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ABSTRACT

This thesis explores the use of reconfigurablehware in modeling chemical
species reacting in a spatially homogeneous enwieo. The time evolution of
biochemical models is often evaluated using a detestic approach that uses
differential equations to describe the chemicatrattions of the model. However, such
an approach treats species as continuous valuezmoations, is inaccurate for small
species populations, and neglects the stochasticenaf biochemical systems. The
Stochastic Simulation Algorithm (SSA) developed Gyllespie is able to properly
account for these inherent noise fluctuations. sTliows the SSA to accurately project
the time evolution of a biochemical model. Unfortely, the SSA can be
computationally intensive and require a substanéimlount of time to complete.
Therefore, it has been proposed that the SSA b&eemgnted on a Field Programmable
Gate Array (FPGA) to improve performance. Emplgyan FPGA allows parallelism to
be exploited within the SSA providing a speedup roseftware implementations
executing instructions sequentially. Recent work this area has focused on
implementing the SSA on an FPGA to simulate spediochemical models. However,
this requires re-constructing and re-synthesizhmgy design in order to simulate a new
biochemical system. This work examines the useretconfigurable computing platform
to allow an implementation of the SSA on an FPGAitoulate a variety of models. The

designs presented herein demonstrate a speedapgifly 1.5X.
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Chapter 1

Introduction

The future of biochemical systems analysis is r@nfsing as it is challenging.
Accurately modeling complex biochemical systemsusrently a daunting and time
consuming task. Efforts are underway to developenedficient tools for modeling these
systems while producing reliable data. Some biotb& systems of interest include the
transcription and translation of DNA during protsynthesis or the growth of a bacterial
infection, as well as many others. By understaptiiow cells operate and communicate,
we can begin to predict the behavior of the undeglybiochemical system. Then
methods can be developed to interrupt and conglallar processes, allowing advances
in the field of gene therapy and medicine.

Biochemical systems, consisting of species regdfina spatially homogeneous
environment, are often formulated using a detestimiapproach. Such an approach
represents species as continuous-valued concengatand interactions between
chemicals are modeled using ordinary differenttplations. A deterministic approach is
effective for modeling many biological systemshaligh inaccuracies become apparent
for systems with small populations of chemical spe@nd systems affected by noise.
Recent research has shown that noise may playtieatmole in many biochemical
systems [1,2]. Therefore a stochastic approacht ieisused to model noise-affected
systems. Within a stochastic approach, chemicatisp are represented as discrete-
valued populations and interactions between chdsiiese represented as random

processes.



The Chemical Master Equation (CME) is used to dethre stochastic properties
of a biochemical system. The CME is typically afinite set of differential equations,
making it impractical to solve analytically for ntiosomplex systems. The Stochastic
Simulation Algorithm (SSA), developed by Daniel I&dpie, is mathematically
equivalent to the behavior of the CME [3].

Gillespie’s algorithm simulates the execution oéarmemical reaction at a time,
and each simulation is a single sample of the n®dedthavior. In order to obtain
statistically accurate results, the SSA must beweel several times to form a complete
picture of the model's behavior. As a result, %A can be computationally intensive
and time consuming, limiting its application to darscale and biologically relevant
models. Endy and Brent have suggested that aagtclsimulation of the cell cycle of a
single Escherichia coli cell may require 100 years of computation time today’'s
standard PC [4].

To address these issues, this work presents a herehecelerated version of the
SSA implemented on a Field Programmable Gate AF&GA). By performing tasks in
parallel that would normally be handled sequerntiath a regular microprocessor, the
workload is divided among several process modubesthe overall performance of the
SSA is improved. Previous work in this area hasdgd hardware simulators with
impressive performance gains over software impleéetesimulators. However, these
performance gains come at a cost. Previous defigmsother researchers have focused
on specific biochemical models, requiring varyirydls of redesign when modeling
different biochemical models. In addition, som&éatroduced approximations to the
SSA. This work focuses on a hardware-acceleratedlator that is general purpose,
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meaning several biochemical models can be simulatdtbut the need to re-synthesis
the design. Furthermore, the hardware designeptes herein remain statistically true
to Gillespie’s SSA. Within this work, two approashto a general-purpose hardware
implementation of the SSA are offered. The seadrapter will provide a brief overview
of the scope of the work. This will include anraduction to biochemical systems and
how they are modeled. The third chapter will déscrsome of the previous work
concerning hardware accelerated stochastic simalatGhapter four will delve into the
specifics of one design of a general-purpose hamlveecelerated exact stochastic
simulator. Chapter five will outline the detailsaosecond design. The final chapter will
present some plausible avenues for future workaddition to conclusions from this

work.



Chapter 2

Background

2.1 Applying Ordinary Differential Equations to the Model

Traditionally, models of chemical species reactingthin a spatially
homogeneous environment are devised using a detistimiapproach involving ordinary
differential equations. Such an approach treatgisp populations as continuous valued
concentrations that are a function of time [3].rdugh the use of software packages that
include differential equation solvers (i.e. Matlah) complex biological system can be
modeled using ordinary differential equations (OpBad solved in less than a day.
However, the results may not necessarily be aceur@rdinary differential equation
models ignore the inherent stochastic nature onatedly reacting systems. This hinders
the application of ODEs to systems with small nurelid molecules. In addition, it is
possible for the results of an ODE model to sugtest species concentrations are real
valued or below zero. In actual chemical systeing)akes no sense to have any less
than a whole molecule and it is impossible to havegative amount of molecules. The
effects of these limitations can be devastatingntmdeling chemical systems since a
species with a small population can have a sigmftiampact on the trajectory of the

system.

2.2 Exact Stochastic Simulation
The Exact Stochastic Simulation Algorithm (SSA)swaeveloped by Daniel T.

Gillespie in the late 70’s as a way to accuratetgutate chemically reacting systems



[3,7]. The SSA treats species populations as eliscvalues and properly handles the
randomness and noise inherent in many chemicadlgtirgy systems. In addition, the
SSA exhibits the stochastic behavior evident in time evolution of biochemical
systems. Gillespie formulated two methods to perfexact stochastic simulations, the
First Reaction Method and theDirect Method. Gibson and Bruck improved upon
Gillespie’s First Reaction Method in 2000 to deyetbeNext Reaction Method [8]. The
Optimized Direct Method developed in 2004 by Cao, Li, and Petzold furtiihgproved
the performance of exact stochastic simulations [@jeSorting Direct Method, recently
developed by James McCollum, further optimized lsastic simulations [20]. A paper
outlining the Sorting Direct Method was recentlgegated for publication in the Journal
of Computational Biology and Chemistry. All of trebove algorithms simulate a
possible time evolution of a chemically reactingsteyn, determining a time for the
occurrence of each reaction. Each algorithm actishgs this through the following

steps,

=

Initialization — An input model is read by thensilator and data structures are

initialized.

2. Propensity Calculation — Where necessary, tlopgnsity of each reaction is
calculated based on the reaction rate constanth&ncurrent species populations.

3: Putative Time Estimation — Using the propensia@d exponentially distributed

random numbers, the time at which the next reaetidroccur is determined.

4: Reaction Selection — The next reaction to exeruselected.



5. Reaction Execution — The species populations syglem time are updated
according to the execution of the selected reaction

6: Termination — The program ends if the desired #me of the simulation has
been reached. Otherwise, the process returnet@rthpensity Calculation step

and continues executing.

2.2.1 Explanation of Terms

The following terms are crucial to formulating amact stochastic simulation
algorithm and may require an explanation.

Propensitya, is associated with the probability that a reactall occur. It is
based upon the stochastic reaction rate constahthennumber of distinct molecular
combinations of the reaction. The stochastic reaatate constantg, is defined as the
average probability that a molecular combinatianfra given reaction will collide and
react in the next infinitesimal time interval. Tk&chastic reaction rate constant is
directly related to the deterministic reaction rabmstantk. This relationship is altered
for the case when identical reactant moleculesdenland react. The equation below
depicts the correlation between the stochastic datdrministic reaction rate constants

where n is the number of identical reactant moksukacting together [7].

(1)



The number of distinct molecular combinations @éaction depends on the type
of reaction and the number of molecul¥sof each reactant of a given reaction. Table
2.1 shows the equations to some common reactioestgtong with the equations to
calculate their propensities.

Putative timer, refers to the amount of time it will take bef@aeeaction occurs.
The following will summarize the sampling of an exgntial distribution with parameter
g in order to determine the putative time. A unifidy distributed random number is
scaled to fit an exponential distribution to find exponential random number. The
exponential random number is then divided by a @nefiy value to find the putative

time. The following equation shows the calculatidputative time.

1
T = —— log
2 log(URN) o

Other terms, specific to a certain algorithm, el clarified as needed.

Table 2.1 — Propensity Equations

Reaction Equation Propensity Equation
A - B, k a0 = Xa * ki1
A+B - Ck a = Xa* Xp*ka
2A = B, ks B =Xa*(Xa—1)/2




2.2.2 Gillespie’s First Reaction Method

The First Reaction Method was Daniel Gillespig'stftake on the SSA [3]. The
Initialization step of this algorithm creates ammhds variables to hold the species
populations, reaction equations, and the currene.ti Upon the initialization of the
system, the Propensity Calculation step beginsthadpropensity of each reaction is
calculated. For each reaction during the Putalimee Estimation step, a potential time
is calculated to determine when that reaction @gltur in the future. Each potential time
is found by generating an exponential random nuraberdividing it by the propensity
of the reaction. The Reaction Selection step searthe list of putative times from each
reaction; the reaction with the earliest time iseled as the next reaction. The Reaction
Execution step adds the putative time of the seteceaction to the current time and
updates the species populations by decrementingahes of the reactant populations
and incrementing the values of the product poparati This process is repeated until the
desired end time is reached. See figure 2.1 w fiseudo code for Gillespie’s First
Reaction Method. Gillespie’s First Reaction Methsdan effective way to accurately
model biochemical systems. However generating xgoreential random number for

each reaction during each iteration severely lithiésmethod’s performance.

2.2.3 Gillespie’s Direct Method

Gillespie formulated the Direct Method to improve tperformance of the SSA
[7]. The Initialization step of the Direct Methag@mains the same as in the First
Reaction Method. The Propensity Calculation stemains the same except for the
requirement that all reaction propensities be suditogether. The Putative Time

8



o

Ezstaklish a list of n chemical species with their
initial populations i,¥z, . .. Xn.

Eztablizh a lizt of m chemical reactions and their
assoclated stochastic rate constants ki, kz, ..., ku.
Initialize the current tims t «— 0.

Calculate the propensity ai1,8z¢ - .. 68w LTob each of the
m chemical reactions.

For each reaction i, generate a putatbtive time T4,
according to an exponential distributicon with
parameter a5.

Let |L be the reacticn whose putative time iz least.
Change the species populations i1, ¥zr...r¥n, CO
reflect the execution of reaction |l

et b o— €+ T

Return te Btep 4.

Figure 2.1 — Pseudo Code for Gillespie’s First ReadMethod [7]



Estimation step is modified to find one potentiahé for when the next reaction will
occur by generating one exponential random numbedaviding by the total propensity
of the system. The Reaction Selection step geseeatiniformly distributed number and
multiplies it by the total propensity. Then a Bmesearch of the reaction propensities is
performed, once the cumulative total of the evadairopensities exceeds the product
then the current reaction is set to be the nexdtimaexecuted. The Reaction Execution
step is also the same as in the First Reaction ddetihis process is repeated until the
desired end time is reached. The Direct Methodhle to significantly improve the
performance of the SSA by requiring the generatbronly one exponential random
number and one uniform random number per iteratiegardless of the size of the

system. See figure 2.2 for pseudo code of Gilesirect Method.

2.2.4 Gibson and Bruck’s Next Reaction Method

Michael Gibson and Jehoshua Bruck recognized that exact stochastic
simulation algorithms originally proposed by Gilpés did not scale well to large systems
with many reactions [8]. In an effort to createmmre efficient SSA for exactly
simulating chemical reactions, they devised thetNReaction Method by enhancing the
efficiency of the First Reaction Method. The exemu time of the First Reaction
Method is hindered by the following three actistithat are performed with every
iteration and take time proportional to the numtfereactions: (1) the propensity of each
reaction must be calculated, (2) a putative timetnine found for each reaction, and (3)
the smallest putative time must be found. The NRedction Method addresses each of
these respective drawbacks by introducifi@ependency Graph, reusing putative time

10



Eztaklizh a list of n chemical species with their
initial populations ¥1,¥z . .., ¥n..

Eztabklizsh a list of m chemical reacticons and their
as=zocilated stochastic rate constants ki, ker. .. kn.
Initialize the current times £t — 0.

Calculate the propensity ai, 8z ... 8w Lfor each of the
m chemical reactions.

I
Sum the propensity values: Stotal = E:ai.
i=1

Generate a putative time, T, for the chemical systen
according to an exponential distribution with
parametelr Scotal-

Choose a reaction WL using a uniformly distributed
random number and a distribution of the form

. ap
Fr (Reaction = =
( K Htotal
Change the specieszs populations ¥i1, zr. .., ¥w, To

reflect the execution of reaction [

get £t — £t + Ty
Return to Step 4.

Figure 2.2 — Pseudo Code for Gillespie’s Direct ihvbek [7]
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values, and utilizing an indexed priority queudheTependency graph is a data structure
that chronicles which reaction propensities willdféected by the execution of a given
reaction. Therefore, the fewest possible numbeeattion propensities are recalculated.
Recall from section 2.2.2, a reaction’s putativedtiis related to its propensity. This
suggests that it is not necessary to update tlaipeitime of a reaction whose propensity
does not change. Gibson and Bruck state thatalypnodels contain loosely coupled
reactions and require only a few propensities tapeated with each time step. They
make this claim to justify the use of an indexetnity queue to find the minimum
putative time and subsequently the next reactioexecute. Figure 2.3 shows pseudo
code for the Next Reaction Method.

Gibson and Bruck also suggest applying the teclasigof the Next Reaction
Method to the Direct Method. In addition to indlugl a dependency graph to update the
minimal number of variables, they propose usingoapete tree data structure to
efficiently find the total propensity and search floee next reaction to execute. Although
the details of such an algorithm are laid out, Giband Bruck chose not to submit a

formal evaluation of such an algorithm.

2.2.5 Cao, Li, and Petzold’s Optimized Direct Methd

Yang Cao, Hong Li, and Linda Petzold addressedvilely held conception that
the Next Reaction Method was more efficient thanBirect Method when dealing with
large systems. They developed the Optimized Dikdéethod to outperform the Next
Reaction Method [9]. They begin with a comparisdntlee results from the two
competing algorithms when simulating several adi@hemical models. They

12



1.

.

Initialize:
a) et initial species populations, set £t +— 0,
generate a dependency graph &.
k) Calculate the propensity &y, 8z . ..;8n Tfor each of
the m chemical reactions.

o) Generate a putative time, T, for each reaction.
d) Btore the putative times in an indexed priority
queus P,

Let L be the reacticon whosge putative time stored in P
ig least.

Let T ke T,.
Change the species populations i1, Hzrvw. s ¥ns to

reflect the execution of reaction L. Set £ «— T.
For sach edge (W, ©) 1in the dependency graph &,

a) Update ag.

b) If & # |, set Ty +— (3gola / Sanew) (T — £) + L.

c) If @ # |, generate a random number, g according
to an exponentisal distribution with parameter ay,
and =et Ty — g + €.

d) Replace the old in Ty valus in P with the new

value.
Return to Step =Z.

Figure 2.3 — Pseudo Code for Gibson and Bruck’st IReaction Method [8]
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observed that the Next Reaction Method has an éagarover the Direct Method when
the system is large with loosely coupled reactidhat is to say the execution of one
reaction does not affect the propensity of manyemotreactions. However, they
determined that this is not always the case foctfma problems. They also concluded
that much of the Next Reaction Method’s time wasngpnaintaining the indexed priority
gueue in order to determine the next reaction. erAfin evaluation of the previous
stochastic simulation algorithms, they set out paimize the Direct Method. They
realized that in a large system some reactiongx@eeuted more frequently than others.
For example, when simulating a heat shock resporsgel that describes how E. Coli
responds to a temperature increase, they foundixhmost frequent reactions accounted
for 95% of all executed reactions [9]. When detaing the next reaction in the original
Direct Method, reaction propensities are compasegientially based upon the reaction’s
index. This means a reaction’s index plays an nmaoo role in the search depth for the
next reaction. Their group devised a way to penfarfew pre-simulations on a system
to determine the most frequent reactions. Thetigrecare then rearranged in decreasing
order based on how often they execute. This opémihe average search depth required
to find the next reaction. They also appreciateddfficiency provided by a dependency
graph. By applying the idea of a dependency grdpteloped by Gibson and Bruck [8],
only propensities of reactions affected by anotlheaction’s execution must be
recalculated. When applied to the Direct Methadhtsacting the old propensities and
adding the new propensities of the affected reastican determine the sum of the

propensities. Applying search depth reduction amadusion of a dependency graph,

14



when appropriate, made the Optimized Direct Methamach more efficient than the

original Direct Method.

2.3 Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is a seastom Application Specific
Integrated Circuit (ASIC) that is user programmaldld]. FPGAs are prefabricated to
consist of rows of logic blocks and programmablennaxction switches to specify
interconnections.  Testing a design is simplified an FPGA, since it can be
electronically programmed, erased, and then reprogred in a short amount of time.
This is also the basis for using FPGAs in recomigle computing. A Hardware
Description Language (HDL) or a schematic is usedetfine the desired functionality of
an FPGA. Typically, it is common to use an HOI describe a large or complex
design. In addition, an HDL design can be targ&edultiple layouts (including FPGAs
and ASICs). The two most popular HDLs are VHDL afetilog. An HDL allows the
user to define the timing constraints and concwyemwithin a design. In order to prepare
a design for an FPGA, the desired functionalitgpht into necessary blocks. Each block
represents some task used towards the overallidmadity. Each block is defined as an
“entity” and the logic function of it is described an HDL by a “process” that runs
continuously. It is also possible for an entitydieclare a “component” of another entity
in order to accomplish a task. By declaring midtiprocesses on an FPGA, parallelism
can be exploited within a design. Processes eixgcsimultaneously can streamline a

design and offer a speedup over the same desigenmepted in software.
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2.4 Pilchard Reconfigurable Computing Platform

The Pilchard Reconfigurable Computing Platform\j&s developed to interface
an FPGA to a host computer. The Computer Sciendeeagineering Department at the
Chinese University of Hong Kong designed the Pildha@latform. Previous systems that
combined the capabilities of an FPGA with a hosmpoter utilized the Peripheral
Component Interconnect (PCI) bus to handle comnatioic between the two. The
Pilchard platform uses a Dual In-line Memory Mod(IDdMM) slot of the host computer
to interface with the FPGA. Since the memory bsidaister than the PCI bus, the
Pilchard platform is able to outperform comparatystems. The host computer and
FPGA are able to communicate at a maximum frequehdB3 MHz with sixty-four bit
data. This provides a maximum bandwidth of 1,0&/$ The Pilchard platform uses a
Xilinx Virtex XCV1000E FPGA with approximately ormillion gate capacity. The
Virtex 1000E also contains 49,152 bytes of BlockNRfL4]. The processor within the
host computer is a Pentium IIl with a 933 MHz clegeed. The time penalty incurred
when loading a design onto the FPGA is only a fesoads and is design independent.

Figure 2.4 shows the circuit board of the Pilchaletform.

2.5 Computing Platform

The same computing platform was used to compageptrformance of the
hardware implementation of the SSA against softvism@ementations of various SSA
methods. The computer that hosts the Pilchard itgemable Computing Platform was

also used to execute the software versions of tehastic simulation algorithms. The
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EXCHECEER
Jr1

Figure 2.4 — Pilchard Platform [5]
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computer used a Pentium Il operating at 933 MHhw56 MB of Random Access
Memory (RAM). The operating system was Mandrakeuki version 8.2 with Linux
kernel 2.4.18. Each software implementation waspited using gcc version 2.96 with

optimization flags turned on.
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Chapter 3

Related Work

This chapter will provide an overview of the wadkne by others towards a
hardware-accelerated stochastic simulator. Tyyicad the past, work in this area has
focused on simulating specific biochemical modélis is the case for all related works
listed below. Some groups have also introducedopations into the SSA in favor of
increasing the overall throughput of the systenhe Tirst work examined comes from
Salwinski and Eisenberg, it included an approxiorato the SSA. The work of Keane,
Bradley, and Ebeling is considered next and it atsttains an approximation to the SSA.

The work of Yoshimi, Osana, Fukushima, and Amarade considered.

3.1 Salwinski and Eisenberg’s FPGA Approximation

In 2004, Lukasz Salwinski and David Eisenberg exaahithe use of an FPGA to
exploit the highly parallel nature of informatidow within biochemical networks [6,16].
They demonstrated that taking advantage of pasattelis an effective means of
alleviating the high computational cost of perfanmistochastic simulations. However,
their hardware implementation introduced approxiomst and was not true to Gillespie’s
original SSA. Furthermore, all their designs wdoemulated to simulate specific
models. After simulating a system containing algrelementary bimolecular reaction
and a system containing a simple equilibrium reagctthey tested the scalability of their
approach. They were able to simulate a prokarygéine expression circuit (eleven

coupled reactions and twelve species) while maiirtgi the performance seen in their
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previous designs. They proposed simulation ratésast an order of magnitude greater
than a software counterpart. Their work served aasproof-of-principle that
reprogrammable FPGAs have the potential to efftyesimulate the stochastic behavior
of biological systems. The work outlined in thigper remains mathematically
equivalent to Gillespie’s original SSA as well as\pding a general-purpose approach to

simulating a variety of chemical systems.

3.2 Keane, Bradley and Ebeling’s FPGA Approximation

John Keane, Christopher Bradley, and Carl Ebelietbped an algorithm that
approximates Gillespie’s SSA in order to revealne-grained parallel structure that is
well suited to a hardware implementation [10]. #st, their team considered
implementing Gibson and Bruck’s Next Reaction Metl8]. However, they quickly
realized the complexities involved with the alglontt would not complement the parallel
capabilities of an FPGA. Since their goal was &e dine-grained parallelism to
accelerate simulations, they devised a strategy dparoximated Gillespie’s Direct
Method. They began by describing hardware to teamdich reaction, allowing each
reaction to be simulated simultaneously. Theyrdiszed the reaction processes in time,
SO reactions were only permitted at uniformly splackscrete instants in time. A
Bernoulli random process was used to approxim&eisson process, and the probability
of an event at any given discrete time step waecesged with the propensity of the
reaction. By utilizing a Bernoulli process to apgmate the probability that a reaction

will execute in a given time step, multiplicatiomgpically involved in propensity
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calculations could be reduced to basic compare AND operations. The equation

below represents a reaction’s propensity, whgge discrete uniform random numbers.

P[Xo <k *P[X1<§]*P[X2<3]=k§SrAt (1)

Although they limited their example design to a as®t order system, they
indicated their approach would generalize to higheler systems. This strategy also
eliminated the need to sum the propensities. Séaoh reaction’s propensity was now
based on the probability that the reaction woulcbiocluring a given time step, there was
no longer a need to determine the next reactionud®d by the system or a putative time
for that matter. This approach allowed multiplelependent reactions and only one
dependent reaction to be performed in each time she the event of a collision, two or
more dependent reactions occurring during a tirap, ¢he hardware paused and waited
for the software to resolve the issue. Their apgihowas model specific and required
describing, synthesizing, and routing each newgtesi However, they developed a
compiler that read a model description in SystenmdoBy Markup Language (SBML)
and generated a Verilog file containing the neagss@dules of the system. Once a
model had been prepared for the hardware it coa@drdused with various initial
conditions. Several models of varying sizes wemaukated using their FPGA approach
and then compared to the performance of the santelnsonulated in software running
the Next Reaction Method. For the largest modeufated, a system containing sixty-
four species and thirty-two reactions, a speedu@3#f was achieved. They defined

speedup based upon the average number of reactiemsecomputed per second.
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However, their simulator did not capture the actuahber of events and an estimate was
used to determine the event rate. In addition, @éhent rate they assigned to their
hardware implementation neglected two sources ofrimad, off-chip time step
recalculations when collisions occurred and comigations for data logging. They went
on to reveal that the 1/O communication overheadoawsted for nearly 70% of the
simulation time; despite this they still chose gmare it in their speedup calculations.
The work described herein is general purpose ams dot require the user to redesign
any hardware. In addition, the design is a ste#idy equivalent representation of
Gillespie’s SSA. Speedup values contained withia paper are based on the actual run

time of the simulator.

3.3 Yoshimi, Osana, Fukushima and Amano’s FPGA Simation

Yoshimi, Osana, Fukushima, and Amano also detemnthat simulations of
biological models often exhibit a lot of fine grgmocesses frequently communicating
with each other. They realized that an FPGA cdst utilize this fine grain parallelism
inherent in biological systems [11]. To test thalesigns, they developed a
reconfigurable platform called “ReCSiP.” The ReESiontained a Xilinx Virtex Il
FPGA, and it interfaced to a host CPU via the RP@. bTo show the performance of their
simulator, they modeled the Lotka system outlineillespie’s original paper on exact
stochastic simulation [3,7]. The module desigredimulate the Lotka system consisted
of two simulator modules, each containing two reaatodules, and a module to handle
output control. A look up table (LUT) of logarithenvalues was employed within each
simulator module to allow the putative time caltwlia to be sped up. A portion of each
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reactor module contained basic steps that werevameleto any simulation executing
Gillespie’s SSA (putative time generation, randoomber generation, and reaction
selection). Therefore, this portion was applicatdeany simulation on their system.
However, the bulk of each reactor module in th&sign outlined the specifics of the
model being simulated (species counts and rea&dation) and would need to be
replaced with each new model. The output of eaalbtor module was stored in a first-in
first-out (FIFO) buffer, and the output control nubel transferred the data to SRAM.
Each reactor module appeared to be self-contaimebl iais unclear how species
populations were coordinated across the reactoutasd Their simulation of the Lotka

system were described in Verilog and could not)dergled to larger chemical systems
without modifying and resynthesizing several modul@hey claimed it took thirty-seven
clock ticks to output updated species values aftg-tivo clock ticks to output the

putative time. Furthermore, they claimed theicteamodules had thirty-seven pipeline
stages to allow thirty-seven simulation processebe executed in parallel. Allowing

thirty-seven simulation processes to be executeganallel may be an indication of
approximations being introduced into the systent, ibis not entirely clear from the

paper. They declared a speedup of roughly 105 avesoftware implementation.

However, this speedup was not based upon actuallagion run-time. They chose to

compare the throughput, or simulation iterations pecond, of the hardware and
software. To arrive at the software throughpugytiperformed 500,000 reactions and
timed the simulation. However, the manner in whibky determined the hardware
throughput is not based upon simulation time. ab#hors were unable to include every
detail of their design and it is not clear if thegluded putative time generation in their
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speedup value. In addition, they did not specifyatvalgorithm was implemented in
software. The designs presented here are genayabge and do not require any
redesign on the user’s part. Therefore, the dediginein are applicable to larger models
(within specified limits). Also, speedup value® drased upon actual simulation run

time.
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Chapter 4

Register Based Design

4.1 Partitioning of the Problem

When the implementation of a general-purpose hawhaecelerated simulator
was first considered, several questions arose.idibgcupon the most efficient SSA to
implement in hardware was the first step. Sin@ithprovements associated with the
Next Reaction Method and the Optimized Direct Metlawe difficult to implement in
hardware, these algorithms were avoided in the rgéperpose hardware
implementation. Gillespie’s original Direct Methedas the obvious choice. It offered
substantial performance improvement offer the HRstaction Method, but it did not
significantly complicate the hardware design. Aftelecting an algorithm to implement,
the tasks were divided depending upon whether sheyld be performed in hardware or
software. The FPGA handled the calculation andrsation of reaction propensities in
addition to the generation of a uniform random afale and determining the next reaction
to execute. Both the CPU and FPGA kept a recorthefspecies populations and
updated the populations after the execution of e@aahktion. The CPU performed this
task primarily to aid in presenting the user wititadas the algorithm progressed. The
generation of an exponential number and calculatfoimne subsequent time for the next
reaction are performed in software. This was tablé choice, since it required floating
point arithmetic that is not readily available iartiware (without consuming a large

portion of the available resources).
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One advantage of this design was that the seleatadtion and the total
propensity are the only two pieces of informatibattthe FPGA must communicate to
the microprocessor for each reaction executeds ffiimized communication between
the FPGA and microprocessor, alleviating what tgpécal bottleneck for reconfigurable
computing designs.

Another interesting advantage of the design waisthigasoftware converted all of
the floating-point rate constants to integers attgp. The software read in a chemical
system and found the reaction rate constant wighldlwest decimal value. Then all
reaction rate constants were multiplied by a fatttat ensured each rate constant was an
integer. Reaction rate constants were definedetcsikteen bits wide, allowing rate
constant values of up to 65,535. The softwardexddhe user if a rate constant exceeded
this limit upon adjusting it to an integer valuds long as all integer valued reaction rate
constants were within limit, no error was introddigeto the reaction selection process.
This is true since all reaction rate constants weraed to integers according to the
lowest rate constant. Each rate constapt,was scaled by F, where F was the
multiplication factor needed to represent the sasallrate constant as an integer.
Therefore kbecame F*k This resulted in each reaction’s propensitybacoming F*a
the total propensity becoming Fta; and the product of the total propensity and a
uniform random number becoming F&*URV. The reaction selection module still
functioned properly since F could be factored outew searching the reaction
propensities for the next reaction to execute. fammg F*aor*URV to the
accumulation of Fxawas equivalent to comparinga*URV to the accumulation of;a
This startup cost became negligible as the systest modeled over several iterations.
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This allowed the FPGA to be implemented using amgger logic, avoiding a floating-
point arithmetic core and saving chip space. Ay@im of the division of responsibilities
and communication between the software and thenrzaedis given in figure 4.1.

The Register Based Design was the subject of arpagesented at the 2005

Engineering of Reconfigurable Systems and Algorgloonference [21].

4.2 Software Design

As evident in figure 4.1, the software played a pbmentary role to the FPGA. It was
written in C++ to allow the user to specify the rabfile from which to read the specifics
of the biochemical system. This data was theredtor the appropriate data structures on
the CPU side. Once the entire model had been dhdlde initial species populations and
reaction equations were passed to the FPGA. Tihease facilitated the transmission of
data between the FPGA and the user, in additicaltoving the user to assign various
tasks to the FPGA. A command interface was deeeldp aid in the communication
between the CPU and the FPGA during simulationpetmitted commands, as well as
data, to be sent to and from the FPGA. A full desion of this interface will be
presented in the Hardware Design section of thesp@.

Once a model had been fully defined in the hardwi#ue user could instruct the
hardware to begin simulating the system. In otdealleviate the need to pass a large
amount of data between the FPGA and CPU, only #lected reaction and total
propensity of each iteration must be transmittBg. having the FPGA send the reaction
selected, the CPU did not have to read and uptiatgpdpulations of all the system’s
species. It did require that the CPU store thecispepopulations, and then adjust the
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population of the species affected by the execubbra given reaction. The total
propensity is used to generate the putative tim¢hi iteration. The results of up to 250
iterations could be passed at a time to the CPId;whil be discussed further in the
Hardware Design section of this Chapter. The CBitticued collecting results from the
FPGA until the desired number of iterations hapstd.

The software also played a crucial role in managhegtime of the system. In
addition to generating a putative time for eachatien of the system, it also kept track of
the overall system time. The accumulation of tiistesn time, along with the time
evolution of the populations of relevant speciesild be presented to the user to show a

possible trajectory of the system.

4.3 Hardware Design

The first hardware implementation consisted of egrt registers for species
populations and twenty-two registers for reactiguations. All of the specifics of a
given model were stored on the FPGA via flip-flopghis was not the most effective use
of chip space, but it was a reasonable startingtgor such a broad ranging approach.

Four of the species registers were a singlellatvang values of O or 1. This

was an effective way of handling any on/off typeaateons commonly present in
chemically reacting systems. The remaining twedpgecies registers were twelve bits
wide offering a maximum species population of 4,09bhis was sufficient for most
systems that meet the limited reaction specificatidiscussed next.

There were twenty-two modules dedicated to calmgateaction propensities in
parallel; one for each of the twenty-two registestablished to hold reaction equations.
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To minimize the chip space required for propensdlculation, there were five variations
of propensity calculators. Two of the propensisicalators allowed only a single
reactant of single bit-width, while eleven of th@mgensity calculators allowed only one
reactant of any bit-width (up to twelve). Two ath@opensity calculators allowed for
reactions with up to two reactants where one reaasaof single bit-width. In addition,
there were six propensity calculators that allowesttions to have up to two reactants of
any bit-width (up to twelve). Finally, there exddtone propensity calculator that only
handled the case when a species reacted with. itédlifreaction equations were able to
produce at most two products. It is important dterthat when two of the same species
reacted with one another, they were treated agaepaactants. The same is true when
two of the same species were produced by a reackon example: 2A. B was treated
as A+A- B, and A- 2B was treated as -AB+B. Figure 4.2 shows the components of
the Register Based Design and it helps to illusttia¢ parallelism achieved.

All of the variations discussed above, concernihg propensity calculator
modules, were done in an attempt to allow as magysters as possible for holding
reaction equations. Different propensity calculaomdules required a varying amount of
input parameters and therefore necessitated dissitavels of complexity. This related
directly to chip space; more complex propensitycualtors (any species reacting with
any species) consumed more gates than a simplensity calculator (a reaction with
one reactant species that is of on/off type). &ieach propensity calculator was tied
directly to a particular reaction equation, supipgrtvarious amounts of the different
propensity calculators affected the number of te&sction equations that could be

simulated. However, care had to be taken to erthatevalid biochemical systems could
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still be simulated. For instance, building a siatai to execute only single reactant
equations would allow more total reaction equationge system but it would not be an
effective general-purpose simulator. The diverselmnation of propensity calculators
was chosen for this simulator in order to maximithgp space and provide sufficient
resources to simulate a range of models.

Upon configuring the FPGA, a routine was executedh@ host processor of the
Pilchard. The routine was written in C++ and emdlihe user to interact with the FPGA.
The user defined a chemically reacting system aradewit to an input file. The CPU
read from this input file and sent the formattethda the FPGA.

Reaction rate constants typically vary among tlaetren equations of a chemical
system. In addition, rarely are all of the ratenstants integer values. In order to
maximize hardware performance, floating-point anigtic was avoided. Therefore, all
reaction rate constants were converted to integkres prior to sending any data to the
FPGA. Once the model was initialized and integdue@s computed for the reaction rate
constants, the model was passed to the FPGA. Wtilei FPGA, resources were laid out
to compute reaction propensities, sum all propmssitgenerate a uniform random
number, select the next reaction to execute, addtepspecies populations. The reaction
selection module sequentially searched the propesnso determine the next reaction to
execute. While the update module used the reastbection index to decrement the
reaction’s reactants and increment the reactioroslycts. The update module returned
an updated value for each of the species populgtmren if a species was unaffected by
the execution of a given reaction. Uniform randonmbers were generated by use of a
linear feedback shift register (LFSR) [17].
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The development of a command interface languagélemanstructions and
variables to be efficiently exchanged between tR&J@nd the FPGA and allowed for
easy debugging of the hardware. This command faterlanguage required two
addresses in the DIMM interconnection of the Pitdhaone for the CPU to send
commands and variables and another for the FPGAetal back data. A list of

commands is given below.

1: setspeciespop - Sent the index and population of a speciesa¢d~PGA.

2. readspeciespop (debugging) - Sent the index of a species popriatd be read
from the FPGA.

3: setreaction - Sent a reaction equation along with its indetheoFPGA.

4: readreaction (debugging) - Sent the index of a reaction to eéadrfrom the
FPGA.

5: readpropensity (debugging) - Sent the index of a propensity tadaa from the
FPGA.

6: readsum (debugging) - Read the total propensity from tR&RA.

7. setseed - Sent the seed for the uniform random number rgé¢ioa on the FPGA.

8. readURV (debugging) - Read the uniform random number gdadron the
FPGA.

9: nextURV (debugging) - Instructed the linear feedback sieifiister (LFSR) on the
FPGA to generate a new uniform random variable.

10: readproduct (debugging) - Read the product of the uniform camchumber times
the total propensity.
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11:readrxselected (debugging) - Read the index of the next readione executed.

12:updatespecies (debugging) - Updated the species populations len EPGA
according to the next reaction to be executed.

13:step - Instructed the FPGA to determine and execute @& tions. This

command is discussed in detail later.

Some commands listed above were developed for nprelry debugging
purposes; this is indicated in the command desconptabove. These debugging
commands were removed from the final version ireotd maximize the number of gates
available to define a chemical system. The commdisied above are crucial for
interacting with the FPGA to model a chemical systeThe FPGA interacted with the
host processor via a DIMM interface. In orderead or write to the DIMM, the FPGA
defined an eight bit wide address in the DIMM. dhallowed for 256 separate
addressable locations in the DIMM. Each of thelresses could hold sixty-four bits of
data. Refer to Chapter 2 for further descriptibthe hardware platform.

The step command was used to complete the itegabba system model, so a
more in depth view is provided below. When the dBlied a step command, pertinent
data for 250 iterations was placed into 250 ademesst the DIMM following the
selection of each executed reaction by the FPGAchEaddress contained the reaction
selected along with the total propensity prioriie EPGA executing the reaction. This
command is repeated until the desired number ohtitens is reached. The step
command executed 250 reactions in order to fulilizatthe portion of the DIMM
addressable by the FPGA. Upon completing an iostmu from the CPU, the FPGA
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cleared the command from the DIMM address. The Gfdited for this to occur
indicating that the FPGA is finished. If the coomdavas a step, the CPU cycled through
DIMM addresses from 0x2 to OxFB. At each addrdss,CPU used the total propensity
to calculate an exponential random variable andna wntil the next reaction. The
species values stored on the CPU were then updatedding to the reaction index at the
address. The CPU then continued issuing the userismands to the FPGA. Step

commands were repeated until all iterations requafethe system have been executed.

