DEDICATION

 This thesis is dedicated to my devoted wife, Saneta, for her enduring patience,

steadfast encouragement, and soothing compassion; our parents and family for their

guidance and reassurance; and my brother, Michael, for his support and sense of humor.

iii

ACKNOWLEDGEMENTS

 I would like to express my gratitude to all of those who have contributed their

expertise and directed me towards the completion of my Master of Science degree in

Electrical Engineering. First and foremost, I wish to thank my advisor, Dr. Greg

Peterson, for his wisdom and insight. I would like to thank Dr. Don Bouldin for

empowering me with an understanding of microelectronic design and for serving on my

committee. I would also like to thank Dr. Chris Cox for serving on my committee and

sharing his knowledge with me. In addition, I would like to express my thanks to my

office mate and friend, James McCollum, for his continuous help.

 I also wish to thank Dr. Michael Simpson and the National Academy of Sciences,

whom funded this work under the Keck Futures Initiative.

iv

ABSTRACT

 This thesis explores the use of reconfigurable hardware in modeling chemical

species reacting in a spatially homogeneous environment. The time evolution of

biochemical models is often evaluated using a deterministic approach that uses

differential equations to describe the chemical interactions of the model. However, such

an approach treats species as continuous valued concentrations, is inaccurate for small

species populations, and neglects the stochastic nature of biochemical systems. The

Stochastic Simulation Algorithm (SSA) developed by Gillespie is able to properly

account for these inherent noise fluctuations. This allows the SSA to accurately project

the time evolution of a biochemical model. Unfortunately, the SSA can be

computationally intensive and require a substantial amount of time to complete.

Therefore, it has been proposed that the SSA be implemented on a Field Programmable

Gate Array (FPGA) to improve performance. Employing an FPGA allows parallelism to

be exploited within the SSA providing a speedup over software implementations

executing instructions sequentially. Recent work in this area has focused on

implementing the SSA on an FPGA to simulate specific biochemical models. However,

this requires re-constructing and re-synthesizing the design in order to simulate a new

biochemical system. This work examines the use of a reconfigurable computing platform

to allow an implementation of the SSA on an FPGA to simulate a variety of models. The

designs presented herein demonstrate a speedup of roughly 1.5X.

v

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

2. BACKGROUND 4

 2.1 Applying Ordinary Differential Equations to the Model 4

 2.2 Exact Stochastic Simulation 4

 2.2.1 Explanation of Terms 6

 2.2.2 Gillespie’s First Reaction Method 8

 2.2.3 Gillespie’s Direct Method 8

 2.2.4 Gibson and Bruck’s Next Reaction Method 10

 2.2.5 Cao, Li, and Petzold’s Optimized Direct Method 12

 2.3 Field Programmable Gate Arrays 15

 2.4 Pilchard Reconfigurable Computing Platform 16

 2.5 Computing Platform 16

3. RELATED WORK 19

 3.1 Salwinski and Eisenberg’s FPGA Approximation 19

 3.2 Keane, Bradley and Ebeling’s FPGA Approximation 20

 3.3 Yoshimi, Osana, Fukushima and Amano’s FPGA Simulation 22

4. REGISTER BASED DESIGN 25

 4.1 Partitioning of the Problem 25

 4.2 Software Design 27

 4.3 Hardware Design 29

 4.4 Comparison of Results 35

vi

 4.5 Difficulties and Design Limitations 39

5. BLOCK RAM BASED DESIGN 45

 5.1 Partitioning of the Problem 45

 5.2 Software Design 46

 5.3 Hardware Design 48

 5.4 Comparison of Results 55

 5.5 Difficulties and Design Limitations 58

6. CONCLUSIONS AND FUTURE WORK 63

 6.1 Conclusion 63

 6.2 Hardware Improvements 64

 6.3 Design Improvements 65

 6.4 Algorithm Improvements 66

 6.5 Application Specific Integrated Circuit Design 66

REFERENCES 67

APPENDICES 70

 A. Register Based Design VHDL 71

 B. Register Based Design C++ 109

 C. BRAM Based Design VHDL 119

 D. BRAM Based Design C++ 204

 E. SBML Models 214

VITA 218

vii

LIST OF TABLES

Table Page

2.1 Propensity Equations 7

4.1 Speedup Associated with Self Regulated Model 36

4.2 Speedup Associated with Genomically Based Oscillation Model 39

5.1 Speedup Associated with Protein Dimerization 56

5.2 Speedup Associated with Tuberculosis 57

viii

LIST OF FIGURES

Figure Page

2.1. Pseudo Code for Gillespie’s First Reaction Method 9

2.2. Pseudo Code for Gillespie’s Direct Method 11

2.3. Pseudo Code for Gibson and Bruck’s Next Reaction Method 13

2.4. Pilchard Platform 17

4.1. Interaction Between Hardware and Software 28

4.2. Hardware Design Depicting Parallelism 31

4.3. Self Regulated Model 37

4.4. Genomically Based Oscillation Model 38

4.5. Register Based Approach Design Utilization Summary 41

4.6. Timing Constraints of Register Based Design 42

4.7. Register Based Design Projected Workloads 44

5.1. Interaction Between Hardware and Software 47

5.2. Partial Sums Use in Selecting Next Reaction 50

5.3. BRAM Based Design Depicting Parallelism 52

5.4. BRAM Based Design Utilization Summary 60

5.5. Timing Constraints of BRAM Based Design 61

5.6. BRAM Based Design Projected Workloads 62

1

Chapter 1

Introduction

 The future of biochemical systems analysis is as promising as it is challenging.

Accurately modeling complex biochemical systems is currently a daunting and time

consuming task. Efforts are underway to develop more efficient tools for modeling these

systems while producing reliable data. Some biochemical systems of interest include the

transcription and translation of DNA during protein synthesis or the growth of a bacterial

infection, as well as many others. By understanding how cells operate and communicate,

we can begin to predict the behavior of the underlying biochemical system. Then

methods can be developed to interrupt and control cellular processes, allowing advances

in the field of gene therapy and medicine.

 Biochemical systems, consisting of species reacting in a spatially homogeneous

environment, are often formulated using a deterministic approach. Such an approach

represents species as continuous-valued concentrations and interactions between

chemicals are modeled using ordinary differential equations. A deterministic approach is

effective for modeling many biological systems, although inaccuracies become apparent

for systems with small populations of chemical species and systems affected by noise.

Recent research has shown that noise may play a critical role in many biochemical

systems [1,2]. Therefore a stochastic approach must be used to model noise-affected

systems. Within a stochastic approach, chemical species are represented as discrete-

valued populations and interactions between chemicals are represented as random

processes.

2

The Chemical Master Equation (CME) is used to define the stochastic properties

of a biochemical system. The CME is typically an infinite set of differential equations,

making it impractical to solve analytically for most complex systems. The Stochastic

Simulation Algorithm (SSA), developed by Daniel Gillespie, is mathematically

equivalent to the behavior of the CME [3].

Gillespie’s algorithm simulates the execution of one chemical reaction at a time,

and each simulation is a single sample of the model’s behavior. In order to obtain

statistically accurate results, the SSA must be executed several times to form a complete

picture of the model’s behavior. As a result, the SSA can be computationally intensive

and time consuming, limiting its application to large-scale and biologically relevant

models. Endy and Brent have suggested that a stochastic simulation of the cell cycle of a

single Escherichia coli cell may require 100 years of computation time on today’s

standard PC [4].

To address these issues, this work presents a hardware-accelerated version of the

SSA implemented on a Field Programmable Gate Array (FPGA). By performing tasks in

parallel that would normally be handled sequentially on a regular microprocessor, the

workload is divided among several process modules and the overall performance of the

SSA is improved. Previous work in this area has yielded hardware simulators with

impressive performance gains over software implemented simulators. However, these

performance gains come at a cost. Previous designs from other researchers have focused

on specific biochemical models, requiring varying levels of redesign when modeling

different biochemical models. In addition, some have introduced approximations to the

SSA. This work focuses on a hardware-accelerated simulator that is general purpose,

3

meaning several biochemical models can be simulated without the need to re-synthesis

the design. Furthermore, the hardware designs presented herein remain statistically true

to Gillespie’s SSA. Within this work, two approaches to a general-purpose hardware

implementation of the SSA are offered. The second chapter will provide a brief overview

of the scope of the work. This will include an introduction to biochemical systems and

how they are modeled. The third chapter will describe some of the previous work

concerning hardware accelerated stochastic simulators. Chapter four will delve into the

specifics of one design of a general-purpose hardware accelerated exact stochastic

simulator. Chapter five will outline the details of a second design. The final chapter will

present some plausible avenues for future work, in addition to conclusions from this

work.

4

Chapter 2

Background

2.1 Applying Ordinary Differential Equations to the Model

 Traditionally, models of chemical species reacting within a spatially

homogeneous environment are devised using a deterministic approach involving ordinary

differential equations. Such an approach treats species populations as continuous valued

concentrations that are a function of time [3]. Through the use of software packages that

include differential equation solvers (i.e. Matlab), a complex biological system can be

modeled using ordinary differential equations (ODEs) and solved in less than a day.

However, the results may not necessarily be accurate. Ordinary differential equation

models ignore the inherent stochastic nature of chemically reacting systems. This hinders

the application of ODEs to systems with small numbers of molecules. In addition, it is

possible for the results of an ODE model to suggest that species concentrations are real

valued or below zero. In actual chemical systems, it makes no sense to have any less

than a whole molecule and it is impossible to have a negative amount of molecules. The

effects of these limitations can be devastating to modeling chemical systems since a

species with a small population can have a significant impact on the trajectory of the

system.

2.2 Exact Stochastic Simulation

 The Exact Stochastic Simulation Algorithm (SSA) was developed by Daniel T.

Gillespie in the late 70’s as a way to accurately simulate chemically reacting systems

5

[3,7]. The SSA treats species populations as discrete values and properly handles the

randomness and noise inherent in many chemically reacting systems. In addition, the

SSA exhibits the stochastic behavior evident in the time evolution of biochemical

systems. Gillespie formulated two methods to perform exact stochastic simulations, the

First Reaction Method and the Direct Method. Gibson and Bruck improved upon

Gillespie’s First Reaction Method in 2000 to develop the Next Reaction Method [8]. The

Optimized Direct Method developed in 2004 by Cao, Li, and Petzold further improved

the performance of exact stochastic simulations [9]. The Sorting Direct Method, recently

developed by James McCollum, further optimized stochastic simulations [20]. A paper

outlining the Sorting Direct Method was recently accepted for publication in the Journal

of Computational Biology and Chemistry. All of the above algorithms simulate a

possible time evolution of a chemically reacting system, determining a time for the

occurrence of each reaction. Each algorithm accomplishes this through the following

steps,

1: Initialization – An input model is read by the simulator and data structures are

initialized.

2: Propensity Calculation – Where necessary, the propensity of each reaction is

calculated based on the reaction rate constant and the current species populations.

3: Putative Time Estimation – Using the propensities and exponentially distributed

random numbers, the time at which the next reaction will occur is determined.

4: Reaction Selection – The next reaction to execute is selected.

6

5: Reaction Execution – The species populations and system time are updated

according to the execution of the selected reaction.

6: Termination – The program ends if the desired end time of the simulation has

been reached. Otherwise, the process returns to the Propensity Calculation step

and continues executing.

2.2.1 Explanation of Terms

 The following terms are crucial to formulating an exact stochastic simulation

algorithm and may require an explanation.

Propensity, a, is associated with the probability that a reaction will occur. It is

based upon the stochastic reaction rate constant and the number of distinct molecular

combinations of the reaction. The stochastic reaction rate constant, c, is defined as the

average probability that a molecular combination from a given reaction will collide and

react in the next infinitesimal time interval. The stochastic reaction rate constant is

directly related to the deterministic reaction rate constant, k. This relationship is altered

for the case when identical reactant molecules collide and react. The equation below

depicts the correlation between the stochastic and deterministic reaction rate constants

where n is the number of identical reactant molecules reacting together [7].

 (1)

7

 The number of distinct molecular combinations of a reaction depends on the type

of reaction and the number of molecules, X, of each reactant of a given reaction. Table

2.1 shows the equations to some common reaction types along with the equations to

calculate their propensities.

Putative time, τ, refers to the amount of time it will take before a reaction occurs.

The following will summarize the sampling of an exponential distribution with parameter

ai in order to determine the putative time. A uniformly distributed random number is

scaled to fit an exponential distribution to find an exponential random number. The

exponential random number is then divided by a propensity value to find the putative

time. The following equation shows the calculation of putative time.

 (2)

Other terms, specific to a certain algorithm, will be clarified as needed.

Table 2.1 – Propensity Equations

Reaction Equation Propensity Equation

A → B, k1 a0 = XA * k1

A + B → C, k2 a1 = XA * XB * k2

2A → B, k3 a2 = XA * (X A – 1) / 2

8

2.2.2 Gillespie’s First Reaction Method

 The First Reaction Method was Daniel Gillespie’s first take on the SSA [3]. The

Initialization step of this algorithm creates and loads variables to hold the species

populations, reaction equations, and the current time. Upon the initialization of the

system, the Propensity Calculation step begins and the propensity of each reaction is

calculated. For each reaction during the Putative Time Estimation step, a potential time

is calculated to determine when that reaction will occur in the future. Each potential time

is found by generating an exponential random number and dividing it by the propensity

of the reaction. The Reaction Selection step searches the list of putative times from each

reaction; the reaction with the earliest time is labeled as the next reaction. The Reaction

Execution step adds the putative time of the selected reaction to the current time and

updates the species populations by decrementing the values of the reactant populations

and incrementing the values of the product populations. This process is repeated until the

desired end time is reached. See figure 2.1 to find pseudo code for Gillespie’s First

Reaction Method. Gillespie’s First Reaction Method is an effective way to accurately

model biochemical systems. However generating an exponential random number for

each reaction during each iteration severely limits the method’s performance.

2.2.3 Gillespie’s Direct Method

Gillespie formulated the Direct Method to improve the performance of the SSA

[7]. The Initialization step of the Direct Method remains the same as in the First

Reaction Method. The Propensity Calculation step remains the same except for the

requirement that all reaction propensities be summed together. The Putative Time

9

Figure 2.1 – Pseudo Code for Gillespie’s First Reaction Method [7]

10

Estimation step is modified to find one potential time for when the next reaction will

occur by generating one exponential random number and dividing by the total propensity

of the system. The Reaction Selection step generates a uniformly distributed number and

multiplies it by the total propensity. Then a linear search of the reaction propensities is

performed, once the cumulative total of the evaluated propensities exceeds the product

then the current reaction is set to be the next reaction executed. The Reaction Execution

step is also the same as in the First Reaction Method. This process is repeated until the

desired end time is reached. The Direct Method is able to significantly improve the

performance of the SSA by requiring the generation of only one exponential random

number and one uniform random number per iteration, regardless of the size of the

system. See figure 2.2 for pseudo code of Gillespie’s Direct Method.

2.2.4 Gibson and Bruck’s Next Reaction Method

 Michael Gibson and Jehoshua Bruck recognized that the exact stochastic

simulation algorithms originally proposed by Gillespie did not scale well to large systems

with many reactions [8]. In an effort to create a more efficient SSA for exactly

simulating chemical reactions, they devised the Next Reaction Method by enhancing the

efficiency of the First Reaction Method. The execution time of the First Reaction

Method is hindered by the following three activities that are performed with every

iteration and take time proportional to the number of reactions: (1) the propensity of each

reaction must be calculated, (2) a putative time must be found for each reaction, and (3)

the smallest putative time must be found. The Next Reaction Method addresses each of

these respective drawbacks by introducing a Dependency Graph, reusing putative time

11

Figure 2.2 – Pseudo Code for Gillespie’s Direct Method [7]

12

values, and utilizing an indexed priority queue. The dependency graph is a data structure

that chronicles which reaction propensities will be affected by the execution of a given

reaction. Therefore, the fewest possible number of reaction propensities are recalculated.

Recall from section 2.2.2, a reaction’s putative time is related to its propensity. This

suggests that it is not necessary to update the putative time of a reaction whose propensity

does not change. Gibson and Bruck state that typical models contain loosely coupled

reactions and require only a few propensities to be updated with each time step. They

make this claim to justify the use of an indexed priority queue to find the minimum

putative time and subsequently the next reaction to execute. Figure 2.3 shows pseudo

code for the Next Reaction Method.

 Gibson and Bruck also suggest applying the techniques of the Next Reaction

Method to the Direct Method. In addition to including a dependency graph to update the

minimal number of variables, they propose using a complete tree data structure to

efficiently find the total propensity and search for the next reaction to execute. Although

the details of such an algorithm are laid out, Gibson and Bruck chose not to submit a

formal evaluation of such an algorithm.

2.2.5 Cao, Li, and Petzold’s Optimized Direct Method

 Yang Cao, Hong Li, and Linda Petzold addressed the widely held conception that

the Next Reaction Method was more efficient than the Direct Method when dealing with

large systems. They developed the Optimized Direct Method to outperform the Next

Reaction Method [9]. They begin with a comparison of the results from the two

competing algorithms when simulating several actual biochemical models. They

13

Figure 2.3 – Pseudo Code for Gibson and Bruck’s Next Reaction Method [8]

14

observed that the Next Reaction Method has an advantage over the Direct Method when

the system is large with loosely coupled reactions, that is to say the execution of one

reaction does not affect the propensity of many other reactions. However, they

determined that this is not always the case for practical problems. They also concluded

that much of the Next Reaction Method’s time was spent maintaining the indexed priority

queue in order to determine the next reaction. After an evaluation of the previous

stochastic simulation algorithms, they set out to optimize the Direct Method. They

realized that in a large system some reactions are executed more frequently than others.

For example, when simulating a heat shock response model that describes how E. Coli

responds to a temperature increase, they found the six most frequent reactions accounted

for 95% of all executed reactions [9]. When determining the next reaction in the original

Direct Method, reaction propensities are compared sequentially based upon the reaction’s

index. This means a reaction’s index plays an important role in the search depth for the

next reaction. Their group devised a way to perform a few pre-simulations on a system

to determine the most frequent reactions. The reactions are then rearranged in decreasing

order based on how often they execute. This optimizes the average search depth required

to find the next reaction. They also appreciated the efficiency provided by a dependency

graph. By applying the idea of a dependency graph, developed by Gibson and Bruck [8],

only propensities of reactions affected by another reaction’s execution must be

recalculated. When applied to the Direct Method, subtracting the old propensities and

adding the new propensities of the affected reactions can determine the sum of the

propensities. Applying search depth reduction and inclusion of a dependency graph,

15

when appropriate, made the Optimized Direct Method much more efficient than the

original Direct Method.

2.3 Field Programmable Gate Arrays

 A Field Programmable Gate Array (FPGA) is a semi-custom Application Specific

Integrated Circuit (ASIC) that is user programmable [13]. FPGAs are prefabricated to

consist of rows of logic blocks and programmable connection switches to specify

interconnections. Testing a design is simplified on an FPGA, since it can be

electronically programmed, erased, and then reprogrammed in a short amount of time.

This is also the basis for using FPGAs in reconfigurable computing. A Hardware

Description Language (HDL) or a schematic is used to define the desired functionality of

an FPGA. Typically, it is common to use an HDL to describe a large or complex

design. In addition, an HDL design can be targeted to multiple layouts (including FPGAs

and ASICs). The two most popular HDLs are VHDL and Verilog. An HDL allows the

user to define the timing constraints and concurrency within a design. In order to prepare

a design for an FPGA, the desired functionality is split into necessary blocks. Each block

represents some task used towards the overall functionality. Each block is defined as an

“entity” and the logic function of it is described in an HDL by a “process” that runs

continuously. It is also possible for an entity to declare a “component” of another entity

in order to accomplish a task. By declaring multiple processes on an FPGA, parallelism

can be exploited within a design. Processes executing simultaneously can streamline a

design and offer a speedup over the same design implemented in software.

16

2.4 Pilchard Reconfigurable Computing Platform

 The Pilchard Reconfigurable Computing Platform [5] was developed to interface

an FPGA to a host computer. The Computer Science and Engineering Department at the

Chinese University of Hong Kong designed the Pilchard platform. Previous systems that

combined the capabilities of an FPGA with a host computer utilized the Peripheral

Component Interconnect (PCI) bus to handle communication between the two. The

Pilchard platform uses a Dual In-line Memory Module (DIMM) slot of the host computer

to interface with the FPGA. Since the memory bus is faster than the PCI bus, the

Pilchard platform is able to outperform comparable systems. The host computer and

FPGA are able to communicate at a maximum frequency of 133 MHz with sixty-four bit

data. This provides a maximum bandwidth of 1,064 MB/s. The Pilchard platform uses a

Xilinx Virtex XCV1000E FPGA with approximately one-million gate capacity. The

Virtex 1000E also contains 49,152 bytes of Block RAM [14]. The processor within the

host computer is a Pentium III with a 933 MHz clock speed. The time penalty incurred

when loading a design onto the FPGA is only a few seconds and is design independent.

Figure 2.4 shows the circuit board of the Pilchard platform.

2.5 Computing Platform

 The same computing platform was used to compare the performance of the

hardware implementation of the SSA against software implementations of various SSA

methods. The computer that hosts the Pilchard Reconfigurable Computing Platform was

also used to execute the software versions of the stochastic simulation algorithms. The

17

Figure 2.4 – Pilchard Platform [5]

18

computer used a Pentium III operating at 933 MHz with 256 MB of Random Access

Memory (RAM). The operating system was Mandrake Linux version 8.2 with Linux

kernel 2.4.18. Each software implementation was compiled using gcc version 2.96 with

optimization flags turned on.

19

Chapter 3

Related Work

 This chapter will provide an overview of the work done by others towards a

hardware-accelerated stochastic simulator. Typically, in the past, work in this area has

focused on simulating specific biochemical models. This is the case for all related works

listed below. Some groups have also introduced approximations into the SSA in favor of

increasing the overall throughput of the system. The first work examined comes from

Salwinski and Eisenberg, it included an approximation to the SSA. The work of Keane,

Bradley, and Ebeling is considered next and it also contains an approximation to the SSA.

The work of Yoshimi, Osana, Fukushima, and Amano is also considered.

3.1 Salwinski and Eisenberg’s FPGA Approximation

In 2004, Lukasz Salwinski and David Eisenberg examined the use of an FPGA to

exploit the highly parallel nature of information flow within biochemical networks [6,16].

They demonstrated that taking advantage of parallelism is an effective means of

alleviating the high computational cost of performing stochastic simulations. However,

their hardware implementation introduced approximations and was not true to Gillespie’s

original SSA. Furthermore, all their designs were formulated to simulate specific

models. After simulating a system containing a single elementary bimolecular reaction

and a system containing a simple equilibrium reaction, they tested the scalability of their

approach. They were able to simulate a prokaryotic gene expression circuit (eleven

coupled reactions and twelve species) while maintaining the performance seen in their

20

previous designs. They proposed simulation rates at least an order of magnitude greater

than a software counterpart. Their work served as a proof-of-principle that

reprogrammable FPGAs have the potential to efficiently simulate the stochastic behavior

of biological systems. The work outlined in this paper remains mathematically

equivalent to Gillespie’s original SSA as well as providing a general-purpose approach to

simulating a variety of chemical systems.

3.2 Keane, Bradley and Ebeling’s FPGA Approximation

John Keane, Christopher Bradley, and Carl Ebeling developed an algorithm that

approximates Gillespie’s SSA in order to reveal a fine-grained parallel structure that is

well suited to a hardware implementation [10]. At first, their team considered

implementing Gibson and Bruck’s Next Reaction Method [8]. However, they quickly

realized the complexities involved with the algorithm would not complement the parallel

capabilities of an FPGA. Since their goal was to use fine-grained parallelism to

accelerate simulations, they devised a strategy that approximated Gillespie’s Direct

Method. They began by describing hardware to handle each reaction, allowing each

reaction to be simulated simultaneously. They discretized the reaction processes in time,

so reactions were only permitted at uniformly spaced discrete instants in time. A

Bernoulli random process was used to approximate a Poisson process, and the probability

of an event at any given discrete time step was associated with the propensity of the

reaction. By utilizing a Bernoulli process to approximate the probability that a reaction

will execute in a given time step, multiplications typically involved in propensity

21

calculations could be reduced to basic compare and AND operations. The equation

below represents a reaction’s propensity, where Xi are discrete uniform random numbers.

 P[X0 < k0] • P[X1 < S1] • P[X2 < S2] = kS1S2•∆t (1)

Although they limited their example design to a second order system, they

indicated their approach would generalize to higher order systems. This strategy also

eliminated the need to sum the propensities. Since each reaction’s propensity was now

based on the probability that the reaction would occur during a given time step, there was

no longer a need to determine the next reaction executed by the system or a putative time

for that matter. This approach allowed multiple independent reactions and only one

dependent reaction to be performed in each time step. In the event of a collision, two or

more dependent reactions occurring during a time step, the hardware paused and waited

for the software to resolve the issue. Their approach was model specific and required

describing, synthesizing, and routing each new design. However, they developed a

compiler that read a model description in Systems Biology Markup Language (SBML)

and generated a Verilog file containing the necessary modules of the system. Once a

model had been prepared for the hardware it could be reused with various initial

conditions. Several models of varying sizes were simulated using their FPGA approach

and then compared to the performance of the same model simulated in software running

the Next Reaction Method. For the largest model simulated, a system containing sixty-

four species and thirty-two reactions, a speedup of 23.4 was achieved. They defined

speedup based upon the average number of reaction events computed per second.

22

However, their simulator did not capture the actual number of events and an estimate was

used to determine the event rate. In addition, the event rate they assigned to their

hardware implementation neglected two sources of overhead, off-chip time step

recalculations when collisions occurred and communications for data logging. They went

on to reveal that the I/O communication overhead accounted for nearly 70% of the

simulation time; despite this they still chose to ignore it in their speedup calculations.

The work described herein is general purpose and does not require the user to redesign

any hardware. In addition, the design is a statistically equivalent representation of

Gillespie’s SSA. Speedup values contained within this paper are based on the actual run

time of the simulator.

3.3 Yoshimi, Osana, Fukushima and Amano’s FPGA Simulation

Yoshimi, Osana, Fukushima, and Amano also determined that simulations of

biological models often exhibit a lot of fine grain processes frequently communicating

with each other. They realized that an FPGA could best utilize this fine grain parallelism

inherent in biological systems [11]. To test their designs, they developed a

reconfigurable platform called “ReCSiP.” The ReCSiP contained a Xilinx Virtex II

FPGA, and it interfaced to a host CPU via the PCI bus. To show the performance of their

simulator, they modeled the Lotka system outlined in Gillespie’s original paper on exact

stochastic simulation [3,7]. The module designed to simulate the Lotka system consisted

of two simulator modules, each containing two reactor modules, and a module to handle

output control. A look up table (LUT) of logarithmic values was employed within each

simulator module to allow the putative time calculation to be sped up. A portion of each

23

reactor module contained basic steps that were relevant to any simulation executing

Gillespie’s SSA (putative time generation, random number generation, and reaction

selection). Therefore, this portion was applicable to any simulation on their system.

However, the bulk of each reactor module in their design outlined the specifics of the

model being simulated (species counts and reaction equation) and would need to be

replaced with each new model. The output of each reactor module was stored in a first-in

first-out (FIFO) buffer, and the output control module transferred the data to SRAM.

Each reactor module appeared to be self-contained and it is unclear how species

populations were coordinated across the reactor modules. Their simulation of the Lotka

system were described in Verilog and could not be extended to larger chemical systems

without modifying and resynthesizing several modules. They claimed it took thirty-seven

clock ticks to output updated species values and fifty-two clock ticks to output the

putative time. Furthermore, they claimed their reactor modules had thirty-seven pipeline

stages to allow thirty-seven simulation processes to be executed in parallel. Allowing

thirty-seven simulation processes to be executed in parallel may be an indication of

approximations being introduced into the system, but it is not entirely clear from the

paper. They declared a speedup of roughly 105 over a software implementation.

However, this speedup was not based upon actual simulation run-time. They chose to

compare the throughput, or simulation iterations per second, of the hardware and

software. To arrive at the software throughput, they performed 500,000 reactions and

timed the simulation. However, the manner in which they determined the hardware

throughput is not based upon simulation time. The authors were unable to include every

detail of their design and it is not clear if they included putative time generation in their

24

speedup value. In addition, they did not specify what algorithm was implemented in

software. The designs presented here are general-purpose and do not require any

redesign on the user’s part. Therefore, the designs herein are applicable to larger models

(within specified limits). Also, speedup values are based upon actual simulation run

time.

25

Chapter 4

Register Based Design

4.1 Partitioning of the Problem

When the implementation of a general-purpose hardware-accelerated simulator

was first considered, several questions arose. Deciding upon the most efficient SSA to

implement in hardware was the first step. Since the improvements associated with the

Next Reaction Method and the Optimized Direct Method are difficult to implement in

hardware, these algorithms were avoided in the general-purpose hardware

implementation. Gillespie’s original Direct Method was the obvious choice. It offered

substantial performance improvement offer the First Reaction Method, but it did not

significantly complicate the hardware design. After selecting an algorithm to implement,

the tasks were divided depending upon whether they should be performed in hardware or

software. The FPGA handled the calculation and summation of reaction propensities in

addition to the generation of a uniform random variable and determining the next reaction

to execute. Both the CPU and FPGA kept a record of the species populations and

updated the populations after the execution of each reaction. The CPU performed this

task primarily to aid in presenting the user with data as the algorithm progressed. The

generation of an exponential number and calculation of the subsequent time for the next

reaction are performed in software. This was a suitable choice, since it required floating

point arithmetic that is not readily available in hardware (without consuming a large

portion of the available resources).

26

One advantage of this design was that the selected reaction and the total

propensity are the only two pieces of information that the FPGA must communicate to

the microprocessor for each reaction executed. This minimized communication between

the FPGA and microprocessor, alleviating what is a typical bottleneck for reconfigurable

computing designs.

Another interesting advantage of the design was that the software converted all of

the floating-point rate constants to integers at startup. The software read in a chemical

system and found the reaction rate constant with the lowest decimal value. Then all

reaction rate constants were multiplied by a factor that ensured each rate constant was an

integer. Reaction rate constants were defined to be sixteen bits wide, allowing rate

constant values of up to 65,535. The software alerted the user if a rate constant exceeded

this limit upon adjusting it to an integer value. As long as all integer valued reaction rate

constants were within limit, no error was introduced into the reaction selection process.

This is true since all reaction rate constants were scaled to integers according to the

lowest rate constant. Each rate constant, ki, was scaled by F, where F was the

multiplication factor needed to represent the smallest rate constant as an integer.

Therefore ki became F*ki. This resulted in each reaction’s propensity, ai, becoming F*ai;

the total propensity becoming F*aTOT; and the product of the total propensity and a

uniform random number becoming F*aTOT*URV. The reaction selection module still

functioned properly since F could be factored out when searching the reaction

propensities for the next reaction to execute. Comparing F*aTOT*URV to the

accumulation of F*ai was equivalent to comparing aTOT*URV to the accumulation of ai.

This startup cost became negligible as the system was modeled over several iterations.

27

This allowed the FPGA to be implemented using only integer logic, avoiding a floating-

point arithmetic core and saving chip space. A diagram of the division of responsibilities

and communication between the software and the hardware is given in figure 4.1.

The Register Based Design was the subject of a paper presented at the 2005

Engineering of Reconfigurable Systems and Algorithms conference [21].

4.2 Software Design

As evident in figure 4.1, the software played a complimentary role to the FPGA. It was

written in C++ to allow the user to specify the model file from which to read the specifics

of the biochemical system. This data was then stored in the appropriate data structures on

the CPU side. Once the entire model had been loaded, the initial species populations and

reaction equations were passed to the FPGA. The software facilitated the transmission of

data between the FPGA and the user, in addition to allowing the user to assign various

tasks to the FPGA. A command interface was developed to aid in the communication

between the CPU and the FPGA during simulation. It permitted commands, as well as

data, to be sent to and from the FPGA. A full description of this interface will be

presented in the Hardware Design section of this Chapter.

Once a model had been fully defined in the hardware, the user could instruct the

hardware to begin simulating the system. In order to alleviate the need to pass a large

amount of data between the FPGA and CPU, only the selected reaction and total

propensity of each iteration must be transmitted. By having the FPGA send the reaction

selected, the CPU did not have to read and update the populations of all the system’s

species. It did require that the CPU store the species populations, and then adjust the

28

Figure 4.1 – Interaction Between Hardware and Software

29

population of the species affected by the execution of a given reaction. The total

propensity is used to generate the putative time for the iteration. The results of up to 250

iterations could be passed at a time to the CPU; this will be discussed further in the

Hardware Design section of this Chapter. The CPU continued collecting results from the

FPGA until the desired number of iterations has elapsed.

The software also played a crucial role in managing the time of the system. In

addition to generating a putative time for each iteration of the system, it also kept track of

the overall system time. The accumulation of the system time, along with the time

evolution of the populations of relevant species, could be presented to the user to show a

possible trajectory of the system.

4.3 Hardware Design

The first hardware implementation consisted of sixteen registers for species

populations and twenty-two registers for reaction equations. All of the specifics of a

given model were stored on the FPGA via flip-flops. This was not the most effective use

of chip space, but it was a reasonable starting point for such a broad ranging approach.

 Four of the species registers were a single bit allowing values of 0 or 1. This

was an effective way of handling any on/off type reactions commonly present in

chemically reacting systems. The remaining twelve species registers were twelve bits

wide offering a maximum species population of 4,095. This was sufficient for most

systems that meet the limited reaction specifications discussed next.

There were twenty-two modules dedicated to calculating reaction propensities in

parallel; one for each of the twenty-two registers established to hold reaction equations.

30

To minimize the chip space required for propensity calculation, there were five variations

of propensity calculators. Two of the propensity calculators allowed only a single

reactant of single bit-width, while eleven of the propensity calculators allowed only one

reactant of any bit-width (up to twelve). Two other propensity calculators allowed for

reactions with up to two reactants where one reactant is of single bit-width. In addition,

there were six propensity calculators that allowed reactions to have up to two reactants of

any bit-width (up to twelve). Finally, there existed one propensity calculator that only

handled the case when a species reacted with itself. All reaction equations were able to

produce at most two products. It is important to note that when two of the same species

reacted with one another, they were treated as separate reactants. The same is true when

two of the same species were produced by a reaction. For example: 2A→B was treated

as A+A→B, and A→2B was treated as A→B+B. Figure 4.2 shows the components of

the Register Based Design and it helps to illustrate the parallelism achieved.

All of the variations discussed above, concerning the propensity calculator

modules, were done in an attempt to allow as many registers as possible for holding

reaction equations. Different propensity calculator modules required a varying amount of

input parameters and therefore necessitated dissimilar levels of complexity. This related

directly to chip space; more complex propensity calculators (any species reacting with

any species) consumed more gates than a simple propensity calculator (a reaction with

one reactant species that is of on/off type). Since each propensity calculator was tied

directly to a particular reaction equation, supporting various amounts of the different

propensity calculators affected the number of total reaction equations that could be

simulated. However, care had to be taken to ensure that valid biochemical systems could

31

Figure 4.2 – Hardware Design Depicting Parallelism

32

still be simulated. For instance, building a simulator to execute only single reactant

equations would allow more total reaction equations in the system but it would not be an

effective general-purpose simulator. The diverse combination of propensity calculators

was chosen for this simulator in order to maximize chip space and provide sufficient

resources to simulate a range of models.

Upon configuring the FPGA, a routine was executed on the host processor of the

Pilchard. The routine was written in C++ and enabled the user to interact with the FPGA.