4.4 Comparison of Results

In order to test this hardware-accelerated apprt@eixact stochastic simulation,
several exact stochastic simulation algorithms vuitezed in software. The algorithms
chosen for comparison were: Gillespie’s First RieactMethod, Gillespie’s Direct
Method, Gibson and Bruck’s Next Reaction Methodd &dao, Li, and Petzold’s
Optimized Direct Method. All of the software implentations were from pre-existing
designs developed by James McCollum [18]. Eactwsoé algorithm was compiled and
executed on the Pilchard’s host processor, disduss€hapter 2. Each algorithm was
compiled using gcc version 2.96 with optimizatitegk turned on. The performance of
each, when given identical chemically reacting ey, was compared to the hardware
version. In the following tables, the hardwaresiwan is labeled “Hardware Direct.”
Speedup values were calculated by dividing the @@t time of the software method by
the execution time of the accelerated hardware odetiTwo actual biochemical systems
were chosen to use as models to calculate thetiregudpeedup of the hardware
implementation.
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The first chemical system considered was an awolaged gene expression
model based on the work of Simpson et al [2]. $hstem contained ten species and
fourteen reaction equations. The initial specieputations and reactions are given in
figure 4.3.

Execution times for each method simulating thisf-segulating system for
100,000,000 iterations is given in Table 4.1 alenth the associated speedup achieved
by the hardware implementation.

The second system considered was a model of gealtynlzased oscillation,
based on two mutually interacting genes. This rhodmes from Vilar et al [12]. An
activator provided positive feedback to the systesnije a repressor provided negative
feedback. The system contained nine species ateksireaction equations. The initial

species populations and reactions are given imdigus.

Table 4.1 — Speedup Associated with Self Regulstedel

Method Execution Time Speedup
Hardware Direct 77.798 —
First Reaction 814.033 10.46
Direct 225.114 2.89
Next Reaction 174.656 2.24
Optimized Direct 109.410 1.41
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Execution times for each method simulating thisogeically based oscillation
model for 100,000,000 iterations is given in Tahl2 along with the associated speedup
achieved by the hardware implementation.

It is clear that simulating chemically reacting teygss on a reconfigurable
computing platform provides a speedup over anyhefrhethods executed in software.
Furthermore, these results illustrate that emplp@RGAS in stochastic simulation is an

effective way to accelerate the simulation of uskfological systems.

4.5 Difficulties and Design Limitations

The register based hardware approach proved to rbesflective way of
accelerating exact stochastic simulation. Howevke design does contain some
inefficiencies and limitations. The primary bottézks of the design are processing

within the CPU and communication between the FP8&A@PU. Having the CPU

Table 4.2 — Speedup Associated with GenomicallyeB&3scillation Model

Method Execution Time Speedup
Hardware Direct 78.259 —
First Reaction 805.044 10.29
Direct 230.558 2.95
Next Reaction 252.125 3.22
Optimized Direct 118.948 1.52
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to performance. Since this cost is also assatiat¢h software implementations, it
represents an area where speedup could be achieveardware. This design also
generate an exponentially distributed random nurahdrthe putative time is detrimental
severely restricts the size of systems that casifelated. By limiting the system to
only sixteen species and twenty-two reactionss difficult to find biologically relevant
models to simulate. The ability to handle morectieas in hardware could greatly
improve performance. This is partly evident by tesults shown within this chapter. It
is feasible that the speedup value for the hardwapéementation would increase further
by modeling a system that fully utilizes the resasrlaid out in the hardware design.
This is due to the hardware’s ability to perfornvesal operations in parallel. For
biochemical systems that meet the system paramdiers twenty-two reaction
equations), the hardware exhibits a steady perfocemnaHowever, software is not able to
scale in such a manner and performs steps sedilentimgeneral, the performance of a
software implementation of the SSA declines as meaetion equations are introduced.
A summary of the device utilization can be seeirfigare 4.5. The number of
slices in use, 98%, relates to the amount of cpigce consumed for the design. In
addition, a view of the timing constraints can barfd in figure 4.6. This figure shows
the clock rate for communication between the FPG# &€PU. It is labeled
“clkdInf_clkdiv,” and is found to be 127.663 nSedhis yields a clock frequency of
7.833 MHz, substantially lower than the Pilchanadssible clock frequency of 133 MHz.
It is clear that the current constraints of thasteg-based approach completely consume
the chip space of the FPGA. Therefore, there isonm to address the issues described
above. More species and reactions cannot be stofetdware, and exponential random
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number generation must remain a task for the CPhls is the motivation for a second
approach to a general-purpose hardware accele&8éd Blocks of Random Access
Memory (BRAM) are available on the Pilchard recgofable platform. These will
allow the hardware to accept larger sized systemtewat the same time, reducing the
chip space so exponential random numbers can bergied in hardware. These
techniques will be further discussed in Chapter 5.

Figure 4.7 presents the workload of the FPGA ded@PU scaled according to
the simulation time required of various procedurésis evident that the FPGA and the
CPU are performing tasks concurrently, howeves #lso clear that the CPU’s workload
dominates the overall simulation time. One sthatemyvards improved performance
could be to speed up the floating-point arithmeticthe CPU, as well as employing a
second processor to update species populationseo@PU side. These enhancements
might allow the simulation time required by the °@nd CPU to be similar. This in

turn could provide an estimated speedup of 3X ayihd.
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Chapter 5

Block RAM Based Design

5.1 Partitioning of the Problem

After completing the Register Based Design, a seéqmass at a general-purpose
hardware accelerated exact stochastic simulatorattespted. Two limitations of the
Register Based Design were focused on: (1) moviogeraf the algorithm into hardware,
primarily the generation of exponentially distribdtrandom numbers and (2) simulating
larger models that contain more reaction equatidteving already developed a working
knowledge of the Pilchard Reconfigurable PlatfoB} [t was used in the second design
as well. Since the previous design consumed dlefvailable chip space on the FPGA,
a new approach required a better utilization of rk®ources available. The blocks of
random access memory (BRAM) present on the Pilchaald were a promising solution
to optimize the use of the chip space availabléoril®) species populations, reaction
equations, and reaction propensities in BRAM walldw larger biochemical systems to
be modeled while allowing more of the SSA to beirgaf in hardware. Gillespie’s
original Direct Method was still adequate to theide goals and was used in the second
approach. Much of the overall design remainedstmae as the Register Based Design
discussed in Chapter 4. All the tasks and interfpevere the same, except the CPU
calculated the putative time for each reaction éagen an exponential random number
generated by the FPGA.

This design still required that the selected reactnd the total propensity be

transmitted to the CPU from the FPGA. However, BRGA now had to transmit an
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exponential random number for each iteration of giistem as well. Just as with the
Register Based Design, the software convertedfahefloating-point rate constants to
integers at startup to avoid any floating arithmein the FPGA. A diagram of the
division of responsibilities and communication beén the software and the hardware is
given in figure 5.1. The layout was very similaithe previous design with the exception

that exponential random number generation was dortee FPGA.

5.2 Software Design

The software for this implementation was very samito that of the previous
design. Some modifications were made, written #¥,o allow larger models and to
read exponential random numbers from the FPGA .eRefthe Software Design section
of Chapter 4 for a thorough overview of the sof@imrole. Since the BRAM design
required more information be passed from the FPGhé¢ CPU with each iteration, the
information (total propensity, next reaction, amdexponential random number) from up
to 125 iterations could be passed at a time toGR&). The CPU’s behavior in this
design mimicked that of the previous design, asdlte were collected from the FPGA
until the desired number of iterations had elapsed.

By moving the exponential random number generatmrihe FPGA, another
modification had to be made to the software. Wgenerating a putative time for each
iteration of the system, the CPU read the expoakrgndom number from the FPGA and
converted it from fixed point to floating point loeé dividing by the total propensity to

find the time till the next reaction.

46



Crpen model

Y

Store data:

+ Species Count

+ Reaction Count

+ Species Popula-
tions

+ Reaction Equa-
tions with Rate
Constants

+ Seed

+ Mumber of
iterations

- Zend run command

Close model

Y

Tnitialize
time, t=10

B

Tpdate

species

Initialize FPGA with:

+ Species Populations

+ Beaction Equations

« Seed

|

Establizh chemical system;
propensity calculators begin and
their results are summed

v

to FPGA

v

Wait for FPGA to signal

that command 13 done

Y

EFead nest reaction and
total propensity

Y

Determine time till
next reaction, T

Adwvance time, |
t=t+z

P W art for a command

Y

Produce uniformly
distributed random o

Y

Determine next reaction
executed

Produce exponen-
tially distributed
random number

!

|| total propensity, and ERV

Ifalce the reaction selected,

available to CPTT

¢ L |

Signal to TP that
step 15 done

Figure 5.1 — Interaction Between Hardware and Saftw

47




5.3 Hardware Design

The BRAM available on the Virtex 1000E FPGA wasiatted to allow systems
with a maximum of 127 species populations and dixtge reaction equations to be
simulated. In addition, the BRAM was formatted hold the resulting propensity
associated with each reaction equation. In stankrast to the Register Based Design, all
species populations were sixteen bits wide. Tddstdb a maximum species population of
65,535. The restrictions placed on defining atieacequation were also lifted. That is
to say each reaction equation was able to confsigt t two reactants and two products,
and the bit width of the reaction rate constantaieed at sixteen. This removed the
need to have several variations of propensity ¢alors. For the BRAM Based Design,
each propensity calculator was built to be geneuapose and able to handle any of the
cases discussed in the Register Based Design.

Allowing more reaction equations to be simulated ghtroduce a substantial
obstacle to maximizing performance. Whereas in Register Based Design each
reaction equation had its own dedicated propergatgulator, the number of possible
reaction equations in the BRAM Based Design prodtbsuch an approach. The chip
space required to instantiate sixty-three propereatculators exceeded that which was
available on the Pilchard. The use of general-pagppropensity calculators and the
introduction of other complications allowed eighiopensity calculators to fit into the
available space. Therefore, each propensity clmuhad to calculate the propensity for
up to eight reaction equations. This was an olsvanain on performance. However, it
did have a favorable effect as well. As each pnsjtg calculator cycled through its eight
reaction equations, it accumulated the calculategpgnsities. It stored the sum of the
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propensities in registers after the first four teacequations and after all eight reaction
equations. This led to a total of sixteen regsstéwo per propensity calculator, being
used to store thedeartial Sums. Not only did this simplify the process of detammg
the total propensity (of all sixty-three reactigns)lso aided in the selection of the next
reaction.

The use of the partial sums allowed the reactitecien module to operate as a
mock search tree. Figure 5.2 will give an ideaa# they would be useful.

It took two clock ticks to read data from BRAM, théore it would be devastating
if every propensity had to be read sequentiallprder to determine the next reaction.
The partial sums helped the reaction selection eodarrow down the search to four
propensities in BRAM. This helped offset the cokhaving each propensity calculator
find the propensity of eight reaction equations.

To update the species populations, the index ot#hected reaction was used to
read the corresponding reaction equation from BRAMdetermine which species
populations were affected. The indices of the tegds and products were then used to
find their populations, prior to execution of theaction, in BRAM. Registers were used
to hold the reactant species populations aftergodacremented and the product species
populations after being incremented. These ragistere then used to update the species
populations of the appropriate BRAM. The populasi@f reactants and products were
updated sequentially. At each stage of the updae,affected species population
registers were updated to reflect the any changeedriinent species populations.
Therefore if a species reacted with itself, itsregponding population in BRAM would
be decremented twice. This would also handle #s®2 avhen a reaction produced two
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molecules of a given species, thus incrementingpalation twice. In addition, it makes

it possible to effectively handle reaction equadidimat contain a species that serves as a
reactant as well as a product. In that situattbe, species population will remain the
same.

The Intellectual Property (IP) block used to geteer@axponentially distributed
random numbers was developed by James McCollum [k7]sed an LFSR and a look
up table to interpolate a value along an exponktiixe.

Figure 5.3 shows the components of the BRAM Basedidn and it helps to
illustrate the parallelism achieved.

The user interacted with the FPGA in the same nraas@reviously described in
the Register Based Design. A routine, written #+Cenabled the user to define a
chemically reacting system for the CPU to read theth send the formatted data to the
FPGA. Again, all reaction rate constants were eomd to integer values prior to
sending any data to the FPGA in order to avoidtifigapoint arithmetic. Within the
FPGA, resources were laid out to compute reactrapgnsities, sum all propensities,
generate a uniform random number, select the reattion to execute, generate an
exponential random number, and update species giqms.

The command interface language developed for tlgesBe Based Approach was
reused with some modification. The command interflanguage required two addresses
in the DIMM interconnection of the Pilchard, one the CPU to send commands and
variables and another for the FPGA to send back datlist of valid commands for the

BRAM Based Design is given below.
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10:

11:

12:

13:

setSP - Sent the index and population of a speciesa¢d-PGA.

readSP (debugging) - Sent the index of a species pomrai be read from
the FPGA.

setRX - Sent a reaction equation along with its indethto FPGA.

readRX (debugging) - Sent the index of a reaction todaelfrom the FPGA.
readPROP (debugging) - Sent the index of a propensity tadsa from the
FPGA.

readPSUM (debugging) - Read any of the partial sums geedrdty the
propensity calculators, can also read total prapefrem the FPGA.

setseed - Sent the seed for the uniform random number rgéio@ on the
FPGA.

readURV (debugging) - Read the uniform random number gegadron the
FPGA.

newURV (debugging) - Instructed the linear feedback sieifiister (LFSR) on
the FPGA to generate a new uniform random variable.

readPRODUCT (debugging) - Read the product of the uniform wand
number times the total propensity.

readSELECTION (debugging) - Read the index of the next reactmibe
executed.

readERV (debugging) - Read the exponential random numbkeegted on
the FPGA.

initPROP (debugging) - Used to initiate the propensity ckdtors after
loading details of the system.
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14:step - Instructed the FPGA to determine and execute r@a@tions. This

command is discussed in detail later.

Many commands listed above were developed for dgihggpurposes; this is
indicated in the command descriptions above. Madepugging commands were
removed from the final version in order to maximibe number of gates available to
define a chemical system.

Recall from Chapter 4 that the FPGA interacts wiith host processor via a
DIMM interface with 256 separate addressable looati each with sixty-four bits of
data. The step command of the BRAM version islamo the Register Based Design.
However, in this case, data for only 125 iteratimnplaced into DIMM. This is because
each iteration now required two addresses sincexpenential random number is thirty-
two bits wide, the total propensity is clipped harty-two bits, and six bits were needed
for the selected reaction remain to be sent. EHachtion was given two addresses of the
DIMM, therefore the 250 addresses of the DIMM thed readable by the CPU allowed
the step command to perform 125 iterations at a.tim

Just as in the previous design, the FPGA cleareccdmmand from the DIMM
address upon completing an instruction from the CARble CPU waited for this to occur
indicating that the FPGA is finished. If the coomdavas a step, the CPU cycled through
DIMM addresses from 0x2 to OxFB in pairs. The tfiegldress contained the total
propensity and the exponential random number. TR& used this information to
compute a time until the next reaction. The seamdtess contained the next reaction to
be executed. The species values stored on thev@P®&then adjusted according to the
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reaction index given. The CPU then continued rgguhe user's commands to the
FPGA. Step commands were repeated until all iteratrequired of the system had been

executed.

5.4 Comparison of Results

The BRAM Based Design will be compared to the folleg algorithms
implemented in software: Gillespie’s First ReactMethod, Gillespie’s Direct Method,
Gibson and Bruck’s Next Reaction Method, and Cag,Petzold’s Optimized Direct
Method, and McCollum’s Sorting Direct Method. Oragain, these were pre-existing
software designs developed by James McCollum [18,2Z0v0 models that meet the
criteria of the BRAM Based Design were chosen. nbgsithe above software
implementations to simulate these systems genetia¢efdllowing results. The results of
the hardware-accelerated simulator are labeled dare Direct.” Each software
algorithm was compiled and executed on the Pilchandst processor, discussed in
Chapter 2. Each algorithm was compiled using ggsion 2.96 with optimization flags
turned on. Two real biological models were usetett the BRAM Based Design. Dr.
Chris Cox at the University of Tennessee formulatedh model [18]. The SBML
description of each model can be found in Apperteias well as an outline of the
contents of an SBML model.

The first chemical system considered was a simgédahof a gene whose protein
undergoes dimerization. This model consisted ghtespecies and thirteen reaction
equations. The execution time of each method sitimg the above system for 1,000,000
iterations is given in Table 5.1.
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Table 5.1 — Speedup Associated with Protein Diraéion

Method Execution Time Speedup
Hardware Direct 3.300 —
First Reaction 19.250 5.83
Direct 6.670 2.02
Next Reaction 4.896 1.48
Optimized Direct 4.036 1.22
Sorting Direct 3.386 1.03

The second chemical system modeled was tubercultistonsisted of seventeen

species and twenty-three reaction equations.

Dtezution time of each method

simulating the above system for 1,000,000 iteratigrgiven in Table 5.2.

In order to fit into the constraints of the hardevamplementation, some
modifications were made to the original tuberctdoSBML file. The original system
contained a reaction equation that produced mame tlvo products. Therefore in order
for the model to fit into the hardware implemerdatia dummy species and a dummy
reaction equation had to be established. Whenaatiom occurred with numerous
products, a dummy species would be activated. dinsmy species would be associated
with a dummy reaction equation with an extremelghhrate constant, in order to be
reasonably certain that the reaction would occwt.neThe dummy reaction equation

would then increment product species populationsogsibly activate another dummy
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Table 5.2 — Speedup Associated witlberculosis

Method Execution Time Speedup
Hardware Direct 3.32 —
First Reaction 36.669 11.04
Direct 10.254 3.09
Next Reaction 10.656 3.21
Optimized Direct 4.355 1.31
Sorting Direct 4.291 1.29

Species/reaction equation.

This is a departurm ftiee biologically relevance of the

model, but it is effective at demonstrating the fgenance of the hardware

implementation. The original SBML file for Tubetosis, along with the modified

version, can be found in Appendix E.

Once again, the results from the two models sitadlabove suggest that the

speedup achieved by the hardware implementatioargly increases as the number of

reaction equations increases. This is due todbethat resources have been laid out in

hardware to handle any system within the parameiagsified earlier. The hardware’s

execution time is relatively steady while the wodd of a software-implemented method

will usually increase with additional reaction etjaas.
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5.5 Difficulties and Design Limitations

Although the BRAM Based Design served to addresgesof the shortcomings of
the Register Based Design, it also introduced sogmelimitations.

The speedup achieved by the BRAM Based Designlasviae speedup achieved
by the Register Based Design. However, in termiitoire development of a hardware
design, the BRAM Based Design offers the most f@knStoring species populations
and reaction equations in BRAM allowed large systémbe simulated, but accessing
BRAM was time consuming. Reading an address in BRAquired two clock ticks: (1)
to set the address from which to read (2) to rémddata from BRAM. This slowed
down performance due to the number of times BRAMtinne read when calculating a
propensity. Simulating larger systems was natyratire complex. As discussed earlier,
modeling systems that contain up to sixty threetreas will not allow each reaction to
have its own dedicated reaction propensity caloulatnning in parallel. The solution to
this problem was to have eight propensity calcutatwnning in parallel, each one
calculating the propensity of eight reaction equai sequentially. This increased the
number of clock ticks required to compute all thegensities. The ability to model
systems with more reaction equations also requmede clock ticks for the reaction
selection stage. Since clock ticks relates diettdl simulation time, performance was
negatively affected. In the Register Based Desigmpensities were searched
sequentially to find the next reaction to execuréis line of attack was not as appealing
when dealing with a system with sixty-three reatdio The partial sums generated by the

propensity calculators discussed in the Hardwargigbesection of this chapter were an

58



attempt to improve the search time required by réection selection module, but it
remained a time consuming process.

Moving the exponential random number generatiorihtd FPGA reduced the
amount of processing done by the CPU when calagjdahe putative time. However, it
required more information to be passed from the ARG the CPU. As mentioned
previously throughout this paper, communicationMeetn the FPGA and the CPU is a
typical bottleneck of this design. The CPU now ooty had to compute the putative
time via floating point arithmetic, but it also h&ad convert the exponential random
number from fixed point to floating point notatiohn order to fully utilize the potential
speedup of performing exponential random numbeeigion in hardware, the inclusion
of a floating-point core could be added to the FPGAis would allow the FPGA to not
only calculate the putative time, but also maintdia system time. This is discussed
more in section 6.2 as a suggestion for future wofkgure 5.4 depicts the device
utilization summary of the BRAM Based Design. A4, the chip is not full and future
modifications can be made. The clock rate for comication between the FPGA and
CPU can be found in figure 5.5. It is labeled i _clkdiv,” and is found to be 91.619
nSec. This yields a clock frequency of 10.915 MHEhis is faster than the Register
Based Design, but still well below the Pilchardsgible clock frequency of 133 MHz.
The workloads of the FPGA and CPU are shown inréigh.6 scaled according to
simulation times. It can be seen that tasks argyleerformed concurrently, however the
FPGA is now dominating simulation time. Therefdiee BRAM Based Design would

benefit from further optimizations on the hardwsidge.
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Device utilization swmhary:

MNurmber of External GILEIOE=s 1 cout of 4 25%
MNurbher of External IOEBEs 104 out of 158 oE%
MNurber of LoCed External IOBs 104 out of 104 100%

MNurber of BLOCERLM= &7 out of 96 6o%
Nunwber of ILICE=S Q9507 out of 12288 777%
MNurber of DLL=s 1 out of & 12%
MNurbher of GCLE= 3 out of 4 T5%
MNurber of STARTUP= 1 out of 1 100%

Figure 5.4 — BRAM Based Design Utilization Summary
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| | | Lewvels
HNET "dimm ck hufg®™ PERIOD = 7.519 n3 H | N/h | H/SA | MSA
IGH 50.000000 % | | |
* PERIOD analysis for net "clkdllhf clkO™ d | 7.519ns | 13.684n=s | 1
erived from NET "dimm ck bufg™ PERIOD = | | |
7.519 n3 HIGH S50.000000 % | | |
* PERIOD analysis for net "clkdllhf clkdiv™ | 37.595n3 | 91.6159n= | 55

derived from HNET "dimwm ck bufg®™ PERIOD | | |
= 7.519 n3 HIGH 50.000000 % | |

Figure 5.5 — Timing Constraints of BRAM Based Desig
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work has explored the possibility of a gengnaipose hardware accelerator
for stochastic simulation. Two hardware-based @agnes were given. Both
approaches, the Register Based Design and the BBA#&d Design, were shown to
offer a speedup over several stochastic simulalgarithms implemented in software.
Although the hardware designs outperformed all dbftware versions by up to 1.5X,
work still remains to develop an optimized hardwegesion. The topics listed below for
future work could direct new hardware designs talsaan optimized solution. This
could allow biological researchers to accuratelydedldiochemical systems in order to
develop the gene therapy and drugs of tomorrow.

The use of FPGAs to accelerate the simulation @bhical models appears to be
a plausible option. This work, along with relatedrk in Chapter 3, has shown that
FPGAs can play an important part towards speedintp@ simulation times of biological
models. However, a general-purpose hardware desigssential in order for Biologists
to consider using an FPGA for stochastic simula&tioihis was precisely the goal of the
research presented. This work can now serve agralation upon which future general-
purpose designs will undoubtedly achieve superfgomance and empower Biologists

to accurately and quickly simulate biological madel
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6.2 Hardware Improvements

Performance improvement could be obtained by pgpréither of the hardware
designs outlined within this paper, the RegistesdghDesign or the BRAM Based
Design, to an updated reconfigurable computingfqiat. One such platform now
available at the University of Tennessee, Knoxvilethe Amirix AP130 [19]. This
development board contains a Xilinx Virtex Il Pr&€XVP30 FPGA. The Virtex Il Pro
contains roughly the same number of gates as th@xXVilOOOE, but it does have
advantages. Within the Virtex Il Pro exist two IBRbwer PC (PPC) 405 cores tightly
coupled with the FPGA. However, the PPC do nopetpfloating point operations so
putative time generation will still be a hindrartceperformance. The AP130 contains
sixty-four MB of Synchronous Dynamic Random Accltsmory (SDRAM) onboard in
addition to 136 dedicated eighteen-bit multipliensthe Virtex Il Pro [15]. Although the
AP130 communicates with the host via the PC’s R@| the above enhancements make
the AP130 a worthy candidate for future endeavdks. discussed earlier in Chapter 4,
speeding up the floating-point arithmetic whilecalsmploying a second processor to
update species populations on the CPU side cowd hatremendous impact on the
performance of the Register Based Design. The ARb8Id possibly reach these goals.

Another hardware improvement might be to emploargdr FPGA. Doing so
with the Register Based Design would provide forrenoeaction equations to be
simulated, however routing might become an issu# raguire a different approach.
Implementing the BRAM Based Design onto a largeGRRmight be worth the effort.
Increasing the available number of gates wouldnaleore propensity calculators to be
running in parallel, reducing the time needed towdate all the reaction propensities. In
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addition, it might facilitate the inclusion of a#ting point IP block onto the FPGA. This
would allow all putative time and even accumulaggsgtem time to be calculated on the
FPGA. The ability to perform putative time caldidas and maintain the system time on
the FPGA could allow the user to define a timerwdkfor printing results as well as a
time to end the simulation. Then the FPGA woulty drave to communicate with the

CPU after each time interval. Furthermore, thecsepopulations would not have to be
tallied on the CPU side since the FPGA could trahmem along with the system time

after each time interval.

6.3 Design Improvements

Each of the hardware designs explored during tapephad design choices that
played a subtle role in the resulting performani€er the Register Based Design, it might
be beneficial to alter the reaction selection meduwm a sequential search. This could
be done in a fashion similar to that performedhie BRAM Based Design. However,
with only twenty-two reaction equations supported,sequential reaction selection
module is not a horrible choice. Furthermore, thest of ranking the reaction
propensities might outweigh the gain associatedh witplementing a cleverer search
routine. A design improvement for the BRAM Basedsign might be to include a
variety of propensity calculators as was done enRegister Based Design. This might
release some of the chip space on the FPGA allomioge propensity calculators to be

implemented thus reducing the time it takes towate all propensities.
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6.4 Algorithm Improvements

Improved stochastic simulation algorithms contirtoesurface. Primarily the
improvements are directed towards software impleéatems. However, future
algorithms may introduce enhancements that areilyeadaptable to hardware. In
addition, some components of previous algorithmddcplay a positive role in hardware
acceleration of stochastic simulations. For instathe use of a dependency graph [8]

might have a positive impact on performance.

6.5 Application Specific Integrated Circuit Design

As one would expect, moving either of the desigestioned within this paper to
an application specific integrated circuit (ASICpuld improve performance. Porting
the design to an ASIC would offer a substantiatease in clock frequency, resulting in
improved speedup values, as well as a dramatieaserin the number of available gates.
However, production of an ASIC is not currentlyemdible choice. Aside from being
very expensive to fabricate, they are not suitéblevolving designs [13]. Once a design
is implemented in an ASIC, it is permanent. Thosnplicates the choice to utilize an
ASIC for a design. The designs presented hereulduvoenefit from the increased clock
frequency, but they would not maximize the chipcgpaffered by an ASIC. In order to
do so, considerable testing and debugging of agdesiould be required. There is
promise in an ASIC design, but implementing the S8Aardware is still a relatively
new strategy and several obstacles remain beforgmeting a fully optimized hardware

solution on an ASIC.
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Appendix A
Register Based Design VHDL

parith.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY parith IS
PORT ( clk :INSTD_LOGIC;
we : OUT STD_LOGIC;
addr :OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
din : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
dout :IN STD_LOGIC_VECTOR(63 DOWNTO 0));
END parith;

ARCHITECTURE rtl OF parith IS

COMPONENT prop_1

PORT ( clk :IN STD_LOGIC;
speciesO :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species6 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species7 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

speciesl0 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesll :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl2 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl3 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction :IN STD_LOGIC_VECTOR(20 DOWNTO 0);
propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0) );
END COMPONENT;

COMPONENT prop_1_onoff

PORT ( clk :IN STD_LOGIC;
species0 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
reaction :IN STD_LOGIC_VECTOR(20 DOWNTO 0);

propensity : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) );
END COMPONENT;

COMPONENT prop_2
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PORT(  clk - IN STD_LOGIC;

species0 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species6 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species? :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

species10 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species1l :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species12 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species13 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species14 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species15 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction  :IN STD_LOGIC_VECTOR(25 DOWNTO 0):
propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) ):
END COMPONENT;

COMPONENT prop_2_onoff

PORT ( clk :IN STD_LOGIC;
speciesO :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species6 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species? :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

speciesl0 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesll :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl2 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl3 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction :IN STD_LOGIC_VECTOR(25 DOWNTO 0);
propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0) );
END COMPONENT;

COMPONENT prop_self

PORT(  clk - IN STD_LOGIC;
species4  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5  : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesé  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species7  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

species10 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species1l :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species12 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species13 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
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species14 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species15 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction  :IN STD_LOGIC_VECTOR(20 DOWNTO 0):

propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) );

END COMPONENT;

COMPONENT sumprop
clk :INSTD_LOGIC;

PORT (

p21
totalp

END COMPONENT;

COMPONENT Ifsr32

PORT (

in_clock :IN STD_LOGIC;
in_reset :IN STD_LOGIC;
in_seed :IN STD_LOGIC_VECTOR(31 DOWNTO 0);

out_random_number : OUT STD_LOGIC_VECTOR(31 DOWNT

END COMPONENT,;

“IN STD_LOGIC_VECTOR(15 DOWNTO 0);
:IN STD_LOGIC_VECTOR(15 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0):
- IN STD_LOGIC_VECTOR(27 DOWNTO 0):
“IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0):
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
:IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0):
- IN STD_LOGIC_VECTOR(39 DOWNTO 0):
- IN STD_LOGIC_VECTOR(39 DOWNTO 0);
- IN STD_LOGIC_VECTOR(39 DOWNTO 0);
- IN STD_LOGIC_VECTOR(39 DOWNTO 0);
- IN STD_LOGIC_VECTOR(39 DOWNTO 0):
- IN STD_LOGIC_VECTOR(39 DOWNTO 0):
- IN STD_LOGIC_VECTOR(39 DOWNTO 0);
: OUT STD_LOGIC_VECTOR(39 DOWNTO 0) );

COMPONENT rxselect

PORT (

clk

- IN STD_LOGIC;

- IN STD_LOGIC_VECTOR(15 DOWNTO 0);
- IN STD_LOGIC_VECTOR(15 DOWNTO 0);
. IN STD_LOGIC_VECTOR(27 DOWNTO 0);
. IN STD_LOGIC_VECTOR(27 DOWNTO 0);
. IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
. IN STD_LOGIC_VECTOR(27 DOWNTO 0);
. IN STD_LOGIC_VECTOR(27 DOWNTO 0);
. IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
- IN STD_LOGIC_VECTOR(27 DOWNTO 0);
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p13 - IN STD_LOGIC_VECTOR(27 DOWNTO 0);

pl4 - IN STD_LOGIC_VECTOR(27 DOWNTO 0);
p15 - IN STD_LOGIC_VECTOR(39 DOWNTO 0);
p16 - IN STD_LOGIC_VECTOR(39 DOWNTO 0);
pl7 - IN STD_LOGIC_VECTOR(39 DOWNTO 0);
pls - IN STD_LOGIC_VECTOR(39 DOWNTO 0);
p19 - IN STD_LOGIC_VECTOR(39 DOWNTO 0);
p20 - IN STD_LOGIC_VECTOR(39 DOWNTO 0);
p21 - IN STD_LOGIC_VECTOR(39 DOWNTO 0);
product . IN STD_LOGIC_VECTOR(39 DOWNTO 0);

selection : OUT STD_LOGIC_VECTOR(4 DOWNTO 0) );
END COMPONENT;

COMPONENT updatespecies

PORT ( clk :IN STD_LOGIC;
species0 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species6 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species? :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

speciesl0 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesll :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl2 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl3 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction0 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reactionl :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction2 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction3 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction4 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction5 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction6 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction7 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction8 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction9 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction10 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reactionll :IN STD_LOGIC VECTOR(14 DOWNTO 0);
reaction12 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction13 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reaction14 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reaction15 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reaction16 :IN STD_LOGIC_ VECTOR(19 DOWNTO 0);
reactionl7 :IN STD_LOGIC_ VECTOR(19 DOWNTO 0);
reaction18 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reaction19 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reaction20 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reaction21 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
selection :IN STD_LOGIC_VECTOR(4 DOWNTO 0);
newspeciesO : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
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newspeciesl :
newspecies?2 :
newspecies3 :
newspecies4 :
newspeciess :
newspecieso6 :
newspecies? :
newspeciess :
newspecies9 :
newspecies10
newspeciesll
newspecies12
newspecies13
newspeciesl4
newspecies15

END COMPONENT;

SIGNAL s_sp0
SIGNAL s_spl
SIGNAL s_sp2
SIGNAL s_sp3
SIGNAL s_sp4
SIGNAL s_sp5
SIGNAL s_sp6
SIGNAL s_sp7
SIGNAL s_sp8
SIGNAL s_sp9
SIGNAL s_spl0
SIGNAL s_spl1
SIGNAL s_spl2
SIGNAL s_spl3
SIGNAL s_spl4
SIGNAL s_spl15
SIGNAL s_rx0
SIGNAL s_rx1
SIGNAL s_rx2
SIGNAL s_rx3
SIGNAL s_rx4
SIGNAL s_rx5
SIGNAL s_rx6
SIGNAL s_rx7
SIGNAL s_rx8
SIGNAL s_rx9
SIGNAL s_rx10
SIGNAL s_rx11
SIGNAL s_rx12
SIGNAL s_rx13
SIGNAL s_rx14
SIGNAL s_rx15
SIGNAL s_rx16
SIGNAL s_rx17
SIGNAL s_rx18
SIGNAL s_rx19
SIGNAL s_rx20
SIGNAL s_rx21

OUT STD_LOGIC_VECTOR(0 DOWNTO 0);

OUT STD_LOGIC_VECTOR(0 DOWNTO 0);

OUT STD_LOGIC_VECTOR(0 DOWNTO 0):

OUT STD_LOGIC_VECTOR(11 DOWNTO 0);

OUT STD_LOGIC_VECTOR(11 DOWNTO 0);

OUT STD_LOGIC_VECTOR(11 DOWNTO 0);

OUT STD_LOGIC_VECTOR(11 DOWNTO 0);

OUT STD_LOGIC_VECTOR(11 DOWNTO 0);

OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0)

- STD_LOGIC_VECTOR(0 DOWNTO 0);

- STD_LOGIC_VECTOR(0 DOWNTO 0);

: STD_LOGIC_VECTOR(0 DOWNTO 0);

: STD_LOGIC_VECTOR(0 DOWNTO 0);

: STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0);

- STD_LOGIC_VECTOR(30 DOWNTO 0);
: STD_LOGIC_VECTOR(30 DOWNTO 0);
: STD_LOGIC_VECTOR(30 DOWNTO 0);
: STD_LOGIC_VECTOR(30 DOWNTO 0);

- STD_LOGIC_VECTOR(30 DOWNTO 0);
- STD_LOGIC_VECTOR(30 DOWNTO 0);
: STD_LOGIC_VECTOR(30 DOWNTO 0);
: STD_LOGIC_VECTOR(30 DOWNTO 0);
: STD_LOGIC_VECTOR(30 DOWNTO 0);
- STD_LOGIC_VECTOR(30 DOWNTO 0);

: STD_LOGIC_VECTOR(30 DOWNTO 0);
: STD_LOGIC_VECTOR(30 DOWNTO 0);
: STD_LOGIC_VECTOR(30 DOWNTO 0);
: STD_LOGIC_VECTOR(35 DOWNTO 0);
: STD_LOGIC_VECTOR(35 DOWNTO 0);
- STD_LOGIC_VECTOR(35 DOWNTO 0);

: STD_LOGIC_VECTOR(35 DOWNTO 0);
: STD_LOGIC_VECTOR(35 DOWNTO 0);
: STD_LOGIC_VECTOR(35 DOWNTO 0);
- STD_LOGIC_VECTOR(35 DOWNTO 0);
- STD_LOGIC_VECTOR(35 DOWNTO 0);
: STD_LOGIC_VECTOR(30 DOWNTO 0);
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SIGNAL s_prop0 : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL s_propl : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL s_prop2 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop3 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop4 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop5 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop6 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop7 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop8 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop9 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_propl0 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_propll : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop12 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop13 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_propl4 : STD_LOGIC_VECTOR(27 DOWNTO 0);
SIGNAL s_prop15 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop16 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_propl7 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop18 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop19 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop20 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_prop21 : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_tprop : STD_LOGIC_VECTOR(39 DOWNTO 0);
SIGNAL s_Ifsr_enable : STD_LOGIC;

SIGNAL s_Ifsr_reset : STD_LOGIC;

SIGNAL s_seed : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL s_URV : STD_LOGIC_VECTOR(31 DOWNTO 0);

SIGNAL s_product : STD_LOGIC_VECTOR(71 DOWNTO 0);
SIGNAL s_rxselect : STD_LOGIC_VECTOR(4 DOWNTO 0);

SIGNAL s_newsp0 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_newspl - STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_newsp2 : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_newsp3 - STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL s_newsp4 - STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp5 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp6 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp7 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp8 - STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newsp9 - STD_LOGIC_VECTOR(11 DOWNTO 0);