The user defined a chemically reacting system and wrote it to an input file. The CPU

read from this input file and sent the formatted data to the FPGA.

Reaction rate constants typically vary among the reaction equations of a chemical

system. In addition, rarely are all of the rate constants integer values. In order to

maximize hardware performance, floating-point arithmetic was avoided. Therefore, all

reaction rate constants were converted to integer values prior to sending any data to the

FPGA. Once the model was initialized and integer values computed for the reaction rate

constants, the model was passed to the FPGA. Within the FPGA, resources were laid out

to compute reaction propensities, sum all propensities, generate a uniform random

number, select the next reaction to execute, and update species populations. The reaction

selection module sequentially searched the propensities to determine the next reaction to

execute. While the update module used the reaction selection index to decrement the

reaction’s reactants and increment the reaction’s products. The update module returned

an updated value for each of the species populations, even if a species was unaffected by

the execution of a given reaction. Uniform random numbers were generated by use of a

linear feedback shift register (LFSR) [17].

33

The development of a command interface language enabled instructions and

variables to be efficiently exchanged between the CPU and the FPGA and allowed for

easy debugging of the hardware. This command interface language required two

addresses in the DIMM interconnection of the Pilchard, one for the CPU to send

commands and variables and another for the FPGA to send back data. A list of

commands is given below.

1: setspeciespop - Sent the index and population of a species to the FPGA.

2: readspeciespop (debugging) - Sent the index of a species population to be read

from the FPGA.

3: setreaction - Sent a reaction equation along with its index to the FPGA.

4: readreaction (debugging) - Sent the index of a reaction to be read from the

FPGA.

5: readpropensity (debugging) - Sent the index of a propensity to be read from the

FPGA.

6: readsum (debugging) - Read the total propensity from the FPGA.

7: setseed - Sent the seed for the uniform random number generation on the FPGA.

8: readURV (debugging) - Read the uniform random number generated on the

FPGA.

9: nextURV (debugging) - Instructed the linear feedback shift register (LFSR) on the

FPGA to generate a new uniform random variable.

10: readproduct (debugging) - Read the product of the uniform random number times

the total propensity.

34

11: readrxselected (debugging) - Read the index of the next reaction to be executed.

12: updatespecies (debugging) - Updated the species populations on the FPGA

according to the next reaction to be executed.

13: step - Instructed the FPGA to determine and execute 250 reactions. This

command is discussed in detail later.

Some commands listed above were developed for preliminary debugging

purposes; this is indicated in the command descriptions above. These debugging

commands were removed from the final version in order to maximize the number of gates

available to define a chemical system. The commands listed above are crucial for

interacting with the FPGA to model a chemical system. The FPGA interacted with the

host processor via a DIMM interface. In order to read or write to the DIMM, the FPGA

defined an eight bit wide address in the DIMM. This allowed for 256 separate

addressable locations in the DIMM. Each of these addresses could hold sixty-four bits of

data. Refer to Chapter 2 for further description of the hardware platform.

The step command was used to complete the iterations of a system model, so a

more in depth view is provided below. When the CPU issued a step command, pertinent

data for 250 iterations was placed into 250 addresses of the DIMM following the

selection of each executed reaction by the FPGA. Each address contained the reaction

selected along with the total propensity prior to the FPGA executing the reaction. This

command is repeated until the desired number of iterations is reached. The step

command executed 250 reactions in order to fully utilize the portion of the DIMM

addressable by the FPGA. Upon completing an instruction from the CPU, the FPGA

35

cleared the command from the DIMM address. The CPU waited for this to occur

indicating that the FPGA is finished. If the command was a step, the CPU cycled through

DIMM addresses from 0x2 to 0xFB. At each address, the CPU used the total propensity

to calculate an exponential random variable and a time until the next reaction. The

species values stored on the CPU were then updated according to the reaction index at the

address. The CPU then continued issuing the user’s commands to the FPGA. Step

commands were repeated until all iterations required of the system have been executed.

4.4 Comparison of Results

In order to test this hardware-accelerated approach to exact stochastic simulation,

several exact stochastic simulation algorithms were utilized in software. The algorithms

chosen for comparison were: Gillespie’s First Reaction Method, Gillespie’s Direct

Method, Gibson and Bruck’s Next Reaction Method, and Cao, Li, and Petzold’s

Optimized Direct Method. All of the software implementations were from pre-existing

designs developed by James McCollum [18]. Each software algorithm was compiled and

executed on the Pilchard’s host processor, discussed in Chapter 2. Each algorithm was

compiled using gcc version 2.96 with optimization flags turned on. The performance of

each, when given identical chemically reacting systems, was compared to the hardware

version. In the following tables, the hardware version is labeled “Hardware Direct.”

Speedup values were calculated by dividing the execution time of the software method by

the execution time of the accelerated hardware method. Two actual biochemical systems

were chosen to use as models to calculate the resulting speedup of the hardware

implementation.

36

The first chemical system considered was an auto-regulated gene expression

model based on the work of Simpson et al [2]. The system contained ten species and

fourteen reaction equations. The initial species populations and reactions are given in

figure 4.3.

Execution times for each method simulating this self-regulating system for

100,000,000 iterations is given in Table 4.1 along with the associated speedup achieved

by the hardware implementation.

The second system considered was a model of genomically based oscillation,

based on two mutually interacting genes. This model comes from Vilar et al [12]. An

activator provided positive feedback to the system, while a repressor provided negative

feedback. The system contained nine species and sixteen reaction equations. The initial

species populations and reactions are given in figure 4.4.

Table 4.1 – Speedup Associated with Self Regulated Model

Method Execution Time Speedup

Hardware Direct 77.798

First Reaction 814.033 10.46

Direct 225.114 2.89

Next Reaction 174.656 2.24

Optimized Direct 109.410 1.41

37

Figure 4.3 – Self Regulated Model [2]

38

Figure 4.4 – Genomically Based Oscillation Model [12]

39

Execution times for each method simulating this genomically based oscillation

model for 100,000,000 iterations is given in Table 4.2 along with the associated speedup

achieved by the hardware implementation.

It is clear that simulating chemically reacting systems on a reconfigurable

computing platform provides a speedup over any of the methods executed in software.

Furthermore, these results illustrate that employing FPGAs in stochastic simulation is an

effective way to accelerate the simulation of useful biological systems.

4.5 Difficulties and Design Limitations

The register based hardware approach proved to be an effective way of

accelerating exact stochastic simulation. However, the design does contain some

inefficiencies and limitations. The primary bottlenecks of the design are processing

within the CPU and communication between the FPGA and CPU. Having the CPU

Table 4.2 – Speedup Associated with Genomically Based Oscillation Model

Method Execution Time Speedup

Hardware Direct 78.259

First Reaction 805.044 10.29

Direct 230.558 2.95

Next Reaction 252.125 3.22

Optimized Direct 118.948 1.52

40

 to performance. Since this cost is also associated with software implementations, it

represents an area where speedup could be achieved in hardware. This design also

generate an exponentially distributed random number and the putative time is detrimental

severely restricts the size of systems that can be simulated. By limiting the system to

only sixteen species and twenty-two reactions, it is difficult to find biologically relevant

models to simulate. The ability to handle more reactions in hardware could greatly

improve performance. This is partly evident by the results shown within this chapter. It

is feasible that the speedup value for the hardware implementation would increase further

by modeling a system that fully utilizes the resources laid out in the hardware design.

This is due to the hardware’s ability to perform several operations in parallel. For

biochemical systems that meet the system parameters (i.e. twenty-two reaction

equations), the hardware exhibits a steady performance. However, software is not able to

scale in such a manner and performs steps sequentially. In general, the performance of a

software implementation of the SSA declines as more reaction equations are introduced.

A summary of the device utilization can be seen in figure 4.5. The number of

slices in use, 98%, relates to the amount of chip space consumed for the design. In

addition, a view of the timing constraints can be found in figure 4.6. This figure shows

the clock rate for communication between the FPGA and CPU. It is labeled

“clkdlhf_clkdiv,” and is found to be 127.663 nSec. This yields a clock frequency of

7.833 MHz, substantially lower than the Pilchard’s possible clock frequency of 133 MHz.

It is clear that the current constraints of the register-based approach completely consume

the chip space of the FPGA. Therefore, there is no room to address the issues described

above. More species and reactions cannot be stored in hardware, and exponential random

41

Figure 4.5 – Register Based Approach Design Utilization Summary

42

Figure 4.6 – Timing Constraints of Register Based Design

43

number generation must remain a task for the CPU. This is the motivation for a second

approach to a general-purpose hardware accelerated SSA. Blocks of Random Access

Memory (BRAM) are available on the Pilchard reconfigurable platform. These will

allow the hardware to accept larger sized systems while, at the same time, reducing the

chip space so exponential random numbers can be generated in hardware. These

techniques will be further discussed in Chapter 5.

 Figure 4.7 presents the workload of the FPGA and the CPU scaled according to

the simulation time required of various procedures. It is evident that the FPGA and the

CPU are performing tasks concurrently, however it is also clear that the CPU’s workload

dominates the overall simulation time. One strategy towards improved performance

could be to speed up the floating-point arithmetic on the CPU, as well as employing a

second processor to update species populations on the CPU side. These enhancements

might allow the simulation time required by the FPGA and CPU to be similar. This in

turn could provide an estimated speedup of 3X and beyond.

44

Figure 4.7 – Register Based Design Projected Workloads

45

Chapter 5

Block RAM Based Design

5.1 Partitioning of the Problem

After completing the Register Based Design, a second pass at a general-purpose

hardware accelerated exact stochastic simulator was attempted. Two limitations of the

Register Based Design were focused on: (1) moving more of the algorithm into hardware,

primarily the generation of exponentially distributed random numbers and (2) simulating

larger models that contain more reaction equations. Having already developed a working

knowledge of the Pilchard Reconfigurable Platform [5], it was used in the second design

as well. Since the previous design consumed all of the available chip space on the FPGA,

a new approach required a better utilization of the resources available. The blocks of

random access memory (BRAM) present on the Pilchard board were a promising solution

to optimize the use of the chip space available. Storing species populations, reaction

equations, and reaction propensities in BRAM would allow larger biochemical systems to

be modeled while allowing more of the SSA to be defined in hardware. Gillespie’s

original Direct Method was still adequate to the design goals and was used in the second

approach. Much of the overall design remained the same as the Register Based Design

discussed in Chapter 4. All the tasks and interfacing were the same, except the CPU

calculated the putative time for each reaction based upon an exponential random number

generated by the FPGA.

This design still required that the selected reaction and the total propensity be

transmitted to the CPU from the FPGA. However, the FPGA now had to transmit an

46

exponential random number for each iteration of the system as well. Just as with the

Register Based Design, the software converted all of the floating-point rate constants to

integers at startup to avoid any floating arithmetic on the FPGA. A diagram of the

division of responsibilities and communication between the software and the hardware is

given in figure 5.1. The layout was very similar to the previous design with the exception

that exponential random number generation was done on the FPGA.

5.2 Software Design

The software for this implementation was very similar to that of the previous

design. Some modifications were made, written in C++, to allow larger models and to

read exponential random numbers from the FPGA. Refer to the Software Design section

of Chapter 4 for a thorough overview of the software’s role. Since the BRAM design

required more information be passed from the FPGA to the CPU with each iteration, the

information (total propensity, next reaction, and an exponential random number) from up

to 125 iterations could be passed at a time to the CPU. The CPU’s behavior in this

design mimicked that of the previous design, and results were collected from the FPGA

until the desired number of iterations had elapsed.

By moving the exponential random number generation to the FPGA, another

modification had to be made to the software. When generating a putative time for each

iteration of the system, the CPU read the exponential random number from the FPGA and

converted it from fixed point to floating point before dividing by the total propensity to

find the time till the next reaction.

47

Figure 5.1 – Interaction Between Hardware and Software

48

5.3 Hardware Design

The BRAM available on the Virtex 1000E FPGA was formatted to allow systems

with a maximum of 127 species populations and sixty-three reaction equations to be

simulated. In addition, the BRAM was formatted to hold the resulting propensity

associated with each reaction equation. In stark contrast to the Register Based Design, all

species populations were sixteen bits wide. This led to a maximum species population of

65,535. The restrictions placed on defining a reaction equation were also lifted. That is

to say each reaction equation was able to consist of up to two reactants and two products,

and the bit width of the reaction rate constant remained at sixteen. This removed the

need to have several variations of propensity calculators. For the BRAM Based Design,

each propensity calculator was built to be general-purpose and able to handle any of the

cases discussed in the Register Based Design.

Allowing more reaction equations to be simulated did introduce a substantial

obstacle to maximizing performance. Whereas in the Register Based Design each

reaction equation had its own dedicated propensity calculator, the number of possible

reaction equations in the BRAM Based Design prohibited such an approach. The chip

space required to instantiate sixty-three propensity calculators exceeded that which was

available on the Pilchard. The use of general-purpose propensity calculators and the

introduction of other complications allowed eight propensity calculators to fit into the

available space. Therefore, each propensity calculator had to calculate the propensity for

up to eight reaction equations. This was an obvious drain on performance. However, it

did have a favorable effect as well. As each propensity calculator cycled through its eight

reaction equations, it accumulated the calculated propensities. It stored the sum of the

49

propensities in registers after the first four reaction equations and after all eight reaction

equations. This led to a total of sixteen registers, two per propensity calculator, being

used to store these Partial Sums. Not only did this simplify the process of determining

the total propensity (of all sixty-three reactions), it also aided in the selection of the next

reaction.

The use of the partial sums allowed the reaction selection module to operate as a

mock search tree. Figure 5.2 will give an idea of how they would be useful.

It took two clock ticks to read data from BRAM, therefore it would be devastating

if every propensity had to be read sequentially in order to determine the next reaction.

The partial sums helped the reaction selection module narrow down the search to four

propensities in BRAM. This helped offset the cost of having each propensity calculator

find the propensity of eight reaction equations.

To update the species populations, the index of the selected reaction was used to

read the corresponding reaction equation from BRAM to determine which species

populations were affected. The indices of the reactants and products were then used to

find their populations, prior to execution of the reaction, in BRAM. Registers were used

to hold the reactant species populations after being decremented and the product species

populations after being incremented. These registers were then used to update the species

populations of the appropriate BRAM. The populations of reactants and products were

updated sequentially. At each stage of the update, the affected species population

registers were updated to reflect the any change in pertinent species populations.

Therefore if a species reacted with itself, its corresponding population in BRAM would

be decremented twice. This would also handle the case when a reaction produced two

50

Figure 5.2 – Partial Sums Use in Selecting Next Reaction

51

molecules of a given species, thus incrementing a population twice. In addition, it makes

it possible to effectively handle reaction equations that contain a species that serves as a

reactant as well as a product. In that situation, the species population will remain the

same.

The Intellectual Property (IP) block used to generate exponentially distributed

random numbers was developed by James McCollum [17]. It used an LFSR and a look

up table to interpolate a value along an exponential curve.

Figure 5.3 shows the components of the BRAM Based Design and it helps to

illustrate the parallelism achieved.

The user interacted with the FPGA in the same manner as previously described in

the Register Based Design. A routine, written in C++, enabled the user to define a

chemically reacting system for the CPU to read and then send the formatted data to the

FPGA. Again, all reaction rate constants were converted to integer values prior to

sending any data to the FPGA in order to avoid floating point arithmetic. Within the

FPGA, resources were laid out to compute reaction propensities, sum all propensities,

generate a uniform random number, select the next reaction to execute, generate an

exponential random number, and update species populations.

The command interface language developed for the Register Based Approach was

reused with some modification. The command interface language required two addresses

in the DIMM interconnection of the Pilchard, one for the CPU to send commands and

variables and another for the FPGA to send back data. A list of valid commands for the

BRAM Based Design is given below.

52

Figure 5.3 – BRAM Based Design Depicting Parallelism

53

1: setSP - Sent the index and population of a species to the FPGA.

2: readSP (debugging) - Sent the index of a species population to be read from

the FPGA.

3: setRX - Sent a reaction equation along with its index to the FPGA.

4: readRX (debugging) - Sent the index of a reaction to be read from the FPGA.

5: readPROP (debugging) - Sent the index of a propensity to be read from the

FPGA.

6: readPSUM (debugging) - Read any of the partial sums generated by the

propensity calculators, can also read total propensity from the FPGA.

7: setseed - Sent the seed for the uniform random number generation on the

FPGA.

8: readURV (debugging) - Read the uniform random number generated on the

FPGA.

9: newURV (debugging) - Instructed the linear feedback shift register (LFSR) on

the FPGA to generate a new uniform random variable.

10: readPRODUCT (debugging) - Read the product of the uniform random

number times the total propensity.

11: readSELECTION (debugging) - Read the index of the next reaction to be

executed.

12: readERV (debugging) - Read the exponential random number generated on

the FPGA.

13: initPROP (debugging) - Used to initiate the propensity calculators after

loading details of the system.

54

14: step - Instructed the FPGA to determine and execute 250 reactions. This

command is discussed in detail later.

Many commands listed above were developed for debugging purposes; this is

indicated in the command descriptions above. Many debugging commands were

removed from the final version in order to maximize the number of gates available to

define a chemical system.

Recall from Chapter 4 that the FPGA interacts with the host processor via a

DIMM interface with 256 separate addressable locations, each with sixty-four bits of

data. The step command of the BRAM version is similar to the Register Based Design.

However, in this case, data for only 125 iterations is placed into DIMM. This is because

each iteration now required two addresses since the exponential random number is thirty-

two bits wide, the total propensity is clipped to thirty-two bits, and six bits were needed

for the selected reaction remain to be sent. Each iteration was given two addresses of the

DIMM, therefore the 250 addresses of the DIMM that are readable by the CPU allowed

the step command to perform 125 iterations at a time.

Just as in the previous design, the FPGA cleared the command from the DIMM

address upon completing an instruction from the CPU. The CPU waited for this to occur

indicating that the FPGA is finished. If the command was a step, the CPU cycled through

DIMM addresses from 0x2 to 0xFB in pairs. The first address contained the total

propensity and the exponential random number. The CPU used this information to

compute a time until the next reaction. The second address contained the next reaction to

be executed. The species values stored on the CPU were then adjusted according to the

55

reaction index given. The CPU then continued issuing the user’s commands to the

FPGA. Step commands were repeated until all iterations required of the system had been

executed.

5.4 Comparison of Results

The BRAM Based Design will be compared to the following algorithms

implemented in software: Gillespie’s First Reaction Method, Gillespie’s Direct Method,

Gibson and Bruck’s Next Reaction Method, and Cao, Li, Petzold’s Optimized Direct

Method, and McCollum’s Sorting Direct Method. Once again, these were pre-existing

software designs developed by James McCollum [18,20]. Two models that meet the

criteria of the BRAM Based Design were chosen. Using the above software

implementations to simulate these systems generated the following results. The results of

the hardware-accelerated simulator are labeled “Hardware Direct.” Each software

algorithm was compiled and executed on the Pilchard’s host processor, discussed in

Chapter 2. Each algorithm was compiled using gcc version 2.96 with optimization flags

turned on. Two real biological models were used to test the BRAM Based Design. Dr.

Chris Cox at the University of Tennessee formulated each model [18]. The SBML

description of each model can be found in Appendix E as well as an outline of the

contents of an SBML model.

The first chemical system considered was a simple model of a gene whose protein

undergoes dimerization. This model consisted of eight species and thirteen reaction

equations. The execution time of each method simulating the above system for 1,000,000

iterations is given in Table 5.1.

56

Table 5.1 – Speedup Associated with Protein Dimerization

Method Execution Time Speedup

Hardware Direct 3.300

First Reaction 19.250 5.83

Direct 6.670 2.02

Next Reaction 4.896 1.48

Optimized Direct 4.036 1.22

Sorting Direct 3.386 1.03

The second chemical system modeled was tuberculosis. It consisted of seventeen

species and twenty-three reaction equations. The execution time of each method

simulating the above system for 1,000,000 iterations is given in Table 5.2.

 In order to fit into the constraints of the hardware implementation, some

modifications were made to the original tuberculosis SBML file. The original system

contained a reaction equation that produced more than two products. Therefore in order

for the model to fit into the hardware implementation, a dummy species and a dummy

reaction equation had to be established. When a reaction occurred with numerous

products, a dummy species would be activated. This dummy species would be associated

with a dummy reaction equation with an extremely high rate constant, in order to be

reasonably certain that the reaction would occur next. The dummy reaction equation

would then increment product species populations or possibly activate another dummy

57

Table 5.2 – Speedup Associated with Tuberculosis

Method Execution Time Speedup

Hardware Direct 3.32

First Reaction 36.669 11.04

Direct 10.254 3.09

Next Reaction 10.656 3.21

Optimized Direct 4.355 1.31

Sorting Direct 4.291 1.29

species/reaction equation. This is a departure from the biologically relevance of the

model, but it is effective at demonstrating the performance of the hardware

implementation. The original SBML file for Tuberculosis, along with the modified

version, can be found in Appendix E.

 Once again, the results from the two models simulated above suggest that the

speedup achieved by the hardware implementation generally increases as the number of

reaction equations increases. This is due to the fact that resources have been laid out in

hardware to handle any system within the parameters specified earlier. The hardware’s

execution time is relatively steady while the workload of a software-implemented method

will usually increase with additional reaction equations.

58

5.5 Difficulties and Design Limitations

Although the BRAM Based Design served to address some of the shortcomings of

the Register Based Design, it also introduced some new limitations.

The speedup achieved by the BRAM Based Design is below the speedup achieved

by the Register Based Design. However, in terms of future development of a hardware

design, the BRAM Based Design offers the most potential. Storing species populations

and reaction equations in BRAM allowed large systems to be simulated, but accessing

BRAM was time consuming. Reading an address in BRAM required two clock ticks: (1)

to set the address from which to read (2) to read the data from BRAM. This slowed

down performance due to the number of times BRAM must be read when calculating a

propensity. Simulating larger systems was naturally more complex. As discussed earlier,

modeling systems that contain up to sixty three reactions will not allow each reaction to

have its own dedicated reaction propensity calculator running in parallel. The solution to

this problem was to have eight propensity calculators running in parallel, each one

calculating the propensity of eight reaction equations sequentially. This increased the

number of clock ticks required to compute all the propensities. The ability to model

systems with more reaction equations also required more clock ticks for the reaction

selection stage. Since clock ticks relates directly to simulation time, performance was

negatively affected. In the Register Based Design, propensities were searched

sequentially to find the next reaction to execute. This line of attack was not as appealing

when dealing with a system with sixty-three reactions. The partial sums generated by the

propensity calculators discussed in the Hardware Design section of this chapter were an

59

attempt to improve the search time required by the reaction selection module, but it

remained a time consuming process.

Moving the exponential random number generation to the FPGA reduced the

amount of processing done by the CPU when calculating the putative time. However, it

required more information to be passed from the FPGA to the CPU. As mentioned

previously throughout this paper, communication between the FPGA and the CPU is a

typical bottleneck of this design. The CPU now not only had to compute the putative

time via floating point arithmetic, but it also had to convert the exponential random

number from fixed point to floating point notation. In order to fully utilize the potential

speedup of performing exponential random number generation in hardware, the inclusion

of a floating-point core could be added to the FPGA. This would allow the FPGA to not

only calculate the putative time, but also maintain the system time. This is discussed

more in section 6.2 as a suggestion for future work. Figure 5.4 depicts the device

utilization summary of the BRAM Based Design. At 77%, the chip is not full and future

modifications can be made. The clock rate for communication between the FPGA and

CPU can be found in figure 5.5. It is labeled “clkdlhf_clkdiv,” and is found to be 91.619

nSec. This yields a clock frequency of 10.915 MHz. This is faster than the Register

Based Design, but still well below the Pilchard’s possible clock frequency of 133 MHz.

The workloads of the FPGA and CPU are shown in figure 5.6 scaled according to

simulation times. It can be seen that tasks are being performed concurrently, however the

FPGA is now dominating simulation time. Therefore, the BRAM Based Design would

benefit from further optimizations on the hardware side.

60

Figure 5.4 – BRAM Based Design Utilization Summary

61

Figure 5.5 – Timing Constraints of BRAM Based Design

62

Figure 5.6 – BRAM Based Design Projected Workloads

63

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work has explored the possibility of a general-purpose hardware accelerator

for stochastic simulation. Two hardware-based approaches were given. Both

approaches, the Register Based Design and the BRAM Based Design, were shown to

offer a speedup over several stochastic simulation algorithms implemented in software.

Although the hardware designs outperformed all the software versions by up to 1.5X,

work still remains to develop an optimized hardware version. The topics listed below for

future work could direct new hardware designs towards an optimized solution. This

could allow biological researchers to accurately model biochemical systems in order to

develop the gene therapy and drugs of tomorrow.

The use of FPGAs to accelerate the simulation of biological models appears to be

a plausible option. This work, along with related work in Chapter 3, has shown that

FPGAs can play an important part towards speeding up the simulation times of biological

models. However, a general-purpose hardware design is essential in order for Biologists

to consider using an FPGA for stochastic simulations. This was precisely the goal of the

research presented. This work can now serve as a foundation upon which future general-

purpose designs will undoubtedly achieve superior performance and empower Biologists

to accurately and quickly simulate biological models.

64

6.2 Hardware Improvements

Performance improvement could be obtained by porting either of the hardware

designs outlined within this paper, the Register Based Design or the BRAM Based

Design, to an updated reconfigurable computing platform. One such platform now

available at the University of Tennessee, Knoxville is the Amirix AP130 [19]. This

development board contains a Xilinx Virtex II Pro XC2VP30 FPGA. The Virtex II Pro

contains roughly the same number of gates as the Virtex 1000E, but it does have

advantages. Within the Virtex II Pro exist two IBM Power PC (PPC) 405 cores tightly

coupled with the FPGA. However, the PPC do not support floating point operations so

putative time generation will still be a hindrance to performance. The AP130 contains

sixty-four MB of Synchronous Dynamic Random Access Memory (SDRAM) onboard in

addition to 136 dedicated eighteen-bit multipliers on the Virtex II Pro [15]. Although the

AP130 communicates with the host via the PC’s PCI bus, the above enhancements make

the AP130 a worthy candidate for future endeavors. As discussed earlier in Chapter 4,

speeding up the floating-point arithmetic while also employing a second processor to

update species populations on the CPU side could have a tremendous impact on the

performance of the Register Based Design. The AP130 could possibly reach these goals.

Another hardware improvement might be to employ a larger FPGA. Doing so

with the Register Based Design would provide for more reaction equations to be

simulated, however routing might become an issue and require a different approach.

Implementing the BRAM Based Design onto a larger FPGA might be worth the effort.

Increasing the available number of gates would allow more propensity calculators to be

running in parallel, reducing the time needed to calculate all the reaction propensities. In

65

addition, it might facilitate the inclusion of a floating point IP block onto the FPGA. This

would allow all putative time and even accumulated system time to be calculated on the

FPGA. The ability to perform putative time calculations and maintain the system time on

the FPGA could allow the user to define a time interval for printing results as well as a

time to end the simulation. Then the FPGA would only have to communicate with the

CPU after each time interval. Furthermore, the species populations would not have to be

tallied on the CPU side since the FPGA could transmit them along with the system time

after each time interval.

6.3 Design Improvements

Each of the hardware designs explored during this paper had design choices that

played a subtle role in the resulting performance. For the Register Based Design, it might

be beneficial to alter the reaction selection module from a sequential search. This could

be done in a fashion similar to that performed in the BRAM Based Design. However,

with only twenty-two reaction equations supported, a sequential reaction selection

module is not a horrible choice. Furthermore, the cost of ranking the reaction

propensities might outweigh the gain associated with implementing a cleverer search

routine. A design improvement for the BRAM Based Design might be to include a

variety of propensity calculators as was done in the Register Based Design. This might

release some of the chip space on the FPGA allowing more propensity calculators to be

implemented thus reducing the time it takes to calculate all propensities.

66

6.4 Algorithm Improvements

Improved stochastic simulation algorithms continue to surface. Primarily the

improvements are directed towards software implementations. However, future

algorithms may introduce enhancements that are readily adaptable to hardware. In

addition, some components of previous algorithms could play a positive role in hardware

acceleration of stochastic simulations. For instance, the use of a dependency graph [8]

might have a positive impact on performance.

6.5 Application Specific Integrated Circuit Design

As one would expect, moving either of the designs mentioned within this paper to

an application specific integrated circuit (ASIC) would improve performance. Porting

the design to an ASIC would offer a substantial increase in clock frequency, resulting in

improved speedup values, as well as a dramatic increase in the number of available gates.

However, production of an ASIC is not currently a feasible choice. Aside from being

very expensive to fabricate, they are not suitable to evolving designs [13]. Once a design

is implemented in an ASIC, it is permanent. This complicates the choice to utilize an

ASIC for a design. The designs presented herein would benefit from the increased clock

frequency, but they would not maximize the chip space offered by an ASIC. In order to

do so, considerable testing and debugging of a design would be required. There is

promise in an ASIC design, but implementing the SSA in hardware is still a relatively

new strategy and several obstacles remain before constructing a fully optimized hardware

solution on an ASIC.

67

REFERENCES

68

References

[1] C. V. Rao, D. M. Wolf, and A. P. Arkin, “Control, Exploitation, and Tolerance of
Intracellular Noise,” Nature, vol. 420, pp. 231-237, Nov 2002.

[2] M. L. Simpson, C. D. Cox, and G. S. Sayler, “Frequency Domain Analysis of
Noise in Auto-regulated Gene Circuits,” Proceedings of the National Academy of
Sciences, vol. 100, pp. 4551-4556, Apr 2003.

[3] D. T. Gillespie, “General Method for Numerically Simulating Stochastic Time
Evolution of Coupled Chemical Reactions,” Journal of Computational Physics, vol. 22,
pp. 403-434, 1976.

[4] D. Endy and R. Brent, “Modeling Cellular Behavior,” Nature, vol. 409, pp. 391-
395, 2001.

[5] K. H. Tsoi, Pilchard User Reference (v0.2), Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 2003.

[6] L. Salwinski and D. Eisenberg, “In silico simulation of biological network
dynamics,” Nature Biotechnology, vol. 22, pp. 1017-1019, August 2004.

[7] D. T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical Reactions,”
Journal of Physical Chemistry, vol. 81, pp. 2340-2361, 1977.

[8] M. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation of Chemical
Systems with Many Species and Many Channels,” Journal of Physical Chemistry A, vol.
104, pp. 1876-1889, 2000.

[9] Y. Cao, H. Li, and L. R. Petzold, “Efficient Formulation of the Stochastic
Simulation Algorithm for Chemically Reacting Systems,” Journal of Chemical Physics,
vol. 121, pp. 4059-4067, Sep 2004.

[10] J. F. Keane, C. Bradley, and C. Ebeling, “A Compiled Accelerator for Biological
Cell Signaling Simulations,” FPGA 2004, pp. 233-241, 2004.

[11] M. Yoshimi, Y. Osana, T. Fukushima, H. Amano, “Stochastic Simulation for
Biochemical Reactions on FPGA,” Field-Programmable Logic and Applications,
Proceedings Lecture Notes in Computer Science, vol. 3203, pp. 105-114, 2004.

[12] J. Vilar, H. Kueh, N. Barkai, S. Leibler, “Mechanisms of Noise Resistance in
Genetic Oscillators,” PNAS, vol. 99, pp. 5988-5992, 2002.

69

[13] D. Bouldin, (2003). Overview of FPGAs and ASICs,
http://vlsi1.engr.utk.edu/ece/bouldin_courses/private_html/1-overview-fpga-asic-
color.pdf, (accessed July 2005).

[14] Xilinx Virtex XCV1000E; Data Sheet; Xilinx: San Jose, CA, (June 16) 2004,
http://www.xilinx.com/bvdocs/publications/ds022.pdf, (accessed July 2005).

[15] Xilinx Virtex XC2VP30; Data Sheet; Xilinx: San Jose, CA, (June 20) 2005,
http://www.xilinx.com/bvdocs/publications/ds083.pdf, (accessed July 2005).

[16] L. Lok, “The need for speed in stochastic simulation,” Nature Biotechnology, vol.
22, pp. 964-965, 2004.

[17] J. McCollum, J. Lancaster, D. W. Bouldin and G. D. Peterson, “Hardware
Acceleration of Pseudo-Random Number Generation for Simulation Applications,”
Proceedings, Southeastern Symposium on System Theory, 2003.

[18] J. McCollum (2004). Accelerating Exact Stochastic Simulation. M.S. Thesis,
University of Tennessee, Knoxville.

[19] S. Merchant, S. Fields, Amirix AP130 VirtexIIPro System Tutorial (v1.0),
Department of Electrical and Computer Engineering, The University of Tennessee,
Knoxville, Marth 2005.

[20] J. McCollum, C. Cox, G. Peterson, M. Simpson and N. Samatova, “The Sorting
Direct Method: An Efficient Stochastic Simulation Algorithm for Modeling Biochemical
Systems,” The Journal Computational Biology and Chemistry, 2005.

[21] B. P. Thurmon, J. M. McCollum, G. D. Peterson, C. D. Cox, N. F. Samatova, G.
S. Sayler and M. L. Simpson, “Accelerating Exact Stochastic Simulation using
Reconfigurable Computing,” Proceedings, Engineering of Reconfigurable Systems and
Algorithms, 2005.

70

APPENDICES

71

Appendix A

Register Based Design VHDL

parith.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY parith IS
 PORT (clk : IN STD_LOGIC;
 we : OUT STD_LOGIC;
 addr : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 din : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
 dout : IN STD_LOGIC_VECTOR(63 DOWNTO 0));
END parith;

ARCHITECTURE rtl OF parith IS

COMPONENT prop_1
 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0));
END COMPONENT;

COMPONENT prop_1_onoff
 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(15 DOWNTO 0));
END COMPONENT;

COMPONENT prop_2

72

 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(25 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0));
END COMPONENT;

COMPONENT prop_2_onoff
 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(25 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0));
END COMPONENT;

COMPONENT prop_self
 PORT (clk : IN STD_LOGIC;
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);

73

 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0));
END COMPONENT;

COMPONENT sumprop
 PORT (clk : IN STD_LOGIC;
 p0 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 p1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 p2 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p3 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p4 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p5 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p6 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p7 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p8 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p9 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p10 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p11 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p12 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p13 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p14 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p15 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p16 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p17 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p18 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p19 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p20 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p21 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 totalp : OUT STD_LOGIC_VECTOR(39 DOWNTO 0));
END COMPONENT;

COMPONENT lfsr32
 PORT (in_clock : IN STD_LOGIC;
 in_reset : IN STD_LOGIC;
 in_seed : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 out_random_number : OUT STD_LOGIC_VECTOR(31 DOWNT O 0));
END COMPONENT;

COMPONENT rxselect
 PORT (clk : IN STD_LOGIC;
 p0 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 p1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 p2 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p3 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p4 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p5 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p6 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p7 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p8 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p9 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p10 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p11 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p12 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);

74

 p13 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p14 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p15 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p16 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p17 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p18 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p19 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p20 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p21 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 product : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 selection : OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
END COMPONENT;

COMPONENT updatespecies
 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction0 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction1 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction2 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction3 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction4 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction5 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction6 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction7 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction8 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction9 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction10 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction11 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction12 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction13 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction14 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction15 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction16 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction17 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction18 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction19 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction20 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction21 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 selection : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
 newspecies0 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);

75

 newspecies1 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
 newspecies2 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
 newspecies3 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
 newspecies4 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies5 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies6 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies7 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies8 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies9 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies10 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies11 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies12 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies13 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies14 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies15 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0));
END COMPONENT;

SIGNAL s_sp0 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_sp1 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_sp2 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_sp3 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_sp4 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp5 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp6 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp7 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp8 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp9 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp10 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp11 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp12 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp13 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp14 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_sp15 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_rx0 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx1 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx2 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx3 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx4 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx5 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx6 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx7 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx8 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx9 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx10 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx11 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx12 : STD_LOGIC_VECTOR(30 DOWNTO 0);
SIGNAL s_rx13 : STD_LOGIC_VECTOR(35 DOWNTO 0);
SIGNAL s_rx14 : STD_LOGIC_VECTOR(35 DOWNTO 0);
SIGNAL s_rx15 : STD_LOGIC_VECTOR(35 DOWNTO 0);
SIGNAL s_rx16 : STD_LOGIC_VECTOR(35 DOWNTO 0);
SIGNAL s_rx17 : STD_LOGIC_VECTOR(35 DOWNTO 0);
SIGNAL s_rx18 : STD_LOGIC_VECTOR(35 DOWNTO 0);
SIGNAL s_rx19 : STD_LOGIC_VECTOR(35 DOWNTO 0);
SIGNAL s_rx20 : STD_LOGIC_VECTOR(35 DOWNTO 0);
SIGNAL s_rx21 : STD_LOGIC_VECTOR(30 DOWNTO 0);

76

SIGNAL s_prop0 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL s_prop1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL s_prop2 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop3 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop4 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop5 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop6 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop7 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop8 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop9 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop10 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop11 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop12 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop13 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop14 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop15 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop16 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop17 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop18 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop19 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop20 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop21 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_tprop : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_lfsr_enable : STD_LOGIC;
SIGNAL s_lfsr_reset : STD_LOGIC;
SIGNAL s_seed : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL s_URV : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL s_product : STD_LOGIC_VECTOR(71 DOWNTO 0);
SIGNAL s_rxselect : STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL s_newsp0 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_newsp1 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_newsp2 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_newsp3 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_newsp4 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp5 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp6 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp7 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp8 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp9 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp10 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp11 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp12 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp13 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp14 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp15 : STD_LOGIC_VECTOR(11 DOWNTO 0);

BEGIN

 m0 : prop_1_onoff PORT MAP(clk,s_sp0,s_sp1,s_sp2, s_sp3,s_rx0(20
DOWNTO 0),s_prop0);
 m1 : prop_1_onoff PORT MAP(clk,s_sp0,s_sp1,s_sp2, s_sp3,s_rx1(20
DOWNTO 0),s_prop1);
 m2 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx2(20 DOW NTO 0),s_prop2);

77

 m3 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx3(20 DOW NTO 0),s_prop3);
 m4 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx4(20 DOW NTO 0),s_prop4);
 m5 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx5(20 DOW NTO 0),s_prop5);
 m6 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx6(20 DOW NTO 0),s_prop6);
 m7 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx7(20 DOW NTO 0),s_prop7);
 m8 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx8(20 DOW NTO 0),s_prop8);
 m9 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx9(20 DOW NTO 0),s_prop9);
 m10 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx10(20 DO WNTO 0),s_prop10);
 m11 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx11(20 DO WNTO 0),s_prop11);
 m12 : prop_1 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx12(20 DO WNTO 0),s_prop12);
 m13 : prop_2_onoff PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx13(25 DO WNTO 0),s_prop13);
 m14 : prop_2_onoff PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx14(25 DO WNTO 0),s_prop14);
 m15 : prop_2 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx15(25 DO WNTO 0),s_prop15);
 m16 : prop_2 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx16(25 DO WNTO 0),s_prop16);
 m17 : prop_2 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx17(25 DO WNTO 0),s_prop17);
 m18 : prop_2 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx18(25 DO WNTO 0),s_prop18);
 m19 : prop_2 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx19(25 DO WNTO 0),s_prop19);
 m20 : prop_2 PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx20(25 DO WNTO 0),s_prop20);

78

 m21 : prop_self PORT
MAP(clk,s_sp4,s_sp5,s_sp6,s_sp7,s_sp8,s_sp9,s_sp10, s_sp11,s_sp12,s_sp13
,s_sp14,s_sp15,s_rx21(20 DOWNTO 0),s_prop21);
 m22 : sumprop PORT
MAP(clk,s_prop0,s_prop1,s_prop2,s_prop3,s_prop4,s_p rop5,s_prop6,s_prop7
,s_prop8,s_prop9,s_prop10,s_prop11,s_prop12,s_prop1 3,s_prop14,s_prop15,
s_prop16,s_prop17,s_prop18,s_prop19,s_prop20,s_prop 21,s_tprop);
 m23 : lfsr32 PORT MAP(s_lfsr_enable,s_lfsr_reset, s_seed,s_URV);
 m24 : rxselect PORT
MAP(clk,s_prop0,s_prop1,s_prop2,s_prop3,s_prop4,s_p rop5,s_prop6,s_prop7
,s_prop8,s_prop9,s_prop10,s_prop11,s_prop12,s_prop1 3,s_prop14,s_prop15,
s_prop16,s_prop17,s_prop18,s_prop19,s_prop20,s_prop 21,s_product(71
DOWNTO 32),s_rxselect);
 m25 : updatespecies PORT
MAP(clk,s_sp0,s_sp1,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
p10,s_sp11,s_sp12,s_sp13,s_sp14,s_sp15,s_rx0(30 DOW NTO 16),s_rx1(30
DOWNTO 16),s_rx2(30 DOWNTO 16),s_rx3(30 DOWNTO 16), s_rx4(30 DOWNTO
16),s_rx5(30 DOWNTO 16),s_rx6(30 DOWNTO 16),s_rx7(3 0 DOWNTO
16),s_rx8(30 DOWNTO 16),s_rx9(30 DOWNTO 16),s_rx10(30 DOWNTO
16),s_rx11(30 DOWNTO 16),s_rx12(30 DOWNTO 16),s_rx1 3(35 DOWNTO
16),s_rx14(35 DOWNTO 16),s_rx15(35 DOWNTO 16),s_rx1 6(35 DOWNTO
16),s_rx17(35 DOWNTO 16),s_rx18(35 DOWNTO 16),s_rx1 9(35 DOWNTO
16),s_rx20(35 DOWNTO 16),s_rx21(30 DOWNTO
16),s_rxselect,s_newsp0,s_newsp1,s_newsp2,s_newsp3, s_newsp4,s_newsp5,s_
newsp6,s_newsp7,s_newsp8,s_newsp9,s_newsp10,s_newsp 11,s_newsp12,s_newsp
13,s_newsp14,s_newsp15);

 PROCESS (clk)
 VARIABLE species0 : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE species1 : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE species2 : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE species3 : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE species4 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE species5 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE species6 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE species7 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE species8 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE species9 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE species10 : STD_LOGIC_VECTOR(11 DOWNTO 0) ;
 VARIABLE species11 : STD_LOGIC_VECTOR(11 DOWNTO 0) ;
 VARIABLE species12 : STD_LOGIC_VECTOR(11 DOWNTO 0) ;
 VARIABLE species13 : STD_LOGIC_VECTOR(11 DOWNTO 0) ;
 VARIABLE species14 : STD_LOGIC_VECTOR(11 DOWNTO 0) ;
 VARIABLE species15 : STD_LOGIC_VECTOR(11 DOWNTO 0) ;
 VARIABLE reaction0 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction1 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction2 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction3 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction4 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction5 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction6 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction7 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction8 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction9 : STD_LOGIC_VECTOR(30 DOWNTO 0) ;
 VARIABLE reaction10 : STD_LOGIC_VECTOR(30 DOWNTO 0);

79

 VARIABLE reaction11 : STD_LOGIC_VECTOR(30 DOWNTO 0);
 VARIABLE reaction12 : STD_LOGIC_VECTOR(30 DOWNTO 0);
 VARIABLE reaction13 : STD_LOGIC_VECTOR(35 DOWNTO 0);
 VARIABLE reaction14 : STD_LOGIC_VECTOR(35 DOWNTO 0);
 VARIABLE reaction15 : STD_LOGIC_VECTOR(35 DOWNTO 0);
 VARIABLE reaction16 : STD_LOGIC_VECTOR(35 DOWNTO 0);
 VARIABLE reaction17 : STD_LOGIC_VECTOR(35 DOWNTO 0);
 VARIABLE reaction18 : STD_LOGIC_VECTOR(35 DOWNTO 0);
 VARIABLE reaction19 : STD_LOGIC_VECTOR(35 DOWNTO 0);
 VARIABLE reaction20 : STD_LOGIC_VECTOR(35 DOWNTO 0);
 VARIABLE reaction21 : STD_LOGIC_VECTOR(30 DOWNTO 0);
 VARIABLE state : STD_LOGIC_VECTOR(3 DOWNTO 0);
 VARIABLE state2 : STD_LOGIC_VECTOR(7 DOWNTO 0);
 VARIABLE product : STD_LOGIC_VECTOR(71 DOWNTO 0);
 VARIABLE index : STD_LOGIC_VECTOR(7 DOWNTO 0);
 VARIABLE maxindex : STD_LOGIC_VECTOR(7 DOWNTO 0);
 VARIABLE looping : STD_LOGIC;

 BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 s_sp0 <= species0; s_sp1 <= species1;
 s_sp2 <= species2; s_sp3 <= species3;
 s_sp4 <= species4; s_sp5 <= species5;
 s_sp6 <= species6; s_sp7 <= species7;
 s_sp8 <= species8; s_sp9 <= species9;
 s_sp10 <= species10; s_sp11 <= species11;
 s_sp12 <= species12; s_sp13 <= species13;
 s_sp14 <= species14; s_sp15 <= species15;
 s_rx0 <= reaction0; s_rx1 <= reaction1;
 s_rx2 <= reaction2; s_rx3 <= reaction3;
 s_rx4 <= reaction4; s_rx5 <= reaction5;
 s_rx6 <= reaction6; s_rx7 <= reaction7;
 s_rx8 <= reaction8; s_rx9 <= reaction9;
 s_rx10 <= reaction10; s_rx11 <= reaction11;
 s_rx12 <= reaction12; s_rx13 <= reaction13;
 s_rx14 <= reaction14; s_rx15 <= reaction15;
 s_rx16 <= reaction16; s_rx17 <= reaction17;
 s_rx18 <= reaction18; s_rx19 <= reaction19;
 s_rx20 <= reaction20; s_rx21 <= reaction21;
 product := s_URV * s_tprop;

 -- SET ADDRESS FROM WHICH TO READ COMMAND
 IF (state = "0000") THEN
 state2 := "00000000";
 state := state + 1;
 we <= '0';
 addr <= X"00";
 din <= (others => '0');
 s_lfsr_reset <= '0';
 s_lfsr_enable <= '0';
 index := X"02";
 maxindex := X"FC";
 looping := '0';

 -- INTERPRET COMMANDS

80

 ELSIF (state = "0001") THEN

 -- LOOPING THROUGH 250 REACTIONS
 IF (looping = '1') THEN
 IF (index < maxindex) THEN
 IF (state2 = "00000000") THEN
 we <= '1';
 addr <= index;
 din(63 DOWNTO 32) <= s_tprop(31
DOWNTO 0);
 din(4 DOWNTO 0) <= s_rxselect;
 species0 := s_newsp0;
 species1 := s_newsp1;
 species2 := s_newsp2;
 species3 := s_newsp3;
 species4 := s_newsp4;
 species5 := s_newsp5;
 species6 := s_newsp6;
 species7 := s_newsp7;
 species8 := s_newsp8;
 species9 := s_newsp9;
 species10 := s_newsp10;
 species11 := s_newsp11;
 species12 := s_newsp12;
 species13 := s_newsp13;
 species14 := s_newsp14;
 species15 := s_newsp15;
 s_lfsr_reset <= '0';
 s_lfsr_enable <= '1';
 state2 := state2 + 1;
 ELSIF (state2 = "00000001") THEN
 we <= '0';
 s_lfsr_reset <= '0';
 s_lfsr_enable <= '0';
 state2 := state2 + 1;
 ELSIF (state2 = "00000101") THEN
 we <= '0';
 index := index + 1;
 state2 := "00000000";
 ELSE
 we <= '0';
 state2 := state2 + 1;
 END IF;
 ELSE
 we <= '0';
 addr <= X"00";
 looping := '0';
 state := state + 1;
 END IF;

 -- NO-OP
 ELSIF (dout = X"0000") THEN
 we <= '0';
 addr <= X"00";
 state := "0000";

81

 -- SETTING A SPECIES POPULATION
 ELSIF (dout(63 DOWNTO 60) = "0001") THEN
 we <= '0';
 addr <= X"00";
 IF (dout(59 DOWNTO 55) = "00000") THEN
 species0 := dout(0 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "00001") THEN
 species1 := dout(0 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "00010") THEN
 species2 := dout(0 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "00011") THEN
 species3 := dout(0 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "00100") THEN
 species4 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "00101") THEN
 species5 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "00110") THEN
 species6 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "00111") THEN
 species7 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "01000") THEN
 species8 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "01001") THEN
 species9 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "01010") THEN
 species10 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "01011") THEN
 species11 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "01100") THEN
 species12 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "01101") THEN
 species13 := dout(11 DOWNTO 0);
 ELSIF (dout(59 DOWNTO 55) = "01110") THEN
 species14 := dout(11 DOWNTO 0);
 ELSE
 species15 := dout(11 DOWNTO 0);
 END IF;
 state := state + 1;

 -- READING A SPECIES POPULATION
 ELSIF (dout(63 DOWNTO 60) = "0010") THEN
 we <= '1';
 addr <= X"01";
 IF (dout(59 DOWNTO 55) = "00000") THEN
 din(0 DOWNTO 0) <= species0;
 ELSIF (dout(59 DOWNTO 55) = "00001") THEN
 din(0 DOWNTO 0) <= species1;
 ELSIF (dout(59 DOWNTO 55) = "00010") THEN
 din(0 DOWNTO 0) <= species2;
 ELSIF (dout(59 DOWNTO 55) = "00011") THEN
 din(0 DOWNTO 0) <= species3;
 ELSIF (dout(59 DOWNTO 55) = "00100") THEN
 din(11 DOWNTO 0) <= species4;
 ELSIF (dout(59 DOWNTO 55) = "00101") THEN

82

 din(11 DOWNTO 0) <= species5;
 ELSIF (dout(59 DOWNTO 55) = "00110") THEN
 din(11 DOWNTO 0) <= species6;
 ELSIF (dout(59 DOWNTO 55) = "00111") THEN
 din(11 DOWNTO 0) <= species7;
 ELSIF (dout(59 DOWNTO 55) = "01000") THEN
 din(11 DOWNTO 0) <= species8;
 ELSIF (dout(59 DOWNTO 55) = "01001") THEN
 din(11 DOWNTO 0) <= species9;
 ELSIF (dout(59 DOWNTO 55) = "01010") THEN
 din(11 DOWNTO 0) <= species10;
 ELSIF (dout(59 DOWNTO 55) = "01011") THEN
 din(11 DOWNTO 0) <= species11;
 ELSIF (dout(59 DOWNTO 55) = "01100") THEN
 din(11 DOWNTO 0) <= species12;
 ELSIF (dout(59 DOWNTO 55) = "01101") THEN
 din(11 DOWNTO 0) <= species13;
 ELSIF (dout(59 DOWNTO 55) = "01110") THEN
 din(11 DOWNTO 0) <= species14;
 ELSE
 din(11 DOWNTO 0) <= species15;
 END IF;
 state := state + 1;

 -- SETTING A REACTION EQUATION
 ELSIF (dout(63 DOWNTO 60) = "0011") THEN
 we <= '0';
 addr <= X"00";
 IF (dout(59 DOWNTO 55) = "00000") THEN
 reaction0(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "00001") THEN
 reaction1(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "00010") THEN
 reaction2(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "00011") THEN
 reaction3(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "00100") THEN
 reaction4(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "00101") THEN
 reaction5(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "00110") THEN
 reaction6(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "00111") THEN
 reaction7(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "01000") THEN
 reaction8(30 DOWNTO 0) := dout(30 DOWNTO
0);

83

 ELSIF (dout(59 DOWNTO 55) = "01001") THEN
 reaction9(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "01010") THEN
 reaction10(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "01011") THEN
 reaction11(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "01100") THEN
 reaction12(30 DOWNTO 0) := dout(30 DOWNTO
0);
 ELSIF (dout(59 DOWNTO 55) = "01101") THEN
 reaction13(35 DOWNTO 26) := dout(41
DOWNTO 32); reaction13(25 DOWNTO 0) := dout(25 DOWN TO 0);
 ELSIF (dout(59 DOWNTO 55) = "01110") THEN
 reaction14(35 DOWNTO 26) := dout(41
DOWNTO 32); reaction14(25 DOWNTO 0) := dout(25 DOWN TO 0);
 ELSIF (dout(59 DOWNTO 55) = "01111") THEN
 reaction15(35 DOWNTO 26) := dout(41
DOWNTO 32); reaction15(25 DOWNTO 0) := dout(25 DOWN TO 0);
 ELSIF (dout(59 DOWNTO 55) = "10000") THEN
 reaction16(35 DOWNTO 26) := dout(41
DOWNTO 32); reaction16(25 DOWNTO 0) := dout(25 DOWN TO 0);
 ELSIF (dout(59 DOWNTO 55) = "10001") THEN
 reaction17(35 DOWNTO 26) := dout(41
DOWNTO 32); reaction17(25 DOWNTO 0) := dout(25 DOWN TO 0);
 ELSIF (dout(59 DOWNTO 55) = "10010") THEN
 reaction18(35 DOWNTO 26) := dout(41
DOWNTO 32); reaction18(25 DOWNTO 0) := dout(25 DOWN TO 0);
 ELSIF (dout(59 DOWNTO 55) = "10011") THEN
 reaction19(35 DOWNTO 26) := dout(41
DOWNTO 32); reaction19(25 DOWNTO 0) := dout(25 DOWN TO 0);
 ELSIF (dout(59 DOWNTO 55) = "10100") THEN
 reaction20(35 DOWNTO 26) := dout(41
DOWNTO 32); reaction20(25 DOWNTO 0) := dout(25 DOWN TO 0);
 ELSE
 reaction21(30 DOWNTO 0) := dout(30 DOWNTO
0);
 END IF;
 state := state + 1;

 -- READING A REACTION EQUATION
 -- ELSIF (dout(63 DOWNTO 60) = "0100") THEN
 -- we <= '1';
 -- addr <= X"01";
 -- IF (dout(59 DOWNTO 55) = "00000") THEN
 -- din(30 DOWNTO 0) <= reaction0(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "00001") THEN
 -- din(30 DOWNTO 0) <= reaction1(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "00010") THEN
 -- din(30 DOWNTO 0) <= reaction2(30 DOWNTO
0);

84

 -- ELSIF (dout(59 DOWNTO 55) = "00011") THEN
 -- din(30 DOWNTO 0) <= reaction3(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "00100") THEN
 -- din(30 DOWNTO 0) <= reaction4(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "00101") THEN
 -- din(30 DOWNTO 0) <= reaction5(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "00110") THEN
 -- din(30 DOWNTO 0) <= reaction6(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "00111") THEN
 -- din(30 DOWNTO 0) <= reaction7(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "01000") THEN
 -- din(30 DOWNTO 0) <= reaction8(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "01001") THEN
 -- din(30 DOWNTO 0) <= reaction9(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "01010") THEN
 -- din(30 DOWNTO 0) <= reaction10(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "01011") THEN
 -- din(30 DOWNTO 0) <= reaction11(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "01100") THEN
 -- din(30 DOWNTO 0) <= reaction12(30 DOWNTO
0);
 -- ELSIF (dout(59 DOWNTO 55) = "01101") THEN
 -- din(41 DOWNTO 32) <= reaction13(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction13(25 DOWNTO 0);
 -- ELSIF (dout(59 DOWNTO 55) = "01110") THEN
 -- din(41 DOWNTO 32) <= reaction14(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction14(25 DOWNTO 0);
 -- ELSIF (dout(59 DOWNTO 55) = "01111") THEN
 -- din(41 DOWNTO 32) <= reaction15(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction15(25 DOWNTO 0);
 -- ELSIF (dout(59 DOWNTO 55) = "10000") THEN
 -- din(41 DOWNTO 32) <= reaction16(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction16(25 DOWNTO 0);
 -- ELSIF (dout(59 DOWNTO 55) = "10001") THEN
 -- din(41 DOWNTO 32) <= reaction17(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction17(25 DOWNTO 0);
 -- ELSIF (dout(59 DOWNTO 55) = "10010") THEN
 -- din(41 DOWNTO 32) <= reaction18(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction18(25 DOWNTO 0);
 -- ELSIF (dout(59 DOWNTO 55) = "10011") THEN
 -- din(41 DOWNTO 32) <= reaction19(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction19(25 DOWNTO 0);
 -- ELSIF (dout(59 DOWNTO 55) = "10100") THEN
 -- din(41 DOWNTO 32) <= reaction20(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction20(25 DOWNTO 0);
 -- ELSE

85

 -- din(30 DOWNTO 0) <= reaction21(30 DOWNTO
0);
 -- END IF;
 -- state := state + 1;

 -- -- READING A PROPENSITY
 -- ELSIF (dout(63 DOWNTO 60) = "0110") THEN
 -- we <= '1';
 -- addr <= X"01";
 -- IF (dout(59 DOWNTO 55) = "00000") THEN
 -- din(15 DOWNTO 0) <= s_prop0;
 -- ELSIF (dout(59 DOWNTO 55) = "00001") THEN
 -- din(15 DOWNTO 0) <= s_prop1;
 -- ELSIF (dout(59 DOWNTO 55) = "00010") THEN
 -- din(27 DOWNTO 0) <= s_prop2;
 -- ELSIF (dout(59 DOWNTO 55) = "00011") THEN
 -- din(27 DOWNTO 0) <= s_prop3;
 -- ELSIF (dout(59 DOWNTO 55) = "00100") THEN
 -- din(27 DOWNTO 0) <= s_prop4;
 -- ELSIF (dout(59 DOWNTO 55) = "00101") THEN
 -- din(27 DOWNTO 0) <= s_prop5;
 -- ELSIF (dout(59 DOWNTO 55) = "00110") THEN
 -- din(27 DOWNTO 0) <= s_prop6;
 -- ELSIF (dout(59 DOWNTO 55) = "00111") THEN
 -- din(27 DOWNTO 0) <= s_prop7;
 -- ELSIF (dout(59 DOWNTO 55) = "01000") THEN
 -- din(27 DOWNTO 0) <= s_prop8;
 -- ELSIF (dout(59 DOWNTO 55) = "01001") THEN
 -- din(27 DOWNTO 0) <= s_prop9;
 -- ELSIF (dout(59 DOWNTO 55) = "01010") THEN
 -- din(27 DOWNTO 0) <= s_prop10;
 -- ELSIF (dout(59 DOWNTO 55) = "01011") THEN
 -- din(27 DOWNTO 0) <= s_prop11;
 -- ELSIF (dout(59 DOWNTO 55) = "01100") THEN
 -- din(27 DOWNTO 0) <= s_prop12;
 -- ELSIF (dout(59 DOWNTO 55) = "01101") THEN
 -- din(27 DOWNTO 0) <= s_prop13;
 -- ELSIF (dout(59 DOWNTO 55) = "01110") THEN
 -- din(39 DOWNTO 0) <= s_prop14;
 -- ELSIF (dout(59 DOWNTO 55) = "01111") THEN
 -- din(39 DOWNTO 0) <= s_prop15;
 -- ELSIF (dout(59 DOWNTO 55) = "10000") THEN
 -- din(39 DOWNTO 0) <= s_prop16;
 -- ELSIF (dout(59 DOWNTO 55) = "10001") THEN
 -- din(39 DOWNTO 0) <= s_prop17;
 -- ELSIF (dout(59 DOWNTO 55) = "10010") THEN
 -- din(39 DOWNTO 0) <= s_prop18;
 -- ELSIF (dout(59 DOWNTO 55) = "10011") THEN
 -- din(39 DOWNTO 0) <= s_prop19;
 -- ELSIF (dout(59 DOWNTO 55) = "10100") THEN
 -- din(39 DOWNTO 0) <= s_prop20;
 -- ELSE
 -- din(39 DOWNTO 0) <= s_prop21;
 -- END IF;
 -- state := state + 1;

86

 -- READING THE SUM OF ALL PROPENSITIES
 -- ELSIF (dout(63 DOWNTO 60) = "0111") THEN
 -- we <= '1';
 -- addr <= X"01";
 -- din(39 DOWNTO 0) <= s_tprop;
 -- state := state + 1;

 -- SET SEED TO UNIFORM RANDOM NUMBER GENERATOR
 ELSIF (dout(63 DOWNTO 60) = "1000") THEN
 we <= '0';
 addr <= X"00";
 IF (state2 = "00000000") THEN
 s_seed <= dout(31 DOWNTO 0);
 s_lfsr_reset <= '1';
 state2 := state2 + 1;
 ELSE
 s_seed <= dout(31 DOWNTO 0);
 s_lfsr_reset <= '1';
 s_lfsr_enable <= '1';
 state := state + 1;
 state2 := "00000000";
 END IF;

 -- READING UNIFORM RANDOM NUMBER
 -- ELSIF (dout(63 DOWNTO 60) = "1001") THEN
 -- we <= '1';
 -- addr <= X"01";
 -- din(31 DOWNTO 0) <= s_URV;
 -- state := state + 1;

 -- CALCULATE A UNIFORM RANDOM NUMBER
 -- ELSIF (dout(63 DOWNTO 60) = "1010") THEN
 -- we <= '0';
 -- addr <= X"00";
 -- s_lfsr_reset <= '0';
 -- s_lfsr_enable <= '1';
 -- state := state + 1;

 -- READING PRODUCT OF TOTAL PROPENSITY * UNIFORM
RANDOM NUMBER
 -- ELSIF (dout(63 DOWNTO 60) = "1011") THEN
 -- we <= '1';
 -- addr <= X"01";
 -- din(31 DOWNTO 0) <= s_product(71 DOWNTO 40);
 -- state := state + 1;

 -- READING THE REACTION THAT WAS SELECTED
 -- ELSIF (dout(63 DOWNTO 60) = "1100") THEN
 -- we <= '1';
 -- addr <= X"01";
 -- din(4 DOWNTO 0) <= s_rxselect;
 -- state := state + 1;

 -- UPDATE THE SPECIES POPULATIONS

87

 -- ELSIF (dout(63 DOWNTO 60) = "1101") THEN
 -- we <= '0';
 -- addr <= X"00";
 -- species0 := s_newsp0;
 -- species1 := s_newsp1;
 -- species2 := s_newsp2;
 -- species3 := s_newsp3;
 -- species4 := s_newsp4;
 -- species5 := s_newsp5;
 -- species6 := s_newsp6;
 -- species7 := s_newsp7;
 -- species8 := s_newsp8;
 -- species9 := s_newsp9;
 -- species10 := s_newsp10;
 -- species11 := s_newsp11;
 -- species12 := s_newsp12;
 -- species13 := s_newsp13;
 -- species14 := s_newsp14;
 -- species15 := s_newsp15;
 -- state := state + 1;

 -- STEP THROUGH 250 REACTIONS
 ELSIF (dout(63 DOWNTO 60) = "1110") THEN
 we <= '0';
 addr <= X"00";
 index := X"02";
 maxindex := dout(7 DOWNTO 0);
 looping := '1';
 state2 := "00000000";
 END IF;

 -- TELL CPU THAT FPGA IS DONE
 ELSIF (state = "0010") THEN
 we <= '1';
 addr <= X"00";
 din <= (others => '0');
 state := "0000";
 ELSE
 we <= '0';
 addr <= X"00";
 state := state + 1;
 END IF;
 s_product <= product;
 END IF;
 END PROCESS;
END rtl;

88

prop_1.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_1 IS
 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0));
END prop_1;

ARCHITECTURE rtl OF prop_1 IS

BEGIN

 PROCESS(clk)
 VARIABLE Y : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE prop : STD_LOGIC_VECTOR(27 DOWNTO 0);

 BEGIN
 IF (clk'EVENT AND clk='1') THEN
 IF (reaction(20) = '1') THEN
 prop(27 DOWNTO 0) := X"0000000";
 ELSIF (reaction(19 DOWNTO 16) < X"4") THEN
 IF (reaction(19 DOWNTO 16) = X"0") THEN
 Y(0 DOWNTO 0) := species0;
 ELSIF (reaction(19 DOWNTO 16) = X"1") THEN
 Y(0 DOWNTO 0) := species1;
 ELSIF (reaction(19 DOWNTO 16) = X"2") THEN
 Y(0 DOWNTO 0) := species2;
 ELSIF (reaction(19 DOWNTO 16) = X"3") THEN
 Y(0 DOWNTO 0) := species3;
 END IF;
 IF (Y(0) = '0') THEN
 prop := X"0000000";
 ELSE
 prop(27 DOWNTO 16) := X"000";

89

 prop(15 DOWNTO 0) := reaction(15 DOWNTO 0);
 END IF;
 ELSE
 IF (reaction(19 DOWNTO 16) = X"4") THEN
 Y := species4;
 ELSIF (reaction(19 DOWNTO 16) = X"5") THEN
 Y := species5;
 ELSIF (reaction(19 DOWNTO 16) = X"6") THEN
 Y := species6;
 ELSIF (reaction(19 DOWNTO 16) = X"7") THEN
 Y := species7;
 ELSIF (reaction(19 DOWNTO 16) = X"8") THEN
 Y := species8;
 ELSIF (reaction(19 DOWNTO 16) = X"9") THEN
 Y := species9;
 ELSIF (reaction(19 DOWNTO 16) = X"A") THEN
 Y := species10;
 ELSIF (reaction(19 DOWNTO 16) = X"B") THEN
 Y := species11;
 ELSIF (reaction(19 DOWNTO 16) = X"C") THEN
 Y := species12;
 ELSIF (reaction(19 DOWNTO 16) = X"D") THEN
 Y := species13;
 ELSIF (reaction(19 DOWNTO 16) = X"E") THEN
 Y := species14;
 ELSIF (reaction(19 DOWNTO 16) = X"F") THEN
 Y := species15;
 END IF;

 prop := reaction(15 DOWNTO 0) * Y;
 END IF;

 propensity <= prop;
 END IF;
 END PROCESS;
END rtl;

90

prop_1_onoff.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_1_onoff IS
 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(15 DOWNTO 0));
END prop_1_onoff;

ARCHITECTURE rtl OF prop_1_onoff IS

BEGIN

 PROCESS(clk)
 VARIABLE X : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE prop : STD_LOGIC_VECTOR(15 DOWNTO 0);

 BEGIN
 IF (clk'EVENT AND clk='1') THEN
 IF (reaction(20) = '1') THEN
 prop(15 DOWNTO 0) := X"0000";
 ELSE
 IF (reaction(19 DOWNTO 16) = X"0") THEN
 X := species0;
 ELSIF (reaction(19 DOWNTO 16) = X"1") THEN
 X := species1;
 ELSIF (reaction(19 DOWNTO 16) = X"2") THEN
 X := species2;
 ELSIF (reaction(19 DOWNTO 16) = X"3") THEN
 X := species3;
 END IF;
 IF (X(0) = '1') THEN
 prop := reaction(15 DOWNTO 0);
 ELSE
 prop(15 DOWNTO 0) := X"0000";
 END IF;
 END IF;

 propensity <= prop;
 END IF;
 END PROCESS;
END rtl;

91

prop_2.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_2 IS
 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(25 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0));
END prop_2;

ARCHITECTURE rtl OF prop_2 IS

BEGIN

 PROCESS(clk)
 VARIABLE REACTANT1 : STD_LOGIC_VECTOR(1 DOWNTO 0);
 VARIABLE X,Y : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE prop : STD_LOGIC_VECTOR(39 DOWNTO 0);

 BEGIN
 IF (clk'EVENT AND clk='1') THEN
 IF (reaction(25) = '1') THEN
 REACTANT1 := "00";
 ELSIF (reaction(24 DOWNTO 21) < X"4") THEN
 REACTANT1 := "01";
 IF (reaction(24 DOWNTO 21) = X"0") THEN
 X(0 DOWNTO 0) := species0;
 ELSIF (reaction(24 DOWNTO 21) = X"1") THEN
 X(0 DOWNTO 0) := species1;
 ELSIF (reaction(24 DOWNTO 21) = X"2") THEN
 X(0 DOWNTO 0) := species2;
 ELSIF (reaction(24 DOWNTO 21) = X"3") THEN
 X(0 DOWNTO 0) := species3;
 END IF;
 ELSE
 REACTANT1 := "10";

92

 IF (reaction(24 DOWNTO 21) = X"4") THEN
 X := species4;
 ELSIF (reaction(24 DOWNTO 21) = X"5") THEN
 X := species5;
 ELSIF (reaction(24 DOWNTO 21) = X"6") THEN
 X := species6;
 ELSIF (reaction(24 DOWNTO 21) = X"7") THEN
 X := species7;
 ELSIF (reaction(24 DOWNTO 21) = X"8") THEN
 X := species8;
 ELSIF (reaction(24 DOWNTO 21) = X"9") THEN
 X := species9;
 ELSIF (reaction(24 DOWNTO 21) = X"A") THEN
 X := species10;
 ELSIF (reaction(24 DOWNTO 21) = X"B") THEN
 X := species11;
 ELSIF (reaction(24 DOWNTO 21) = X"C") THEN
 X := species12;
 ELSIF (reaction(24 DOWNTO 21) = X"D") THEN
 X := species13;
 ELSIF (reaction(24 DOWNTO 21) = X"E") THEN
 X := species14;
 ELSIF (reaction(24 DOWNTO 21) = X"F") THEN
 X := species15;
 END IF;
 END IF;

 IF (reaction(20) = '1') THEN
 IF (REACTANT1 = "00") THEN
 prop := X"0000000000";
 ELSIF (REACTANT1 = "01") THEN
 IF (X(0) = '1') THEN
 prop(39 DOWNTO 16) := X"000000";
 prop(15 DOWNTO 0) := reaction(15 DOWNTO
0);
 ELSE
 prop := X"0000000000";
 END IF;
 ELSE
 prop(39 DOWNTO 28) := X"000";
 prop(27 DOWNTO 0) := reaction(15 DOWNTO 0) * X;
 END IF;
 ELSIF (reaction(25 DOWNTO 21) = reaction(20 DOWNT O 16))
THEN
 Y := X - 1;
 prop := reaction(15 DOWNTO 0) * X * Y;
 prop(38 DOWNTO 0) := prop(39 DOWNTO 1);
 prop(39) := '0';
 ELSE
 IF (reaction(20 DOWNTO 16) = X"4") THEN
 Y := species4;
 ELSIF (reaction(20 DOWNTO 16) = X"5") THEN
 Y := species5;
 ELSIF (reaction(20 DOWNTO 16) = X"6") THEN
 Y := species6;