SIGNAL s_newspl0 :STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newspll :STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newspl2 :STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newspl3 :STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newspl4 :STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL s_newspl5 :STD_LOGIC_VECTOR(11 DOWNTO 0);

BEGIN

mO : prop_1_onoff PORT MAP(clk,s_sp0,s_spl,s _sp2, s_sp3,s_rx0(20
DOWNTO 0),s_prop0);

ml : prop_1 onoff PORT MAP(clk,s_sp0,s_spl,s _sp2, s_sp3,s_rx1(20

DOWNTO 0),s_propl);

m2 : prop_1 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s _sp7,s_sp8,s_sp9,s_s
pl0,s spll,s spl2,s spl3,s_spld,s splb,s rx2(20 DOW NTO 0),s_prop2);
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m3 : prop_1 PORT
MAP(clk,s_sp0,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx3(20 DOW
m4 : prop_1 PORT
MAP(clk,s_sp0,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx4(20 DOW
mb5 : prop_1 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx5(20 DOW
m6 : prop_1 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx6(20 DOW
m7 : prop_1 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s splb,s rx7(20 DOW
m8 : prop_1 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx8(20 DOW
m9 : prop_1 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx9(20 DOW
m10 : prop_1 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s_spll,s spl12,s spl3,s_spld,s spl5,s rx10(20 DO
m1l: prop_1 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx11(20 DO
m12 : prop_1 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s splb,s rx12(20 DO
m13: prop_2_onoff PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s_spll,s spl2,s spl3,s_spld,s spl5,s rx13(25 DO
m14 : prop_2_onoff PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s splb,s rx14(25 DO
m15 : prop_2 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s_spll,s spl2,s spl3,s_spld,s spl5,s rx15(25 DO
m16 : prop_2 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx16(25 DO
m1l7 : prop_2 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s splb,s rx17(25 DO
m18 : prop_2 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s_spll,s spl2,s spl3,s_spld,s spl5,s rx18(25 DO
m19 : prop_2 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx19(25 DO
m20 : prop_2 PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s_spll,s spl2,s spl3,s_spld,s spl5,s rx20(25 DO
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_sp7,s_sp8,s_sp9,s_s
NTO 0),s_prop3);

_sp7,s_sp8,s_sp9,s_s
NTO 0),s_prop4);

_Ssp7,s_sp8,s_sp9,s_s
NTO 0),s_prop5);

_sp7,s_sp8,s_sp9,s_s
NTO 0),s_prop6);

_sp7,s_sp8,s_sp9,s_s
NTO 0),s_prop7);

_sp7,s_sp8,s_sp9,s_s
NTO 0),s_prop8);

_sp7,s_sp8,s_sp9,s_s
NTO 0),s_prop9);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propl0);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propll);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propl2);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propl3);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propl4);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propl5);

_Sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propl6);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propl7);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propl8);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_propl9);

_sp7,s_sp8,s_sp9,s_s
WNTO 0),s_prop20);



m21 : prop_self PORT
MAP(clk,s_sp4,s_sp5,s_sp6,s_sp7,s_sp8,s_sp9,s_splo,
,S_spld,s spl5,s rx21(20 DOWNTO 0),s_prop21);

m22 : sumprop PORT
MAP(clk,s_prop0,s_propl,s_prop2,s_prop3,s_prop4,s p
,S_prop8,s_prop9,s_propl0,s_propll,s propl2,s_propl
S_propl6,s_propl7,s_propl8,s propl9,s prop20,s_prop

m23 : Ifsr32 PORT MAP(s_Ifsr_enable,s_Ifsr_reset,

m24 : rxselect PORT
MAP(clk,s_prop0,s_propl,s_prop2,s_prop3,s_prop4,s p
,S_prop8,s_prop9,s_propl0,s_propll,s propl2,s_propl
S_propl6,s_propl7,s_propl8,s propl9,s prop20,s_prop
DOWNTO 32),s_rxselect);

m25 : updatespecies PORT
MAP(clk,s_spO,s_spl,s_sp2,s_sp3,s_sp4,s_sp5,s_sp6,s
pl0,s spll,s spl2,s spl3,s_spld,s spl5,s rx0(30 DOW
DOWNTO 16),s_rx2(30 DOWNTO 16),s_rx3(30 DOWNTO 16),
16),s_rx5(30 DOWNTO 16),s_rx6(30 DOWNTO 16),s_rx7(3
16),s_rx8(30 DOWNTO 16),s_rx9(30 DOWNTO 16),s_rx10(
16),s_rx11(30 DOWNTO 16),s_rx12(30 DOWNTO 16),s_rx1
16),s_rx14(35 DOWNTO 16),s_rx15(35 DOWNTO 16),s_rx1
16),s_rx17(35 DOWNTO 16),s_rx18(35 DOWNTO 16),s_rx1
16),s_rx20(35 DOWNTO 16),s_rx21(30 DOWNTO
16),s_rxselect,s_newsp0,s_newspl,s newsp2,s_newsp3,
newsp6,s_newsp7,s_newsp8,s_newsp9,s_newsplO,s_newsp
13,s_newspl4,s newsplb);

PROCESS (clk)

s_spll,s spl2,s spl3

rop5,s_prop6,s_prop7
3,s5_propl4,s propls,
21,s_tprop);
s_seed,s_URV);

rop5,s_prop6,s_prop7
3,s5_propl4,s propls,
21,s_product(71

_Sp7,s_sp8,s_sp9,s_s
NTO 16),s_rx1(30
s_rx4(30 DOWNTO

0 DOWNTO

30 DOWNTO

3(35 DOWNTO

6(35 DOWNTO

9(35 DOWNTO

s_newsp4,s_newsp5,s_
11,s newspl2,s_newsp

VARIABLE speciesO :
VARIABLE speciesl :
VARIABLE species2 :
VARIABLE species3 :
VARIABLE species4 :
VARIABLE species5 :
VARIABLE speciesé6 :
VARIABLE species7 :
VARIABLE species8 :
VARIABLE species9 :
VARIABLE species10
VARIABLE species11
VARIABLE species12
VARIABLE species13
VARIABLE species14
VARIABLE species15
VARIABLE reaction0
VARIABLE reactionl
VARIABLE reaction2
VARIABLE reaction3
VARIABLE reaction4
VARIABLE reaction5
VARIABLE reaction6
VARIABLE reaction7
VARIABLE reaction8
VARIABLE reaction9
VARIABLE reaction10

STD_LOGIC_VECTOR(0 DOWNTO 0);
STD_LOGIC_VECTOR(0 DOWNTO 0);
STD_LOGIC_VECTOR(0 DOWNTO 0);
STD_LOGIC_VECTOR(0 DOWNTO 0);
STD_LOGIC_VECTOR(11 DOWNTO 0);
STD_LOGIC_VECTOR(11 DOWNTO 0);
STD_LOGIC_VECTOR(11 DOWNTO 0);
STD_LOGIC_VECTOR(11 DOWNTO 0);
STD_LOGIC_VECTOR(11 DOWNTO 0);
STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0)  ;
: STD_LOGIC_VECTOR(11 DOWNTO 0) ;
- STD_LOGIC_VECTOR(11 DOWNTO 0) ;
- STD_LOGIC_VECTOR(11 DOWNTO 0) ;
- STD_LOGIC_VECTOR(11 DOWNTO 0) ;
- STD_LOGIC_VECTOR(11 DOWNTO 0)  ;
- STD_LOGIC_VECTOR(30 DOWNTO 0)
- STD_LOGIC_VECTOR(30 DOWNTO 0) :
- STD_LOGIC_VECTOR(30 DOWNTO 0)
- STD_LOGIC_VECTOR(30 DOWNTO 0) :
- STD_LOGIC_VECTOR(30 DOWNTO 0) :
- STD_LOGIC_VECTOR(30 DOWNTO 0)
- STD_LOGIC_VECTOR(30 DOWNTO 0)
- STD_LOGIC_VECTOR(30 DOWNTO 0)
- STD_LOGIC_VECTOR(30 DOWNTO 0) :
- STD_LOGIC_VECTOR(30 DOWNTO 0) :
- STD_LOGIC_VECTOR(30 DOWNTO O  );
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VARIABLE reaction11
VARIABLE reaction12
VARIABLE reaction13
VARIABLE reaction14
VARIABLE reaction15
VARIABLE reaction16
VARIABLE reaction17
VARIABLE reaction18
VARIABLE reaction19
VARIABLE reaction20
VARIABLE reaction21

: STD_LOGIC_VECTOR(30 DOWNTO 0
- STD_LOGIC_VECTOR(30 DOWNTO 0
- STD_LOGIC_VECTOR(35 DOWNTO 0
- STD_LOGIC_VECTOR(35 DOWNTO 0
: STD_LOGIC_VECTOR(35 DOWNTO 0
- STD_LOGIC_VECTOR(35 DOWNTO 0
: STD_LOGIC_VECTOR(35 DOWNTO 0
- STD_LOGIC_VECTOR(35 DOWNTO 0
- STD_LOGIC_VECTOR(35 DOWNTO 0
: STD_LOGIC_VECTOR(35 DOWNTO 0
- STD_LOGIC_VECTOR(30 DOWNTO 0

N e e e N N N N N N N

VARIABLE state : STD_LOGIC_VECTOR(3 DOWNTO 0);
VARIABLE state2 : STD_LOGIC_VECTOR(7 DOWNTO 0);
VARIABLE product : STD_LOGIC_VECTOR(71 DOWNTO 0);
VARIABLE index : STD_LOGIC_VECTOR(7 DOWNTO 0);
VARIABLE maxindex : STD_LOGIC_VECTOR(7 DOWNTO 0);
VARIABLE looping : STD_LOGIC;

BEGIN
IF (clk = "1 AND clk'EVENT) THEN

s_sp0 <= speciesO; s_spl <= speciesl;
S_sp2 <= species2; s_sp3 <= species3;
S_sp4 <= species4; s_sp5 <= speciesb;
S_Sp6 <= species6; s_sp7 <= species7;
S_sp8 <= species8; s_sp9 <= species9;
s_spl0 <= speciesl0; s_spll <= speciesll;
s _spl2 <= speciesl2; s _spl3 <= speciesl3;
s_spl4 <= speciesl4; s _spl5 <= speciesl5;
s_rx0 <= reaction0; s_rx1 <= reactionl;
S_Ix2 <=reaction2; s_rx3 <= reaction3;
s_rx4 <= reaction4; s_rx5 <= reaction5;
S_Ix6 <= reaction6; s_rx7 <= reaction7;
S_rx8 <= reaction8; s_rx9 <= reaction9;
s_rx10 <=reaction10; s_rx11 <= reaction11,
s rx12 <=reaction12; s _rx13 <= reaction13;
s_rx14 <=reaction14; s_rx15 <= reaction15;
s_rx16 <=reaction16; s_rx17 <= reactionl17;
s_rx18 <=reaction18; s_rx19 <= reaction19;
s_rx20 <= reaction20; s_rx21 <= reaction21,;
product :=s_URV * s_tprop;

-- SET ADDRESS FROM WHICH TO READ COMMAND
IF (state = "0000") THEN
state2 := "00000000";
state := state + 1,
we <="'0";
addr <= X"00";
din <= (others =>'0";
s_Ifsr_reset <="'0";
s_Ifsr_enable <="'0";
index := X"02";
maxindex := X"FC";
looping :="'0";

-- INTERPRET COMMANDS

79



ELSIF (state = "0001") THEN

-- LOOPING THROUGH 250 REACTIONS
IF (looping ='1") THEN
IF (index < maxindex) THEN
IF (state2 = "00000000") THEN
we <="1%
addr <= index;
din(63 DOWNTO 32) <= s_tprop(31
DOWNTO 0);

din(4 DOWNTO 0) <= s_rxselect;
species0 :='s_newsp0;
speciesl :=s_newspl;
species2 :=s_newsp2;

species3 :=s_newsp3;
speciesd ;= s_newsp4;
species5 :='s_newsp5;
species6 = s_newsp6;
species? :=s_newsp7;
species8 :='s_newsps;

species9 :=s_newsp9;
speciesl0 :=s_newspl0;
speciesll :=s_newspll;
speciesl? :=s_newspl2;
speciesl3 ;= s_newspl3;
speciesl4 :=s_newspl4;
speciesl5 = s_newspl5;
s_lfsr_reset <="'0',
s_lfsr_enable <="1";
state? := state2 + 1;

ELSIF (state2 = "00000001") THEN
we <="'0"
s_lfsr_reset <="'0',
s_lfsr_enable <="0;
state? := state2 + 1;

ELSIF (state2 = "00000101") THEN
we <="'0
index :=index + 1,
state2 := "00000000";

ELSE
we <="'0";
state2 := state2 + 1;

END IF;

ELSE

we <="'0";

addr <= X"00";

looping :="'0";

state := state + 1,

END IF;

-- NO-OP

ELSIF (dout = X"0000") THEN
we <="04
addr <= X"00";
state := "0000";
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-- SETTING A SPECIES POPULATION
ELSIF (dout(63 DOWNTO 60) = "0001") THEN

we <="0%

addr <= X"00";

IF (dout(59 DOWNTO 55) = "00000") THEN
speciesO := dout(0 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) = "00001") THEN
speciesl := dout(0 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="00010") THEN
species? := dout(0 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="00011") THEN
species3 := dout(0 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="00100") THEN
species4 := dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="00101") THEN
species5 := dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="00110") THEN
species6 := dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="00111") THEN
species? := dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) = "01000") THEN
species8 := dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="01001") THEN
species9 := dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="01010") THEN
species10 ;= dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="01011") THEN
speciesll := dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="01100") THEN
species1? ;= dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="01101") THEN
speciesl3 := dout(11 DOWNTO 0);

ELSIF (dout(59 DOWNTO 55) ="01110") THEN
speciesl4 ;= dout(11 DOWNTO 0);

ELSE
speciesl15 ;= dout(11 DOWNTO 0);

END IF;

state := state + 1,

-- READING A SPECIES POPULATION
ELSIF (dout(63 DOWNTO 60) = "0010") THEN
we <="1}
addr <= X"01";
IF (dout(59 DOWNTO 55) = "00000") THEN
din(0 DOWNTO 0) <= species0;
ELSIF (dout(59 DOWNTO 55) = "00001") THEN
din(0 DOWNTO 0) <= species];
ELSIF (dout(59 DOWNTO 55) = "00010") THEN
din(0 DOWNTO 0) <= species2;
ELSIF (dout(59 DOWNTO 55) ="00011") THEN
din(0 DOWNTO 0) <= species3;
ELSIF (dout(59 DOWNTO 55) = "00100") THEN
din(11 DOWNTO 0) <= species4;
ELSIF (dout(59 DOWNTO 55) ="00101") THEN
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0);

0);

0);

0);

0);

0);

0);

0);

0);

din(11 DOWNTO 0) <= speciesb;

ELSIF (dout(59 DOWNTO 55) ="00110") THEN
din(11 DOWNTO 0) <= speciesb;

ELSIF (dout(59 DOWNTO 55) ="00111") THEN
din(11 DOWNTO 0) <= species7;

ELSIF (dout(59 DOWNTO 55) = "01000") THEN
din(11 DOWNTO 0) <= species8;

ELSIF (dout(59 DOWNTO 55) ="01001") THEN
din(11 DOWNTO 0) <= species9;

ELSIF (dout(59 DOWNTO 55) ="01010") THEN
din(11 DOWNTO 0) <= species10;

ELSIF (dout(59 DOWNTO 55) ="01011") THEN
din(11 DOWNTO 0) <= speciesll;

ELSIF (dout(59 DOWNTO 55) ="01100") THEN
din(11 DOWNTO 0) <= species12;

ELSIF (dout(59 DOWNTO 55) ="01101") THEN
din(11 DOWNTO 0) <= speciesl3;

ELSIF (dout(59 DOWNTO 55) ="01110") THEN
din(11 DOWNTO 0) <= speciesl4;

ELSE
din(11 DOWNTO 0) <= speciesl5;

END IF;

state := state + 1,

-- SETTING A REACTION EQUATION
ELSIF (dout(63 DOWNTO 60) = "0011") THEN

we <="'0

addr <= X"00";

IF (dout(59 DOWNTO 55) = "00000") THEN
reaction0(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "00001") THEN
reaction1(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "00010") THEN
reaction2(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "00011") THEN
reaction3(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "00100") THEN
reaction4(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "00101") THEN
reaction5(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "00110") THEN
reaction6(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "00111") THEN
reaction7(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "01000") THEN
reaction8(30 DOWNTO 0) := dout(30 DOWNTO
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0);

0);

0);

0);

DOWNTO 32);

DOWNTO 32);

DOWNTO 32);

DOWNTO 32);

DOWNTO 32);

DOWNTO 32);

DOWNTO 32);

DOWNTO 32);

0);

0);

0);

0);

ELSIF (dout(59 DOWNTO 55) = "01001") THEN
reaction9(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "01010") THEN
reaction10(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "01011") THEN
reaction11(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "01100") THEN
reaction12(30 DOWNTO 0) := dout(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "01101") THEN
reaction13(35 DOWNTO 26) := dout(41

reaction13(25 DOWNTO 0) := dout(25 DOWN TO 0);

ELSIF (dout(59 DOWNTO 55) ="01110") THEN
reaction14(35 DOWNTO 26) := dout(41

reaction14(25 DOWNTO 0) := dout(25 DOWN TO 0);

ELSIF (dout(59 DOWNTO 55) ="01111") THEN
reaction15(35 DOWNTO 26) := dout(41

reaction15(25 DOWNTO 0) := dout(25 DOWN TO 0);

ELSIF (dout(59 DOWNTO 55) = "10000") THEN
reaction16(35 DOWNTO 26) := dout(41

reaction16(25 DOWNTO 0) := dout(25 DOWN TO 0);

ELSIF (dout(59 DOWNTO 55) = "10001") THEN
reaction17(35 DOWNTO 26) := dout(41

reaction17(25 DOWNTO 0) := dout(25 DOWN TO 0);

ELSIF (dout(59 DOWNTO 55) = "10010") THEN
reaction18(35 DOWNTO 26) := dout(41

reaction18(25 DOWNTO 0) := dout(25 DOWN TO 0);

ELSIF (dout(59 DOWNTO 55) = "10011") THEN
reaction19(35 DOWNTO 26) := dout(41

reaction19(25 DOWNTO 0) := dout(25 DOWN TO 0);

ELSIF (dout(59 DOWNTO 55) = "10100") THEN
reaction20(35 DOWNTO 26) := dout(41

reaction20(25 DOWNTO 0) := dout(25 DOWN TO 0);

ELSE
reaction21(30 DOWNTO 0) := dout(30 DOWNTO

END IF;
state .= state + 1,

-- READING A REACTION EQUATION

ELSIF (dout(63 DOWNTO 60) = "0100") THEN

we <="'1"
addr <= X"01",
IF (dout(59 DOWNTO 55) = "00000") THEN
din(30 DOWNTO 0) <= reaction0(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "00001") THEN
din(30 DOWNTO 0) <= reaction1(30 DOWNTO

ELSIF (dout(59 DOWNTO 55) = "00010") THEN
din(30 DOWNTO 0) <= reaction2(30 DOWNTO
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- ELSIF (dout(59 DOWNTO 55) = "00011") THEN
-- din(30 DOWNTO 0) <= reaction3(30 DOWNTO

0);

-- ELSIF (dout(59 DOWNTO 55) ="00100") THEN

-- din(30 DOWNTO 0) <= reaction4(30 DOWNTO
0);

- ELSIF (dout(59 DOWNTO 55) = "00101") THEN

- din(30 DOWNTO 0) <= reaction5(30 DOWNTO
0);

- ELSIF (dout(59 DOWNTO 55) = "00110") THEN

-- din(30 DOWNTO 0) <= reaction6(30 DOWNTO
0);

-- ELSIF (dout(59 DOWNTO 55) ="00111") THEN

- din(30 DOWNTO 0) <= reaction7(30 DOWNTO
0);

- ELSIF (dout(59 DOWNTO 55) = "01000") THEN

-- din(30 DOWNTO 0) <= reaction8(30 DOWNTO
0);

-- ELSIF (dout(59 DOWNTO 55) ="01001") THEN

-- din(30 DOWNTO 0) <= reaction9(30 DOWNTO
0);

- ELSIF (dout(59 DOWNTO 55) = "01010") THEN

-- din(30 DOWNTO 0) <= reaction10(30 DOWNTO
0);

- ELSIF (dout(59 DOWNTO 55) = "01011") THEN

-- din(30 DOWNTO 0) <= reaction11(30 DOWNTO
0);

-- ELSIF (dout(59 DOWNTO 55) ="01100") THEN

-- din(30 DOWNTO 0) <= reaction12(30 DOWNTO
0);

- ELSIF (dout(59 DOWNTO 55) = "01101") THEN
-- din(41 DOWNTO 32) <= reaction13(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction13(25 DOWNTO 0);
- ELSIF (dout(59 DOWNTO 55) ="01110") THEN
din(41 DOWNTO 32) <= reaction14(35 DOWNTO
25); d|n(25 DOWNTO 0) <= reaction14(25 DOWNTO 0);
ELSIF (dout(59 DOWNTO 55) ="01111") THEN
-- din(41 DOWNTO 32) <= reaction15(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction15(25 DOWNTO 0);
- ELSIF (dout(59 DOWNTO 55) = "10000") THEN
din(41 DOWNTO 32) <= reaction16(35 DOWNTO
25); d|n(25 DOWNTO 0) <= reaction16(25 DOWNTO 0);
ELSIF (dout(59 DOWNTO 55) = "10001") THEN
din(41 DOWNTO 32) <= reaction17(35 DOWNTO
25); d|n(25 DOWNTO 0) <= reaction17(25 DOWNTO 0);
ELSIF (dout(59 DOWNTO 55) = "10010") THEN
-- din(41 DOWNTO 32) <= reaction18(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction18(25 DOWNTO 0);
- ELSIF (dout(59 DOWNTO 55) ="10011") THEN
din(41 DOWNTO 32) <= reaction19(35 DOWNTO
25); d|n(25 DOWNTO 0) <= reaction19(25 DOWNTO 0);
ELSIF (dout(59 DOWNTO 55) = "10100") THEN
-- din(41 DOWNTO 32) <= reaction20(35 DOWNTO
25); din(25 DOWNTO 0) <= reaction20(25 DOWNTO 0);
- ELSE
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0);

din(30 DOWNTO 0) <= reaction21(30 DOWNTO

END IF;
state := state + 1;

-- READING A PROPENSITY
ELSIF (dout(63 DOWNTO 60) ="0110") THEN
we <="1"
addr <= X"01";
IF (dout(59 DOWNTO 55) = "00000") THEN

din(15 DOWNTO 0) <='s_prop0;

ELSIF (dout(59 DOWNTO 55) = "00001") THEN

din(15 DOWNTO 0) <=s_propl;

ELSIF (dout(59 DOWNTO 55) = "00010") THEN

din(27 DOWNTO 0) <='s_prop2;

ELSIF (dout(59 DOWNTO 55) = "00011") THEN

din(27 DOWNTO 0) <='s_prop3;

ELSIF (dout(59 DOWNTO 55) ="00100") THEN

din(27 DOWNTO 0) <=s_prop4;

ELSIF (dout(59 DOWNTO 55) = "00101") THEN

din(27 DOWNTO 0) <='s_prop5;

ELSIF (dout(59 DOWNTO 55) = "00110") THEN

din(27 DOWNTO 0) <=s_prop6;

ELSIF (dout(59 DOWNTO 55) ="00111") THEN

din(27 DOWNTO 0) <='s_prop7;

ELSIF (dout(59 DOWNTO 55) = "01000") THEN

din(27 DOWNTO 0) <='s_prop8;

ELSIF (dout(59 DOWNTO 55) ="01001") THEN

din(27 DOWNTO 0) <=s_prop9;

ELSIF (dout(59 DOWNTO 55) = "01010") THEN

din(27 DOWNTO 0) <='s_propl0;

ELSIF (dout(59 DOWNTO 55) = "01011") THEN

din(27 DOWNTO 0) <=s_prop11;

ELSIF (dout(59 DOWNTO 55) ="01100") THEN

din(27 DOWNTO 0) <=s_propl12;

ELSIF (dout(59 DOWNTO 55) = "01101") THEN

din(27 DOWNTO 0) <='s_propl3;

ELSIF (dout(59 DOWNTO 55) ="01110") THEN

din(39 DOWNTO 0) <=s_propl4;

ELSIF (dout(59 DOWNTO 55) = "01111") THEN

din(39 DOWNTO 0) <=s_propl5;

ELSIF (dout(59 DOWNTO 55) = "10000") THEN

din(39 DOWNTO 0) <=s_prop16;

ELSIF (dout(59 DOWNTO 55) = "10001") THEN

din(39 DOWNTO 0) <='s_propl7;

ELSIF (dout(59 DOWNTO 55) = "10010") THEN

din(39 DOWNTO 0) <='s_prop18;

ELSIF (dout(59 DOWNTO 55) ="10011") THEN

din(39 DOWNTO 0) <=s_prop19;

ELSIF (dout(59 DOWNTO 55) = "10100") THEN

din(39 DOWNTO 0) <='s_prop20;

din(39 DOWNTO 0) <=s_prop21;

END IF;
state := state + 1,
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-- READING THE SUM OF ALL PROPENSITIES
- ELSIF (dout(63 DOWNTO 60) ="0111") THEN
- we <="1"
-- addr <= X"01";
-- din(39 DOWNTO 0) <= s_tprop;
- state := state + 1,

-- SET SEED TO UNIFORM RANDOM NUMBER GENERATOR
ELSIF (dout(63 DOWNTO 60) = "1000") THEN
we <="0";
addr <= X"00";
IF (state2 = "00000000") THEN
s_seed <= dout(31 DOWNTO 0);
s_Ifsr_reset <="'1";
state2 := state2 + 1;
ELSE
s_seed <= dout(31 DOWNTO 0);
s_Ifsr_reset <="'1";
s_Ifsr_enable <="1";
state := state + 1,
state2 := "00000000";
END IF;

-- READING UNIFORM RANDOM NUMBER
-- ELSIF (dout(63 DOWNTO 60) = "1001") THEN
-- we <="'1%
- addr <= X"01";
- din(31 DOWNTO 0) <=s_URYV;
- state := state + 1,

-- CALCULATE A UNIFORM RANDOM NUMBER
-- ELSIF (dout(63 DOWNTO 60) = "1010") THEN
- we <="'0";
-- addr <= X"00";
-- s_lfsr_reset <="'0";
-- s_Ifsr_enable <="1";
- state := state + 1,

-- READING PRODUCT OF TOTAL PROPENSITY * UNIFORM
RANDOM NUMBER
-- ELSIF (dout(63 DOWNTO 60) ="1011") THEN
- we <="1"
- addr <= X"01";
-- din(31 DOWNTO 0) <=s_product(71 DOWNTO 40);
- state := state + 1,

-- READING THE REACTION THAT WAS SELECTED
-- ELSIF (dout(63 DOWNTO 60) ="1100") THEN
-- we <="1%
-- addr <= X"01";
-- din(4 DOWNTO 0) <= s_rxselect;
-- state := state + 1,

-- UPDATE THE SPECIES POPULATIONS
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-- ELSIF (dout(63 DOWNTO 60) = "1101") THEN
- we <=0

-- addr <= X"00";

-- speciesO := s_newsp0;

-- speciesl :=s_newspl;

-- species2 :='s_newsp2;

-- species3 :=s_newsp3;

-- species4 ;= s_newsp4;

-- species5 = s_newsp5;

-- species6 ;= s_newsp6;

-- species? :='s_newsp7;

-- species8 :='s_newsps;

-- species9 :=s_newsp9;

-- species10 := s_newspl0;
-- speciesll :=s_newspll;
-- speciesl? :=s_newspl2;
-- speciesl3 ;= s_newspl3;
-- speciesl4 ;= s_newspl4;
-- speciesl15 :=s_newspl5;
- state := state + 1,

-- STEP THROUGH 250 REACTIONS

ELSIF (dout(63 DOWNTO 60) ="1110") THEN
we <="04
addr <= X"00";
index := X"02";
maxindex := dout(7 DOWNTO 0);
looping =1
state2 := "00000000";

END IF;

-- TELL CPU THAT FPGA IS DONE
ELSIF (state = "0010") THEN

we <="'1"
addr <= X"00";
din <= (others =>'0";
state := "0000";
ELSE
we <="'0"
addr <= X"00";
state := state + 1,
END IF;
s_product <= product;
END IF;
END PROCESS;

END rtl;
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prop_1.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_11S

PORT ( clk :IN STD_LOGIC;
speciesO :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species6 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species? :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

speciesl0 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesll :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species1l2 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl3 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction :IN STD_LOGIC_VECTOR(20 DOWNTO 0);
propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0) );
END prop_1,;

ARCHITECTURE rtl OF prop_1 1S
BEGIN

PROCESS(clk)
VARIABLE Y : STD_LOGIC_VECTOR(11 DOWNTO 0);
VARIABLE prop : STD_LOGIC_VECTOR(27 DOWNTO 0);

BEGIN
IF (clk'EVENT AND clk="1") THEN
IF (reaction(20) ='1") THEN
prop(27 DOWNTO 0) := X"0000000";
ELSIF (reaction(19 DOWNTO 16) < X"4") THEN
IF (reaction(19 DOWNTO 16) = X"0") THEN
Y(0 DOWNTO 0) := speciesO;
ELSIF (reaction(19 DOWNTO 16) = X"1") THEN
Y(0 DOWNTO 0) := species];
ELSIF (reaction(19 DOWNTO 16) = X"2") THEN
Y(0 DOWNTO 0) := species2;
ELSIF (reaction(19 DOWNTO 16) = X"3") THEN
Y(0 DOWNTO 0) := species3;
END IF;
IF (Y(0) ='0") THEN
prop := X"0000000";
ELSE
prop(27 DOWNTO 16) := X"000";
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ELSE

prop(15 DOWNTO 0) := reaction(15 DOWNTO 0);

END IF;

IF (reaction(19 DOWNTO 16) = X"4") THEN
Y := species4;

ELSIF (reaction(19 DOWNTO 16) = X"5") THEN
Y := speciesb;

ELSIF (reaction(19 DOWNTO 16) = X"6") THEN
Y := speciesb;

ELSIF (reaction(19 DOWNTO 16) = X"7") THEN
Y := species7;

ELSIF (reaction(19 DOWNTO 16) = X"8") THEN
Y := speciess;

ELSIF (reaction(19 DOWNTO 16) = X"9") THEN
Y := species9;

ELSIF (reaction(19 DOWNTO 16) = X"A") THEN
Y := specieslo;

ELSIF (reaction(19 DOWNTO 16) = X"B") THEN
Y := speciesl],;

ELSIF (reaction(19 DOWNTO 16) = X"C") THEN
Y := speciesl?2;

ELSIF (reaction(19 DOWNTO 16) = X"D") THEN
Y := speciesl3;

ELSIF (reaction(19 DOWNTO 16) = X"E") THEN
Y := speciesl4;

ELSIF (reaction(19 DOWNTO 16) = X"F") THEN
Y := speciesl5;

END IF;

prop := reaction(15 DOWNTO 0) * Y;

END IF;

propensity <= prop;

END IF;
END PROCESS;
END rtl;
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prop_1_onoff.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_1_onoff IS

PORT ( clk :IN STD_LOGIC;
speciesO :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
reaction :IN STD_LOGIC_VECTOR(20 DOWNTO 0);

propensity : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) );
END prop_1_onoff;

ARCHITECTURE rtl OF prop_1_onoff IS
BEGIN

PROCESS(clk)
VARIABLE X : STD_LOGIC_VECTOR(0 DOWNTO 0);
VARIABLE prop : STD_LOGIC_VECTOR(15 DOWNTO 0);

BEGIN
IF (clkEVENT AND clk="1") THEN
IF (reaction(20) ='1") THEN
prop(15 DOWNTO 0) := X"0000";
ELSE
IF (reaction(19 DOWNTO 16) = X"0") THEN
X := speciesO;
ELSIF (reaction(19 DOWNTO 16) = X"1") THEN
X := speciesl;
ELSIF (reaction(19 DOWNTO 16) = X"2") THEN
X := species2;
ELSIF (reaction(19 DOWNTO 16) = X"3") THEN
X := species3;
END IF;
IF (X(0) ='1") THEN
prop := reaction(15 DOWNTO 0);
ELSE
prop(15 DOWNTO 0) := X"0000";
END IF;
END IF;

propensity <= prop;
END IF;
END PROCESS;
END rtl;
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prop_2.vhd

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_2 IS

PORT ( clk :IN STD_LOGIC;
speciesO :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species6 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species? :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

species10 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species1l :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species12 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species13 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species14 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species15 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction  :IN STD_LOGIC_VECTOR(25 DOWNTO 0):
propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) ):

END prop_2;

ARCHITECTURE rtl OF prop_2 IS

BEGIN

PROCESS(clk)

VARIABLE REACTANT1 : STD_LOGIC_VECTOR(1 DOWNTO 0);
VARIABLE X,Y : STD_LOGIC_VECTOR(11 DOWNTO 0);
VARIABLE prop : STD_LOGIC_VECTOR(39 DOWNTO 0);

BEGIN

IF (clkkEVENT AND clk="1") THEN
IF (reaction(25) ='1") THEN

REACTANT1 :="00"

ELSIF (reaction(24 DOWNTO 21) < X"4") THEN

ELSE

REACTANTL1 :="01";

IF (reaction(24 DOWNTO 21) = X"0") THEN
X(0 DOWNTO 0) := species0;

ELSIF (reaction(24 DOWNTO 21) = X"1") THEN
X(0 DOWNTO 0) := species];

ELSIF (reaction(24 DOWNTO 21) = X"2") THEN
X(0 DOWNTO 0) := species2;

ELSIF (reaction(24 DOWNTO 21) = X"3") THEN
X(0 DOWNTO 0) := species3;

END IF;

REACTANTL1 :="10";
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IF (reaction(24 DOWNTO 21) = X"4") THEN
X := species4;

ELSIF (reaction(24 DOWNTO 21) = X"5") THEN
X := species5;

ELSIF (reaction(24 DOWNTO 21) = X"6") THEN
X := species6;

ELSIF (reaction(24 DOWNTO 21) = X"7") THEN
X := species7,

ELSIF (reaction(24 DOWNTO 21) = X"8") THEN
X := speciess;

ELSIF (reaction(24 DOWNTO 21) = X"9") THEN
X := species9;

ELSIF (reaction(24 DOWNTO 21) = X"A") THEN
X := speciesl0;

ELSIF (reaction(24 DOWNTO 21) = X"B") THEN
X := speciesl];

ELSIF (reaction(24 DOWNTO 21) = X"C") THEN
X = speciesl2;

ELSIF (reaction(24 DOWNTO 21) = X"D") THEN
X := speciesl3;

ELSIF (reaction(24 DOWNTO 21) = X"E") THEN
X := speciesl4;

ELSIF (reaction(24 DOWNTO 21) = X"F") THEN
X := speciesl5;

END IF;

END IF;

IF (reaction(20) ='1") THEN
IF (REACTANT1 = "00") THEN
prop := X"0000000000";
ELSIF (REACTANT1 = "01") THEN
IF (X(0) ='1") THEN
prop(39 DOWNTO 16) := X"000000";
prop(15 DOWNTO 0) := reaction(15 DOWNTO
0);
ELSE
prop := X"0000000000";
END IF;
ELSE
prop(39 DOWNTO 28) := X"000";
prop(27 DOWNTO 0) := reaction(15 DOWNTO 0) * X;
END IF;
ELSIF (reaction(25 DOWNTO 21) = reaction(20 DOWNT 0O 16))
THEN
Y =X-1,
prop :=reaction(15 DOWNTO 0) * X * Y;
prop(38 DOWNTO 0) := prop(39 DOWNTO 1);
prop(39) :='0
ELSE
IF (reaction(20 DOWNTO 16) = X"4") THEN
Y := species4;
ELSIF (reaction(20 DOWNTO 16) = X"5") THEN
Y := speciesb;
ELSIF (reaction(20 DOWNTO 16) = X"6") THEN
Y := speciesb;
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ELSIF (reaction(20 DOWNTO 16) = X"7") THEN
Y := species7;

ELSIF (reaction(20 DOWNTO 16) = X"8") THEN
Y := speciess;

ELSIF (reaction(20 DOWNTO 16) = X"9") THEN
Y := species9;

ELSIF (reaction(20 DOWNTO 16) = X"A") THEN
Y := speciesl0;

ELSIF (reaction(20 DOWNTO 16) = X"B") THEN
Y := speciesl];

ELSIF (reaction(20 DOWNTO 16) = X"C") THEN
Y := speciesl?2;

ELSIF (reaction(20 DOWNTO 16) = X"D") THEN
Y := speciesl3;

ELSIF (reaction(20 DOWNTO 16) = X"E") THEN
Y := speciesl4;

ELSIF (reaction(20 DOWNTO 16) = X"F") THEN
Y := speciesl5;

END IF;

IF (REACTANT1 = "00") THEN
prop(39 DOWNTO 28) := X"000";
prop(27 DOWNTO 0) := reaction(15 DOWNTO 0) * Y;

ELSIF (REACTANT1 ="01") THEN
IF (X(0) ='1") THEN

prop(39 DOWNTO 28) := X"000";
prop(27 DOWNTO 0) := reaction(15 DOWNTO

0) *;
ELSE
prop := X"0000000000";
END IF;
ELSE
prop :=reaction(15 DOWNTO 0) * X * Y;
END IF;
END IF;
propensity <= prop;
END IF;
END PROCESS;
END rtl;
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prop_2_onoff.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_2_onoff IS