93

 ELSIF (reaction(20 DOWNTO 16) = X"7") THEN
 Y := species7;
 ELSIF (reaction(20 DOWNTO 16) = X"8") THEN
 Y := species8;
 ELSIF (reaction(20 DOWNTO 16) = X"9") THEN
 Y := species9;
 ELSIF (reaction(20 DOWNTO 16) = X"A") THEN
 Y := species10;
 ELSIF (reaction(20 DOWNTO 16) = X"B") THEN
 Y := species11;
 ELSIF (reaction(20 DOWNTO 16) = X"C") THEN
 Y := species12;
 ELSIF (reaction(20 DOWNTO 16) = X"D") THEN
 Y := species13;
 ELSIF (reaction(20 DOWNTO 16) = X"E") THEN
 Y := species14;
 ELSIF (reaction(20 DOWNTO 16) = X"F") THEN
 Y := species15;
 END IF;
 IF (REACTANT1 = "00") THEN
 prop(39 DOWNTO 28) := X"000";
 prop(27 DOWNTO 0) := reaction(15 DOWNTO 0) * Y;
 ELSIF (REACTANT1 = "01") THEN
 IF (X(0) = '1') THEN
 prop(39 DOWNTO 28) := X"000";
 prop(27 DOWNTO 0) := reaction(15 DOWNTO
0) * Y;
 ELSE
 prop := X"0000000000";
 END IF;
 ELSE
 prop := reaction(15 DOWNTO 0) * X * Y;
 END IF;
 END IF;

 propensity <= prop;
 END IF;
 END PROCESS;
END rtl;

94

prop_2_onoff.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_2_onoff IS
 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(25 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0));
END prop_2_onoff;

ARCHITECTURE rtl OF prop_2_onoff IS

BEGIN

 PROCESS(clk)
 VARIABLE X : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE Y : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE prop : STD_LOGIC_VECTOR(27 DOWNTO 0);

 BEGIN
 IF (clk'EVENT AND clk='1') THEN
 IF (reaction(20) = '1') THEN
 IF (reaction(25) = '1') THEN
 prop(27 DOWNTO 0) := X"0000000";
 ELSE
 IF (reaction(24 DOWNTO 21) = X"0") THEN
 X(0 DOWNTO 0) := species0;
 ELSIF (reaction(24 DOWNTO 21) = X"1") THEN
 X(0 DOWNTO 0) := species1;
 ELSIF (reaction(24 DOWNTO 21) = X"2") THEN
 X(0 DOWNTO 0) := species2;
 ELSIF (reaction(24 DOWNTO 21) = X"3") THEN
 X(0 DOWNTO 0) := species3;
 END IF;
 IF (X(0) = '0') THEN
 prop(27 DOWNTO 0) := X"0000000";

95

 ELSE
 prop(27 DOWNTO 16) := X"000";
 prop(15 DOWNTO 0) := reaction(15 DOWNTO
0);
 END IF;
 END IF;
 ELSE
 IF (reaction(19 DOWNTO 16) = X"4") THEN
 Y := species4;
 ELSIF (reaction(19 DOWNTO 16) = X"5") THEN
 Y := species5;
 ELSIF (reaction(19 DOWNTO 16) = X"6") THEN
 Y := species6;
 ELSIF (reaction(19 DOWNTO 16) = X"7") THEN
 Y := species7;
 ELSIF (reaction(19 DOWNTO 16) = X"8") THEN
 Y := species8;
 ELSIF (reaction(19 DOWNTO 16) = X"9") THEN
 Y := species9;
 ELSIF (reaction(19 DOWNTO 16) = X"A") THEN
 Y := species10;
 ELSIF (reaction(19 DOWNTO 16) = X"B") THEN
 Y := species11;
 ELSIF (reaction(19 DOWNTO 16) = X"C") THEN
 Y := species12;
 ELSIF (reaction(19 DOWNTO 16) = X"D") THEN
 Y := species13;
 ELSIF (reaction(19 DOWNTO 16) = X"E") THEN
 Y := species14;
 ELSIF (reaction(19 DOWNTO 16) = X"F") THEN
 Y := species15;
 END IF;
 IF (reaction(25) = '1') THEN
 prop := reaction(15 DOWNTO 0) * Y;
 ELSE
 IF (reaction(24 DOWNTO 21) = X"0") THEN
 X(0 DOWNTO 0) := species0;
 ELSIF (reaction(24 DOWNTO 21) = X"1") THEN
 X(0 DOWNTO 0) := species1;
 ELSIF (reaction(24 DOWNTO 21) = X"2") THEN
 X(0 DOWNTO 0) := species2;
 ELSIF (reaction(24 DOWNTO 21) = X"3") THEN
 X(0 DOWNTO 0) := species3;
 END IF;
 IF (X(0) = '0') THEN
 prop(27 DOWNTO 0) := X"0000000";
 ELSE
 prop := reaction(15 DOWNTO 0) * Y;
 END IF;
 END IF;
 END IF;

 propensity <= prop;
 END IF;
 END PROCESS;

96

END rtl;

97

prop_self.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_self IS
 PORT (clk : IN STD_LOGIC;
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction : IN STD_LOGIC_VECTOR(20 DOWNTO 0);
 propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0));
END prop_self;

ARCHITECTURE rtl OF prop_self IS

BEGIN

 PROCESS(clk)
 VARIABLE X, Y : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE prop : STD_LOGIC_VECTOR(39 DOWNTO 0);

 BEGIN
 IF (clk'EVENT AND clk='1') THEN
 IF (reaction(20) = '1') THEN
 prop := X"0000000000";
 ELSE
 IF (reaction(19 DOWNTO 16) = X"4") THEN
 X := species4;
 ELSIF (reaction(19 DOWNTO 16) = X"5") THEN
 X := species5;
 ELSIF (reaction(19 DOWNTO 16) = X"6") THEN
 X := species6;
 ELSIF (reaction(19 DOWNTO 16) = X"7") THEN
 X := species7;
 ELSIF (reaction(19 DOWNTO 16) = X"8") THEN
 X := species8;
 ELSIF (reaction(19 DOWNTO 16) = X"9") THEN
 X := species9;
 ELSIF (reaction(19 DOWNTO 16) = X"A") THEN
 X := species10;
 ELSIF (reaction(19 DOWNTO 16) = X"B") THEN
 X := species11;
 ELSIF (reaction(19 DOWNTO 16) = X"C") THEN

98

 X := species12;
 ELSIF (reaction(19 DOWNTO 16) = X"D") THEN
 X := species13;
 ELSIF (reaction(19 DOWNTO 16) = X"E") THEN
 X := species14;
 ELSIF (reaction(19 DOWNTO 16) = X"F") THEN
 X := species15;
 END IF;

 Y := X - 1;
 prop := reaction(15 DOWNTO 0) * X * Y;
 prop(38 DOWNTO 0) := prop(39 DOWNTO 1);
 prop(39) := '0';

 END IF;

 propensity <= prop;
 END IF;
 END PROCESS;
END rtl;

99

rxselect.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY rxselect IS
 PORT (clk : IN STD_LOGIC;
 p0 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 p1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 p2 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p3 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p4 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p5 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p6 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p7 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p8 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p9 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p10 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p11 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p12 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p13 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p14 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p15 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p16 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p17 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p18 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p19 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p20 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p21 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 product : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 selection : OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
END rxselect;

ARCHITECTURE rtl OF rxselect IS

BEGIN

 PROCESS(clk)
 VARIABLE rxselect : STD_LOGIC_VECTOR(4 DOWNTO 0);

 BEGIN
 IF (clk'EVENT AND clk='1') THEN
 IF (product < p0) THEN
 rxselect := "00000";
 ELSIF (product < (p0 + p1)) THEN
 rxselect := "00001";
 ELSIF (product < (p0 + p1 + p2)) THEN
 rxselect := "00010";
 ELSIF (product < (p0 + p1 + p2 + p3)) THEN
 rxselect := "00011";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4)) THEN
 rxselect := "00100";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5)) T HEN

100

 rxselect := "00101";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6)) THEN
 rxselect := "00110";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7))
THEN
 rxselect := "00111";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8)) THEN
 rxselect := "01000";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9)) THEN
 rxselect := "01001";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10)) THEN
 rxselect := "01010";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11)) THEN
 rxselect := "01011";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11 + p12)) THEN
 rxselect := "01100";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11 + p12 + p13)) THEN
 rxselect := "01101";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11 + p12 + p13 + p14)) THEN
 rxselect := "01110";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15)) THEN
 rxselect := "01111";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16)) THEN
 rxselect := "10000";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17)) THEN
 rxselect := "10001";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18)) THEN
 rxselect := "10010";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19))
THEN
 rxselect := "10011";
 ELSIF (product < (p0 + p1 + p2 + p3 + p4 + p5 + p 6 + p7 +
p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 +
p20)) THEN
 rxselect := "10100";
 ELSE
 rxselect := "10101";
 END IF;

 selection <= rxselect;
 END IF;
 END PROCESS;
END rtl;

101

102

sumprop.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY sumprop IS
 PORT (clk : IN STD_LOGIC;
 p0 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 p1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 p2 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p3 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p4 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p5 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p6 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p7 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p8 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p9 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p10 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p11 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p12 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p13 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p14 : IN STD_LOGIC_VECTOR(27 DOWNTO 0);
 p15 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p16 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p17 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p18 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p19 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p20 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 p21 : IN STD_LOGIC_VECTOR(39 DOWNTO 0);
 totalp : OUT STD_LOGIC_VECTOR(39 DOWNTO 0));
END sumprop;

ARCHITECTURE rtl OF sumprop IS

BEGIN

 PROCESS(clk)
 VARIABLE sum : STD_LOGIC_VECTOR(39 DOWNTO 0);

 BEGIN
 IF (clk'EVENT AND clk='1') THEN
 sum := p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 +
p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21;

 totalp <= sum;
 END IF;
 END PROCESS;
END rtl;

103

updatespecies.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY updatespecies IS
 PORT (clk : IN STD_LOGIC;
 species0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species1 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species2 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species3 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
 species4 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species5 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species6 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species7 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species8 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species9 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species10 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species11 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species12 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species13 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species14 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 species15 : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 reaction0 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction1 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction2 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction3 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction4 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction5 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction6 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction7 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction8 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction9 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction10 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction11 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction12 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 reaction13 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction14 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction15 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction16 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction17 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction18 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction19 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction20 : IN STD_LOGIC_VECTOR(19 DOWNTO 0);
 reaction21 : IN STD_LOGIC_VECTOR(14 DOWNTO 0);
 selection : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
 newspecies0 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
 newspecies1 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
 newspecies2 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
 newspecies3 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
 newspecies4 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies5 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies6 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);

104

 newspecies7 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies8 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies9 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies10 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies11 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies12 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies13 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies14 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
 newspecies15 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0));
END updatespecies;

ARCHITECTURE rtl OF updatespecies IS

BEGIN

 PROCESS (clk)
 VARIABLE rx : STD_LOGIC_VECTOR(19 DOWNTO 0);
 VARIABLE newsp0 : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE newsp1 : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE newsp2 : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE newsp3 : STD_LOGIC_VECTOR(0 DOWNTO 0);
 VARIABLE newsp4 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp5 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp6 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp7 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp8 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp9 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp10 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp11 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp12 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp13 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp14 : STD_LOGIC_VECTOR(11 DOWNTO 0);
 VARIABLE newsp15 : STD_LOGIC_VECTOR(11 DOWNTO 0);

 BEGIN
 IF (clk = '1' AND clk'EVENT) THEN
 newsp0 := species0;
 newsp1 := species1;
 newsp2 := species2;
 newsp3 := species3;
 newsp4 := species4;
 newsp5 := species5;
 newsp6 := species6;
 newsp7 := species7;
 newsp8 := species8;
 newsp9 := species9;
 newsp10 := species10;
 newsp11 := species11;
 newsp12 := species12;
 newsp13 := species13;
 newsp14 := species14;
 newsp15 := species15;

 IF (selection = "00000") THEN
 rx(4 DOWNTO 0) := "11111";

105

 rx(19 DOWNTO 5) := reaction0;
 ELSIF (selection = "00001") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction1;
 ELSIF (selection = "00010") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction2;
 ELSIF (selection = "00011") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction3;
 ELSIF (selection = "00100") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction4;
 ELSIF (selection = "00101") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction5;
 ELSIF (selection = "00110") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction6;
 ELSIF (selection = "00111") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction7;
 ELSIF (selection = "01000") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction8;
 ELSIF (selection = "01001") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction9;
 ELSIF (selection = "01010") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction10;
 ELSIF (selection = "01011") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction11;
 ELSIF (selection = "01100") THEN
 rx(4 DOWNTO 0) := "11111";
 rx(19 DOWNTO 5) := reaction12;
 ELSIF (selection = "01101") THEN
 rx := reaction13;
 ELSIF (selection = "01110") THEN
 rx := reaction14;
 ELSIF (selection = "01111") THEN
 rx := reaction15;
 ELSIF (selection = "10000") THEN
 rx := reaction16;
 ELSIF (selection = "10001") THEN
 rx := reaction17;
 ELSIF (selection = "10010") THEN
 rx := reaction18;
 ELSIF (selection = "10011") THEN
 rx := reaction19;
 ELSIF (selection = "10100") THEN
 rx := reaction20;
 ELSE
 rx(4 DOWNTO 0) := reaction21(9 DOWNTO 5);

106

 rx(19 DOWNTO 5) := reaction21;
 END IF;
 IF (rx(9) /= '1') THEN
 CASE rx(8 DOWNTO 5) IS
 WHEN X"0" => newsp0 := newsp0 - 1;
 WHEN X"1" => newsp1 := newsp1 - 1;
 WHEN X"2" => newsp2 := newsp2 - 1;
 WHEN X"3" => newsp3 := newsp3 - 1;
 WHEN X"4" => newsp4 := newsp4 - 1;
 WHEN X"5" => newsp5 := newsp5 - 1;
 WHEN X"6" => newsp6 := newsp6 - 1;
 WHEN X"7" => newsp7 := newsp7 - 1;
 WHEN X"8" => newsp8 := newsp8 - 1;
 WHEN X"9" => newsp9 := newsp9 - 1;
 WHEN X"A" => newsp10 := newsp10 - 1;
 WHEN X"B" => newsp11 := newsp11 - 1;
 WHEN X"C" => newsp12 := newsp12 - 1;
 WHEN X"D" => newsp13 := newsp13 - 1;
 WHEN X"E" => newsp14 := newsp14 - 1;
 WHEN others => newsp15 := newsp15 - 1;
 END CASE;
 END IF;
 IF (rx(4) /= '1') THEN
 CASE rx(3 DOWNTO 0) IS
 WHEN X"0" => newsp0 := newsp0 - 1;
 WHEN X"1" => newsp1 := newsp1 - 1;
 WHEN X"2" => newsp2 := newsp2 - 1;
 WHEN X"3" => newsp3 := newsp3 - 1;
 WHEN X"4" => newsp4 := newsp4 - 1;
 WHEN X"5" => newsp5 := newsp5 - 1;
 WHEN X"6" => newsp6 := newsp6 - 1;
 WHEN X"7" => newsp7 := newsp7 - 1;
 WHEN X"8" => newsp8 := newsp8 - 1;
 WHEN X"9" => newsp9 := newsp9 - 1;
 WHEN X"A" => newsp10 := newsp10 - 1;
 WHEN X"B" => newsp11 := newsp11 - 1;
 WHEN X"C" => newsp12 := newsp12 - 1;
 WHEN X"D" => newsp13 := newsp13 - 1;
 WHEN X"E" => newsp14 := newsp14 - 1;
 WHEN others => newsp15 := newsp15 - 1;
 END CASE;
 END IF;
 IF (rx(19) /= '1') THEN
 CASE rx(18 DOWNTO 15) IS
 WHEN X"0" => newsp0 := newsp0 + 1;
 WHEN X"1" => newsp1 := newsp1 + 1;
 WHEN X"2" => newsp2 := newsp2 + 1;
 WHEN X"3" => newsp3 := newsp3 + 1;
 WHEN X"4" => newsp4 := newsp4 + 1;
 WHEN X"5" => newsp5 := newsp5 + 1;
 WHEN X"6" => newsp6 := newsp6 + 1;
 WHEN X"7" => newsp7 := newsp7 + 1;
 WHEN X"8" => newsp8 := newsp8 + 1;
 WHEN X"9" => newsp9 := newsp9 + 1;
 WHEN X"A" => newsp10 := newsp10 + 1;

107

 WHEN X"B" => newsp11 := newsp11 + 1;
 WHEN X"C" => newsp12 := newsp12 + 1;
 WHEN X"D" => newsp13 := newsp13 + 1;
 WHEN X"E" => newsp14 := newsp14 + 1;
 WHEN others => newsp15 := newsp15 + 1;
 END CASE;
 END IF;
 IF (rx(14) /= '1') THEN
 CASE rx(13 DOWNTO 10) IS
 WHEN X"0" => newsp0 := newsp0 + 1;
 WHEN X"1" => newsp1 := newsp1 + 1;
 WHEN X"2" => newsp2 := newsp2 + 1;
 WHEN X"3" => newsp3 := newsp3 + 1;
 WHEN X"4" => newsp4 := newsp4 + 1;
 WHEN X"5" => newsp5 := newsp5 + 1;
 WHEN X"6" => newsp6 := newsp6 + 1;
 WHEN X"7" => newsp7 := newsp7 + 1;
 WHEN X"8" => newsp8 := newsp8 + 1;
 WHEN X"9" => newsp9 := newsp9 + 1;
 WHEN X"A" => newsp10 := newsp10 + 1;
 WHEN X"B" => newsp11 := newsp11 + 1;
 WHEN X"C" => newsp12 := newsp12 + 1;
 WHEN X"D" => newsp13 := newsp13 + 1;
 WHEN X"E" => newsp14 := newsp14 + 1;
 WHEN others => newsp15 := newsp15 + 1;
 END CASE;
 END IF;

 newspecies0 <= newsp0;
 newspecies1 <= newsp1;
 newspecies2 <= newsp2;
 newspecies3 <= newsp3;
 newspecies4 <= newsp4;
 newspecies5 <= newsp5;
 newspecies6 <= newsp6;
 newspecies7 <= newsp7;
 newspecies8 <= newsp8;
 newspecies9 <= newsp9;
 newspecies10 <= newsp10;
 newspecies11 <= newsp11;
 newspecies12 <= newsp12;
 newspecies13 <= newsp13;
 newspecies14 <= newsp14;
 newspecies15 <= newsp15;
 END IF;
 END PROCESS;
END rtl;

108

lfsr32.vhd [17]

library ieee;
library work;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity lfsr32 is
 port (in_clock : in std_logic;
 in_reset : in std_logic;
 in_seed : in std_logic_vector(31 down to 0);
 out_random_number : out std_logic_vector(31 dow nto 0));
end entity lfsr32;

architecture a of lfsr32 is
begin
 process(in_clock)
 variable var_current_number : std_logic_vector(31 downto 0);
 variable var_startup : natural;
 variable var_next_bit : std_logic;
 begin
 if (in_clock = '1' and in_clock'event) then
 if (in_reset='1' or var_startup=0) then
 var_current_number := in_seed;
 var_startup := 1;
 else
 var_next_bit := var_current_number(0) XOR
 var_current_number(26) XOR
 var_current_number(27) XOR
 var_current_number(31);
 var_current_number(31 downto 1) := var_current_num ber(30 downto
0);
 var_current_number(0) := var_next_bit;
 end if;
 out_random_number <= var_current_number;
 end if;
 end process;
end architecture a;

109

Appendix B

Register Based Design C++

hw.cc

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <math.h>
#include <iostream>
#include <cstdlib>
#include "iflib.h"

using namespace std;

#define NULLSPECIES 31
#define NMAX 16
#define MMAX 22
#define PMAX 4095
#define KMAX 65535

class CR{
 public:
 unsigned int reactants,products,fpk;
 double k;
 unsigned int *renum,*rewt,*prnum,*prwt;
};

char *memp;
int64 data;
int fd,tprop[250],rxselect[250];
unsigned int n,m,seed,*X,iterations,num,*mon,thecou nt;
CR *R;
double thetime,tau;
FILE *outFile;

void init(void) {
 fd = open(DEVICE, O_RDWR);
 memp = (char *)mmap(NULL, MTRRZ, PROT_READ, MAP_PR IVATE, fd, 0);
 if (memp == MAP_FAILED) {
 perror(DEVICE);
 exit(1);
 }
 srand(time(NULL));
}

110

// Prints a number in Binary
void printBinary(unsigned int val,int index){
 int count;
 char chars[64];

 for(count=0;count<64;count++){
 chars[count]='0';
 }
 count = 0;
 do{
 if(val % 2 == 0) chars[count++] = '0';
 else chars[count++] = '1';
 val = val / 2;
 }while(val);
 count=index-1;
 while(count >= 0){
 if((count+1) % 4 == 0) printf(" ");
 printf("%c", chars[count--]);
 }
 printf("\n");
}

void setspeciespop(int index, int value){
 if(index < 4){
 if(value > 1) value = 1;
 }
 data.w[1] = (0x1<<28) + (index<<23);
 data.w[0] = value;
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
}

int readspeciespop(int index){
 data.w[1] = (0x2<<28) + (index<<23);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 return (data.w[0] & 0xFFF);
}

void setreaction(int index, int reactant1, int reac tant2, int product1,
int product2, int rate){
 if((index<13)||(index==21)){
 data.w[1] = (0x3<<28) + (index<<23);

111

 data.w[0] = (product1<<26) + (product2<<21) +
(reactant2<<16) + rate;
 }
 else{
 data.w[1] = (0x3<<28) + (index<<23) + (product1<< 5) +
product2;
 data.w[0] = (reactant1<<21) + (reactant2<<16) + r ate;
 }
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
}

int readreaction(int index){
 data.w[1] = (0x4<<28) + (index<<24);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 return (((data.w[1]<<10) + (data.w[0]>>16)) & 0xFF FFF);
}

int readpropensity(int index){
 data.w[1] = (0x6<<28) + (index<<24);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 //return (((data.w[1]<<24) + data.w[0]>>8) & 0xFFF FFFFF);
 return data.w[0];
}

int readsum(void){
 data.w[1] = (0x7<<28);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 //return (((data.w[1]<<24) + data.w[0]>>8) & 0xFFF FFFFF);
 return data.w[0];

112

}

void setseed(int seed){
 data.w[1] = (0x8<<28);
 data.w[0] = seed;
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
}

unsigned int readURV(void){
 data.w[1] = (0x9<<28);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 return (data.w[0]);
}

void nextURV(void){
 data.w[1] = (0xA<<28);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
}

unsigned int readproduct(void){
 data.w[1] = (0xB<<28);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 return (data.w[0]);
}

int readrxselected(void){
 data.w[1] = (0xC<<28);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){

113

 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 return (data.w[0] & 0xF);
}

void updatespecies(void){
 data.w[1] = (0xD<<28);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
}

void printresults(void){
 int i,j;

 for(i=0;i<250;i++){
 if(tprop[i]==-1) break;
 thetime+=(-
1/(double)tprop[i])*log((double)rand()/(double)RAND _MAX);
 // Update species populations
 for(j=0;j<R[rxselect[i]].reactants;j++){
 X[R[rxselect[i]].renum[j]]-=R[rxselect[i]].rewt[j];
 }
 for(j=0;j<R[rxselect[i]].products;j++){
 X[R[rxselect[i]].prnum[j]]+=R[rxselect[i]].prwt[j];
 }

 /*
 fprintf(outFile,"%6d %8.6lf",thecount,thetime);
 for(j=0;j<num;j++){
 fprintf(outFile," %4u",X[mon[j]]);
 }
 fprintf(outFile,"\n");
 thecount++;
 */
 }
}

void step(int runs){
 int i,a=0;

 while(runs>0){
 // Tell FPGA to begin executing reactions
 data.w[1] = (0xE<<28);
 if(runs>=250) data.w[0] = 252;
 else data.w[0] = runs + 2;
 write64(data, memp+(0<<3));
 // Print previous results, on first pass there ar e no
previous results to print

114

 if(a==1) printresults();
 else a=1;
 // Wait until FPGA is done
 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
 // Update total propensity and reaction selected arrays
 //if(runs>=250){
 for(i=2;i<252;i++){
 read64(&data, memp+(i<<3));
 tprop[i-2] = data.w[1];
 rxselect[i-2] = data.w[0];
 }
 /*
 }
 else{
 for(i=2;i<2+runs;i++){
 read64(&data, memp+(i<<3));
 tprop[i-2] = data.w[1];
 rxselect[i-2] = data.w[0];
 }
 tprop[i] = -1;
 }
 */

 runs-=250;
 }
 printresults();
}

int main (int argc, char **argv)
{
 int
species[16],i,j,k,l,x,reaction[16],propensity[16],s um,selection,reacdat
a[4];
 unsigned int kl_int,MF=1,URV,product;
 double kl=1.0,y;
 char temp[51],c=65;
 FILE *inFile;
 struct timeval ts,te;

 outFile = fopen("results.txt","wt");

 if(argc>2){
 fprintf(stderr,"ERROR! Expected usage: ./rchw [m odel
file]\n");
 exit(1);
 }
 if(argc==2) strcpy(temp,argv[1]);
 else{
 printf("Please enter the name of the model file t o read
from: ");
 if(fgets(temp,50,stdin)==NULL){ printf("\n"); exi t(0); }
 temp[strlen(temp)-1]='\0';

115

 }
 inFile = fopen(temp,"r");
 while(inFile == NULL){
 fprintf(stderr,"ERROR! Unable to open: %s\n",tem p);
 printf("Please enter the name of the model file t o read
from: ");
 if(fgets(temp,50,stdin)==NULL){ printf("\n"); exi t(0); }
 temp[strlen(temp)-1]='\0';
 inFile = fopen(temp,"r");
 }

 init();

 // Clear BRAM
 for(i=0;i<255;i++){
 data.w[1] = 0x0;
 data.w[0] = 0x0;
 write64(data, memp+(i<<3));
 }

 gettimeofday(&ts,NULL);

 // READ IN VARIABLES
 fscanf(inFile,"%u",&n);
 if(n>NMAX){
 fprintf(stderr,"ERROR! Number of species exceeds limit of
%d\n",NMAX);
 exit(1);
 }
 X = new unsigned int[n];
 for(i=0;i<n;i++){
 fscanf(inFile,"%u",&X[i]);
 if((i<4)&&(X[i]>1)){
 X[i]=1;
 fprintf(stderr,"WARNING! Species 0->3 are one b it,
so species %d has been set to 1\n",i);
 }
 if((i>3)&&(X[i]>PMAX)){
 X[i]=PMAX;
 fprintf(stderr,"WARNING! Species 4->15 are twel ve
bits, so species %d has been set to %d\n",i,PMAX);
 }
 }
 fscanf(inFile,"%u",&m);
 if(m>MMAX){
 fprintf(stderr,"ERROR! Number of reactions excee ds limit
of %d\n",MMAX);
 exit(1);
 }
 R = new CR[m];
 for(i=0;i<m;i++){
 fscanf(inFile,"%d",&R[i].reactants);
 R[i].renum = new unsigned int[R[i].reactants];
 R[i].rewt = new unsigned int[R[i].reactants];
 k=0;

116

 for(j=0;j<R[i].reactants;j++){
 fscanf(inFile,"%u",&R[i].rewt[j]);
 k+=R[i].rewt[j];
 fscanf(inFile,"%u",&R[i].renum[j]);
 }
 if(k>2){
 fprintf(stderr,"ERROR! Number of reactants in
reaction %d exceeds maximum of 2\n",i);
 exit(1);
 }
 if((i<4)&&(k>1)){
 fprintf(stderr,"ERROR! Reactions 0->3 have a li mit
of 1 reactant, reaction %d exceeds that\n",i);
 exit(1);
 }
 fscanf(inFile,"%d",&R[i].products);
 R[i].prnum = new unsigned int[R[i].products];
 R[i].prwt = new unsigned int[R[i].products];
 k=0;
 for(j=0;j<R[i].products;j++){
 fscanf(inFile,"%u",&R[i].prwt[j]);
 k+=R[i].rewt[j];
 fscanf(inFile,"%u",&R[i].prnum[j]);
 }
 if(k>2){
 fprintf(stderr,"ERROR! Number of products in
reaction %d exceeds maximum of 2\n",i);
 exit(1);
 }
 fscanf(inFile,"%lf",&R[i].k);
 y=R[i].k - (unsigned int)(R[i].k);
 if((y>0) && (y<kl)) kl=y;
 }
 if(fscanf(inFile,"%u",&num)==EOF){
 num=n;
 mon=new unsigned int[num];
 for(i=0;i<num;i++){ mon[i]=i; }
 seed=-1-(time(NULL));
 iterations=1000000;
 }
 else{
 mon=new unsigned int[num];
 for(i=0;i<num;i++){ fscanf(inFile,"%u",&mon[i]); }
 if(fscanf(inFile,"%u",&seed)==EOF){
 seed=-1-(time(NULL));
 iterations=1000000;
 }
 else{
 if(fscanf(inFile,"%u",&iterations)==EOF){
iterations=1000000; }
 }
 }

 // Determine multiplication factor of k in order t o use fixed
point notation

117

 if(kl < 1){
 MF = 10000000;
 if(kl < 0.0000001){
 MF = (unsigned int)(1.0/kl);
 }
 kl_int = (unsigned int)(kl * MF);
 if((unsigned int)(kl * MF * 10)%10 >=5) kl_int += 1;
 for(i=0;i<6;i++){
 if(kl_int %10 > 0) break;
 MF /= 10;
 kl_int /= 10;
 }
 }

 //Update fixed point k values for each reaction
 for(i=0;i<m;i++){
 R[i].fpk = (unsigned int)(R[i].k * MF);
 if((unsigned int)(R[i].k*MF * 10)%10 >= 5) R[i].f pk +=1;
 if(R[i].fpk>KMAX){
 fprintf(stderr,"ERROR! Rate constant of reactio n %d
exceeds maximum of %d\n",i,KMAX);
 exit(1);
 }
 }

 setseed(seed);
 thecount = 0;
 thetime = 0.0;

 /*
 fprintf(outFile,"%6d %8.6lf",thecount,thetime);
 for(j=0;j<num;j++){
 fprintf(outFile," %6u",X[mon[i]]);
 }
 fprintf(outFile,"\n");
 thecount++;
 */

 // Send initial species populations
 for(i=0;i<n;i++){
 setspeciespop(i,X[i]);
 }
 for(i;i<NMAX;i++){
 setspeciespop(i,0);
 }

 // Send reaction equations
 for(i=0;i<m;i++){
 for(j=0;j<4;j++){ reacdata[j]=NULLSPECIES; }
 j=0;
 for(k=0;k<R[i].reactants;k++){
 for(l=0;l<R[i].rewt[k];l++){
 reacdata[j++]=R[i].renum[k];
 }
 }

118

 if(reacdata[1]==NULLSPECIES){
 reacdata[1]=reacdata[0];
 reacdata[0]=NULLSPECIES;
 }
 j=2;
 for(k=0;k<R[i].products;k++){
 for(l=0;l<R[i].prwt[k];l++){
 reacdata[j++]=R[i].prnum[k];
 }
 }

 setreaction(i,reacdata[0],reacdata[1],reacdata[2], reacdata[3],R[i
].fpk);
 }
 for(i;i<MMAX;i++){

 setreaction(i,NULLSPECIES,NULLSPECIES,NULLSPECIES, NULLSPECIES,0);
 }

 step(iterations);

 gettimeofday(&te,NULL);
 printf("Run Time: %f\n",(double)(te.tv_sec-
ts.tv_sec)+0.000001*(double)(te.tv_usec-ts.tv_usec));

 for(i=0;i<n;i++){
 printf("Species %d: %d\n",i,readspeciespop(i));
 }

 munmap(memp, MTRRZ);
 close(fd);

 return 0;
}

119

Appendix C

BRAM Based Design VHDL

parith.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY parith IS
 PORT (clk : IN STD_LOGIC;
 we : OUT STD_LOGIC;
 addr : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 din : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
 dout : IN STD_LOGIC_VECTOR(63 DOWNTO 0));
END parith;

ARCHITECTURE rtl OF parith IS

COMPONENT lfsr32
 PORT (
 in_clock : IN STD_LOGIC;
 in_reset : IN STD_LOGIC;
 in_seed : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 out_random_number : OUT STD_LOGIC_VECTOR(31 DOWNT O 0));
END COMPONENT;

COMPONENT exp_rand
 PORT (
 in_clock : IN STD_LOGIC;
 out_uniform_number : OUT STD_LOGIC_VECTOR(31 DOWN TO
0);
 out_random_number : OUT STD_LOGIC_VECTOR(31 DOWNT O 0));
END COMPONENT;

COMPONENT sumprop
 PORT (
 clk : IN STD_LOGIC;
 PSUM1 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM2 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM3 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM4 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM5 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM6 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM7 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM8 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL2 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL3 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL4 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL5 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL6 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL7 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);

120

 TOTAL8 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0));
END COMPONENT;

COMPONENT propcalc
 PORT (
 clk : IN STD_LOGIC;
 POP1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 POP2 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 RX : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PROPENSITY : OUT STD_LOGIC_VECTOR(47 DOWNTO 0));
END COMPONENT;

COMPONENT dpram16_128
 PORT (
 addra : IN STD_LOGIC_VECTOR(6 DOWNTO 0);
 addrb : IN STD_LOGIC_VECTOR(6 DOWNTO 0);
 clka : IN STD_LOGIC;
 clkb : IN STD_LOGIC;
 dina : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 dinb : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 douta : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
 doutb : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
 wea : IN STD_LOGIC;
 web : IN STD_LOGIC);
END COMPONENT;

COMPONENT dpram48_64
 PORT (
 addra : IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 addrb : IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 clka : IN STD_LOGIC;
 clkb : IN STD_LOGIC;
 dina : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 dinb : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 douta : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 doutb : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 wea : IN STD_LOGIC;
 web : IN STD_LOGIC);
END COMPONENT;

SIGNAL s_lfsr_enable : STD_LOGIC;
SIGNAL s_lfsr_reset : STD_LOGIC;
SIGNAL s_seed : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL s_URV : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL s_rxselect : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL s_ERV_URV : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL s_ERV : STD_LOGIC_VECTOR(31 DOWNTO 0);

SIGNAL SP1a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP1a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP1a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP1a_wea : STD_LOGIC;
SIGNAL SP1a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP1a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP1a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);

121

SIGNAL SP1a_web : STD_LOGIC;

SIGNAL SP1b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP1b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP1b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP1b_wea : STD_LOGIC;
SIGNAL SP1b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP1b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP1b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP1b_web : STD_LOGIC;

SIGNAL SP2a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP2a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP2a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP2a_wea : STD_LOGIC;
SIGNAL SP2a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP2a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP2a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP2a_web : STD_LOGIC;

SIGNAL SP2b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP2b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP2b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP2b_wea : STD_LOGIC;
SIGNAL SP2b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP2b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP2b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP2b_web : STD_LOGIC;

SIGNAL SP3a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP3a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP3a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP3a_wea : STD_LOGIC;
SIGNAL SP3a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP3a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP3a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP3a_web : STD_LOGIC;

SIGNAL SP3b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP3b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP3b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP3b_wea : STD_LOGIC;
SIGNAL SP3b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP3b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP3b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP3b_web : STD_LOGIC;

SIGNAL SP4a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP4a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP4a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP4a_wea : STD_LOGIC;
SIGNAL SP4a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP4a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP4a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP4a_web : STD_LOGIC;

122

SIGNAL SP4b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP4b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP4b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP4b_wea : STD_LOGIC;
SIGNAL SP4b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP4b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP4b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP4b_web : STD_LOGIC;

SIGNAL SP5a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP5a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5a_wea : STD_LOGIC;
SIGNAL SP5a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP5a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5a_web : STD_LOGIC;

SIGNAL SP5b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP5b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5b_wea : STD_LOGIC;
SIGNAL SP5b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP5b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5b_web : STD_LOGIC;

SIGNAL SP6a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP6a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6a_wea : STD_LOGIC;
SIGNAL SP6a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP6a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6a_web : STD_LOGIC;

SIGNAL SP6b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP6b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6b_wea : STD_LOGIC;
SIGNAL SP6b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP6b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6b_web : STD_LOGIC;

SIGNAL SP7a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP7a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP7a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP7a_wea : STD_LOGIC;
SIGNAL SP7a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP7a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP7a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP7a_web : STD_LOGIC;

123

SIGNAL SP7b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP7b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP7b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP7b_wea : STD_LOGIC;
SIGNAL SP7b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP7b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP7b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP7b_web : STD_LOGIC;

SIGNAL SP8a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP8a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP8a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP8a_wea : STD_LOGIC;
SIGNAL SP8a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP8a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP8a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP8a_web : STD_LOGIC;

SIGNAL SP8b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP8b_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP8b_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP8b_wea : STD_LOGIC;
SIGNAL SP8b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP8b_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP8b_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP8b_web : STD_LOGIC;

SIGNAL SPUS1_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SPUS1_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS1_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS1_wea : STD_LOGIC;
SIGNAL SPUS1_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SPUS1_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS1_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS1_web : STD_LOGIC;
SIGNAL SPUS2_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SPUS2_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS2_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS2_wea : STD_LOGIC;
SIGNAL SPUS2_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SPUS2_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS2_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS2_web : STD_LOGIC;
SIGNAL SPUS3_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SPUS3_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS3_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS3_wea : STD_LOGIC;
SIGNAL SPUS3_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SPUS3_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS3_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS3_web : STD_LOGIC;
SIGNAL SPUS4_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SPUS4_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS4_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS4_wea : STD_LOGIC;

124

SIGNAL SPUS4_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SPUS4_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS4_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS4_web : STD_LOGIC;

SIGNAL RX1_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX1_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX1_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX1_wea : STD_LOGIC;
SIGNAL RX1_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX1_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX1_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX1_web : STD_LOGIC;
SIGNAL RX2_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX2_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX2_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX2_wea : STD_LOGIC;
SIGNAL RX2_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX2_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX2_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX2_web : STD_LOGIC;
SIGNAL RX3_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX3_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX3_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX3_wea : STD_LOGIC;
SIGNAL RX3_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX3_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX3_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX3_web : STD_LOGIC;
SIGNAL RX4_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX4_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX4_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX4_wea : STD_LOGIC;
SIGNAL RX4_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX4_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX4_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX4_web : STD_LOGIC;
SIGNAL RX5_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX5_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX5_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX5_wea : STD_LOGIC;
SIGNAL RX5_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX5_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX5_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX5_web : STD_LOGIC;
SIGNAL RX6_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX6_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX6_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX6_wea : STD_LOGIC;
SIGNAL RX6_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX6_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX6_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX6_web : STD_LOGIC;
SIGNAL RX7_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX7_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);

125

SIGNAL RX7_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX7_wea : STD_LOGIC;
SIGNAL RX7_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX7_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX7_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX7_web : STD_LOGIC;
SIGNAL RX8_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX8_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX8_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX8_wea : STD_LOGIC;
SIGNAL RX8_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RX8_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX8_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RX8_web : STD_LOGIC;
SIGNAL RXUS_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RXUS_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RXUS_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RXUS_wea : STD_LOGIC;
SIGNAL RXUS_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL RXUS_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RXUS_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RXUS_web : STD_LOGIC;

SIGNAL P1_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P1_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P1_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P1_wea : STD_LOGIC;
SIGNAL P1_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P1_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P1_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P1_web : STD_LOGIC;
SIGNAL P2_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P2_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P2_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P2_wea : STD_LOGIC;
SIGNAL P2_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P2_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P2_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P2_web : STD_LOGIC;
SIGNAL P3_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P3_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P3_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P3_wea : STD_LOGIC;
SIGNAL P3_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P3_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P3_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P3_web : STD_LOGIC;
SIGNAL P4_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P4_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P4_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P4_wea : STD_LOGIC;
SIGNAL P4_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P4_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P4_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P4_web : STD_LOGIC;

126

SIGNAL P5_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P5_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P5_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P5_wea : STD_LOGIC;
SIGNAL P5_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P5_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P5_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P5_web : STD_LOGIC;
SIGNAL P6_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P6_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P6_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P6_wea : STD_LOGIC;
SIGNAL P6_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P6_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P6_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P6_web : STD_LOGIC;
SIGNAL P7_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P7_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P7_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P7_wea : STD_LOGIC;
SIGNAL P7_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P7_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P7_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P7_web : STD_LOGIC;
SIGNAL P8_addra : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P8_dina : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P8_douta : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P8_wea : STD_LOGIC;
SIGNAL P8_addrb : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL P8_dinb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P8_doutb : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL P8_web : STD_LOGIC;

SIGNAL PSUM1_1 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM1_2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM2_1 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM2_2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM3_1 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM3_2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM4_1 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM4_2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM5_1 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM5_2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM6_1 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM6_2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM7_1 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM7_2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM8_1 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PSUM8_2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL TPROP2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL TPROP3 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL TPROP4 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL TPROP5 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL TPROP6 : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL TPROP7 : STD_LOGIC_VECTOR(47 DOWNTO 0);

127

SIGNAL TPROP8 : STD_LOGIC_VECTOR(47 DOWNTO 0);

SIGNAL LBOUND_1 : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL LBOUND_2 : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL LBOUND_3 : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL LBOUND_4 : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL LBOUND_5 : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL LBOUND_6 : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL LBOUND_7 : STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL LBOUND_8 : STD_LOGIC_VECTOR(5 DOWNTO 0);

SIGNAL PC1_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC1_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC1_RX : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC1_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC2_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC2_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC2_RX : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC2_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC3_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC3_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC3_RX : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC3_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC4_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC4_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC4_RX : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC4_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC5_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC5_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC5_RX : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC5_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC6_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC6_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC6_RX : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC6_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC7_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC7_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC7_RX : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC7_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC8_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC8_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL PC8_RX : STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL PC8_PROP : STD_LOGIC_VECTOR(47 DOWNTO 0);

SIGNAL R1I : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL R1V : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL R2I : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL R2V : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL P1I : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL P1V : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL P2I : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL P2V : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL product : STD_LOGIC_VECTOR(79 DOWNTO 0);

128

BEGIN

 ERV : exp_rand PORT MAP (
 in_clock => clk,
 out_uniform_number => s_ERV_URV,
 out_random_number => s_ERV
);

 URV : lfsr32 PORT MAP (
 in_clock => s_lfsr_enable,
 in_reset => s_lfsr_reset,
 in_seed => s_seed,
 out_random_number => s_URV
);

 SP1adpram : dpram16_128 PORT MAP (
 addra => SP1a_addra,
 addrb => SP1a_addrb,
 clka => clk,
 clkb => clk,
 dina => SP1a_dina,
 dinb => SP1a_dinb,
 douta => SP1a_douta,
 doutb => SP1a_doutb,
 wea => SP1a_wea,
 web => SP1a_web
);

 SP1bdpram : dpram16_128 PORT MAP (
 addra => SP1b_addra,
 addrb => SP1b_addrb,
 clka => clk,
 clkb => clk,
 dina => SP1b_dina,
 dinb => SP1b_dinb,
 douta => SP1b_douta,
 doutb => SP1b_doutb,
 wea => SP1b_wea,
 web => SP1b_web
);

 SP2adpram : dpram16_128 PORT MAP (
 addra => SP2a_addra,
 addrb => SP2a_addrb,
 clka => clk,
 clkb => clk,
 dina => SP2a_dina,
 dinb => SP2a_dinb,
 douta => SP2a_douta,
 doutb => SP2a_doutb,
 wea => SP2a_wea,
 web => SP2a_web
);

 SP2bdpram : dpram16_128 PORT MAP (

129

 addra => SP2b_addra,
 addrb => SP2b_addrb,
 clka => clk,
 clkb => clk,
 dina => SP2b_dina,
 dinb => SP2b_dinb,
 douta => SP2b_douta,
 doutb => SP2b_doutb,
 wea => SP2b_wea,
 web => SP2b_web
);

 SP3adpram : dpram16_128 PORT MAP (
 addra => SP3a_addra,
 addrb => SP3a_addrb,
 clka => clk,
 clkb => clk,
 dina => SP3a_dina,
 dinb => SP3a_dinb,
 douta => SP3a_douta,
 doutb => SP3a_doutb,
 wea => SP3a_wea,
 web => SP3a_web
);

 SP3bdpram : dpram16_128 PORT MAP (
 addra => SP3b_addra,
 addrb => SP3b_addrb,
 clka => clk,
 clkb => clk,
 dina => SP3b_dina,
 dinb => SP3b_dinb,
 douta => SP3b_douta,
 doutb => SP3b_doutb,
 wea => SP3b_wea,
 web => SP3b_web
);

 SP4adpram : dpram16_128 PORT MAP (
 addra => SP4a_addra,
 addrb => SP4a_addrb,
 clka => clk,
 clkb => clk,
 dina => SP4a_dina,
 dinb => SP4a_dinb,
 douta => SP4a_douta,
 doutb => SP4a_doutb,
 wea => SP4a_wea,
 web => SP4a_web
);

 SP4bdpram : dpram16_128 PORT MAP (
 addra => SP4b_addra,
 addrb => SP4b_addrb,
 clka => clk,

130

 clkb => clk,
 dina => SP4b_dina,
 dinb => SP4b_dinb,
 douta => SP4b_douta,
 doutb => SP4b_doutb,
 wea => SP4b_wea,
 web => SP4b_web
);

 SP5adpram : dpram16_128 PORT MAP (
 addra => SP5a_addra,
 addrb => SP5a_addrb,
 clka => clk,
 clkb => clk,
 dina => SP5a_dina,
 dinb => SP5a_dinb,
 douta => SP5a_douta,
 doutb => SP5a_doutb,
 wea => SP5a_wea,
 web => SP5a_web
);

 SP5bdpram : dpram16_128 PORT MAP (
 addra => SP5b_addra,
 addrb => SP5b_addrb,
 clka => clk,
 clkb => clk,
 dina => SP5b_dina,
 dinb => SP5b_dinb,
 douta => SP5b_douta,
 doutb => SP5b_doutb,
 wea => SP5b_wea,
 web => SP5b_web
);

 SP6adpram : dpram16_128 PORT MAP (
 addra => SP6a_addra,
 addrb => SP6a_addrb,
 clka => clk,
 clkb => clk,
 dina => SP6a_dina,
 dinb => SP6a_dinb,
 douta => SP6a_douta,
 doutb => SP6a_doutb,
 wea => SP6a_wea,
 web => SP6a_web
);

 SP6bdpram : dpram16_128 PORT MAP (
 addra => SP6b_addra,
 addrb => SP6b_addrb,
 clka => clk,
 clkb => clk,
 dina => SP6b_dina,
 dinb => SP6b_dinb,

131

 douta => SP6b_douta,
 doutb => SP6b_doutb,
 wea => SP6b_wea,
 web => SP6b_web
);

 SP7adpram : dpram16_128 PORT MAP (
 addra => SP7a_addra,
 addrb => SP7a_addrb,
 clka => clk,
 clkb => clk,
 dina => SP7a_dina,
 dinb => SP7a_dinb,
 douta => SP7a_douta,
 doutb => SP7a_doutb,
 wea => SP7a_wea,
 web => SP7a_web
);

 SP7bdpram : dpram16_128 PORT MAP (
 addra => SP7b_addra,
 addrb => SP7b_addrb,
 clka => clk,
 clkb => clk,
 dina => SP7b_dina,
 dinb => SP7b_dinb,
 douta => SP7b_douta,
 doutb => SP7b_doutb,
 wea => SP7b_wea,
 web => SP7b_web
);

 SP8adpram : dpram16_128 PORT MAP (
 addra => SP8a_addra,
 addrb => SP8a_addrb,
 clka => clk,
 clkb => clk,
 dina => SP8a_dina,
 dinb => SP8a_dinb,
 douta => SP8a_douta,
 doutb => SP8a_doutb,
 wea => SP8a_wea,
 web => SP8a_web
);

 SP8bdpram : dpram16_128 PORT MAP (
 addra => SP8b_addra,
 addrb => SP8b_addrb,
 clka => clk,
 clkb => clk,
 dina => SP8b_dina,
 dinb => SP8b_dinb,
 douta => SP8b_douta,
 doutb => SP8b_doutb,
 wea => SP8b_wea,

132

 web => SP8b_web
);

 SPUS1dpram : dpram16_128 PORT MAP (
 addra => SPUS1_addra,
 addrb => SPUS1_addrb,
 clka => clk,
 clkb => clk,
 dina => SPUS1_dina,
 dinb => SPUS1_dinb,
 douta => SPUS1_douta,
 doutb => SPUS1_doutb,
 wea => SPUS1_wea,
 web => SPUS1_web
);

 SPUS2dpram : dpram16_128 PORT MAP (
 addra => SPUS2_addra,
 addrb => SPUS2_addrb,
 clka => clk,
 clkb => clk,
 dina => SPUS2_dina,
 dinb => SPUS2_dinb,
 douta => SPUS2_douta,
 doutb => SPUS2_doutb,
 wea => SPUS2_wea,
 web => SPUS2_web
);

 SPUS3dpram : dpram16_128 PORT MAP (
 addra => SPUS3_addra,
 addrb => SPUS3_addrb,
 clka => clk,
 clkb => clk,
 dina => SPUS3_dina,
 dinb => SPUS3_dinb,
 douta => SPUS3_douta,
 doutb => SPUS3_doutb,
 wea => SPUS3_wea,
 web => SPUS3_web
);

 SPUS4dpram : dpram16_128 PORT MAP (
 addra => SPUS4_addra,
 addrb => SPUS4_addrb,
 clka => clk,
 clkb => clk,
 dina => SPUS4_dina,
 dinb => SPUS4_dinb,
 douta => SPUS4_douta,
 doutb => SPUS4_doutb,
 wea => SPUS4_wea,
 web => SPUS4_web
);

133

 RX1dpram : dpram48_64 PORT MAP (
 addra => RX1_addra,
 addrb => RX1_addrb,
 clka => clk,
 clkb => clk,
 dina => RX1_dina,
 dinb => RX1_dinb,
 douta => RX1_douta,
 doutb => RX1_doutb,
 wea => RX1_wea,
 web => RX1_web
);
 RX2dpram : dpram48_64 PORT MAP (
 addra => RX2_addra,
 addrb => RX2_addrb,
 clka => clk,
 clkb => clk,
 dina => RX2_dina,
 dinb => RX2_dinb,
 douta => RX2_douta,
 doutb => RX2_doutb,
 wea => RX2_wea,
 web => RX2_web
);

 RX3dpram : dpram48_64 PORT MAP (
 addra => RX3_addra,
 addrb => RX3_addrb,
 clka => clk,
 clkb => clk,
 dina => RX3_dina,
 dinb => RX3_dinb,
 douta => RX3_douta,
 doutb => RX3_doutb,
 wea => RX3_wea,
 web => RX3_web
);

 RX4dpram : dpram48_64 PORT MAP (
 addra => RX4_addra,
 addrb => RX4_addrb,
 clka => clk,
 clkb => clk,
 dina => RX4_dina,
 dinb => RX4_dinb,
 douta => RX4_douta,
 doutb => RX4_doutb,
 wea => RX4_wea,
 web => RX4_web
);

 RX5dpram : dpram48_64 PORT MAP (
 addra => RX5_addra,
 addrb => RX5_addrb,
 clka => clk,

134

 clkb => clk,
 dina => RX5_dina,
 dinb => RX5_dinb,
 douta => RX5_douta,
 doutb => RX5_doutb,
 wea => RX5_wea,
 web => RX5_web
);

 RX6dpram : dpram48_64 PORT MAP (
 addra => RX6_addra,
 addrb => RX6_addrb,
 clka => clk,
 clkb => clk,
 dina => RX6_dina,
 dinb => RX6_dinb,
 douta => RX6_douta,
 doutb => RX6_doutb,
 wea => RX6_wea,
 web => RX6_web
);

 RX7dpram : dpram48_64 PORT MAP (
 addra => RX7_addra,
 addrb => RX7_addrb,
 clka => clk,
 clkb => clk,
 dina => RX7_dina,
 dinb => RX7_dinb,
 douta => RX7_douta,
 doutb => RX7_doutb,
 wea => RX7_wea,
 web => RX7_web
);

 RX8dpram : dpram48_64 PORT MAP (
 addra => RX8_addra,
 addrb => RX8_addrb,
 clka => clk,
 clkb => clk,
 dina => RX8_dina,
 dinb => RX8_dinb,
 douta => RX8_douta,
 doutb => RX8_doutb,
 wea => RX8_wea,
 web => RX8_web
);

 RXUSdpram : dpram48_64 PORT MAP (
 addra => RXUS_addra,
 addrb => RXUS_addrb,
 clka => clk,
 clkb => clk,
 dina => RXUS_dina,
 dinb => RXUS_dinb,

135

 douta => RXUS_douta,
 doutb => RXUS_doutb,
 wea => RXUS_wea,
 web => RXUS_web
);

 P1dpram : dpram48_64 PORT MAP (
 addra => P1_addra,
 addrb => P1_addrb,
 clka => clk,
 clkb => clk,
 dina => P1_dina,
 dinb => P1_dinb,
 douta => P1_douta,
 doutb => P1_doutb,
 wea => P1_wea,
 web => P1_web
);

 P2dpram : dpram48_64 PORT MAP (
 addra => P2_addra,
 addrb => P2_addrb,
 clka => clk,
 clkb => clk,
 dina => P2_dina,
 dinb => P2_dinb,
 douta => P2_douta,
 doutb => P2_doutb,
 wea => P2_wea,
 web => P2_web
);

 P3dpram : dpram48_64 PORT MAP (
 addra => P3_addra,
 addrb => P3_addrb,
 clka => clk,
 clkb => clk,
 dina => P3_dina,
 dinb => P3_dinb,
 douta => P3_douta,
 doutb => P3_doutb,
 wea => P3_wea,
 web => P3_web
);

 P4dpram : dpram48_64 PORT MAP (
 addra => P4_addra,
 addrb => P4_addrb,
 clka => clk,
 clkb => clk,
 dina => P4_dina,
 dinb => P4_dinb,
 douta => P4_douta,
 doutb => P4_doutb,
 wea => P4_wea,

136

 web => P4_web
);

 P5dpram : dpram48_64 PORT MAP (
 addra => P5_addra,
 addrb => P5_addrb,
 clka => clk,
 clkb => clk,
 dina => P5_dina,
 dinb => P5_dinb,
 douta => P5_douta,
 doutb => P5_doutb,
 wea => P5_wea,
 web => P5_web
);

 P6dpram : dpram48_64 PORT MAP (
 addra => P6_addra,
 addrb => P6_addrb,
 clka => clk,
 clkb => clk,
 dina => P6_dina,
 dinb => P6_dinb,
 douta => P6_douta,
 doutb => P6_doutb,
 wea => P6_wea,
 web => P6_web
);

 P7dpram : dpram48_64 PORT MAP (
 addra => P7_addra,
 addrb => P7_addrb,
 clka => clk,
 clkb => clk,
 dina => P7_dina,
 dinb => P7_dinb,
 douta => P7_douta,
 doutb => P7_doutb,
 wea => P7_wea,
 web => P7_web
);

 P8dpram : dpram48_64 PORT MAP (
 addra => P8_addra,
 addrb => P8_addrb,
 clka => clk,
 clkb => clk,
 dina => P8_dina,
 dinb => P8_dinb,
 douta => P8_douta,
 doutb => P8_doutb,
 wea => P8_wea,
 web => P8_web
);

137

 PROP1 : propcalc PORT MAP (
 clk => clk,
 POP1 => PC1_POP1,
 POP2 => PC1_POP2,
 RX => PC1_RX,
 PROPENSITY => PC1_PROP
);

 PROP2 : propcalc PORT MAP (
 clk => clk,
 POP1 => PC2_POP1,
 POP2 => PC2_POP2,
 RX => PC2_RX,
 PROPENSITY => PC2_PROP
);

 PROP3 : propcalc PORT MAP (
 clk => clk,
 POP1 => PC3_POP1,
 POP2 => PC3_POP2,
 RX => PC3_RX,
 PROPENSITY => PC3_PROP
);

 PROP4 : propcalc PORT MAP (
 clk => clk,
 POP1 => PC4_POP1,
 POP2 => PC4_POP2,
 RX => PC4_RX,
 PROPENSITY => PC4_PROP
);

 PROP5 : propcalc PORT MAP (
 clk => clk,
 POP1 => PC5_POP1,
 POP2 => PC5_POP2,
 RX => PC5_RX,
 PROPENSITY => PC5_PROP
);

 PROP6 : propcalc PORT MAP (
 clk => clk,
 POP1 => PC6_POP1,
 POP2 => PC6_POP2,
 RX => PC6_RX,
 PROPENSITY => PC6_PROP
);

 PROP7 : propcalc PORT MAP (
 clk => clk,
 POP1 => PC7_POP1,
 POP2 => PC7_POP2,
 RX => PC7_RX,
 PROPENSITY => PC7_PROP
);

138

 PROP8 : propcalc PORT MAP (
 clk => clk,
 POP1 => PC8_POP1,
 POP2 => PC8_POP2,
 RX => PC8_RX,
 PROPENSITY => PC8_PROP
);

 TOTALPROP : sumprop PORT MAP (
 clk => clk,
 PSUM1 => PSUM1_2,
 PSUM2 => PSUM2_2,
 PSUM3 => PSUM3_2,
 PSUM4 => PSUM4_2,
 PSUM5 => PSUM5_2,
 PSUM6 => PSUM6_2,
 PSUM7 => PSUM7_2,
 PSUM8 => PSUM8_2,
 TOTAL2 => TPROP2,
 TOTAL3 => TPROP3,
 TOTAL4 => TPROP4,
 TOTAL5 => TPROP5,
 TOTAL6 => TPROP6,
 TOTAL7 => TPROP7,
 TOTAL8 => TPROP8
);

 PROCESS (clk)
 VARIABLE state : STD_LOGIC_VECTOR(7 DOWNTO 0);
 VARIABLE state2 : STD_LOGIC_VECTOR(7 DOWNTO 0);
 VARIABLE count : STD_LOGIC_VECTOR(5 DOWNTO 0);
 VARIABLE looping : STD_LOGIC;
 VARIABLE index : STD_LOGIC_VECTOR(7 DOWNTO 0);
 VARIABLE maxindex : STD_LOGIC_VECTOR(7 DOWNTO 0);
 VARIABLE theproduct : STD_LOGIC_VECTOR(79 DOWNTO 0);

 VARIABLE v_PSUM1_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM1_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM2_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM2_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM3_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM3_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM4_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM4_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM5_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM5_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM6_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM6_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM7_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM7_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM8_1 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PSUM8_2 : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PC1_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC1_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);

139

 VARIABLE v_PC1_RX : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PC2_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC2_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC2_RX : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PC3_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC3_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC3_RX : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PC4_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC4_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC4_RX : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PC5_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC5_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC5_RX : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PC6_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC6_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC6_RX : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PC7_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC7_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC7_RX : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_PC8_POP1 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC8_POP2 : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_PC8_RX : STD_LOGIC_VECTOR(47 DOWNTO 0) ;
 VARIABLE v_RX : STD_LOGIC_VECTOR(5 DOWNTO 0);
 VARIABLE v_R1V : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_R2V : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_P1V : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE v_P2V : STD_LOGIC_VECTOR(15 DOWNTO 0);

 BEGIN
 IF (clk = '0' AND clk'EVENT) THEN
 LBOUND_1 <= "000000";
 LBOUND_2 <= "001000";
 LBOUND_3 <= "010000";
 LBOUND_4 <= "011000";
 LBOUND_5 <= "100000";
 LBOUND_6 <= "101000";
 LBOUND_7 <= "110000";
 LBOUND_8 <= "111000";

 theproduct := s_URV * TPROP8;

 -- SET ADDRESS FROM WHICH TO READ COMMAND
 IF (state = "00000000") THEN
 we <= '0';
 addr <= X"00";
 din <= (others => '0');

 s_lfsr_reset <= '0';
 s_lfsr_enable <= '0';

 index := X"02";
 maxindex := X"FC";
 looping := '0';
 count := "000000";

140

 SPUS1_wea <= '0';
 SPUS1_addra <= "0000000";
 SPUS1_dina <= (others => '0');
 SPUS2_wea <= '0';
 SPUS2_addra <= "0000000";
 SPUS2_dina <= (others => '0');
 SPUS3_wea <= '0';
 SPUS3_addra <= "0000000";
 SPUS3_dina <= (others => '0');
 SPUS4_wea <= '0';
 SPUS4_addra <= "0000000";
 SPUS4_dina <= (others => '0');
 SP1a_wea <= '0';
 SP1a_addra <= "0000000";
 SP1a_dina <= (others => '0');
 SP1b_wea <= '0';
 SP1b_addra <= "0000000";
 SP1b_dina <= (others => '0');
 RX1_wea <= '0';
 RX1_addra <= "000000";
 RX1_dina <= (others => '0');
 P1_wea <= '0';
 P1_addra <= "000000";
 P1_dina <= (others => '0');
 SP2a_wea <= '0';
 SP2a_addra <= "0000000";
 SP2a_dina <= (others => '0');
 SP2b_wea <= '0';
 SP2b_addra <= "0000000";
 SP2b_dina <= (others => '0');
 RX2_wea <= '0';
 RX2_addra <= "000000";
 RX2_dina <= (others => '0');
 P2_wea <= '0';
 P2_addra <= "000000";
 P2_dina <= (others => '0');
 SP3a_wea <= '0';
 SP3a_addra <= "0000000";
 SP3a_dina <= (others => '0');
 SP3b_wea <= '0';
 SP3b_addra <= "0000000";
 SP3b_dina <= (others => '0');
 RX3_wea <= '0';
 RX3_addra <= "000000";
 RX3_dina <= (others => '0');
 P3_wea <= '0';
 P3_addra <= "000000";
 P3_dina <= (others => '0');
 SP4a_wea <= '0';
 SP4a_addra <= "0000000";
 SP4a_dina <= (others => '0');
 SP4b_wea <= '0';
 SP4b_addra <= "0000000";
 SP4b_dina <= (others => '0');
 RX4_wea <= '0';

141

 RX4_addra <= "000000";
 RX4_dina <= (others => '0');
 P4_wea <= '0';
 P4_addra <= "000000";
 P4_dina <= (others => '0');
 SP5a_wea <= '0';
 SP5a_addra <= "0000000";
 SP5a_dina <= (others => '0');
 SP5b_wea <= '0';
 SP5b_addra <= "0000000";
 SP5b_dina <= (others => '0');
 RX5_wea <= '0';
 RX5_addra <= "000000";
 RX5_dina <= (others => '0');
 P5_wea <= '0';
 P5_addra <= "000000";
 P5_dina <= (others => '0');
 SP6a_wea <= '0';
 SP6a_addra <= "0000000";
 SP6a_dina <= (others => '0');
 SP6b_wea <= '0';
 SP6b_addra <= "0000000";
 SP6b_dina <= (others => '0');
 RX6_wea <= '0';
 RX6_addra <= "000000";
 RX6_dina <= (others => '0');
 P6_wea <= '0';
 P6_addra <= "000000";
 P6_dina <= (others => '0');
 SP7a_wea <= '0';
 SP7a_addra <= "0000000";
 SP7a_dina <= (others => '0');
 SP7b_wea <= '0';
 SP7b_addra <= "0000000";
 SP7b_dina <= (others => '0');
 RX7_wea <= '0';
 RX7_addra <= "000000";
 RX7_dina <= (others => '0');
 P7_wea <= '0';
 P7_addra <= "000000";
 P7_dina <= (others => '0');
 SP8a_wea <= '0';
 SP8a_addra <= "0000000";
 SP8a_dina <= (others => '0');
 SP8b_wea <= '0';
 SP8b_addra <= "0000000";
 SP8b_dina <= (others => '0');
 RX8_wea <= '0';
 RX8_addra <= "000000";
 RX8_dina <= (others => '0');
 P8_wea <= '0';
 P8_addra <= "000000";
 P8_dina <= (others => '0');
 RXUS_wea <= '0';
 RXUS_addra <= "000000";

142

 RXUS_dina <= (others => '0');

 state := state + 1;
 state2 := "00000000";

 -- INTERPRET COMMANDS
 ELSIF (state = "00000001") THEN

 -- LOOPING THROUGH 250 REACTIONS
 IF (looping = '1') THEN
 IF (index < maxindex) THEN
 IF (state2 = "00000000") THEN
 we <= '0';
 addr <= X"00";
 P1_wea <= '0';
 P2_wea <= '0';
 P3_wea <= '0';
 P4_wea <= '0';
 P5_wea <= '0';
 P6_wea <= '0';
 P7_wea <= '0';
 P8_wea <= '0';

 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';
 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP3a_wea <= '0';
 SP3b_wea <= '0';
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP8a_wea <= '0';
 SP8b_wea <= '0';

 RX1_wea <= '0';
 RX1_addra <= LBOUND_1 + count;
 RX2_wea <= '0';
 RX2_addra <= LBOUND_2 + count;
 RX3_wea <= '0';
 RX3_addra <= LBOUND_3 + count;
 RX4_wea <= '0';
 RX4_addra <= LBOUND_4 + count;
 RX5_wea <= '0';
 RX5_addra <= LBOUND_5 + count;
 RX6_wea <= '0';

143

 RX6_addra <= LBOUND_6 + count;
 RX7_wea <= '0';
 RX7_addra <= LBOUND_7 + count;
 RX8_wea <= '0';
 RX8_addra <= LBOUND_8 + count;
 state2 := state2 + 1;

 ELSIF (state2 = "00000001") THEN
 we <= '0';
 addr <= X"00";
 RX1_wea <= '0';
 RX1_addra <= LBOUND_1 + count;
 RX2_wea <= '0';
 RX2_addra <= LBOUND_2 + count;
 RX3_wea <= '0';
 RX3_addra <= LBOUND_3 + count;
 RX4_wea <= '0';
 RX4_addra <= LBOUND_4 + count;
 RX5_wea <= '0';
 RX5_addra <= LBOUND_5 + count;
 RX6_wea <= '0';
 RX6_addra <= LBOUND_6 + count;
 RX7_wea <= '0';
 RX7_addra <= LBOUND_7 + count;
 RX8_wea <= '0';
 RX8_addra <= LBOUND_8 + count;

 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP1a_addra <= RX1_douta(46 DOWNTO
40);
 SP1b_addra <= RX1_douta(38 DOWNTO
32);
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP2a_addra <= RX2_douta(46 DOWNTO
40);
 SP2b_addra <= RX2_douta(38 DOWNTO
32);
 SP3a_wea <= '0';
 SP3b_wea <= '0';
 SP3a_addra <= RX3_douta(46 DOWNTO
40);
 SP3b_addra <= RX3_douta(38 DOWNTO
32);
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP4a_addra <= RX4_douta(46 DOWNTO
40);
 SP4b_addra <= RX4_douta(38 DOWNTO
32);
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP5a_addra <= RX5_douta(46 DOWNTO
40);

144

 SP5b_addra <= RX5_douta(38 DOWNTO
32);
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP6a_addra <= RX6_douta(46 DOWNTO
40);
 SP6b_addra <= RX6_douta(38 DOWNTO
32);
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP7a_addra <= RX7_douta(46 DOWNTO
40);
 SP7b_addra <= RX7_douta(38 DOWNTO
32);
 SP8a_wea <= '0';
 SP8b_wea <= '0';
 SP8a_addra <= RX8_douta(46 DOWNTO
40);
 SP8b_addra <= RX8_douta(38 DOWNTO
32);
 state2 := state2 + 1;

 ELSIF (state2 = "00000010") THEN
 we <= '0';
 addr <= X"00";
 RX1_wea <= '0';
 RX1_addra <= LBOUND_1 + count;
 RX2_wea <= '0';
 RX2_addra <= LBOUND_2 + count;
 RX3_wea <= '0';
 RX3_addra <= LBOUND_3 + count;
 RX4_wea <= '0';
 RX4_addra <= LBOUND_4 + count;
 RX5_wea <= '0';
 RX5_addra <= LBOUND_5 + count;
 RX6_wea <= '0';
 RX6_addra <= LBOUND_6 + count;
 RX7_wea <= '0';
 RX7_addra <= LBOUND_7 + count;
 RX8_wea <= '0';
 RX8_addra <= LBOUND_8 + count;

 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP1a_addra <= RX1_douta(46 DOWNTO
40);
 SP1b_addra <= RX1_douta(38 DOWNTO
32);
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP2a_addra <= RX2_douta(46 DOWNTO
40);
 SP2b_addra <= RX2_douta(38 DOWNTO
32);
 SP3a_wea <= '0';

145

 SP3b_wea <= '0';
 SP3a_addra <= RX3_douta(46 DOWNTO
40);
 SP3b_addra <= RX3_douta(38 DOWNTO
32);
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP4a_addra <= RX4_douta(46 DOWNTO
40);
 SP4b_addra <= RX4_douta(38 DOWNTO
32);
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP5a_addra <= RX5_douta(46 DOWNTO
40);
 SP5b_addra <= RX5_douta(38 DOWNTO
32);
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP6a_addra <= RX6_douta(46 DOWNTO
40);
 SP6b_addra <= RX6_douta(38 DOWNTO
32);
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP7a_addra <= RX7_douta(46 DOWNTO
40);
 SP7b_addra <= RX7_douta(38 DOWNTO
32);
 SP8a_wea <= '0';
 SP8b_wea <= '0';
 SP8a_addra <= RX8_douta(46 DOWNTO
40);
 SP8b_addra <= RX8_douta(38 DOWNTO
32);

 v_PC1_POP1 := SP1a_douta;
 v_PC1_POP2 := SP1b_douta;
 v_PC1_RX := RX1_douta;
 v_PC2_POP1 := SP2a_douta;
 v_PC2_POP2 := SP2b_douta;
 v_PC2_RX := RX2_douta;
 v_PC3_POP1 := SP3a_douta;
 v_PC3_POP2 := SP3b_douta;
 v_PC3_RX := RX3_douta;
 v_PC4_POP1 := SP4a_douta;
 v_PC4_POP2 := SP4b_douta;
 v_PC4_RX := RX4_douta;
 v_PC5_POP1 := SP5a_douta;
 v_PC5_POP2 := SP5b_douta;
 v_PC5_RX := RX5_douta;
 v_PC6_POP1 := SP6a_douta;
 v_PC6_POP2 := SP6b_douta;
 v_PC6_RX := RX6_douta;
 v_PC7_POP1 := SP7a_douta;

146

 v_PC7_POP2 := SP7b_douta;
 v_PC7_RX := RX7_douta;
 v_PC8_POP1 := SP8a_douta;
 v_PC8_POP2 := SP8b_douta;
 v_PC8_RX := RX8_douta;
 state2 := state2 + 1;
 ELSIF (state2 = "00000011") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00000100") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00000101") THEN
 we <= '0';
 addr <= X"00";