PORT ( clk :IN STD_LOGIC;
speciesO :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species6 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species? :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

speciesl0 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesll :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl2 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl3 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction :IN STD_LOGIC_VECTOR(25 DOWNTO 0);
propensity : OUT STD_LOGIC_VECTOR(27 DOWNTO 0) );
END prop_2_onoff;

ARCHITECTURE rtl OF prop_2_onoff IS
BEGIN

PROCESS(clk)
VARIABLE X : STD_LOGIC_VECTOR(0 DOWNTO 0);
VARIABLE Y : STD_LOGIC_VECTOR(11 DOWNTO 0);
VARIABLE prop : STD_LOGIC_VECTOR(27 DOWNTO 0);

BEGIN
IF (clkkEVENT AND clk="1") THEN
IF (reaction(20) ='1") THEN
IF (reaction(25) ='1") THEN
prop(27 DOWNTO 0) := X"0000000";
ELSE
IF (reaction(24 DOWNTO 21) = X"0") THEN
X(0 DOWNTO 0) := species0;
ELSIF (reaction(24 DOWNTO 21) = X"1") THEN
X(0 DOWNTO 0) := speciesl;
ELSIF (reaction(24 DOWNTO 21) = X"2") THEN
X(0 DOWNTO 0) := species2;
ELSIF (reaction(24 DOWNTO 21) = X"3") THEN
X(0 DOWNTO 0) := species3;
END IF;
IF (X(0) ='0") THEN
prop(27 DOWNTO 0) := X"0000000";
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ELSE
prop(27 DOWNTO 16) := X"000";
prop(15 DOWNTO 0) := reaction(15 DOWNTO
0);
END IF;
END IF;
ELSE
IF (reaction(19 DOWNTO 16) = X"4") THEN
Y := species4;
ELSIF (reaction(19 DOWNTO 16) = X"5") THEN
Y := speciesb;
ELSIF (reaction(19 DOWNTO 16) = X"6") THEN
Y := speciesb;
ELSIF (reaction(19 DOWNTO 16) = X"7") THEN
Y := species7;
ELSIF (reaction(19 DOWNTO 16) = X"8") THEN
Y := speciess;
ELSIF (reaction(19 DOWNTO 16) = X"9") THEN
Y := species9;
ELSIF (reaction(19 DOWNTO 16) = X"A") THEN
Y := specieslo;
ELSIF (reaction(19 DOWNTO 16) = X"B") THEN
Y := speciesl],;
ELSIF (reaction(19 DOWNTO 16) = X"C") THEN
Y := speciesl?2;
ELSIF (reaction(19 DOWNTO 16) = X"D") THEN
Y := speciesl3;
ELSIF (reaction(19 DOWNTO 16) = X"E") THEN
Y := speciesl4;
ELSIF (reaction(19 DOWNTO 16) = X"F") THEN
Y := speciesl5;
END IF;
IF (reaction(25) ='1") THEN
prop := reaction(15 DOWNTO 0) * Y;
ELSE
IF (reaction(24 DOWNTO 21) = X"0") THEN
X(0 DOWNTO 0) := speciesO;
ELSIF (reaction(24 DOWNTO 21) = X"1") THEN
X(0 DOWNTO 0) := species];
ELSIF (reaction(24 DOWNTO 21) = X"2") THEN
X(0 DOWNTO 0) := species2;
ELSIF (reaction(24 DOWNTO 21) = X"3") THEN
X(0 DOWNTO 0) := species3;
END IF;
IF (X(0) ='0") THEN
prop(27 DOWNTO 0) := X"0000000";
ELSE
prop := reaction(15 DOWNTO 0) * Y;
END IF;
END IF;
END IF;

propensity <= prop;

END IF;
END PROCESS;
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END rtl;
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prop_self.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY prop_self IS

PORT(  clk - IN STD_LOGIC;
species4  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesé  : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species7  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9  :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

speciesl0 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesll :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl2 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl3 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction :IN STD_LOGIC_VECTOR(20 DOWNTO 0);
propensity : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) );
END prop_self;

ARCHITECTURE rtl OF prop_self IS
BEGIN

PROCESS(clk)
VARIABLE X, Y : STD_LOGIC_VECTOR(11 DOWNTO 0):
VARIABLE prop : STD_LOGIC_VECTOR(39 DOWNTO 0):

BEGIN
IF (clkkEVENT AND clk="1") THEN
IF (reaction(20) ='1") THEN
prop := X"0000000000";
ELSE
IF (reaction(19 DOWNTO 16) = X"4") THEN
X := species4;
ELSIF (reaction(19 DOWNTO 16) = X"5") THEN
X := speciesb;
ELSIF (reaction(19 DOWNTO 16) = X"6") THEN
X := speciesb;
ELSIF (reaction(19 DOWNTO 16) = X"7") THEN
X := species’;
ELSIF (reaction(19 DOWNTO 16) = X"8") THEN
X := speciess;
ELSIF (reaction(19 DOWNTO 16) = X"9") THEN
X := species9;
ELSIF (reaction(19 DOWNTO 16) = X"A") THEN

X := specieslo;
ELSIF (reaction(19 DOWNTO 16) = X"B") THEN
X := speciesl];

ELSIF (reaction(19 DOWNTO 16) = X"C") THEN
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X := speciesl?2;

ELSIF (reaction(19 DOWNTO 16) = X"D") THEN
X := speciesl3;

ELSIF (reaction(19 DOWNTO 16) = X"E") THEN
X := speciesl4;

ELSIF (reaction(19 DOWNTO 16) = X"F") THEN
X := speciesl5;

END IF;

Y =X-1,

prop :=reaction(15 DOWNTO 0) * X * Y;
prop(38 DOWNTO 0) := prop(39 DOWNTO 1);
prop(39) :='0

END IF;
propensity <= prop;
END IF;

END PROCESS;
END rtl;
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rxselect.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY rxselect IS

PORT(  clk - IN STD_LOGIC;
p0  :INSTD_LOGIC_VECTOR(15 DOWNTO 0);
pl  :INSTD_LOGIC_VECTOR(15 DOWNTO 0):
p2  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p3  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p4  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p5  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p6  :INSTD_LOGIC_VECTOR(27 DOWNTO 0):
p7  :INSTD_LOGIC_VECTOR(27 DOWNTO 0):
p8  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p9  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);

pl0 :IN STD_LOGIC_VECTOR(27 DOWNTO 0);
pll :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
pl2 :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
pl3 :IN STD_LOGIC_VECTOR(27 DOWNTO 0);
pl4 :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
pl5 :INSTD_LOGIC_VECTOR(39 DOWNTO 0);
pl6 :INSTD _LOGIC_VECTOR(39 DOWNTO 0);
pl7 :INSTD_LOGIC_VECTOR(39 DOWNTO 0);
pl8 :IN STD_LOGIC_VECTOR(39 DOWNTO 0);
pl9 :INSTD_LOGIC_VECTOR(39 DOWNTO 0);
p20 :IN STD_LOGIC_VECTOR(39 DOWNTO 0);
p21 :INSTD_LOGIC_VECTOR(39 DOWNTO 0);
product :IN STD_LOGIC_VECTOR(39 DOWNTO 0);
selection : OUT STD_LOGIC_VECTOR(4 DOWNTO 0) );
END rxselect;

ARCHITECTURE rtl OF rxselect IS
BEGIN

PROCESS(clk)
VARIABLE rxselect : STD_LOGIC_VECTOR(4 DOWNTO 0):

BEGIN
IF (clkkEVENT AND clk="1") THEN

IF (product < p0) THEN
rxselect := "00000";

ELSIF (product < (p0 + p1)) THEN
rxselect :="00001";

ELSIF (product < (p0 + p1 + p2)) THEN
rxselect :="00010";

ELSIF (product < (p0 + pl1 + p2 + p3)) THEN
rxselect := "00011";

ELSIF (product < (p0 + p1 + p2 + p3 + p4)) THEN
rxselect :="00100";

ELSIF (product< (pO + pl +p2 +p3 +p4 +p5)) T
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rxselect :="00101";
ELSIF (product< (pO +pl +p2 +p3 +p4 +p5+p
rxselect :="00110";
ELSIF (product< (pO + pl +p2+p3+pd+p5+p
THEN
rxselect :="00111";
ELSIF (product< (pO +pl +p2+p3 +p4d +p5+p
p8)) THEN
rxselect :="01000";
ELSIF (product< (pO +pl +p2+p3 +p4d +p5+p
p8 + p9)) THEN
rxselect :="01001";
ELSIF (product< (pO + pl +p2+p3+pd+p5+p
p8 + p9 + pl10)) THEN
rxselect :="01010";
ELSIF (product< (pO+pl +p2+p3+pd +p5+p
p8 + p9 + pl0 + pl11)) THEN
rxselect :="01011";
ELSIF (product< (pO +pl +p2+p3+pd+p5+p
p8 + p9 + pl0 + pll + p12)) THEN
rxselect :="01100";
ELSIF (product< (pO+pl +p2+p3+p4d +p5+p
p8 + p9 + pl0 + pll + pl2 + p13)) THEN
rxselect :="01101";
ELSIF (product< (pO +pl +p2+p3+p4d +p5+p
p8 + p9 + pl0 + pll + p12 + p13 + pl14)) THEN
rxselect :="01110";
ELSIF (product< (pO + pl +p2+p3+pd+p5+p
p8 + p9 + pl0 + pll + p12 + p13 + pl4 + p15)) THEN
rxselect :="01111";
ELSIF (product< (pO+pl +p2+p3+pd+p5+p
p8 + p9 + pl0 + pll + p12 + p13 + pl4 + p15 + p16))
rxselect :="10000";
ELSIF (product< (pO + pl +p2+p3+pd+p5+p
p8 + p9 + pl0 + pll + p12 + p13 + p14 + pl15 + pl6 +
rxselect :="10001";
ELSIF (product< (pO+pl +p2+p3+pd+p5+p
p8 + p9 + pl0 + pll + pl2 + p13 + pl4 + pl5 + pl6 +
rxselect :="10010";
ELSIF (product< (pO +pl +p2+p3 +p4d +p5+p
p8 + p9 + pl0 + pll + p12 + p13 + p14 + pl15 + pl6 +
THEN
rxselect :="10011";
ELSIF (product< (pO +pl+p2+p3+pd+p5+p
p8 + p9 + pl0 + pll + p12 + p13 + p14 + p15 + pl6 +
p20)) THEN
rxselect :="10100";

ELSE
rxselect :="10101";
END IF;
selection <= rxselect;
END IF;
END PROCESS;
END rtl;
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sumprop.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY sumprop IS
PORT ( clk :INSTD_LOGIC;

p0  :INSTD_LOGIC_VECTOR(15 DOWNTO 0);
pl  :INSTD_LOGIC_VECTOR(15 DOWNTO 0):
p2  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p3  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p4  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p5  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p6  :INSTD_LOGIC_VECTOR(27 DOWNTO 0):
p7  :INSTD_LOGIC_VECTOR(27 DOWNTO 0):
p8  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);
p9  :INSTD_LOGIC_VECTOR(27 DOWNTO 0);

pl0 :IN STD_LOGIC_VECTOR(27 DOWNTO 0);
pll :INSTD_LOGIC_VECTOR(27 DOWNTO O0):
pl2 :INSTD_LOGIC_VECTOR(27 DOWNTO O0):
pl3 :INSTD_LOGIC_VECTOR(27 DOWNTO O0);
pld :INSTD_LOGIC_VECTOR(27 DOWNTO O0);
pl5 :IN STD_LOGIC_VECTOR(39 DOWNTO O0);
pl6 :IN STD_LOGIC_VECTOR(39 DOWNTO 0):
pl7 :INSTD_LOGIC_VECTOR(39 DOWNTO O0):
pl8 :INSTD_LOGIC_VECTOR(39 DOWNTO 0);
pl9 :INSTD_LOGIC_VECTOR(39 DOWNTO O0);
p20 :IN STD_LOGIC_VECTOR(39 DOWNTO 0);
p21  :IN STD_LOGIC_VECTOR(39 DOWNTO 0);

totalp : OUT STD_LOGIC_VECTOR(39 DOWNTO 0) );

END sumprop;
ARCHITECTURE rtl OF sumprop IS
BEGIN

PROCESS(clk)
VARIABLE sum : STD_LOGIC_VECTOR(39 DOWNTO 0);

BEGIN
IF (clk'EVENT AND clk="1") THEN
sum:=p0+pl+p2+p3+pd+p5+p6+p7+p8
pl0 + pll + pl2 + pl13 + p14 + pl15 + pl16 + pl7 + p18

totalp <= sum;
END IF;
END PROCESS;
END rtl;
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updatespecies.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY updatespecies IS

PORT ( clk :IN STD_LOGIC;
speciesO :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
speciesl :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species2 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species3 :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
species4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species6 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species? :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species8 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
species9 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);

speciesl0 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesll :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl2 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl3 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl4 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
speciesl5 :IN STD_LOGIC_VECTOR(11 DOWNTO 0);
reaction0 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reactionl :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction2 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction3 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction4 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction5 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction6 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction7 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction8 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction9 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reaction10 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reactionll :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reactionl2 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
reactionl3 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reactionl4 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reactionl5 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reactionl6 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reactionl7 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reactionl8 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reactionl9 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reaction20 :IN STD_LOGIC_VECTOR(19 DOWNTO 0);
reaction21 :IN STD_LOGIC_VECTOR(14 DOWNTO 0);
selection :IN STD_LOGIC_VECTOR(4 DOWNTO 0);
newspeciesO : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
newspeciesl : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
newspecies2 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
newspecies3 : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
newspecies4 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
newspecies5 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
newspecies6 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
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newspecies7 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
newspecies8 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
newspecies9 : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);

newspecies10
newspeciesll
newspecies12
newspecies13
newspeciesl4
newspecies15

- OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
: OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
- OUT STD_LOGIC_VECTOR(11 DOWNTO 0)

END updatespecies;

ARCHITECTURE rtl OF updatespecies IS

BEGIN

PROCESS (clk)

VARIABLE newsp10
VARIABLE newspll
VARIABLE newspl12
VARIABLE newspl3
VARIABLE newspl4
VARIABLE newspl15

BEGIN

VARIABLE rx

VARIABLE newsp0
VARIABLE newspl
VARIABLE newsp2
VARIABLE newsp3
VARIABLE newsp4
VARIABLE newsp5
VARIABLE newsp6
VARIABLE newsp7
VARIABLE newsp8
VARIABLE newsp9

: STD_LOGIC_VECTOR(19 DOWNTO 0);
- STD_LOGIC_VECTOR(0 DOWNTO 0);
- STD_LOGIC_VECTOR(0 DOWNTO 0):
: STD_LOGIC_VECTOR(0 DOWNTO 0);
: STD_LOGIC_VECTOR(0 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);

- STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
: STD_LOGIC_VECTOR(11 DOWNTO 0);
- STD_LOGIC_VECTOR(11 DOWNTO 0);

IF (clk ='1' AND clk'EVENT) THEN

newspO := speciesO;
newspl := speciesl;
newsp2 := species2;
newsp3 := species3;
newsp4 := species4;
newspb := speciesb;
newsp6 := species6;
newsp7 := species’;
newsp8 := speciess;
newsp9 := species9;

newspl0 := specieslO;
newspll := speciesll;
newspl2 := speciesl2;
newspl3 := speciesl3;
newspl4 := speciesl4;
newspl5 := speciesls;

IF (selection = "00000") THEN
rx(4 DOWNTO 0) :="11111";
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rx(19 DOWNTO 5) := reaction0;
ELSIF (selection = "00001") THEN
rx(4 DOWNTO 0) :="11111";
rx(19 DOWNTO 5) := reactionl;
ELSIF (selection = "00010") THEN
rx(4 DOWNTO 0) :="11111"
rx(19 DOWNTO 5) := reaction2;
ELSIF (selection = "00011") THEN
rx(4 DOWNTO 0) :="11111";
rx(19 DOWNTO 5) := reaction3;
ELSIF (selection = "00100") THEN
rx(4 DOWNTO 0) :="11111"
rx(19 DOWNTO 5) := reaction4;
ELSIF (selection = "00101") THEN
rx(4 DOWNTO 0) :="11111"
rx(19 DOWNTO 5) := reaction5;
ELSIF (selection = "00110") THEN
rx(4 DOWNTO 0) :="11111";
rx(19 DOWNTO 5) := reaction6;
ELSIF (selection ="00111") THEN
rx(4 DOWNTO 0) :="11111"
rx(19 DOWNTO 5) := reaction7;
ELSIF (selection = "01000") THEN
rx(4 DOWNTO 0) :="11111";
rx(19 DOWNTO 5) := reaction8;
ELSIF (selection = "01001") THEN
rx(4 DOWNTO 0) :="11111",
rx(19 DOWNTO 5) := reaction9;
ELSIF (selection = "01010") THEN
rx(4 DOWNTO 0) :="11111"
rx(19 DOWNTO 5) := reaction10;
ELSIF (selection ="01011") THEN
rx(4 DOWNTO 0) :="11111";
rx(19 DOWNTO 5) :=reactionl1;
ELSIF (selection ="01100") THEN
rx(4 DOWNTO 0) :="11111";
rx(19 DOWNTO 5) :=reaction12;
ELSIF (selection = "01101") THEN
rx .= reaction13;
ELSIF (selection ="01110") THEN
rx := reaction14;
ELSIF (selection = "01111") THEN
rx .= reaction15;
ELSIF (selection = "10000") THEN
rx := reaction16;
ELSIF (selection = "10001") THEN
rx := reactionl7;
ELSIF (selection = "10010") THEN
rx .= reaction18;
ELSIF (selection ="10011") THEN
rx := reaction19;
ELSIF (selection ="10100") THEN
rx ;= reaction20;
ELSE
rx(4 DOWNTO 0) := reaction21(9 DOWNTO 5);
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rx(19 DOWNTO 5) := reaction21;

END IF;

IF (rx(9) /="1") THEN
CASE rx(8 DOWNTO 5) IS

END IF;

WHEN X"0" => newsp0
WHEN X"1" => newspl
WHEN X"2" => newsp2

WHEN X"3" => newsp3 :
WHEN X"4" => newsp4 :

WHEN X"5" => newsp5
WHEN X"6" => newsp6
WHEN X"7" => newsp7
WHEN X"8" => newsp8
WHEN X"9" => newsp9

= newspoO - 1;
‘= newspl-1;
‘= newsp2 - 1;
newsp3 - 1;
newsp4 - 1;
‘= newsp5 - 1;
‘= newspo6 - 1;
‘= newsp7 -1;
‘= newsp8 - 1;
‘= newsp9 - 1;

WHEN X"A" => newsp10 := newsp10 - 1;
WHEN X"B" => newspll := newspll - 1,
WHEN X"C" => newspl12 := newspl2 - 1;
WHEN X"D" => newspl13 := newspl3 - 1;
WHEN X"E" => newsp14 := newspl4 - 1,
WHEN others => newsp15 := newsp15 - 1;
END CASE;

IF (rx(4) /="1") THEN
CASE rx(3 DOWNTO 0) IS

WHEN X"0" => newsp0

WHEN X"1" => newspl :
WHEN X"2" => newsp2 :

WHEN X"3" => newsp3
WHEN X"4" => newsp4

WHEN X"5" => newsp5 :
WHEN X"6" => newspb6 :

WHEN X"7" => newsp7
WHEN X"8" => newsp8
WHEN X"9" => newsp9

= newspoO - 1;
newspl - 1;
newsp2 - 1;
‘= newsp3 - 1;
‘= newsp4 - 1;
newspsS - 1;
newspo6 - 1;
‘= newsp7 -1;
‘= newsps8 - 1;
‘= newsp9 - 1;

WHEN X"A" => newsp10 := newsp10 -
WHEN X"B" => newspll := newspll -

WHEN X"D" => newsp13:

newspl3 -

WHEN X"E" => newspl14 := newspl4 -

1
1
WHEN X"C" => newspl12 := newspl2 - 1;
1

WHEN others => newsp15 := newspl15

END CASE;

END IF;

IF (rx(19) /= '1') THEN
CASE rx(18 DOWNTO 15) IS

WHEN X"0" => newsp0
WHEN X"1" => newspl
WHEN X"2" => newsp2

WHEN X"3" => newsp3 :
WHEN X"4" => newsp4 :

WHEN X"5" => newsp5
WHEN X"6" => newsp6
WHEN X"7" => newsp7
WHEN X"8" => newsp8
WHEN X"9" => newsp9

1;

= newsp0 + 1;
‘= newspl +1;
‘= newsp2 + 1;
newsp3 + 1;
newsp4 + 1;
‘= newspS + 1;
‘= newsp6 + 1;
‘= newsp7 +1;
‘= newsp8 + 1;
‘= newsp9 + 1;

WHEN X"A" => newsp10 := newsp10 + 1;
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WHEN X"B" => newspll := newspll + 1,
WHEN X"C" => newspl2 := newspl2 + 1,
WHEN X"D" => newsp13 := newspl3 + 1,
WHEN X"E" => newsp14 := newspl4 + 1;
WHEN others => newsp15 := newspl15 + 1;
END CASE;
END IF;
IF (rx(14) /="'1") THEN
CASE rx(13 DOWNTO 10) IS
WHEN X"0" => newspO0 := newsp0 + 1;
WHEN X"1" => newspl := newspl + 1;
WHEN X"2" => newsp2 := newsp2 + 1;
WHEN X"3" => newsp3 := newsp3 + 1;
WHEN X"4" => newsp4 := newsp4 + 1;
WHEN X"5" => newsp5 := newsp5 + 1;
WHEN X"6" => newsp6 := newsp6 + 1;
WHEN X"7" => newsp7 := newsp7 + 1;
WHEN X"8" => newsp8 := newsp8 + 1;
WHEN X"9" => newsp9 := newsp9 + 1;
WHEN X"A" => newsp10 := newsp10 + 1;
WHEN X"B" => newspll := newspll + 1,
WHEN X"C" => newspl2 := newspl2 + 1,
WHEN X"D" => newsp13 := newspl3 + 1,
WHEN X"E" => newsp14 := newspl4 + 1;
WHEN others => newsp15 := newspl15 + 1;
END CASE;
END IF;

newspecies0 <= newsp0;
newspeciesl <= newspl;
newspecies2 <= newsp2;
newspecies3 <= newsp3;
newspecies4 <= newsp4;
newspecies5 <= newsp5;
newspeciesé <= newspe;
newspecies7 <= newsp7;
newspecies8 <= newsps;
newspecies9 <= newsp9;
newspecies10 <= newspl0;
newspeciesll <= newspl1l;
newspecies12 <= newspl2;
newspecies13 <= newspl3;
newspeciesl4 <= newspl4;
newspeciesl5 <= newspl5;
END IF;
END PROCESS;
END rtl;
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Ifsr32.vhd [17]

library ieee;

library work;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity Ifsr32 is

port (iin_clock :in std_logic;
in_reset :in std_logic;
in_seed :in std_logic_vector(31 down

out_random_number : out std_logic_vector(31 dow
end entity Ifsr32;

architecture a of Ifsr32 is
begin
process(in_clock)
variable var_current_number : std_logic_vector(
variable var_startup : natural;
variable var_next_bit : std_logic;
begin
if (in_clock ='1" and in_clock'event) then
if (in_reset="1" or var_startup=0) then
var_current_number :=in_seed;
var_startup := 1;
else
var_next_bit := var_current_number(0) XOR
var_current_number(26) XOR
var_current_number(27) XOR
var_current_number(31);
var_current_number(31 downto 1) := var_current_num
0);
var_current_number(0) := var_next_bit;
end if;
out_random_number <= var_current_number;
end if;
end process;
end architecture a;
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Appendix B

Register Based Design C++

hw.cc

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <math.h>
#include <iostream>
#include <cstdlib>
#include "iflib.h"

using namespace std;

#define NULLSPECIES 31
#define NMAX 16

#define MMAX 22

#define PMAX 4095
#define KMAX 65535

class CR{
public:
unsigned int reactants,products,fpk;
double k;
unsigned int *renum,*rewt,*prnum,*prwt;

3

char *memp;

int64 data;

int fd,tprop[250],rxselect[250];

unsigned int n,m,seed,*X,iterations,num,*mon,thecou
CR*R;

double thetime,tau;

FILE *outFile;

void init(void) {
fd = open(DEVICE, O_RDWR);

nt;

memp = (char *)mmap(NULL, MTRRZ, PROT_READ, MAP_PR

if (memp == MAP_FAILED) {
perror(DEVICE);
exit(1);

srand(time(NULL));
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/I Prints a number in Binary

void printBinary(unsigned int val,int index){
int count;
char chars[64];

for(count=0;count<64;count++){
chars[count]='0";

}

count = 0;

dof
if(val % 2 == 0) chars[count++] ='0';
else chars[count++] = '1";
val =val/ 2;

twhile(val);

count=index-1;

while(count >= 0){
if((count+1) % 4 == 0) printf(" ");
printf("%c", chars[count--]);

printf("\n");
}

void setspeciespop(int index, int value){
if(index < 4){
if(value > 1) value = 1;
}

data.w[1] = (0x1<<28) + (index<<23);
data.w[0] = value;
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

}

int readspeciespop(int index){
data.w[1] = (0x2<<28) + (index<<23);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
return (data.w[0] & OxFFF);

}

void setreaction(int index, int reactantl, int reac
int product2, int rate){
if((index<13)||(index==21)}{
data.w[1] = (0x3<<28) + (index<<23);
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data.w[0] = (product1<<26) + (product2<<21) +
(reactant2<<16) + rate;

}

else{
data.w[1] = (0x3<<28) + (index<<23) + (productl<<
product2;
data.w[0] = (reactantl<<21) + (reactant2<<16) + r

}
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

}

int readreaction(int index){
data.w[1] = (0x4<<28) + (index<<24);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
return (((data.w[1]<<10) + (data.w[0]>>16)) & OxFF

}

int readpropensity(int index){
data.w[1] = (0x6<<28) + (index<<24);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
[Ireturn (((data.w[1]<<24) + data.w[0]>>8) & OxXFFF
return data.w[0];

}

int readsum(void){
data.w[1] = (0x7<<28);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
[Ireturn (((data.w[1]<<24) + data.w[0]>>8) & OxXFFF
return data.w[0];
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}

void setseed(int seed){

}

data.w[1] = (0x8<<28);
data.w[0] = seed;
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

unsigned int readURV(void){

}

data.w[1] = (0x9<<28);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
return (data.w[0]);

void nextURV(void){

}

data.w[1] = (0xA<<28);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

unsigned int readproduct(void){

}

data.w[1] = (0xB<<28);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
return (data.w[0]);

int readrxselected(void){

data.w[1] = (0xC<<28);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){
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read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
return (data.w[0] & OxF);
}

void updatespecies(void){
data.w[1] = (0xD<<28);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){
read64(&data, memp+(0<<3));

}

}

void printresults(void){
inti};

for(i=0;i<250;i++){

if(tpropli]==-1) break;
thetime+=(-

1/(double)tpropli])*log((double)rand()/(double)RAND
/I Update species populations
for(j=0;j<R[rxselect[i]].reactants;j++){

X[R[rxselect[i]].renum[j]]-=R[rxselect][i]].rewt]

}

for(j=0;j<R[rxselect[i]].products;j++){
X[R[rxselect[i]].prnum[j]]+=R[rxselect][i]].prwt|

/-k
fprintf(outFile,"%6d %8.6lf",thecount,thetime);
for(j=0;j<num;j++){

fprintf(outFile," %4u",X[monlj]]);

fprintf(outFile,"\n");
thecount++;
*/

void step(int runs){
int i,a=0;

while(runs>0){
/I Tell FPGA to begin executing reactions
data.w[1] = (OXE<<28);
if(runs>=250) data.w[0] = 252;
else data.w[0] = runs + 2;
write64(data, memp+(0<<3));
/I Print previous results, on first pass there ar
previous results to print
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if(a==1) printresults();
else a=1;
/I Wait until FPGA is done
read64(&data, memp+(0<<3));
while(data.w[1]'=0x0){

read64(&data, memp+(0<<3));
}

/I Update total propensity and reaction selected arrays
[if(runs>=250){
for(i=2;i<252;i++){
read64(&data, memp+(i<<3));
tprop[i-2] = data.w[1];
rxselect[i-2] = data.w[0];

/*
}
else{
for(i=2;i<2+runs;i++){
read64(&data, memp+(i<<3));
tprop[i-2] = data.wl[1];
rxselect[i-2] = data.w[0];
}
tprop[i] = -1;

*/
runs-=250;

printresults();

}
int main (int argc, char **argv)

L

int
species[16],i,j,k,l,x,reaction[16],propensity[16],s um,selection,reacdat
a[4];

unsigned int kl_int,MF=1,URV,product;

double kI=1.0,y;

char temp[51],c=65;

FILE *inFile;

struct timeval ts,te;

outFile = fopen("results.txt","wt");

if(argc>2){
fprintf(stderr,"ERROR! Expected usage: ./rchw [m odel
filel\n");
exit(1);

}
if(argc==2) strcpy(temp,argv[1]);
else{
printf("Please enter the name of the model file t o read
from: ");
if(fgets(temp,50,stdin)==NULL){ printf("\n"); exi t(0); }
temp([strlen(temp)-1]="\0;
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inFile = fopen(temp,"r");

while(inFile == NULL){
fprintf(stderr,"ERROR! Unable to open: %s\n",tem
printf("Please enter the name of the model file t

from: ");
if(fgets(temp,50,stdin)==NULL){ printf("\n"); exi
temp([strlen(temp)-1]="\0";
inFile = fopen(temp,"r");
}
init();

/I Clear BRAM

for(i=0;i<255;i++){
data.w[1] = OxO;
data.w[0] = OxO0;
write64(data, memp+(i<<3));

}

gettimeofday(&ts,NULL);

/I READ IN VARIABLES
fscanf(inFile,"%u",&n);
if(N>NMAX){
fprintf(stderr,"ERROR! Number of species exceeds
%d\n",NMAX);

}
X = new unsigned int[n];
for(i=0;i<n;i++){
fscanf(inFile,"%u",&X[i]);
if((i<4)&&(X[i]>1)){
X[i]=1;
fprintf(stderr,"WARNING! Species 0->3 are one b
so species %d has been set to 1\n",i);

exit(1);

}
if((i>3)&&(X[i]>PMAX)){
X[]=PMAX;
fprintf(stderr,"WARNING! Species 4->15 are twel
bits, so species %d has been set to %d\n",i, PMAX);
}
}
fscanf(inFile,"%u",&m);
if(m>MMAX)
fprintf(stderr,"ERROR! Number of reactions excee

of %d\n",MMAX);
exit(1);

}

R = new CR[m];

for(i=0;i<m;i++){
fscanf(inFile,"%d",&R][i].reactants);
R[i].renum = new unsigned int[R[i].reactants];
R[i].rewt = new unsigned int[R][i].reactants];
k=0;
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for(j=0;j<R[i].reactants;j++){
fscanf(inFile,"%u",&R[i].rewt([j]);
k+=R[i].rewt[j];
fscanf(inFile,"%u",&R[i].renumlj]);

}
if(k>2){
fprintf(stderr,"ERROR! Number of reactants in
reaction %d exceeds maximum of 2\n",i);
exit(1);

}
if((i<4)&&(k>1)){
fprintf(stderr,"ERROR! Reactions 0->3 have a li
of 1 reactant, reaction %d exceeds that\n",i);
exit(1);

}

fscanf(inFile,"%d",&R][i].products);

R[i].prnum = new unsigned int[R[i].products];

R[i].prwt = new unsigned int[R[i].products];

k=0;

for(j=0;j<R[i].products;j++){
fscanf(inFile,"%u",&R[i].prwt[j]);
k+=R{[i].rewt[j];
fscanf(inFile,"%u",&R][i].prnum(j]);

}
if(k>2){
fprintf(stderr,"ERROR! Number of products in
reaction %d exceeds maximum of 2\n",i);
exit(1);
}

fscanf(inFile,"%lf",&R([i].k);
y=R{[i].k - (unsigned int)(R[i].k);
if((y>0) && (y<kl)) ki=y;

}
if(fscanf(inFile,"%u",&num)==EOF){
num=n;
mon=new unsigned intfnum];
for(i=0;i<num;i++){ mon([i]=i; }
seed=-1-(time(NULL));
iterations=1000000;

else{

mon=new unsigned intfnum];

for(i=0;i<num;i++){ fscanf(inFile,"%u",&monli]);

if(fscanf(inFile,"%u",&seed)==EOF){
seed=-1-(time(NULL));
iterations=1000000;

}

else{
if(fscanf(inFile,"%u",&iterations)==EOF){

iterations=1000000; }

}
}
/I Determine multiplication factor of k in order t

point notation
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if(kl < 1){
MF = 10000000;
if(kl < 0.0000001){
MF = (unsigned int)(1.0/kl);
}

kl_int = (unsigned int)(kl * MF);
if((unsigned int)(kl * MF * 10)%10 >=5) kl_int += 1;
for(i=0;i<6;i++){

if(kl_int %10 > 0) break;

MF /= 10;

KI_int /= 10;

}

//Update fixed point k values for each reaction
for(i=0;i<m;i++){
R[i].fpk = (unsigned int)(R[i].k * MF);
if((unsigned int)(R[i].k*MF * 10)%10 >= 5) R]i].f pk +=1;
if(R[i].fok>KMAX){
fprintf(stderr,"ERROR! Rate constant of reactio n %d
exceeds maximum of %d\n",i, KMAX);
exit(1);
}

}

setseed(seed);
thecount = 0;
thetime = 0.0;

/*
fprintf(outFile,"%6d %38.6lf",thecount,thetime);
for(j=0;j<num;j++){

fprintf(outFile," %6u”,X[monli]]);

}
fprintf(outFile,"\n");
thecount++;

*/

/I Send initial species populations

for(i=0;i<n;i++){
setspeciespop(i,X[i]);

}

for(i;i<NMAX;i++){
setspeciespop(i,0);
}

/I Send reaction equations
for(i=0;i<m;i++){
for(j=0;j<4;j++){ reacdata[j]J=NULLSPECIES; }
i=0;
for(k=0;k<R[i].reactants;k++){
for(I=0;I<R[i].rewt[k];I++){
reacdata[j++]=R[i].renum[K];
}
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if(reacdata[1]J==NULLSPECIES){
reacdata[1l]=reacdatal0];
reacdata[0]=NULLSPECIES;

}
=2;
for(k=0;k<R([i].products;k++){
for(1=0;I<R[i].prwt[K];I++){
reacdata[j++]=R[i].prnum[K];
}

}

setreaction(i,reacdata[0],reacdata[1],reacdata[2], reacdata[3],R]i
1.fpk);

}
for(i;i<MMAX;i++){

setreaction(i, NULLSPECIES,NULLSPECIES,NULLSPECIES, NULLSPECIES,0);
}

step(iterations);

gettimeofday(&te,NULL);

printf("Run Time: %f\n",(double)(te.tv_sec-
ts.tv_sec)+0.000001*(double)(te.tv_usec-ts.tv_usec) );

for(i=0;i<n;i++){

printf("Species %d: %d\n",i,readspeciespop(i));

}

munmap(memp, MTRRZ);

close(fd);

return O;
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Appendix C
BRAM Based Design VHDL

parith.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY parith IS
PORT ( clk :INSTD_LOGIC;
we : OUT STD_LOGIC;
addr :OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
din : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
dout :IN STD_LOGIC_VECTOR(63 DOWNTO 0));
END parith;

ARCHITECTURE rtl OF parith IS

COMPONENT Ifsr32

PORT (
in_clock :IN STD_LOGIC;
in_reset :IN STD_LOGIC;
in_seed :IN STD_LOGIC_VECTOR(31 DOWNTO 0);

out_random_number : OUT STD_LOGIC_VECTOR(31 DOWNT 00));
END COMPONENT;

COMPONENT exp_rand
PORT (
in_clock :IN STD_LOGIC;
out_uniform_number : OUT STD_LOGIC_VECTOR(31 DOWN TO
0);
out_random_number : OUT STD_LOGIC_VECTOR(31 DOWNT 00));
END COMPONENT;

COMPONENT sumprop
PORT (

clk 1IN STD_LOGIC;

PSUM1 :IN STD_LOGIC_VECTOR(47 DOWNTO 0);

PSUM2 :IN STD_LOGIC_VECTOR(47 DOWNTO 0);

PSUMS3 :IN STD_LOGIC_VECTOR(47 DOWNTO 0);

PSUM4 :IN STD_LOGIC_VECTOR(47 DOWNTO 0);

PSUMS5 :IN STD_LOGIC_VECTOR(47 DOWNTO 0);

PSUMG6 :IN STD_LOGIC_VECTOR(47 DOWNTO 0);

PSUM7 :IN STD_LOGIC_VECTOR(47 DOWNTO 0);

PSUMS8 :IN STD_LOGIC_VECTOR(47 DOWNTO 0);

TOTAL2 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTALS3 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTAL4 : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTALS : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTALG : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTALY : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
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TOTALS : OUT STD_LOGIC_VECTOR(47 DOWNTO 0) );
END COMPONENT;

COMPONENT propcalc

PORT (
clk :IN STD_LOGIC;
POP1 - IN STD_LOGIC_VECTOR(15 DOWNTO 0);
POP2 - IN STD_LOGIC_VECTOR(15 DOWNTO 0):
RX - IN STD_LOGIC_VECTOR(47 DOWNTO 0);

PROPENSITY :OUT STD_LOGIC_VECTOR(47 DOWNTO 0) );
END COMPONENT;