 P1_wea <= '1';
 P1_addra <= LBOUND_1 + count;
 P1_dina <= PC1_PROP;
 P2_wea <= '1';
 P2_addra <= LBOUND_2 + count;
 P2_dina <= PC2_PROP;
 P3_wea <= '1';
 P3_addra <= LBOUND_3 + count;
 P3_dina <= PC3_PROP;
 P4_wea <= '1';
 P4_addra <= LBOUND_4 + count;
 P4_dina <= PC4_PROP;
 P5_wea <= '1';
 P5_addra <= LBOUND_5 + count;
 P5_dina <= PC5_PROP;
 P6_wea <= '1';
 P6_addra <= LBOUND_6 + count;
 P6_dina <= PC6_PROP;
 P7_wea <= '1';
 P7_addra <= LBOUND_7 + count;
 P7_dina <= PC7_PROP;
 P8_wea <= '1';
 P8_addra <= LBOUND_8 + count;
 P8_dina <= PC8_PROP;
 IF (count = "000000") THEN
 v_PSUM1_1 := PC1_PROP;
 v_PSUM2_1 := PC2_PROP;
 v_PSUM3_1 := PC3_PROP;
 v_PSUM4_1 := PC4_PROP;
 v_PSUM5_1 := PC5_PROP;
 v_PSUM6_1 := PC6_PROP;
 v_PSUM7_1 := PC7_PROP;
 v_PSUM8_1 := PC8_PROP;
 state2 := "00000000";
 count := count + 1;

147

 ELSIF (count < "000100") THEN
 v_PSUM1_1 := v_PSUM1_1 +
PC1_PROP;
 v_PSUM2_1 := v_PSUM2_1 +
PC2_PROP;
 v_PSUM3_1 := v_PSUM3_1 +
PC3_PROP;
 v_PSUM4_1 := v_PSUM4_1 +
PC4_PROP;
 v_PSUM5_1 := v_PSUM5_1 +
PC5_PROP;
 v_PSUM6_1 := v_PSUM6_1 +
PC6_PROP;
 v_PSUM7_1 := v_PSUM7_1 +
PC7_PROP;
 v_PSUM8_1 := v_PSUM8_1 +
PC8_PROP;
 state2 := "00000000";
 count := count + 1;
 ELSIF (count = "000100") THEN
 v_PSUM1_2 := v_PSUM1_1 +
PC1_PROP;
 v_PSUM2_2 := v_PSUM2_1 +
PC2_PROP;
 v_PSUM3_2 := v_PSUM3_1 +
PC3_PROP;
 v_PSUM4_2 := v_PSUM4_1 +
PC4_PROP;
 v_PSUM5_2 := v_PSUM5_1 +
PC5_PROP;
 v_PSUM6_2 := v_PSUM6_1 +
PC6_PROP;
 v_PSUM7_2 := v_PSUM7_1 +
PC7_PROP;
 v_PSUM8_2 := v_PSUM8_1 +
PC8_PROP;
 state2 := "00000000";
 count := count + 1;
 ELSIF (count < "000111") THEN
 v_PSUM1_2 := v_PSUM1_2 +
PC1_PROP;
 v_PSUM2_2 := v_PSUM2_2 +
PC2_PROP;
 v_PSUM3_2 := v_PSUM3_2 +
PC3_PROP;
 v_PSUM4_2 := v_PSUM4_2 +
PC4_PROP;
 v_PSUM5_2 := v_PSUM5_2 +
PC5_PROP;
 v_PSUM6_2 := v_PSUM6_2 +
PC6_PROP;
 v_PSUM7_2 := v_PSUM7_2 +
PC7_PROP;
 v_PSUM8_2 := v_PSUM8_2 +
PC8_PROP;

148

 state2 := "00000000";
 count := count + 1;
 ELSE
 v_PSUM1_2 := v_PSUM1_2 +
PC1_PROP;
 v_PSUM2_2 := v_PSUM2_2 +
PC2_PROP;
 v_PSUM3_2 := v_PSUM3_2 +
PC3_PROP;
 v_PSUM4_2 := v_PSUM4_2 +
PC4_PROP;
 v_PSUM5_2 := v_PSUM5_2 +
PC5_PROP;
 v_PSUM6_2 := v_PSUM6_2 +
PC6_PROP;
 v_PSUM7_2 := v_PSUM7_2 +
PC7_PROP;
 v_PSUM8_2 := v_PSUM8_2 +
PC8_PROP;
 state2 := state2 + 1;
 count := "000000";
 END IF;

 ELSIF (state2 = "00000110") THEN
 P1_wea <= '0';
 P2_wea <= '0';
 P3_wea <= '0';
 P4_wea <= '0';
 P5_wea <= '0';
 P6_wea <= '0';
 P7_wea <= '0';
 P8_wea <= '0';
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;
 ELSIF (state2 = "00000111") THEN
 we <= '1';
 addr <= index;
 din(63 DOWNTO 32) <= TPROP8(31
DOWNTO 0);
 din(31 DOWNTO 0) <= s_ERV;
 state2 := state2 + 1;

 ELSIF (state2 = "00001000") THEN
 we <= '0';
 addr <= X"00";
 index := index + 1;
 state2 := state2 + 1;

 ELSIF (state2 = "00001001") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00001010") THEN

149

 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00001011") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00001100") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00001101") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00001110") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00001111") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00010000") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00010001") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00010010") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00010011") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00010100") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00010101") THEN

150

 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00010110") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00010111") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00011000") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00011001") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00011010") THEN
 we <= '0';
 addr <= X"00";
 state2 := state2 + 1;

 ELSIF (state2 = "00011011") THEN
 we <= '1';
 addr <= index;
 din(63 DOWNTO 32) <= product(63
DOWNTO 32);
 din(31 DOWNTO 6) <=
"00000000000000000000000000";
 din(5 DOWNTO 0) <= s_rxselect;
 RXUS_wea <= '0';
 RXUS_addra <= s_rxselect;
 v_RX := s_rxselect;

 state2 := state2 + 1;

 ELSIF (state2 = "00011100") THEN
 we <= '0';
 addr <= X"00";

 s_lfsr_reset <= '0';
 s_lfsr_enable <= '1';
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';

151

 SPUS4_wea <= '0';

 SPUS1_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS2_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS3_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS4_addra <= RXUS_douta(22 DOWNTO
16);

 state2 := state2 + 1;

 ELSIF (state2 = "00011101") THEN
 we <= '0';
 addr <= X"00";
 s_lfsr_reset <= '0';
 s_lfsr_enable <= '0';
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';

 SPUS1_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS2_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS3_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS4_addra <= RXUS_douta(22 DOWNTO
16);

 IF (RXUS_douta(46 DOWNTO 40) =
"1111111") THEN
 state2 := state2 + 2;
 ELSE
 v_R1V := SPUS1_douta - 1;
 state2 := state2 + 1;
 END IF;

 ELSIF (state2 = "00011110") THEN
 we <= '0';
 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '1';
 SPUS1_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS1_dina <= v_R1V;
 SPUS2_wea <= '1';

152

 SPUS2_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS2_dina <= v_R1V;
 SPUS3_wea <= '1';
 SPUS3_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS3_dina <= v_R1V;
 SPUS4_wea <= '1';
 SPUS4_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS4_dina <= v_R1V;
 SP1a_wea <= '1';
 SP1a_addra <= RXUS_douta(46 DOWNTO
40);
 SP1a_dina <= v_R1V;
 SP1b_wea <= '1';
 SP1b_addra <= RXUS_douta(46 DOWNTO
40);
 SP1b_dina <= v_R1V;
 SP2a_wea <= '1';
 SP2a_addra <= RXUS_douta(46 DOWNTO
40);
 SP2a_dina <= v_R1V;
 SP2b_wea <= '1';
 SP2b_addra <= RXUS_douta(46 DOWNTO
40);
 SP2b_dina <= v_R1V;
 SP3a_wea <= '1';
 SP3a_addra <= RXUS_douta(46 DOWNTO
40);
 SP3a_dina <= v_R1V;
 SP3b_wea <= '1';
 SP3b_addra <= RXUS_douta(46 DOWNTO
40);
 SP3b_dina <= v_R1V;
 SP4a_wea <= '1';
 SP4a_addra <= RXUS_douta(46 DOWNTO
40);
 SP4a_dina <= v_R1V;
 SP4b_wea <= '1';
 SP4b_addra <= RXUS_douta(46 DOWNTO
40);
 SP4b_dina <= v_R1V;
 SP5a_wea <= '1';
 SP5a_addra <= RXUS_douta(46 DOWNTO
40);
 SP5a_dina <= v_R1V;
 SP5b_wea <= '1';
 SP5b_addra <= RXUS_douta(46 DOWNTO
40);
 SP5b_dina <= v_R1V;
 SP6a_wea <= '1';
 SP6a_addra <= RXUS_douta(46 DOWNTO
40);
 SP6a_dina <= v_R1V;

153

 SP6b_wea <= '1';
 SP6b_addra <= RXUS_douta(46 DOWNTO
40);
 SP6b_dina <= v_R1V;
 SP7a_wea <= '1';
 SP7a_addra <= RXUS_douta(46 DOWNTO
40);
 SP7a_dina <= v_R1V;
 SP7b_wea <= '1';
 SP7b_addra <= RXUS_douta(46 DOWNTO
40);
 SP7b_dina <= v_R1V;
 SP8a_wea <= '1';
 SP8a_addra <= RXUS_douta(46 DOWNTO
40);
 SP8a_dina <= v_R1V;
 SP8b_wea <= '1';
 SP8b_addra <= RXUS_douta(46 DOWNTO
40);
 SP8b_dina <= v_R1V;

 state2 := state2 + 1;

 ELSIF (state2 = "00011111") THEN
 we <= '0';
 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';
 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP3a_wea <= '0';
 SP3b_wea <= '0';
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP8a_wea <= '0';
 SP8b_wea <= '0';

 SPUS1_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS2_addra <= RXUS_douta(38 DOWNTO
32);

154

 SPUS3_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS4_addra <= RXUS_douta(22 DOWNTO
16);

 state2 := state2 + 1;

 ELSIF (state2 = "00100000") THEN
 we <= '0';
 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';

 SPUS1_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS2_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS3_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS4_addra <= RXUS_douta(22 DOWNTO
16);

 IF (RXUS_douta(38 DOWNTO 32) =
"1111111") THEN
 state2 := state2 + 2;
 ELSE
 v_R2V := SPUS2_douta - 1;
 state2 := state2 + 1;
 END IF;

 ELSIF (state2 = "00100001") THEN
 we <= '0';
 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '1';
 SPUS1_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS1_dina <= v_R2V;
 SPUS2_wea <= '1';
 SPUS2_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS2_dina <= v_R2V;
 SPUS3_wea <= '1';
 SPUS3_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS3_dina <= v_R2V;
 SPUS4_wea <= '1';

155

 SPUS4_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS4_dina <= v_R2V;
 SP1a_wea <= '1';
 SP1a_addra <= RXUS_douta(38 DOWNTO
32);
 SP1a_dina <= v_R2V;
 SP1b_wea <= '1';
 SP1b_addra <= RXUS_douta(38 DOWNTO
32);
 SP1b_dina <= v_R2V;
 SP2a_wea <= '1';
 SP2a_addra <= RXUS_douta(38 DOWNTO
32);
 SP2a_dina <= v_R2V;
 SP2b_wea <= '1';
 SP2b_addra <= RXUS_douta(38 DOWNTO
32);
 SP2b_dina <= v_R2V;
 SP3a_wea <= '1';
 SP3a_addra <= RXUS_douta(38 DOWNTO
32);
 SP3a_dina <= v_R2V;
 SP3b_wea <= '1';
 SP3b_addra <= RXUS_douta(38 DOWNTO
32);
 SP3b_dina <= v_R2V;
 SP4a_wea <= '1';
 SP4a_addra <= RXUS_douta(38 DOWNTO
32);
 SP4a_dina <= v_R2V;
 SP4b_wea <= '1';
 SP4b_addra <= RXUS_douta(38 DOWNTO
32);
 SP4b_dina <= v_R2V;
 SP5a_wea <= '1';
 SP5a_addra <= RXUS_douta(38 DOWNTO
32);
 SP5a_dina <= v_R2V;
 SP5b_wea <= '1';
 SP5b_addra <= RXUS_douta(38 DOWNTO
32);
 SP5b_dina <= v_R2V;
 SP6a_wea <= '1';
 SP6a_addra <= RXUS_douta(38 DOWNTO
32);
 SP6a_dina <= v_R2V;
 SP6b_wea <= '1';
 SP6b_addra <= RXUS_douta(38 DOWNTO
32);
 SP6b_dina <= v_R2V;
 SP7a_wea <= '1';
 SP7a_addra <= RXUS_douta(38 DOWNTO
32);
 SP7a_dina <= v_R2V;

156

 SP7b_wea <= '1';
 SP7b_addra <= RXUS_douta(38 DOWNTO
32);
 SP7b_dina <= v_R2V;
 SP8a_wea <= '1';
 SP8a_addra <= RXUS_douta(38 DOWNTO
32);
 SP8a_dina <= v_R2V;
 SP8b_wea <= '1';
 SP8b_addra <= RXUS_douta(38 DOWNTO
32);
 SP8b_dina <= v_R2V;

 state2 := state2 + 1;

 ELSIF (state2 = "00100010") THEN
 we <= '0';
 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';
 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP3a_wea <= '0';
 SP3b_wea <= '0';
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP8a_wea <= '0';
 SP8b_wea <= '0';

 SPUS1_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS2_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS3_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS4_addra <= RXUS_douta(22 DOWNTO
16);

 state2 := state2 + 1;

 ELSIF (state2 = "00100011") THEN
 we <= '0';

157

 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';

 SPUS1_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS2_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS3_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS4_addra <= RXUS_douta(22 DOWNTO
16);

 IF (RXUS_douta(30 DOWNTO 24) =
"1111111") THEN
 state2 := state2 + 2;
 ELSE
 v_P1V := SPUS3_douta + 1;
 state2 := state2 + 1;
 END IF;

 ELSIF (state2 = "00100100") THEN
 we <= '0';
 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '1';
 SPUS1_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS1_dina <= v_P1V;
 SPUS2_wea <= '1';
 SPUS2_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS2_dina <= v_P1V;
 SPUS3_wea <= '1';
 SPUS3_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS3_dina <= v_P1V;
 SPUS4_wea <= '1';
 SPUS4_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS4_dina <= v_P1V;
 SP1a_wea <= '1';
 SP1a_addra <= RXUS_douta(30 DOWNTO
24);
 SP1a_dina <= v_P1V;
 SP1b_wea <= '1';
 SP1b_addra <= RXUS_douta(30 DOWNTO
24);

158

 SP1b_dina <= v_P1V;
 SP2a_wea <= '1';
 SP2a_addra <= RXUS_douta(30 DOWNTO
24);
 SP2a_dina <= v_P1V;
 SP2b_wea <= '1';
 SP2b_addra <= RXUS_douta(30 DOWNTO
24);
 SP2b_dina <= v_P1V;
 SP3a_wea <= '1';
 SP3a_addra <= RXUS_douta(30 DOWNTO
24);
 SP3a_dina <= v_P1V;
 SP3b_wea <= '1';
 SP3b_addra <= RXUS_douta(30 DOWNTO
24);
 SP3b_dina <= v_P1V;
 SP4a_wea <= '1';
 SP4a_addra <= RXUS_douta(30 DOWNTO
24);
 SP4a_dina <= v_P1V;
 SP4b_wea <= '1';
 SP4b_addra <= RXUS_douta(30 DOWNTO
24);
 SP4b_dina <= v_P1V;
 SP5a_wea <= '1';
 SP5a_addra <= RXUS_douta(30 DOWNTO
24);
 SP5a_dina <= v_P1V;
 SP5b_wea <= '1';
 SP5b_addra <= RXUS_douta(30 DOWNTO
24);
 SP5b_dina <= v_P1V;
 SP6a_wea <= '1';
 SP6a_addra <= RXUS_douta(30 DOWNTO
24);
 SP6a_dina <= v_P1V;
 SP6b_wea <= '1';
 SP6b_addra <= RXUS_douta(30 DOWNTO
24);
 SP6b_dina <= v_P1V;
 SP7a_wea <= '1';
 SP7a_addra <= RXUS_douta(30 DOWNTO
24);
 SP7a_dina <= v_P1V;
 SP7b_wea <= '1';
 SP7b_addra <= RXUS_douta(30 DOWNTO
24);
 SP7b_dina <= v_P1V;
 SP8a_wea <= '1';
 SP8a_addra <= RXUS_douta(30 DOWNTO
24);
 SP8a_dina <= v_P1V;
 SP8b_wea <= '1';

159

 SP8b_addra <= RXUS_douta(30 DOWNTO
24);
 SP8b_dina <= v_P1V;

 state2 := state2 + 1;

 ELSIF (state2 = "00100101") THEN
 we <= '0';
 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';
 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP3a_wea <= '0';
 SP3b_wea <= '0';
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP8a_wea <= '0';
 SP8b_wea <= '0';

 SPUS1_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS2_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS3_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS4_addra <= RXUS_douta(22 DOWNTO
16);

 state2 := state2 + 1;

 ELSIF (state2 = "00100110") THEN
 we <= '0';
 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';

160

 SPUS1_addra <= RXUS_douta(46 DOWNTO
40);
 SPUS2_addra <= RXUS_douta(38 DOWNTO
32);
 SPUS3_addra <= RXUS_douta(30 DOWNTO
24);
 SPUS4_addra <= RXUS_douta(22 DOWNTO
16);

 IF (RXUS_douta(22 DOWNTO 16) =
"1111111") THEN
 state2 := X"00";
 index := index + 1;
 ELSE
 v_P2V := SPUS4_douta - 1;
 state2 := state2 + 1;
 END IF;

 ELSIF (state2 = "00100111") THEN
 we <= '0';
 addr <= X"00";
 RXUS_wea <= '0';
 RXUS_addra <= v_RX;

 SPUS1_wea <= '1';
 SPUS1_addra <= RXUS_douta(22 DOWNTO
16);
 SPUS1_dina <= v_P2V;
 SPUS2_wea <= '1';
 SPUS2_addra <= RXUS_douta(22 DOWNTO
16);
 SPUS2_dina <= v_P2V;
 SPUS3_wea <= '1';
 SPUS3_addra <= RXUS_douta(22 DOWNTO
16);
 SPUS3_dina <= v_P2V;
 SPUS4_wea <= '1';
 SPUS4_addra <= RXUS_douta(22 DOWNTO
16);
 SPUS4_dina <= v_P2V;
 SP1a_wea <= '1';
 SP1a_addra <= RXUS_douta(22 DOWNTO
16);
 SP1a_dina <= v_P2V;
 SP1b_wea <= '1';
 SP1b_addra <= RXUS_douta(22 DOWNTO
16);
 SP1b_dina <= v_P2V;
 SP2a_wea <= '1';
 SP2a_addra <= RXUS_douta(22 DOWNTO
16);
 SP2a_dina <= v_P2V;
 SP2b_wea <= '1';
 SP2b_addra <= RXUS_douta(22 DOWNTO
16);

161

 SP2b_dina <= v_P2V;
 SP3a_wea <= '1';
 SP3a_addra <= RXUS_douta(22 DOWNTO
16);
 SP3a_dina <= v_P2V;
 SP3b_wea <= '1';
 SP3b_addra <= RXUS_douta(22 DOWNTO
16);
 SP3b_dina <= v_P2V;
 SP4a_wea <= '1';
 SP4a_addra <= RXUS_douta(22 DOWNTO
16);
 SP4a_dina <= v_P2V;
 SP4b_wea <= '1';
 SP4b_addra <= RXUS_douta(22 DOWNTO
16);
 SP4b_dina <= v_P2V;
 SP5a_wea <= '1';
 SP5a_addra <= RXUS_douta(22 DOWNTO
16);
 SP5a_dina <= v_P2V;
 SP5b_wea <= '1';
 SP5b_addra <= RXUS_douta(22 DOWNTO
16);
 SP5b_dina <= v_P2V;
 SP6a_wea <= '1';
 SP6a_addra <= RXUS_douta(22 DOWNTO
16);
 SP6a_dina <= v_P2V;
 SP6b_wea <= '1';
 SP6b_addra <= RXUS_douta(22 DOWNTO
16);
 SP6b_dina <= v_P2V;
 SP7a_wea <= '1';
 SP7a_addra <= RXUS_douta(22 DOWNTO
16);
 SP7a_dina <= v_P2V;
 SP7b_wea <= '1';
 SP7b_addra <= RXUS_douta(22 DOWNTO
16);
 SP7b_dina <= v_P2V;
 SP8a_wea <= '1';
 SP8a_addra <= RXUS_douta(22 DOWNTO
16);
 SP8a_dina <= v_P2V;
 SP8b_wea <= '1';
 SP8b_addra <= RXUS_douta(22 DOWNTO
16);
 SP8b_dina <= v_P2V;

 index := index + 1;
 state2 := X"00";
 END IF;
 ELSE
 we <= '0';

162

 addr <= X"00";

 --JUST ADDED
 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';
 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP3a_wea <= '0';
 SP3b_wea <= '0';
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP8a_wea <= '0';
 SP8b_wea <= '0';

 looping := '0';
 state := state + 1;
 END IF;

 -- NO-OP
 ELSIF (dout(63 DOWNTO 59) = "00000") THEN
 we <= '0';
 addr <= X"00";
 state := "00000000";

 -- SETTING SPECIES POPULATIONS
 ELSIF (dout(63 DOWNTO 59) = "00001") THEN
 we <= '0';
 addr <= X"00";
 SPUS1_wea <= '1';
 SPUS1_addra <= dout(57 DOWNTO 51);
 SPUS1_dina <= dout(15 DOWNTO 0);
 SPUS2_wea <= '1';
 SPUS2_addra <= dout(57 DOWNTO 51);
 SPUS2_dina <= dout(15 DOWNTO 0);
 SPUS3_wea <= '1';
 SPUS3_addra <= dout(57 DOWNTO 51);
 SPUS3_dina <= dout(15 DOWNTO 0);
 SPUS4_wea <= '1';
 SPUS4_addra <= dout(57 DOWNTO 51);
 SPUS4_dina <= dout(15 DOWNTO 0);
 SP1a_wea <= '1';
 SP1a_addra <= dout(57 DOWNTO 51);
 SP1a_dina <= dout(15 DOWNTO 0);
 SP1b_wea <= '1';
 SP1b_addra <= dout(57 DOWNTO 51);

163

 SP1b_dina <= dout(15 DOWNTO 0);
 SP2a_wea <= '1';
 SP2a_addra <= dout(57 DOWNTO 51);
 SP2a_dina <= dout(15 DOWNTO 0);
 SP2b_wea <= '1';
 SP2b_addra <= dout(57 DOWNTO 51);
 SP2b_dina <= dout(15 DOWNTO 0);
 SP3a_wea <= '1';
 SP3a_addra <= dout(57 DOWNTO 51);
 SP3a_dina <= dout(15 DOWNTO 0);
 SP3b_wea <= '1';
 SP3b_addra <= dout(57 DOWNTO 51);
 SP3b_dina <= dout(15 DOWNTO 0);
 SP4a_wea <= '1';
 SP4a_addra <= dout(57 DOWNTO 51);
 SP4a_dina <= dout(15 DOWNTO 0);
 SP4b_wea <= '1';
 SP4b_addra <= dout(57 DOWNTO 51);
 SP4b_dina <= dout(15 DOWNTO 0);
 SP5a_wea <= '1';
 SP5a_addra <= dout(57 DOWNTO 51);
 SP5a_dina <= dout(15 DOWNTO 0);
 SP5b_wea <= '1';
 SP5b_addra <= dout(57 DOWNTO 51);
 SP5b_dina <= dout(15 DOWNTO 0);
 SP6a_wea <= '1';
 SP6a_addra <= dout(57 DOWNTO 51);
 SP6a_dina <= dout(15 DOWNTO 0);
 SP6b_wea <= '1';
 SP6b_addra <= dout(57 DOWNTO 51);
 SP6b_dina <= dout(15 DOWNTO 0);
 SP7a_wea <= '1';
 SP7a_addra <= dout(57 DOWNTO 51);
 SP7a_dina <= dout(15 DOWNTO 0);
 SP7b_wea <= '1';
 SP7b_addra <= dout(57 DOWNTO 51);
 SP7b_dina <= dout(15 DOWNTO 0);
 SP8a_wea <= '1';
 SP8a_addra <= dout(57 DOWNTO 51);
 SP8a_dina <= dout(15 DOWNTO 0);
 SP8b_wea <= '1';
 SP8b_addra <= dout(57 DOWNTO 51);
 SP8b_dina <= dout(15 DOWNTO 0);

 state := state + 1;

 -- READING A SPECIES POPULATION
 ELSIF (dout(63 DOWNTO 59) = "00010") THEN
 IF (state2 = "00000000") THEN
 state2 := state2 + 1;
 we <= '0';
 addr <= X"00";

 SP1a_wea <= '0';
 SP1a_addra <= dout(57 DOWNTO 51);

164

 ELSE
 we <= '1';
 addr <= X"01";
 SP1a_wea <= '0';
 SP1a_addra <= dout(57 DOWNTO 51);
 din(63 DOWNTO 16) <= X"000000000000";
 din(15 DOWNTO 0) <= SP1a_douta;
 state2 := "00000000";
 state := state + 1;
 END IF;

 -- SETTING A REACTION EQUATION
 ELSIF (dout(63 DOWNTO 59) = "00011") THEN
 we <= '0';
 addr <= X"00";
 RX1_wea <= '1';
 RX1_addra <= dout(56 DOWNTO 51);
 RX1_dina <= dout(47 DOWNTO 0);
 RX2_wea <= '1';
 RX2_addra <= dout(56 DOWNTO 51);
 RX2_dina <= dout(47 DOWNTO 0);
 RX3_wea <= '1';
 RX3_addra <= dout(56 DOWNTO 51);
 RX3_dina <= dout(47 DOWNTO 0);
 RX4_wea <= '1';
 RX4_addra <= dout(56 DOWNTO 51);
 RX4_dina <= dout(47 DOWNTO 0);
 RX5_wea <= '1';
 RX5_addra <= dout(56 DOWNTO 51);
 RX5_dina <= dout(47 DOWNTO 0);
 RX6_wea <= '1';
 RX6_addra <= dout(56 DOWNTO 51);
 RX6_dina <= dout(47 DOWNTO 0);
 RX7_wea <= '1';
 RX7_addra <= dout(56 DOWNTO 51);
 RX7_dina <= dout(47 DOWNTO 0);
 RX8_wea <= '1';
 RX8_addra <= dout(56 DOWNTO 51);
 RX8_dina <= dout(47 DOWNTO 0);
 RXUS_wea <= '1';
 RXUS_addra <= dout(56 DOWNTO 51);
 RXUS_dina <= dout(47 DOWNTO 0);
 state := state + 1;

 -- READING A REACTION EQUATION
 ELSIF (dout(63 DOWNTO 59) = "00100") THEN
 IF (state2 = "00000000") THEN
 state2 := state2 + 1;
 we <= '0';
 addr <= X"00";

 RX1_wea <= '0';
 RX1_addra <= dout(56 DOWNTO 51);
 ELSE
 we <= '1';

165

 addr <= X"01";
 RX1_wea <= '0';
 RX1_addra <= dout(56 DOWNTO 51);
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= RX1_douta(47 DOWNTO
0);
 state2 := "00000000";
 state := state + 1;
 END IF;

 -- READING A PROPENSITY
 ELSIF (dout(63 DOWNTO 59) = "00101") THEN
 IF (state2 = "00000000") THEN
 state2 := state2 + 1;
 we <= '0';
 addr <= X"00";

 P1_wea <= '0';
 P1_addra <= dout(56 DOWNTO 51);
 P2_wea <= '0';
 P2_addra <= dout(56 DOWNTO 51);
 P3_wea <= '0';
 P3_addra <= dout(56 DOWNTO 51);
 P4_wea <= '0';
 P4_addra <= dout(56 DOWNTO 51);
 P5_wea <= '0';
 P5_addra <= dout(56 DOWNTO 51);
 P6_wea <= '0';
 P6_addra <= dout(56 DOWNTO 51);
 P7_wea <= '0';
 P7_addra <= dout(56 DOWNTO 51);
 P8_wea <= '0';
 P8_addra <= dout(56 DOWNTO 51);
 ELSE
 we <= '1';
 addr <= X"01";
 IF (dout(56 DOWNTO 51) < X"08") THEN
 P1_wea <= '0';
 P1_addra <= dout(56 DOWNTO 51);
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= P1_douta(47
DOWNTO 0);
 ELSIF (dout(56 DOWNTO 51) < X"10") THEN
 P2_wea <= '0';
 P2_addra <= dout(56 DOWNTO 51);
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= P2_douta(47
DOWNTO 0);
 ELSIF (dout(56 DOWNTO 51) < X"18") THEN
 P3_wea <= '0';
 P3_addra <= dout(56 DOWNTO 51);
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= P3_douta(47
DOWNTO 0);
 ELSIF (dout(56 DOWNTO 51) < X"20") THEN

166

 P4_wea <= '0';
 P4_addra <= dout(56 DOWNTO 51);
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= P4_douta(47
DOWNTO 0);
 ELSIF (dout(56 DOWNTO 51) < X"28") THEN
 P5_wea <= '0';
 P5_addra <= dout(56 DOWNTO 51);
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= P5_douta(47
DOWNTO 0);
 ELSIF (dout(56 DOWNTO 51) < X"30") THEN
 P6_wea <= '0';
 P6_addra <= dout(56 DOWNTO 51);
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= P6_douta(47
DOWNTO 0);
 ELSIF (dout(56 DOWNTO 51) < X"38") THEN
 P7_wea <= '0';
 P7_addra <= dout(56 DOWNTO 51);
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= P7_douta(47
DOWNTO 0);
 ELSE
 P8_wea <= '0';
 P8_addra <= dout(56 DOWNTO 51);
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= P8_douta(47
DOWNTO 0);
 END IF;
 state2 := "00000000";
 state := state + 1;
 END IF;

 -- -- READING A PARTIAL SUM
 -- ELSIF (dout(63 DOWNTO 59) = "00110") THEN
 -- we <= '1';
 -- addr <= X"01";
 -- din(63 DOWNTO 48) <= X"0000";
 -- CASE dout(58 DOWNTO 51) IS
 -- WHEN X"11" =>
 -- din(47 DOWNTO 0) <= v_PSUM1_1;
 -- WHEN X"12" =>
 -- din(47 DOWNTO 0) <= v_PSUM1_2;
 -- WHEN X"21" =>
 -- din(47 DOWNTO 0) <= v_PSUM2_1;
 -- WHEN X"22" =>
 -- din(47 DOWNTO 0) <= v_PSUM2_2;
 -- WHEN X"31" =>
 -- din(47 DOWNTO 0) <= v_PSUM3_1;
 -- WHEN X"32" =>
 -- din(47 DOWNTO 0) <= v_PSUM3_2;
 -- WHEN X"41" =>
 -- din(47 DOWNTO 0) <= v_PSUM4_1;
 -- WHEN X"42" =>

167

 -- din(47 DOWNTO 0) <= v_PSUM4_2;
 -- WHEN X"51" =>
 -- din(47 DOWNTO 0) <= v_PSUM5_1;
 -- WHEN X"52" =>
 -- din(47 DOWNTO 0) <= v_PSUM5_2;
 -- WHEN X"61" =>
 -- din(47 DOWNTO 0) <= v_PSUM6_1;
 -- WHEN X"62" =>
 -- din(47 DOWNTO 0) <= v_PSUM6_2;
 -- WHEN X"71" =>
 -- din(47 DOWNTO 0) <= v_PSUM7_1;
 -- WHEN X"72" =>
 -- din(47 DOWNTO 0) <= v_PSUM7_2;
 -- WHEN X"81" =>
 -- din(47 DOWNTO 0) <= v_PSUM8_1;
 -- WHEN X"82" =>
 -- din(47 DOWNTO 0) <= v_PSUM8_2;
 -- WHEN OTHERS =>
 -- din(47 DOWNTO 0) <= TPROP8;
 -- END CASE;
 -- state := state + 1;

 -- SET SEED TO UNIFORM RANDOM NUMBER GENERATOR
 ELSIF (dout(63 DOWNTO 59) = "00111") THEN
 we <= '0';
 addr <= X"00";
 CASE state2 IS
 WHEN "00000000" =>
 s_seed <= dout(31 DOWNTO 0);
 s_lfsr_reset <= '1';
 state2 := state2 + 1;
 WHEN OTHERS =>
 s_seed <= dout(31 DOWNTO 0);
 s_lfsr_reset <= '1';
 s_lfsr_enable <= '1';
 state := state + 1;
 state2 := "00000000";
 END CASE;

 -- -- READING UNIFORM RANDOM NUMBER
 -- ELSIF (dout(63 DOWNTO 59) = "01000") THEN
 -- we <= '1';
 -- addr <= X"01";
 -- din(63 DOWNTO 32) <= X"00000000";
 -- din(31 DOWNTO 0) <= s_URV;
 -- state := state + 1;

 -- -- CALCULATE A NEW UNIFORM RANDOM NUMBER
 -- ELSIF (dout(63 DOWNTO 59) = "01001") THEN
 -- we <= '0';
 -- addr <= X"00";
 -- s_lfsr_reset <= '0';
 -- s_lfsr_enable <= '1';
 -- state := state + 1;

168

 -- READING PRODUCT
 ELSIF (dout(63 DOWNTO 59) = "01010") THEN
 we <= '1';
 addr <= X"01";
 din(63 DOWNTO 48) <= X"0000";
 din(47 DOWNTO 0) <= product(79 DOWNTO 32);
 state := state + 1;

 -- READING SELECTED REACTION
 ELSIF (dout(63 DOWNTO 59) = "01011") THEN
 we <= '1';
 addr <= X"01";
 din(63 DOWNTO 8) <= X"00000000000000";
 din(7 DOWNTO 6) <= "00";
 din(5 DOWNTO 0) <= s_rxselect;
 state := state + 1;

 -- -- READING EXPONENTIAL RANDOM NUMBER
 -- ELSIF (dout(63 DOWNTO 59) = "01100") THEN
 -- we <= '1';
 -- addr <= X"01";
 -- din(63 DOWNTO 32) <= s_ERV_URV;
 -- din(31 DOWNTO 0) <= s_ERV;
 -- state := state + 1;

 -- INITIALIZING PROPENSITY CALCULATORS
 ELSIF (dout(63 DOWNTO 59) = "01101") THEN
 we <= '0';
 addr <= X"00";
 IF (state2 < "00000010") THEN
 P1_wea <= '0';
 P2_wea <= '0';
 P3_wea <= '0';
 P4_wea <= '0';
 P5_wea <= '0';
 P6_wea <= '0';
 P7_wea <= '0';
 P8_wea <= '0';

 RX1_wea <= '0';
 RX1_addra <= LBOUND_1 + count;
 RX2_wea <= '0';
 RX2_addra <= LBOUND_2 + count;
 RX3_wea <= '0';
 RX3_addra <= LBOUND_3 + count;
 RX4_wea <= '0';
 RX4_addra <= LBOUND_4 + count;
 RX5_wea <= '0';
 RX5_addra <= LBOUND_5 + count;
 RX6_wea <= '0';
 RX6_addra <= LBOUND_6 + count;
 RX7_wea <= '0';
 RX7_addra <= LBOUND_7 + count;
 RX8_wea <= '0';
 RX8_addra <= LBOUND_8 + count;

169

 state2 := state2 + 1;

 ELSIF (state2 < "00000100") THEN
 RX1_wea <= '0';
 RX1_addra <= LBOUND_1 + count;
 RX2_wea <= '0';
 RX2_addra <= LBOUND_2 + count;
 RX3_wea <= '0';
 RX3_addra <= LBOUND_3 + count;
 RX4_wea <= '0';
 RX4_addra <= LBOUND_4 + count;
 RX5_wea <= '0';
 RX5_addra <= LBOUND_5 + count;
 RX6_wea <= '0';
 RX6_addra <= LBOUND_6 + count;
 RX7_wea <= '0';
 RX7_addra <= LBOUND_7 + count;
 RX8_wea <= '0';
 RX8_addra <= LBOUND_8 + count;