COMPONENT dpram16_128
PORT (

addra : IN STD_LOGIC_VECTOR(6 DOWNTO 0);
addrb : IN STD_LOGIC_VECTOR(6 DOWNTO 0);
clka :IN STD_LOGIC;
clkb :IN STD_LOGIC;
dina :IN STD_LOGIC_VECTOR(15 DOWNTO 0);
dinb :IN STD_LOGIC_VECTOR(15 DOWNTO 0);
douta : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
doutb : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
wea :IN STD_LOGIC,;
web :IN STD_LOGIC);

END COMPONENT;

COMPONENT dpram48_64
PORT (

addra : IN STD_LOGIC_VECTOR(5 DOWNTO 0);
addrb : IN STD_LOGIC_VECTOR(5 DOWNTO 0);
clka :IN STD_LOGIC;
clkb :IN STD_LOGIC;
dina :IN STD_LOGIC_VECTOR(47 DOWNTO 0);
dinb :IN STD_LOGIC_VECTOR(47 DOWNTO 0);
douta : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
doutb : OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
wea :IN STD_LOGIC;
web :IN STD_LOGIC);

END COMPONENT;

SIGNAL s_lIfsr_enable : STD_LOGIC;

SIGNAL s_Ifsr_reset : STD_LOGIC;

SIGNAL s_seed : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL s_URV : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL s_rxselect : STD_LOGIC_VECTOR(5 DOWNTO 0);

SIGNAL s_ERV_URV : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL s_ERV : STD_LOGIC_VECTOR(31 DOWNTO 0);

SIGNAL SP1la_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP1a_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP1a_douta : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPla_wea - STD_LOGIC;

SIGNAL SP1la_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SP1a_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP1a_doutb : STD_LOGIC_VECTOR(15 DOWNTO 0);
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SIGNAL SP1a_web

SIGNAL SP1b_addra:
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP1b_dina

SIGNAL SP1b_douta :

SIGNAL SP1b_wea

SIGNAL SP1b_addrb :
- STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP1b_dinb

SIGNAL SP1b_doutb :

SIGNAL SP1b_web

SIGNAL SP2a_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP2a_dina

SIGNAL SP2a_douta :

SIGNAL SP2a_wea

SIGNAL SP2a_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP2a_dinb

SIGNAL SP2a_doutb :

SIGNAL SP2a_web

SIGNAL SP2b_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP2b_dina

SIGNAL SP2b_douta :

SIGNAL SP2b_wea

SIGNAL SP2b_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP2b_dinb

SIGNAL SP2b_doutb :

SIGNAL SP2b_web

SIGNAL SP3a_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP3a_dina

SIGNAL SP3a _douta :

SIGNAL SP3a_wea

SIGNAL SP3a_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP3a_dinb

SIGNAL SP3a_doutb :

SIGNAL SP3a_web

SIGNAL SP3b_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP3b_dina

SIGNAL SP3b_douta :

SIGNAL SP3b_wea

SIGNAL SP3b_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP3b_dinb

SIGNAL SP3b_doutb :

SIGNAL SP3b_web

SIGNAL SP4a_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP4a_dina

SIGNAL SP4a _douta :

SIGNAL SP4a_wea

SIGNAL SP4a_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP4a_dinb

SIGNAL SP4a_doutb :

SIGNAL SP4a_web

: STD_LOGIC;
STD_LOGIC_VECTOR(6 DOWNTO 0);
STD_LOGIC_VECTOR(15 DOWNTO 0);

: STD_LOGIC;
STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC,;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;
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SIGNAL SP4b_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP4b_dina

SIGNAL SP4b_douta :

SIGNAL SP4b_wea

SIGNAL SP4b_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP4b_dinb

SIGNAL SP4b_doutb :

SIGNAL SP4b_web

SIGNAL SP5a_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP5a_dina

SIGNAL SP5a_douta :

SIGNAL SP5a_wea

SIGNAL SP5a_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5a_doutb :

SIGNAL SP5a_dinb

SIGNAL SP5a_web

SIGNAL SP5b_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5b_douta :

SIGNAL SP5b_dina

SIGNAL SP5b_wea

SIGNAL SP5b_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP5b_doutb :

SIGNAL SP5b_dinb

SIGNAL SP5b_web

SIGNAL SP6a_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6a_douta :

SIGNAL SP6a_dina

SIGNAL SP6a_wea

SIGNAL SP6a_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6a_doutb :

SIGNAL SP6a_dinb

SIGNAL SP6a_web

SIGNAL SP6b_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SP6b_douta :

SIGNAL SP6b_dina

SIGNAL SP6b_wea

SIGNAL SP6b_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP6b_dinb

SIGNAL SP6b_doutb :

SIGNAL SP6b_web

SIGNAL SP7a_addra :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP7a_dina

SIGNAL SP7a_douta :

SIGNAL SP7a_wea

SIGNAL SP7a_addrb :
: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SP7a_dinb

SIGNAL SP7a_doutb :

SIGNAL SP7a_web

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC,;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

STD_LOGIC_VECTOR(6 DOWNTO 0);

STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC,;
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SIGNAL SP7b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SP7b_dina : STD_
SIGNAL SP7b_douta : STD_

SIGNAL SP7b_wea

LOGIC_VECTOR(15 DOWNTO 0);
LOGIC_VECTOR(15 DOWNTO 0):
- STD_LOGIC;

SIGNAL SP7b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SP7b_dinb : STD_
SIGNAL SP7b_doutb : STD_

SIGNAL SP7b_web

LOGIC_VECTOR(15 DOWNTO 0);
LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;

SIGNAL SP8a_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SP8a _dina :STD_
SIGNAL SP8a douta : STD_|

SIGNAL SP8a_wea

LOGIC_VECTOR(15 DOWNTO 0);
LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;

SIGNAL SP8a_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SP8a_dinb : STD_
SIGNAL SP8a_doutb : STD_

SIGNAL SP8a_web

LOGIC_VECTOR(15 DOWNTO 0);
LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

SIGNAL SP8b_addra : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SP8b_dina : STD_
SIGNAL SP8b_douta : STD_

SIGNAL SP8b_wea

LOGIC_VECTOR(15 DOWNTO 0);
LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

SIGNAL SP8b_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SP8b_dinb : STD_
SIGNAL SP8b_doutb : STD_

SIGNAL SP8b_web

SIGNAL SPUS1_addra

LOGIC_VECTOR(15 DOWNTO 0);
LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;

: STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SPUS1_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SPUS1_douta
SIGNAL SPUS1_wea
SIGNAL SPUS1_addrb

: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;
: STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SPUS1_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SPUS1_doutb
SIGNAL SPUS1_web
SIGNAL SPUS2_addra

: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;
: STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SPUS2_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SPUS2_douta
SIGNAL SPUS2_wea
SIGNAL SPUS2_addrb

- STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;
: STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SPUS2_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SPUS2_doutb
SIGNAL SPUS2_web
SIGNAL SPUS3_addra

: STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC;
- STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SPUS3_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SPUS3_douta
SIGNAL SPUS3_wea
SIGNAL SPUS3_addrb

: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;
: STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SPUS3_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SPUS3_doutb
SIGNAL SPUS3_web
SIGNAL SPUS4 _addra

: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;
: STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SPUS4_dina : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SPUS4_douta
SIGNAL SPUS4_wea

: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC;
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SIGNAL SPUS4_addrb : STD_LOGIC_VECTOR(6 DOWNTO 0);
SIGNAL SPUS4_dinb : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS4_doutb - STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL SPUS4_web - STD_LOGIC;

SIGNAL RX1_addra
SIGNAL RX1_dina
SIGNAL RX1_douta
SIGNAL RX1_wea
SIGNAL RX1_addrb
SIGNAL RX1_dinb
SIGNAL RX1_douth
SIGNAL RX1_web
SIGNAL RX2_addra
SIGNAL RX2_dina
SIGNAL RX2_douta
SIGNAL RX2_wea
SIGNAL RX2_addrb
SIGNAL RX2_dinb
SIGNAL RX2_douth
SIGNAL RX2_web
SIGNAL RX3_addra
SIGNAL RX3_dina
SIGNAL RX3_douta
SIGNAL RX3_wea
SIGNAL RX3_addrb
SIGNAL RX3_dinb
SIGNAL RX3_doutb
SIGNAL RX3_web
SIGNAL RX4_addra
SIGNAL RX4_dina
SIGNAL RX4_douta
SIGNAL RX4_wea
SIGNAL RX4_addrb
SIGNAL RX4_dinb
SIGNAL RX4_douth
SIGNAL RX4_web
SIGNAL RX5_addra
SIGNAL RX5_dina
SIGNAL RX5_douta
SIGNAL RX5_wea
SIGNAL RX5_addrb
SIGNAL RX5_dinb
SIGNAL RX5_doutb
SIGNAL RX5_web
SIGNAL RX6_addra
SIGNAL RX6_dina
SIGNAL RX6_douta
SIGNAL RX6_wea
SIGNAL RX6_addrb
SIGNAL RX6_dinb
SIGNAL RX6_douth
SIGNAL RX6_web
SIGNAL RX7_addra
SIGNAL RX7_dina

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
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SIGNAL RX7_douta
SIGNAL RX7_wea
SIGNAL RX7_addrb
SIGNAL RX7_dinb
SIGNAL RX7_douth
SIGNAL RX7_web
SIGNAL RX8_addra
SIGNAL RX8_dina
SIGNAL RX8_douta
SIGNAL RX8_ wea
SIGNAL RX8_addrb
SIGNAL RX8_dinb
SIGNAL RX8_doutb
SIGNAL RX8 web

SIGNAL RXUS_addra :
: STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RXUS_douta :

SIGNAL RXUS_dina

SIGNAL RXUS_wea

SIGNAL RXUS_addrb :
: STD_LOGIC_VECTOR(47 DOWNTO 0);
SIGNAL RXUS_doutb :

SIGNAL RXUS_dinb

SIGNAL RXUS_web

SIGNAL P1_addra
SIGNAL P1_dina
SIGNAL P1_douta
SIGNAL P1_wea
SIGNAL P1_addrb
SIGNAL P1_dinb
SIGNAL P1_doutb
SIGNAL P1_web
SIGNAL P2_addra
SIGNAL P2_dina
SIGNAL P2_douta
SIGNAL P2_wea
SIGNAL P2_addrb
SIGNAL P2_dinb
SIGNAL P2_doutb
SIGNAL P2_web
SIGNAL P3_addra
SIGNAL P3_dina
SIGNAL P3_douta
SIGNAL P3_wea
SIGNAL P3_addrb
SIGNAL P3_dinb
SIGNAL P3_doutb
SIGNAL P3_web
SIGNAL P4_addra
SIGNAL P4 _dina
SIGNAL P4_douta
SIGNAL P4_wea
SIGNAL P4_addrb
SIGNAL P4 _dinb
SIGNAL P4_doutb
SIGNAL P4_web

: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

- STD_LOGIC;
STD_LOGIC_VECTOR(5 DOWNTO 0);

STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC;
STD_LOGIC_VECTOR(5 DOWNTO 0);

STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC,;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;
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SIGNAL P5_addra
SIGNAL P5_dina
SIGNAL P5_douta
SIGNAL P5_wea
SIGNAL P5_addrb
SIGNAL P5_dinb
SIGNAL P5_doutb
SIGNAL P5_web
SIGNAL P6_addra
SIGNAL P6_dina
SIGNAL P6_douta
SIGNAL P6_wea
SIGNAL P6_addrb
SIGNAL P6_dinb
SIGNAL P6_doutb
SIGNAL P6_web
SIGNAL P7_addra
SIGNAL P7_dina
SIGNAL P7_douta
SIGNAL P7_wea
SIGNAL P7_addrb
SIGNAL P7_dinb
SIGNAL P7_doutb
SIGNAL P7_web
SIGNAL P8 addra
SIGNAL P8 _dina
SIGNAL P8 douta
SIGNAL P8 _wea
SIGNAL P8_addrb
SIGNAL P8_dinb
SIGNAL P8_doutb
SIGNAL P8_web

SIGNAL PSUM1_1
SIGNAL PSUM1_2
SIGNAL PSUM2_1
SIGNAL PSUM2_2
SIGNAL PSUMS_1
SIGNAL PSUMS3_2
SIGNAL PSUM4_1
SIGNAL PSUM4_2
SIGNAL PSUM5_1
SIGNAL PSUMS5_2
SIGNAL PSUMG6_1
SIGNAL PSUM6_2
SIGNAL PSUM7_1
SIGNAL PSUM7_2
SIGNAL PSUMS8_1
SIGNAL PSUMS8_2
SIGNAL TPROP2

SIGNAL TPROP3

SIGNAL TPROP4

SIGNAL TPROPS

SIGNAL TPROPG6

SIGNAL TPROP7

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC,;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC,;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC,;

: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC;

- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
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SIGNAL TPROPS8

SIGNAL LBOUND_1
SIGNAL LBOUND_2
SIGNAL LBOUND_3
SIGNAL LBOUND_4
SIGNAL LBOUND_5
SIGNAL LBOUND_6
SIGNAL LBOUND_7
SIGNAL LBOUND_8

SIGNAL PC1_POP1
SIGNAL PC1_POP2
SIGNAL PC1_RX

SIGNAL PC1_PROP
SIGNAL PC2_POP1
SIGNAL PC2_POP2
SIGNAL PC2_RX

SIGNAL PC2_PROP
SIGNAL PC3_POP1
SIGNAL PC3_POP2
SIGNAL PC3_RX

SIGNAL PC3_PROP
SIGNAL PC4_POP1
SIGNAL PC4_POP2
SIGNAL PC4_RX

SIGNAL PC4_PROP
SIGNAL PC5_POP1
SIGNAL PC5_POP2
SIGNAL PC5_RX

SIGNAL PC5_PROP
SIGNAL PC6_POP1
SIGNAL PC6_POP2
SIGNAL PC6_RX

SIGNAL PC6_PROP
SIGNAL PC7_POP1
SIGNAL PC7_POP2
SIGNAL PC7_RX

SIGNAL PC7_PROP
SIGNAL PC8_POP1
SIGNAL PC8_POP2
SIGNAL PC8_RX

SIGNAL PC8_PROP

SIGNAL R1lI
SIGNAL R1V
SIGNAL R2I
SIGNAL R2V
SIGNAL P1l
SIGNAL P1V
SIGNAL P2I
SIGNAL P2V

SIGNAL product

: STD_LOGIC_VECTOR(47 DOWNTO 0);

- STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(5 DOWNTO 0);
- STD_LOGIC_VECTOR(5 DOWNTO 0):
- STD_LOGIC_VECTOR(5 DOWNTO 0);
: STD_LOGIC_VECTOR(5 DOWNTO 0);

: STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(47 DOWNTO 0);

- STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(47 DOWNTO 0);

- STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(47 DOWNTO 0);

: STD_LOGIC_VECTOR(6 DOWNTO 0);

: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(6 DOWNTO 0);

: STD_LOGIC_VECTOR(15 DOWNTO 0);
- STD_LOGIC_VECTOR(6 DOWNTO 0);

: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(6 DOWNTO 0);

: STD_LOGIC_VECTOR(15 DOWNTO 0);

: STD_LOGIC_VECTOR(79 DOWNTO 0);
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BEGIN

ERV

);

s exp_rand PORT MAP (

in_clock => clk,
out_uniform_number =>s_ERV_URYV,
out_random_number =>s_ERV

2 Ifsr32 PORT MAP (

in_clock =>s_Ifsr_enable,
in_reset =>s_Ifsr_reset,
in_seed =>s_seed,
out_random_number =>s URV

SPladpram : dpram16_ 128 PORT MAP (

);

addra => SP1a_addra,
addrb => SPla_addrb,
clka => clk,

clkb => clk,

dina => SP1a_dina,
dinb => SP1a_dinb,
douta => SP1a_douta,
doutb => SP1a_doutb,
wea => SPla_wea,
web => SPla web

SP1bdpram : dpram16_128 PORT MAP (

);

addra => SP1b_addra,
addrb => SP1b_addrb,
clka => clk,

clkb => clk,

dina => SP1b_dina,
dinb => SP1b_dinb,
douta => SP1b_douta,
doutb => SP1b_doutb,
wea => SP1b_wea,
web => SP1b_web

SP2adpram : dpram16_128 PORT MAP (

);

addra => SP2a_addra,
addrb => SP2a_addrb,
clka => clk,

clkb => clk,

dina => SP2a_dina,
dinb => SP2a_dinb,
douta => SP2a_douta,
doutb => SP2a_doutb,
wea => SP2a_wea,
web => SP2a_web

SP2bdpram : dpram16_128 PORT MAP (
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addra => SP2b_addra,
addrb => SP2b_addrb,
clka => clk,

clkb => clk,

dina => SP2b_dina,
dinb => SP2b_dinb,
douta => SP2b_douta,
doutb => SP2b_doutb,
wea => SP2b_wea,
web => SP2b_web

);

SP3adpram : dpram16_128 PORT MAP (
addra => SP3a_addra,
addrb => SP3a_addrb,
clka => clk,
clkb => clk,
dina => SP3a_dina,
dinb => SP3a_dinb,
douta => SP3a_douta,
doutb => SP3a_doutb,
wea => SP3a_wea,
web => SP3a_web

);

SP3bdpram : dpram16_128 PORT MAP (
addra => SP3b_addra,
addrb => SP3b_addrb,
clka => clk,
clkb => clk,
dina => SP3b_dina,
dinb => SP3b_dinb,
douta => SP3b_douta,
doutb => SP3b_doutb,
wea => SP3b_wea,
web => SP3b_web

);

SP4adpram : dpram16_128 PORT MAP (
addra => SP4a_addra,
addrb => SP4a_addrb,
clka => clk,
clkb => clk,
dina => SP4a_dina,
dinb => SP4a_dinb,
douta => SP4a_douta,
doutb => SP4a_doutb,
wea => SP4a_wea,
web => SP4a_web

);

SP4bdpram : dpram16_128 PORT MAP (
addra => SP4b_addra,
addrb => SP4b_addrb,
clka => clk,
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);

clkb => clk,

dina => SP4b_dina,
dinb => SP4b_dinb,
douta => SP4b_douta,
doutb => SP4b_doutb,
wea => SP4b_wea,
web => SP4b_web

SP5adpram : dpram16_128 PORT MAP (

);

addra => SP5a_addra,
addrb => SP5a_addrb,
clka => clk,

clkb => clk,

dina => SP5a_dina,
dinb => SP5a_dinb,
douta => SP5a_douta,
doutb => SP5a_doutb,
wea => SP5a_wea,
web => SP5a_web

SP5bdpram : dpram16_128 PORT MAP (

);

addra => SP5b_addra,
addrb => SP5b_addrb,
clka => clk,

clkb => clk,

dina => SP5b_dina,
dinb => SP5b_dinb,
douta => SP5b_douta,
doutb => SP5b_doutb,
wea => SP5b_wea,
web => SP5b_web

SP6adpram : dpram16_128 PORT MAP (

);

addra => SP6a_addra,
addrb => SP6a_addrb,
clka => clk,

clkb => clk,

dina => SP6a_dina,
dinb => SP6a_dinb,
douta => SP6a_douta,
doutb => SP6a_doutb,
wea => SP6a_wea,
web => SP6a_web

SP6bdpram : dpram16_128 PORT MAP (

addra => SP6b_addra,
addrb => SP6b_addrb,
clka => clk,

clkb => clk,

dina => SP6b_dina,
dinb => SP6b_dinb,
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douta => SP6b_douta,
doutb => SP6b_doutb,
wea => SP6b_wea,
web => SP6b_web

);

SP7adpram : dpram16_128 PORT MAP (
addra => SP7a_addra,
addrb => SP7a_addrb,
clka => clk,
clkb => clk,
dina => SP7a_dina,
dinb => SP7a_dinb,
douta => SP7a_douta,
doutb => SP7a_doutb,
wea => SP7a_wea,
web => SP7a_web

);

SP7bdpram : dpram16_128 PORT MAP (
addra => SP7b_addra,
addrb => SP7b_addrb,
clka => clk,
clkb => clk,
dina => SP7b_dina,
dinb => SP7b_dinb,
douta => SP7b_douta,
doutb => SP7b_doutb,
wea => SP7b_wea,
web => SP7b_web

);

SP8adpram : dpram16_128 PORT MAP (
addra => SP8a_addra,
addrb => SP8a_addrb,
clka => clk,
clkb => clk,
dina => SP8a_dina,
dinb => SP8a_dinb,
douta => SP8a_douta,
doutb => SP8a_doutb,
wea => SP8a_wea,
web => SP8a_web

);

SP8hdpram : dpram16_128 PORT MAP (

addra => SP8b_addra,

addrb => SP8b_addrb,

clka => clk,

clkb => clk,

dina => SP8b_dina,

dinb => SP8b_dinb,

douta => SP8b_douta,

doutb => SP8b_doutb,

wea => SP8b_wea,
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);

web => SP8b_web

SPUS1dpram : dpram16_128 PORT MAP (

);

addra => SPUS1_addra,
addrb => SPUS1_addrb,
clka => clk,

clkb => clk,

dina => SPUS1 _dina,
dinb => SPUS1_dinb,
douta => SPUS1_douta,
doutb => SPUS1_doutb,
wea => SPUS1 wea,
web => SPUS1_ web

SPUS2dpram : dpram16_128 PORT MAP (

);

addra => SPUS2_addra,
addrb => SPUS2_addrb,
clka => clk,

clkb => clk,

dina => SPUS2_dina,
dinb => SPUS2_dinb,
douta => SPUS2_douta,
doutb => SPUS2_doutb,
wea => SPUS2_wea,
web => SPUS2_web

SPUS3dpram : dpram16_128 PORT MAP (

);

addra => SPUS3_addra,
addrb => SPUS3_addrb,
clka => clk,

clkb => clk,

dina => SPUS3_dina,
dinb => SPUS3_dinb,
douta => SPUS3_douta,
doutb => SPUS3_doutb,
wea => SPUS3 wea,
web => SPUS3_web

SPUS4dpram : dpram16_128 PORT MAP (

addra => SPUS4 _addra,
addrb => SPUS4_addrb,
clka => clk,

clkb => clk,

dina => SPUS4 dina,
dinb => SPUS4_dinb,
douta => SPUS4 douta,
doutb => SPUS4_doutb,
wea => SPUS4_wea,
web => SPUS4_web
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RX1dpram : dpram48_ 64 PORT MAP (
addra => RX1_addra,
addrb => RX1_addrb,
clka => clk,
clkb => clk,
dina => RX1_dina,
dinb => RX1_dinb,
douta => RX1 douta,
doutb => RX1_doutb,
wea => RX1_wea,
web => RX1_web

);

RX2dpram : dpram48_64 PORT MAP (
addra => RX2_addra,
addrb => RX2_addrb,
clka => clk,
clkb => clk,
dina => RX2_dina,
dinb => RX2_dinb,
douta => RX2_douta,
doutb => RX2_doutb,
wea => RX2_wea,
web => RX2_web

)i

RX3dpram : dpram48_64 PORT MAP (
addra => RX3_addra,
addrb => RX3_addrb,
clka => clk,
clkb => clk,
dina => RX3_dina,
dinb => RX3_dinb,
douta => RX3_douta,
doutb => RX3_doutb,
wea => RX3_wea,
web => RX3_web

);

RX4dpram : dpram48 64 PORT MAP (
addra => RX4_addra,
addrb => RX4_addrb,
clka => clk,
clkb => clk,
dina => RX4_dina,
dinb => RX4_dinb,
douta => RX4_douta,
doutb => RX4_doutb,
wea => RX4_wea,
web => RX4 web

);

RX5dpram : dpram48_64 PORT MAP (
addra => RX5_addra,
addrb => RX5_addrb,
clka => clk,
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);

clkb => clk,

dina => RX5_dina,
dinb => RX5_dinb,
douta => RX5_douta,
doutb => RX5_doutb,
wea => RX5_wea,
web => RX5_web

RX6dpram : dpram48_64 PORT MAP (

);

addra => RX6_addra,
addrb => RX6_addrb,
clka => clk,

clkb => clk,

dina => RX6_dina,
dinb => RX6_dinb,
douta => RX6_douta,
doutb => RX6_doutb,
wea => RX6_wea,
web => RX6_web

RX7dpram : dpram48 64 PORT MAP (

);

addra => RX7_addra,
addrb => RX7_addrb,
clka => clk,

clkb => clk,

dina => RX7_dina,
dinb => RX7_dinb,
douta => RX7_douta,
doutb => RX7_doutb,
wea => RX7_wea,
web => RX7_web

RX8dpram : dpram48_64 PORT MAP (

);

addra => RX8_addra,
addrb => RX8_addrb,
clka => clk,

clkb => clk,

dina => RX8_dina,
dinb => RX8_dinb,
douta => RX8 douta,
doutb => RX8 doutb,
wea => RX8 wea,
web => RX8 web

RXUSdpram : dpram48 64 PORT MAP (

addra => RXUS_addra,
addrb => RXUS_addrb,
clka => clk,

clkb => clk,

dina => RXUS_dina,
dinb => RXUS_dinb,
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douta => RXUS_douta,
doutb => RXUS_doutb,
wea => RXUS_wea,
web => RXUS web

);

Pldpram : dpram48_64 PORT MAP (
addra => P1_addra,
addrb => P1_addrb,
clka => clk,
clkb => clk,
dina => P1_dina,
dinb => P1_dinb,
douta => P1_douta,
doutb => P1_doutb,
wea => P1_wea,
web => P1 web

);

P2dpram : dpram48_64 PORT MAP (
addra => P2_addra,
addrb => P2_addrb,
clka => clk,
clkb => clk,
dina => P2_dina,
dinb => P2_dinb,
douta => P2_douta,
doutb => P2_doutb,
wea => P2_wea,
web => P2_web

);

P3dpram : dpram48_64 PORT MAP (
addra => P3_addra,
addrb => P3_addrb,
clka => clk,
clkb => clk,
dina => P3_dina,
dinb => P3_dinb,
douta => P3_douta,
doutb => P3_doutb,
wea => P3_wea,
web => P3_web

);

P4dpram : dpram48_64 PORT MAP (

addra => P4_addra,

addrb => P4_addrb,

clka => clk,

clkb => clk,

dina => P4 _dina,

dinb => P4_dinb,

douta => P4 _douta,

doutb => P4 _doutb,

wea => P4_wea,
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);

web => P4 _web

P5dpram : dpram48_64 PORT MAP (

);

addra => P5_addra,
addrb => P5_addrb,
clka => clk,

clkb => clk,

dina => P5_dina,
dinb => P5_dinb,
douta => P5_douta,
doutb => P5_doutb,
wea => P5_wea,
web => P5 web

P6dpram : dpram48_64 PORT MAP (

);

addra => P6_addra,
addrb => P6_addrb,
clka => clk,

clkb => clk,

dina => P6_dina,
dinb => P6_dinb,
douta => P6_douta,
doutb => P6_doutb,
wea => P6_wea,
web => P6_web

P7dpram : dpram48_64 PORT MAP (

);

addra => P7_addra,
addrb => P7_addrb,
clka => clk,

clkb => clk,

dina => P7_dina,
dinb => P7_dinb,
douta => P7_douta,
doutb => P7_doutb,
wea => P7_wea,
web => P7_web

P8dpram : dpram48_64 PORT MAP (

addra => P8 addra,
addrb => P8_addrb,
clka => clk,

clkb => clk,

dina => P8_dina,
dinb => P8_dinb,
douta => P8 _douta,
doutb => P8 doutb,
wea => P8_wea,
web => P8 web
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PROPL1 : propcalc PORT MAP (
clk => clk,
POP1 => PC1_POP1,
POP2 => PC1_POP2,
RX =>PC1 RX,
PROPENSITY => PC1_PROP
)i

PROP2 : propcalc PORT MAP (
clk => clk,
POP1 => PC2_POP1,
POP2 => PC2_POP2,
RX =>PC2_RX,
PROPENSITY => PC2_PROP
)i

PROP3 : propcalc PORT MAP (
clk => clk,
POP1 => PC3_POP1,
POP2 => PC3_POP2,
RX =>PC3_RX,
PROPENSITY => PC3_PROP
)i

PROP4 : propcalc PORT MAP (
clk => clk,
POP1 => PC4_POP1,
POP2 => PC4_POP2,
RX =>PC4_RX,
PROPENSITY => PC4_PROP
);

PROPS5 : propcalc PORT MAP (
clk => clk,
POP1 => PC5_POP1,
POP2 => PC5_POP2,
RX =>PC5_RX,
PROPENSITY => PC5_PROP
)i

PROP&6 : propcalc PORT MAP (
clk => clk,
POP1 => PC6_POP1,
POP2 => PC6_POP2,
RX =>PC6_RX,
PROPENSITY => PC6_PROP
)i

PROP7 : propcalc PORT MAP (
clk => clk,
POP1 => PC7_POP1,
POP2 => PC7_POP2,
RX => PC7_RX,
PROPENSITY => PC7_PROP
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PROPS : propcalc PORT MAP (
clk => clk,
POP1 => PC8_POP1,
POP2 => PC8_POP?2,
RX =>PC8 RX,
PROPENSITY => PC8_PROP
)i

TOTALPROP : sumprop PORT MAP (

clk => clk,

PSUM1 => PSUM1_2,
PSUM2 => PSUM2_2,
PSUM3 => PSUM3_2,
PSUM4 => PSUM4_2,
PSUM5 => PSUMb5_2,
PSUM6 => PSUM6_2,
PSUM7 => PSUM7_2,
PSUMS8 => PSUMS8_2,
TOTAL2 => TPROP?2,
TOTAL3 => TPROP3,
TOTAL4 => TPROPA4,
TOTALS => TPROPS5,
TOTALG6 => TPROPS,
TOTAL7 => TPROP?7,
TOTAL8 => TPROPS8

);

PROCESS (clk)
VARIABLE state

: STD_LOGIC_VECTOR(7 DOWNTO 0);
: STD_LOGIC_VECTOR(7 DOWNTO 0);
: STD_LOGIC_VECTOR(5 DOWNTO 0);

VARIABLE state2
VARIABLE count

VARIABLE looping
VARIABLE index

: STD_LOGIC,;
: STD_LOGIC_VECTOR(7 DOWNTO 0);

VARIABLE maxindex : STD_LOGIC_VECTOR(7 DOWNTO 0);

VARIABLE theproduct

VARIABLE v_PSUM1_1
VARIABLE v_PSUM1_2
VARIABLE v_PSUM2_1
VARIABLE v_PSUM2_2
VARIABLE v_PSUM3_1
VARIABLE v_PSUM3_2
VARIABLE v_PSUM4_1
VARIABLE v_PSUM4_2
VARIABLE v_PSUMS5_1
VARIABLE v_PSUMS5_2
VARIABLE v_PSUM6_1
VARIABLE v_PSUM6_2
VARIABLE v_PSUM7_1
VARIABLE v_PSUM7_2
VARIABLE v_PSUMS_1
VARIABLE v_PSUMS_2

. STD_LOGIC_VECTOR(79 DOWNTO 0

- STD_LOGIC_VECTOR(47 DOWNTO 0)
- STD_LOGIC_VECTOR(47 DOWNTO 0)
: STD_LOGIC_VECTOR(47 DOWNTO 0)
: STD_LOGIC_VECTOR(47 DOWNTO 0)
: STD_LOGIC_VECTOR(47 DOWNTO 0)
- STD_LOGIC_VECTOR(47 DOWNTO 0)
- STD_LOGIC_VECTOR(47 DOWNTO 0)
: STD_LOGIC_VECTOR(47 DOWNTO 0)
: STD_LOGIC_VECTOR(47 DOWNTO 0)
: STD_LOGIC_VECTOR(47 DOWNTO 0)
- STD_LOGIC_VECTOR(47 DOWNTO 0)
- STD_LOGIC_VECTOR(47 DOWNTO 0)
: STD_LOGIC_VECTOR(47 DOWNTO 0)
: STD_LOGIC_VECTOR(47 DOWNTO 0)
: STD_LOGIC_VECTOR(47 DOWNTO 0)
- STD_LOGIC_VECTOR(47 DOWNTO 0)

- STD_LOGIC_VECTOR(15 DOWNTO 0 );
: STD_LOGIC_VECTOR(15 DOWNTO 0 );

VARIABLE v_PC1_POP1
VARIABLE v_PC1_POP2
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VARIABLE v_PC1_RX
VARIABLE v_PC2_POP1
VARIABLE v_PC2_POP2
VARIABLE v_PC2_RX
VARIABLE v_PC3_POP1
VARIABLE v_PC3_POP2
VARIABLE v_PC3_RX
VARIABLE v_PC4_POP1
VARIABLE v_PC4_POP2
VARIABLE v_PC4_RX
VARIABLE v_PC5_POP1
VARIABLE v_PC5_POP2
VARIABLE v_PC5_RX
VARIABLE v_PC6_POP1
VARIABLE v_PC6_POP2
VARIABLE v_PC6_RX
VARIABLE v_PC7_POP1
VARIABLE v_PC7_POP2
VARIABLE v_PC7_RX
VARIABLE v_PC8_POP1
VARIABLE v_PC8_POP2
VARIABLE v_PC8_RX
VARIABLE v_RX
VARIABLE v_R1V
VARIABLE v_R2V
VARIABLE v_P1V
VARIABLE v_P2V

BEGIN

: STD_LOGIC_VECTOR(47 DOWNTO 0) ;
: STD_LOGIC_VECTOR(15 DOWNTO 0 );
- STD_LOGIC_VECTOR(15 DOWNTO 0 );

- STD_LOGIC_VECTOR(47 DOWNTO 0) ;
: STD_LOGIC_VECTOR(15 DOWNTO 0 );
: STD_LOGIC_VECTOR(15 DOWNTO 0 );

: STD_LOGIC_VECTOR(47 DOWNTO 0) ;
- STD_LOGIC_VECTOR(15 DOWNTO 0 );
- STD_LOGIC_VECTOR(15 DOWNTO 0 );

: STD_LOGIC_VECTOR(47 DOWNTO 0) ;
: STD_LOGIC_VECTOR(15 DOWNTO 0 );
: STD_LOGIC_VECTOR(15 DOWNTO 0 );

- STD_LOGIC_VECTOR(47 DOWNTO 0) ;
- STD_LOGIC_VECTOR(15 DOWNTO 0 );
: STD_LOGIC_VECTOR(15 DOWNTO 0 );

: STD_LOGIC_VECTOR(47 DOWNTO 0) ;
: STD_LOGIC_VECTOR(15 DOWNTO 0 );
- STD_LOGIC_VECTOR(15 DOWNTO 0 );

- STD_LOGIC_VECTOR(47 DOWNTO 0) ;
: STD_LOGIC_VECTOR(15 DOWNTO 0 );
: STD_LOGIC_VECTOR(15 DOWNTO 0 );

: STD_LOGIC_VECTOR(47 DOWNTO 0) ;

- STD_LOGIC_VECTOR(5 DOWNTO 0);

- STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);
: STD_LOGIC_VECTOR(15 DOWNTO 0);

IF (clk = '0' AND clkEVENT) THEN
LBOUND_1 <= "000000";
LBOUND_2 <= "001000";
LBOUND_3 <= "010000":
LBOUND_4 <= "011000":
LBOUND_5 <= "100000";
LBOUND_6 <= "101000";
LBOUND_7 <= "110000";
LBOUND_8 <= "111000":

theproduct :=s_URV * TPROPS;

-- SET ADDRESS FROM WHICH TO READ COMMAND
IF (state = "00000000") THEN

we <="'0"

addr <= X"00";

din <= (others =>'0";

s_Ifsr_reset <="'0";
s_Ifsr_enable <="0";

index := X"02";
maxindex := X"FC";
looping :="'0";
count :="000000";
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SPUS1 wea <="0"
SPUS1_addra <= "0000000";
SPUSL1 _dina <= (others =>"'0');
SPUS2_wea <="0"
SPUS2_addra <= "0000000";
SPUS2_dina <= (others =>'0");
SPUS3_wea <="0"
SPUS3_addra <= "0000000";
SPUS3_dina <= (others =>"'0');
SPUS4_wea <="0"
SPUS4_addra <= "0000000";
SPUS4_dina <= (others =>'0");
SPla wea<='0}

SPla addra <="0000000";
SP1la dina <= (others =>'0";
SP1b wea <='0"
SP1b_addra <= "0000000";
SP1b_dina <= (others =>'0";
RX1 wea <='0";

RX1 addra <= "000000";
RX1_dina <= (others =>"'0";
P1 wea <="'0

P1_addra <="000000";
P1_dina <= (others =>'0");
SP2a_wea <=0’
SP2a_addra <="0000000";
SP2a_dina <= (others =>'0";
SP2b_wea <="0";
SP2b_addra <= "0000000";
SP2b_dina <= (others =>'0";
RX2_wea <="0";

RX2_addra <= "000000";
RX2_dina <= (others =>"'0";
P2 wea <='0"

P2_addra <="000000";
P2_dina <= (others =>'0");
SP3a_wea <=0’
SP3a_addra <="0000000";
SP3a_dina <= (others =>'0";
SP3b_wea <="'0"
SP3b_addra <= "0000000";
SP3b_dina <= (others =>'0";
RX3 wea <="0";

RX3 addra <= "000000";
RX3_dina <= (others =>"'0";
P3_wea <="'0"

P3_addra <= "000000";
P3_dina <= (others =>'0");
SP4a_wea <='0";
SP4a_addra <="0000000";
SP4a_dina <= (others =>'0";
SP4b_wea <="'0";
SP4b_addra <= "0000000";
SP4b_dina <= (others =>'0";
RX4 _wea <="0",
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RX4 addra <= "000000";
RX4 _dina <= (others =>"'0");
P4 wea <='0"

P4 addra <= "000000";

P4 _dina <= (others =>'0");
SP5a_wea <="0';
SP5a_addra <="0000000";
SP5a_dina <= (others =>'0";
SP5b_wea <="'0";
SP5b_addra <= "0000000";
SP5b_dina <= (others =>'0";
RX5_wea <="0";

RX5_ addra <= "000000";
RX5_dina <= (others =>"'0";
P5 wea <="'0"

P5_addra <= "000000";
P5_dina <= (others =>'0");
SP6a_wea <='0";
SP6a_addra <= "0000000";
SP6a_dina <= (others =>'0";
SP6b_wea <="'0";
SP6b_addra <= "0000000";
SP6b_dina <= (others =>'0";
RX6_wea <="0";

RX6_addra <= "000000";
RX6_dina <= (others =>"'0";
P6_wea <="'0"

P6_addra <= "000000";
P6_dina <= (others =>'0");
SP7a_wea <=0}
SP7a_addra <="0000000";
SP7a_dina <= (others =>'0";
SP7b_wea <="'0';
SP7b_addra <= "0000000";
SP7b_dina <= (others =>'0";
RX7_wea <="0",

RX7_addra <= "000000";
RX7_dina <= (others =>"'0";
P7 wea <='0"

P7_addra <="000000";
P7_dina <= (others =>'0");
SP8a_wea <="0';
SP8a_addra <= "0000000";
SP8a_dina <= (others =>'0";
SP8b_wea <="'0";
SP8b_addra <= "0000000";
SP8b_dina <= (others =>'0";
RX8 wea <="0";

RX8 addra <= "000000";
RX8_dina <= (others =>"'0";
P8 wea <="0"

P8_addra <= "000000";
P8_dina <= (others =>'0");
RXUS_wea <="'0"
RXUS_addra <= "000000";
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RXUS_dina <= (others =>"'0";

state := state + 1;
state2 :="00000000";

-- INTERPRET COMMANDS
ELSIF (state = "00000001") THEN

-- LOOPING THROUGH 250 REACTIONS
IF (looping ='1") THEN
IF (index < maxindex) THEN
IF (state2 = "00000000") THEN

we <='0";
addr <= X"00";
P1 wea <="'0
P2_wea <="0"
P3_wea <="'0"
P4 wea <='0';
P5 wea <='0';
P6_wea <="'0"
P7_wea <="0"
P8 wea <="'0"

SPUS1 wea <="0%
SPUS2_wea <="0";
SPUS3_wea <="0";
SPUS4 _wea <="0";
SPla wea<='0"
SP1b wea <=0
SP2a_wea <=0’
SP2b_wea <="'0"
SP3a_wea <=0’
SP3b_wea <="'0';
SP4a wea <='0";
SP4b_wea <="'0"
SP5a_wea <="0';
SP5b_wea <="'0"
SP6a_wea <='0";
SP6b_wea <='0';
SP7a_wea <=0}
SP7b_wea <="'0"
SP8a_wea <=0’
SP8b_wea <="'0';

RX1_wea <="0"
RX1 addra <= LBOUND_1 + count;
RX2_wea <="0"
RX2_addra <= LBOUND_2 + count;
RX3 wea <='0";
RX3 addra <= LBOUND_3 + count;
RX4_wea <="0"
RX4 addra <= LBOUND_4 + count;
RX5 wea <='0";
RX5_addra <= LBOUND_5 + count;
RX6_wea <="0"

142



40);

32);

40);

32);

40);

32);

40);

32);

40);

RX6_addra <= LBOUND_6 + count;
RX7_wea <="0",

RX7_addra <= LBOUND_7 + count;
RX8 wea <='0";

RX8 addra <= LBOUND_8 + count;
state2 := state2 + 1;

ELSIF (state2 = "00000001") THEN
we <="'0";
addr <= X"00";
RX1_wea <="'0"
RX1 addra <= LBOUND_1 + count;
RX2_wea <='0";
RX2_addra <= LBOUND_2 + count;
RX3_wea <="0"
RX3 addra <= LBOUND_3 + count;
RX4_wea <="0"
RX4 _addra <= LBOUND_4 + count;
RX5 wea <='0";
RX5 addra <= LBOUND_5 + count;
RX6_wea <="0"
RX6_addra <= LBOUND_6 + count;
RX7_wea <='0";
RX7_addra <= LBOUND_7 + count;
RX8_wea <="0"
RX8 addra <= LBOUND_8 + count;

SPla wea<='0"
SP1b wea <=0
SPla addra <= RX1_douta(46 DOWNTO

SP1b_addra <= RX1_douta(38 DOWNTO
SP2a wea <='0";
SP2b_wea <="'0"
SP2a_addra <= RX2_douta(46 DOWNTO
SP2b_addra <= RX2_douta(38 DOWNTO
SP3a_wea <=0’
SP3b_wea <="'0"
SP3a_addra <= RX3_douta(46 DOWNTO
SP3b_addra <= RX3_douta(38 DOWNTO
SP4a_wea <="0';
SP4b_wea <="'0"
SP4a_addra <= RX4_douta(46 DOWNTO
SP4b_addra <= RX4_douta(38 DOWNTO
SP5a_wea <="0';

SP5b_wea <="'0';
SP5a_addra <= RX5_douta(46 DOWNTO
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32);

40);

32);

40);

32);

40);

32);

40);

32);

40);

32);

SP5b_addra <= RX5_douta(38 DOWNTO
SP6a _wea <='0";
SP6b_wea <='0';
SP6a_addra <= RX6_douta(46 DOWNTO
SP6b_addra <= RX6_douta(38 DOWNTO
SP7a wea <='0";
SP7b_wea <="'0"
SP7a_addra <= RX7_douta(46 DOWNTO
SP7b_addra <= RX7_douta(38 DOWNTO
SP8a_wea <=0’
SP8b_wea <="'0"
SP8a_addra <= RX8_ douta(46 DOWNTO
SP8b_addra <= RX8_ douta(38 DOWNTO

state? := state2 + 1;

ELSIF (state2 = "00000010") THEN

we <="'0";

addr <= X"00";

RX1_wea <="0"

RX1 addra <= LBOUND 1 + count;
RX2_wea <='0";

RX2_addra <= LBOUND_2 + count;
RX3_wea <="0"

RX3 addra <= LBOUND_3 + count;
RX4_wea <="0"
RX4 addra <= LBOUND_4 + count;
RX5 wea <='0";

RX5 addra <= LBOUND_5 + count;
RX6_wea <="0"

RX6_addra <= LBOUND_6 + count;
RX7_wea <="0";

RX7_addra <= LBOUND_7 + count;
RX8_wea <="0"

RX8 addra <= LBOUND_8 + count;

SPla wea<='0"
SP1b _wea <=0
SPla addra <= RX1_douta(46 DOWNTO
SP1b_addra <= RX1_douta(38 DOWNTO
SP2a wea <='0";
SP2b_wea <="'0"
SP2a_addra <= RX2_douta(46 DOWNTO
SP2b_addra <= RX2_douta(38 DOWNTO
SP3a_wea <=0’
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40);

32);

40);

32);

40);

32);

40);

32);

40);

32);

40);

32);

SP3b_wea <="'0"
SP3a_addra <= RX3_douta(46 DOWNTO

SP3b_addra <= RX3_douta(38 DOWNTO

SP4a_wea <=0’
SP4b_wea <="'0"
SP4a_addra <= RX4_douta(46 DOWNTO

SP4b_addra <= RX4_douta(38 DOWNTO

SP5a_wea <="0';
SP5b_wea <="'0';
SP5a_addra <= RX5_douta(46 DOWNTO

SP5b_addra <= RX5_douta(38 DOWNTO

SP6a _wea <='0";
SP6b_wea <="'0';
SP6a_addra <= RX6_douta(46 DOWNTO

SP6b_addra <= RX6_douta(38 DOWNTO

SP7a wea <='0";
SP7b_wea <="'0";
SP7a_addra <= RX7_douta(46 DOWNTO

SP7b_addra <= RX7_douta(38 DOWNTO

SP8a_wea <=0’
SP8b_wea <="'0"
SP8a_addra <= RX8_ douta(46 DOWNTO

SP8b_addra <= RX8_ douta(38 DOWNTO

v_PC1 POP1 :=SPla_douta;
v_PC1 POP2:=SP1b _douta;
v_PC1 RX:=RX1_douta;
v_PC2 POP1 := SP2a_douta;
v_PC2 POP2 := SP2b_douta;
v_PC2 RX:= RX2_douta;
v_PC3 POP1 := SP3a_douta;
v_PC3 POP2 := SP3b_douta;
v_PC3 RX:= RX3 douta;
v_PC4 POP1 := SP4a_douta;
v_PC4 POP2 := SP4b_douta;
v_PC4 RX := RX4 _douta;
v_PC5 POP1 := SP5a_douta;
v_PC5 POP2 := SP5b_douta;
v_PC5 RX:=RX5 douta;
v_PC6 POP1 := SP6a_douta;
v_PC6 POP2 := SP6b_douta;
v_PC6 RX := RX6_douta;
v_PC7_POP1 := SP7a_douta;
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v_PC7_POP2 := SP7b_douta;
v_PC7_RX := RX7_douta;
v_PC8 POP1 := SP8a_douta;
v_PC8 POP2 := SP8b_douta;
v_PC8 RX := RX8 douta;
state2 := state2 + 1;

ELSIF (state2 = "00000011") THEN
we <="'0";
addr <= X"00";
state2 := state2 + 1;

ELSIF (state2 = "00000100") THEN
we <="'0";
addr <= X"00";
state?2 := state2 + 1;

ELSIF (state2 = "00000101") THEN
we <="'0";
addr <= X"00";

P1 wea<="1";

P1 addra <= LBOUND_1 + count;

P1 dina<=PC1l _PROP;

P2 wea<="1";

P2 _addra <= LBOUND_2 + count;

P2_dina <= PC2_PROP;

P3_wea <="1"

P3 addra <= LBOUND_3 + count;

P3 _dina <= PC3_PROP;

P4 wea <="1";

P4 addra <= LBOUND_4 + count;

P4 _dina <= PC4_PROP;

P5 wea<="1";

P5 addra <= LBOUND_5 + count;

P5_dina <= PC5_PROP;

P6_wea <="1"

P6_addra <= LBOUND_6 + count;

P6_dina <= PC6_PROP;

P7 wea<="1";

P7 _addra <= LBOUND_7 + count;

P7_dina <= PC7_PROP;

P8 wea <="1"

P8 addra <= LBOUND_8 + count;

P8 dina <= PC8_PROP;

IF (count = "000000") THEN
v_PSUM1_1 := PC1_PROP;
v_PSUM2_1 := PC2_PROP;
v_PSUM3_1 := PC3_PROP;
v_PSUM4 1 := PC4_PROP;
v_PSUM5_1 := PC5_PROP;
v_PSUM6_1 := PC6_PROP;
v_PSUM7_1 := PC7_PROP;
v_PSUMS8_1 := PC8_PROP;
state2 := "00000000";
count := count + 1,
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ELSIF (count < "000100") THEN

PC1_PROP;
PC2_PROP;
PC3_PROP;
PC4_PROP;
PC5_PROP;
PC6_PROP;
PC7_PROP;

PC8_PROP;

v_PSUM1_1:=v PSUM1 1 +
v_PSUM2_1:=v PSUM2_1 +
v_PSUM3_1:=v PSUM3 1+
v_PSUM4_1:=v PSUM4 1 +
v_PSUMS5_1:=v PSUMS5_1 +
v_PSUM6_1:=v_PSUM6_1 +
v_PSUM7_1:=v_PSUM7_1 +
v_PSUM8_1:=v PSUMS8 1 +

state2 := "00000000";
count := count + 1;

ELSIF (count = "000100") THEN

PC1_PROP;
PC2_PROP;
PC3_PROP;
PC4_PROP;
PC5_PROP;
PC6_PROP;
PC7_PROP;

PC8_PROP;

v_PSUM1_2:=v_PSUM1_1 +
v_PSUM2_2:=v_PSUM2_1 +
v_PSUM3 2:=v_PSUM3_1 +
v_PSUM4_2:=v_PSUM4_1 +
v_PSUM5_2:=v_PSUM5_1 +
v_PSUM6 2 :=v_PSUM6_1 +
v_PSUM7_2:=v_PSUM7_1 +
v_PSUM8 2:=v_PSUM8_1 +

state2 := "00000000";
count := count + 1;

ELSIF (count <"000111") THEN

PC1_PROP;
PC2_PROP;
PC3_PROP;
PC4_PROP;
PC5_PROP;
PC6_PROP;
PC7_PROP;

PC8_PROP;
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v_PSUM1_2:=v_PSUM1_2 +
v_PSUM2_2:=v_PSUM2_2 +
v_PSUM3_2:=v_PSUM3_2 +
v_PSUM4_2:=v_PSUM4_2 +
v_PSUM5_2:=v_PSUM5_2 +
v_PSUM6 2 :=v_PSUM6_2 +
v_PSUM7_2:=v_PSUM7_2 +

v_PSUMS8_2:=v_PSUMS_2 +



PC1_PROP;
PC2_PROP;
PC3_PROP;
PC4_PROP;
PC5_PROP;
PC6_PROP;
PC7_PROP;

PC8_PROP;

DOWNTO 0);

state2 := "00000000";
count ;= count + 1;

ELSE
v_PSUM1 2:=v_PSUM1 2+
v_PSUM2_2:=v_PSUM2_2 +
v_PSUM3 2:=v_PSUM3 2 +
v_PSUM4 2:=v_PSUM4 2 +
v_PSUM5 2:=v_PSUM5 2+
v_PSUM6 2 :=v_PSUM6 2 +
v_PSUM7_2:=v_PSUM7 2 +
v_PSUM8 2:=v_PSUM8 2 +
state2 := state2 + 1;
count :="000000";

END IF;

ELSIF (state2 = "00000110") THEN

P1 wea <="'0
P2_wea <="'0"
P3_wea <="'0"
P4 wea <='0';
P5 wea <='0';
P6_wea <="'0"
P7_wea <="0"
P8 wea <="0"
we <="'0";

addr <= X"00";
state2 := state2 + 1;

ELSIF (state2 = "00000111") THEN

we <="'1";
addr <= index;
din(63 DOWNTO 32) <= TPROP8(31

din(31 DOWNTO 0) <=s_ERV;
state?2 := state2 + 1;

ELSIF (state2 = "00001000") THEN

we <="'0"

addr <= X"00";
index := index + 1;
state? := state2 + 1;

ELSIF (state2 = "00001001") THEN

we <="'0";
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00001010") THEN
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we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00001011") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00001100") THEN
we <="'0";
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00001101") THEN
we <="'0";
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00001110") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00001111") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00010000") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00010001") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00010010") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00010011") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00010100") THEN
we <="'0
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00010101") THEN
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DOWNTO 32);

"00000000000000000000000000";

we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00010110") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00010111") THEN
we <="'0";
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00011000") THEN
we <="'0";
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00011001") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00011010") THEN
we <="'0"
addr <= X"00";
state? := state2 + 1;

ELSIF (state2 = "00011011") THEN
we <="'1";
addr <= index;

din(63 DOWNTO 32) <= product(63

din(31 DOWNTO 6) <=

din(5 DOWNTO 0) <= s_rxselect;

RXUS_wea <="'0"
RXUS addra <= s_rxselect;
v_RX :=s_rxselect;

state?2 := state2 + 1;

ELSIF (state2 = "00011100") THEN
we <="'0";
addr <= X"00";

s_Ifsr_reset <="'0";
s_Ifsr_enable <="1";
RXUS_wea <="'0"
RXUS addra <=v_RX;

SPUS1 wea <="0%
SPUS2_wea <="0%
SPUS3_wea <="0";

150



40);
32);
24);

16);

40);
32);
24);

16);

"1111111") THEN

40);

SPUS4 _wea <="0";

SPUS1_addra <= RXUS_douta(46 DOWNTO
SPUS2_addra <= RXUS_douta(38 DOWNTO
SPUS3_addra <= RXUS_douta(30 DOWNTO

SPUS4_addra <= RXUS_douta(22 DOWNTO

state?2 := state2 + 1;

ELSIF (state2 = "00011101") THEN

we <="'0"

addr <= X"00";
s_Ifsr_reset <="'0";
s_Ifsr_enable <="'0";
RXUS_wea <="0"
RXUS addra <=v_RX;

SPUS1 wea <="0"
SPUS2_wea <="0%
SPUS3_wea <="0%
SPUS4 _wea <="0";
SPUS1_addra <= RXUS_douta(46 DOWNTO
SPUS2_addra <= RXUS_douta(38 DOWNTO
SPUS3_addra <= RXUS_douta(30 DOWNTO

SPUS4_addra <= RXUS_douta(22 DOWNTO

IF (RXUS_douta(46 DOWNTO 40) =

state? := state2 + 2;

ELSE
v_R1V := SPUS1 douta - 1;
state2 := state2 + 1;

END IF;

ELSIF (state2 = "00011110") THEN

we <="'0"

addr <= X"00";
RXUS_wea <="'0"
RXUS_addra <=v_RX;

SPUS1 wea <=1
SPUS1_addra <= RXUS_douta(46 DOWNTO

SPUS1 dina<=v_R1V;
SPUS2_wea <="1";
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40);

40);

40);

40);

40);

40);

40);

40);

40);

40);

40);

40);

40);

40);

SPUS2_addra <= RXUS_douta(46 DOWNTO

SPUS2 dina<=v_R1V;
SPUS3_wea <="1";
SPUS3_addra <= RXUS_douta(46 DOWNTO

SPUS3 _dina <=v_R1V;
SPUS4_wea <="1";
SPUS4_addra <= RXUS_douta(46 DOWNTO

SPUS4 _dina <=v_R1V,
SPla wea<="1';
SPla addra <= RXUS_douta(46 DOWNTO

SPla dina<=v_R1V;
SP1b wea <="'1"
SP1b_addra <= RXUS_douta(46 DOWNTO

SP1b _dina<=v_R1V;
SP2a_wea<="1';
SP2a addra <= RXUS_douta(46 DOWNTO

SP2a dina<=v_R1V;
SP2b_wea<="1';
SP2b_addra <= RXUS_douta(46 DOWNTO

SP2b _dina <=v_R1V;
SP3a wea<="1";
SP3a_addra <= RXUS_douta(46 DOWNTO

SP3a dina <=v_R1V;
SP3b_wea <="1";
SP3b_addra <= RXUS_douta(46 DOWNTO

SP3b_dina <=v_R1V;
SP4a_wea<="1';
SP4a_addra <= RXUS_douta(46 DOWNTO

SP4a_dina <=v_R1V;
SP4b_wea <="1";
SP4b_addra <= RXUS_douta(46 DOWNTO

SP4b _dina <=v_R1V;
SP5a wea<="1";
SP5a_addra <= RXUS_douta(46 DOWNTO

SP5a_dina <=v_R1V;

SP5b_wea <="'1";

SP5b_addra <= RXUS_douta(46 DOWNTO
SP5b_dina <=v_R1V;

SP6a_wea <="1";

SP6a_addra <= RXUS_douta(46 DOWNTO
SP6a_dina <=v_R1V;
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SP6b_wea <="1";

SP6b_addra <= RXUS_douta(46 DOWNTO
40);

SP6b_dina <=v_R1V;

SP7a_wea<="1';

SP7a_addra <= RXUS_douta(46 DOWNTO
40);

SP7a_dina<=v_R1V;

SP7b_wea <="1";

SP7b_addra <= RXUS_douta(46 DOWNTO
40);

SP7b_dina <=v_R1V;

SP8a wea <="1";

SP8a_addra <= RXUS_douta(46 DOWNTO
40);

SP8a dina <=v_R1V;

SP8b_wea <="1";

SP8b_addra <= RXUS_douta(46 DOWNTO
40);

SP8b_dina <=v_R1V;

state? := state2 + 1;

ELSIF (state2 ="00011111") THEN
we <="'0";
addr <= X"00";
RXUS_wea <="'0"
RXUS_addra <=v_RX;

SPUS1 wea <="0"
SPUS2_wea <="0";
SPUS3_wea <="0"
SPUS4_wea <="0%
SPla wea<='0"
SP1b wea <='0"
SP2a_wea <=0’
SP2b_wea <="'0"
SP3a wea <='0";
SP3b_wea <='0';
SP4a_wea <=0’
SP4b_wea <="'0"
SP5a_wea <="0';
SP5b_wea <="'0';
SP6a_wea <='0";
SP6b_wea <="'0"
SP7a_wea <=0}
SP7b_wea <="'0"
SP8a wea <='0";
SP8b_wea <='0';

SPUS1_addra <= RXUS_douta(46 DOWNTO
40);

SPUS2_addra <= RXUS_douta(38 DOWNTO
32);
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24);

16);

40);
32);
24);

16);

"1111111") THEN

32);

32);

32);

SPUS3_addra <= RXUS_douta(30 DOWNTO

SPUS4_addra <= RXUS_douta(22 DOWNTO

state? := state2 + 1;

ELSIF (state2 = "00100000") THEN

we <="'0";

addr <= X"00";
RXUS_wea <="'0"
RXUS addra <=v_RX;

SPUS1 wea <="0%
SPUS2_wea <="0";
SPUS3_wea <="0%;
SPUS4 _wea <="0";
SPUS1 _addra <= RXUS_douta(46 DOWNTO
SPUS2_addra <= RXUS_douta(38 DOWNTO
SPUS3 _addra <= RXUS_douta(30 DOWNTO

SPUS4_addra <= RXUS_douta(22 DOWNTO

IF (RXUS_douta(38 DOWNTO 32) =

state2 := state2 + 2;

ELSE
v_R2V := SPUS2 douta - 1;
state? := state2 + 1;

END IF;

ELSIF (state2 = "00100001") THEN

we <="'0"

addr <= X"00";
RXUS_wea <="'0"
RXUS addra <=v_RX;

SPUS1_wea <='1';
SPUS1_addra <= RXUS_douta(38 DOWNTO

SPUS1 _dina <=v_R2V;
SPUS2_wea <="1";
SPUS2_addra <= RXUS_douta(38 DOWNTO

SPUS2 dina <=v_R2V;

SPUS3_wea <="1";

SPUS3_addra <= RXUS_douta(38 DOWNTO
SPUS3 dina <=v_R2V;

SPUS4_wea <="1";
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32);

32);

32);

32);

32);

32);

32);

32);

32);

32);

32);

32);

32);

32);

SPUS4_addra <= RXUS_douta(38 DOWNTO

SPUS4 dina <=v_R2V;
SPla wea<="1";
SPla addra <= RXUS_ douta(38 DOWNTO

SPla dina <=v_R2V;
SP1b wea<="1';
SP1b_addra <= RXUS_douta(38 DOWNTO

SP1b _dina <=v_R2V;
SP2a_wea<="1';
SP2a_addra <= RXUS_douta(38 DOWNTO

SP2a dina <=v_R2V;
SP2b _wea <="1";
SP2b_addra <= RXUS_douta(38 DOWNTO

SP2b _dina <=v_R2V;
SP3a_wea<="1';
SP3a_addra <= RXUS_douta(38 DOWNTO

SP3a_dina <=v_R2V;
SP3b_wea <="1';
SP3b_addra <= RXUS_douta(38 DOWNTO

SP3b_dina <=v_R2V;
SP4a wea<="1";
SP4a_addra <= RXUS_douta(38 DOWNTO

SP4a_dina <=v_R2V;
SP4b_wea <="1";
SP4b_addra <= RXUS_douta(38 DOWNTO

SP4b_dina <=v_R2V;
SP5a_wea <="1";
SP5a_addra <= RXUS_douta(38 DOWNTO

SP5a_dina <=v_R2V;
SP5b_wea <="1";
SP5b_addra <= RXUS_douta(38 DOWNTO

SP5b_dina <=v_R2V;
SP6a wea<="1";
SP6a_addra <= RXUS_douta(38 DOWNTO

SP6a_dina <=v_R2V;

SP6b_wea <="'1';

SP6b_addra <= RXUS_douta(38 DOWNTO
SP6b_dina <=v_R2V;

SP7a_wea<="1';

SP7a_addra <= RXUS_douta(38 DOWNTO
SP7a_dina <=v_R2V;
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32);

32);

32);

40);
32);
24);

16);

SP7b_wea <="1";
SP7b_addra <= RXUS_douta(38 DOWNTO

SP7b_dina <=v_R2V;

SP8a_wea <="1';

SP8a_addra <= RXUS_douta(38 DOWNTO
SP8a_dina <=v_R2V;

SP8b_wea <="'1";

SP8b_addra <= RXUS_douta(38 DOWNTO
SP8b_dina <=v_R2V;

state? := state2 + 1;

ELSIF (state2 = "00100010") THEN

we <="'0"

addr <= X"00";
RXUS_wea <="0"
RXUS addra <=v_RX;

SPUS1 wea <="0"
SPUS2_wea <="0%
SPUS3_wea <="0%
SPUS4 _wea <="0";
SPla wea <=0}
SP1b wea <='0"
SP2a wea <='0";
SP2b_wea <="'0';
SP3a_wea <=0’
SP3b_wea <="'0"
SP4a_wea <="'0';
SP4b_wea <='0';
SP5a wea <='0";
SP5b_wea <="'0"
SP6a_wea <="'0';
SP6b_wea <="'0"
SP7a wea <='0";
SP7b_wea <="'0";
SP8a_wea <="0';
SP8b_wea <="'0"

SPUS1_addra <= RXUS_douta(46 DOWNTO
SPUS2_addra <= RXUS_douta(38 DOWNTO
SPUS3_addra <= RXUS_douta(30 DOWNTO

SPUS4_addra <= RXUS_douta(22 DOWNTO

state? := state2 + 1;

ELSIF (state2 = "00100011") THEN

we <="'0
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40);
32);
24);

16);

"1111111") THEN

24);

24);

24);

24);

24);

24);

addr <= X"00";
RXUS_wea <="'0"
RXUS_addra <=v_RX;

SPUS1 wea <="0"
SPUS2_wea <="0";
SPUS3_wea <="0"
SPUS4_wea <="0"
SPUS1_addra <= RXUS_douta(46 DOWNTO
SPUS2_addra <= RXUS_douta(38 DOWNTO
SPUS3 _addra <= RXUS_douta(30 DOWNTO

SPUS4_addra <= RXUS_douta(22 DOWNTO

IF (RXUS_douta(30 DOWNTO 24) =

state2 := state2 + 2;

ELSE
v_P1V := SPUS3 douta + 1;
state? := state2 + 1;

END IF;

ELSIF (state2 = "00100100") THEN

we <="'0";

addr <= X"00";
RXUS_wea <="'0"
RXUS addra <=v_RX;

SPUS1 wea<="1}
SPUS1_addra <= RXUS_douta(30 DOWNTO

SPUS1_dina<=v_P1V;
SPUS2_wea <="1";
SPUS2_addra <= RXUS_douta(30 DOWNTO

SPUS2 _dina<=v_P1V;
SPUS3_wea <="1"
SPUS3_addra <= RXUS_douta(30 DOWNTO

SPUS3 dina<=v_P1V;
SPUS4_wea <="1"
SPUS4_addra <= RXUS_douta(30 DOWNTO

SPUS4 dina<=v_P1V;
SPla wea<="1";
SPla addra <= RXUS_douta(30 DOWNTO

SPla dina<=v_P1lV;

SP1b wea<="1";
SP1b_addra <= RXUS_douta(30 DOWNTO
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24);

24);

24);

24);

24);

24);

24);

24);

24);

24);

24);

24);

24);

SP1b _dina<=v_P1V;
SP2a_wea<="1';
SP2a_addra <= RXUS_douta(30 DOWNTO

SP2a dina<=v_P1V;
SP2b _wea <="1";
SP2b_addra <= RXUS_douta(30 DOWNTO

SP2b _dina<=v_P1V,
SP3a_wea<="1';
SP3a_addra <= RXUS_douta(30 DOWNTO

SP3a dina<=v_P1V,
SP3b_wea <="1';
SP3b_addra <= RXUS_douta(30 DOWNTO

SP3b_dina <=v_P1V;
SP4a wea<="1";
SP4a_addra <= RXUS_douta(30 DOWNTO

SP4a dina<=v_P1V;
SP4b_wea <="1";
SP4b_addra <= RXUS_douta(30 DOWNTO

SP4b _dina <=v_P1V;
SP5a_wea <="1';
SP5a_addra <= RXUS_douta(30 DOWNTO

SP5a _dina<=v_P1V,
SP5b_wea <="1";
SP5b_addra <= RXUS_douta(30 DOWNTO

SP5b_dina<=v_P1V;,
SP6a wea <="1";
SP6a_addra <= RXUS_douta(30 DOWNTO

SP6a _dina<=v_P1V;
SP6b_wea <="'1";
SP6b_addra <= RXUS_douta(30 DOWNTO

SP6b_dina <=v_P1V;
SP7a_wea<="1';
SP7a_addra <= RXUS_douta(30 DOWNTO

SP7a _dina<=v_P1V;
SP7b_wea <="1";
SP7b_addra <= RXUS_douta(30 DOWNTO

SP7b_dina<=v_P1V,

SP8a_wea <="1';

SP8a_addra <= RXUS_douta(30 DOWNTO
SP8a dina<=v_P1V,

SP8b_wea <="1";
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SP8b_addra <= RXUS_douta(30 DOWNTO
24);
SP8b _dina<=v_P1V;,

state? := state2 + 1;

ELSIF (state2 = "00100101") THEN
we <="'0";
addr <= X"00";
RXUS_wea <="'0"
RXUS addra <=v_RX;

SPUS1 wea <="0%
SPUS2_wea <="0%
SPUS3_wea <="0"
SPUS4 _wea <="0";
SPla wea <=0}
SP1b wea <=0
SP2a wea <='0";
SP2b_wea <="'0"
SP3a_wea <=0’
SP3b_wea <="'0"
SP4a _wea <='0";
SP4b_wea <='0';
SP5a_wea <="0';
SP5b_wea <="'0"
SP6a_wea <="'0';
SP6b_wea <="'0';
SP7a wea <='0";
SP7b_wea <="'0"
SP8a_wea <=0’
SP8b_wea <="'0"

SPUS1_addra <= RXUS_douta(46 DOWNTO
) SPUS2_addra <= RXUS_douta(38 DOWNTO
%2 SPUS3_addra <= RXUS_douta(30 DOWNTO
j:;’ SPUS4._addra <= RXUS_douta(22 DOWNTO

state? := state2 + 1;

ELSIF (state2 = "00100110") THEN
we <="'0"
addr <= X"00";
RXUS_wea <="'0"
RXUS_addra <=v_RX;

SPUS1 wea <="0"
SPUS2_wea <="0";
SPUS3_wea <="0%
SPUS4_wea <="0%
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40);
32);
24);

16);

"1111111") THEN

16);

16);

16);

16);

16);

16);

16);

16);

SPUS1_addra <= RXUS_douta(46 DOWNTO
SPUS2_addra <= RXUS_douta(38 DOWNTO
SPUS3_addra <= RXUS_douta(30 DOWNTO

SPUS4_addra <= RXUS_douta(22 DOWNTO

IF (RXUS_douta(22 DOWNTO 16) =

state2 := X"00";
index := index + 1;

ELSE
v_P2V := SPUS4 douta - 1;
state2 := state2 + 1;

END IF;

ELSIF (state2 = "00100111") THEN
we <="'0"
addr <= X"00";

RXUS_wea <="'0"
RXUS_addra <=v_RX;

SPUS1 wea <=1
SPUS1_addra <= RXUS_douta(22 DOWNTO

SPUS1 dina<=v_P2V;
SPUS2_wea <="1";
SPUS2_addra <= RXUS_douta(22 DOWNTO

SPUS2_dina <=v_P2V;
SPUS3_wea <="1";
SPUS3_addra <= RXUS_douta(22 DOWNTO

SPUS3 _dina <=v_P2V;
SPUS4_wea <="1"
SPUS4_addra <= RXUS_douta(22 DOWNTO

SPUS4 _dina <=v_P2V;
SPla wea<="1';
SPla addra <= RXUS_ douta(22 DOWNTO

SPla dina<=v_P2V,
SP1b wea <="1"
SP1b_addra <= RXUS_ douta(22 DOWNTO

SP1b _dina <=v_P2V;,
SP2a wea<="1";
SP2a _addra <= RXUS_douta(22 DOWNTO

SP2a dina<=v_P2V;,

SP2b_wea<="1';
SP2b_addra <= RXUS_douta(22 DOWNTO
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16);

16);

16);

16);

16);

16);

16);

16);

16);

16);

16);

16);

ELSE

SP2b _dina <=v_P2V;
SP3a_wea<="1';
SP3a_addra <= RXUS_douta(22 DOWNTO

SP3a dina <=v_P2V;,
SP3b_wea <="1";
SP3b_addra <= RXUS_douta(22 DOWNTO

SP3b_dina <=v_P2V,
SP4a_wea<="1';
SP4a_addra <= RXUS_douta(22 DOWNTO

SP4a_dina <=v_P2V,
SP4b_wea <="'1';
SP4b_addra <= RXUS_douta(22 DOWNTO

SP4b _dina <=v_P2V;
SP5a wea <="1";
SP5a_addra <= RXUS_douta(22 DOWNTO

SP5a _dina <=v_P2V;
SP5b_wea <="1";
SP5b_addra <= RXUS_douta(22 DOWNTO

SP5b_dina <=v_P2V;
SP6a_wea <="1";
SP6a_addra <= RXUS_douta(22 DOWNTO

SP6a_dina <=v_P2V,
SP6b_wea <="1";
SP6b_addra <= RXUS_douta(22 DOWNTO

SP6b_dina <=v_P2V;,
SP7a wea<="1";
SP7a_addra <= RXUS_douta(22 DOWNTO

SP7a _dina <=v_P2V;,
SP7b_wea <="1";
SP7b_addra <= RXUS_douta(22 DOWNTO

SP7b_dina <=v_P2V;
SP8a_wea <="1';
SP8a_addra <= RXUS_douta(22 DOWNTO

SP8a dina <=v_P2V;,

SP8b_wea <="1";

SP8b_addra <= RXUS_douta(22 DOWNTO
SP8b_dina <=v_P2V;,

index := index + 1;
state2 := X"00";

END IF;

we <="'0;
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addr <= X"00";

--JUST ADDED
SPUS1_wea <="'0"
SPUS2_wea <="'0"
SPUS3_wea <="'0"
SPUS4_wea <="'0"
SPla wea<='0}
SP1b wea<="0"
SP2a_wea <="0';
SP2b _wea <="'0";
SP3a_wea <=0
SP3b_wea <="0";
SP4a_wea <='0';
SP4b_wea <="'0";
SP5a_wea <="0';
SP5b_wea <="'0";
SP6a_wea <='0";
SP6b_wea <="'0";
SP7a_wea <=0
SP7b_wea <="'0";
SP8a_wea <="0';
SP8b_wea <="0";

looping :="'0";
state .= state + 1;
END IF;

-- NO-OP

ELSIF (dout(63 DOWNTO 59) = "00000") THEN
we <="'0";
addr <= X"00";
state := "00000000";

-- SETTING SPECIES POPULATIONS

ELSIF (dout(63 DOWNTO 59) = "00001") THEN
we <="0";
addr <= X"00";
SPUS1 wea <="'1}
SPUS1_addra <= dout(57 DOWNTO 51);
SPUS1_dina <= dout(15 DOWNTO 0);
SPUS2_wea <="1";
SPUS2_addra <= dout(57 DOWNTO 51);
SPUS2_dina <= dout(15 DOWNTO 0);
SPUS3_wea <="1";
SPUS3_addra <= dout(57 DOWNTO 51);
SPUS3_dina <= dout(15 DOWNTO 0);
SPUS4_wea <="'1};
SPUS4 _addra <= dout(57 DOWNTO 51);
SPUS4 _dina <= dout(15 DOWNTO 0);
SPla wea<="1l"
SPla_ addra <= dout(57 DOWNTO 51);
SP1la_dina <= dout(15 DOWNTO 0);
SP1lb wea<="1"
SP1b_addra <= dout(57 DOWNTO 51);
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SP1b_dina <= dout(15 DOWNTO 0);
SP2a_wea <="1"

SP2a_addra <= dout(57 DOWNTO 51);
SP2a_dina <= dout(15 DOWNTO 0);
SP2b_wea <="1";

SP2b_addra <= dout(57 DOWNTO 51);
SP2b_dina <= dout(15 DOWNTO 0);
SP3a_wea<="1"

SP3a_addra <= dout(57 DOWNTO 51);
SP3a_dina <= dout(15 DOWNTO 0);
SP3b_wea <="1";

SP3b_addra <= dout(57 DOWNTO 51);
SP3b_dina <= dout(15 DOWNTO 0);
SP4a wea <="1";

SP4a_addra <= dout(57 DOWNTO 51);
SP4a_dina <= dout(15 DOWNTO 0);
SP4b_wea <="1";

SP4b_addra <= dout(57 DOWNTO 51);
SP4b_dina <= dout(15 DOWNTO 0);
SP5a_wea <="1"

SP5a_addra <= dout(57 DOWNTO 51);
SP5a_dina <= dout(15 DOWNTO 0);
SP5b wea <="1",

SP5b_addra <= dout(57 DOWNTO 51);
SP5b_dina <= dout(15 DOWNTO 0);
SP6a_wea <="1"

SP6a_addra <= dout(57 DOWNTO 51);
SP6a_dina <= dout(15 DOWNTO 0);
SP6b_wea <="1",

SP6b_addra <= dout(57 DOWNTO 51);
SP6b_dina <= dout(15 DOWNTO 0);
SP7a_wea <="1"

SP7a_addra <= dout(57 DOWNTO 51);
SP7a_dina <= dout(15 DOWNTO 0);
SP7b_wea <="1";

SP7b_addra <= dout(57 DOWNTO 51);
SP7b_dina <= dout(15 DOWNTO 0);
SP8a_wea <="1";