 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP1a_addra <= RX1_douta(46 DOWNTO 40);
 SP1b_addra <= RX1_douta(38 DOWNTO 32);
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP2a_addra <= RX2_douta(46 DOWNTO 40);
 SP2b_addra <= RX2_douta(38 DOWNTO 32);
 SP3a_wea <= '0';
 SP3b_wea <= '0';
 SP3a_addra <= RX3_douta(46 DOWNTO 40);
 SP3b_addra <= RX3_douta(38 DOWNTO 32);
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP4a_addra <= RX4_douta(46 DOWNTO 40);
 SP4b_addra <= RX4_douta(38 DOWNTO 32);
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP5a_addra <= RX5_douta(46 DOWNTO 40);
 SP5b_addra <= RX5_douta(38 DOWNTO 32);
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP6a_addra <= RX6_douta(46 DOWNTO 40);
 SP6b_addra <= RX6_douta(38 DOWNTO 32);
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP7a_addra <= RX7_douta(46 DOWNTO 40);
 SP7b_addra <= RX7_douta(38 DOWNTO 32);
 SP8a_wea <= '0';
 SP8b_wea <= '0';
 SP8a_addra <= RX8_douta(46 DOWNTO 40);
 SP8b_addra <= RX8_douta(38 DOWNTO 32);
 state2 := state2 + 1;

 ELSIF (state2 = "00000100") THEN

170

 RX1_wea <= '0';
 RX1_addra <= LBOUND_1 + count;
 RX2_wea <= '0';
 RX2_addra <= LBOUND_2 + count;
 RX3_wea <= '0';
 RX3_addra <= LBOUND_3 + count;
 RX4_wea <= '0';
 RX4_addra <= LBOUND_4 + count;
 RX5_wea <= '0';
 RX5_addra <= LBOUND_5 + count;
 RX6_wea <= '0';
 RX6_addra <= LBOUND_6 + count;
 RX7_wea <= '0';
 RX7_addra <= LBOUND_7 + count;
 RX8_wea <= '0';
 RX8_addra <= LBOUND_8 + count;

 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP1a_addra <= RX1_douta(46 DOWNTO 40);
 SP1b_addra <= RX1_douta(38 DOWNTO 32);
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP2a_addra <= RX2_douta(46 DOWNTO 40);
 SP2b_addra <= RX2_douta(38 DOWNTO 32);
 SP3a_wea <= '0';
 SP3b_wea <= '0';
 SP3a_addra <= RX3_douta(46 DOWNTO 40);
 SP3b_addra <= RX3_douta(38 DOWNTO 32);
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP4a_addra <= RX4_douta(46 DOWNTO 40);
 SP4b_addra <= RX4_douta(38 DOWNTO 32);
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP5a_addra <= RX5_douta(46 DOWNTO 40);
 SP5b_addra <= RX5_douta(38 DOWNTO 32);
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP6a_addra <= RX6_douta(46 DOWNTO 40);
 SP6b_addra <= RX6_douta(38 DOWNTO 32);
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP7a_addra <= RX7_douta(46 DOWNTO 40);
 SP7b_addra <= RX7_douta(38 DOWNTO 32);
 SP8a_wea <= '0';
 SP8b_wea <= '0';
 SP8a_addra <= RX8_douta(46 DOWNTO 40);
 SP8b_addra <= RX8_douta(38 DOWNTO 32);

 v_PC1_POP1 := SP1a_douta;
 v_PC1_POP2 := SP1b_douta;
 v_PC1_RX := RX1_douta;
 v_PC2_POP1 := SP2a_douta;
 v_PC2_POP2 := SP2b_douta;

171

 v_PC2_RX := RX2_douta;
 v_PC3_POP1 := SP3a_douta;
 v_PC3_POP2 := SP3b_douta;
 v_PC3_RX := RX3_douta;
 v_PC4_POP1 := SP4a_douta;
 v_PC4_POP2 := SP4b_douta;
 v_PC4_RX := RX4_douta;
 v_PC5_POP1 := SP5a_douta;
 v_PC5_POP2 := SP5b_douta;
 v_PC5_RX := RX5_douta;
 v_PC6_POP1 := SP6a_douta;
 v_PC6_POP2 := SP6b_douta;
 v_PC6_RX := RX6_douta;
 v_PC7_POP1 := SP7a_douta;
 v_PC7_POP2 := SP7b_douta;
 v_PC7_RX := RX7_douta;
 v_PC8_POP1 := SP8a_douta;
 v_PC8_POP2 := SP8b_douta;
 v_PC8_RX := RX8_douta;
 state2 := state2 + 1;
 ELSIF (state2 = "00000110") THEN
 state2 := "00000000";
 P1_wea <= '1';
 P1_addra <= LBOUND_1 + count;
 P1_dina <= PC1_PROP;
 P2_wea <= '1';
 P2_addra <= LBOUND_2 + count;
 P2_dina <= PC2_PROP;
 P3_wea <= '1';
 P3_addra <= LBOUND_3 + count;
 P3_dina <= PC3_PROP;
 P4_wea <= '1';
 P4_addra <= LBOUND_4 + count;
 P4_dina <= PC4_PROP;
 P5_wea <= '1';
 P5_addra <= LBOUND_5 + count;
 P5_dina <= PC5_PROP;
 P6_wea <= '1';
 P6_addra <= LBOUND_6 + count;
 P6_dina <= PC6_PROP;
 P7_wea <= '1';
 P7_addra <= LBOUND_7 + count;
 P7_dina <= PC7_PROP;
 P8_wea <= '1';
 P8_addra <= LBOUND_8 + count;
 P8_dina <= PC8_PROP;
 IF (count = "000000") THEN
 v_PSUM1_1 := PC1_PROP;
 v_PSUM2_1 := PC2_PROP;
 v_PSUM3_1 := PC3_PROP;
 v_PSUM4_1 := PC4_PROP;
 v_PSUM5_1 := PC5_PROP;
 v_PSUM6_1 := PC6_PROP;
 v_PSUM7_1 := PC7_PROP;
 v_PSUM8_1 := PC8_PROP;

172

 count := count + 1;
 ELSIF (count < "000100") THEN
 v_PSUM1_1 := v_PSUM1_1 + PC1_PROP;
 v_PSUM2_1 := v_PSUM2_1 + PC2_PROP;
 v_PSUM3_1 := v_PSUM3_1 + PC3_PROP;
 v_PSUM4_1 := v_PSUM4_1 + PC4_PROP;
 v_PSUM5_1 := v_PSUM5_1 + PC5_PROP;
 v_PSUM6_1 := v_PSUM6_1 + PC6_PROP;
 v_PSUM7_1 := v_PSUM7_1 + PC7_PROP;
 v_PSUM8_1 := v_PSUM8_1 + PC8_PROP;
 count := count + 1;
 ELSIF (count = "000100") THEN
 v_PSUM1_2 := v_PSUM1_1 + PC1_PROP;
 v_PSUM2_2 := v_PSUM2_1 + PC2_PROP;
 v_PSUM3_2 := v_PSUM3_1 + PC3_PROP;
 v_PSUM4_2 := v_PSUM4_1 + PC4_PROP;
 v_PSUM5_2 := v_PSUM5_1 + PC5_PROP;
 v_PSUM6_2 := v_PSUM6_1 + PC6_PROP;
 v_PSUM7_2 := v_PSUM7_1 + PC7_PROP;
 v_PSUM8_2 := v_PSUM8_1 + PC8_PROP;
 count := count + 1;
 ELSIF (count < "000111") THEN
 v_PSUM1_2 := v_PSUM1_2 + PC1_PROP;
 v_PSUM2_2 := v_PSUM2_2 + PC2_PROP;
 v_PSUM3_2 := v_PSUM3_2 + PC3_PROP;
 v_PSUM4_2 := v_PSUM4_2 + PC4_PROP;
 v_PSUM5_2 := v_PSUM5_2 + PC5_PROP;
 v_PSUM6_2 := v_PSUM6_2 + PC6_PROP;
 v_PSUM7_2 := v_PSUM7_2 + PC7_PROP;
 v_PSUM8_2 := v_PSUM8_2 + PC8_PROP;
 count := count + 1;
 ELSE
 v_PSUM1_2 := v_PSUM1_2 + PC1_PROP;
 v_PSUM2_2 := v_PSUM2_2 + PC2_PROP;
 v_PSUM3_2 := v_PSUM3_2 + PC3_PROP;
 v_PSUM4_2 := v_PSUM4_2 + PC4_PROP;
 v_PSUM5_2 := v_PSUM5_2 + PC5_PROP;
 v_PSUM6_2 := v_PSUM6_2 + PC6_PROP;
 v_PSUM7_2 := v_PSUM7_2 + PC7_PROP;
 v_PSUM8_2 := v_PSUM8_2 + PC8_PROP;
 state := state + 1;
 count := "000000";
 END IF;
 ELSE
 state2 := state2 + 1;
 END IF;

 -- STEP THROUGH 125 REACTIONS
 ELSIF (dout(63 DOWNTO 59) = "01110") THEN
 -- we <= '0';
 -- addr <= X"00";
 index := X"02";
 maxindex := dout(7 DOWNTO 0);
 looping := '1';
 we <= '1';

173

 addr <= X"01";
 din(63 DOWNTO 40) <= X"000000";
 din(39 DOWNTO 32) <= index;
 din(31 DOWNTO 8) <= X"000000";
 din(7 DOWNTO 0) <= maxindex;
 state2 := "00000000";

 END IF;

 -- TELL CPU THAT FPGA IS DONE
 ELSIF (state = "0010") THEN
 we <= '1';
 addr <= X"00";
 din <= (others => '0');
 SPUS1_wea <= '0';
 SPUS2_wea <= '0';
 SPUS3_wea <= '0';
 SPUS4_wea <= '0';
 SP1a_wea <= '0';
 SP1b_wea <= '0';
 SP2a_wea <= '0';
 SP2b_wea <= '0';
 SP3a_wea <= '0';
 SP3b_wea <= '0';
 SP4a_wea <= '0';
 SP4b_wea <= '0';
 SP5a_wea <= '0';
 SP5b_wea <= '0';
 SP6a_wea <= '0';
 SP6b_wea <= '0';
 SP7a_wea <= '0';
 SP7b_wea <= '0';
 SP8a_wea <= '0';
 SP8b_wea <= '0';
 RX1_wea <= '0';
 RX2_wea <= '0';
 RX3_wea <= '0';
 RX4_wea <= '0';
 RX5_wea <= '0';
 RX6_wea <= '0';
 RX7_wea <= '0';
 RX8_wea <= '0';
 RXUS_wea <= '0';
 P1_wea <= '0';
 P2_wea <= '0';
 P3_wea <= '0';
 P4_wea <= '0';
 P5_wea <= '0';
 P6_wea <= '0';
 P7_wea <= '0';
 P8_wea <= '0';
 state := "00000000";
 ELSE
 we <= '0';
 addr <= X"00";

174

 state := state + 1;
 END IF;

 product <= theproduct;
 PSUM1_1 <= v_PSUM1_1; PSUM1_2 <= v_PSUM1_2; PSUM2 _1 <=
v_PSUM2_1; PSUM2_2 <= v_PSUM2_2;
 PSUM3_1 <= v_PSUM3_1; PSUM3_2 <= v_PSUM3_2; PSUM4 _1 <=
v_PSUM4_1; PSUM4_2 <= v_PSUM4_2;
 PSUM5_1 <= v_PSUM5_1; PSUM5_2 <= v_PSUM5_2; PSUM6 _1 <=
v_PSUM6_1; PSUM6_2 <= v_PSUM6_2;
 PSUM7_1 <= v_PSUM7_1; PSUM7_2 <= v_PSUM7_2; PSUM8 _1 <=
v_PSUM8_1; PSUM8_2 <= v_PSUM8_2;

 PC1_POP1 <= v_PC1_POP1; PC1_POP2 <= v_PC1_POP2; P C1_RX <=
v_PC1_RX;
 PC2_POP1 <= v_PC2_POP1; PC2_POP2 <= v_PC2_POP2; P C2_RX <=
v_PC2_RX;
 PC3_POP1 <= v_PC3_POP1; PC3_POP2 <= v_PC3_POP2; P C3_RX <=
v_PC3_RX;
 PC4_POP1 <= v_PC4_POP1; PC4_POP2 <= v_PC4_POP2; P C4_RX <=
v_PC4_RX;
 PC5_POP1 <= v_PC5_POP1; PC5_POP2 <= v_PC5_POP2; P C5_RX <=
v_PC5_RX;
 PC6_POP1 <= v_PC6_POP1; PC6_POP2 <= v_PC6_POP2; P C6_RX <=
v_PC6_RX;
 PC7_POP1 <= v_PC7_POP1; PC7_POP2 <= v_PC7_POP2; P C7_RX <=
v_PC7_RX;
 PC8_POP1 <= v_PC8_POP1; PC8_POP2 <= v_PC8_POP2; P C8_RX <=
v_PC8_RX;

 END IF;
 END PROCESS;

-- PROCESS TO DETERMINE THE ADDRESS OF THE NEXT REA CTION
 PROCESS (clk)
 VARIABLE nextreac : STD_LOGIC_VECTOR(5 DOWNTO 0);
 VARIABLE v_rxselect : STD_LOGIC_VECTOR(5 DOWNTO 0) ;
 VARIABLE baddr : STD_LOGIC_VECTOR(5 DOWNTO 0);
 VARIABLE count : STD_LOGIC_VECTOR(5 DOWNTO 0);
 VARIABLE apro : STD_LOGIC_VECTOR(47 DOWNTO 0);
 VARIABLE rx_state : STD_LOGIC_VECTOR(3 DOWNTO 0);
 VARIABLE pcolumn : STD_LOGIC_VECTOR(3 DOWNTO 0);

 BEGIN
 IF (clk'EVENT AND clk='1') THEN
 P1_web <= '0'; P2_web <= '0'; P3_web <= '0'; P4_w eb <= '0';
 P5_web <= '0'; P6_web <= '0'; P7_web <= '0'; P8_w eb <= '0';

 IF (product(79 DOWNTO 32) < PSUM1_2) THEN
 --IF (pcolumn /= X"1") THEN
 -- pcolumn := X"1";
 -- rx_state := X"0";
 --END IF;

175

 CASE rx_state IS
 WHEN "0000" =>
 apro := product(79 DOWNTO 32);
 rx_state := rx_state + 1;
 count := "000000";
 WHEN "0001" =>
 IF (apro < PSUM1_1) THEN
 baddr := "000000";
 ELSE
 baddr := "000100";
 apro := apro - PSUM1_1;
 END IF;
 P1_addrb <= baddr;
 rx_state := rx_state + 1;
 WHEN "0010" =>
 P1_addrb <= baddr + count;
 rx_state := rx_state + 1;
 WHEN "0011" =>
 IF (apro < P1_doutb) THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSIF (count = "000011") THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSE
 apro := apro - P1_doutb;
 count := count + 1;
 P1_addrb <= baddr + count;
 rx_state := X"2";
 END IF;
 WHEN "0100" =>
 v_rxselect := nextreac;
 rx_state := X"0";
 WHEN OTHERS =>
 P1_addrb <= baddr + count;
 rx_state := X"0";
 END CASE;

 ELSIF (product(79 DOWNTO 32) < TPROP2) THEN
 --IF (pcolumn /= X"2") THEN
 -- pcolumn := X"2";
 -- rx_state := X"0";
 --END IF;
 CASE rx_state IS
 WHEN "0000" =>
 apro := product(79 DOWNTO 32) - PSUM1_2;
 rx_state := rx_state + 1;
 count := "000000";
 WHEN "0001" =>
 IF (apro < PSUM2_1) THEN
 baddr := "001000";
 ELSE
 apro := apro - PSUM2_1;
 baddr := "001100";
 END IF;

176

 P2_addrb <= baddr;
 rx_state := rx_state + 1;
 WHEN "0010" =>
 P2_addrb <= baddr + count;
 rx_state := rx_state + 1;
 WHEN "0011" =>
 IF (apro < P2_doutb) THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSIF (count = "000011") THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSE
 apro := apro - P2_doutb;
 count := count + 1;
 P2_addrb <= baddr + count;
 rx_state := X"2";
 END IF;
 WHEN "0100" =>
 v_rxselect := nextreac;
 rx_state := X"0";
 WHEN OTHERS =>
 P2_addrb <= baddr + count;
 rx_state := X"0";
 END CASE;

 ELSIF (product(79 DOWNTO 32) < TPROP3) THEN
 --IF (pcolumn /= X"3") THEN
 -- pcolumn := X"3";
 -- rx_state := X"0";
 --END IF;
 CASE rx_state IS
 WHEN "0000" =>
 apro := product(79 DOWNTO 32) - TPROP2;
 rx_state := rx_state + 1;
 count := "000000";
 WHEN "0001" =>
 IF (apro < PSUM3_1) THEN
 baddr := "010000";
 ELSE
 apro := apro - PSUM3_1;
 baddr := "010100";
 END IF;
 P3_addrb <= baddr;
 rx_state := rx_state + 1;
 WHEN "0010" =>
 P3_addrb <= baddr + count;
 rx_state := rx_state + 1;
 WHEN "0011" =>
 IF (apro < P3_doutb) THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSIF (count = "000011") THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;

177

 ELSE
 apro := apro - P3_doutb;
 count := count + 1;
 P3_addrb <= baddr + count;
 rx_state := X"2";
 END IF;
 WHEN "0100" =>
 v_rxselect := nextreac;
 rx_state := X"0";
 WHEN OTHERS =>
 P3_addrb <= baddr + count;
 rx_state := X"0";
 END CASE;

 ELSIF (product(79 DOWNTO 32) < TPROP4) THEN
 --IF (pcolumn /= X"4") THEN
 -- pcolumn := X"4";
 -- rx_state := X"0";
 --END IF;
 CASE rx_state IS
 WHEN "0000" =>
 apro := product(79 DOWNTO 32) - TPROP3;
 rx_state := rx_state + 1;
 count := "000000";
 WHEN "0001" =>
 IF (apro < PSUM4_1) THEN
 baddr := "011000";
 ELSE
 apro := apro - PSUM4_1;
 baddr := "011100";
 END IF;
 P4_addrb <= baddr;
 rx_state := rx_state + 1;
 WHEN "0010" =>
 P4_addrb <= baddr + count;
 rx_state := rx_state + 1;
 WHEN "0011" =>
 IF (apro < P4_doutb) THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSIF (count = "000011") THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSE
 apro := apro - P4_doutb;
 count := count + 1;
 P4_addrb <= baddr + count;
 rx_state := X"2";
 END IF;
 WHEN "0100" =>
 v_rxselect := nextreac;
 rx_state := X"0";
 WHEN OTHERS =>
 P4_addrb <= baddr + count;
 rx_state := X"0";

178

 END CASE;

 ELSIF (product(79 DOWNTO 32) < TPROP5) THEN
 --IF (pcolumn /= X"5") THEN
 -- pcolumn := X"5";
 -- rx_state := X"0";
 --END IF;
 CASE rx_state IS
 WHEN "0000" =>
 apro := product(79 DOWNTO 32) - TPROP4;
 rx_state := rx_state + 1;
 count := "000000";
 WHEN "0001" =>
 IF (apro < PSUM5_1) THEN
 baddr := "100000";
 ELSE
 apro := apro - PSUM5_1;
 baddr := "100100";
 END IF;
 P5_addrb <= baddr;
 rx_state := rx_state + 1;
 WHEN "0010" =>
 P5_addrb <= baddr + count;
 rx_state := rx_state + 1;
 WHEN "0011" =>
 IF (apro < P5_doutb) THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSIF (count = "000011") THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSE
 apro := apro - P5_doutb;
 count := count + 1;
 P5_addrb <= baddr + count;
 rx_state := X"2";
 END IF;
 WHEN "0100" =>
 v_rxselect := nextreac;
 rx_state := X"0";
 WHEN OTHERS =>
 P5_addrb <= baddr + count;
 rx_state := X"0";
 END CASE;

 ELSIF (product(79 DOWNTO 32) < TPROP6) THEN
 --IF (pcolumn /= X"6") THEN
 -- pcolumn := X"6";
 -- rx_state := X"0";
 --END IF;
 CASE rx_state IS
 WHEN "0000" =>
 apro := product(79 DOWNTO 32) - TPROP5;
 rx_state := rx_state + 1;
 count := "000000";

179

 WHEN "0001" =>
 IF (apro < PSUM6_1) THEN
 baddr := "101000";
 ELSE
 apro := apro - PSUM6_1;
 baddr := "101100";
 END IF;
 P6_addrb <= baddr;
 rx_state := rx_state + 1;
 WHEN "0010" =>
 P6_addrb <= baddr + count;
 rx_state := rx_state + 1;
 WHEN "0011" =>
 IF (apro < P6_doutb) THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSIF (count = "000011") THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSE
 apro := apro - P6_doutb;
 count := count + 1;
 P6_addrb <= baddr + count;
 rx_state := X"2";
 END IF;
 WHEN "0100" =>
 v_rxselect := nextreac;
 rx_state := X"0";
 WHEN OTHERS =>
 P6_addrb <= baddr + count;
 rx_state := X"0";
 END CASE;

 ELSIF (product(79 DOWNTO 32) < TPROP7) THEN
 --IF (pcolumn /= X"7") THEN
 -- pcolumn := X"7";
 -- rx_state := X"0";
 --END IF;
 CASE rx_state IS
 WHEN "0000" =>
 apro := product(79 DOWNTO 32) - TPROP6;
 rx_state := rx_state + 1;
 count := "000000";
 WHEN "0001" =>
 IF (apro < PSUM7_1) THEN
 baddr := "110000";
 ELSE
 apro := apro - PSUM7_1;
 baddr := "110100";
 END IF;
 P7_addrb <= baddr;
 rx_state := rx_state + 1;
 WHEN "0010" =>
 P7_addrb <= baddr + count;
 rx_state := rx_state + 1;

180

 WHEN "0011" =>
 IF (apro < P7_doutb) THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSIF (count = "000011") THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSE
 apro := apro - P7_doutb;
 count := count + 1;
 P7_addrb <= baddr + count;
 rx_state := X"2";
 END IF;
 WHEN "0100" =>
 v_rxselect := nextreac;
 rx_state := X"0";
 WHEN OTHERS =>
 P7_addrb <= baddr + count;
 rx_state := X"0";
 END CASE;

 ELSE
 --IF (pcolumn /= X"8") THEN
 -- pcolumn := X"8";
 -- rx_state := X"0";
 --END IF;
 CASE rx_state IS
 WHEN "0000" =>
 apro := product(79 DOWNTO 32) - TPROP7;
 rx_state := rx_state + 1;
 count := "000000";
 WHEN "0001" =>
 IF (apro < PSUM8_1) THEN
 baddr := "111000";
 ELSE
 apro := apro - PSUM8_1;
 baddr := "111100";
 END IF;
 P8_addrb <= baddr;
 rx_state := rx_state + 1;
 WHEN "0010" =>
 P8_addrb <= baddr + count;
 rx_state := rx_state + 1;
 WHEN "0011" =>
 IF (apro < P8_doutb) THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSIF (count = "000011") THEN
 nextreac := baddr + count;
 rx_state := rx_state + 1;
 ELSE
 apro := apro - P8_doutb;
 count := count + 1;
 P8_addrb <= baddr + count;
 rx_state := X"2";

181

 END IF;
 WHEN "0100" =>
 v_rxselect := nextreac;
 rx_state := X"0";
 WHEN OTHERS =>
 P8_addrb <= baddr + count;
 rx_state := X"0";
 END CASE;

 END IF;

 s_rxselect <= v_rxselect;
 END IF;
 END PROCESS;

END rtl;

182

propcalc.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY propcalc IS
 PORT (
 clk : IN STD_LOGIC;
 POP1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 POP2 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 RX : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PROPENSITY : OUT STD_LOGIC_VECTOR(47 DOWNTO 0));
END propcalc;

ARCHITECTURE rtl OF propcalc IS

BEGIN

 PROCESS(clk)
 VARIABLE X,Y : STD_LOGIC_VECTOR(15 DOWNTO 0);
 VARIABLE prop : STD_LOGIC_VECTOR(47 DOWNTO 0);

 BEGIN
 IF (clk'EVENT AND clk='0') THEN
 X := POP1;
 IF (RX(47 DOWNTO 40) = RX(39 DOWNTO 32)) THEN
 Y := X - 1;
 ELSE
 Y := POP2;
 END IF;
 prop := RX(15 DOWNTO 0) * X * Y;
 IF (RX(47 DOWNTO 40) = RX(39 DOWNTO 32)) THEN
 prop(46 DOWNTO 0) := prop(47 DOWNTO 1);
 prop(47) := '0';
 END IF;
 PROPENSITY <= prop;
 END IF;
 END PROCESS;
END rtl;

183

sumprop.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY sumprop IS
 PORT (clk : IN STD_LOGIC;
 PSUM1 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM2 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM3 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM4 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM5 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM6 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM7 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 PSUM8 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL2 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL3 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL4 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL5 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL6 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL7 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
 TOTAL8 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0));
END sumprop;

ARCHITECTURE rtl OF sumprop IS

BEGIN
 PROCESS(clk)
 VARIABLE sum2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
 VARIABLE sum3 : STD_LOGIC_VECTOR(47 DOWNTO 0);
 VARIABLE sum4 : STD_LOGIC_VECTOR(47 DOWNTO 0);
 VARIABLE sum5 : STD_LOGIC_VECTOR(47 DOWNTO 0);
 VARIABLE sum6 : STD_LOGIC_VECTOR(47 DOWNTO 0);
 VARIABLE sum7 : STD_LOGIC_VECTOR(47 DOWNTO 0);
 VARIABLE sum8 : STD_LOGIC_VECTOR(47 DOWNTO 0);
 BEGIN
 IF (clk'EVENT AND clk='1') THEN
 sum2 := PSUM1 + PSUM2;
 sum3 := PSUM1 + PSUM2 + PSUM3;
 sum4 := PSUM1 + PSUM2 + PSUM3 + PSUM4;
 sum5 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5;
 sum6 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5 + P SUM6;
 sum7 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5 + P SUM6 +
PSUM7;
 sum8 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5 + P SUM6 +
PSUM7 + PSUM8;

 TOTAL2 <= sum2; TOTAL3 <= sum3; TOTAL4 <= sum4;

TOTAL5 <= sum5; TOTAL6 <= sum6; TOTAL7 <= sum7;
TOTAL8 <= sum8;

 END IF;
 END PROCESS;

184

END rtl;

185

lfsr32.vhd [17]

library ieee;
library work;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity lfsr32 is
 port (in_clock : in std_logic;
 in_reset : in std_logic;
 in_seed : in std_logic_vector(31 down to 0);
 out_random_number : out std_logic_vector(31 dow nto 0));
end entity lfsr32;

architecture a of lfsr32 is
begin
 process(in_clock)
 variable var_current_number : std_logic_vector(31 downto 0);
 variable var_startup : natural;
 variable var_next_bit : std_logic;
 begin
 if (in_clock = '1' and in_clock'event) then
 if (in_reset='1' or var_startup=0) then
 var_current_number := in_seed;
 var_startup := 1;
 else
 var_next_bit := var_current_number(0) XOR
 var_current_number(26) XOR
 var_current_number(27) XOR
 var_current_number(31);
 var_current_number(31 downto 1) := var_current_num ber(30 downto
0);
 var_current_number(0) := var_next_bit;
 end if;
 out_random_number <= var_current_number;
 end if;
 end process;
end architecture a;

186

exp_rand.vhd [17]

library ieee;
library work;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity exp_rand is
 port (in_clock : in std_logic;
 out_uniform_number : out std_logic_vector(31 down to 0);
 out_random_number : out std_logic_vector(31 downt o 0));
end entity;

architecture a of exp_rand is
 component linear_interp
 port (in_clk : in std_logic;
 in_rand : in std_logic_vector(15 downto 0);
 in_min : in std_logic_vector(15 downto 0);
 in_diff : in std_logic_vector(15 downto 0);
 in_urn : in std_logic_vector(31 downto 0);
 out_urn : out std_logic_vector(31 downto 0);
 out_interp : out std_logic_vector(31 downto 0));
 end component;

 component lfsr32
 port (in_clock : in std_logic;
 in_reset : in std_logic;
 in_seed : in std_logic_vector(31 do wnto 0);
 out_random_number : out std_logic_vector(31 d ownto 0));
 end component;

 component negative_log_lut
 port(index : in std_logic_vector(7 downto 0);
 in_urn : in std_logic_vector(31 downto 0);
 out_urn : out std_logic_vector(31 downto 0);
 min : out std_logic_vector(15 downto 0);
 diff : out std_logic_vector(15 downto 0));
 end component;

 signal sig_0 : std_logic;
 signal sig_expseed : std_logic_vector(31 downto 0);
 signal sig_urn : std_logic_vector(31 downto 0);
 signal sig_outurn : std_logic_vector(31 downto 0) ;
 signal sig_min : std_logic_vector(15 downto 0);
 signal sig_diff : std_logic_vector(15 downto 0);

begin
 sig_0 <= '0';
 sig_expseed <= "10101010101010101010101010101010" ;

 m0 : lfsr32
 port map(in_clock,sig_0,sig_expseed,sig_urn);

 m1 : linear_interp

187

 port map(in_clock,sig_urn(15 downto 0),sig_min,
sig_diff,sig_outurn,out_uniform_number,out_random_n umber);

 m2 : negative_log_lut
 port map(sig_urn(23 downto
16),sig_urn,sig_outurn,sig_min,sig_diff);

end;

188

negative_log_lut.vhd [17]

library ieee;
library work;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity negative_log_lut is
 port(index : in std_logic_vector(7 downto 0);
 in_urn : in std_logic_vector(31 downto 0);
 out_urn : out std_logic_vector(31 downto 0);
 min : out std_logic_vector(15 downto 0);
 diff : out std_logic_vector(15 downto 0));
end entity;

architecture a of negative_log_lut is
begin
 process(index)
 begin
 out_urn <= in_urn;
 case index is
 when "00000000" =>
 diff <= "0100111010001101";
 min <= "1011000101110010";
 when "00000001" =>
 diff <= "0001011000101110";
 min <= "1001101101000011";
 when "00000010" =>
 diff <= "0000110011111001";
 min <= "1000111001001010";
 when "00000011" =>
 diff <= "0000100100110100";
 min <= "1000010100010101";
 when "00000100" =>
 diff <= "0000011100100011";
 min <= "0111110111110001";
 when "00000101" =>
 diff <= "0000010111010101";
 min <= "0111100000011100";
 when "00000110" =>
 diff <= "0000010011101110";
 min <= "0111001100101101";
 when "00000111" =>
 diff <= "0000010001000101";
 min <= "0110111011100111";
 when "00001000" =>
 diff <= "0000001111000100";
 min <= "0110101100100010";
 when "00001001" =>
 diff <= "0000001101011111";
 min <= "0110011111000011";
 when "00001010" =>
 diff <= "0000001100001100";
 min <= "0110010010110110";

189

 when "00001011" =>
 diff <= "0000001011001000";
 min <= "0110000111101101";
 when "00001100" =>
 diff <= "0000001010001111";
 min <= "0101111101011110";
 when "00001101" =>
 diff <= "0000001001011111";
 min <= "0101110011111110";
 when "00001110" =>
 diff <= "0000001000110101";
 min <= "0101101011001001";
 when "00001111" =>
 diff <= "0000001000010000";
 min <= "0101100010111001";
 when "00010000" =>
 diff <= "0000000111110000";
 min <= "0101011011001000";
 when "00010001" =>
 diff <= "0000000111010100";
 min <= "0101010011110100";
 when "00010010" =>
 diff <= "0000000110111010";
 min <= "0101001100111001";
 when "00010011" =>
 diff <= "0000000110100100";
 min <= "0101000110010101";
 when "00010100" =>
 diff <= "0000000110001111";
 min <= "0101000000000101";
 when "00010101" =>
 diff <= "0000000101111101";
 min <= "0100111010001000";
 when "00010110" =>
 diff <= "0000000101101100";
 min <= "0100110100011100";
 when "00010111" =>
 diff <= "0000000101011100";
 min <= "0100101110111111";
 when "00011000" =>
 diff <= "0000000101001110";
 min <= "0100101001110001";
 when "00011001" =>
 diff <= "0000000101000001";
 min <= "0100100100101111";
 when "00011010" =>
 diff <= "0000000100110101";
 min <= "0100011111111010";
 when "00011011" =>
 diff <= "0000000100101001";
 min <= "0100011011010000";
 when "00011100" =>
 diff <= "0000000100011111";
 min <= "0100010110110001";
 when "00011101" =>

190

 diff <= "0000000100010101";
 min <= "0100010010011011";
 when "00011110" =>
 diff <= "0000000100001100";
 min <= "0100001110001110";
 when "00011111" =>
 diff <= "0000000100000100";
 min <= "0100001010001010";
 when "00100000" =>
 diff <= "0000000011111100";
 min <= "0100000110001110";
 when "00100001" =>
 diff <= "0000000011110100";
 min <= "0100000010011010";
 when "00100010" =>
 diff <= "0000000011101101";
 min <= "0011111110101100";
 when "00100011" =>
 diff <= "0000000011100110";
 min <= "0011111011000101";
 when "00100100" =>
 diff <= "0000000011100000";
 min <= "0011110111100101";
 when "00100101" =>
 diff <= "0000000011011010";
 min <= "0011110100001010";
 when "00100110" =>
 diff <= "0000000011010100";
 min <= "0011110000110110";
 when "00100111" =>
 diff <= "0000000011001111";
 min <= "0011101101100110";
 when "00101000" =>
 diff <= "0000000011001010";
 min <= "0011101010011100";
 when "00101001" =>
 diff <= "0000000011000101";
 min <= "0011100111010111";
 when "00101010" =>
 diff <= "0000000011000000";
 min <= "0011100100010110";
 when "00101011" =>
 diff <= "0000000010111100";
 min <= "0011100001011010";
 when "00101100" =>
 diff <= "0000000010111000";
 min <= "0011011110100001";
 when "00101101" =>
 diff <= "0000000010110100";
 min <= "0011011011101101";
 when "00101110" =>
 diff <= "0000000010110000";
 min <= "0011011000111101";
 when "00101111" =>
 diff <= "0000000010101100";

191

 min <= "0011010110010001";
 when "00110000" =>
 diff <= "0000000010101000";
 min <= "0011010011101000";
 when "00110001" =>
 diff <= "0000000010100101";
 min <= "0011010001000010";
 when "00110010" =>
 diff <= "0000000010100010";
 min <= "0011001110100000";
 when "00110011" =>
 diff <= "0000000010011111";
 min <= "0011001100000001";
 when "00110100" =>
 diff <= "0000000010011100";
 min <= "0011001001100101";
 when "00110101" =>
 diff <= "0000000010011001";
 min <= "0011000111001100";
 when "00110110" =>
 diff <= "0000000010010110";
 min <= "0011000100110110";
 when "00110111" =>
 diff <= "0000000010010011";
 min <= "0011000010100010";
 when "00111000" =>
 diff <= "0000000010010000";
 min <= "0011000000010001";
 when "00111001" =>
 diff <= "0000000010001110";
 min <= "0010111110000010";
 when "00111010" =>
 diff <= "0000000010001100";
 min <= "0010111011110110";
 when "00111011" =>
 diff <= "0000000010001001";
 min <= "0010111001101101";
 when "00111100" =>
 diff <= "0000000010000111";
 min <= "0010110111100101";
 when "00111101" =>
 diff <= "0000000010000101";
 min <= "0010110101100000";
 when "00111110" =>
 diff <= "0000000010000011";
 min <= "0010110011011101";
 when "00111111" =>
 diff <= "0000000010000001";
 min <= "0010110001011100";
 when "01000000" =>
 diff <= "0000000001111111";
 min <= "0010101111011101";
 when "01000001" =>
 diff <= "0000000001111101";
 min <= "0010101101100000";