SP8a_addra <= dout(57 DOWNTO 51);
SP8a_dina <= dout(15 DOWNTO 0);
SP8b_wea <="1";

SP8b_addra <= dout(57 DOWNTO 51);
SP8b_dina <= dout(15 DOWNTO 0);

state .= state + 1,

-- READING A SPECIES POPULATION
ELSIF (dout(63 DOWNTO 59) = "00010") THEN
IF (state2 = "00000000") THEN
state?2 ;= state2 + 1;
we <="'0";
addr <= X"00";

SPla wea<='0}
SPla addra <= dout(57 DOWNTO 51);
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ELSE
we <="1";
addr <= X"01";
SPla wea<='0}
SPla addra <= dout(57 DOWNTO 51);

din(63 DOWNTO 16) <= X"000000000000";

din(15 DOWNTO 0) <= SPla_douta;
state2 :="00000000";
state := state + 1;

END IF;

-- SETTING A REACTION EQUATION
ELSIF (dout(63 DOWNTO 59) = "00011") THEN

we <="0"

addr <= X"00";

RX1_wea <="1l";

RX1 addra <= dout(56 DOWNTO 51);
RX1 dina <= dout(47 DOWNTO 0);
RX2_wea<="1";

RX2_addra <= dout(56 DOWNTO 51);
RX2_dina <= dout(47 DOWNTO 0);
RX3_wea <="1"

RX3_addra <= dout(56 DOWNTO 51);
RX3_dina <= dout(47 DOWNTO 0);
RX4_wea <="1";

RX4 addra <= dout(56 DOWNTO 51);
RX4 dina <= dout(47 DOWNTO 0);
RX5 wea<="1";

RX5_addra <= dout(56 DOWNTO 51);
RX5_dina <= dout(47 DOWNTO 0);
RX6_wea <="1"

RX6_addra <= dout(56 DOWNTO 51);
RX6_dina <= dout(47 DOWNTO 0);
RX7_wea <="1";

RX7_addra <= dout(56 DOWNTO 51);
RX7_dina <= dout(47 DOWNTO 0);
RX8 wea <="1"

RX8 addra <= dout(56 DOWNTO 51);
RX8 dina <= dout(47 DOWNTO 0);
RXUS_wea <=1

RXUS_addra <= dout(56 DOWNTO 51);
RXUS_dina <= dout(47 DOWNTO 0);
state := state + 1,

-- READING A REACTION EQUATION
ELSIF (dout(63 DOWNTO 59) = "00100") THEN

IF (state2 = "00000000") THEN
state? := state2 + 1;
we <="'0"
addr <= X"00";

RX1 wea <="0'

RX1 addra <= dout(56 DOWNTO 51);
ELSE

we <="'1"
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addr <= X"01";

RX1 wea <="0"

RX1 addra <= dout(56 DOWNTO 51);

din(63 DOWNTO 48) <= X"0000";

din(47 DOWNTO 0) <= RX1_douta(47 DOWNTO
0);

state2 := "00000000";

state := state + 1;

END IF;

-- READING A PROPENSITY
ELSIF (dout(63 DOWNTO 59) = "00101") THEN
IF (state2 = "00000000") THEN
state? := state2 + 1;
we <='0";
addr <= X"00";

P1 wea <=0}
P1 addra <= dout(56 DOWNTO 51);
P2 _wea <="0"
P2_addra <= dout(56 DOWNTO 51);
P3_wea <="0"
P3 addra <=do
P4 wea <="0"
P4 _addra <= dout(56 DOWNTO 51);
P5 wea <="0"
P5_addra <= dout(56 DOWNTO 51);
P6 wea <=0
P6_addra <= dout(56 DOWNTO 51);
P7_wea <="0"
P7_addra <= dout(56 DOWNTO 51);
P8 wea <="0"
P8_addra <= dout(56 DOWNTO 51);
ELSE
we <="'1"
addr <= X"01";
IF (dout(56 DOWNTO 51) < X"08") THEN
P1 wea<='0}
P1_addra <= dout(56 DOWNTO 51);
din(63 DOWNTO 48) <= X"0000";
din(47 DOWNTO 0) <= P1_douta(47

ut(56 DOWNTO 51);

DOWNTO 0);
ELSIF (dout(56 DOWNTO 51) < X"10") THEN
P2 wea<='0'
P2_addra <= dout(56 DOWNTO 51);
din(63 DOWNTO 48) <= X"0000";
din(47 DOWNTO 0) <= P2_douta(47
DOWNTO 0);
ELSIF (dout(56 DOWNTO 51) < X"18") THEN
P3_wea <="'0"
P3_addra <= dout(56 DOWNTO 51);
din(63 DOWNTO 48) <= X"0000";
din(47 DOWNTO 0) <= P3_douta(47
DOWNTO 0);
ELSIF (dout(56 DOWNTO 51) < X"20") THEN
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DOWNTO 0);

DOWNTO 0);

DOWNTO 0);

DOWNTO 0);

DOWNTO 0);

P4 wea <="'0"

P4 _addra <= dout(56 DOWNTO 51);
din(63 DOWNTO 48) <= X"0000";
din(47 DOWNTO 0) <= P4_douta(47

ELSIF (dout(56 DOWNTO 51) < X"28") THEN
P5 wea <="'0"
P5_addra <= dout(56 DOWNTO 51);
din(63 DOWNTO 48) <= X"0000";
din(47 DOWNTO 0) <= P5_douta(47

ELSIF (dout(56 DOWNTO 51) < X"30") THEN
P6 wea <='0';
P6_addra <= dout(56 DOWNTO 51);
din(63 DOWNTO 48) <= X"0000";
din(47 DOWNTO 0) <= P6_douta(47

ELSIF (dout(56 DOWNTO 51) < X"38") THEN
P7 wea<='0';
P7_addra <= dout(56 DOWNTO 51);
din(63 DOWNTO 48) <= X"0000";
din(47 DOWNTO 0) <= P7_douta(47

ELSE
P8 wea <="'0"
P8_addra <= dout(56 DOWNTO 51);
din(63 DOWNTO 48) <= X"0000";
din(47 DOWNTO 0) <= P8_douta(47

END IF;

state2 :="00000000";

state .= state + 1;
END IF;

-- READING A PARTIAL SUM
ELSIF (dout(63 DOWNTO 59) = "00110") THEN

we <="'1}
addr <= X"01";
din(63 DOWNTO 48) <= X"0000";
CASE dout(58 DOWNTO 51) IS
WHEN X"11" =>

din(47 DOWNTO 0) <=v_PSUML_1,
WHEN X"12" =>

din(47 DOWNTO 0) <=v_PSUM1_2;
WHEN X"21" =>

din(47 DOWNTO 0) <=v_PSUM2_1,
WHEN X"22" =>

din(47 DOWNTO 0) <=v_PSUM2_2;
WHEN X"31" =>

din(47 DOWNTO 0) <=v_PSUM3_1,
WHEN X"32" =>

din(47 DOWNTO 0) <= v_PSUM3_2;
WHEN X"41" =>

din(47 DOWNTO 0) <=v_PSUM4_1,
WHEN X"42" =>
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din(47 DOWNTO 0) <=v_PSUM4_2;
WHEN X"51" =>

din(47 DOWNTO 0) <=v_PSUM5_1;
WHEN X"52" =>

din(47 DOWNTO 0) <=v_PSUM5_2;
WHEN X"61" =>

din(47 DOWNTO 0) <=v_PSUM6_1;
WHEN X"62" =>

din(47 DOWNTO 0) <=v_PSUM6_2;
WHEN X"71" =>

din(47 DOWNTO 0) <=v_PSUM7_1;
WHEN X"72" =>

din(47 DOWNTO 0) <=v_PSUM7_2;
WHEN X"81" =>

din(47 DOWNTO 0) <=v_PSUMS8_1;
WHEN X"82" =>

din(47 DOWNTO 0) <=v_PSUMS8_2;
WHEN OTHERS =>

din(47 DOWNTO 0) <= TPROPS;
END CASE;
state := state + 1,

-- SET SEED TO UNIFORM RANDOM NUMBER GENERATOR
ELSIF (dout(63 DOWNTO 59) ="00111") THEN
we <="'0";
addr <= X"00";
CASE state? IS
WHEN "00000000" =>
s_seed <= dout(31 DOWNTO 0);
s_Ifsr_reset <="'1";
state2 := state2 + 1;
WHEN OTHERS =>
s_seed <= dout(31 DOWNTO 0);
s_Ifsr_reset <="'1";
s_Ifsr_enable <="1";
state := state + 1,
state2 := "00000000";
END CASE;

-- READING UNIFORM RANDOM NUMBER
ELSIF (dout(63 DOWNTO 59) = "01000") THEN
we <="1";
addr <= X"01";
din(63 DOWNTO 32) <= X"00000000";
din(31 DOWNTO 0) <=s_URV;
state := state + 1,

-- CALCULATE A NEW UNIFORM RANDOM NUMBER
ELSIF (dout(63 DOWNTO 59) = "01001") THEN

we <='0’;

addr <= X"00";

s_lIfsr_reset <="'0";

s_Ifsr_enable <="1",

state := state + 1,
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-- READING PRODUCT
ELSIF (dout(63 DOWNTO 59) = "01010") THEN
we <="1";
addr <= X"01";
din(63 DOWNTO 48) <= X"0000";
din(47 DOWNTO 0) <= product(79 DOWNTO 32);
state .= state + 1,

-- READING SELECTED REACTION
ELSIF (dout(63 DOWNTO 59) = "01011") THEN
we <="'1";
addr <= X"01";
din(63 DOWNTO 8) <= X"00000000000000";
din(7 DOWNTO 6) <= "00";
din(5 DOWNTO 0) <= s_rxselect;
state .= state + 1,

-- READING EXPONENTIAL RANDOM NUMBER
ELSIF (dout(63 DOWNTO 59) ="01100") THEN
we <="'1"
addr <= X"01";
din(63 DOWNTO 32) <=s_ERV_URYV;
din(31 DOWNTO 0) <=s_ERYV;,
state := state + 1;

-- INITIALIZING PROPENSITY CALCULATORS
ELSIF (dout(63 DOWNTO 59) ="01101") THEN
we <="0"
addr <= X"00";
IF (state2 < "00000010") THEN
P1 wea <="0
P2_wea <="0"
P3 wea <=0}
P4 wea <="0"
P5 wea <="0"
P6_wea <="0"
P7_wea <="0"
P8 wea <="0"

RX1_wea <="'0"
RX1_addra <= LBOUND_1 + count;
RX2_wea <="0";
RX2_addra <= LBOUND_2 + count;
RX3 wea <=0
RX3_addra <= LBOUND_3 + count;
RX4_wea <="0";
RX4_addra <= LBOUND_4 + count;
RX5 wea <=0
RX5_addra <= LBOUND_5 + count;
RX6_wea <="0";
RX6_addra <= LBOUND_6 + count;
RX7_wea <="0';
RX7_addra <= LBOUND_7 + count;
RX8 wea <=0
RX8 addra <= LBOUND_8 + count;
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state?2 .= state2 + 1;

ELSIF (state2 < "00000100") THEN

RX1 wea <=0

RX1 addra <= LBOUND_1 + count;
RX2_wea <="0";

RX2_addra <= LBOUND_2 + count;
RX3 wea <=0

RX3_addra <= LBOUND_3 + count;
RX4 wea <="0";
RX4 addra<=1L
RX5_ wea <="0";
RX5 addra <=L
RX6_wea <="0";
RX6_ addra <= LBOUND_6 + count;
RX7_wea <="0";

RX7_addra <= LBOUND_7 + count;
RX8 wea <=0

RX8 _addra <= LBOUND_8 + count;

BOUND_4 + count;

BOUND_5 + count;

SPla wea <=0

SP1b wea <='0"

SPla addra <= RX1_douta(46 DOWNTO 40);
SP1b_addra <= RX1_douta(38 DOWNTO 32);
SP2a_wea <="0';

SP2b wea <="'0";

SP2a addra <= RX2_douta(46 DOWNTO 40);
SP2b_addra <= RX2_douta(38 DOWNTO 32);
SP3a_wea <='0}

SP3b_wea <="'0';

SP3a_addra <= RX3_douta(46 DOWNTO 40);
SP3b_addra <= RX3_douta(38 DOWNTO 32);
SP4a_wea <='0";

SP4b_wea <="'0";

SP4a_addra <= RX4_douta(46 DOWNTO 40);
SP4b_addra <= RX4_douta(38 DOWNTO 32);
SP5a_wea <="0";

SP5b_wea <="0";

SP5a_addra <= RX5_douta(46 DOWNTO 40);
SP5b_addra <= RX5_douta(38 DOWNTO 32);
SP6a_wea <="'0';

SP6b_wea <="'0";

SP6a_addra <= RX6_douta(46 DOWNTO 40);
SP6b_addra <= RX6_douta(38 DOWNTO 32);
SP7a_wea <=0

SP7b_wea <="'0";

SP7a_addra <= RX7_douta(46 DOWNTO 40);
SP7b_addra <= RX7_douta(38 DOWNTO 32);
SP8a_wea <='0';

SP8b_wea <='0';

SP8a_addra <= RX8_ douta(46 DOWNTO 40);
SP8b_addra <= RX8 douta(38 DOWNTO 32);
state? := state2 + 1;

ELSIF (state2 = "00000100") THEN

169



RX1 wea <="0"
RX1 addra <= LBOUND_1 + count;
RX2_wea <="0";
RX2_addra <= LBOUND_2 + count;
RX3_wea <="0";
RX3 addra <= LBOUND_3 + count;
RX4 wea <="0";
RX4 addra <= LBOUND_4 + count;
RX5 wea <=0
RX5 addra <= LBOUND_5 + count;
RX6_wea <="0";
RX6_addra <= LBOUND_6 + count;
RX7_wea <="0";
RX7_addra <= LBOUND_7 + count;
RX8 wea <="0";
RX8 addra <= LBOUND_8 + count;

SPla wea<='0"}
SP1b wea<="0"
SPla addra <= RX1_douta(46 DOWNTO 40);
SP1b_addra <= RX1_douta(38 DOWNTO 32);
SP2a_wea <="0';
SP2b_wea <="0";
SP2a_addra <= RX2_douta(46 DOWNTO 40);
SP2b_addra <= RX2_douta(38 DOWNTO 32);
SP3a_wea <="0';
SP3b_wea <="'0";
SP3a_addra <= RX3_douta(46 DOWNTO 40);
SP3b_addra <= RX3_douta(38 DOWNTO 32);
SP4a_wea <="'0';
SP4b_wea <="'0";
SP4a_addra <= RX4_douta(46 DOWNTO 40);
SP4b_addra <= RX4_douta(38 DOWNTO 32);
SP5a_wea <='0";
SP5b_wea <="'0";
SP5a_addra <= RX5_douta(46 DOWNTO 40);
SP5b_addra <= RX5_douta(38 DOWNTO 32);
SP6a_wea <='0";
SP6b_wea <="'0";
SP6a_addra <= RX6_douta(46 DOWNTO 40);
SP6b_addra <= RX6_douta(38 DOWNTO 32);
SP7a_wea <=0
SP7b_wea <="0";
SP7a_addra <= RX7_douta(46 DOWNTO 40);
SP7b_addra <= RX7_douta(38 DOWNTO 32);
SP8a_wea <="0';
SP8b_wea <="'0';
SP8a_addra <= RX8 douta(46 DOWNTO 40);
SP8b_addra <= RX8 douta(38 DOWNTO 32);

v_PC1 POP1 := SPla douta;
v_PC1 POP2 := SP1b_douta;
v_PC1 RX:=RX1_douta;

v_PC2 POP1 := SP2a _douta;
v_PC2_POP2 := SP2b_douta;
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v_PC2 RX := RX2_douta;

v_PC3 _POP1 := SP3a_douta;

v_PC3 POP2 := SP3b_douta;

v_PC3 RX:= RX3_douta;

v_PC4 _POP1 := SP4a_douta;

v_PC4 _POP2 := SP4b_douta;

v_PC4 RX:=RX4 douta;

v_PC5 POP1 := SP5a_douta;

v_PC5 POP2 := SP5b_douta;

v_PC5 RX:=RX5 douta;
v_PC6_POP1 := SP6a_douta;
v_PC6_POP2 := SP6b_douta;
v_PC6_ RX := RX6_douta;

v_PC7 _POP1 := SP7a_douta;

v_PC7_POP2 := SP7b_douta;

v_PC7_RX := RX7_douta;

v_PC8 POP1 := SP8a_douta;

v_PC8 POP2 := SP8b_douta;

v_PC8 RX := RX8 douta;

state2 := state2 + 1;

ELSIF (state2 = "00000110") THEN

state2 := "00000000";

P1 wea<="1"

P1 addra <= LBOUND 1 + count;

P1_dina <= PC1_PROP;

P2 wea <="1"

P2 addra <= LBOUND_2 + count;

P2 dina <= PC2_PROP;

P3 wea<="1";

P3_addra <= LBOUND_3 + count;

P3_dina <= PC3_PROP;

P4 wea <="1';

P4 addra <= LBOUND_4 + count;

P4 dina <= PC4_PROP;

P5 wea <="1";

P5 addra <= LBOUND_5 + count;

P5_dina <= PC5_PROP;

P6 wea<="1";

P6 _addra <= LBOUND_6 + count;

P6_dina <= PC6_PROP;

P7_wea <="1";

P7 _addra <= LBOUND_7 + count;

P7 _dina <= PC7_PROP;

P8 wea<="1";

P8 addra <= LBOUND_8 + count;

P8_dina <= PC8_PROP;

IF (count = "000000") THEN
v_PSUM1 1 :=PC1_PROP;
v_PSUM2_1 := PC2_PROP;
v_PSUM3_1 := PC3_PROP;
v_PSUM4_1 := PC4_PROP;
v_PSUM5_1 := PC5_PROP;
v_PSUM6_1 := PC6_PROP;
v_PSUM7_1 := PC7_PROP;
v_PSUMS8_1 := PC8_PROP;
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count ;= count + 1;

ELSIF (count < "000100") THEN

v_PSUM1 1:=v PSUM1 1+ PC1 PROP;
v_PSUM2 1:=v PSUM2 1+ PC2_PROP;
v_PSUM3 1:=v _PSUM3_1 + PC3_PROP;
v_PSUM4 1 :=v_PSUM4_1 + PC4_PROP;
v_PSUM5 1:=v _PSUM5_1 + PC5_PROP;
v_PSUM6_1:=v_PSUM6_1 + PC6_PROP;
v_PSUM7_1:=v _PSUM7_1+ PC7_PROP;
v_PSUMS8 1:=v_PSUM8_1 + PC8 PROP;
count :=count + 1;

ELSIF (count = "000100") THEN

v_PSUM1_2:=v_PSUM1_1 + PC1_PROP;
v_PSUM2_2 :=v_PSUM2_1 + PC2_PROP;

v_PSUM3_2 :=v_PSUM3_1 + PC3_PROP;
v_PSUM4_2 :=v_PSUM4_1 + PC4_PROP;
v_PSUM5_2 :=v_PSUMS5_1 + PC5_PROP;
v_PSUM6_2 :=v_PSUM6_1 + PC6_PROP;
v_PSUM7_2:=v_PSUM7_1 + PC7_PROP;
v_PSUMS8_2 :=v_PSUMS8_1 + PC8_PROP;

count :=count + 1;

ELSIF (count < "000111") THEN

ELSE

v_PSUM1 2 :=v_PSUM1 2+ PC1 PROP;
v_PSUM2_2:=v_PSUM2_2 + PC2_PROP;
v_PSUM3 2 :=v_PSUM3_2 + PC3_PROP;
v_PSUM4_2:=v_PSUM4_2 + PC4_PROP;
v_PSUM5_2:=v_PSUM5_2 + PC5_PROP;
v_PSUM6_2 :=v_PSUM6_2 + PC6_PROP;
v_PSUM7_2:=v_PSUM7_2 + PC7_PROP;
v_PSUM8 2 :=v_PSUM8_2 + PC8 PROP;
count := count + 1,

v_PSUM1 2:=v PSUM1 2+ PC1 PROP;
v_PSUM2 2 :=v _PSUM2 2+ PC2_PROP;
v_PSUM3 2 :=v_PSUM3_2 + PC3_PROP;
v_PSUM4 2 :=v_PSUM4_2 + PC4_PROP;
v_PSUM5 2 :=v_PSUM5_2 + PC5_PROP;
v_PSUM6 2 :=v _PSUM6 2 + PC6_PROP;
v_PSUM7_2:=v_PSUM7_2 + PC7_PROP;
v_PSUM8 2 :=v_PSUM8_2 + PC8 PROP;
state .= state + 1;

count :="000000";

END IF;

ELSE

state?2 ;= state2 + 1;

END IF;

-- STEP THROUGH 125 REACTIONS
ELSIF (dout(63 DOWNTO 59) ="01110") THEN

- we <="0"

-- addr <= X"00";
index := X"02";

maxindex := dout(7 DOWNTO 0);

looping =1
we <="'1";
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addr <= X"01";

din(63 DOWNTO 40) <= X"000000";
din(39 DOWNTO 32) <= index;
din(31 DOWNTO 8) <= X"000000";
din(7 DOWNTO 0) <= maxindex;
state2 := "00000000";

END IF;

-- TELL CPU THAT FPGA IS DONE

ELSIF (state = "0010") THEN
we <="'1"
addr <= X"00";
din <= (others =>'0";
SPUS1 wea <="0"
SPUS2_wea <="0"
SPUS3_wea <="0"
SPUS4_wea <="0"
SPla wea<='0}
SP1b wea <='0"
SP2a_wea <=0’
SP2b_wea <="'0";
SP3a _wea <='0"
SP3b_wea <="'0';
SP4a_wea <=0’
SP4b_wea <="'0";
SP5a_wea <="0';
SP5b_wea <="'0";
SP6a_wea <='0";
SP6b_wea <="'0";
SP7a_wea <=0}
SP7b_wea <="0";
SP8a_wea <='0";
SP8b_wea <="'0";
RX1 _wea <="0"
RX2_wea <="0";
RX3_wea <="0";
RX4 wea <="0";
RX5 wea <="0";
RX6_wea <="0";
RX7_wea <="0",
RX8_wea <="0";
RXUS_wea <="'0"
P1 wea<='0}
P2_wea <="'0"
P3_wea <="'0"
P4 wea <="0"
P5 wea <='0";
P6 wea <='0";
P7_wea <="0"
P8 wea <="0"
state := "00000000";

ELSE
we <="'0"
addr <= X"00";
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state .= state + 1;
END IF;

product <= theproduct;

PSUM1_1 <=v_PSUM1_1; PSUM1_2 <=v_PSUM1_2; PSUM2
v_PSUM2_1; PSUM2_2 <=v_PSUM2_2;

PSUM3_1 <=v_PSUMS3_1; PSUM3_2 <=v_PSUM3_2; PSUM4
v_PSUM4_1; PSUM4_2 <=v_PSUM4_2;

PSUM5_1 <=v_PSUM5_1; PSUM5_2 <=v_PSUM5_2; PSUM6
v_PSUMG6_1; PSUM6_2 <=v_PSUM6_2;

PSUM7_1 <=v_PSUM7_1; PSUM7_2 <= v_PSUM7_2; PSUM8
v_PSUMS8_1; PSUM8_2 <=v_PSUM8_2;

PC1_POP1<=v_PCl_POP1; PC1_POP2 <=v_PC1_POP2; P

v_PC1 RX;

PC2_POP1 <=v_PC2_POP1; PC2_POP2 <=v_PC2_POP2; P
v_PC2_RX;

PC3 POP1 <=v_PC3_POP1; PC3_POP2 <=v_PC3 POP2; P
v_PC3_RX;

PC4_POP1 <=v_PC4_POP1; PC4_POP2 <=v_PC4_POP2; P
v_PC4_RX;

PC5_POP1 <=v_PC5_POP1; PC5_POP2 <=v_PC5_POP2; P
v_PC5_RX;

PC6_POP1 <=v_PC6_POP1; PC6_POP2 <=v_PC6_POP2; P
v_PC6_RX;

PC7_POP1 <=v_PC7_POP1; PC7_POP2 <=v_PC7_POP2; P
v_PC7_RX;

PC8 POP1 <=v_PC8 _POP1; PC8_POP2 <=v_PC8 POP2; P
v_PC8_RX;

END IF;

END PROCESS;

-- PROCESS TO DETERMINE THE ADDRESS OF THE NEXT REA CTION
PROCESS (clk)

VARIABLE nextreac : STD_LOGIC_VECTOR(5 DOWNTO 0);
VARIABLE v_rxselect : STD_LOGIC_VECTOR(5 DOWNTO 0) :
VARIABLE baddr : STD_LOGIC_VECTOR(5 DOWNTO 0);
VARIABLE count : STD_LOGIC_VECTOR(5 DOWNTO 0);
VARIABLE apro : STD_LOGIC_VECTOR(47 DOWNTO 0);
VARIABLE rx_state : STD_LOGIC_VECTOR(3 DOWNTO 0):
VARIABLE pcolumn : STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN
IF (clk'EVENT AND clk="1") THEN
P1 web <='0"; P2_web <="0"; P3_web <='0"; P4_w
P5 web <="'0"; P6_web <="0"; P7_web <='0"; P8_w

IF (product(79 DOWNTO 32) < PSUM1_2) THEN
--IF (pcolumn /= X"1") THEN
-- pcolumn := X"1";
-- rx_state := X"0"
--END IF;
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CASE rx_state IS
WHEN "0000" =>
apro := product(79 DOWNTO 32);
rx_state := rx_state + 1;
count :="000000";
WHEN "0001" =>
IF (apro < PSUM1_1) THEN
baddr :="000000";
ELSE
baddr :="000100";
apro ;= apro - PSUM1_1;
END IF;
P1_addrb <= baddr;
rx_state := rx_state + 1;
WHEN "0010" =>
P1_addrb <= baddr + count;
rx_state := rx_state + 1;
WHEN "0011" =>
IF (apro < P1_doutb) THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSIF (count = "000011") THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSE
apro := apro - P1_doutb;
count := count + 1,
P1 addrb <= baddr + count;
rx_state := X"2";
END IF;
WHEN "0100" =>
V_rxselect ;= nextreac;
rx_state := X"0";
WHEN OTHERS =>
P1_addrb <= baddr + count;
rx_state := X"0";
END CASE;

ELSIF (product(79 DOWNTO 32) < TPROP2) THEN
--IF (pcolumn /= X"2") THEN
-- pcolumn := X"2";
-- rx_state := X"0";
--END IF;
CASE rx_state IS
WHEN "0000" =>
apro := product(79 DOWNTO 32) - PSUM1_2;
rx_state := rx_state + 1;
count :="000000";
WHEN "0001" =>
IF (apro < PSUM2_1) THEN
baddr :="001000";
ELSE
apro := apro - PSUM2_1,;
baddr :="001100";
END IF;
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P2_addrb <= baddr;
rx_state := rx_state + 1;
WHEN "0010" =>
P2 _addrb <= baddr + count;
rx_state := rx_state + 1;
WHEN "0011" =>
IF (apro < P2_doutb) THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSIF (count = "000011") THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSE
apro := apro - P2_doutb;
count := count + 1,
P2_addrb <= baddr + count;
rx_state := X"2";
END IF;
WHEN "0100" =>
v_rxselect ;= nextreac;
rx_state := X"0";
WHEN OTHERS =>
P2 _addrb <= baddr + count;
rx_state := X"0";
END CASE;

ELSIF (product(79 DOWNTO 32) < TPROP3) THEN
--IF (pcolumn /= X"3") THEN
-- pcolumn := X"3";
-- rx_state := X"0";
--END IF;
CASE rx_state IS
WHEN "0000" =>
apro := product(79 DOWNTO 32) - TPROP?2;
rx_state := rx_state + 1;
count :="000000";
WHEN "0001" =>
IF (apro < PSUM3_1) THEN
baddr :="010000";
ELSE
apro ;= apro - PSUM3_1;
baddr :="010100";
END IF;
P3_addrb <= baddr;
rx_state := rx_state + 1;
WHEN "0010" =>
P3_addrb <= baddr + count;
rx_state := rx_state + 1;
WHEN "0011" =>
IF (apro < P3_doutb) THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSIF (count ="000011") THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
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ELSE
apro := apro - P3_doutb;
count := count + 1;
P3_addrb <= baddr + count;
rx_state := X"2";
END IF;
WHEN "0100" =>
V_rxselect := nextreac;
rx_state := X"0";
WHEN OTHERS =>
P3_addrb <= baddr + count;
rx_state := X"0";
END CASE;

ELSIF (product(79 DOWNTO 32) < TPROP4) THEN
--IF (pcolumn /= X"4") THEN
-- pcolumn := X"4";
-- rx_state := X"0";
--END IF;
CASE rx_state IS
WHEN "0000" =>
apro := product(79 DOWNTO 32) - TPROP3;
rx_state := rx_state + 1;
count :="000000";
WHEN "0001" =>
IF (apro < PSUM4_1) THEN
baddr :="011000";
ELSE
apro := apro - PSUM4_1,
baddr :="011100";
END IF;
P4 _addrb <= baddr;
rx_state := rx_state + 1;
WHEN "0010" =>
P4_addrb <= baddr + count;
rx_state := rx_state + 1;
WHEN "0011" =>
IF (apro < P4_doutb) THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSIF (count = "000011") THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSE
apro := apro - P4_doutb;
count := count + 1,
P4 _addrb <= baddr + count;
rx_state := X"2";
END IF;
WHEN "0100" =>
V_rxselect ;= nextreac;
rx_state := X"0";
WHEN OTHERS =>
P4 addrb <= baddr + count;
rx_state := X"0";
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ELSIF

ELSIF

END CASE;

(product(79 DOWNTO 32) < TPROP5) THEN
--IF (pcolumn /= X"5") THEN
-- pcolumn := X"5";
-- rx_state := X"0";
--END IF;
CASE rx_state IS
WHEN "0000" =>
apro := product(79 DOWNTO 32) - TPROP4;
rx_state := rx_state + 1;
count :="000000";
WHEN "0001" =>
IF (apro < PSUM5_1) THEN
baddr :="100000";
ELSE
apro ;= apro - PSUM5_1;
baddr :="100100";
END IF;
P5_addrb <= baddr;
rx_state := rx_state + 1;
WHEN "0010" =>
P5 addrb <= baddr + count;
rx_state := rx_state + 1;
WHEN "0011" =>
IF (apro < P5_doutb) THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSIF (count ="000011") THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSE
apro := apro - P5_doutb;
count := count + 1;
P5_addrb <= baddr + count;
rx_state := X"2";
END IF;
WHEN "0100" =>
v_rxselect := nextreac;
rx_state := X"0";
WHEN OTHERS =>
P5_addrb <= baddr + count;
rx_state := X"0";
END CASE;

(product(79 DOWNTO 32) < TPROP6) THEN

--IF (pcolumn /= X"6") THEN

-- pcolumn := X"6";

-- rx_state := X"0"

--END IF;

CASE rx_state IS

WHEN "0000" =>
apro := product(79 DOWNTO 32) - TPROPY5;
rx_state := rx_state + 1;
count :="000000";
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WHEN "0001" =>
IF (apro < PSUM6_1) THEN
baddr :="101000";
ELSE
apro ;= apro - PSUM6_1;
baddr :="101100";
END IF;
P6_addrb <= baddr;
rx_state := rx_state + 1;
WHEN "0010" =>
P6_addrb <= baddr + count;
rx_state := rx_state + 1;
WHEN "0011" =>
IF (apro < P6_doutb) THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSIF (count = "000011") THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSE
apro := apro - P6_doutb;
count := count + 1,
P6_addrb <= baddr + count;
rx_state := X"2";
END IF;
WHEN "0100" =>
v_rxselect ;= nextreac;
rx_state := X"0";
WHEN OTHERS =>
P6_addrb <= baddr + count;
rx_state := X"0";
END CASE;

ELSIF (product(79 DOWNTO 32) < TPROP7) THEN

--IF (pcolumn /= X"7") THEN
-- pcolumn := X"7";
-- rx_state := X"0";
--END IF;
CASE rx_state IS
WHEN "0000" =>
apro := product(79 DOWNTO 32) - TPROPE;
rx_state := rx_state + 1;
count :="000000";
WHEN "0001" =>
IF (apro < PSUM7_1) THEN
baddr :="110000";
ELSE
apro := apro - PSUM7_1,
baddr :="110100";
END IF;
P7_addrb <= baddr;
rx_state := rx_state + 1;
WHEN "0010" =>
P7_addrb <= baddr + count;
rx_state := rx_state + 1;
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WHEN "0011" =>
IF (apro < P7_doutb) THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSIF (count = "000011") THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSE
apro := apro - P7_doutb;
count := count + 1,
P7_addrb <= baddr + count;
rx_state := X"2";
END IF;
WHEN "0100" =>
v_rxselect ;= nextreac;
rx_state := X"0";
WHEN OTHERS =>
P7_addrb <= baddr + count;
rx_state := X"0";
END CASE;

ELSE
--IF (pcolumn /= X"8") THEN
-- pcolumn := X"8";
-- rx_state := X"0";
--END IF;
CASE rx_state IS
WHEN "0000" =>
apro := product(79 DOWNTO 32) - TPROP7,;
rx_state := rx_state + 1;
count :="000000";
WHEN "0001" =>
IF (apro < PSUM8_1) THEN
baddr :="111000";
ELSE
apro ;= apro - PSUM8_1;
baddr :="111100";
END IF;
P8_addrb <= baddr;
rx_state := rx_state + 1;
WHEN "0010" =>
P8_addrb <= baddr + count;
rx_state := rx_state + 1;
WHEN "0011" =>
IF (apro < P8_doutb) THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSIF (count ="000011") THEN
nextreac := baddr + count;
rx_state := rx_state + 1;
ELSE
apro := apro - P8_doutb;
count := count + 1;
P8 addrb <= baddr + count;
rx_state := X"2";
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END IF;
WHEN "0100" =>
v_rxselect := nextreac;
rx_state := X"0";
WHEN OTHERS =>
P8_addrb <= baddr + count;
rx_state := X"0";
END CASE;

END IF;
s_rxselect <= v_rxselect;
END IF;
END PROCESS;

END rtl;
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propcalc.vhd

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY propcalc IS

PORT (
clk
POP1
POP2
RX

:IN STD_LOGIC;
- IN STD_LOGIC_VECTOR(15 DOWNTO 0);
- IN STD_LOGIC_VECTOR(15 DOWNTO 0);
-IN STD_LOGIC_VECTOR(47 DOWNTO 0);

PROPENSITY :OUT STD_LOGIC_VECTOR(47 DOWNTO 0) );

END propcalc;

ARCHITECTURE rtl OF propcalc IS

BEGIN
PROCESS(clk)
VARIABLE X,Y . STD_LOGIC_VECTOR(15 DOWNTO 0):
VARIABLE prop . STD_LOGIC_VECTOR(47 DOWNTO 0):
BEGIN

IF (clkkEVENT AND clk="0") THEN

END IF;
END PROCESS;
END rtl;

X :=POP1,;
IF (RX(47 DOWNTO 40) = RX(39 DOWNTO 32)) THEN
Y =X-1,

ELSE
Y := POP2;

END IF;

prop := RX(15 DOWNTO 0) * X * Y;

IF (RX(47 DOWNTO 40) = RX(39 DOWNTO 32)) THEN
prop(46 DOWNTO 0) := prop(47 DOWNTO 1);
prop(47) :="'0"

END IF;

PROPENSITY <= prop;
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sumprop.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

ENTITY sumprop IS
PORT ( clk :INSTD_LOGIC;
PSUML1 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
PSUM2 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
PSUMS : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
PSUM4 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
PSUM5 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
PSUMG6 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
PSUM7 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);
PSUMS8 : IN STD_LOGIC_VECTOR(47 DOWNTO 0);

TOTAL2 - OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTAL3 - OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTAL4 - OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTALS - OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTAL6 - OUT STD_LOGIC_VECTOR(47 DOWNTO 0):
TOTAL7 - OUT STD_LOGIC_VECTOR(47 DOWNTO 0);
TOTALS - OUT STD_LOGIC_VECTOR(47 DOWNTO 0) );

END sumprop;
ARCHITECTURE rtl OF sumprop IS

BEGIN
PROCESS(clk)
VARIABLE sum2 : STD_LOGIC_VECTOR(47 DOWNTO 0);
VARIABLE sum3 : STD_LOGIC_VECTOR(47 DOWNTO 0);
VARIABLE sum4 : STD_LOGIC_VECTOR(47 DOWNTO 0);
VARIABLE sum5 : STD_LOGIC_VECTOR(47 DOWNTO 0);
VARIABLE sum6 : STD_LOGIC_VECTOR(47 DOWNTO 0);
VARIABLE sum7 : STD_LOGIC_VECTOR(47 DOWNTO 0);
VARIABLE sum8 : STD_LOGIC_VECTOR(47 DOWNTO 0);
BEGIN
IF (clkkEVENT AND clk="1") THEN
sum2 := PSUM1 + PSUM2;
sum3 := PSUM1 + PSUM2 + PSUM3;
sum4 := PSUM1 + PSUM2 + PSUM3 + PSUM4;
sumb5 ;= PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5;
sumé6 = PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUM5 + P SUME6;
sum7 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUMS5 + P SUMG6 +

PSUM7,;
sum8 := PSUM1 + PSUM2 + PSUM3 + PSUM4 + PSUMS5 + P SUMG6 +
PSUM7 + PSUMS;

TOTALZ2 <=sum2; TOTAL3 <=sum3; TOTAL4 <= sum4;
TOTALS <= sum5; TOTALG6 <= sum6; TOTAL7 <= sum7;
TOTALS8 <= sums8;