192

 when "01000010" =>
 diff <= "0000000001111011";
 min <= "0010101011100101";
 when "01000011" =>
 diff <= "0000000001111001";
 min <= "0010101001101011";
 when "01000100" =>
 diff <= "0000000001110111";
 min <= "0010100111110100";
 when "01000101" =>
 diff <= "0000000001110101";
 min <= "0010100101111110";
 when "01000110" =>
 diff <= "0000000001110100";
 min <= "0010100100001010";
 when "01000111" =>
 diff <= "0000000001110010";
 min <= "0010100010010111";
 when "01001000" =>
 diff <= "0000000001110000";
 min <= "0010100000100110";
 when "01001001" =>
 diff <= "0000000001101111";
 min <= "0010011110110111";
 when "01001010" =>
 diff <= "0000000001101101";
 min <= "0010011101001001";
 when "01001011" =>
 diff <= "0000000001101100";
 min <= "0010011011011100";
 when "01001100" =>
 diff <= "0000000001101011";
 min <= "0010011001110001";
 when "01001101" =>
 diff <= "0000000001101001";
 min <= "0010011000000111";
 when "01001110" =>
 diff <= "0000000001101000";
 min <= "0010010110011111";
 when "01001111" =>
 diff <= "0000000001100111";
 min <= "0010010100111000";
 when "01010000" =>
 diff <= "0000000001100101";
 min <= "0010010011010010";
 when "01010001" =>
 diff <= "0000000001100100";
 min <= "0010010001101110";
 when "01010010" =>
 diff <= "0000000001100011";
 min <= "0010010000001010";
 when "01010011" =>
 diff <= "0000000001100010";
 min <= "0010001110101000";
 when "01010100" =>

193

 diff <= "0000000001100000";
 min <= "0010001101000111";
 when "01010101" =>
 diff <= "0000000001011111";
 min <= "0010001011101000";
 when "01010110" =>
 diff <= "0000000001011110";
 min <= "0010001010001001";
 when "01010111" =>
 diff <= "0000000001011101";
 min <= "0010001000101011";
 when "01011000" =>
 diff <= "0000000001011100";
 min <= "0010000111001111";
 when "01011001" =>
 diff <= "0000000001011011";
 min <= "0010000101110011";
 when "01011010" =>
 diff <= "0000000001011010";
 min <= "0010000100011001";
 when "01011011" =>
 diff <= "0000000001011001";
 min <= "0010000010111111";
 when "01011100" =>
 diff <= "0000000001011000";
 min <= "0010000001100111";
 when "01011101" =>
 diff <= "0000000001010111";
 min <= "0010000000001111";
 when "01011110" =>
 diff <= "0000000001010110";
 min <= "0001111110111000";
 when "01011111" =>
 diff <= "0000000001010101";
 min <= "0001111101100010";
 when "01100000" =>
 diff <= "0000000001010100";
 min <= "0001111100001110";
 when "01100001" =>
 diff <= "0000000001010100";
 min <= "0001111010111010";
 when "01100010" =>
 diff <= "0000000001010011";
 min <= "0001111001100110";
 when "01100011" =>
 diff <= "0000000001010010";
 min <= "0001111000010100";
 when "01100100" =>
 diff <= "0000000001010001";
 min <= "0001110111000011";
 when "01100101" =>
 diff <= "0000000001010000";
 min <= "0001110101110010";
 when "01100110" =>
 diff <= "0000000001001111";

194

 min <= "0001110100100010";
 when "01100111" =>
 diff <= "0000000001001111";
 min <= "0001110011010011";
 when "01101000" =>
 diff <= "0000000001001110";
 min <= "0001110010000100";
 when "01101001" =>
 diff <= "0000000001001101";
 min <= "0001110000110111";
 when "01101010" =>
 diff <= "0000000001001100";
 min <= "0001101111101010";
 when "01101011" =>
 diff <= "0000000001001100";
 min <= "0001101110011110";
 when "01101100" =>
 diff <= "0000000001001011";
 min <= "0001101101010010";
 when "01101101" =>
 diff <= "0000000001001010";
 min <= "0001101100000111";
 when "01101110" =>
 diff <= "0000000001001010";
 min <= "0001101010111101";
 when "01101111" =>
 diff <= "0000000001001001";
 min <= "0001101001110100";
 when "01110000" =>
 diff <= "0000000001001000";
 min <= "0001101000101011";
 when "01110001" =>
 diff <= "0000000001001000";
 min <= "0001100111100011";
 when "01110010" =>
 diff <= "0000000001000111";
 min <= "0001100110011011";
 when "01110011" =>
 diff <= "0000000001000110";
 min <= "0001100101010100";
 when "01110100" =>
 diff <= "0000000001000110";
 min <= "0001100100001110";
 when "01110101" =>
 diff <= "0000000001000101";
 min <= "0001100011001000";
 when "01110110" =>
 diff <= "0000000001000101";
 min <= "0001100010000011";
 when "01110111" =>
 diff <= "0000000001000100";
 min <= "0001100000111110";
 when "01111000" =>
 diff <= "0000000001000011";
 min <= "0001011111111010";

195

 when "01111001" =>
 diff <= "0000000001000011";
 min <= "0001011110110111";
 when "01111010" =>
 diff <= "0000000001000010";
 min <= "0001011101110100";
 when "01111011" =>
 diff <= "0000000001000010";
 min <= "0001011100110010";
 when "01111100" =>
 diff <= "0000000001000001";
 min <= "0001011011110000";
 when "01111101" =>
 diff <= "0000000001000001";
 min <= "0001011010101111";
 when "01111110" =>
 diff <= "0000000001000000";
 min <= "0001011001101110";
 when "01111111" =>
 diff <= "0000000001000000";
 min <= "0001011000101110";
 when "10000000" =>
 diff <= "0000000000111111";
 min <= "0001010111101110";
 when "10000001" =>
 diff <= "0000000000111111";
 min <= "0001010110101111";
 when "10000010" =>
 diff <= "0000000000111110";
 min <= "0001010101110000";
 when "10000011" =>
 diff <= "0000000000111110";
 min <= "0001010100110010";
 when "10000100" =>
 diff <= "0000000000111101";
 min <= "0001010011110100";
 when "10000101" =>
 diff <= "0000000000111101";
 min <= "0001010010110110";
 when "10000110" =>
 diff <= "0000000000111100";
 min <= "0001010001111010";
 when "10000111" =>
 diff <= "0000000000111100";
 min <= "0001010000111101";
 when "10001000" =>
 diff <= "0000000000111100";
 min <= "0001010000000001";
 when "10001001" =>
 diff <= "0000000000111011";
 min <= "0001001111000110";
 when "10001010" =>
 diff <= "0000000000111011";
 min <= "0001001110001010";
 when "10001011" =>

196

 diff <= "0000000000111010";
 min <= "0001001101010000";
 when "10001100" =>
 diff <= "0000000000111010";
 min <= "0001001100010101";
 when "10001101" =>
 diff <= "0000000000111001";
 min <= "0001001011011011";
 when "10001110" =>
 diff <= "0000000000111001";
 min <= "0001001010100010";
 when "10001111" =>
 diff <= "0000000000111001";
 min <= "0001001001101001";
 when "10010000" =>
 diff <= "0000000000111000";
 min <= "0001001000110000";
 when "10010001" =>
 diff <= "0000000000111000";
 min <= "0001000111111000";
 when "10010010" =>
 diff <= "0000000000110111";
 min <= "0001000111000000";
 when "10010011" =>
 diff <= "0000000000110111";
 min <= "0001000110001000";
 when "10010100" =>
 diff <= "0000000000110111";
 min <= "0001000101010001";
 when "10010101" =>
 diff <= "0000000000110110";
 min <= "0001000100011010";
 when "10010110" =>
 diff <= "0000000000110110";
 min <= "0001000011100100";
 when "10010111" =>
 diff <= "0000000000110110";
 min <= "0001000010101110";
 when "10011000" =>
 diff <= "0000000000110101";
 min <= "0001000001111000";
 when "10011001" =>
 diff <= "0000000000110101";
 min <= "0001000001000011";
 when "10011010" =>
 diff <= "0000000000110101";
 min <= "0001000000001110";
 when "10011011" =>
 diff <= "0000000000110100";
 min <= "0000111111011001";
 when "10011100" =>
 diff <= "0000000000110100";
 min <= "0000111110100101";
 when "10011101" =>
 diff <= "0000000000110100";

197

 min <= "0000111101110001";
 when "10011110" =>
 diff <= "0000000000110011";
 min <= "0000111100111101";
 when "10011111" =>
 diff <= "0000000000110011";
 min <= "0000111100001010";
 when "10100000" =>
 diff <= "0000000000110011";
 min <= "0000111011010111";
 when "10100001" =>
 diff <= "0000000000110010";
 min <= "0000111010100100";
 when "10100010" =>
 diff <= "0000000000110010";
 min <= "0000111001110010";
 when "10100011" =>
 diff <= "0000000000110010";
 min <= "0000111000111111";
 when "10100100" =>
 diff <= "0000000000110001";
 min <= "0000111000001110";
 when "10100101" =>
 diff <= "0000000000110001";
 min <= "0000110111011100";
 when "10100110" =>
 diff <= "0000000000110001";
 min <= "0000110110101011";
 when "10100111" =>
 diff <= "0000000000110000";
 min <= "0000110101111010";
 when "10101000" =>
 diff <= "0000000000110000";
 min <= "0000110101001001";
 when "10101001" =>
 diff <= "0000000000110000";
 min <= "0000110100011001";
 when "10101010" =>
 diff <= "0000000000110000";
 min <= "0000110011101001";
 when "10101011" =>
 diff <= "0000000000101111";
 min <= "0000110010111001";
 when "10101100" =>
 diff <= "0000000000101111";
 min <= "0000110010001010";
 when "10101101" =>
 diff <= "0000000000101111";
 min <= "0000110001011011";
 when "10101110" =>
 diff <= "0000000000101110";
 min <= "0000110000101100";
 when "10101111" =>
 diff <= "0000000000101110";
 min <= "0000101111111101";

198

 when "10110000" =>
 diff <= "0000000000101110";
 min <= "0000101111001111";
 when "10110001" =>
 diff <= "0000000000101110";
 min <= "0000101110100000";
 when "10110010" =>
 diff <= "0000000000101101";
 min <= "0000101101110011";
 when "10110011" =>
 diff <= "0000000000101101";
 min <= "0000101101000101";
 when "10110100" =>
 diff <= "0000000000101101";
 min <= "0000101100011000";
 when "10110101" =>
 diff <= "0000000000101101";
 min <= "0000101011101010";
 when "10110110" =>
 diff <= "0000000000101100";
 min <= "0000101010111101";
 when "10110111" =>
 diff <= "0000000000101100";
 min <= "0000101010010001";
 when "10111000" =>
 diff <= "0000000000101100";
 min <= "0000101001100100";
 when "10111001" =>
 diff <= "0000000000101100";
 min <= "0000101000111000";
 when "10111010" =>
 diff <= "0000000000101011";
 min <= "0000101000001100";
 when "10111011" =>
 diff <= "0000000000101011";
 min <= "0000100111100001";
 when "10111100" =>
 diff <= "0000000000101011";
 min <= "0000100110110101";
 when "10111101" =>
 diff <= "0000000000101011";
 min <= "0000100110001010";
 when "10111110" =>
 diff <= "0000000000101011";
 min <= "0000100101011111";
 when "10111111" =>
 diff <= "0000000000101010";
 min <= "0000100100110100";
 when "11000000" =>
 diff <= "0000000000101010";
 min <= "0000100100001010";
 when "11000001" =>
 diff <= "0000000000101010";
 min <= "0000100011011111";
 when "11000010" =>

199

 diff <= "0000000000101010";
 min <= "0000100010110101";
 when "11000011" =>
 diff <= "0000000000101001";
 min <= "0000100010001011";
 when "11000100" =>
 diff <= "0000000000101001";
 min <= "0000100001100010";
 when "11000101" =>
 diff <= "0000000000101001";
 min <= "0000100000111000";
 when "11000110" =>
 diff <= "0000000000101001";
 min <= "0000100000001111";
 when "11000111" =>
 diff <= "0000000000101001";
 min <= "0000011111100110";
 when "11001000" =>
 diff <= "0000000000101000";
 min <= "0000011110111101";
 when "11001001" =>
 diff <= "0000000000101000";
 min <= "0000011110010100";
 when "11001010" =>
 diff <= "0000000000101000";
 min <= "0000011101101100";
 when "11001011" =>
 diff <= "0000000000101000";
 min <= "0000011101000100";
 when "11001100" =>
 diff <= "0000000000101000";
 min <= "0000011100011011";
 when "11001101" =>
 diff <= "0000000000100111";
 min <= "0000011011110100";
 when "11001110" =>
 diff <= "0000000000100111";
 min <= "0000011011001100";
 when "11001111" =>
 diff <= "0000000000100111";
 min <= "0000011010100100";
 when "11010000" =>
 diff <= "0000000000100111";
 min <= "0000011001111101";
 when "11010001" =>
 diff <= "0000000000100111";
 min <= "0000011001010110";
 when "11010010" =>
 diff <= "0000000000100110";
 min <= "0000011000101111";
 when "11010011" =>
 diff <= "0000000000100110";
 min <= "0000011000001000";
 when "11010100" =>
 diff <= "0000000000100110";

200

 min <= "0000010111100010";
 when "11010101" =>
 diff <= "0000000000100110";
 min <= "0000010110111100";
 when "11010110" =>
 diff <= "0000000000100110";
 min <= "0000010110010101";
 when "11010111" =>
 diff <= "0000000000100110";
 min <= "0000010101101111";
 when "11011000" =>
 diff <= "0000000000100101";
 min <= "0000010101001001";
 when "11011001" =>
 diff <= "0000000000100101";
 min <= "0000010100100100";
 when "11011010" =>
 diff <= "0000000000100101";
 min <= "0000010011111110";
 when "11011011" =>
 diff <= "0000000000100101";
 min <= "0000010011011001";
 when "11011100" =>
 diff <= "0000000000100101";
 min <= "0000010010110100";
 when "11011101" =>
 diff <= "0000000000100100";
 min <= "0000010010001111";
 when "11011110" =>
 diff <= "0000000000100100";
 min <= "0000010001101010";
 when "11011111" =>
 diff <= "0000000000100100";
 min <= "0000010001000101";
 when "11100000" =>
 diff <= "0000000000100100";
 min <= "0000010000100001";
 when "11100001" =>
 diff <= "0000000000100100";
 min <= "0000001111111101";
 when "11100010" =>
 diff <= "0000000000100100";
 min <= "0000001111011000";
 when "11100011" =>
 diff <= "0000000000100100";
 min <= "0000001110110100";
 when "11100100" =>
 diff <= "0000000000100011";
 min <= "0000001110010001";
 when "11100101" =>
 diff <= "0000000000100011";
 min <= "0000001101101101";
 when "11100110" =>
 diff <= "0000000000100011";
 min <= "0000001101001001";

201

 when "11100111" =>
 diff <= "0000000000100011";
 min <= "0000001100100110";
 when "11101000" =>
 diff <= "0000000000100011";
 min <= "0000001100000011";
 when "11101001" =>
 diff <= "0000000000100011";
 min <= "0000001011100000";
 when "11101010" =>
 diff <= "0000000000100010";
 min <= "0000001010111101";
 when "11101011" =>
 diff <= "0000000000100010";
 min <= "0000001010011010";
 when "11101100" =>
 diff <= "0000000000100010";
 min <= "0000001001110111";
 when "11101101" =>
 diff <= "0000000000100010";
 min <= "0000001001010101";
 when "11101110" =>
 diff <= "0000000000100010";
 min <= "0000001000110010";
 when "11101111" =>
 diff <= "0000000000100010";
 min <= "0000001000010000";
 when "11110000" =>
 diff <= "0000000000100010";
 min <= "0000000111101110";
 when "11110001" =>
 diff <= "0000000000100001";
 min <= "0000000111001100";
 when "11110010" =>
 diff <= "0000000000100001";
 min <= "0000000110101010";
 when "11110011" =>
 diff <= "0000000000100001";
 min <= "0000000110001001";
 when "11110100" =>
 diff <= "0000000000100001";
 min <= "0000000101100111";
 when "11110101" =>
 diff <= "0000000000100001";
 min <= "0000000101000110";
 when "11110110" =>
 diff <= "0000000000100001";
 min <= "0000000100100101";
 when "11110111" =>
 diff <= "0000000000100001";
 min <= "0000000100000100";
 when "11111000" =>
 diff <= "0000000000100000";
 min <= "0000000011100011";
 when "11111001" =>

202

 diff <= "0000000000100000";
 min <= "0000000011000010";
 when "11111010" =>
 diff <= "0000000000100000";
 min <= "0000000010100001";
 when "11111011" =>
 diff <= "0000000000100000";
 min <= "0000000010000001";
 when "11111100" =>
 diff <= "0000000000100000";
 min <= "0000000001100000";
 when "11111101" =>
 diff <= "0000000000100000";
 min <= "0000000001000000";
 when "11111110" =>
 diff <= "0000000000100000";
 min <= "0000000000100000";
 when "11111111" =>
 diff <= "0000000000100000";
 min <= "0000000000000000";
 when others =>
 diff <= (others => '0');
 min <= (others => '0');
 end case;
 end process;
end;

linear_interp.vhd [17]

library ieee;
library work;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity linear_interp is
 port (in_clk : in std_logic;
 in_rand : in std_logic_vector(15 downto 0);
 in_min : in std_logic_vector(15 downto 0);
 in_diff : in std_logic_vector(15 downto 0);
 in_urn : in std_logic_vector(31 downto 0);
 out_urn : out std_logic_vector(31 downto 0);
 out_interp : out std_logic_vector(31 downto 0));
end entity linear_interp;

architecture a of linear_interp is
begin
 process(in_clk)
 variable product : std_logic_vector(31 downto 0);
 variable min_extend : std_logic_vector(31 downt o 0);
 begin
 if (in_clk='1' and in_clk'event) then
 out_urn <= in_urn;
 product := in_rand * in_diff;
 min_extend(31 downto 16) := in_min;

203

 min_extend(15 downto 0) := (others => '0');
 out_interp <= min_extend + product;
 end if;
 end process;
end architecture a;

204

Appendix D

BRAM Based Design C++

hw.cc

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <math.h>
#include <iostream>
#include <cstdlib>
#include "iflib.h"

using namespace std;

#define NULLSPECIES 127
#define NULLRX 63
#define NMAX 127
#define MMAX 63
#define PMAX 65535
#define KMAX 65535

class CR{
 public:
 int reactants,products,fpk;
 double k;
 int renum[2],rewt[2],prnum[2],prwt[2];
};

char *memp;
int64 data;
int fd,N,M,*X,SUMS[256],TPROP[125],RXSELECT[125],ER V[125];
int seed,iterations,C,*mon,thecount;
CR *R;
double thetime;
FILE *outFile;

void init(void) {
 fd = open(DEVICE, O_RDWR);
 memp = (char *)mmap(NULL, MTRRZ, PROT_READ, MAP_PR IVATE, fd, 0);
 if (memp == MAP_FAILED) {
 perror(DEVICE);
 exit(1);
 }
 srand(time(NULL));

205

}

void setSP(int index,unsigned int population){

 data.w[1] = (0x1<<27) + (index<<19);
 data.w[0] = population;
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
}

void readSP(int index, unsigned int *dataA, unsigne d int *dataB){
 data.w[1] = (0x2<<27) + (index<<19);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 *dataA = (unsigned int)data.w[1];
 *dataB = (unsigned int)data.w[0];
}

void setRX(int index, int reac1, int reac2, int pro 1, int pro2, int k){
 data.w[1] = (0x3<<27) + (index<<19) + (reac1<<8) + reac2;
 data.w[0] = (pro1<<24) + (pro2<<16) + k;
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
}

void readRX(int index, unsigned int *dataA, unsigne d int *dataB){
 data.w[1] = (0x4<<27) + (index<<19);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 *dataA = (unsigned int)data.w[1];
 *dataB = (unsigned int)data.w[0];
}

void readPROP(int index, unsigned int *dataA, unsig ned int *dataB){
 data.w[1] = (0x5<<27) + (index<<19);

206

 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 *dataA = (unsigned int)data.w[1];
 *dataB = (unsigned int)data.w[0];
}

void readPSUM(int index1, int index2, unsigned int *dataA, unsigned int
*dataB){
 data.w[1] = (0x6<<27) + (index1<<23) + (index2<<19);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 *dataA = (unsigned int)data.w[1];
 *dataB = (unsigned int)data.w[0];
}

void setSEED(int seed){
 data.w[1] = (0x7<<27);
 data.w[0] = seed;
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
}

void readURV(unsigned int *dataA, unsigned int *dat aB){
 data.w[1] = (0x8<<27);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 *dataA = (unsigned int)data.w[1];
 *dataB = (unsigned int)data.w[0];
}

void newURV(void){
 data.w[1] = (0x9<<27);
 write64(data, memp+(0<<3));

207

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }
}

void readPRODUCT(unsigned int *dataA, unsigned int *dataB){
 data.w[1] = (0xA<<27);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 *dataA = (unsigned int)data.w[1];
 *dataB = (unsigned int)data.w[0];
}

void readSELECTION(unsigned int *dataA, unsigned in t *dataB){
 data.w[1] = (0xB<<27);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 *dataA = (unsigned int)data.w[1];
 *dataB = (unsigned int)data.w[0];
}

void readERV(unsigned int *dataA, unsigned int *dat aB){
 data.w[1] = (0xC<<27);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 read64(&data, memp+(1<<3));
 *dataA = (unsigned int)data.w[1];
 *dataB = (unsigned int)data.w[0];
}

void initPROP(void){
 data.w[1] = (0xD<<27);
 write64(data, memp+(0<<3));

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){

208

 read64(&data, memp+(0<<3));
 }
}

void printresults(void){
 int i,j;

 for(i=0;i<125;i++){
 // UPDATE PUTATIVE TIME
 thetime+=((double)ERV[i]/536870911.0)/(double)TPR OP[i];
 thecount++;

 // UPDATE SPECIES POPULATIONS
 for(j=0;j<R[RXSELECT[i]].reactants;j++){
 X[R[RXSELECT[i]].renum[j]]-=R[RXSELECT[i]].rewt[j];
 }
 for(j=0;j<R[RXSELECT[i]].products;j++){
 X[R[RXSELECT[i]].prnum[j]]+=R[RXSELECT[i]].prwt[j];
 }

 // PRINT TO AN OUTPUT FILE
 /*
 fprintf(outFile,"%6d %8.6lf",thecount,thetime);
 for(j=0;j<C;j++){
 fprintf(outFile," %4u",X[mon[j]]);
 }
 fprintf("outFile,"\n");
 */
 }
}

void step(int runs){
 int i,j=0,a=0;

 while(runs>0){
 data.w[1] = (0xE<<27);
 if(runs>=125) data.w[0] = 252;
 else data.w[0] = (runs*2)+2;
 write64(data, memp+(0<<3));
 if(a==1) printresults();
 else a=1;

 read64(&data, memp+(0<<3));
 while(data.w[1]!=0x0){
 read64(&data, memp+(0<<3));
 }

 for(i=2;i<252;i++){
 read64(&data,memp+(i<<3));
 TPROP[(i>>1)-1] = data.w[1];
 ERV[(i>>1)-1] = data.w[0];

 i++;

209

 read64(&data,memp+(i<<3));
 RXSELECT[((i-1)>>1)-1] = data.w[0];
 }
 runs -= 125;
 }
 printresults();
}

int main (int argc, char **argv)
{
 unsigned int dataA, dataB;
 int i, j, k, kl_int, MF=1, tprop, reac1, reac2, pr o1, pro2;
 char modelfile[51];
 double kl=1.0,y;
 struct timeval ts,te;
 FILE *inFile;

 init();

 seed = -1;
 iterations = 1000000;

 // OPEN A FILE FOR ANY WRITING OF RESULTS
 outFile = fopen("results.txt","wt");

 // ANALYZE COMMAND LINE ARGUMENTS

 for(i=1;i<argc;i++){
 if((strcmp(argv[i],"-h")==0)||(strcmp(argv[i],"-- h")==0)){
 fprintf(stderr,"Expected usage: ./rchw [-m] [mod el
file] [-i] [iterations] [-s] [seed]\n");
 exit(1);
 }
 else{
 if(strcmp(argv[i],"-m")==0){
 strcpy(modelfile,argv[++i]);
 }
 else{
 if(strcmp(argv[i],"-i")==0){
 iterations = atoi(argv[++i]);
 }
 else{
 if(strcmp(argv[i],"-s")==0){
 seed = atoi(argv[++i]);
 }
 else{
 fprintf(stderr,"ERROR! Expected
usage: ./rchw [-m] [model file] [-i] [iterations] [-s] [seed]\n");
 exit(1);
 }
 }
 }
 }
 }

210

 inFile = fopen(modelfile,"r");
 while(inFile == NULL){
 printf("Please enter the name of the model file t o read
from: ");
 fgets(modelfile,50,stdin);
 if(modelfile[0]==10) exit(0);
 modelfile[strlen(modelfile)-1]='\0';
 inFile = fopen(modelfile,"r");
 }

 // CLEAR BRAM
 for(i=0;i<255;i++){
 data.w[1] = 0x0;
 data.w[0] = 0x0;
 write64(data, memp+(i<<3));
 }

 // STORE INITIAL TIME OF START OF SIMULATION
 gettimeofday(&ts,NULL);

 // ///////////////
///////////////
 // READING MODEL FILE AND STORING VARIABLES INTO S OFTWARE
//////////////////////
 // ///////////////
///////////////

 // READING AND STORING SPECIES POPULATIONS
 fscanf(inFile,"%d",&N);
 if(N>NMAX){
 fprintf(stderr,"ERROR! The number of species in this model
exceeds %d\n",NMAX);
 exit(1);
 }
 X = new int[N];
 for(i=0;i<N;i++){
 fscanf(inFile,"%d",&X[i]);
 if(X[i]>PMAX){
 X[i]=PMAX;
 fprintf(stderr,"WARNING! Species %d exceeds max imum
and has been set to %d\n",i,PMAX);
 }
 }

 gettimeofday(&ts,NULL);

 // READING AND STORING REACTION EQUATIONS
 fscanf(inFile,"%d",&M);
 if(M>MMAX){
 fprintf(stderr,"ERROR! The number of reactions i n this
model exceeds %d\n",MMAX);
 exit(1);

211

 }
 R = new CR[M];
 for(i=0;i<M;i++){

 // READING EACH REACTION'S REACTANTS
 fscanf(inFile,"%d",&R[i].reactants);
 k=0;
 for(j=0;j<R[i].reactants;j++){
 fscanf(inFile,"%d",&R[i].rewt[j]);
 k+=R[i].rewt[j];
 fscanf(inFile,"%d",&R[i].renum[j]);
 }
 for(j;j<2;j++){
 R[i].rewt[j]=0;
 R[i].renum[j]=NULLSPECIES;
 }
 if(k>2){
 fprintf(stderr,"ERROR! The number of reactants in
reaction %d exceeds 2\n",i);
 exit(1);
 }

 // READING EACH REACTION'S PRODUCTS
 fscanf(inFile,"%d",&R[i].products);
 k=0;
 for(j=0;j<R[i].products;j++){
 fscanf(inFile,"%d",&R[i].prwt[j]);
 k+=R[i].prwt[j];
 fscanf(inFile,"%d",&R[i].prnum[j]);
 }
 for(j;j<2;j++){
 R[i].prwt[j]=0;
 R[i].prnum[j]=NULLSPECIES;
 }
 if(k>2){
 fprintf(stderr,"ERROR! The number of products i n
reaction %d exceeds 2\n",i);
 exit(1);
 }

 // READING EACH REACTION'S K
 fscanf(inFile,"%lf",&R[i].k);
 y = R[i].k - (int)R[i].k;
 if((y>0) && (y<kl)) kl=y;
 }

 // READING SPECIES TO BE MONITORED
 fscanf(inFile,"%d",&C);
 mon = new int[C];
 for(i=0;i<C;i++){
 fscanf(inFile,"%d",&mon[i]);
 }

 // DETERMING MULTIPLICATION FACTOR (MF) TO CHANGE K VALUES TO
FIXED POINT

212

 if(kl < 1){
 MF = 10000000;
 if(kl < 0.0000001){
 MF = (int)(1.0/kl);
 }
 kl_int = (int)(kl * MF);
 if((int)(kl * MF * 10)%10 >= 5) kl_int += 1;
 for(i=0;i<6;i++){
 if(kl_int %10 > 0) break;
 MF /= 10;
 kl_int /= 10;
 }
 }

 // UPDATE FIXED POINT K VALUE FOR EACH REACTION
 for(i=0;i<M;i++){
 R[i].fpk = (int)(R[i].k * MF);
 if((int)(R[i].k * MF * 10) % 10 >= 5) R[i].fpk += 1;
 if(R[i].fpk > KMAX){
 fprintf(stderr,"ERROR! Fixed point rate constan t of
reaction %d exceeds %d\n",i,KMAX);
 exit(1);
 }
 }

 // ///////////////
///////////////
 // READY TO INTERFACE WITH FPGA
//
 // ///////////////
///////////////

 setSEED(seed);
 // Set species populations
 for(i=0;i<N;i++){
 setSP(i,X[i]);
 }
 for(i;i<NULLSPECIES;i++){
 setSP(i,0);
 }
 setSP(NULLSPECIES,1);

 // Set reaction equations
 for(i=0;i<M;i++){
 if(R[i].rewt[0]==2){
 reac1 = R[i].renum[0];
 reac2 = R[i].renum[0];
 }
 else{
 reac1 = R[i].renum[0];
 reac2 = R[i].renum[1];
 }
 if(R[i].prwt[0]==2){
 pro1 = R[i].prnum[0];

213

 pro2 = R[i].prnum[0];
 }
 else{
 pro1 = R[i].prnum[0];
 pro2 = R[i].prnum[1];
 }
 setRX(i,reac1,reac2,pro1,pro2,R[i].fpk);
 }
 for(i;i<=NULLRX;i++){
 setRX(i,NULLSPECIES,NULLSPECIES,NULLSPECIES,NULLS PECIES,0);
 }

 step(iterations);

 gettimeofday(&te,NULL);
 printf("te = %6d.%6d\nts =
%6d.%6d\n",te.tv_sec,te.tv_usec,ts.tv_sec,ts.tv_use c);

 for(i=0;i<N;i++){
 readSP(i,&dataA,&dataB);
 printf("Species[%d] = %10d\n",i,dataB);
 }

 munmap(memp, MTRRZ);

 return 0;
}

214

Appendix E

SBML Models

SBML Content Outline

[Number of species]
[Population of each species, all separated by a spa ce]
[Number of reactions]
[Reaction equations defined in form outlined below]
[# Reactants] [Weight] [Index] [# Products] [Weight] [Index] [k]
[Number of species to be monitored]
[Indices of species populations to be monitored]

When defining a reaction equation, “Index” refers to index of a species involved in a

reaction equation while “Weight” refers to the number of that species acting as a reactant

or product in a given reaction equation. A weight and an index are defined for the

number of reactants as well as the number of products.

215

Protein Dimerization [18]

8
1 1 0 0 0 0 0 0
13
1 1 0 2 1 0 1 2 0.01
1 1 2 0 6e-3
1 1 2 2 1 2 1 4 3e-2
1 1 4 0 4e-4
2 1 6 1 1 1 1 7 0.0016
1 1 7 2 1 1 1 6 0.2
1 1 1 2 1 1 1 3 0.002
1 1 7 2 1 7 1 3 0.1
1 1 3 0 6e-3
1 1 3 2 1 3 1 5 3e-2
1 1 5 0 4e-4
1 2 4 1 1 6 0.016
1 1 6 1 2 4 1
8
0 1 2 3 4 5 6 7

216

Original Tuberculosis SBML [18]
17
10 0 0 10 0 0 10 20 0 0 0 0 0 0 1 0 1
23
1 1 16 2 1 0 1 16 10
2 1 0 1 3 2 1 3 1 1 16
2 1 0 1 4 2 1 4 1 1 32
2 1 0 1 5 2 1 5 1 1 16
2 1 1 1 3 2 1 3 1 2 0.6
2 1 1 1 4 2 1 4 1 2 0.6
2 1 1 1 5 2 1 5 1 2 0.78
1 1 2 0 4
1 1 3 1 1 4 100
1 1 4 1 1 3 1
1 1 4 1 1 5 0.5
1 1 5 1 1 4 10
2 1 6 1 7 1 1 8 1
1 2 1 1 1 13 10
1 1 13 1 2 1 10
2 1 13 1 14 1 1 15 5
1 1 15 2 1 13 1 14 10
2 1 15 1 9 2 1 8 1 15 10
1 1 8 1 1 9 10
1 1 9 1 1 10 4
1 1 10 1 1 11 6
1 1 11 3 1 12 1 6 1 7 1
1 1 12 0 100
17
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

217

Modified Tuberculosis SBML [18]
18
10 0 0 10 0 0 10 20 0 0 0 0 0 0 1 0 1 0
24
1 1 16 2 1 0 1 16 10
2 1 0 1 3 2 1 3 1 1 16
2 1 0 1 4 2 1 4 1 1 32
2 1 0 1 5 2 1 5 1 1 16
2 1 1 1 3 2 1 3 1 2 0.6
2 1 1 1 4 2 1 4 1 2 0.6
2 1 1 1 5 2 1 5 1 2 0.78
1 1 2 0 4
1 1 3 1 1 4 100
1 1 4 1 1 3 1
1 1 4 1 1 5 0.5
1 1 5 1 1 4 10
2 1 6 1 7 1 1 8 1
1 2 1 1 1 13 10
1 1 13 1 2 1 10
2 1 13 1 14 1 1 15 5
1 1 15 2 1 13 1 14 10
2 1 15 1 9 2 1 8 1 15 10
1 1 8 1 1 9 10
1 1 9 1 1 10 4
1 1 10 1 1 11 6
1 1 11 2 1 12 1 17 1
1 17 2 1 6 1 7 655
1 1 12 0 100
17
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

218

Vita

 Brandon Parks Thurmon was born on August 1, 1979 in Dyersburg, Tennessee.

He was raised in Dyersburg, Tennessee and graduated from Dyersburg High School in

1997. Brandon enrolled in the Electrical Engineering program at the University of

Tennessee, Knoxville in the fall of 1997. During his undergraduate studies at the

University of Tennessee, he participated in the university’s cooperative engineering

program. He worked at Computational Systems Incorporated in Knoxville, Tennessee

for four semesters. In May of 2002, he graduated from the University of Tennessee with

a Bachelor of Science degree in Electrical Engineering. Brandon graduated once again

from the University of Tennessee, Knoxville in May of 2003 with a Bachelor of Science

degree in Computer Engineering. Following a brief hiatus, Brandon returned to the

University of Tennessee, Knoxville in the spring of 2004 to attain his graduate degree.

Brandon graduated in August of 2005 with a Master of Science degree in Electrical

Engineering.

 Brandon will be relocating to St. Louis, Missouri to pursue a career in the

engineering field.

	Reconfigurable Hardware Acceleration of Exact Stochastic Simulation
	Recommended Citation

	Microsoft Word - thurmon_thesis_1.doc