END IF;
END PROCESS;
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END rtl;
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Ifsr32.vhd [17]

library ieee;

library work;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity Ifsr32 is

port (iin_clock :in std_logic;
in_reset :in std_logic;
in_seed :in std_logic_vector(31 down

out_random_number : out std_logic_vector(31 dow
end entity Ifsr32;

architecture a of Ifsr32 is
begin
process(in_clock)
variable var_current_number : std_logic_vector(
variable var_startup : natural;
variable var_next_bit : std_logic;
begin
if (in_clock ='1" and in_clock'event) then
if (in_reset="1" or var_startup=0) then
var_current_number :=in_seed;
var_startup := 1;
else
var_next_bit := var_current_number(0) XOR
var_current_number(26) XOR
var_current_number(27) XOR
var_current_number(31);
var_current_number(31 downto 1) := var_current_num
0);
var_current_number(0) := var_next_bit;
end if;
out_random_number <= var_current_number;
end if;
end process;
end architecture a;
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exp_rand.vhd[17]

library ieee;

library work;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity exp_rand is
port (in_clock : in std_logic;

out_uniform_number : out std_logic_vector(31 down to 0);
out_random_number : out std_logic_vector(31 downt 0 0));
end entity;

architecture a of exp_rand is
component linear_interp
port (in_clk : in std_logic;

in_rand : in std_logic_vector(15 downto 0);
in_min : in std_logic_vector(15 downto 0);
in_diff : in std_logic_vector(15 downto 0);
in_urn : in std_logic_vector(31 downto 0);
out_urn : out std_logic_vector(31 downto 0);
out_interp : out std_logic_vector(31 downto 0));

end component;

component Ifsr32

port (in_clock > in std_logic;
in_reset :in std_logic;
in_seed . in std_logic_vector(31 do wnto 0);
out_random_number : out std_logic_vector(31 d ownto 0));

end component;

component negative log_lut
port(index : in std_logic_vector(7 downto 0);
in_urn :in std_logic_vector(31 downto 0);
out_urn : out std_logic_vector(31 downto 0);
min : out std_logic_vector(15 downto 0);
diff : out std_logic_vector(15 downto 0));
end component;

signal sig_0 : std_logic;

signal sig_expseed : std_logic_vector(31 downto O );
signal sig_urn : std_logic_vector(31 downto 0);

signal sig_outurn : std_logic_vector(31 downto 0) ;
signal sig_min : std_logic_vector(15 downto 0);

signal sig_diff : std_logic_vector(15 downto 0);

begin
sig 0<="0",
sig_expseed <="10101010101010101010101010101010" ;

moO : Ifsr32
port map(in_clock,sig_0,sig_expseed,sig_urn);

ml : linear_interp
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port map(in_clock,sig_urn(15 downto 0),sig_min,
sig_diff,sig_outurn,out_uniform_number,out_random_n umber);

m2 : negative_log_lut
port map(sig_urn(23 downto
16),sig_urn,sig_outurn,sig_min,sig_diff);

end;
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negative_log_lut.vhd[17]

library ieee;

library work;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity negative_log_lut is
port(index : in std_logic_vector(7 downto 0);
in_urn : in std_logic_vector(31 downto 0);
out_urn : out std_logic_vector(31 downto 0);
min : out std_logic_vector(15 downto 0);
diff : out std_logic_vector(15 downto 0));
end entity;

architecture a of negative_log_lut is
begin
process(index)
begin
out_urn <=in_urn;
case index is
when "00000000" =>
diff <= "0100111010001101";
min <= "1011000101110010";
when "00000001" =>
diff <= "0001011000101110";
min <="1001101101000011";
when "00000010" =>
diff <= "0000110011111001";
min <= "1000111001001010";
when "00000011" =>
diff <= "0000100100110100";
min <= "1000010100010101";
when "00000100" =>
diff <= "0000011100100011";
min <="0111110111110001";
when "00000101" =>
diff <= "0000010111010101";
min <="0111100000011100";
when "00000110" =>
diff <= "0000010011101110";
min <="0111001100101101";
when "00000111" =>
diff <= "0000010001000101";
min <="0110111011100111";
when "00001000" =>
diff <= "0000001111000100";
min <="0110101100100010";
when "00001001" =>
diff <= "0000001101011111";
min <="0110011111000011";
when "00001010" =>
diff <= "0000001100001100";
min <="0110010010110110";
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when "00001011" =>

diff <="0000001011001000";

min <="0110000111101101";
when "00001100" =>

diff <= "0000001010001111";

min <="0101111101011110%
when "00001101" =>

diff <= "0000001001011111";

min <="0101110011111110"
when "00001110" =>

diff <="0000001000110101";

min <= "0101101011001001";
when "00001111" =>

diff <= "0000001000010000";

min <= "0101100010111001";
when "00010000" =>

diff <="0000000111110000";

min <="0101011011001000";
when "00010001" =>

diff <="0000000111010100";

min <= "0101010011110100"
when "00010010" =>

diff <= "0000000110111010";

min <="0101001100111001";
when "00010011" =>

diff <="0000000110100100";

min <= "0101000110010101";
when "00010100" =>

diff <= "0000000110001111";

min <= "0101000000000101";
when "00010101" =>

diff <="0000000101111101";

min <="0100111010001000";
when "00010110" =>

diff <="0000000101101100";

min <= "0100110100011100"
when "00010111" =>

diff <= "0000000101011100";

min <="0100101110111111";
when "00011000" =>

diff <= "0000000101001110";

min <= "0100101001110001";
when "00011001" =>

diff <= "0000000101000001";

min <= "0100100100101111";
when "00011010" =>

diff <="0000000100110101";

min <="0100011111111010"
when "00011011" =>

diff <="0000000100101001";

min <= "0100011011010000"
when "00011100" =>

diff <= "0000000100011111";

min <="0100010110110001";
when "00011101" =>
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diff <="0000000100010101";

min <= "0100010010011011";
when "00011110" =>

diff <= "0000000100001100";

min <= "0100001110001110"
when "00011111" =>

diff <="0000000100000100";

min <= "0100001010001010";
when "00100000" =>

diff <="0000000011111100";

min <= "0100000110001110"
when "00100001" =>

diff <= "0000000011110100";

min <= "0100000010011010";
when "00100010" =>

diff <= "0000000011101101";

min <="0011111110101100"
when "00100011" =>

diff <= "0000000011100110";

min <="0011111011000101";
when "00100100" =>

diff <="0000000011100000";

min <="0011110111100101";
when "00100101" =>

diff <= "0000000011011010";

min <="0011110100001010"
when "00100110" =>

diff <= "0000000011010100";

min <="0011110000110110";
when "00100111" =>

diff <= "0000000011001111";

min <="0011101101100110"
when "00101000" =>

diff <= "0000000011001010";

min <="0011101010011100"
when "00101001" =>

diff <= "0000000011000101";

min <="0011100111010111";
when "00101010" =>

diff <="0000000011000000";

min <= "0011100100010110"
when "00101011" =>

diff <= "0000000010111100";

min <="0011100001011010";
when "00101100" =>

diff <="0000000010111000";

min <="0011011110100001";
when "00101101" =>

diff <= "0000000010110100";

min <="0011011011101101";
when "00101110" =>

diff <="0000000010110000";

min <="0011011000111101";
when "00101111" =>

diff <="0000000010101100";
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min <= "0011010110010001";
when "00110000" =>

diff <= "0000000010101000";

min <="0011010011101000";
when "00110001" =>

diff <="0000000010100101";

min <= "0011010001000010"
when "00110010" =>

diff <= "0000000010100010";

min <= "0011001110100000"
when "00110011" =>

diff <= "0000000010011111";

min <="0011001100000001";
when "00110100" =>

diff <="0000000010011100";

min <= "0011001001100101";
when "00110101" =>

diff <= "0000000010011001";

min <="0011000111001100";
when "00110110" =>

diff <= "0000000010010110";

min <= "0011000100110110"
when "00110111" =>

diff <= "0000000010010011";

min <= "0011000010100010"
when "00111000" =>

diff <= "0000000010010000";

min <= "0011000000010001";
when "00111001" =>

diff <= "0000000010001110";

min <= "0010111110000010"
when "00111010" =>

diff <= "0000000010001100";

min <="0010111011110110";
when "00111011" =>

diff <= "0000000010001001";

min <="0010111001101101";
when "00111100" =>

diff <= "0000000010000111";

min <="0010110111100101";
when "00111101" =>

diff <= "0000000010000101";

min <="0010110101100000";
when "00111110" =>

diff <= "0000000010000011";

min <= "0010110011011101";
when "00111111" =>

diff <= "0000000010000001";

min <="0010110001011100";
when "01000000" =>

diff <= "0000000001111111";

min <="0010101111011101";
when "01000001" =>

diff <= "0000000001111101";

min <= "0010101101100000";
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when "01000010" =>

diff <= "0000000001111011";

min <="0010101011100101";
when "01000011" =>

diff <= "0000000001111001";

min <= "0010101001101011";
when "01000100" =>

diff <= "0000000001110111";

min <="0010100111110100";
when "01000101" =>

diff <= "0000000001110101";

min <= "0010100101111110"
when "01000110" =>

diff <= "0000000001110100";

min <= "0010100100001010"
when "01000111" =>

diff <="0000000001110010";

min <="0010100010010111";
when "01001000" =>

diff <="0000000001110000";

min <= "0010100000100110"
when "01001001" =>

diff <= "0000000001101111";

min <="0010011110110111";
when "01001010" =>

diff <= "0000000001101101";

min <= "0010011101001001";
when "01001011" =>

diff <= "0000000001101100";

min <= "0010011011011100"
when "01001100" =>

diff <= "0000000001101011";

min <="0010011001110001";
when "01001101" =>

diff <= "0000000001101001";

min <= "0010011000000111";
when "01001110" =>

diff <= "0000000001101000";

min <="0010010110011111";
when "01001111" =>

diff <= "0000000001100111";

min <= "0010010100111000"
when "01010000" =>

diff <= "0000000001100101";

min <= "0010010011010010"
when "01010001" =>

diff <= "0000000001100100";

min <= "0010010001101110";
when "01010010" =>

diff <= "0000000001100011";

min <= "0010010000001010"
when "01010011" =>

diff <= "0000000001100010";

min <="0010001110101000";
when "01010100" =>
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diff <="0000000001100000";

min <= "0010001101000111";
when "01010101" =>

diff <= "0000000001011111";

min <= "0010001011101000"
when "01010110" =>

diff <= "0000000001011110";

min <= "0010001010001001";
when "01010111" =>

diff <= "0000000001011101";

min <= "0010001000101011";
when "01011000" =>

diff <= "0000000001011100";

min <="0010000111001111";
when "01011001" =>

diff <= "0000000001011011";

min <= "0010000101110011";
when "01011010" =>

diff <= "0000000001011010";

min <= "0010000100011001";
when "01011011" =>

diff <= "0000000001011001";

min <= "0010000010111111";
when "01011100" =>

diff <= "0000000001011000";

min <= "0010000001100111";
when "01011101" =>

diff <= "0000000001010111";

min <= "0010000000001111";
when "01011110" =>

diff <= "0000000001010110";

min <="0001111110111000"
when "01011111" =>

diff <= "0000000001010101";

min <= "0001111101100010"
when "01100000" =>

diff <= "0000000001010100";

min <="0001111100001110";
when "01100001" =>

diff <="0000000001010100";

min <="0001111010111010%
when "01100010" =>

diff <= "0000000001010011";

min <="0001111001100110";
when "01100011" =>

diff <= "0000000001010010";

min <= "0001111000010100"
when "01100100" =>

diff <= "0000000001010001";

min <= "0001110111000011";
when "01100101" =>

diff <="0000000001010000";

min <="0001110101110010";
when "01100110" =>

diff <= "0000000001001111";
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min <= "0001110100100010"
when "01100111" =>

diff <= "0000000001001111";

min <="0001110011010011";
when "01101000" =>

diff <= "0000000001001110";

min <= "0001110010000100"
when "01101001" =>

diff <= "0000000001001101";

min <= "0001110000110111";
when "01101010" =>

diff <= "0000000001001100";

min <="0001101111101010"
when "01101011" =>

diff <="0000000001001100";

min <= "0001101110011110"
when "01101100" =>

diff <= "0000000001001011";

min <="0001101101010010";
when "01101101" =>

diff <= "0000000001001010";

min <= "0001101100000111";
when "01101110" =>

diff <= "0000000001001010";

min <= "0001101010111101";
when "01101111" =>

diff <= "0000000001001001";

min <="0001101001110100";
when "01110000" =>

diff <= "0000000001001000";

min <= "0001101000101011";
when "01110001" =>

diff <= "0000000001001000";

min <="0001100111100011";
when "01110010" =>

diff <= "0000000001000111";

min <= "0001100110011011";
when "01110011" =>

diff <= "0000000001000110";

min <= "0001100101010100"
when "01110100" =>

diff <= "0000000001000110";

min <="0001100100001110";
when "01110101" =>

diff <= "0000000001000101";

min <= "0001100011001000"
when "01110110" =>

diff <= "0000000001000101";

min <= "0001100010000011";
when "01110111" =>

diff <="0000000001000100";

min <= "0001100000111110"
when "01111000" =>

diff <= "0000000001000011";

min <= "0001011111111010%

194



when "01111001" =>

diff <= "0000000001000011";

min <="0001011110110111";
when "01111010" =>

diff <= "0000000001000010";

min <= "0001011101110100"
when "01111011" =>

diff <= "0000000001000010";

min <="0001011100110010";
when "01111100" =>

diff <= "0000000001000001";

min <= "0001011011110000"
when "01111101" =>

diff <= "0000000001000001";

min <= "0001011010101111"
when "01111110" =>

diff <= "0000000001000000";

min <="0001011001101110";
when "01111111" =>

diff <="0000000001000000";

min <= "0001011000101110"
when "10000000" =>

diff <= "0000000000111111";

min <="0001010111101110";
when "10000001" =>

diff <= "0000000000111111";

min <= "0001010110101111"
when "10000010" =>

diff <= "0000000000111110";

min <= "0001010101110000"
when "10000011" =>

diff <= "0000000000111110";

min <= "0001010100110010";
when "10000100" =>

diff <= "0000000000111101";

min <= "0001010011110100"
when "10000101" =>

diff <= "0000000000111101";

min <= "0001010010110110";
when "10000110" =>

diff <="0000000000111100";

min <= "0001010001111010"
when "10000111" =>

diff <= "0000000000111100";

min <= "0001010000111101";
when "10001000" =>

diff <= "0000000000111100";

min <= "0001010000000001";
when "10001001" =>

diff <= "0000000000111011";

min <= "0001001111000110"
when "10001010" =>

diff <= "0000000000111011";

min <= "0001001110001010";
when "10001011" =>
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diff <= "0000000000111010";

min <= "0001001101010000"
when "10001100" =>

diff <= "0000000000111010";

min <= "0001001100010101";
when "10001101" =>

diff <= "0000000000111001";

min <="0001001011011011";
when "10001110" =>

diff <= "0000000000111001";

min <= "0001001010100010"
when "10001111" =>

diff <= "0000000000111001";

min <= "0001001001101001";
when "10010000" =>

diff <= "0000000000111000";

min <= "0001001000110000"
when "10010001" =>

diff <= "0000000000111000";

min <= "0001000111111000"
when "10010010" =>

diff <= "0000000000110111";

min <= "0001000111000000";
when "10010011" =>

diff <= "0000000000110111";

min <= "0001000110001000";
when "10010100" =>

diff <= "0000000000110111";

min <= "0001000101010001";
when "10010101" =>

diff <= "0000000000110110";

min <= "0001000100011010"
when "10010110" =>

diff <= "0000000000110110";

min <= "0001000011100100";
when "10010111" =>

diff <="0000000000110110";

min <= "0001000010101110";
when "10011000" =>

diff <= "0000000000110101";

min <= "0001000001111000";
when "10011001" =>

diff <= "0000000000110101";

min <= "0001000001000011";
when "10011010" =>

diff <= "0000000000110101";

min <= "0001000000001110"
when "10011011" =>

diff <= "0000000000110100";

min <= "0000111111011001";
when "10011100" =>

diff <= "0000000000110100";

min <="0000111110100101";
when "10011101" =>

diff <= "0000000000110100";
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min <= "0000111101110001";
when "10011110" =>

diff <= "0000000000110011";

min <="0000111100111101";
when "10011111" =>

diff <= "0000000000110011";

min <= "0000111100001010"
when "10100000" =>

diff <= "0000000000110011";

min <= "0000111011010111"
when "10100001" =>

diff <="0000000000110010";

min <="0000111010100100";
when "10100010" =>

diff <= "0000000000110010";

min <= "0000111001110010"
when "10100011" =>

diff <= "0000000000110010";

min <="0000111000111111";
when "10100100" =>

diff <= "0000000000110001";

min <= "0000111000001110"
when "10100101" =>

diff <= "0000000000110001";

min <= "0000110111011100"
when "10100110" =>

diff <="0000000000110001";

min <="0000110110101011";
when "10100111" =>

diff <="0000000000110000";

min <= "0000110101111010"
when "10101000" =>

diff <= "0000000000110000";

min <= "0000110101001001";
when "10101001" =>

diff <="0000000000110000";

min <= "0000110100011001";
when "10101010" =>

diff <= "0000000000110000";

min <= "0000110011101001";
when "10101011" =>

diff <= "0000000000101111";

min <= "0000110010111001";
when "10101100" =>

diff <= "0000000000101111";

min <= "0000110010001010"
when "10101101" =>

diff <= "0000000000101111";

min <= "0000110001011011";
when "10101110" =>

diff <="0000000000101110";

min <= "0000110000101100";
when "10101111" =>

diff <= "0000000000101110";

min <= "0000101111111101";
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when "10110000" =>

diff <="0000000000101110";

min <="0000101111001111";
when "10110001" =>

diff <= "0000000000101110";

min <= "0000101110100000"
when "10110010" =>

diff <= "0000000000101101";

min <="0000101101110011";
when "10110011" =>

diff <= "0000000000101101";

min <= "0000101101000101";
when "10110100" =>

diff <= "0000000000101101";

min <= "0000101100011000"
when "10110101" =>

diff <= "0000000000101101";

min <="0000101011101010";
when "10110110" =>

diff <= "0000000000101100";

min <= "0000101010111101";
when "10110111" =>

diff <= "0000000000101100";

min <= "0000101010010001";
when "10111000" =>

diff <="0000000000101100";

min <= "0000101001100100";
when "10111001" =>

diff <= "0000000000101100";

min <= "0000101000111000"
when "10111010" =>

diff <= "0000000000101011";

min <= "0000101000001100";
when "10111011" =>

diff <= "0000000000101011";

min <= "0000100111100001";
when "10111100" =>

diff <= "0000000000101011";

min <= "0000100110110101";
when "10111101" =>

diff <= "0000000000101011";

min <= "0000100110001010"
when "10111110" =>

diff <= "0000000000101011";

min <= "0000100101011111"
when "10111111" =>

diff <= "0000000000101010";

min <= "0000100100110100";
when "11000000" =>

diff <= "0000000000101010";

min <= "0000100100001010"
when "11000001" =>

diff <= "0000000000101010";

min <= "0000100011011111";
when "11000010" =>
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diff <="0000000000101010";

min <= "0000100010110101";
when "11000011" =>

diff <= "0000000000101001";

min <= "0000100010001011";
when "11000100" =>

diff <= "0000000000101001";

min <= "0000100001100010";
when "11000101" =>

diff <= "0000000000101001";

min <= "0000100000111000";
when "11000110" =>

diff <= "0000000000101001";

min <= "0000100000001111";
when "11000111" =>

diff <= "0000000000101001";

min <= "0000011111100110"
when "11001000" =>

diff <= "0000000000101000";

min <= "0000011110111101";
when "11001001" =>

diff <="0000000000101000";

min <= "0000011110010100";
when "11001010" =>

diff <= "0000000000101000";

min <= "0000011101101100"
when "11001011" =>

diff <= "0000000000101000";

min <= "0000011101000100";
when "11001100" =>

diff <= "0000000000101000";

min <= "0000011100011011";
when "11001101" =>

diff <= "0000000000100111";

min <= "0000011011110100"
when "11001110" =>

diff <= "0000000000100111";

min <= "0000011011001100";
when "11001111" =>

diff <= "0000000000100111";

min <= "0000011010100100";
when "11010000" =>

diff <= "0000000000100111";

min <= "0000011001111101";
when "11010001" =>

diff <= "0000000000100111";

min <= "0000011001010110"
when "11010010" =>

diff <= "0000000000100110";

min <= "0000011000101111";
when "11010011" =>

diff <="0000000000100110";

min <= "0000011000001000";
when "11010100" =>

diff <="0000000000100110";
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min <= "0000010111100010"
when "11010101" =>

diff <= "0000000000100110";

min <= "0000010110111100";
when "11010110" =>

diff <="0000000000100110";

min <= "0000010110010101";
when "11010111" =>

diff <= "0000000000100110";

min <= "0000010101101111";
when "11011000" =>

diff <= "0000000000100101";

min <= "0000010101001001";
when "11011001" =>

diff <= "0000000000100101";

min <= "0000010100100100";
when "11011010" =>

diff <= "0000000000100101";

min <= "0000010011111110"
when "11011011" =>

diff <= "0000000000100101";

min <= "0000010011011001";
when "11011100" =>

diff <= "0000000000100101";

min <= "0000010010110100"
when "11011101" =>

diff <="0000000000100100";

min <= "0000010010001111";
when "11011110" =>

diff <="0000000000100100";

min <= "0000010001101010"
when "11011111" =>

diff <= "0000000000100100";

min <= "0000010001000101";
when "11100000" =>

diff <="0000000000100100";

min <= "0000010000100001";
when "11100001" =>

diff <= "0000000000100100";

min <= "0000001111111101";
when "11100010" =>

diff <= "0000000000100100";

min <= "0000001111011000";
when "11100011" =>

diff <= "0000000000100100";

min <= "0000001110110100"
when "11100100" =>

diff <= "0000000000100011";

min <= "0000001110010001";
when "11100101" =>

diff <= "0000000000100011";

min <= "0000001101101101";
when "11100110" =>

diff <= "0000000000100011";

min <= "0000001101001001";
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when "11100111" =>

diff <= "0000000000100011";

min <= "0000001100100110";
when "11101000" =>

diff <= "0000000000100011";

min <= "0000001100000011";
when "11101001" =>

diff <= "0000000000100011";

min <= "0000001011100000";
when "11101010" =>

diff <="0000000000100010";

min <= "0000001010111101";
when "11101011" =>

diff <= "0000000000100010";

min <= "0000001010011010"
when "11101100" =>

diff <="0000000000100010";

min <= "0000001001110111";
when "11101101" =>

diff <= "0000000000100010";

min <= "0000001001010101";
when "11101110" =>

diff <= "0000000000100010";

min <= "0000001000110010";
when "11101111" =>

diff <="0000000000100010";

min <= "0000001000010000";
when "11110000" =>

diff <= "0000000000100010";

min <= "0000000111101110"
when "11110001" =>

diff <= "0000000000100001";

min <= "0000000111001100";
when "11110010" =>

diff <= "0000000000100001";

min <= "0000000110101010"
when "11110011" =>

diff <= "0000000000100001";

min <= "0000000110001001";
when "11110100" =>

diff <= "0000000000100001";

min <= "0000000101100111";
when "11110101" =>

diff <= "0000000000100001";

min <= "0000000101000110"
when "11110110" =>

diff <= "0000000000100001";

min <= "0000000100100101";
when "11110111" =>

diff <= "0000000000100001";

min <= "0000000100000100";
when "11111000" =>

diff <= "0000000000100000";

min <= "0000000011100011";
when "11111001" =>
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diff <= "0000000000100000";
min <= "0000000011000010";
when "11111010" =>
diff <= "0000000000100000";
min <= "0000000010100001";
when "11111011" =>
diff <= "0000000000100000";
min <= "0000000010000001";
when "11111100" =>
diff <= "0000000000100000";
min <= "0000000001100000";
when "11111101" =>
diff <= "0000000000100000";
min <= "0000000001000000";
when "11111110" =>
diff <= "0000000000100000";
min <= "0000000000100000";
when "11111111" =>
diff <= "0000000000100000";
min <= "0000000000000000";
when others =>
diff <= (others =>'0";
min <= (others =>'0");
end case;
end process;
end;

linear_interp.vhd [17]

library ieee;

library work;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity linear_interp is
port (in_clk : in std_logic;

in_rand : in std_logic_vector(15 downto 0);
in_min : in std_logic_vector(15 downto 0);
in_diff : in std_logic_vector(15 downto 0);
in_urn : in std_logic_vector(31 downto 0);
out_urn : out std_logic_vector(31 downto 0);
out_interp : out std_logic_vector(31 downto 0));

end entity linear_interp;

architecture a of linear_interp is
begin
process(in_clk)
variable product : std_logic_vector(31 downto 0O
variable min_extend : std_logic_vector(31 downt
begin
if (in_clk="1" and in_clk'event) then
out_urn <=in_urn;
product :=in_rand * in_diff;
min_extend(31 downto 16) :=in_min;
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min_extend(15 downto 0) := (others =>'0");
out_interp <= min_extend + product;
end if;
end process;
end architecture a;
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Appendix D

BRAM Based Design C++

hw.cc

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <math.h>
#include <iostream>
#include <cstdlib>
#include "iflib.h"

using namespace std;

#define NULLSPECIES 127
#define NULLRX 63
#define NMAX 127

#define MMAX 63

#define PMAX 65535
#define KMAX 65535

class CR{
public:
int reactants,products,fpk;
double k;
int renum[2],rewt[2],prnum[2],prwt[2];
2

char *memp;

int64 data;

int fd,N,M,*X,SUMS[256], TPROP[125],RXSELECT[125],ER V[125];
int seed,iterations,C,*mon,thecount;

CR*R;

double thetime;

FILE *outFile;

void init(void) {
fd = open(DEVICE, O_RDWR);
memp = (char *)mmap(NULL, MTRRZ, PROT_READ, MAP_PR IVATE, fd, 0);
if (memp == MAP_FAILED) {
perror(DEVICE);
exit(1);

}
srand(time(NULL));
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}

void setSP(int index,unsigned int population){

data.w[1] = (0x1<<27) + (index<<19);
data.w[0] = population;
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

}

void readSP(int index, unsigned int *dataA, unsigne
data.w[1] = (0x2<<27) + (index<<19);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));

*dataA = (unsigned int)data.w[1];

*dataB = (unsigned int)data.w[0];
}

void setRX(int index, int reacl, int reac2, int pro
data.w[1] = (0x3<<27) + (index<<19) + (reac1<<8) +
data.w[0] = (prol<<24) + (pro2<<16) + k;
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

}

void readRX(int index, unsigned int *dataA, unsigne
data.w[1] = (0x4<<27) + (index<<19);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));

*dataA = (unsigned int)data.w[1];

*dataB = (unsigned int)data.w[0];
}

void readPROP(int index, unsigned int *dataA, unsig
data.w[1] = (0x5<<27) + (index<<19);
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write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));

*dataA = (unsigned int)data.w[1];

*dataB = (unsigned int)data.w[0];
}

void readPSUM(int index1, int index2, unsigned int *dataA, unsigned int
*dataB){
data.w[1] = (0x6<<27) + (index1<<23) + (index2<<19 );
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));

*dataA = (unsigned int)data.w[1];

*dataB = (unsigned int)data.w[0];
}

void setSEED(int seed){
data.w[1] = (0x7<<27);
data.w[0] = seed;
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

}

void readURV(unsigned int *dataA, unsigned int *dat aB){
data.w[1] = (0x8<<27);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));

*dataA = (unsigned int)data.w[1];

*dataB = (unsigned int)data.w[0];
}

void newURV/(void){

data.w[1] = (0x9<<27);
write64(data, memp+(0<<3));
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}

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

void readPRODUCT (unsigned int *dataA, unsigned int

}

data.w[1] = (0xA<<27);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
*dataA = (unsigned int)data.w[1];
*dataB = (unsigned int)data.w[0];

void readSELECTION(unsigned int *dataA, unsigned in

}

data.w[1] = (0xB<<27);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
*dataA = (unsigned int)data.w[1];
*dataB = (unsigned int)data.w[0];

void readERV/(unsigned int *dataA, unsigned int *dat

}

data.w[1] = (0xC<<27);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){

read64(&data, memp+(0<<3));
}

read64(&data, memp+(1<<3));
*dataA = (unsigned int)data.w[1];
*dataB = (unsigned int)data.w[0];

void initPROP(void){

data.w[1] = (0xD<<27);
write64(data, memp+(0<<3));

read64(&data, memp+(0<<3));
while(data.w[1]!=0x0){
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}

read64(&data, memp+(0<<3));

void printresults(void){

}

for(i=0;i<125;i++){

/I UPDATE PUTATIVE TIME
thetime+=((double)ERV/[i]/536870911.0)/(double) TPR
thecount++;

/I UPDATE SPECIES POPULATIONS
for(j=0;j<R[RXSELECT]i]].reactants;j++){
X[R[RXSELECT]i]].renum[j]]-=R[RXSELECT]i]].rewt[

}
for(j=0;j<R[RXSELECT]i]].products;j++){
X[R[RXSELECTIi]].prnum[j]]+=R[RXSELECTIi]].prwt[

/I PRINT TO AN OUTPUT FILE
/-k
fprintf(outFile,"%6d %8.6lf",thecount,thetime);
for(j=0;j<C:j++){
fprintf(outFile," %4u",X[monlj]]);

fprintf("outFile,"\n");
*/

void step(int runs){

inti,j=0,a=0;

while(runs>0){

data.w[1] = (OxE<<27);
if(runs>=125) data.w[0] = 252;
else data.w[0] = (runs*2)+2;
write64(data, memp+(0<<3));
if(a==1) printresults();

else a=1;

read64(&data, memp+(0<<3));
while(data.w[1]'=0x0){

read64(&data, memp+(0<<3));
}

for(i=2;i<252;i++){
read64(&data,memp+(i<<3));
TPROPJ[(i>>1)-1] = data.w[1];
ERV[(i>>1)-1] = data.w][0];
i++;
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read64(&data,memp+(i<<3));
RXSELECT[((i-1)>>1)-1] = data.w[0];

}
runs -= 125;

printresults();

int main (int argc, char **argv)
{
unsigned int dataA, dataB;
inti, j, k, kl_int, MF=1, tprop, reacl, reac2, pr ol, pro2;
char modelfile[51];
double kI=1.0,y;
struct timeval ts,te;
FILE *inFile;

init();

seed = -1;
iterations = 1000000;

/ OPEN A FILE FOR ANY WRITING OF RESULTS
outFile = fopen("results.txt","wt");

I ANALYZE COMMAND LINE ARGUMENTS

for(i=1;i<argc;i++){
if((stremp(argv[i],"-h")==0)||(strcmp(argVv][i],"-- h")==0)}{
fprintf(stderr,"Expected usage: ./rchw [-m] [mod el
file] [-] [iterations] [-s] [seed]\n");

exit(1);
else{
if(strcmp(argv[i],"-m")==0)Y
strcpy(modelfile,argv[++i]);
else{
if(strcmp(argvli],"-i")==0){
iterations = atoi(argv[++i]);
}
else{
if(strcmp(argv[i],"-s")==0){
seed = atoi(argv[++i]);
}
else{
fprintf(stderr,"ERROR! Expected
usage: ./rchw [-m] [model file] [-i] [iterations] [ -s] [seed]\n");
exit(1);
}
}
}
}

209



inFile = fopen(modelfile,"r");
while(inFile == NULL){
printf("Please enter the name of the model file t
from: ");
fgets(modelfile,50,stdin);
if(modelfile[0]==10) exit(0);
modelfile[strlen(modelfile)-1]="0";
inFile = fopen(modelfile,"r");

/| CLEAR BRAM

for(i=0;i<255;i++){
data.w[1] = OxO;
data.w[0] = OxO;
write64(data, memp+(i<<3));

}

// STORE INITIAL TIME OF START OF SIMULATION
gettimeofday(&ts,NULL);

M T
Mt

/I READING MODEL FILE AND STORING VARIABLES INTO S
M

T
M

/I READING AND STORING SPECIES POPULATIONS
fscanf(inFile,"%d",&N);
if(N>NMAX){
fprintf(stderr,"ERROR! The number of species in
exceeds %d\n",NMAX);
exit(1);
}

X = new int[N];
for(i=0;i<N;i++){
fscanf(inFile,"%d",&X][i]);
if(X[II>PMAX){
X[[]=PMAX;
fprintf(stderr,"WARNING! Species %d exceeds max
and has been set to %d\n",i, PMAX);

}
}
gettimeofday(&ts,NULL);
I READING AND STORING REACTION EQUATIONS
fscanf(inFile,"%d",&M);
if(M>MMAX){
fprintf(stderr,"ERROR! The number of reactions i

model exceeds %d\n",MMAX);
exit(1);
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}

R = new CR[M];

for(i=0;

iI<M;i++){

/| READING EACH REACTION'S REACTANTS

fscanf(inFile,"%d",&R][i].reactants);

k=0;

for(j=0;j<R[i].reactants;j++){
fscanf(inFile,"%d",&R][i].rewt[j]);
k+=R{[i].rewt[j];
fscanf(inFile,"%d",&R[i].renum[j]);

}

for(j;j<2;j++)1{
R[i].rewt[j]=0;
R[i].renum[j]=NULLSPECIES;

}
if(k>2){
fprintf(stderr,"ERROR! The number of reactants

reaction %d exceeds 2\n",i);

exit(1);
}

/Il READING EACH REACTION'S PRODUCTS

fscanf(inFile,"%d",&R][i].products);

k=0;

for(j=0;j<R[i].products;j++){
fscanf(inFile,"%d",&R[i].prwt[j]);
k+=R[i].prwt[j];
fscanf(inFile,"%d",&R][i].prnum(j]);

}

for(j;j<2;j++){
R[i].prwt[j]=0;
R[i].prnum[jJ=NULLSPECIES;

}
if(k>2){
fprintf(stderr,"ERROR! The number of products i

reaction %d exceeds 2\n",i);

}

exit(1);

/| READING EACH REACTION'S K
fscanf(inFile,"%lf",&R{[i].k);

y = RJil.k - (int)R[i].k;

if((y>0) && (y<kl)) kl=y;

/I READING SPECIES TO BE MONITORED
fscanf(inFile,"%d",&C);

mon = new int[C];

for(i=0;i<C;i++){

}

fscanf(inFile,"%d",&mon[i]);

/l DETERMING MULTIPLICATION FACTOR (MF) TO CHANGE

FIXED POINT
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if(kl < 1){
MF = 10000000;
if(kl < 0.0000001){
MF = (int)(L.0/kl);

}
kI_int = (int)(kl * MF);
if((int)(kl * MF * 10)%210 >= 5) kl_int += 1;
for(i=0;i<6;i++){
if(kl_int %10 > 0) break;
MF /= 10;
KI_int /= 10;

}

/ UPDATE FIXED POINT K VALUE FOR EACH REACTION
for(i=0;i<M;i++){
R[i].fpk = (int)(R[i].k * MF);
if((int)(R[i].k * MF * 10) % 10 >= 5) R{[i].fpk +=
if(R[i].fok > KMAX){
fprintf(stderr,"ERROR! Fixed point rate constan
reaction %d exceeds %d\n",i, KMAX);
exit(1);
}

T T T
M

/I READY TO INTERFACE WITH FPGA
M

T T
M

setSEED(seed);

Il Set species populations

for(i=0;i<N;i++){
setSP(i,X[i]);

}
for(i;i<NULLSPECIES;i++){
setSP(i,0);

}
setSP(NULLSPECIES, 1);

/I Set reaction equations
for(i=0;i<M;i++){
if(R[i].rewt[0]==2){
reacl = RJ[i].renum[0];
reac2 = R[i].renum[0];

else{
reacl = RJ[i].renum[0];
reac2 = R[i].renum[1];

}
if(R[i].prwt[0]==2){
prol = RJi].prnum[0];
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pro2 = RJi].prnum[0];
}

else{
prol = R[i].prnum[0];
pro2 = RJi].prnum[1];
}
setRX(i,reacl,reac2,prol,pro2,R[i].fpk);
}
for(i;i<=NULLRX;i++){
setRX(i,NULLSPECIES,NULLSPECIES,NULLSPECIES,NULLS
}

step(iterations);

gettimeofday(&te,NULL);
printf("te = %6d.%6d\nts =
%6d.%6d\n" te.tv_sec,te.tv_usec,ts.tv_sec,ts.tv_use c);

for(i=0;i<N;i++){
readSP(i,&dataA,&dataB);
printf("Species[%d] = %10d\n",i,dataB);
}

munmap(memp, MTRRZ);

return O;
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Appendix E

SBML Models

SBML Content Outline

[Number of species]

[Population of each species, all separated by a spa ce]
[Number of reactions]

[Reaction equations defined in form outlined below]

[# Reactants] [Weight] [Index] [# Products] [Weight ] [Index] [K]
[Number of species to be monitored]

[Indices of species populations to be monitored]

When defining a reaction equation, “Index” refersridex of a species involved in a
reaction equation while “Weight” refers to the nianbf that species acting as a reactant
or product in a given reaction equation. A weighdtl an index are defined for the

number of reactants as well as the number of pteduc
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Protein Dimerization [18]
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8

01234567
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Original Tuberculosis SBML [18]
17
100010001020000000101
23

111621011610
210132131116
210142141132
210152151116
211132131206
211142141206
21115215120.78

11204

113114100

1141131

11411505

11511410

216171181

121111310

111312110
211311411155
1115211311410
21151921811510
11811910

11911104

111011116
1111311216171
11120100

17
012345678910111213141516

216



Modified Tuberculosis SBML [18]
18
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